

Cynthia Vodopivec Zimmer Power Company LLC Luminant 6555 Sierra Dr. Irving, TX 75039

August 13, 2021

Sent via email

Mr. Michael S. Regan, EPA Administrator Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Mail Code 5304-P Washington, DC 20460

Re: Zimmer Power Plant Alternative Closure Demonstration—Request to Transfer to 40 C.F.R. § 257.103(f)(2)

Dear Administrator Regan:

Zimmer Power Company LLC (Zimmer)¹ has announced that the William H. Zimmer Power Plant (Zimmer Plant) in Ohio will cease coal-fired operations by May 31, 2022. As a result, Zimmer hereby submits this request under 40 C.F.R. § 257.103(f)(4)(i) to transfer the current authorization for a site-specific alternative deadline for the three surface impoundments at the Zimmer Plant from § 257.103(f)(1) (development of alternative capacity is technically infeasible) to § 257.103(f)(2) (permanent cessation of a coal-fired boiler(s) by a date certain).

By way of background, on November 25, 2020, Zimmer timely submitted to the U.S. Environmental Protection Agency (EPA) an alternative closure demonstration pursuant to § 257.103(f)(1) to extend the rule's April 11, 2021 deadline in order to develop alternative capacity for its CCR and non-CCR wastestreams. Specifically, the demonstration sought additional time to allow the Zimmer Plant to retrofit the Coal Pile Runoff Pond, reroute CCR wastestreams away from the Gypsum Recycle Pond to the Mercury Effluent Treatment System, close the Gypsum Recycle Pond and repurpose it as a non-CCR basin, and initiate closure of D Basin. Although more than four months has passed since that submission was made, EPA has not taken action on it or published a proposed decision for comment. Thus, the April 21, 2021 cease receipt deadline is currently tolled pursuant to § 257.103(f)(3)(ii), and Zimmer is currently authorized to continue operating the three impoundments.

On July 19, 2021, however, Zimmer announced that the Zimmer Plant will be retiring by May 31, 2022 and, as a result, Zimmer plans to close all three impoundments by October 17, 2023, instead of retrofitting them for continued operations. Accordingly, as authorized by § 257.103(f)(4)(i), Zimmer requests to transfer the alternate closure demonstration that was previously submitted to EPA on November 25, 2020, pursuant to § 257.103(f)(1) and replace it with the enclosed demonstration prepared by Burns & McDonnell pursuant to § 257.103(f)(2). Because Zimmer is "authorized to continue operating [the] impoundment[s] under [§ 257.103]" by virtue of its prior timely submittal, it "may at any time request authorization to continue operating the impoundment pursuant to another paragraph of subsection (f), by submitting the information in paragraph (f)(4)(i) or (ii) of [§ 257.103]." 40 C.F.R. § 257.103(f)(4).

¹ Formerly Dynegy Zimmer, LLC.

In accordance with § 257.103(f)(4)(i), the enclosed demonstration addresses all of the criteria in § 257.103(f)(2)(i)-(iv) and contains the documentation required by § 257.103(f)(2)(v). As allowed by the agency, in lieu of hard copies of these documents, electronic files were submitted to Kirsten Hillyer, Frank Behan, and Richard Huggins via email. The demonstration is also available on Zimmer's publicly available website: https://www.luminant.com/ccr/

Sincerely,

Cynthin E. Wdy

Cynthia Vodopivec SVP - Environmental Health & Safety

Enclosure

cc: Kirsten Hillyer Frank Behan Richard Huggins

CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Zimmer Power Company LLC

William H. Zimmer Power Plant Project No. 122702

> Revision 0 8/13/2021

CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

prepared for

Zimmer Power Company LLC William H. Zimmer Power Plant Moscow, Ohio

Project No. 122702

Revision 0 8/13/2021

prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

INDEX AND CERTIFICATION

Zimmer Power Company LLC CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline Project No. 122702

Report Index

<u>Chapter</u>		Number
Number	Chapter Title	<u>of Pages</u>
1.0	Executive Summary	1
2.0	Introduction	3
3.0	Documentation of No Alternative Disposal Capacity	7
6.0	Documentation of Closure Completion Timeframe	2
7.0	Conclusion	1
Appendix A	Site Plan	1

Certification

I hereby certify, as a Professional Engineer in the state of Ohio, that the information in this document as noted in the above Report Index was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Zimmer Power Company LLC or others without specific verification or adaptation by the Engineer.

Matthew D. Bleything, P.E. Ohio License No. 82440

2 Date:

TABLE OF CONTENTS

Page No.

1.0	EXECUTIVE SUMMARY1-1						
2.0	INTF	RODUCTION 2-1					
3.0	DOC 3.1 3.2 3.3	CUMENTATION OF NO ALTERNATIVE DISPOSAL CAPACITY 3-1 Site-Layout and Wastewater Processes 3-1 CCR Wastestreams 3-1 Non-CCR Wastestreams 3-4					
4.0	RIS	K MITIGATION PLAN 4-1					
5.0	DOC 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	CUMENTATION AND CERTIFICATION OF COMPLIANCE5-1Owner's Certification of Compliance - $\S 257.103(f)(2)(v)(C)(1)$ 5-1Visual Representation of Hydrogeologic Information - $\S 257.103(f)(2)(v)(C)(2)$ 5-2Groundwater Monitoring Results - $\S 257.103(f)(2)(v)(C)(3)$ 5-2Description of site hydrogeology including stratigraphic cross-sections - $\S 257.103(f)(2)(v)(C)(4)$ $\S 257.103(f)(2)(v)(C)(4)$ 5-2Corrective Measures Assessment - $\S 257.103(f)(2)(v)(C)(5)$ 5-2Remedy Selection Progress Report - $\S 257.103(f)(2)(v)(C)(6)$ 5-3Structural Stability Assessment - $\S 257.103(f)(2)(v)(C)(7)$ 5-3Safety Factor Assessment - $\S 257.103(f)(2)(v)(C)(8)$ 5-3					
6.0	DOC	UMENTATION OF CLOSURE COMPLETION TIMEFRAME					
7.0	CON	ICLUSION7-1					
APPI	ENDIX	A – SITE PLAN AND WATER BALANCE DIAGRAM					

APPENDIX B – RISK MITIGATION PLAN

APPENDIX C – COMPLIANCE DOCUMENTS

LIST OF TABLES

Page No.

Table 2-1: Zimmer CCR Surface Impoundment Summary	2-1
Table 3-1: Zimmer CCR Wastestreams	
Table 3-2: Zimmer Gypsum Recycle Pond Non-CCR Wastestreams	3-5
Table 3-3: Zimmer Coal Pile Runoff Pond Non-CCR Wastestreams	3-5
Table 3-4: Non-CCR Wastestream Offsite Disposal	3-7
Table 6-1: Zimmer Impoundments Closure Schedule	6-2

LIST OF ABBREVIATIONS

Abbreviation	Term/Phrase/Name
CCR	Coal Combustion Residual
CFR	Code of Federal Regulations
Zimmer	Zimmer Power Company LLC
ELG Rule	Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category
EPA	Environmental Protection Agency
Zimmer Plant	William H. Zimmer Power Plant
RCRA	Resource Conservation and Recovery Act
SWPPP	Stormwater Pollution Prevention Plan

1.0 EXECUTIVE SUMMARY

Zimmer Power Company LLC (Zimmer) has announced that the William H. Zimmer Power Plant (Zimmer Plant) in Ohio will cease coal-fired operations by May 31, 2022. As a result, Zimmer hereby submits this request under 40 C.F.R. § 257.103(f)(4)(i) to the U.S. Environmental Protection Agency (EPA) to transfer the current authorization for a site-specific alternative deadline for the three CCR surface impoundments (the Gypsum Recycle Pond, Coal Pile Runoff Pond, and D Basin) located at the Zimmer Plant under 40 C.F.R. § 257.103(f)(1) to 40 C.F.R. § 257.103(f)(2) — "Permanent Cessation of a Coal-Fired Boiler(s) by a Date Certain." On November 25, 2020, Zimmer timely submitted to EPA an alternative closure demonstration pursuant to § 257.103(f)(1) to extend the rule's April 11, 2021, deadline in order to develop alternative capacity for its CCR and non-CCR wastestreams. Specifically, the demonstration sought additional time to allow the Zimmer Plant to retrofit the Coal Pile Runoff Pond, reroute CCR wastestreams away from the Gypsum Recycle Pond to the Mercury Effluent Treatment System, close the Gypsum Recycle Pond and repurpose it as a non-CCR basin, and initiate closure of D Basin. Thus, the Zimmer Plant's cease receipt deadline is currently tolled pursuant to § 257.103(f)(3)(ii), and Zimmer is currently authorized to continue operating the three impoundments. Because Zimmer is "authorized to continue operating [the] impoundment[s] under this section [§ 257.103]" by virtue of its prior timely submittal, it "may at any time request authorization to continue operating the impoundment pursuant to another paragraph of subsection (f), by submitting the information in paragraph (f)(4)(i) or (ii) of this section." 40 C.F.R. § 257.103(f)(4).

In accordance with § 257.103(f)(4)(i), this demonstration addresses all of the criteria in § 257.103(f)(2)(i)-(iv) and contains the documentation required by § 257.103(f)(2)(v). The impoundments are each less than 40 acres in size and are used to manage CCR and non-CCR wastestreams at the Zimmer Plant. As discussed below, the boilers at the plant will cease coal-fired operations no later than May 31, 2022, and the impoundments will complete closure no later than October 17, 2023. Therefore, Zimmer is requesting to transfer the current authorization for a site-specific deadline from 40 C.F.R. § 257.103(f)(1) to 40 C.F.R. § 257.103(f)(2) so that these impoundments may continue to receive CCR and non-CCR wastestreams and complete closure no later than October 17, 2023.

2.0 INTRODUCTION

The Zimmer Plant is a 1,450-megawatt coal-fueled electric generating plant in Moscow, Ohio. Fly ash, economizer ash, and gas recirculation ash are captured dry. Bottom ash and pyrites are handled using a dewatering bin with settling and surge tanks and a recirculation system. Any overflow or leaks from this system, with any associated de minimis amounts of solids, are routed to the Wastewater Pond via the collection trenches and the East Precipitator Sump. The Zimmer facility includes three CCR surface impoundments (listed in Table 2-1) that are the subject of this demonstration. A site plan (Figure 1) and water balance diagram (Figure 2) are provided in Appendix A.

CCR Surface Impoundment Name	Alternate Designation (see Figure 2)	Year Placed in Service	Impoundment Size (acres) / Storage Volume (acre-feet)	Lined?	Meets Location Restrictions?	Groundwater Status
Gypsum Recycle Pond	SPD-4 Pond-4 Truck Wash Pond	1995	0.6 / 4.5	Yes ¹	Yes	Assessment Monitoring was initiated in May 2018 and is
Coal Pile Runoff Pond	SPD-3 Pond-3 Coal Pile Runoff Pond	1987	2.8 / 36.3	Yes ¹	Yes	ongoing. No exceedances of Appendix IV parameters have been identified;
D Basin	SPD-5 Pond-5 D Basin Dredge Dewatering Basin	2003	6.1 / 46.6	No	No ²	therefore, an assessment of corrective measures is not required.

Table 2-1: Zimmer CCR Surface Impoundment Summary

¹Originally classified as lined per 40 C.F.R. § 257.71(a)(1)(i), which was subsequently vacated by the U.S. Court of Appeals for the D.C. Circuit. This impoundment now qualifies as an eligible unlined CCR surface impoundment per § 257.53. ²Meets criteria for wetlands, fault areas, seismic impact zones, and unstable areas but not aquifer separation.

The three CCR surface impoundments onsite at the Zimmer Plant are utilized as follows:

- Gypsum Recycle Pond (referred to as SPD-4 Pond-4 Truck Wash Pond on Figure 2):
 - Receives centrate centrifuge effluent (FGD wastewater) that is not recycled back to the scrubber
 - o Receives mag thickener overflow (FGD wastewater)
 - Receives stormwater runoff from the FGD pad mix stackout pile and wash water from the associated truck wash system

- Receives wash water from the FGD Waste Handling Building, Coal Conveyor 56E/W, and Fly Ash Silo (via the Truck Scale Area Sump)
- FGD solids settle out in the concrete-lined pond and are removed and placed on the gypsum stackout pile
- The pond overflows to the FGD Waste Handling Building Sump (referred to as the FGD Stabilization Area Sump on Figure 2), which is typically forwarded to the Mercury Effluent Treatment System
- Coal Pile Runoff Pond (referred to as SPD-3 Pond-3 Coal Pile Runoff Pond on Figure 2):
 - Receives Coal Pile Runoff from A and B Basins
 - Receives stormwater from C Basin
 - Receives decant water and stormwater from D Basin
 - Receives treated flow (including solids) from the Mercury Effluent Treatment System (which treats water from the Gypsum Recycle Pond/FGD Waste Handling Building Sump as well as landfill leachate)
 - The treated pond effluent overflows to the Wastewater Pond, where it comingles with a majority of the plant process water flows prior to discharge
- D Basin (referred to as SPD-5 Pond-5 D Basin Dredge Dewatering Basin on Figure 2):
 - Used to dewater dredged CCR and non-CCR material from other ponds onsite, including the Wastewater Pond, the Coal Pile Runoff Pond, and the Gypsum Recycle Pond. This dredging is typically required annually to maintain adequate residence time to meet the discharge permit requirements at the outfall from the site pond system.

On April 17, 2015, the Environmental Protection Agency (EPA) issued the federal Coal Combustion Residual (CCR) Rule, 40 C.F.R. Part 257, Subpart D, to regulate the disposal of CCR materials generated at coal-fueled units. The rule is being administered under Subtitle D of the Resource Conservation and Recovery Act (RCRA, 42 U.S.C. § 6901 et seq.). On August 28, 2020, the EPA Administrator issued revisions to the CCR Rule that require all unlined surface impoundments to initiate closure by April 11, 2021, unless a complete alternative closure demonstration was submitted to the agency by November 30, 2020. 40 C.F.R. § 257.101(a)(1) (85 Fed. Reg. 53,516 (Aug. 28, 2020)). A submittal of a complete demonstration tolled the April 11, 2021, deadline until EPA acts on the submission and sets a site-specific deadline. 40 C.F.R. § 257.103(f)(3)(ii). Further, under 40 C.F.R. § 257.103(f)(4) owners and operators of a CCR surface impoundment that are "authorized to continue operating an impoundment under this section [§ 257.103]" may "request authorization to continue operating the impoundment pursuant to another paragraph of subsection (f), by submitting the information in paragraph (f)(4)(i) or (ii) of this section."

Specifically, an owner or operator of a surface impoundment that submitted a demonstration under § 257.103(f)(1) may request authorization to instead operate the surface impoundment in accordance with the requirements of § 257.103(f)(2). 40 C.F.R. § 257.103(f)(4)(i). To qualify for the alternative closure deadline under § 257.103(f)(2), a facility must meet the following four criteria:

- § 257.103(f)(2)(i) No alternative disposal capacity is available on-site or off-site. An increase in costs or the inconvenience of existing capacity is not sufficient to support qualification.
- 2. § 257.103(f)(2)(ii) Potential risks to human health and the environment from the continued operation of the CCR surface impoundment have been adequately mitigated;
- 3. § 257.103(f)(2)(iii) The facility is in compliance with the CCR rule, including the requirement to conduct any necessary corrective action; and
- § 257.103(f)(2)(iv) The coal-fired boilers must cease operation and closure of the impoundment must be completed within the following timeframes:
 - a. For a CCR surface impoundment that is 40 acres or smaller, the coal-fired boiler(s) must cease operation and the CCR surface impoundment must complete closure no later than October 17, 2023.
 - b. For a CCR surface impoundment that is larger than 40 acres, the coal-fired boiler(s) must cease operation, and the CCR surface impoundment must complete closure no later than October 17, 2028.

Section 257.103(f)(2)(v) sets out the documentation that must be provided to EPA to demonstrate that the four criteria set out above have been met. Therefore, this demonstration is organized based on the documentation requirements of §§ 257.103(f)(2)(v)(A) - (D).

3.0 DOCUMENTATION OF NO ALTERNATIVE DISPOSAL CAPACITY

To demonstrate that the criteria in § 257.103(f)(2)(i) has been met, the following provides documentation that no alternative disposal capacity is currently available on-site or off-site for each CCR and non-CCR wastestream that Zimmer seeks to continue placing into the CCR surface impoundments. Consistent with the regulations, neither an increase in costs nor the inconvenience of existing capacity was used to support qualification under these criteria. Instead, as EPA explained in the preamble to the proposed Part A revisions, "it would be illogical to require [] facilities [ceasing power generation] to construct new capacity to manage CCR and non-CCR wastestreams." 84 Fed. Reg. 65,941, 65,956 (Dec. 2, 2019). EPA again reiterated in the preamble to the final revisions that "[i]n contrast to the provision under § 257.103(f)(1), the owner or operator does not need to develop alternative capacity because of the impending closure of the coal fired boiler. Since the coal-fired boiler will shortly cease power generation, it would be illogical to require these facilities to construct new capacity to manage CCR and non-CCR wastestreams." 85 Fed. Reg. at 53,547. Thus, new construction or the development of new alternative disposal capacity was not considered a viable option for any wastestream discussed below.

3.1 Site-Layout and Wastewater Processes

The CCR surface impoundments receive both CCR flows and a portion of the non-CCR wastewater flows onsite for settling prior to overflowing to the Clear Water Pond for discharge to the Ohio River via Outfall 005. These wastestreams are discussed in more detail in the following sections. The remaining plant process flows are routed through the Wastewater Pond as shown on the water balance in Appendix A (see Figure 2). The Wastewater Pond is not authorized to receive the CCR flows and is not large enough to independently treat the total volume of the plant process water flows.

Zimmer also owns and operates a CCR landfill at a separate facility, located approximately 3 miles from the plant. This landfill is neither authorized nor capable of accepting wet-generated CCR and non-CCR wastestreams.

3.2 CCR Wastestreams

Zimmer evaluated each CCR wastestream placed in the CCR surface impoundments. The existing site water balance is included in Appendix A of this demonstration. The Zimmer Plant's fly ash, economizer ash, and gas recirculation ash systems are dry handled and disposed in the CCR landfill. The bottom ash (and non-CCR pyrites) is sluiced to dewatering bins equipped with surge tanks and a recirculation system. After dewatering, the bottom ash is disposed in the CCR landfill. For the reasons discussed below in Table 3-1,

each of the following CCR wastestreams must continue to be placed in the CCR surface impoundments due to lack of alternative capacity both on and off-site.

CCR Wastestream	Average Flow (MGD)	Alternative Capacity Currently Available? YES/NO	Description	Details
FGD Wastewater	0.337	NO	 The FGD system utilizes a series of thickeners with rakes and centrifuges to remove suspended solids and a magnesium recovery process to remove dissolved solids from the effluent. The Gypsum Recycle Pond receives centrate centrifuge effluent, FGD blowdown that is not recycled back to the scrubber, and mag thickener overflow (FGD wastewater). This pond effluent is forwarded to the Mercury Effluent Treatment System via the FGD area sump. Coal Pile Runoff Pond receives treated flow (including CCR solids) from the Mercury Effluent Treatment System. D Basin is used to dewater dredged CCR and non-CCR material from other ponds onsite (including Gypsum Recycle Pond and Coal Pile Runoff Pond). 	The Gypsum Recycle Pond is integral to operation of the FGD and captures large portions of the wet-generated CCR solids from the centrate/mag thickener system overflows and various wash activities before having the water forwarded to the Mercury Effluent Treatment System. The Coal Pile Runoff Pond receives both coal fines from non-CCR wastestreams (specifically coal pile runoff) and the effluent from the Mercury Effluent Treatment System (including landfill leachate, FGD wastewater, and the CCR solids that settle out of the FGD wastewater). Based on the size of this impoundment, dredging (to D Basin) is required to remove CCR and non-CCR materials on a periodic basis to maintain the residence time and treatment capacity provided within the Coal Pile Runoff Pond.

Zimmer evaluated on-site, wet temporary storage options for the CCR wastestreams, in lieu of using the Gypsum Recycle Pond, Coal Pile Runoff Pond, and D Basin while permanent capacity is being developed. Based on our evaluation, we concluded the following:

- FGD wastewater:
 - On-site alternative capacity is currently not available and would need to be developed. The
 other onsite impoundments (A Basin, C Basin, Wastewater Pond, and Clear Water Pond) are
 non-CCR impoundments and are, therefore, not authorized to receive the CCR sluice flows.

- Development of on-site alternative capacity would require both the reconfiguration of the existing wastestream system and the design, permitting, and installation of a new treatment system including CCR ponds, clarifiers, and/or storage tank(s), to provide the necessary retention time to meet the NPDES permit limits. The environmental permitting would include a modification to the current individual NPDES permit (to allow for the rerouting of this wastestream to another outfall), general NPDES stormwater construction permit, threatened and endangered species and historic preservation assessments, a construction & operating permit and a SWPPP at a minimum.
- Off-site alternative capacity is currently not available and would need to be developed. The 0 FGD wastewater is currently comingled with non-CCR wastestreams in the Gypsum Recycle Pond and would require significant reconfiguration of piping and valves to segregate these flows and collect the FGD wastewater separately from the floor drains and trenches that collect wash water and other flows around the FGD areas. Once isolated, this flow would need to be pumped to the Mercury Effluent Treatment System and then captured in another set of tanks for treatment to remove the solids. Developed off-site alternative capacity would consist of both temporary on-site wet storage (frac tanks) and off-site transportation, via tanker trucks. Zimmer estimates that approximately 65 frac tanks would be required to provide the necessary settling time, accounting for reduced settling capacity and reduced residence time due to solid accumulation. Zimmer would also require 45 daily tanker trucks (~7,500 gallons per truck to maintain DOT weight restrictions) to haul the wastewater offsite, if a POTW could be identified to receive it. The daily tanker truck traffic would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a PSD permit and modification under the Clean Air Act Permit Program if the calculated increase in emissions is over the PSD limits. Setting up arrangements for a local POTW to accept the wastewater would prove to be difficult since this amount of wastewater would most likely upset their treatment systems causing them to exceed their NPDES discharge limits. The potential for leaks/spills from the tank system or transportation of the wastewater offsite does exist. Furthermore, the temporary wet storage needed to accommodate off-site disposal would require reconfiguration of the existing wastestream system and design, installation, and associated environmental permitting for the temporary wet storage system, which would require a minimum of two years to implement.

3-3

Because Zimmer has now elected to permanently cease coal-fired operations of the boiler by no later than May 31, 2022, continuing to develop alternative disposal capacity for continued plant operations is counterproductive to the work to cease coal-fired operations of the boilers and close the impoundments. As long as Zimmer continues to wet handle the FGD waste, there are no other onsite CCR impoundments to receive and treat these flows and it is not feasible to dispose of the wet-handled material offsite. As EPA explained in the preamble of the 2015 rule, it is not possible for sites that sluice CCR material to an impoundment to eliminate the impoundment and dispose of the material offsite. *See* 80 Fed. Reg. 21,301, 21,423 (Apr. 17, 2015) ("[W]hile it is possible to transport dry ash off-site to [an] alternate disposal facility that is simply not feasible for wet-generated CCR. Nor can facilities immediately convert to dry handling systems."). As a result, the conditions at Zimmer satisfy the demonstration requirement in § 257.103(f)(2)(i).

3.3 Non-CCR Wastestreams

Zimmer discharges non-contact cooling water, reclaim water, and cooling tower blowdown via Outfall 099, cooling tower overboard, sewage treatment plant, and south plant stormwater via Outfall 003, and sewage treatment flows and north plant stormwater via Outfall 004. The CCR surface impoundments, two other coal pile runoff ponds (A and B basins), a stormwater and river dredge pond (C Basin), and one low volume wastewater pond are used to manage all the remaining water process flows and stormwater on the plant site. These ponds are interconnected in series to allow for settling prior to overflowing to the Clear Water Pond for discharge to the Ohio River via Outfall 005. The existing site water balance is included in Appendix A of this demonstration (see Figure 2).

Zimmer evaluated each non-CCR wastestream placed in the Zimmer CCR surface impoundments. For the reasons discussed below in Table 3-2 and Table 3-3, each of the following non-CCR wastestreams must continue to be placed in the Gypsum Recycle Pond and Coal Pile Runoff Pond, respectively, due to lack of alternative capacity both on and off-site. The D Basin receives wastestreams during dredging of other impoundments onsite and will receive non-CCR wastestreams during closure/re-purposing of the Coal Pile Runoff Pond.

Table 3-2: Zimmer Gypsum Recycle Pond Non-CCR Wastestreams
--

Non-CCR Wastestream	Average Flow (MGD)	Alternative Capacity Currently Available? YES/NO	Description	Zimmer Notes
Stormwater runoff	Intermittent (0.76 estimated for 10-year 24-hour storm)	NO	Stormwater runoff from the FGD pad mix stackout pile	These flows are intermittent and collected in the impoundment via gravity drainage, where they comingle with CCR wastestreams listed in Table 3-1. Zimmer will need to employ temporary diversion
Miscellaneous Process Wastewater	0.229	NO	Includes wash water from the truck wash system and drainage from the FGD Waste Handling Building, Coal Conveyor 56E/W, and Fly Ash Silo (via the trench system)	measures to pump this water to the FGD stabilization area sump while the Gypsum Recycle Pond is being closed by removal. Once the Gypsum Recycle Pond has been closed by removal of CCR solids, it will be repurposed as a non-CCR basin and will continue to receive these flows until the site closure is completed.

Table 3-3: Zimmer Coal Pile Runoff Pond Non-CCR Wastestreams

Non-CCR Wastestream	Average Flow (MGD)	Alternative Capacity Currently Available? YES/NO	Description	Zimmer Notes	
Coal Pile Runoff from A and B Basins	Intermittent (2.117 estimated for 10-year 24-hour storm)	NO	Flow is pumped from the Basins to the Coal Pile Runoff	These flows will be temporarily rerouted to D Basin until while the Coal Pile Runoff Pond closure and re-purposing is completed. The	
Decant water and stormwater from C Basin	Intermittent (0.835 estimated for 10-year 24-hour storm)	NO	overflows to the Wastewater Pondthe Wastewater Pond. If require installation of the If the Coal Pile Runoff P	overflows to the Wastewater Pond the Wastewater Pond. Ref require installation of ten If the Coal Pile Runoff Pond	D Basin effluent will need to be pumped to the Wastewater Pond. Rerouting flows will require installation of temporary piping.
Decant water and stormwater from D Basin	0.09 (1.95 estimated for 10-year 24-hour storm)	NO	Decant water flow is pumped from D Basin to the Coal Pile Runoff Pond during dredging operations and as needed due to stormwater	(without the temporary use of D Basin), the Wastewater Pond residence time would likely not provide adequate treatment to remove the coal fines and Zimmer would risk violating the discharge limits at Outfall 005.	

Non-CCR Wastestream	Average Flow (MGD)	Alternative Capacity Currently Available? YES/NO	Description	Zimmer Notes	
Landfill Leachate and Contact Stormwater	0.271 (0.967 estimated for 10-year 24-hour storm)	NO	Routed through the Mercury Effluent Treatment System	The Mercury Effluent Treatment System discharge (including CCR and non-CCR wastestreams) will be redirected to the D- Basin through temporary piping during closure of the Coal Pile Runoff Pond. This flow will be returned to the Coal Pile Runoff Pond after the CCR material is removed and the plant ceases operation on coal (FGD removed from service).	

Zimmer did evaluate on-site, wet temporary storage options for each of the non-CCR wastestreams, in lieu of using the Gypsum Recycle Pond, Coal Pile Runoff Pond, and D Basin for the remainder of the plant operations. Based on our evaluation, we concluded the following:

- On-site alternative capacity is currently not available and would need to be developed for each of these six non-CCR wastestreams.
- Development of on-site alternative capacity would require both the reconfiguration of the existing wastestream system and the design, permitting, and installation of a new treatment system including ponds, clarifiers, and/or storage tank(s), to provide the necessary retention time to meet the NPDES permit limits. The environmental permitting would include a modification to the current individual NPDES permit (to allow for the rerouting of this wastestream to another outfall), general NPDES stormwater construction permit (includes threatened and endangered species and historic preservation assessments), a construction & operating permit and a SWPPP at a minimum. Based on our experience, the development of on-site alternative capacity for each of these non-CCR wastestreams would require a minimum of three years to implement.
- Off-site alternative capacity is currently not available and would need to be developed for each of these six non-CCR wastestreams. Developed off-site alternative capacity would require both temporary on-site wet storage (frac tanks) and off-site transportation via tanker trucks, if a POTW could be identified to receive these wastestreams. The daily tanker truck traffic (see Table 3-4) would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a PSD permit and modification under the Clean Air Act Permit Program if the calculated increase in emissions is over the PSD limits. Setting up arrangements for a local POTW to accept the wastewater would

prove to be difficult since this amount of wastewater would most likely upset their treatment systems causing them to exceed their NPDES discharge limits. Furthermore, the temporary wet storage needed to accommodate off-site disposal would require reconfiguration of the current wastestream system and the design, installation, and associated environmental permitting for the temporary wet storage system, which would require a minimum of two years to implement. For all of these reasons, Zimmer concludes that offsite disposal is not feasible for these flows at Zimmer at this time.

Impoundment	Non-CCR Wastestreams	Estimated Flow (MGD)	No. of Frac Tanks required (21,000 gallons each)	No. of Trucks required per day (7,500 gallons each)
Gypsum Recycle Pond	Stormwater runoff	0 - 0.76 (for 10-year 24- hour storm)	0 - 37	0 - 102
	Miscellaneous Process Flows	0.229	0 - 11	0 - 31
Coal Pile Runoff Pond	Coal Pile Runoff from A and B Basins	0 - 2.117 (for 10-year 24- hour storm)	0 - 101	0 - 283
	Decant water and stormwater from C Basin	0 - 0.835 (for 10-year 24- hour storm)	0 - 40	0 - 112
	Decant water and stormwater from D Basin	0.09 - 1.95 (for 10-year 24- hour storm)	5 - 93	12 - 260
	Landfill Leachate and Contact Stormwater	0.271 - 0.967 (for 10-year 24- hour storm)	13 - 47	37 - 129
		Total	18 - 329	49 - 917

Table 3-4: Non-CCR Wastestream Offsite Disposal

As stated previously, because Zimmer has elected to permanently cease coal-fired operations of the boilers by no later than May 31, 2022, continuing to develop alternative disposal capacity for continued plant operation is counterproductive to the work to cease coal-fired operation of the boilers and close the impoundments. There is no currently available infrastructure at the plant to support reroute of these flows. For the reasons discussed above, each of the following non-CCR wastestreams must continue to be placed in the Zimmer CCR surface impoundments due to lack of alternative capacity both on and off-site. Consequently, to continue to operate and generate electricity during the limited period prior to cessation of coal-fired operations, Zimmer must continue to use the CCR surface impoundments to manage the non-CCR wastestreams discussed above.

4.0 **RISK MITIGATION PLAN**

To demonstrate that the criteria in § 257.103(f)(2)(ii) has been met, Zimmer has prepared and attached a Risk Mitigation Plan for the Zimmer CCR surface impoundments (see Appendix B). Per § 257.103(f)(2)(v)(B), this Risk Mitigation Plan is only required for the specific CCR Unit(s) that are the subject of this demonstration.

5.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE

In the Part A rule preamble, EPA reiterates that compliance with the CCR rule is a prerequisite to qualifying for an alternative closure extension, as it "provides some guarantee that the risks at the facility are properly managed and adequately mitigated." 85 Fed. Reg. at 53,543. EPA further stated that it "must be able to affirmatively conclude that facility meets this criterion prior to any continued operation." 85 Fed. Reg. at 53,543. Accordingly, EPA "will review a facility's current compliance with the requirements governing groundwater monitoring systems." 85 Fed. Reg. at 53,543. In addition, EPA will also "require and examine a facility's corrective action documentation, structural stability documents and other pertinent compliance information." 85 Fed. Reg. at 53,543. Therefore, EPA is requiring a certification of compliance and specific compliance documentation be submitted as part of the demonstration. 40 C.F.R.

The Zimmer facility includes four CCR units: the Gypsum Recycle Pond, the Coal Pile Runoff Pond, D Basin, and the CCR Landfill. The three impoundments are the only units seeking an extension pursuant to this demonstration; however, Zimmer has included compliance documents for the Landfill as part of this submittal for the Zimmer facility.

To demonstrate that the criteria in § 257.103(f)(2)(iii) has been met, Zimmer is submitting the following information as required by § 257.103(f)(2)(v)(C):

5.1 Owner's Certification of Compliance - § 257.103(f)(2)(v)(C)(1)

I hereby certify that, based on my inquiry of those persons who are immediately responsible for compliance with environmental regulations for Zimmer, the facility is in compliance with all of the requirements contained in 40 C.F.R. Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. Zimmer's CCR compliance website is up-to-date and contains all the necessary documentation and notification postings.

ZIMMER POWER COMPANY LLC

ignthin E Wody

Cynthia Vodopivec SVP - Environmental Health & Safety August 13, 2021

5.2 Visual Representation of Hydrogeologic Information -§ 257.103(f)(2)(v)(C)(2)

Consistent with the requirements of § 257.103(f)(2)(v)(C)(2)(i) - (iii), Zimmer has attached the following items to this demonstration (see Appendix C):

- Map(s) of groundwater monitoring well locations in relation to the CCR units (see Attachment C1 for the surface impoundments and Attachment C5 Hydrogeological Characterization Report Figure 2 for the CCR Landfill)
- Well construction diagrams and drilling logs for all groundwater monitoring wells (see Attachment C2 for the surface impoundments and Attachment C5 Hydrogeological Characterization Report Attachment A for the CCR Landfill)
- Maps that characterize the direction of groundwater flow accounting for seasonal variations (see Attachment C3 for the surface impoundments and Attachment C5 Hydrogeological Characterization Report Figures 3 and 4 for the CCR Landfill)

5.3 Groundwater Monitoring Results - § 257.103(f)(2)(v)(C)(3)

Tables summarizing constituent concentrations at each groundwater monitoring well through the first 2021 semi-annual monitoring period are included as Attachment C4.

5.4 Description of site hydrogeology including stratigraphic cross-sections -§ 257.103(f)(2)(v)(C)(4)

A description of site hydrogeology and stratigraphic cross-sections of the site are included as Attachment C5. In addition, see the Hydrogeological Characterization Report (Section 4.2) for relevant information pertaining to the CCR Landfill.

5.5 Corrective Measures Assessment - § 257.103(f)(2)(v)(C)(5)

Background sampling began at Zimmer in late 2015 and continued for eight consecutive quarters. The first semi-annual detection monitoring samples were collected in November 2017. The first assessment monitoring samples were collected in May 2018. The results, through the first 2021 semi-annual monitoring period, indicate all three CCR surface impoundments at Zimmer are currently in assessment monitoring, with no exceedances of the Appendix IV parameters.

The CCR Landfill has previously detected Lithium at Statistically Significant Levels (SSL), but the CCR Landfill remains in assessment monitoring due to successful Alternate Source Demonstrations (ASDs) from April and October 2019 that set forth the following lines of evidence.

- 1. Strontium isotopic ratios in groundwater near the CCR Landfill are lower than the published typical range of strontium isotopic ratios for CCR impacted waters.
- 2. Boron isotopic ratios in groundwater near the CCR Landfill are within the published typical range of boron isotopic ratios for groundwater and are not consistent with the published typical boron isotopic ratios in CCR and CCR impacted waters.

The groundwater sampling event in April 2020 also identified an SSL for Lithium at well MW-F. In accordance with the Statistical Analyses Plan, this well was resampled and after an evaluation of the analytical data, no SSL remained as set forth in an ASD completed in October 2020. The ASDs for the Zimmer Landfill are included as part of Attachment C4. The subsequent sampling events (September 2020 and March 2021) did not indicate any SSLs or the need for further ASDs.

Accordingly, an assessment of corrective measures and the associated remedy selection efforts are not currently required at the site.

5.6 Remedy Selection Progress Report - § 257.103(f)(2)(v)(C)(6)

As noted above, an assessment of corrective measures and the resulting remedy selection efforts are not currently required for the CCR units at Zimmer.

5.7 Structural Stability Assessment - § 257.103(f)(2)(v)(C)(7)

Pursuant to § 257.73(d), the initial structural stability assessment reports for the Coal Pile Runoff Pond, Gypsum Recycle Pond, and D Basin were prepared in October 2016, and are included as Attachment C6. As required for compliance, additional stability assessments will be completed in October 2021. Periodic structural stability assessments are not required for landfills.

5.8 Safety Factor Assessment - § 257.103(f)(2)(v)(C)(8)

Pursuant to § 257.73(e), the initial safety factor assessment reports for the Coal Pile Runoff Pond, Gypsum Recycle Pond, and D Basin were prepared in October 2016, and are included as Attachment C7. As required for compliance, additional safety factor assessments will be completed in October 2021. Periodic safety factor assessments are not required for landfills.

6.0 DOCUMENTATION OF CLOSURE COMPLETION TIMEFRAME

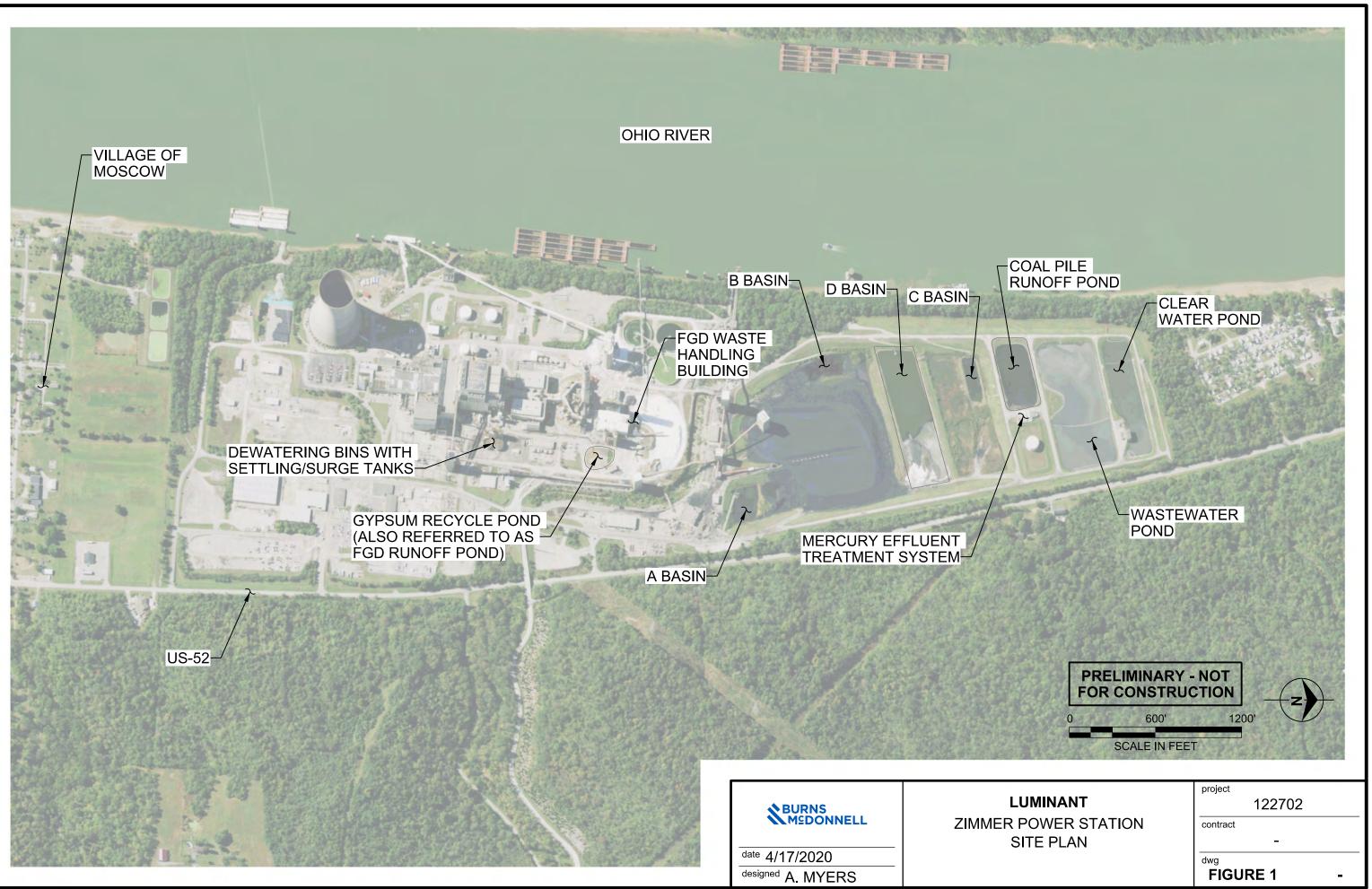
To demonstrate that the criteria in § 257.103(f)(2)(iv) has been met, "the owner or operator must submit the closure plan required by § 257.102(b) and a narrative that specifies and justifies the date by which they intend to cease receipt of waste into the unit in order to meet the closure deadlines." The closure plans are included as in Appendix C as Attachment C8.

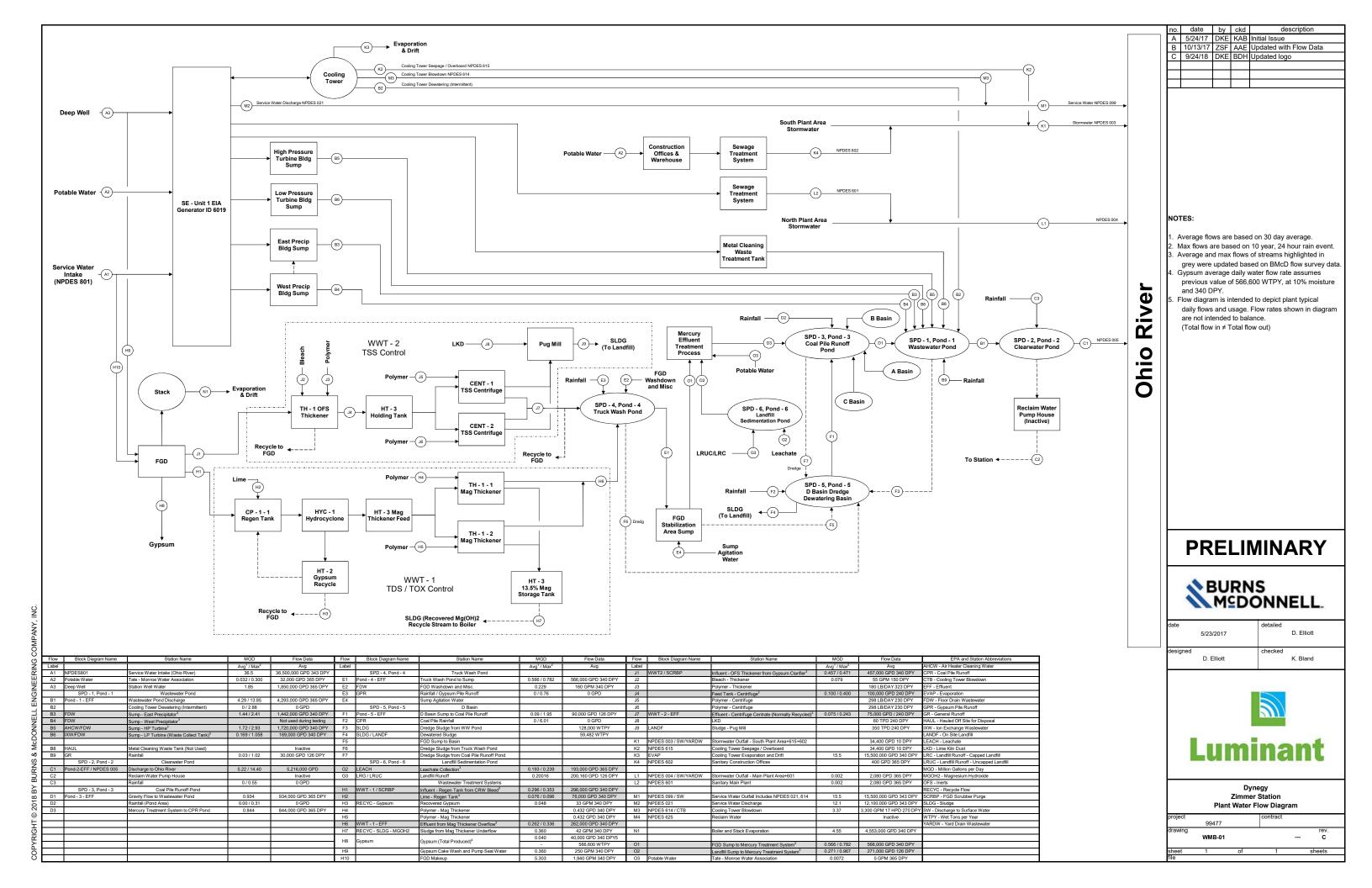
In order for a CCR surface impoundment less than 40 acres to continue to receive CCR and non-CCR wastestreams after the initial April 11, 2021, deadline, the coal-fired boiler(s) at the facility must cease operation and the CCR surface impoundment must complete closure no later than October 17, 2023. As discussed below, the boilers will cease coal-fired operations no later than May 31, 2022, and the CCR surface impoundments will be closed by removal and repurposed as non-CCR impoundments (to receive stormwater flows, landfill leachate, and/or other non-CCR wastestreams) prior to this October 17, 2023, deadline.

Table 6-1 summarizes the major tasks and durations associated with closing the CCR surface impoundments by removal. The CCR impoundments will be dewatered using a closely coordinated passive or gravity method. This method consists of the use of trenches excavated to lower the phreatic surface in the impoundment to obtain a stable ash surface to permit the safe excavation of ponded materials. The phreatic water in the trenches flows by gravity to sumps constructed within the impoundment. The major benefit associated with this passive or gravity dewatering method is that the sumps are designed to provide holding time to allow the TSS to settle within the impoundment prior to discharge (an active dewatering method with wells would result in potential for higher contaminants and TSS). After TSS settling, the water is discharged through the NPDES outfall in compliance with permitted limits.

While the water surface is being lowered, the CCR material can be further worked using mechanical methods, such as stacking the material, to promote additional dewatering prior to loading the material onto trucks and hauling it to the site CCR landfill for disposal. Once the CCR material is removed, the underlying pond liner and/or subgrade materials can be excavated and disposed of.

Action	Estimated Timeline (Months)
Finalize CCR unit closure plan	2
 Obtain environmental permits: State Waste Pollution Control Construction/Operating Permit NPDES Industrial Wastewater Permit Modification (modification would be required to allow the associated ponded and subsurface free liquids generated before the pond closure to be discharged to Waters of the US and to allow reconfiguration of the various wastestreams to either other NPDES- permitted outfalls or newly constructed NPDES-permitted outfalls) General NPDES Permit for Storm Water Discharges from Construction Site Activities and Storm Water Pollution Prevention Plan (SWPPP) 	12 (concurrent with procurement activities)
Spec, Bid, and Award Construction Services for CCR Impoundment Closures	3
Cease Coal-Fired Operations of Boiler (No later than)	May 31, 2022
Cease Placement of Waste (No Later Than for initial impoundment in closure sequence. The impoundments will continue to receive stormwater, landfill leachate, and/or other non-CCR wastestreams following closure by removal and repurposing as non- CCR impoundments.)	October 17, 2022
Dewater Impoundments	1
Excavate CCR Material	6
Excavate Pond Liner/Underlying Subgrade Materials	2
Perform Site Restoration Activities and Complete Closure	3
Total Estimated Time to Complete Closure	26 months (including remaining design, permitting, procurement, and construction)
Date by Which Closure Must be Complete	October 17, 2023
	1


Table 6-1: Zimmer Impoundments Closure Schedule


7.0 CONCLUSION

Based upon the information included in and attached to this demonstration, Zimmer has demonstrated that the requirements of 40 C.F.R. § 257.103(f)(2) are satisfied for the Zimmer Plant's CCR surface impoundments (the Gypsum Recycle Pond, Coal Pile Runoff Pond, and D Basin). The CCR surface impoundments are needed to continue to manage the CCR and non-CCR wastestreams identified in Section 3.2 and 3.3 above, are less than 40 acres, the boilers at the plant will cease coal-fired operations no later than May 31, 2022, and the CCR surface impoundments will be closed by the October 17, 2023 deadline. Therefore, the CCR units qualify for the site-specific alternative deadline for the initiation of closure provided in 40 C.F.R. § 257.103(f)(2).

Therefore, it is requested that EPA approve Zimmer's request pursuant to 40 C.F.R. § 257.103(f)(4)(i) to transfer the current authorization for a site-specific alternative deadline for the three CCR surface impoundments at the Zimmer Plant from § 257.103(f)(1) to § 257.103(f)(2) so the impoundments may continue to receive CCR and non-CCR wastestreams and Zimmer may close the CCR surface impoundments by October 17, 2023, instead of retrofitting them for continued plant operations.

APPENDIX A – SITE PLAN AND WATER BALANCE DIAGRAM

APPENDIX B – RISK MITIGATION PLAN

RISK MITIGATION PLAN - 40 C.F.R. § 257.103(f)(2)(v)(B)

INTRODUCTION

To demonstrate that the criteria in §40 C.F.R. 257.103(f)(2)(ii) has been met, Zimmer Power Company LLC (Zimmer) has prepared this Risk Mitigation Plan for the Gypsum Recycle Pond, Coal Pile Runoff Pond, and D Basin located at the William H. Zimmer Power Plant ("Zimmer Plant") in Ohio.

EPA is requiring a Risk Mitigation Plan to "address the potential risk of continued operation of the CCR surface impoundment while the facility moves towards closure of their coal-fired boiler(s), to be consistent with the court's holding in *USWAG* that RCRA requires EPA to set minimum criteria for sanitary landfills that prevent harm to either human health or the environment." 85 Fed. Reg. at 53,516, 53,548 (Aug. 28, 2020).

As required by § 257.103(f)(2)(v)(B), the Risk Mitigation Plan must describe the "measures that will be taken to expedite any required corrective action," and contain the three following elements:

- First, "a discussion of any physical or chemical measures a facility can take to limit any future releases to groundwater during operation." § 257.103(f)(2)(v)(B)(1). In promulgating this requirement, EPA explained that this "might include stabilization of waste prior to disposition in the impoundment or adjusting the pH of the impoundment waters to minimize solubility of contaminants [and that] [t]his discussion should take into account the potential impacts of these measures on Appendix IV constituents." 85 Fed. Reg. at 53,548.
- Second, "a discussion of the surface impoundment's groundwater monitoring data and any found exceedances; the delineation of the plume (if necessary based on the groundwater monitoring data); identification of any nearby receptors that might be exposed to current or future groundwater contamination; and how such exposures could be promptly mitigated." § 257.103(f)(2)(v)(B)(2).
- Third, "a plan to expedite and maintain the containment of any contaminant plume that is either present or identified during continued operation of the unit." § 257.103(f)(2)(v)(B)(3). In promulgating this final requirement, EPA explained that "the purpose of this plan is to demonstrate that a plume can be fully contained and to define how this could be accomplished in the most accelerated timeframe feasible to prevent further spread and eliminate any potential for exposures." 85 Fed. Reg. at 53,549. In addition, EPA stated that "this plan will be based on relevant site data, which may include groundwater chemistry, the variability of local hydrogeology, groundwater elevation and flow rates, and the presence of any surface water features that would influence rate and direction of contamination movement. For example, based on the rate and direction of groundwater flow and potential for diffusion of the plume, this plan could identify the design and spacing of extraction wells necessary to prevent further downgradient migration of contaminated groundwater." 85 Fed. Reg. at 53,549.

Consistent with these requirements and guidance, Zimmer plans to continue to mitigate the risks to human health and the environment from the Zimmer Gypsum Recycle Pond, Coal Pile Runoff Pond, and D Basin as detailed in this Risk Mitigation Plan.

1 OPERATIONAL MEASURES TO LIMIT FUTURE RELEASES TO GROUNDWATER - 40 C.F.R. § 257.101(F)(2)(V)(B)(1)

The Gypsum Recycle Pond, Coal Pile Runoff Pond, and D Basin are CCR surface impoundments. Consistent with the requirements of the CCR rule, compliance documents on Zimmer's CCR public website reflect the characterization of these impoundments as individual units for purposes of groundwater monitoring and closure activities.

The Gypsum Recycle Pond receives centrifuge effluent, FGD blowdown that is not recycled back to the scrubber, and mag thickener overflow (FGD wastewater). This pond effluent is forwarded to the Mercury Effluent Treatment System via the FGD area sump. The Gypsum Recycle Pond surface impoundment is designed to handle runoff from the Flue Gas Desulfurization (FGD) waste/gypsum stackout area for the 10-year, 24-hour storm event. It also serves to collect solids washed off the FGD waste and gypsum hauling trucks at the truck wash station.

Coal Pile Runoff Pond receives treated flow (including CCR solids) from the Mercury Effluent Treatment System. The Coal Pile Runoff Pond surface impoundment handles storm water runoff from the coal pile basin; leachate discharged from Landfill, and treated FGD wastewater.

D Basin is used to dewater dredged CCR and non-CCR material from other impoundments onsite (including Gypsum Recycle Pond and Coal Pile Runoff Pond), and collects stormwater runoff.

At Zimmer, none of the Appendix IV parameter have reported SSLs, or SSLs above their respective Ground Water Protection Standards (GWPSs) as sampled and analyzed per the CCR surface impoundment's groundwater monitoring program. Therefore, Zimmer's current physical treatment operation adequately limits potential risks to human health and the environment during operation. Zimmer will continue this treatment process for the CCR surface impoundments until such time as closure is required per 40 CFR Part 257. The facility's current physical treatment process is discussed below.

1.1 CURRENT OPERATION OF PHYSICAL TREATMENT

The Zimmer Plant's fly ash, economizer ash, and gas recirculation ash systems are dry handled and disposed in the CCR landfill. The bottom ash (and non-CCR pyrites) is sluiced to dewatering bins equipped with surge tanks and a recirculation system. After dewatering, the bottom ash is disposed in the CCR landfill.

The FGD system utilizes a series of thickeners with rakes and centrifuges to remove suspended solids and a magnesium recovery process to remove dissolved solids from the effluent.

The Gypsum Recycle Pond receives centrate centrifuge effluent, FGD blowdown that is not recycled back to the scrubber, mag thickener overflow (FGD wastewater) and various wash activities. This pond effluent is forwarded to the Mercury Effluent Treatment System via the FGD area sump.

The Coal Pile Runoff Pond receives both coal fines from non-CCR wastestreams (specifically coal pile runoff) and the effluent from the Mercury Effluent Treatment System (including landfill leachate, FGD wastewater, and the CCR solids that settle out of the FGD wastewater).

D Basin is used to dewater dredged CCR and non-CCR material from other ponds onsite (including Gypsum Recycle Pond and Coal Pile Runoff Pond).

If Appendix IV releases are discovered per the facility's groundwater monitoring program, Zimmer will test, evaluate, and implement a chemical treatment method (i.e. pH adjustment, coagulation, precipitation, or other method as determined) for the effected CCR Impoundment to limit potential risks to human health and the environment during operation.

2 GROUNDWATER IMPACTS, RECEPTORS, AND POTENTIAL EXPOSURE MITIGATION - 40 C.F.R. § 257.101(F)(2)(V)(B)(2)

Descriptions of each unit are provided below.

Gypsum Recycle Pond

The Zimmer Gypsum Recycle Pond with a footprint of approximately 0.6 acres (Figure 1) is currently in assessment monitoring. There have been no statistically significant levels (SSLs) of Appendix IV parameter concentrations since assessment monitoring was established in May 2018. The most recent summary of groundwater monitoring activities is provided in the "2020 Annual Groundwater Monitoring and Corrective Action Report, Zimmer Gypsum Recycle Pond, Zimmer Power Station" (Ramboll, 2021) [see Attachment 1]. A summary of the assessment monitoring program is provided in Table 1. Since there have been no SSLs or GWPS exceedances to date, no plume delineation maps have been necessary.

Coal Pile Runoff Pond

The Zimmer Coal Pile Runoff Pond with a footprint of approximately 2.8 acres (Figure 2) is currently in assessment monitoring. There have been no SSLs of Appendix IV parameter concentrations since assessment monitoring was established in May 2018. The most recent summary of groundwater monitoring activities is provided in the "2020 Annual Groundwater Monitoring and Corrective Action Report, Zimmer Coal Pile Runoff Pond, Zimmer Power Station" (Ramboll, 2021) [see Attachment 1]. A summary of the assessment monitoring program is provided in Table 2. Since there have been no SSLs or GWPS exceedances to date, no plume delineation maps have been necessary.

<u>D Basin</u>

The Zimmer D Basin with a footprint of approximately 6.1 acres (Figure 3) is currently in assessment monitoring. There have been no SSLs of Appendix IV parameter concentrations since assessment monitoring was established in May 2018. The most recent summary of groundwater monitoring activities is provided in the "2020 Annual Groundwater Monitoring and Corrective Action Report, Zimmer D Basin, Zimmer Power Station" (Ramboll, 2021) [see Attachment 1]. A summary of the assessment monitoring program is provided in Table 3. Since there have been no SSLs or GWPS exceedances to date, no plume delineation maps have been necessary.

Receptors

Should a release to groundwater for one or more Appendix IV parameters occur in the future, the two primary risks to human health and the environment are via groundwater exposure and surface water exposure. Groundwater exposure would be via ingestion or dermal contact, neither of which are a complete exposure pathway for CCR-related constituents originating from the Gypsum Recycle Pond, Coal Pile Runoff Pond and D Basin. Surface water exposure would be from groundwater impacts to nearby surface water bodies – specifically the Ohio River located approximately 300 feet west of the Coal Pile Runoff Pond, 400 feet west of D Basin, and 2,450 feet (0.47 miles) west of the Gypsum Recycle Pond – but does not pose a risk for the reasons discussed below.

There are no surface-water intakes for community water supply (CWS) on the Ohio River identified within a onemile radius of the Zimmer property line. An Ohio River Valley Water Sanitation Commission report from October 1998 indicates the nearest water supply intakes are located at river mile 407.8 upstream of the Zimmer Ponds in Maysville, KY; and, at river mile 462.8 downstream of the Pond System in the Cincinnati, OH metro area. The Zimmer ponds are located near river mile 444, meaning the nearest downstream intake is over 18 river miles away.

ZIMMER GYPSUM RECYCLE POND, COAL PILE RUNOFF POND AND D BASIN | RISK MITIGATION PLAN

There are no potable industrial, commercial, CWS or non-CWS water wells in a downgradient or cross-gradient groundwater flow direction within 2,500 feet of the Zimmer Ponds that are at risk of impacts from a release. Groundwater near the Gypsum Recycle Pond may occasionally be within the radius of influence of Zimmer's industrial pumping wells located within the southern portion of the property. All groundwater pumped by the production wells are non-contact water and non-potable for industrial use only. Also, since there are currently no exceedances of GWPS(s) for Appendix IV parameters, no wells are at risk.

Ambient groundwater flow beneath Zimmer is generally westward towards the Ohio River. There is a secondary component of flow southward toward the Zimmer production wells, which is most evident during the dry season. This southerly component, resulting from the radius of influence of on-site production wells, is more evident at the Gypsum Recycle Pond, which is located further south and further from the Ohio River than the Coal Pile Runoff Pond and D Basin. The third component of flow is from the river eastward back into the aquifer when the river stage is high. The hydraulic gradient under normal ambient conditions is westward across the site at approximately 0.003 ft/ft in summer and 0.004 ft/ft in fall, suggesting a flow rate of approximately 1.5 ft/day.

Exposure Mitigation

Mitigation of future potential exposures to groundwater contamination from continued operation of the Gypsum Recycle Pond, the Coal Pile Runoff Pond and D Basin is discussed in detail in the following section.

3 CONTAMINANT PLUME CONTAINMENT: OPTIONS EVALUATION AND PLAN- 40 C.F.R. § 257.101(F)(2)(V)(B)(3)

Appropriate corrective measure(s) to address future potential impacted groundwater associated with the Zimmer Gypsum Recycle Pond, Coal Pile Runoff Pond and D Basin are based on impacts to the Uppermost Aquifer. The Uppermost Aquifer consists primarily of coarse alluvial deposits (sand and gravel) of the Ohio River valley overlain by fine-grained fluvial and lacustrine deposits (clay and silt), which occur to a maximum depth of 45 feet below the present ground surface. The Uppermost Aquifer is underlain by bedrock, which ranges in depth from 60 to 90 feet below the ground surface.

Since there has been no release of Appendix IV parameters to groundwater above GWPS(s), which would trigger a Corrective Measures Assessment (CMA) under 40 C.F.R. § 257.96 based on specific parameter concentrations and contaminant plume dimensions, several options are evaluated to address potential future plume containment. The evaluation criteria for assessing remedial options are the following: performance; reliability; ease of implementation; potential impacts of the remedies (safety, cross-media, and control of exposure to residual contamination); time required to begin and complete the remedy; and, institutional requirements that may substantially affect implementation of the remedy(s), such as permitting, environmental or public health requirements.

Although future potential source control measures (e.g. closure in place, closure by removal to on-site or off-site landfill, in-situ solidification/stabilization) to mitigate groundwater impacts are typically considered as part of a CMA process, the shorter-term options considered for mitigating groundwater impacts relative to a potential future release of one or more Appendix IV parameters at Zimmer are as follows:

- Monitored Natural Attenuation (MNA)
- Groundwater Cutoff Wall
- In-Situ Chemical Treatment
- Permeable Reactive Barrier
- Groundwater Extraction

These same groundwater remedial corrective measures will be evaluated for all Appendix IV parameters that present a future risk to human health or the environment.

Monitored Natural Attenuation (MNA)

Upon notification of a release of one or more Appendix IV parameter(s) to groundwater, MNA will be evaluated with site-specific characterization data and geochemical analysis as a long-term remedial option, combined with source control measures, through application of the USEPA's tiered approach to MNA (USEPA 1999, 2007 and 2015):

- 1. Demonstrate that the area of groundwater impacts is not expanding.
- 2. Determine the mechanisms and rates of attenuation.
- 3. Determine that the capacity of the aquifer is sufficient to attenuate the mass of constituents in groundwater and that the immobilized constituents are stable and will not remobilize.
- 4. Design a performance monitoring program based on the mechanisms of attenuation and establish contingency remedies (tailored to site-specific conditions) should MNA not perform adequately.

MNA is not regarded as a short-term remedial option for contaminant plume containment, but as a potential long-term option following implementation of shorter term control measures.

Groundwater Extraction

This corrective measure includes installation of a series of groundwater pumping wells or trenches to control and extract impacted groundwater. Groundwater extraction captures and contains impacted groundwater and can limit plume expansion and/or off-site migration. Construction of a groundwater extraction system typically includes, but is not limited to, the following primary project components:

- Designing and constructing a groundwater extraction system consisting of a series of extraction wells or trenches located around the perimeter of the contaminant plume and operating at a rate to allow capture of CCR impacted groundwater.
- Designing a system to manage extracted groundwater, which may include modification to the existing NPDES permit, including treatment prior to discharge, if necessary.
- Ongoing inspection and maintenance of the groundwater extraction system.

Installation of a groundwater extraction system, whether wells or trenches, can be expedited with the assumption that there is a good conceptual site model (CSM) of the hydrogeological system around the CCR unit, groundwater flow and transport model, and aquifer test if a well system is the best option for intercepting the groundwater contaminant plume. Upon notification of an SSL exceedance of a GWPS for one or more Appendix IV parameters an aquifer test will be conducted, and groundwater model developed for designing a groundwater extraction system for optimization of contaminant plume capture.

A schematic of a typical groundwater extraction well is shown on Figure 4. Based on site specific hydrogeology and future potential plume width and depth, a groundwater extraction system will typically consist of one to three extraction wells with pitless adapter's manifolded together with HDPE conveyance pipe to a common tank or lined collection vault prior to treatment at the on-site wastewater treatment plant and discharge via the NPDES permitted outfall.

Groundwater Cutoff Wall

Vertical cutoff walls are used to control and/or isolate impacted groundwater. Low permeability cutoff walls can be used to prevent horizontal off-site migration of potentially impacted groundwater. Cutoff walls act as barriers to transport of impacted groundwater and can isolate soils that have been impacted by CCR to prevent contact with unimpacted groundwater. Cutoff walls are often used in conjunction with an interior pumping system to establish a reverse gradient within the cutoff wall. The reverse gradient maintains an inward flow through the wall, keeping it from acting as a groundwater dam and controlling potential end-around or breakout flow of contaminated groundwater.

A commonly used cutoff wall construction technology is the slurry trench method, which consists of excavating a trench and backfilling it with a soil-bentonite mixture, often created with the soils excavated from the trench. The trench is temporarily supported with bentonite slurry that is pumped into the trench as it is excavated. Excavation for cutoff walls is conducted with conventional hydraulic excavators, hydraulic excavators equipped with specialized booms to extend their reach (*i.e.*, long-stick excavators), or chisels and clamshells, depending upon the depth of the trench and the material to be excavated. For a cutoff wall to be technically feasible, there must be a low-permeability lower confining layer into which the barrier can be keyed, and it must be at a technically feasible depth.

Permeable Reactive Barrier

Chemical treatment via a Permeable Reactive Barrier (PRB) is defined as an emplacement of reactive materials in the subsurface designed to intercept a contaminant plume, provide a flow path through the reactive media, and transform or otherwise render the contaminant(s) into environmentally acceptable forms to attain remediation concentration goals downgradient of the barrier (EPRI, 2006).

As groundwater passes through the PRB under natural gradients, dissolved constituents in the groundwater react with the media and are transformed or immobilized. A variety of media have been used or proposed for use in PRBs. Zero-valent iron has been shown to effectively immobilize CCR constituents, including arsenic, chromium, cobalt, molybdenum, selenium and sulfate. Zero-valent iron has not been proven effective for boron, antimony, or lithium (EPRI, 2006).

System configurations include continuous PRBs, in which the reactive media extends across the entire path of the contaminant plume; and funnel-and-gate systems, where barrier walls are installed to control groundwater flow through a permeable gate containing the reactive media. Continuous PRBs intersect the entire contaminant plume and do not materially impact the groundwater flow system. Design may or may not include keying the PRB into a low-permeability unit at depth. Funnel-and-gate systems utilize a system of barriers to groundwater flow (funnels) to direct the contaminant plume through the reactive gate. The barriers, typically some form of cutoff wall, are keyed into a low-permeability unit at depth to prevent short circuiting of the plume. Funnel-and-gate design must consider the residence time to allow chemical reactions to occur. Directing the contaminant plume through the reactive gate can significantly increase the flow velocity, thus reducing residence time.

Design of PRB systems requires rigorous site investigation to characterize the site hydrogeology and to delineate the contaminant plume. A thorough understanding of the geochemical and redox characteristics of the plume is critical to assess the feasibility of the process and select appropriate reactive media. Laboratory studies, including batch studies and column studies using samples of site groundwater, are needed to determine the effectiveness of the selected reactive media at the site (EPRI, 2006).

This is a potential viable option for groundwater corrective measures, to be evaluated further, but is not a short-term solution that can be implemented expeditiously.

In-Situ Chemical Treatment

In-situ chemical treatment for inorganics are being tested and applied with increasing frequency. In-situ chemical treatment includes the targeted injection of reactive media into the subsurface to mitigate groundwater impacts. Inorganic contaminants are typically remediated through immobilization by reduction or oxidation followed by precipitation or adsorption (EPRI, 2006). Chemical reactants that have been applied or are in development for application in treating inorganic contaminants include ferrous sulfate, nanoscale zero-valent iron, organophosphorus nutrient mixture (PrecipiPHOS[™]) and sodium dithionite (EPRI, 2006). Zero-valent iron has been shown to effectively immobilize cobalt and molybdenum. Implementation of in-situ chemical treatment requires detailed technical analysis of field hydrogeological and geochemical conditions along with laboratory studies.

This is a potential viable option for groundwater corrective measures, to be evaluated further, but is not a short-term solution that can be implemented expeditiously.

3.1 **CONTAINMENT PLAN**

Based on the options evaluated for containment of a future potential groundwater contaminant plume originating from one of the three CCR impoundments at the Zimmer Plant for one or more Appendix IV parameters exceeding their GWPS(s), the most viable short-term option of those evaluated is a groundwater extraction or recovery trench system, which would allow for capture of impacted groundwater and prevention of further plume migration towards the principal receptor, which has been identified as surface water of the Ohio River to the west.

In circumstances where there is not an immediate concern of endangerment to human health or the environment, other longer-term corrective measures may be more viable. The principal method under consideration for controlling potential future Appendix IV parameter releases is MNA. MNA is a potentially viable corrective measure that will be further evaluated for use at the Zimmer impoundments.

Depending on the location and plume geometry of any future potential Appendix IV exceedances of GWPSs, the specific parameter(s) with exceedances, and distance from potential receptors, the other groundwater corrective measures discussed as part of the corrective options evaluation – groundwater cutoff wall, permeable reactive barrier, and in-situ chemical treatment – are all secondary remedial alternatives available for consideration following the current primary options of groundwater extraction for short-term application and MNA for long-term application.

4 References

AECOM, 2017. Hydrogeological Characterization Report, CCR Management Units 121 (D Basin), 124 (Gypsum Recycling Pond) and 125 (Coal Pile Runoff Pond), Zimmer Power Station, Clermont, Ohio. AECOM, Cincinnati, Ohio. October 11, 2017.

Electric Power Research Institute (EPRI), 2006. Groundwater Remediation of Inorganic Constituents at Coal Combustion Product Management Sites, Overview of Technologies, Focusing on Permeable Reactive Barriers. Electric Power Research Institute, Palo Alto, California. Final Report 1012584, October 2006.

USEPA, 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Directive No. 9200.U-17P. Washington, D.C.: EPA, Office of Solid Waste and Emergency Response.

USEPA, 2007. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water, Volume 1 – Technical Basis for Assessment. EPA/600/R-07/139. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio. October 2007.

USEPA, 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. Directive No. 9283.1-36. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. August 2015.

TABLES

Table 1 - Assessment Monitoring Program Summary, Gypsum Recycle Pond

Sampling Dates	Analytical Data Receipt Date	Parameters Collected	SSL(s) Appendix IV	SSL(s) Determination Date	ASD Completion Date	CMA Completion / Status
May 8-9, 2018	July 10, 2018	Appendix III Appendix IV	NA	NA	NA	NA
September 27, 2018	October 8, 2018	Appendix III Appendix IV Detected ¹	None	January 7, 2019	NA	NA
March 13-14, 2019	May 2, 2019	Appendix III Appendix IV	None	July 31, 2019	NA	NA
September 11-12, 2019	October 16, 2019	Appendix III Appendix IV Detected ¹	None	January 14, 2020	NA	NA
April 9-10, 2020	April 27, 2020	Appendix III Appendix IV	None	July 27, 2020	NA	NA
September 16-17, 2020	October 31, 2020	Appendix III Appendix IV Detected ¹	None	January 29, 2021	NA	NA
March 22, 2021	April 14, 2021	Appendix III Appendix IV	None	July 13, 2021	NA	NA
						[O: RAB 8/1/21; C: EJT 8/2/2

Notes: CMA = Corrective Measures Assessment NA = Not Applicable 1. Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 C.F.R. Part 257.95(d)(1).

Table 2 - Assessment Monitoring Program Summary, Coal Pile Runoff Pond

Sampling Dates	Analytical Data Receipt Date	Parameters Collected	SSL(s) Appendix IV	SSL(s) Determination Date	ASD Completion Date	CMA Completion / Status
May 8-9, 2018	July 10, 2018	Appendix III Appendix IV	NA	NA	NA	NA
September 19, 27, 2018	October 8, 2018	Appendix III Appendix IV Detected ¹	None	January 7, 2019	NA	NA
March 14-15, 2019	April 29, 2019	Appendix III Appendix IV	None	July 29, 2019	NA	NA
September 11-12, 2019	October 16, 2019	Appendix III Appendix IV Detected ¹	None	January 14, 2020	NA	NA
April 9-10, 2020	April 30, 2020	Appendix III Appendix IV	None	July 29, 2020	NA	NA
September 16, 2020	October 19, 2020	Appendix III Appendix IV Detected ¹	None	January 17, 2021	NA	NA
March 22-23, 2021	April 14, 2021	Appendix III Appendix IV	None	July 13, 2021	NA	NA
						[O: RAB 8/1/21; C: EJT 8/2/3

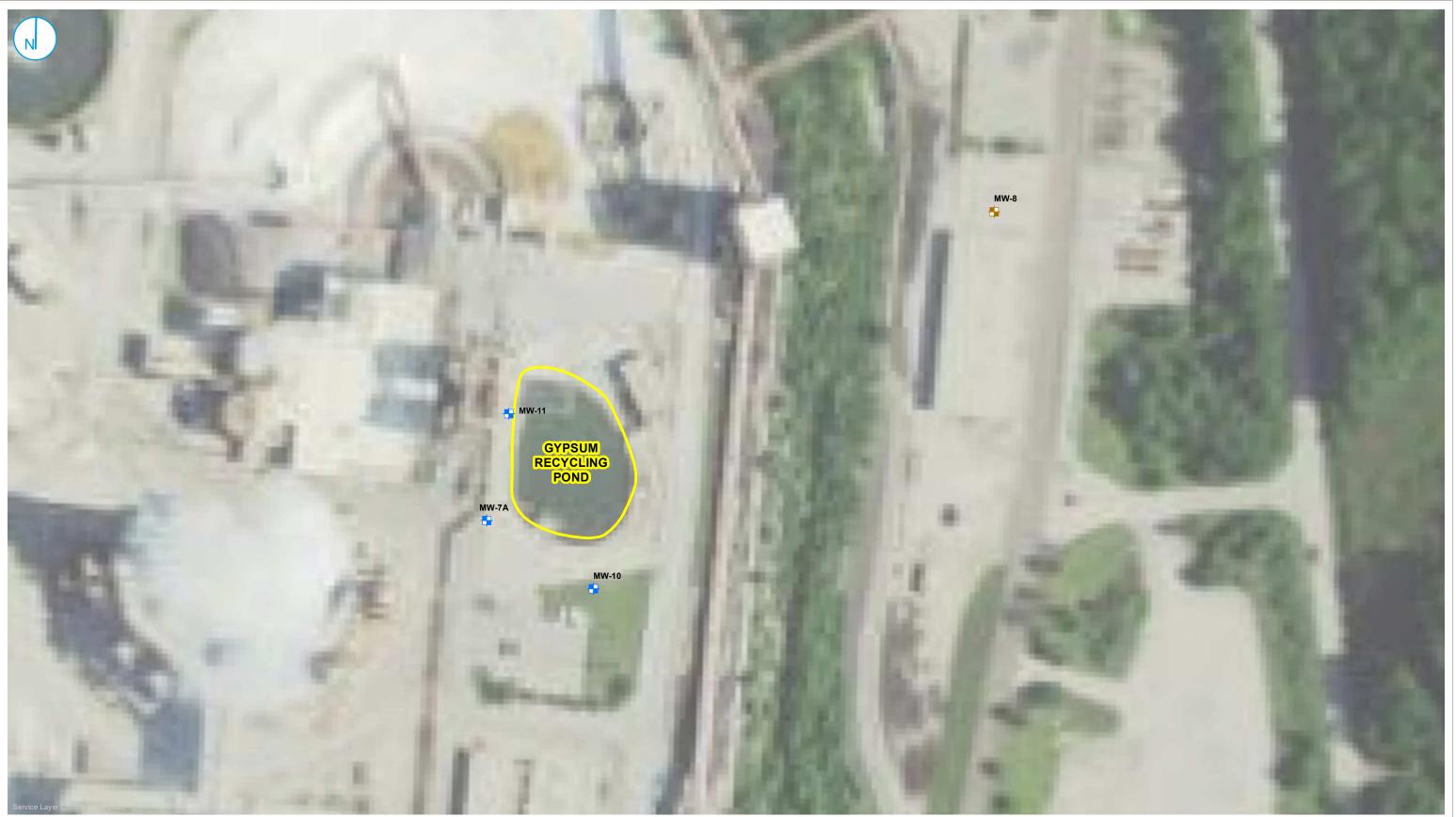

Notes: CMA = Corrective Measures Assessment NA = Not Applicable 1. Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 C.F.R. Part 257.95(d)(1).

Table 3 - Assessment Monitoring Program Summary, D Basin

Sampling Dates	Analytical Data Receipt Date	Parameters Collected	SSL(s) Appendix IV	SSL(s) Determination Date	ASD Completion Date	CMA Completion / Status
May 8-9, 2018	July 10, 2018	Appendix III Appendix IV	NA	NA	NA	NA
September 19, 27, 2018	October 8, 2018	Appendix III Appendix IV Detected ¹	None	January 7, 2019	NA	NA
March 14, 2019	May 2, 2019	Appendix III Appendix IV	None	July 31, 2019	NA	NA
September 11, 2019	October 16, 2019	Appendix III Appendix IV Detected ¹	None	January 14, 2020	NA	NA
April 9, 2020	May 6, 2020	Appendix III Appendix IV	None	August 4, 2020	NA	NA
September 16-17, 2020	October 19, 2020	Appendix III Appendix IV Detected ¹	None	January 17, 2021	NA	NA
March 22-23, 2021	April 14, 2021	Appendix III Appendix IV	None	July 13, 2021	NA	NA
						[O: RAB 8/1/21; C: EJT 8/2/2

Notes: CMA = Corrective Measures Assessment NA = Not Applicable 1. Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 C.F.R. Part 257.95(d)(1).

FIGURES

DOWNGRADIENT MONITORING WELL LOCATION

CCR MONITORED UNIT

100 ____ Feet

MONITORING WELL LOCATION MAP ZIMMER GYPSUM RECYCLING POND **UNIT ID:124**

FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

CCR RULE GROUNDWATER MONITORING ZIMMER POWER PLANT MOSCOW, OHIO

- DOWNGRADIENT MONITORING WELL LOCATION
- CCR MONITORED UNIT

200 ____ Feet

100

ZIMMER COAL PILE RUNOFF POND

FIGURE 2

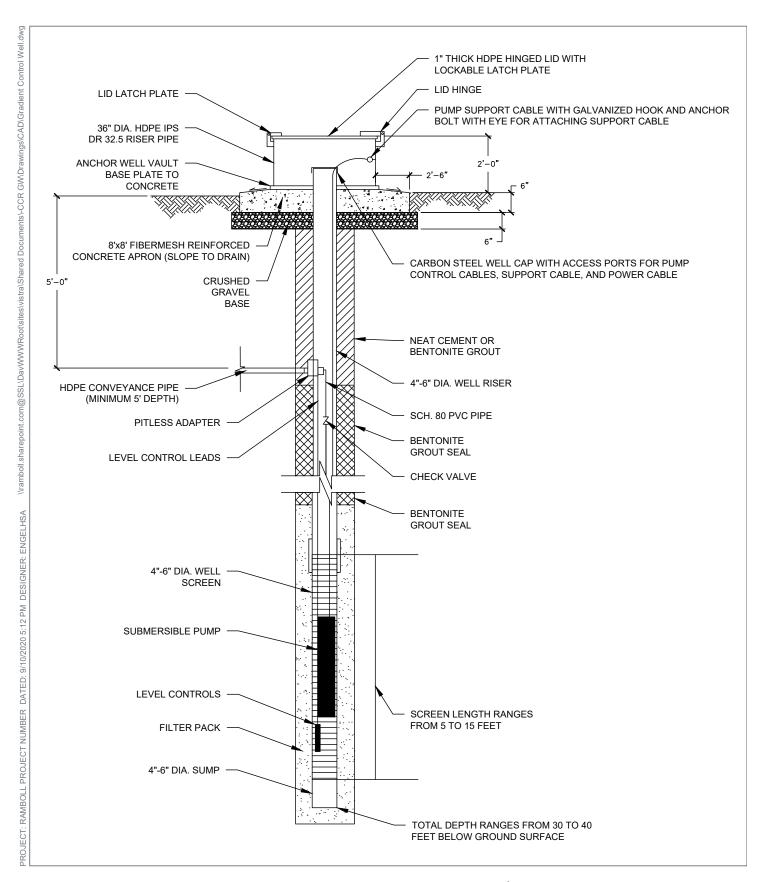
RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

MONITORING WELL LOCATION MAP **UNIT ID:125**

CCR RULE GROUNDWATER MONITORING ZIMMER POWER PLANT MOSCOW, OHIO

- DOWNGRADIENT MONITORING WELL LOCATION
- CCR MONITORED UNIT

MONITORING WELL LOCATION MAP


FIGURE 3

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

ZIMMER D BASIN **UNIT ID:121**

CCR RULE GROUNDWATER MONITORING ZIMMER POWER PLANT MOSCOW, OHIO

NOTES

1. NOT TO SCALE

TYPICAL HYDRAULIC GRADIENT CONTROL WELL DETAIL

FIGURE 4

RAMBOLL US CORPORATION A RAMBOLL COMPANY

Zimmer Power Company LLC

ZIMMER GRP, CPRP & D BASIN MOSCOW, OHIO **ATTACHMENT 1**

Prepared for Dynegy Zimmer, LLC

Date January 31, 2021

Project No. 1940074924

2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ZIMMER GYPSUM RECYCLE POND, ZIMMER POWER STATION

2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ZIMMER GYPSUM RECYCLE POND, ZIMMER POWER STATION

Project name	Zimmer Power Station
Project no.	1940074924
Recipient	Dynegy Zimmer, LLC
Document type	Annual Groundwater Monitoring and Corrective Action Report
Version	FINAL
Date	January 31, 2021
Prepared by	Kristen L. Theesfeld
Checked by	Nikki M. Pagano, PE
Approved by	Lauren D. Cook
Description	Annual Report in Support of the CCR Rule Groundwater Monitoring Program

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Kristen L. Theesfeld Hydrogeologist

Nikki M. Pagano, PG Senior Managing Engineer

CONTENTS

EXECL	JTIVE SUMMARY	3
1.	Introduction	4
2.	Monitoring and Corrective Action Program Status	6
3.	Key Actions Completed in 2020	7
4.	Problems Encountered and Actions to Resolve the Problems	9
5.	Key Activities Planned for 2021	10
6.	References	11

TABLES (IN TEXT)

 Table A
 2019-2020 Assessment Monitoring Program Summary

TABLES (ATTACHED)

- Table 1
 Analytical Results Groundwater Elevation and Appendix III Parameters
- Table 2
 Analytical Results Appendix IV Parameters
- Table 3 Statistical Background Values
- Table 4 Groundwater Protection Standards

FIGURES

Figure 1 Monitoring Well Location Map

ACRONYMS AND ABBREVIATIONS

40 C.F.R.	Title 40 of the Code of Federal Regulations
ASD	Alternate Source Demonstration
CCR	Coal Combustion Residuals
CMA	Corrective Measures Assessment
GRP	Gypsum Recycle Pond
GWPS	Groundwater Protection Standard
SSI	Statistically Significant Increase
SSL	Statistically Significant Level

EXECUTIVE SUMMARY

This report has been prepared to provide the information required by Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.90(e) for Zimmer Gypsum Recycle Pond (GRP) located at Zimmer Power Station near Moscow, Ohio.

Groundwater is being monitored at Zimmer GRP in accordance with the Assessment Monitoring Program requirements specified in 40 C.F.R. § 257.95. Assessment Monitoring was initiated at Zimmer GRP on April 9, 2018.

No changes were made to the monitoring system in 2020 (no wells were installed or decommissioned).

No Statistically Significant Levels (SSLs) of 40 C.F.R. Part 257 Appendix IV parameters were determined. Consequently, a Corrective Measures Assessment (CMA) is not required and Zimmer GRP remains in the Assessment Monitoring Program.

1. INTRODUCTION

This report has been prepared by Ramboll Americas Engineering Solutions Inc. (Ramboll) on behalf of Dynegy Zimmer, LLC, to provide the information required by 40 C.F.R.§ 257.90(e) for Zimmer GRP located at Zimmer Power Station near Moscow, Ohio.

In accordance with 40 C.F.R. § 257.90(e), the owner or operator of a Coal Combustion Residuals (CCR) unit must prepare an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year that documents the status of the Groundwater Monitoring and Corrective Action Program for the CCR unit, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and projects key activities for the upcoming year. At a minimum, the annual report must contain the following information, to the extent available:

- 1. A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit.
- 2. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.
- 3. In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the Detection Monitoring or Assessment Monitoring Programs.
- 4. A narrative discussion of any transition between monitoring programs (*e.g.*, the date and circumstances for transitioning from Detection Monitoring to Assessment Monitoring in addition to identifying the constituent(s) detected at a Statistically Significant Increase [SSI] relative to background levels).
- 5. Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.
- 6. A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
 - i. At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
 - ii. At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
 - iii. If it was determined that there was a SSI over background for one or more constituents listed in Appendix III of §257 pursuant to §257.94(e):
 - A. Identify those constituents listed in Appendix III of §257 and the names of the monitoring wells associated with the SSI(s).

- B. Provide the date when the assessment monitoring program was initiated for the CCR unit.
- iv. If it was determined that there was a SSL above the Groundwater Protection Standard (GWPS) for one or more constituents listed in Appendix IV of §257 pursuant to §257.95(g) include all of the following:
 - A. Identify those constituents listed in Appendix IV of §257 and the names of the monitoring wells associated with the SSL(s).
 - B. Provide the date when the CMA was initiated for the CCR unit.
 - C. Provide the date when the public meeting was held for CMA for the CCR unit.
 - D. Provide the date when the CMA was completed for the CCR unit.
- v. Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection.
- vi. Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.

This report provides the required information for Zimmer GRP for calendar year 2020.

2. MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

No changes have occurred to the Monitoring Program status in calendar year 2020, and Zimmer GRP remains in the Assessment Monitoring Program in accordance with 40 C.F.R. § 257.95.

3. KEY ACTIONS COMPLETED IN 2020

The Assessment Monitoring Program is summarized in Table A. The groundwater monitoring system, including the CCR unit and all background and downgradient monitoring wells, is presented in Figure 1. No changes were made to the monitoring system in 2020. In general, one groundwater sample was collected from each background and downgradient well during each monitoring event. All samples were collected and analyzed in accordance with the Sampling and Analysis Plan (AECOM, 2017). All monitoring data obtained under 40 C.F.R. §§ 257.90 through 257.98 (as applicable) in 2020, and analytical results for the September 2019 sampling event, are presented in Tables 1 and 2. Analytical data were evaluated in accordance with the Statistical Analysis Plan (NRT/OBG, 2017) to determine any SSLs of Appendix IV parameters over GWPSs.

Statistical background values are provided in Table 3 and GWPSs in Table 4.

Table A –	2019-2020	Assessment	Monitoring	Program	Summary
-----------	-----------	------------	------------	---------	---------

Sampling Dates	Analytical Data Receipt Date	Parameters Collected	SSL(s)	SSL(s) Determination Date
September 11 - 12, 2019	October 16, 2019	Appendix III		
		Appendix IV Detected ¹	none	January 14, 2020
April 9 - 10, 2020	April 27, 2020	Appendix III		
		Appendix IV	none	July 27, 2020
September 16-17, 2020	October 31, 2020	Appendix III		
		Appendix IV Detected ¹	TBD	TBD

Notes:

NA: Not Applicable

TBD: To Be Determined

1. Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 C.F.R. § 257.95(d)(1).

4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the Groundwater Monitoring Program during 2020. Groundwater samples were collected and analyzed in accordance with the Sampling and Analysis Plan (AECOM, 2017), and all data were accepted.

5. KEY ACTIVITIES PLANNED FOR 2021

The following key activities are planned for 2021:

- Continuation of the Assessment Monitoring Program with semi-annual sampling scheduled for the first and third quarters of 2021.
- Complete evaluation of analytical data from the downgradient wells, using GWPSs to determine whether an SSL of Appendix IV parameters has occurred.
- If an SSL is identified, potential alternate sources (*i.e.*, a source other than the CCR unit caused the SSL or that that SSL resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated. If an alternate source is demonstrated to be the cause of the SSL, a written demonstration will be completed within 90 days of SSL determination and included in the 2021 Annual Groundwater Monitoring and Corrective Action Report.
 - If an alternate source(s) is not identified to be the cause of the SSL, the applicable requirements of 40 C.F.R. §§ 257.94 through 257.98 (*e.g.*, assessment of corrective measures) as may apply in 2021 will be met, including associated recordkeeping/notifications required by 40 C.F.R. §§ 257.105 through 257.108.

6. **REFERENCES**

AECOM, 2017, Sampling and Analysis Plan, CCR Rule Groundwater Monitoring, Gypsum Recycle Pond, Unit 124, Zimmer Power Station, Moscow, Ohio, Job Number: 60442412, Revision 0, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017, Statistical Analysis Plan, Zimmer Power Station, Dynegy Zimmer, LLC, October 17, 2017.

TABLES

TABLE 1.ANALYTICAL RESULTS - GROUNDWATER ELEVATION AND APPENDIX III PARAMETERS2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORTZIMMER POWER STATION

124 - GYPSUM RECYCLE POND

MOSCOW, OH

Well ID	Latitude (Decimal	Longitude (Decimal	Date	Depth to Groundwater (ft)	Groundwater Elevation (ft NAVD88)	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
	Degrees)	Degrees)		6020A	6020A	6020A	6020A	9251	9214	SM4500 H+B	9036	SM 2540C
			9/11/2019	53.72	458.07	3.38	159	62.8	<1	7.3	376	912
MW-7A Downgradient	38.869036	-84.227563	4/10/2020			2.43	156	62.8	<0.15	7.2	366	876
Doningidalene			9/17/2020	54.82	456.97	3.26	148	66.4	<0.15	6.9	397	974
			9/10/2019	52.51	459.09							
MW-8	38.86994583	-84.22557183	9/11/2019			<0.08	129	34	<1	6.8	59.5	508
Background	30.00994303	-04.22557105	4/9/2020	41.15	470.45	<0.03	122	16	<0.15	6.8	65.2	421
			9/16/2020	53.62	457.98	0.0434	122	13.8	<0.15	7.0	67.2	473
		-84.22711983	9/10/2019	52.97	459.21							
			9/12/2019			2.79	140	73.3	1.41	6.8	513	1100
MW-10	38.86885		4/9/2020	42.44	469.74							
Downgradient	50.00005		4/10/2020			4.38	108	60.5	1.92	7.3	372	845
			9/16/2020	54.85	457.33							
			9/17/2020			2.03	94.6	55	1.63	7.1	289	735
			9/10/2019	50.06	458.81							
			9/12/2019			0.45	119	45.1	<1	6.9	145	590
MW-11	38.868625	-84.227203	4/9/2020	39.66	469.21							
Downgradient	30.000023		4/10/2020			0.719	110	48.9	0.17	7.4	135	510
			9/16/2020	51.61	457.26							
		Γ	9/17/2020			0.395	85.4	31.7	0.184	7.2	107	427

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

ft = foot/feet

mg/L = milligrams per liter

NAVD88 = North American Vertical Datum of 1988

S.U. = Standard Units

< = concentration is less than the concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine Statistically Significant Increases (SSIs) over background.</p>

4-digit numbers below parameter represent SW-846 analytical methods and alpha-numeric values that begin with SM represent Standard Methods for the Examination of Water and Wastewater.

TABLE 2.ANALYTICAL RESULTS - APPENDIX IV PARAMETERS2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORTZIMMER POWER STATION

124 - GYPSUM RECYCLE POND MOSCOW, OH

Well ID	Date	Antimony, total 6020A	Arsenic, total 6020A	Barium, total 6020A	Beryllium, total 6020A	Cadmium, total 6020A	Chromium, total 6020A	Cobalt, total 6020A	Fluoride, total 6020A	Lead, total 6020A	Lithium, total 6020A	Mercury, total 7470A	Molybdenum, total 6020A	Radium-226 + Radium 228, 6020A	Selenium, total 6020A	Thallium, total 6020A
	9/11/2019		<0.001	0.0458		< 0.001	<0.002	0.00101	<1	< 0.001	0.0124		<0.005	0.436	<0.005	
MW-7A Downgradient	4/10/2020	<0.004	<0.002	0.0371	<0.002	< 0.001	<0.002	<0.002	<0.15	<0.005	<0.002	<0.0002	<0.005	0.785	0.00204	<0.002
Downgruaient	9/17/2020		<0.002	0.04		< 0.001	<0.002	<0.002	<0.15	<0.005	0.0031		<0.005	0.43	0.0027	
	9/11/2019		<0.001	0.0552	< 0.001		0.00206	<0.0005	<1	<0.001	0.00754		<0.005	0.261	<0.005	
MW-8 Background	4/9/2020	<0.004	<0.002	0.046	<0.002	< 0.001	<0.002	<0.002	<0.15	<0.005	0.00464	<0.0002	<0.005	0.292	<0.002	<0.002
Buckground	9/16/2020		<0.002	0.0452	<0.002	< 0.001	<0.002	<0.002	<0.15	<0.005	0.00612		<0.005	0.0611	<0.002	
	9/12/2019		0.00501	0.0127		< 0.001	<0.002	0.00464	1.41	< 0.001	0.0144		0.0105	0.336	<0.005	
MW-10 Downgradient	4/10/2020	<0.004	0.00201	<0.02	<0.002	< 0.001	<0.002	<0.002	1.92	<0.005	0.00934	<0.0002	0.00628	1.29	<0.002	<0.002
Downgradient	9/17/2020		0.00241	<0.02		< 0.001	<0.002	<0.002	1.63	<0.005	0.00856		<0.005	0.107	<0.002	
	9/12/2019		0.00109	0.0493		< 0.001	<0.002	0.00136	<1	<0.001	0.00609		<0.005	0.105	<0.005	
MW-11 Downgradient	4/10/2020	<0.004	<0.002	0.0443	<0.002	< 0.001	<0.002	<0.002	0.17	<0.005	<0.002	<0.0002	<0.005	0.955	<0.002	<0.002
2000 gradient	9/17/2020		<0.002	0.0329		<0.001	<0.002	<0.002	0.184	<0.005	<0.002		<0.005	1.26	<0.002	

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

mg/L = milligrams per liter

NA = Not Analyzed

pCi/L = picoCuries per liter

< = concentration is less than concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine Statistically Significant Levels (SSLs) over Groundwater Protection Standards.</p>

4-digit numbers below parameter represent SW-846 analytical methods and 3-digit numbers represent Clean Water Act analytical methods.

TABLE 3.STATISTICAL BACKGROUND VALUES2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORTZIMMER POWER STATION124 - GYPSUM RECYCLE PONDMOSCOW, OHIOASSESSMENT MONITORING PROGRAM

Parameter	Statistical Background Value (UPL)
40 C.F.R. Part 257 A	ppendix III
Boron (mg/L)	0.09
Calcium (mg/L)	169
Chloride (mg/L)	42.17
Fluoride (mg/L)	0.106
рН (S.U.)	6.5 / 7.8
Sulfate (mg/L)	72.7
Total Dissolved Solids (mg/L)	578

[O: RAB 12/26/19, C: KLT 12/26/19]

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

mg/L = milligrams per liter

S.U. = Standard Units

UPL = Upper Prediction Limit

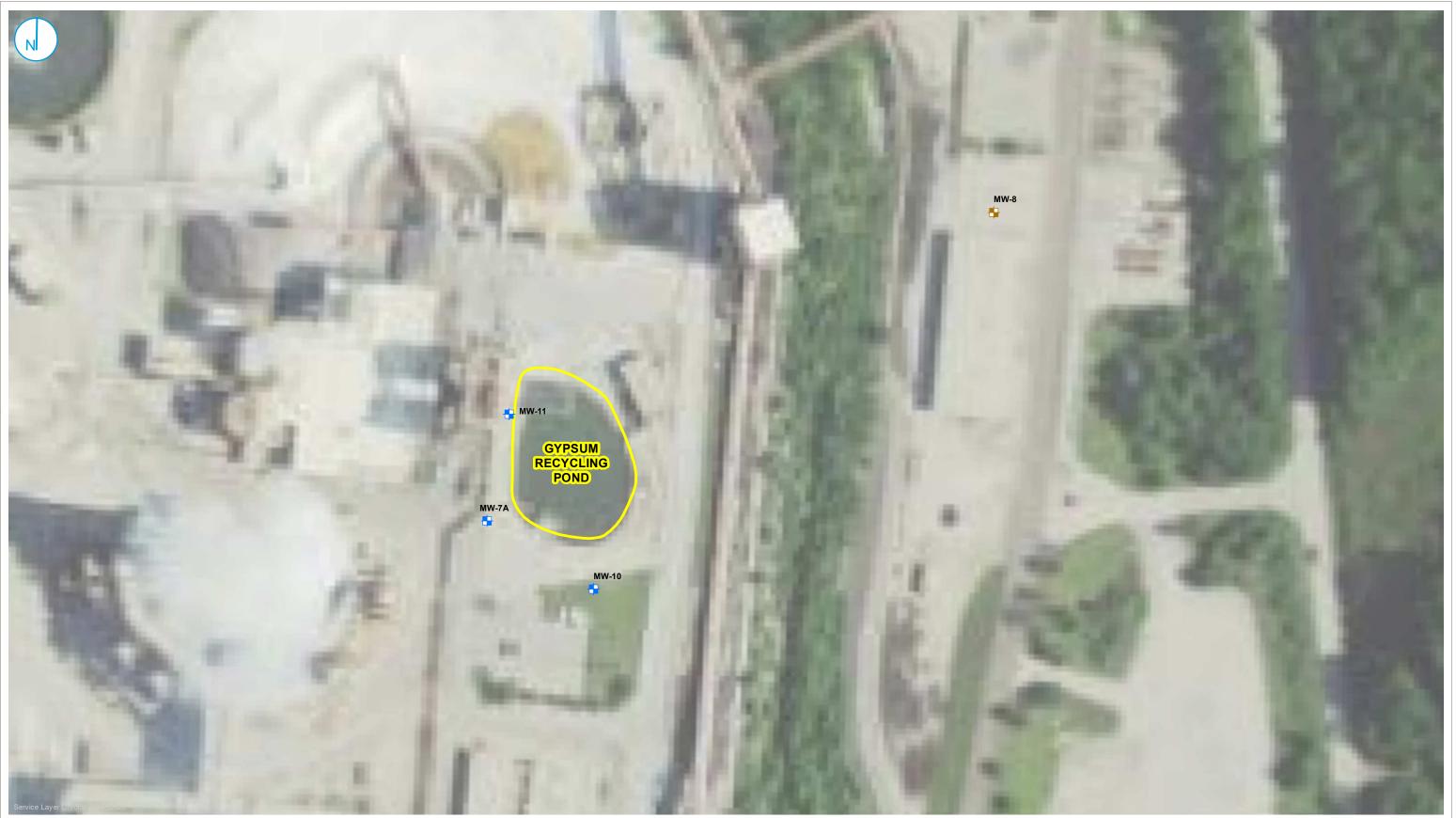
TABLE 4.GROUNDWATER PROTECTION STANDARDS2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORTZIMMER POWER STATION124 - GYPSUM RECYCLE PONDMOSCOW, OHIOASSESSMENT MONITORING PROGRAM

Parameter	Groundwater Protection Standard ¹
40 C.F.R. Part 25	7 Appendix IV
Antimony (mg/L)	0.006
Arsenic (mg/L)	0.010
Barium (mg/L)	2
Beryllium (mg/L)	0.004
Cadmium (mg/L)	0.005
Chromium (mg/L)	0.10
Cobalt (mg/L)	0.006
Fluoride (mg/L)	4
Lead (mg/L)	0.015
Lithium (mg/L)	0.040
Mercury (mg/L)	0.002
Molybdenum (mg/L)	0.10
Radium 226+228 (pCi/L)	5
Selenium (mg/L)	0.05
Thallium (mg/L)	0.002
[0:	RAB 12/26/19, C: KLT 12/26/19]

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

mg/L = milligrams per liter


pCi/L = picoCuries per liter

 $^1\mbox{Groundwater}$ Protection Standard is the higher of the Maximum Contaminant Level /

Health-Based Level or background.

FIGURES

DOWNGRADIENT MONITORING WELL LOCATION

CCR MONITORED UNIT

MONITORING WELL LOCATION MAP ZIMMER GYPSUM RECYCLING POND **UNIT ID:124**

FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

Prepared for Dynegy Zimmer, LLC

Date January 31, 2021

Project No. 1940074924

2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ZIMMER COAL PILE RUNOFF POND, ZIMMER POWER STATION

2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ZIMMER COAL PILE RUNOFF POND, ZIMMER POWER STATION

Project name	Zimmer Power Station
Project no.	1940074924
Recipient	Dynegy Zimmer, LLC
Document type	Annual Groundwater Monitoring and Corrective Action Report
Version	FINAL
Date	January 31, 2021
Prepared by	Kristen L. Theesfeld
Checked by	Nikki M. Pagano, PE
Approved by	Lauren D. Cook
Description	Annual Report in Support of the CCR Rule Groundwater Monitoring Program

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Kristen L. Theesfeld Hydrogeologist

URM

Nikki M. Pagano, PG Senior Managing Engineer

CONTENTS

EXECL	JTIVE SUMMARY	3
1.	Introduction	4
2.	Monitoring and Corrective Action Program Status	6
3.	Key Actions Completed in 2020	7
4.	Problems Encountered and Actions to Resolve the Problems	9
5.	Key Activities Planned for 2021	10
6.	References	11

TABLES (IN TEXT)

Table A2019-2020 Assessment Monitoring Program Summary

TABLES (ATTACHED)

- Table 1
 Analytical Results Groundwater Elevation and Appendix III Parameters
- Table 2
 Analytical Results Appendix IV Parameters
- Table 3 Statistical Background Values
- Table 4Groundwater Protection Standards

FIGURES

Figure 1 Monitoring Well Location Map

ACRONYMS AND ABBREVIATIONS

40 C.F.R.	Title 40 of the Code of Federal Regulations
CCR	Coal Combustion Residuals
CMA	Corrective Measures Assessment
CPRP	Coal Pile Runoff Pond
GWPS	Groundwater Protection Standard
SSI	Statistically Significant Increase
SSL	Statistically Significant Level

EXECUTIVE SUMMARY

This report has been prepared to provide the information required by Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.90(e) for Zimmer Coal Pile Runoff Pond (CPRP) located at Zimmer Power Station near Moscow, Ohio.

Groundwater is being monitored at Zimmer CPRP in accordance with the Assessment Monitoring Program requirements specified in 40 C.F.R. § 257.95. Assessment Monitoring was initiated at Zimmer CPRP on April 9, 2018.

No changes were made to the monitoring system in 2020 (no wells were installed or decommissioned).

No Statistically Significant Levels (SSLs) of 40 C.F.R. Part 257 Appendix IV parameters were determined. Consequently, a Corrective Measures Assessment (CMA) is not required and Zimmer CPRP remains in the Assessment Monitoring Program.

1. INTRODUCTION

This report has been prepared by Ramboll Americas Engineering Solutions Inc. (Ramboll) on behalf of Dynegy Zimmer, LLC, to provide the information required by 40 C.F.R.§ 257.90(e) for Zimmer CPRP located at Zimmer Power Station near Moscow, Ohio.

In accordance with 40 C.F.R. § 257.90(e), the owner or operator of a Coal Combustion Residuals (CCR) unit must prepare an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year that documents the status of the Groundwater Monitoring and Corrective Action Program for the CCR unit, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and projects key activities for the upcoming year. At a minimum, the annual report must contain the following information, to the extent available:

- 1. A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit.
- 2. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.
- 3. In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the Detection Monitoring or Assessment Monitoring Programs.
- 4. A narrative discussion of any transition between monitoring programs (*e.g.*, the date and circumstances for transitioning from Detection Monitoring to Assessment Monitoring in addition to identifying the constituent(s) detected at a Statistically Significant Increase [SSI] relative to background levels).
- 5. Other information required to be included in the Annual Report as specified in §§ 257.90 through 257.98.
- 6. A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
 - i. At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
 - ii. At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
 - iii. If it was determined that there was a SSI over background for one or more constituents listed in Appendix III of §257 pursuant to §257.94(e):
 - A. Identify those constituents listed in Appendix III of §257 and the names of the monitoring wells associated with the SSI(s).
 - B. Provide the date when the assessment monitoring program was initiated for the CCR unit.

- iv. If it was determined that there was a SSL above the Groundwater Protection Standard (GWPS) for one or more constituents listed in Appendix IV of §257 pursuant to §257.95(g) include all of the following:
 - A. Identify those constituents listed in Appendix IV of §257 and the names of the monitoring wells associated with the SSL(s).
 - B. Provide the date when the CMA was initiated for the CCR unit.
 - C. Provide the date when the public meeting was held for CMA for the CCR unit.
 - D. Provide the date when the CMA was completed for the CCR unit.
- v. Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection.
- vi. Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.

This report provides the required information for Zimmer CPRP for calendar year 2020.

2. MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

No changes have occurred to the Monitoring Program status in calendar year 2020, and Zimmer CPRP remains in the Assessment Monitoring Program in accordance with 40 C.F.R. § 257.95.

3. KEY ACTIONS COMPLETED IN 2020

The Assessment Monitoring Program is summarized in Table A. The groundwater monitoring system, including the CCR unit and all background and downgradient monitoring wells, is presented in Figure 1. No changes were made to the monitoring system in 2020. In general, one groundwater sample was collected from each background and downgradient well during each monitoring event. All samples were collected and analyzed in accordance with the Sampling and Analysis Plan (AECOM, 2017). All monitoring data obtained under 40 C.F.R. §§ 257.90 through 257.98 (as applicable) in 2020, and analytical results for the September 2019 sampling event, are presented in Tables 1 and 2. Analytical data were evaluated in accordance with the Statistical Analysis Plan (NRT/OBG, 2017) to determine any SSLs of Appendix IV parameters over GWPSs.

Statistical background values are provided in Table 3 and GWPSs in Table 4.

Table A – 2019-2020 Assessment Monitoring Program Summary	

Sampling Dates	Analytical Data Receipt Date	Parameters Collected	SSL(s)	SSL(s) Determination Date
September 11 - 12, 2019	October 16, 2019	Appendix III		
		Appendix IV Detected $^{\rm 1}$	none	January 14, 2020
April 9 - 10, 2020	April 30, 2020	Appendix III		
		Appendix IV	none	July 29, 2020
September 16, 2020	October 19, 2020	Appendix III		
		Appendix IV Detected ¹	TBD	TBD

Notes:

NA: Not Applicable

TBD: To Be Determined

1. Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 C.F.R. § 257.95(d)(1).

4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the Groundwater Monitoring Program during 2019. Groundwater samples were collected and analyzed in accordance with the Sampling and Analysis Plan (AECOM, 2017), and all data were accepted.

5. KEY ACTIVITIES PLANNED FOR 2021

The following key activities are planned for 2021:

- Continuation of the Assessment Monitoring Program with semi-annual sampling scheduled for the first and third quarters of 2021.
- Complete evaluation of analytical data from the downgradient wells, using GWPSs to determine whether an SSL of Appendix IV parameters has occurred.
- If an SSL is identified, potential alternate sources (*i.e.*, a source other than the CCR unit caused the SSL or that that SSL resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated. If an alternate source is demonstrated to be the cause of the SSL, a written demonstration will be completed within 90 days of SSL determination and included in the 2021 Annual Groundwater Monitoring and Corrective Action Report.
 - If an alternate source(s) is not identified to be the cause of the SSL, the applicable requirements of 40 C.F.R. §§ 257.94 through 257.98 (*e.g.*, assessment of corrective measures) as may apply in 2021 will be met, including associated recordkeeping/notifications required by 40 C.F.R. §§ 257.105 through 257.108.

6. **REFERENCES**

AECOM, 2017, Sampling and Analysis Plan, CCR Rule Groundwater Monitoring, Coal Pile Runoff Pond, Unit 125, Zimmer Power Station, Moscow, Ohio, Job Number: 60442412, Revision 0, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017, Statistical Analysis Plan, Zimmer Power Station, Dynegy Zimmer, LLC, October 17, 2017.

TABLES

TABLE 1.ANALYTICAL RESULTS - GROUNDWATER ELEVATION AND APPENDIX III PARAMETERS2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORTZIMMER POWER STATION

125 - COAL PILE RUNOFF POND MOSCOW, OH

Well ID	Latitude (Decimal	Longitude (Decimal	Date	Depth to Groundwater (ft)	Groundwater Elevation (ft NAVD88)	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
10	Degrees)	Degrees)		6020A	6020A	6020A	6020A	9251	9214	SM4500 H+B	9036	SM 2540C
			9/10/2019	52.01	458.91							
MW-1	38.877476	-84.227174 -	9/11/2019			<0.08	167	63.1	<1	7.0	90.6	637
Background	50.077470	-04.22/1/4	4/9/2020	39.67	471.25	0.123	170	80.5	<0.15	6.7	92.3	592
			9/16/2020	51.76	459.16	0.0365	169	84.3	<0.15	7.1	99.1	644
			9/10/2019	54.15	456.06							
			9/11/2019			1.91	228	39.2	<1	7.6	532	1090
MW-3S Downgradient	38.87705583	-84.23023028	4/9/2020	43.82	466.39							
			4/10/2020			1.03	221	43	<0.15	7.0	447	949
			9/16/2020	53.52	456.69	2.44	210	26.5	<0.15	7.2	550	1030
			9/10/2019	55.64	456.02							
			9/12/2019			0.13	156	45.5	<1	6.8	187	686
MW-16 Downgradient	38.87746694	-84.23021972	4/9/2020	45.32	466.34							
		-	4/10/2020			0.0621	162	47.6	0.151	6.9	197	687
			9/16/2020	54.97	456.69	0.087	169	48.6	<0.15	7.1	253	741
			9/10/2019	55.22	456.03							
			9/12/2019			0.0889	177	47.8	<1	7.0	280	776
MW-17 Downgradient	38.8772725	-84.23025583	4/9/2020	44.88	466.37							
			4/10/2020			0.0608	178	51.1	0.162	7.0	283	767
			9/16/2020	54.62	456.63	0.301	184	46.7	<0.15	7.1	337	840
			9/10/2019	55.61	456.02							
			9/12/2019			3	226	30.8	<1	7.1	612	1210
MW-18 Downgradient	38.87681917	-84.23023278	4/9/2020	45.23	466.4							
-			4/10/2020			3.56	272	43.2	0.161	7.0	771	1300
			9/16/2020	54.93	456.7	2.76	179	19.1	<0.15	7.3	548	976

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

ft = foot/feet

mg/L = milligrams per liter

NAVD88 = North American Vertical Datum of 1988

S.U. = Standard Units

< = concentration is less than the concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine Statistically Significant Increases (SSIs) over background.</p>

4-digit numbers below parameter represent SW-846 analytical methods and alpha-numeric values that begin with SM represent Standard Methods for the Examination of Water and Wastewater.

TABLE 2. ANALYTICAL RESULTS - APPENDIX IV PARAMETERS 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ZIMMER POWER STATION

125 - COAL PILE RUNOFF POND MOSCOW, OH

Well ID	Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium 228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
		6020A	6020A	6020A	6020A	6020A	6020A	6020A	6020A	6020A	6020A	7470A	6020A	6020A	6020A	6020A
	9/11/2019		<0.001	0.077	<0.001		<0.002	<0.0005	<1	<0.001	0.0109		<0.005	0.11	<0.005	
MW-1 Background	4/9/2020	<0.004	<0.002	0.0725	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00964	<0.0002	<0.005	0.0302	<0.002	<0.002
5	9/16/2020		<0.002	0.073	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00966		<0.005	0.215	<0.002	
	9/11/2019		<0.001	0.0715		<0.001	0.00275	<0.0005	<1	<0.001	0.0118		<0.005	0.338	0.0111	
MW-3S Downgradient	4/10/2020	<0.004	<0.002	0.0576	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00548	<0.0002	<0.005	0.888	0.0039	<0.002
	9/16/2020		<0.002	0.0589		<0.001	<0.002	<0.002	<0.15	<0.005	0.00495		<0.005	0.373	0.00601	
	9/12/2019		<0.001	0.0538		<0.001	0.00218	0.00201	<1	<0.001	0.0111		<0.005	0.969	<0.005	
MW-16 Downgradient	4/10/2020	<0.004	<0.002	0.0474	<0.002	<0.001	<0.002	0.00208	0.151	<0.005	0.00522	<0.0002	<0.005	1.85	<0.002	<0.002
	9/16/2020		<0.002	0.051		<0.001	<0.002	<0.002	<0.15	<0.005	0.00467		<0.005	0.869	0.0043	
	9/12/2019		<0.001	0.0815		<0.001	0.00243	0.00139	<1	<0.001	0.0175		<0.005	0.658	<0.005	
MW-17 Downgradient	4/10/2020	<0.004	<0.002	0.0602	<0.002	<0.001	<0.002	<0.002	0.162	<0.005	0.00536	<0.0002	<0.005	0.806	0.00204	<0.002
	9/16/2020		<0.002	0.0641		<0.001	<0.002	<0.002	<0.15	<0.005	0.0057		<0.005	0.456	0.00467	
	9/12/2019		<0.001	0.0411		<0.001	0.00252	0.00176	<1	<0.001	0.0134		<0.005	0.328	0.0157	
MW-18 Downgradient	4/10/2020	<0.004	<0.002	0.0317	<0.002	<0.001	<0.002	<0.002	0.161	<0.005	0.00537	<0.0002	<0.005	0.568	0.012	<0.002
	9/16/2020		<0.002	0.02		<0.001	<0.002	<0.002	<0.15	<0.005	0.00407		<0.005	0.325	0.00615	

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations mg/L = milligrams per liter NA = Not Analyzed

pCi/L = picoCuries per liter

< = concentration is less than concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine Statistically Significant Levels (SSLs) over Groundwater Protection Standards.</p>

4-digit numbers below parameter represent SW-846 analytical methods and 3-digit numbers represent Clean Water Act analytical methods.

TABLE 3.STATISTICAL BACKGROUND VALUES2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORTZIMMER POWER STATION125 - COAL PILE RUNOFF PONDMOSCOW, OHIOASSESSMENT MONITORING PROGRAM

Parameter	Statistical Background Value (UPL)
40 C.F.R. Part 257 A	ppendix III
Boron (mg/L)	0.08
Calcium (mg/L)	213
Chloride (mg/L)	73.75
Fluoride (mg/L)	0.2
рН (S.U.)	6.8 / 7.3
Sulfate (mg/L)	102.6
Total Dissolved Solids (mg/L)	678

[O: RAB 12/26/19, C: KLT 12/26/19]

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

mg/L = milligrams per liter

S.U. = Standard Units

UPL = Upper Prediction Limit

TABLE 4.GROUNDWATER PROTECTION STANDARDS2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORTZIMMER POWER STATION125 - COAL PILE RUNOFF PONDMOSCOW, OHIOASSESSMENT MONITORING PROGRAM

Parameter	Groundwater Protection Standard ¹
40 C.F.R. Part 25	7 Appendix IV
Antimony (mg/L)	0.006
Arsenic (mg/L)	0.010
Barium (mg/L)	2
Beryllium (mg/L)	0.004
Cadmium (mg/L)	0.005
Chromium (mg/L)	0.10
Cobalt (mg/L)	0.006
Fluoride (mg/L)	4
Lead (mg/L)	0.015
Lithium (mg/L)	0.040
Mercury (mg/L)	0.002
Molybdenum (mg/L)	0.10
Radium 226+228 (pCi/L)	5
Selenium (mg/L)	0.05
Thallium (mg/L)	0.002
[0:	: RAB 12/26/19, C: KLT 12/26/19]

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

mg/L = milligrams per liter

pCi/L = picoCuries per liter

 $^1\mbox{Groundwater}$ Protection Standard is the higher of the Maximum Contaminant Level /

Health-Based Level or background.

FIGURES

BACKGROUND MONITORING WELL LOCATION

- **DOWNGRADIENT MONITORING WELL LOCATION**
- CCR MONITORED UNIT

MONITORING WELL LOCATION MAP ZIMMER COAL PILE RUNOFF POND

FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

UNIT ID:125

Prepared for Dynegy Zimmer, LLC

Date January 31, 2021

Project No. 1940074924

2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ZIMMER D BASIN, ZIMMER POWER STATION

2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ZIMMER D BASIN, ZIMMER POWER STATION

Project name	Zimmer Power Station
Project no.	1940074924
Recipient	Dynegy Zimmer, LLC
Document type	Annual Groundwater Monitoring and Corrective Action Report
Version	FINAL
Date	January 31, 2021
Prepared by	Kristen L. Theesfeld
Checked by	Nikki M. Pagano, PE
Approved by	Lauren Cook
Description	Annual Report in Support of the CCR Rule Groundwater Monitoring Program

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Kristen L. Theesfeld Hydrogeologist

alan

Nikki M. Pagano, PE Senior Managing Engineer

CONTENTS

EXECL	JTIVE SUMMARY	3
1.	Introduction	4
2.	Monitoring and Corrective Action Program Status	6
3.	Key Actions Completed in 2020	7
4.	Problems Encountered and Actions to Resolve the Problems	9
5.	Key Activities Planned for 2021	10
6.	References	11

TABLES (IN TEXT)

Table A	2019-2020	Assessment	Monitorina	Program	Summarv
		,	rionicoring	riogram	Garmary

TABLES (ATTACHED)

- Table 1
 Analytical Results Groundwater Elevation and Appendix III Parameters
- Table 2
 Analytical Results Appendix IV Parameters
- Table 3 Statistical Background Values
- Table 4Groundwater Protection Standards

FIGURES

Figure 1 Monitoring Well Location Map

ACRONYMS AND ABBREVIATIONS

40 C.F.R.	Title 40 of the Code of Federal Regulations
ASD	Alternate Source Demonstration
CCR	Coal Combustion Residuals
CMA	Corrective Measures Assessment
GWPS	Groundwater Protection Standard
SSI	Statistically Significant Increase
SSL	Statistically Significant Level

EXECUTIVE SUMMARY

This report has been prepared to provide the information required by Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.90(e) for Zimmer D Basin located at Zimmer Power Station near Moscow, Ohio.

Groundwater is being monitored at Zimmer D Basin in accordance with the Assessment Monitoring Program requirements specified in 40 C.F.R. § 257.95. Assessment Monitoring was initiated at Zimmer D Basin on April 9, 2018.

No changes were made to the monitoring system in 2020.

No Statistically Significant Levels (SSLs) of 40 C.F.R. Part 257 Appendix IV parameters were determined. Consequently, a Corrective Measures Assessment (CMA) is not required and Zimmer D Basin remains in the Assessment Monitoring Program.

1. INTRODUCTION

This report has been prepared by Ramboll Americas Engineering Solutions Inc. (Ramboll) on behalf of Dynegy Zimmer, LLC, to provide the information required by 40 C.F.R.§ 257.90(e) for Zimmer D Basin located at Zimmer Power Station near Moscow, Ohio.

In accordance with 40 C.F.R. § 257.90(e), the owner or operator of a Coal Combustion Residuals (CCR) unit must prepare an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year that documents the status of the Groundwater Monitoring and Corrective Action Program for the CCR unit, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and projects key activities for the upcoming year. At a minimum, the annual report must contain the following information, to the extent available:

- 1. A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit.
- 2. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.
- 3. In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the Detection Monitoring or Assessment Monitoring Programs.
- 4. A narrative discussion of any transition between monitoring programs (*e.g.*, the date and circumstances for transitioning from Detection Monitoring to Assessment Monitoring in addition to identifying the constituent(s) detected at a Statistically Significant Increase [SSI] relative to background levels).
- 5. Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.
- 6. A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
 - i. At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
 - ii. At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
 - iii. If it was determined that there was a SSI over background for one or more constituents listed in Appendix III of §257 pursuant to §257.94(e):
 - A. Identify those constituents listed in Appendix III of §257 and the names of the monitoring wells associated with the SSI(s).

- B. Provide the date when the assessment monitoring program was initiated for the CCR unit.
- iv. If it was determined that there was a SSL above the Groundwater Protection Standard (GWPS) for one or more constituents listed in Appendix IV of §257 pursuant to §257.95(g) include all of the following:
 - A. Identify those constituents listed in Appendix IV of §257 and the names of the monitoring wells associated with the SSL(s).
 - B. Provide the date when the CMA was initiated for the CCR unit.
 - C. Provide the date when the public meeting was held for CMA for the CCR unit.
 - D. Provide the date when the CMA was completed for the CCR unit.
- v. Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection.
- vi. Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.

This report provides the required information for Zimmer D Basin for calendar year 2020.

2. MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

No changes have occurred to the Monitoring Program status in calendar year 2020, and Zimmer D Basin remains in the Assessment Monitoring Program in accordance with 40 C.F.R. § 257.95.

3. KEY ACTIONS COMPLETED IN 2020

The Assessment Monitoring Program is summarized in Table A. The groundwater monitoring system, including the CCR unit and all background and downgradient monitoring wells, is presented in Figure 1. No changes were made to the monitoring system in 2020. In general, one groundwater sample was collected from each background and downgradient well during each monitoring event. All samples were collected and analyzed in accordance with the Sampling and Analysis Plan (AECOM, 2017). All monitoring data obtained under 40 C.F.R. §§ 257.90 through 257.98 (as applicable) in 2020, and analytical results for the September 2019 sampling event, are presented in Tables 1 and 2. Analytical data were evaluated in accordance with the Statistical Analysis Plan (NRT/OBG, 2017) to determine any Statistically Significant Levels (SSLs) of Appendix IV parameters over GWPSs.

Statistical background values are provided in Table 3 and GWPSs in Table 4.

Sampling Dates	Analytical Data Receipt Date	Parameters Collected	SSL(s)	SSL(s) Determination Date
September 11, 2019	October 31, 2019	Appendix III		
		Appendix IV Detected ¹	none	January 14, 2020
April 9, 2020	May 6, 2020	Appendix III		
		Appendix IV	none	August 4, 2020
September 16 - 17, 2020	October 19, 2020	Appendix III		
		Appendix IV Detected 1	TBD	TBD

Table A – 2019-2020 Assessment Monitoring Program Summary

Notes:

NA: Not Applicable

TBD: To Be Determined

1. Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 C.F.R. § 257.95(d)(1).

4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the Groundwater Monitoring Program during 2020. Groundwater samples were collected and analyzed in accordance with the Sampling and Analysis Plan (AECOM, 2017), and all data were accepted.

5. KEY ACTIVITIES PLANNED FOR 2021

The following key activities are planned for 2021:

- Continuation of the Assessment Monitoring Program with semi-annual sampling scheduled for the first and third quarters of 2021.
- Complete evaluation of analytical data from the downgradient wells, using GWPSs to determine whether an SSL of Appendix IV parameters has occurred.
- If an SSL is identified, potential alternate sources (*i.e.*, a source other than the CCR unit caused the SSL or that that SSL resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated. If an alternate source is demonstrated to be the cause of the SSL, a written demonstration will be completed within 90 days of SSL determination and included in the 2021 Annual Groundwater Monitoring and Corrective Action Report.
 - If an alternate source(s) is not identified to be the cause of the SSL, the applicable requirements of 40 C.F.R. §§ 257.94 through 257.98 (*e.g.*, assessment of corrective measures) as may apply in 2021 will be met, including associated recordkeeping/notifications required by 40 C.F.R. §§ 257.105 through 257.108.

6. **REFERENCES**

AECOM, 2017, Sampling and Analysis Plan, CCR Rule Groundwater Monitoring, Basin D, Unit 121, Zimmer Power Station, Moscow, Ohio, Job Number: 60442412, Revision 0, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017, Statistical Analysis Plan, Zimmer Power Station, Dynegy Zimmer, LLC, October 17, 2017.

TABLES

TABLE 1. ANALYTICAL RESULTS - GROUNDWATER ELEVATION AND APPENDIX III PARAMETERS 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ZIMMER POWER STATION 121 - D BASIN

MOSCOW, OH

Well ID	Latitude (Decimal	Longitude (Decimal Degrees)	Date	Depth to Groundwater (ft)	Groundwater Elevation (ft NAVD88)	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
10	Degrees)			6020A	6020A	6020A	6020A	9251	9214	SM4500 H+B	9036	SM 2540C
			9/10/2019	52.01	458.91							
MW-1	38.877476	-84.227174	9/11/2019			<0.08	167	63.1	<1	7.0	90.6	637
Background	50.077470	-84.22/1/4	4/9/2020	39.67	471.25	0.123	170	80.5	<0.15	6.7	92.3	592
			9/16/2020	51.76	459.16	0.0365	169	84.3	<0.15	7.1	99.1	644
			9/10/2019	52.51	459.09							
MW-8	38.86994583	-84.22557183	9/11/2019			<0.08	129	34	<1	6.8	59.5	508
Background	30.00994303	-04.22557105	4/9/2020	41.15	470.45	<0.03	122	16	<0.15	6.8	65.2	421
			9/16/2020	53.62	457.98	0.0434	122	13.8	<0.15	7.0	67.2	473
			9/10/2019	53.31	456.6							
MW-9	20.075460	-84.23018383 -	9/11/2019			0.737	236	30.7	<1	8.3	495	1190
Downgradient	38.875469		4/9/2020	42.9	467.01	0.511	270	32.3	<0.15	6.9	589	1160
			9/16/2020	52.66	457.25	0.127	220	21.4	<0.15	7.2	485	999
			9/10/2019	52.38	459.54							
MW-12		04 226 421 02	9/11/2019			0.204	148	26.6	<1	7.7	90	557
Background	38.87556583	-84.22642183 —	4/9/2020	39.26	472.66	0.21	162	32.5	<0.15	6.9	98.3	598
			9/16/2020	51.94	459.98	0.207	149	31.7	<0.15	7.0	98.3	579
MW-13 38 87510			9/10/2019	42.98	456.42							
	20.07510002	-84.230056 -	9/11/2019			<0.08	144	14.4	<1	7.6	146	616
Downgradient	38.87510983		4/9/2020	32.74	466.66	0.0597	166	20.4	0.165	7.0	281	715
			9/17/2020	42.4	457	0.0557	132	17.7	0.176	7.2	135	577
MW-14 Downgradient 38.874746			9/10/2019	47.5	456.31							
	20.074746	-84.230119 -	9/11/2019			0.139	181	28.8	<1	7.4	287	836
	38.874746		4/9/2020	37.31	466.5	0.116	213	40	0.179	7.4	427	939
			9/17/2020	46.97	456.84	0.119	156	29.4	0.2	7.1	237	745
			9/10/2019	53.93	456.65							
MW-15	20.07445	-84.230181	9/11/2019			0.12	241	36.2	<1	7.4	535	1170
Downgradient	38.87445		4/9/2020	43.89	466.69	0.079	258	41.1	0.175	7.4	567	1090
			9/17/2020	53.46	457.12	0.126	245	46.8	0.168	6.9	560	1250

TABLE 1. ANALYTICAL RESULTS - GROUNDWATER ELEVATION AND APPENDIX III PARAMETERS 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ZIMMER POWER STATION

121 - D BASIN MOSCOW, OH

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations ft = foot/feet

mg/L = milligrams per liter

NAVD88 = North American Vertical Datum of 1988

S.U. = Standard Units

< = concentration is less than the concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine</p> Statistically Significant Increases (SSIs) over background.

4-digit numbers below parameter represent SW-846 analytical methods and alpha-numeric values that begin with SM represent Standard Methods for the Examination of Water and Wastewater.

TABLE 2. ANALYTICAL RESULTS - APPENDIX IV PARAMETERS 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ZIMMER POWER STATION

121 - D BASIN MOSCOW, OH

Well ID	Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium 228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
		6020A	6020A	6020A	6020A	6020A	6020A	6020A	6020A	6020A	6020A	7470A	6020A	6020A	6020A	6020A
	9/11/2019		<0.001	0.077	<0.001		<0.002	<0.0005	<1	<0.001	0.0109		<0.005	0.11	<0.005	
MW-1 Background	4/9/2020	<0.004	<0.002	0.0725	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00964	<0.0002	<0.005	0.0302	<0.002	<0.002
	9/16/2020		<0.002	0.073	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00966		<0.005	0.215	<0.002	
	9/11/2019		<0.001	0.0552	<0.001		0.00206	<0.0005	<1	<0.001	0.00754		<0.005	0.261	<0.005	
MW-8 Background	4/9/2020	<0.004	<0.002	0.046	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00464	<0.0002	<0.005	0.292	<0.002	<0.002
Duckyround	9/16/2020		<0.002	0.0452	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00612		<0.005	0.0611	<0.002	
	9/11/2019		0.00188	0.0261	<0.001		0.00237	0.00267	<1	<0.001	0.0135		<0.005	0.372	<0.005	
MW-9 Downgradient	4/9/2020	<0.004	<0.002	0.026	<0.002	<0.001	<0.002	0.00286	<0.15	<0.005	0.00709	<0.0002	<0.005	6.29	<0.002	<0.002
Domigradiene	9/16/2020		<0.002	0.0215	<0.002		<0.002	0.00242	<0.15	<0.005	0.0068		<0.005	0.727	<0.002	
	9/11/2019		<0.001	0.0692	<0.001		0.00249	<0.0005	<1	<0.001	0.0114		<0.005	0.118	<0.005	
MW-12 Background	4/9/2020	<0.004	<0.002	0.0657	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00591	<0.0002	<0.005	3.9	<0.002	<0.002
	9/16/2020		<0.002	0.0629	<0.002		<0.002	<0.002	<0.15	<0.005	0.00612		<0.005	0.409	<0.002	
	9/11/2019		0.00525	0.0461	<0.001		0.00231	0.00368	<1	<0.001	0.00811		<0.005	0.449	<0.005	
MW-13 Downgradient	4/9/2020	<0.004	0.00261	0.0477	<0.002	<0.001	<0.002	0.00297	0.165	<0.005	0.00266	<0.0002	<0.005	3.43	<0.002	<0.002
	9/17/2020		<0.002	0.039	<0.002		<0.002	0.0028	0.176	<0.005	0.00274		<0.005	1.73	<0.002	
	9/11/2019		0.00155	0.0554	<0.001		0.00254	0.00239	<1	<0.001	0.00843		<0.005	1.94	<0.005	
MW-14 Downgradient	4/9/2020	<0.004	<0.002	0.0501	<0.002	<0.001	<0.002	0.00223	0.179	<0.005	0.00236	<0.0002	<0.005	1.6	<0.002	<0.002
Jonnyraaiont	9/17/2020		<0.002	0.0417	<0.002		<0.002	<0.002	0.2	<0.005	0.0024		<0.005	0.919	<0.002	
	9/11/2019		<0.001	0.0836	<0.001		0.00257	0.00381	<1	<0.001	0.00845		<0.005	0.756	<0.005	
MW-15 Downgradient	4/9/2020	<0.004	<0.002	0.0663	<0.002	<0.001	<0.002	0.00374	0.175	<0.005	0.00213	<0.0002	<0.005	3.26	<0.002	<0.002
20gruucht	9/17/2020		<0.002	0.069	<0.002		<0.002	0.00289	0.168	<0.005	0.00244		<0.005	1.13	<0.002	

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations mg/L = milligrams per liter NA = Not Analyzed

pCi/L = picoCuries per liter

c = concentration is less than concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine Statistically Significant Levels (SSLs) over Groundwater Protection Standards.

4-digit numbers below parameter represent SW-846 analytical methods and 3-digit numbers represent Clean Water Act analytical methods.

TABLE 3. STATISTICAL BACKGROUND VALUES 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ZIMMER POWER STATION 121 - D BASIN MOSCOW, OHIO

ASSESSMENT MONITORING PROGRAM

Parameter	Statistical Background Value (UPL)			
40 C.F.R. Part 257 A	ppendix III			
Boron (mg/L)	0.38			
Calcium (mg/L)	200			
Chloride (mg/L)	72.87			
Fluoride (mg/L)	0.2			
рН (S.U.)	6.7 / 7.4			
Sulfate (mg/L)	129.2			
Total Dissolved Solids (mg/L)	695			

[O: RAB 12/25/19, C: KLT 12/26/19]

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

mg/L = milligrams per liter

S.U. = Standard Units

UPL = Upper Prediction Limit

TABLE 4.GROUNDWATER PROTECTION STANDARDS2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORTZIMMER POWER STATION121 - D BASINMOSCOW, OHIO

ASSESSMENT MONITORING PROGRAM

Parameter	Groundwater Protection Standard ¹
40 C.F.R. Part 25	7 Appendix IV
Antimony (mg/L)	0.006
Arsenic (mg/L)	0.010
Barium (mg/L)	2
Beryllium (mg/L)	0.004
Cadmium (mg/L)	0.005
Chromium (mg/L)	0.10
Cobalt (mg/L)	0.006
Fluoride (mg/L)	4
Lead (mg/L)	0.015
Lithium (mg/L)	0.040
Mercury (mg/L)	0.002
Molybdenum (mg/L)	0.10
Radium 226+228 (pCi/L)	5
Selenium (mg/L)	0.05
Thallium (mg/L)	0.002
[0:	RAB 12/25/19, C: KLT 12/26/19]

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

mg/L = milligrams per liter

pCi/L = picoCuries per liter

 $^1\mbox{Groundwater}$ Protection Standard is the higher of the Maximum Contaminant Level /

Health-Based Level or background.

FIGURES

BACKGROUND MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

CCR MONITORED UNIT

MONITORING WELL LOCATION MAP

FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

ZIMMER D BASIN **UNIT ID:121**

VISTRA CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

APPENDIX C – COMPLIANCE DOCUMENTS

APPENDIX C1 – MAP OF GROUNDWATER MONITORING WELL LOCATIONS

UPGRADIENT MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

CCR MONITORED UNIT

MONITORING WELL LOCATION MAP ZIMMER COAL PILE RUNOFF POND

FIGURE 1

O'BRIEN & GERE ENGINEERS, INC. A RAMBOLL COMPANY

UNIT ID:125

UPGRADIENT MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

CCR MONITORED UNIT

MONITORING WELL LOCATION MAP ZIMMER GYPSUM RECYCLING POND **UNIT ID:124**

FIGURE 1

O'BRIEN & GERE ENGINEERS, INC. A RAMBOLL COMPANY

UPGRADIENT MONITORING WELL LOCATION

- DOWNGRADIENT MONITORING WELL LOCATION
- CCR MONITORED UNIT

MONITORING WELL LOCATION MAP

FIGURE 1

O'BRIEN & GERE ENGINEERS, INC. A RAMBOLL COMPANY

ZIMMER D BASIN **UNIT ID:121**

VISTRA CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

APPENDIX C2 – WELL CONSTRUCTION DIAGRAMS AND DRILLING LOGS

PROJE COORD	CT Z	N. ST	er. 940 Floc	Pli W.	nat 5	20 20		L 	0G 	0F 11	WER SERVICE CON DRATION ERING LABORATORY BORING BORING NO. <u>7</u> ¹¹⁷ DATE <u>4-26-89</u> SITUBE CASING USED <u>512E (110)</u> BORING BEGUN <u>4-26-89</u> BORING COMPLETED GROUND FLEVATION 544	HEETC CORE NUO USED D 4-27-
			1:00								GROUND ELEVATION SILL REPERRED T FIELD PARTY Howcil - DAMST	1
			- <u>27</u> -			1	(* 					N
SAMPLE Number	SAM DEP IN F FROM	EET	PEN	ETRA	1 1 0 M	TOTAL LENGTH RECOVERY	%	DEPTH In Feet	GRAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILI
					-							
1	25	4.0	2	5	8	15"					Clay- Be- moist - med to Low plasticity	
										CL		
-					-			-				
2	7.5	9.0	3	5	8	18.				_	SAME AS 1	
										_		
					1			10-				
					<u> </u>							
3	125	14.0	3	4	5	18.					Sitt CIAt - multi-coloned Br med to how plasticity	
	1		i	1	1		!			CL		
				<u> </u>	-							
												-
4	17.5	19.0	3	4	5	18					SAME AS R	
								L'ere				
								20-		-		

	0					Α	EP (C 11	Ollar	WER SERVICE CORFORATION ERING LABORATORY	
COMPA	NY							L	0G	OF	BORING BORING NO. 717 DATE SI TYPE OF SAMPLES: SPT 3"TUBE CASING USED SIZE DBILLING M	
									_		BORING NO. Z DATE SI	HEET Z OF
COORD	INATES						-		-		TYPE OF SAMPLES: SPT 3" TUBE	_ CORE
Loca	TION OF	BORIN	G 1							1	Gasing Used Size Driceling w	00 0360
14/	RLEVE									{	BORING BEGUN BORING COMPLETED	100000000000000000000000000000000000000
TIME		<u>-</u>		_						1	GROUND ELEVATION REFERRED T	0
DATI			- 11.1		_				-	1	FIELD PARTY	Ric
	SAM	PLE	ST	ANDA	RD	>	800	DEPTH	r oe			
R R	DEP	тн	PEN	ETRA	TION	AL AL		DEPTH IN FEET	2	2	SOIL / ROCK	DRILLE
AMF	IN P	εετ	RES	5157A	NCE	CO NOT	0/		A A	5	IDENTIFICATION	NOTE
νž	FROM	то	6.	0 W 0	/ 6*		10	FEET	2 19	2		
		1		1								
								20_				
			1					2	1			
											tot q ~	
								- E	1			
5	22.5	24.0	2	3	4	19"					Clay- yellowish BR- moist To Wet- med TO Low PLASTICITY	
								E		-	wet- med TO Low PLASTICITY	
						-		÷		CL		
								=			Cottom 9"	
				-						-	Clay- GRAY- Wet- med to tous plasticity	
			ł					3			Low plasticity	
				-				-		-		
				1						cu		
								-		-		
1	27.5	200	2	3	3	18"					Elas Con I wet mad to	
9	×1.5	1.0	-	12	10	10				<u> </u>	ElAY- GAAJ- WET- med To how plasticity	
								2			For prasment	
-	i		1	1	1			- TE		12		
					1			1		-		
					Ī			1 3				
			I		1			30-				
				1	i	İ		=				
			Ì	ļ	<u>i</u>	I		<u> </u>]			
	ŀ	1			1			_				
_7	325	34.0	1	2	3	18"				-	SAME AS 6	
								1 3				
	M		£	<u> </u>	<u>.</u>	<u>.</u>		-		<u> </u>		
			İ.	ł	ĺ –	1				-		
			1	1	1							
					-							9
			1		1			3				
	İ		1	<u>.</u>						-		
8	37,5	340	20	26	12	16"		1 3			Spard + Gonvel- GRAY- RA-	
u_	serve .		1	1 mg	T	1		1 1			SAND + GRAVE - GRAJ-BA- SATURATEd - QUARTZ-ROUNDED 1/2"MALSIER" uf Fines	
								. 3			1/2"MALSize - ul Finc. (
			1		1						a contract of the second	
						1			1	61		
				1	1			1 -				
		3.25 H						10-				
	нж с	ASING	ADVAN	CER 4	F			1				
	NQ	CORE F	lock									
		CASING			3"	1						

FORM Nev. I	CE-5 /87	201			AME	RICA					WER SERVICE CORPORATION	
Joe N	o										ERING LABORATORY	
COMPA	NY											
											BORING NO. Z 117 DATE TYPE OF SAMPLES: SPT3" TUBE	SHEET JOF
	INATES					-	100				CASING USED SIZE DRILLING	CURE
LOCA	TION OF	BORIN	G 1								BORING BEGUN BORING COMPLET	ED
	ER LEVE	L									GROUND ELEVATION REFERRED	то
TIME									_			
					STITE -						FIELD PARTY	Rig
w ec	5 A M	-		ANDA	RD	H H	RQD	OEPTH	r oe	Ś	SOIL / ROCK	DRILLI
SAMPLE Number	IN F	тн ЕЕТ			NCE	DTA DNG	0/	DEPTH In Feet	H L	U S		NOTE
N SA	FRON		81		/ 6"	E - J	70	FEET	6 8	∍	I DENTITION TON	NOTE
		1	1	T	1							
						1		40_				
								1				
									ŀ			
9	42.5	440	10	15	15	12"		· 3	ŀ	-	SAND- BR- QUANTZ- Moisi	
	160	44.0	10	12	10	1				_	ARO- DR- FYSHIN E MOISI	
								2		SW		
								-				
						<u> </u>						
								Ξ	L			
									ł			
								Ξ	F			
			1		1				e.		SAND. BR- QUART - SATURA	tr.d
10	47.5	44,0	8	12	17	12"					Corried Con Contract Street	v c e
					1			Ξ				
									4	sp		
				1				-	-			
									ŀ	-		
	- 12 			I	l.			50-	ľ			
			1		1							-
			1		i				Ē		1	
		-			Ì			E			SANd + GARYEL- BA- SAFURATES	4
μ	52.5	540	15	17	10	14			H	_	CUARTZ - Rounded - 1 MAX SIZ	E E
	l,		ļ				l	\$ 	ŀ		QUARTZ - Rounded - 1"MAX Siz u/ FINES - STRONG REACTION IN 14CL	1
	1	1	1	1	\$					GM	p	
									Ľ			
	1		1	1				-	ſ			
								mutuu				
									-			18
	i			<u> </u>					ŀ			
12	57.5	59.0	12	14	16	15"		1 miliur	ł		SAND- BR- SATURATEd.	
	21.0	- and	1	-	1				ľ		QUARTZ- TRACE OF POR GRAVE	1
											STRONG REALTION TO HEL	
								=	Ļ	SP		
								F F	-	-		
			1	1	1			F				
	6"+	1 3.25 H	I SA	1	I	-	L	60	ł			
		CASING		CER 4	"							
		CORE F										
		CASING			"	1						

Compa Proje	NY								0G 	OF	BORING BORING NO. 2117 DATE TYPE OF SAMPLES: SPT3"TUBE	SHEET 4 OF
									-		CASING USED SIZE DRILLING	CORE
LOCA	TION OF	BORING	3:								BORING BEGUN BORING COMPLET	ED
WATE	RLEVE	iL									GROUND ELEVATION REFERRED	TO
TIME							_					
DATE			*****		*****						FIELD PARTY	Ric
SAMPLE Number	DEP IN F	PLE TH EET TO	ST PEN RES BL	ANDAI ETRAT	RD T10N NCE / 6	TOTAL LENGTH Recovery	rqd %	DEPTH IN FEET	GRAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILL
				1					Ļ	_		
					-			40-	ł			
								Ξ	Ì			
								. 3				
13	62.5	64.0	16	17	11	13					GRAVELLY SUITY SAND- BR-	
								E	H		GRAVELLY SITTY SAND- BR- GATURATEd- QUARTZ - 34" MAS SIZE - STRUM REALTION	1
			-	1				Ξ	t		to HeL	
					-			1 3				
				1	-			1 =		_		
					I			Ξ				
								-				
14	67,5	64.0	29	39	31	16			F	_	SANd+ GRAJE - BA. SATUART	ed
				į.		0			t	-	QUARTZ- 1"MAN Size - up FINCS - STRUNG REACTION	
						1		=			TO HEL	
					ļ			1 3		_		
					1 12			3	ŀ			
<u> </u>			i	1	1			70-	F			1
			L									
10		17.1-	1.	22	11-	a'		=				
15	72,5	74,0	12	18	40	0		_	ŀ		CLAYEY SANd + GRAVET BA. SATURATEd - 1"MAX Size	
l i				6	1				ł		Rounded - QUARTZ-STRONG	
		1	i	l l	1	F		-	Ī	-	REACTION TO NEL	
					-				ļ	40		
				1				3	ł			
			1							_		÷.
								_				
11	har-	nan	11	20	20	9"		Ξ	ł		C III	
16	TIS.	79.D	19	20	38	14		÷.	ŀ		SAME AS 15	
					1			4		_		
I 0		1 3.25 H		1	-		-	80-				

ice No Compai). NY						5			OWER SERVICE CONFORATION IEERING LABORATORY F BORING BORING NO. Z-117 BORING NO. Z-117 DATE	۳.
COORDI	NATES -								_	TYPE OF SAMPLES: SPT3 TUBE CORE CASING USED SIZE DRILLING MUD USED	
LOCAT	ION OF	BORING	5:							BORING BEGUN BORING COMPLETED	
	RLEVE	<u> </u>								GROUND ELEVATION REFERRED TO	
TIME		<u> </u>	_						-		D
DATE		_								FIELD PARTYRIG	<u></u>
UATE								-			-
SAMPLE Vumber	SAM DEP IN F	T N E E T	ST PEN RES	ANDA ETRA SISTA	RD TION NCE	TOTAL LENGTH Recovery	RQ D %	DEPTH IN FEET	RAPH LOG		-
	FROM	то	81	0 ₩	/ 6"	-					-
	1								-		
			-		-			80-	-		
					1						
								- 6			
11	82.5	Gila	0	11	12	11"				GRAVILLY SAND. BR. SATURATEd	
11	Dais	840	10	111_	15					QUARTE 14" MAX Sizt - Rounded	
				1				3		uf FINES + BIACIC LISMITE	_
_			1					-		STRONG REACTION TO HEL	
										STRONG REACTION TO NEE	
			-								
						-					
19	87.5	800	13	11	14	13"		1 3		GRAVELLY SAND - BR. SATURATEd	
10	01.5	010	IA	11	IT	10	1	1 3		Quarte Royaded - 314" max Site	
										QUARTE - Kounded - Hu" MAR SIZE UJ FINCS - STRONG REALTION TO MEL	
	1			1	1	1				TOMEL	
		1						1 3			
			1		1	1		1 3			_
	1				Į.			1			
		1	1		1		1		1 E		
					1			1 3	1 [
	l	1	1		1	1		1 :	1 [
				-					1 E	Stopped Nole- 89,9 AWd	
	1				1	1				STOpped Nole - 89,9 AND INSTAILED Z'OB. Well	
i		!		!	<u>1</u>	1	!	1 3			_
	1	1	1	i	1	1	1		1 L		_
		1			-						
				1					1		
					-					ŧ	
					-				1 1		
			-		-	1		4 4	1		
							1		4 4		
			-			-		4 -4	4 1		
									4 1		-
								4 4	1 -		
	1			1	Ĩ				4 1		
		1	1	1					4 1		
		3.25			. "			-			
		CASING		NCER	4			-			
		CORE			3"				1		-

n ORÉG (CE-5				۵MFI	(. RICAN	I FI	ECTR	IC	PO	NER SERVICE CORPORATION
EV. 1.	CE-5 /87	3		1		AE	EP (CIVIL	EN	GINE	ERING LABORATORY
OB NO	D	P						L	OG	OF	
ROJE		nma	R	PIP	NT	-					BORING NO. 2119 DATE 5-2-84 SHEET 1 OF 5
		N-57									TYPE OF SANPLES: SPT ν 3 TUBE CORE
LOCA	TION OF	BORING	رمر : ف	1	1 .],	CASING USED SIZE DRILLING MUD USED BORING BEGUN 5-2-89 BORING COMPLETED 5-2-89
141		. 1.	Floo	d fl	+100	MON	lar	ung_	we	41	BORING BEGUN <u>5-2-89</u> BORING COMPLETED <u>5-2-89</u> GROUND ELEVATION <u>509.9</u> REFERRED TO DATUM
TIME	RLEVE		2.0	DMA		10,0	M			1	DATUM
DATE		5	2-8	9	ئى	- 3 - 8	9	cing.]	FIELD PARTY HOWCHI - DARST RIG 75
w e	SAM	PLE	ST		RD	그르십	AGD	DEPTH IN FEET	Log	5	SOIL / ROCK DRILLER'S
SAMPLE Number	IN F	EET	RES	ISTA	NCE	COV	0/	111	H	S S	IDENTIFICATION NOTES
No SA	FROM	то	80	0 ₩	/ 6"	R L T	/0	FEET	6 R	>	
										-	
			-								
_				_					1		
			1					649		-	
			1								CIAY- BR- moist - med to
1	2.5	4.0	6	7	9	14"					CIAY- BR- moist - med to
		1									
_										CL	
								-	1		
-			-						1		
									1		
			1		1				1	-	
								-			
2	7.5	9.0	3	4	4	12"			Ę		SAME AS I WY TRACE DR
	1	The second		1	1				3		V.Fine Smud
_			ļ					2	1	-	
				1					1	-	
				<u> </u>	1			10	E		
			-								
		ĺ							1		
					1					-	
3	17.5	14.0	3	4	6	10''			3	-	SAMP AS I up TAACE OF
	1010	1	i	1	1				Ŧ		Virie Sand
		1		1				0			
								-	E	-	
				1					Ŧ	-	
	1			1	1				1		
				-		-		2		-	
,		1 m	1 2	1	6	110			3	-	
t	pro	19.0	5	2	10	16"		-		-	Same AR I up TRALE OF
									È		
					1						
_	- 11		L	L	1			20-	1	-	
		3.25 F Casing			L."	L		1000			8
		CASING Core F		UER 4	•			1			
		CASING	_		3"						
	SW	CASING		•	5"						RECORDER

	KY .							L	OG	OF	BORING	
PROJEC	т								_		BORING NO. Z-119 DATE S TYPE OF SANPLES: SPT 3"TUBE	HEET <u>2</u> OF
											TYPE OF SANPLES: SPT 3" TUBE	CORE
LOCAT	ION OF	BORING	:							1	CASING USED SIZE DRILLING P BORING BEGUN BORING COMPLETE	
WATE	R LEVE									1	GROUND ELEVATION REFERRED	
TIME									-	1		(
DATE											FIELD PARTY	Rig
SAMPLE Number	SAM DEP IN F	тн	PEN	ANDA ETRA ISTAJ	R D T 1 O N N C E	TOTAL LENGTH RECOVERY	RQD	DEPTH IN FEET	APH LOG	s C S	SOIL / ROCK IDENTIFICATION	DRILLE
ŝź	FROM	то	9 L	ow	/ 6"		/0	PEET	u u	2		
										-		
					-			20-	1	-		
								-	1			
					1				1			
								-	1	-		
	n <	24.0	2	1	7	16"			1	-	alada muit color has- maisi	-
5	aria_	24.0	0	9	1	10		1 3		-	Clift - Muiti-colon Bas- moisi med. to how plasticity	
					1				1			
									3	CL		
								1 3				
										-		
					-	1	-			-		
									1			
				1	1			1 3				
6	27.5	29,0	4	5	7	16"	-		1	_	SAME AS 5	
			İ						3	-		
					1					-		
				1	1			30 -	3			
		1	1	1				30				
					1	<u> </u>			1			
		1			1				1	1		
					-					-		
14	225	34,0	2	4	5	64	1			\vdash	Spady Clat - Multi-color BA	dis
	<u></u>	I I	1	Ī	1	T	1	1 7	1		SAN dy Clay - Multi-colon BA maist w/ DR. Ba. Sand Lan	k
		I							1			
			1	1					1	CL		
					-			4 4		-		
					1				F	1-		
-	i	1	-	1		1	1	1 -	1	-		
									1			
								1 7	1		Snady Clay- GRAY- moist ro wer up VFine GAAin Smad Long	
8	37,5	39.0	1	2	3	16"				-	wet up VFine GARIN SAND	
									-	-	Lons	
					-					er		
1								1.	-	1º0		
	a !!	3.25 H	150					40-	1			

Jos N	CE-5 /87 0					A	EP (CIVIL	EN	GINE	VER SERVICE CORPORATION	
	NY									OF	BORING	
											BORING NO. 2114. DATE	SHEET _3_OF 5
_		BORING	_	-					_	1	CASING USED SIZE DRILL	ING MUD USED
LOCA	TION OF	BORING								4	BORING BEGUN BORING COMP	LETED
	ER LEVE	<u> </u>								{	GROUND ELEVATION REFER	
DAT							-			1	FIELD PARTY	DATUM
UAT										1		////
we	SAM	PLE			RD	- -	RQD	DEPTH	8	5	SOIL / ROCK	DRILLER'S
APL E	DEP			ETRA	T10 N	NGT	01	DEPTH IN FEET	Ŧ	U s		
SAMPLI	IN F		1	0.	NC2	TO LEI RECI	%	FEET	A A B	5	IDENTIFICATION	NOTES
	FROM	10		1	1			-	-			
-								40 _				
		11 T						. 3				
									1			
					1						CLAYEY SAND- GAMY SATIN	Arod
9	42,5	44.0	2	2	3	16"					us on mic marchial woo	41
								1 3	-		CLAYEY SAND- GARY SATUR UN ORYANIC MATCHIAI YUOO MIXTURE	/
			-							-		
										56		
					1							
										_		
					-			-			- 1	
10	175	49.0	1	1	13	16 "		-			Sand + GAAUEL- BR- SATUR QUANTZ - 1/2"MAX Sizt- Fines	WRC
10	The	77.0	1	1	1	1-			-		Fines	/
								. 3	1			
					Ĩ				1	5		
					1			50 -		-		
					Ĩ			-	1	-		
		1	1	1	i	1		1 :				
					1							
			1,	1-	1	0						
//	52.5	54,0	6	3	10	0						
								-				
										-		
					1						STARTED WAShing out Augo	hrs
	i			1		1		-				
					1			1 2				
						04						
12	675	59.0	6	2	9	8"					SAND- BR- QUALTE- SATUR.	+ Ted
		100			1						TRACE OF PERGANULI-	112
					1					SP		
								10		Ē		
		3.25 H						60-	1			
		CASING		CER 4	+ "	1.						
		CORE F	OCK		3"		-		1	<u> </u>		
		CASING			5 5			1			RECORDER	

Jõs No		*2				A	EP	CIVIL	EN	GINE	WER SERVICE CORPORATION ERING LABORATORY BORING	
COMPA	NY						8			Ur		. (
									-		BORING NO. Z-119 JATE S TYPE OF SAMPLES: SPT 3" TUBE	HEET TOP
COORDI	NATES										TYPE OF SAMPLES: SPT 3 TUBE	CORE
Loca		BORIN	Gı							1	CASING USED SIZE DRILLING N BORING BEGUN BORING COMPLETE	OD USED
WATE	RLEVE		111.00							1	GROUND ELEVATION REFERRED T	
TIME		<u> </u>								1		···
DATE					11.010					1	FIELD PARTY	Ric
									-	1		
	SAM	PLE	1 ST	ANDA	RD	×	ROD	DEPTH	8	1		
	SAM DEP IN F	тн		ETRA	T10N	LE R		DEPTH IN FEET	1	S U	SOIL / ROCK	DRILLE
A M P	IN P	EET	RES	SISTA	NCE	COL OT	0/	17	A A	S	IDENTIFICATION	NOTE
νž	FRON	то	BL	ow	/ 6"	5-3	10	FEET	8	2		
		1	1	1	1	1						
								60 -				
								=				
								9				
								. 3				
13	12.5	64.0	19	13	19	16"		-			SAND - BA- SATURATED	
											med to Fine GRAM - Moder	re
		ļ								-	REACTION TO NEL	
										54		
								- 4				
											· · · · · · · · · · · · · · · · · · ·	
				-								
			1									
				-						-		
14	115	69.0	14	22	17	6.					1 GARUS	1
4	QUIS	67.0	1	1 .	1	-					Spad- BR. SATURATEd	
										-	100 % Fine GRAIN STRONG	i.
			1		i	1					REACTION TO HEL	
			1		i.							
		1	1	1		1		10 -		SP		
					l	1		! _				
		i				1						
					ļ							
			alse					=				
15	12.5	74.0	13	14	14	12					SAME AL 14	
			Î					3				
						1		E				
				격				- multure			new and the second second second second second second second second second second second second second second s	
												L
							-				the second second second second second second second second second second second second second second second s	
						1		=				
								1				
	ade	ma	1	01	20			Ξ			C	
Ke	77.5	79.0	17	179	82	14				-	SAME AS 14 GRAY	
				1								
					-			-				

80 -

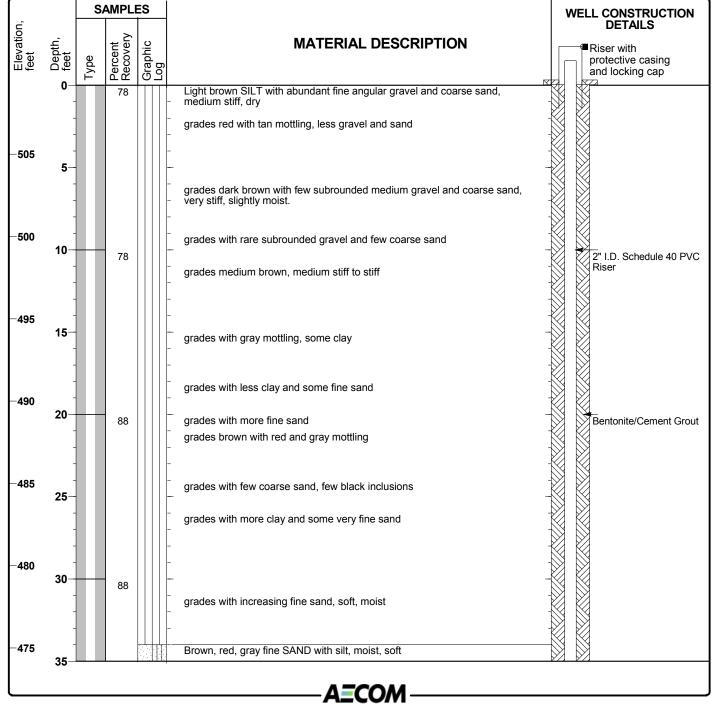
RECORDER

6" x 3.25 H SA

NQ CORE ROCK

NW CASING SW CASING

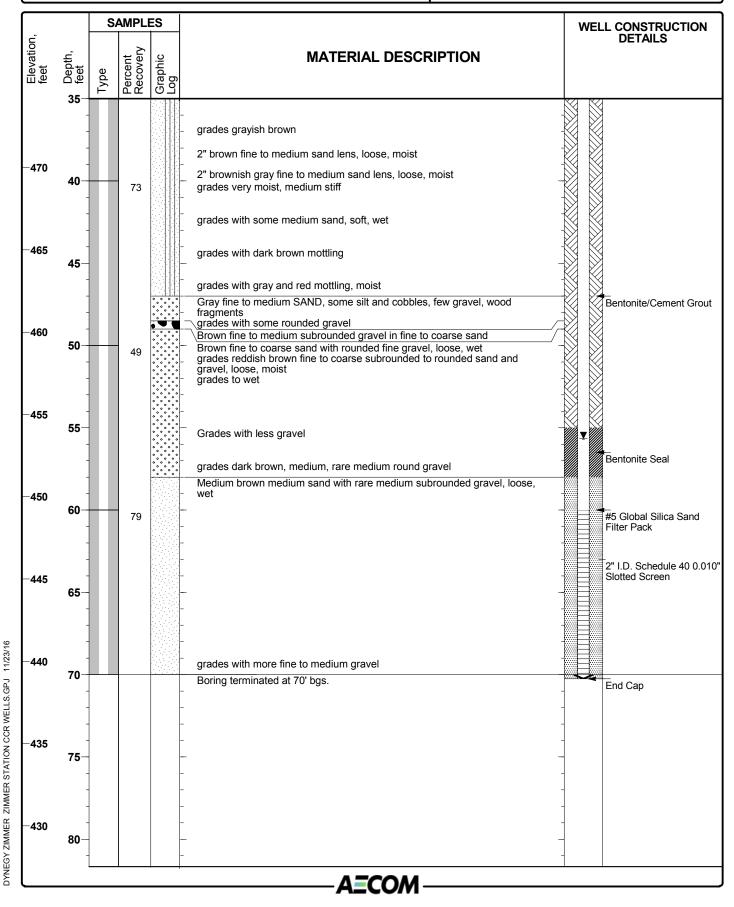
HW CASING ADVANCER 4"


3" 6"

OMPAI	NY					-		C	~ ~		BORING		_
									_		BORING NO. ZILY DATE		SHEET SHEET
OOROI	NATES				_				_		TYPE OF SAMPLES: SPT	3" TUBE	CORE
LOCAT	TION OF	BORING	:]	BORING NO. 2119 DATE TYPE OF SAMPLES: SPT CASING USED S	DRILLING	NUD USED
	and the second second									-	BONING BEGON	BURING COMPLET	ED
_	RLEVE	L								1	GROUND ELEVATION	REPERNED	TO
DATE										1	FIELD PARTY		DATO
UATE										1			
	-	PLE	ST	ANDA	RD	- 2	RQD	DEPTH	8	0		0.0.14	
9 E B	SAM DEP IN F FRON	тн		ETRA	r 10 N	N C N		DEPTH IN FEET	Ŧ	0.	SOIL / R		DRILLER'S
AM	IN F	EET		ISTAI	NCE	ECO.	%		d V	N N	IDENTIFICA	TION	NOTES
νz	FROM	TO	BL	ow .	/ 6"		10		Ű	Ľ			
					-			80 -		-			
								1 3		-			
						-		1 2		-			
	6												
-					1						SAND- GARY. Sr. QUARTZ -STRONG TO HEL. MED TO	+TURHIED	
7	825	840	9	13	14	14		<u> </u>			QUARTZ -STROM	REACTION	
•	2:112						1	1 1			To Hel. med to	Fime GARIN	
										SP			
								1					
								1 3		-			
0						-							
										-			
								4 3		-			
10							1	1 3		<u> </u>			
18	187.5	89.0	13	13	13	12					SAME AS 17		
							1		1				
		-		-		-				-			
		1			ł		1	3		-			
				-		-		90-	1	-			
	1					2	ĺ			-			
				i		-	† –	1 -	į.	-			
								1 -	1	-			
					1	1	1		1	-			
0	ONE	94.0	in	12	12	16	ļ		-	-	Same #S 17		
7	74.0	1	10	1	1	1	1	1 7					
		1	0	1	1			2					
		1	1		1				1				
] =					
	1							1 2					*/
					!				3				
				Ì			1	1					
								<u> </u>	1				
									1		Stopped Augens	94.9 +	
											installed well		
				1				1 2					
		ļ			<u> </u>			1 3					
				ł	i		1	1 3	1				
		l			1		1	-	1				
		3.25 H							ł				
	I HW (CASING	ADVAN	CER 4	F	1		1	1	1	1		
		CORE F						4	1	1			

Monitoring Well MW-16

Sheet 1 of 2


Date(s) Drilled	8/2/16 - 8/3	8/16		Logged By	J. Alten	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor	Frontz Drilling	Total Depth of Borehole	70.0 feet bgs
Date of Ground Measurement	^{lwater} 8/9/16			Sampler Type	Sonic Sleeve	Surface Elevation	509.19 feet, msl
Depth to Groundwater	55.65 ft bg	s		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.66 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica S	and		Well Completion at Ground Sur		rotective casing.	
Comments				•			

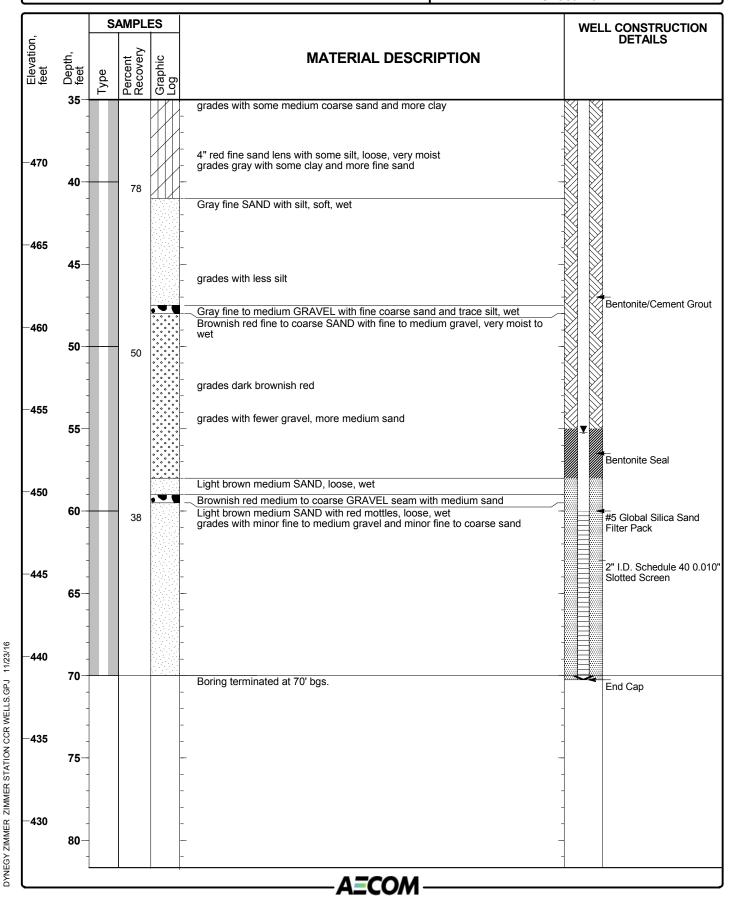
DYNEGY ZIMMER ZIMMER STATION CCR WELLS.GPJ 11/23/16

Monitoring Well MW-16

Sheet 2 of 2

Monitoring Well MW-17

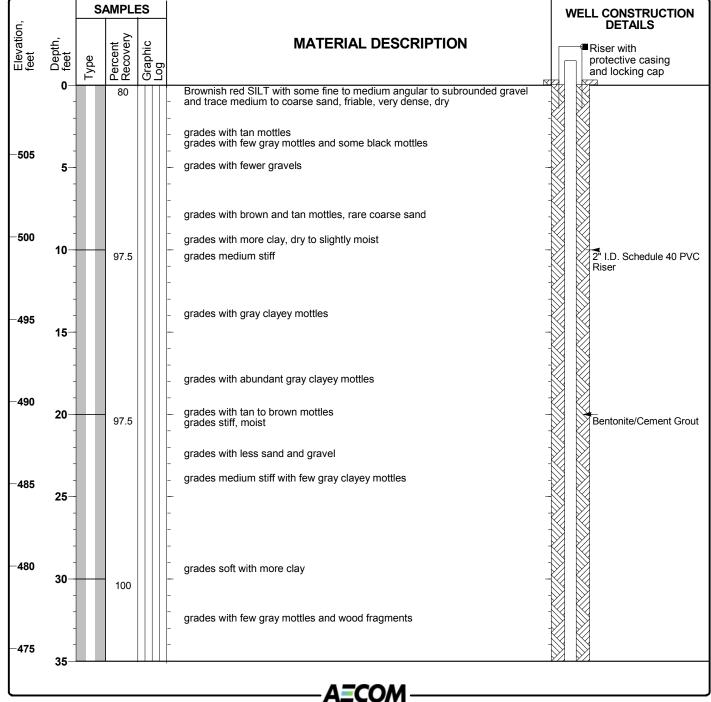
Sheet 1 of 2


Date(s) Drilled	8/3/16			Logged By	J. Alten	Checked By	Mike Wagner		
Drilling Method	Rotosonic			Drilling Contractor	Frontz Drilling	Total Depth of Borehole	70.0 feet bgs		
Date of Ground Measurement	^{lwater} 8/9/16			Sampler Type	Sonic Sleeve	Surface Elevation	508.83 feet, msl		
Depth to Groundwater	55.22 ft bg	s		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.25 feet, msl		
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch		
Type of Sand Pack	#5 Silica S	and		Well Completion at Ground Surface Riser, With locking cap and protective casing.					
Comments									

'n,		S	AMPL	ES		WELL CONSTRUCTION DETAILS
Elevation, feet	Depth, feet	Type	Percent Recovery	Graphic Log	MATERIAL DESCRIPTION	Riser with protective casing and locking cap
	0-		83		Medium brown to reddish brown friable SILT with some angular gravel, dry	
	-			-	grades with minor fine sand and more subrounded gravel, less angular gravel	
505	5			-	grades stiff with gray mottles and some clay, less sand	
	-			-		
500					grades with more rounded fine gravel	
-	10-				grades very stiff, no gray mottles	
	-		90		Medium brown to gray clayey SILT, with few fine gravel, stiff to very stiff, moist	2" I.D. Schedule 40 PV Riser
	-				noist	
495	-				grades with abundant clay	
	15-				-	
	-				grades with minor coarse sand	
	-			ИI		
490	-				grades with black inclusions, and some rounded fine gravel, some coarse sand	
	20-		96		grades with no gravel, medium stiff	Bentonite/Cement Gro
	-					
485	25-				grades with fewer gray mottles, less clay, more black inclusions, stiff	
	-			-	and a madium stiff to soft trace alow minor as and	
	-				grades medium stiff to soft, trace clay, minor coarse sand	
480	-			Wŀ	grades very soft, very moist	
	30		93		grades very light brown to gray silt, some reddish mottles, soft to medium stiff	
	-			1H-	grades with some fine sand, less clay	
475	-			n//	grades with more fine sand	
	35			n/r	2" reddish-brown silty sand seam, loose, moist	

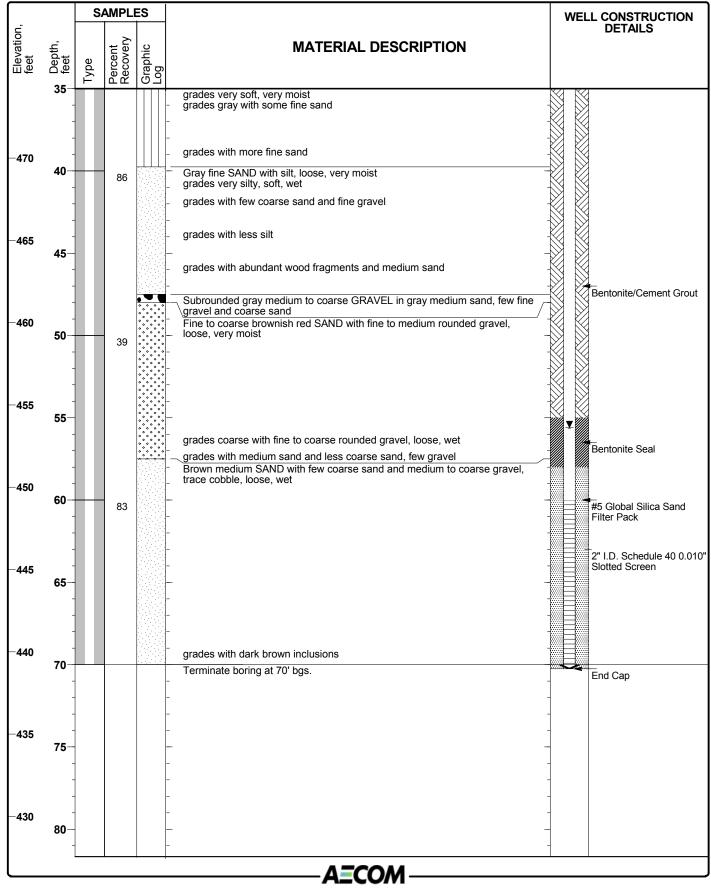
DYNEGY ZIMMER ZIMMER STATION CCR WELLS.GPJ 11/23/16

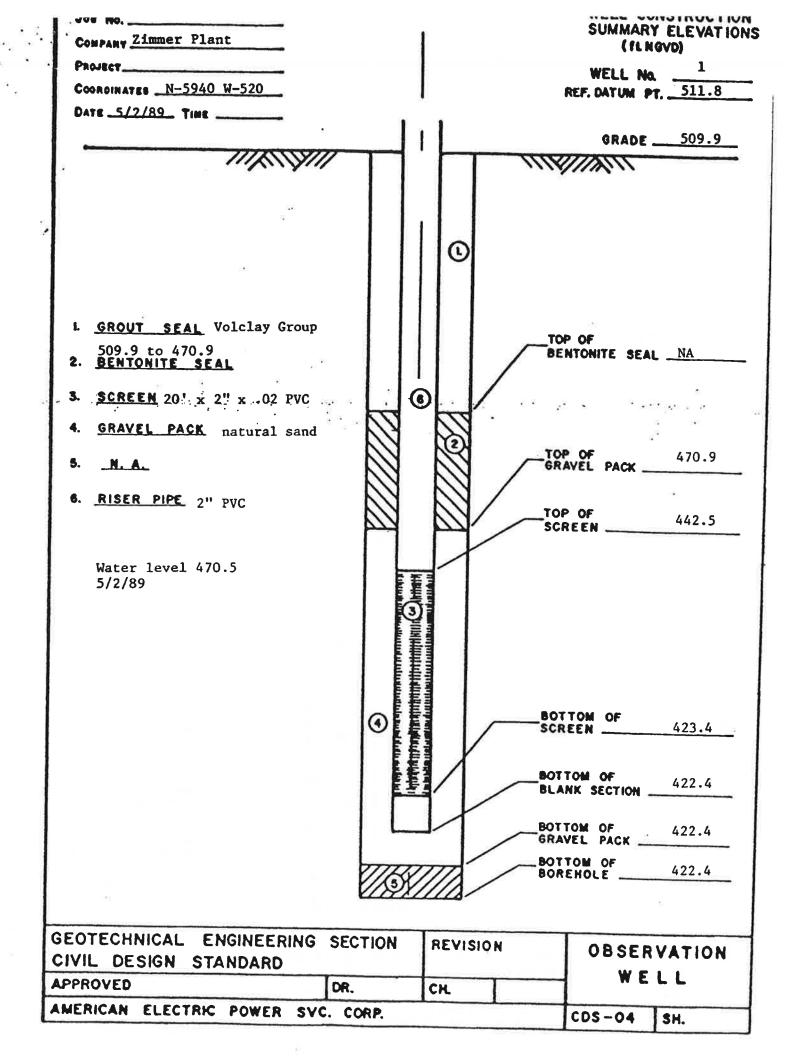
Monitoring Well MW-17

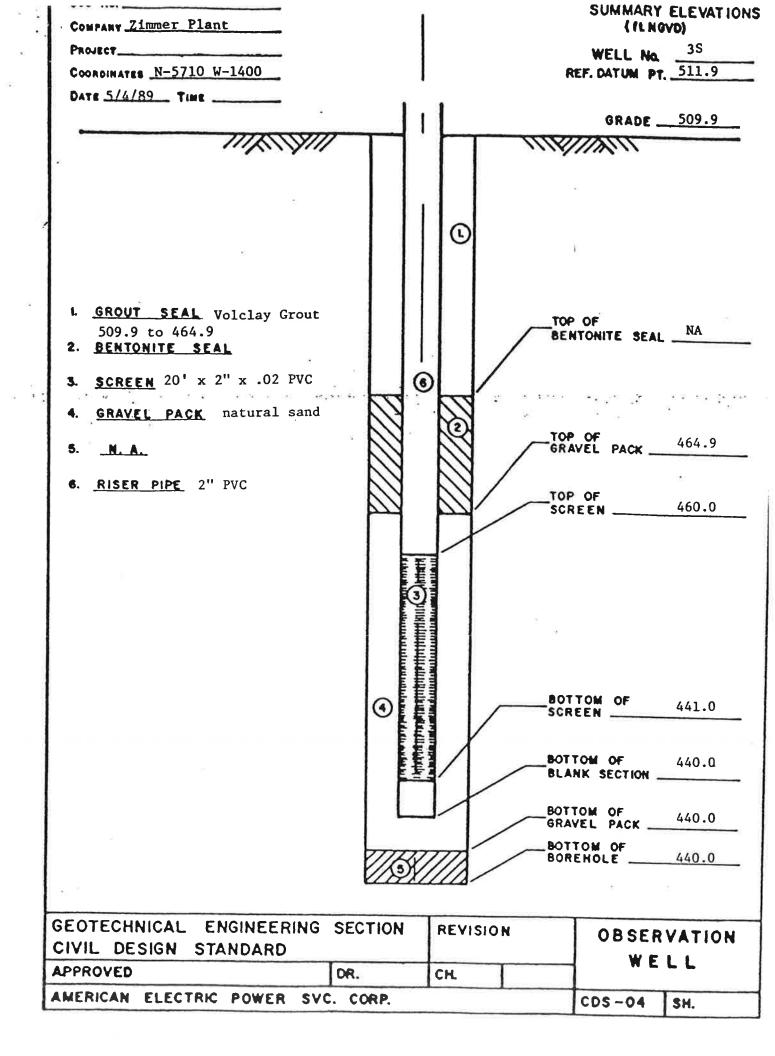

Sheet 2 of 2

Monitoring Well MW-18

Sheet 1 of 2


Date(s) Drilled	8/4/16			Logged J By	. Alten	Checked By	Mike Wagner		
Drilling Method	Rotosonic			Drilling Contractor F	rontz Drilling	Total Depth of Borehole	70.0 feet bgs		
Date of Ground Measurement	^{lwater} 8/9/16			Sampler S	Sonic Sleeve	Surface Elevation	509.22 feet, msl		
Depth to Groundwater	55.59 ft bg	s		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.63 feet, msl		
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch		
Type of Sand Pack	#5 Silica S	and		Well Completion at Ground Surface Riser, With locking cap and protective casing.					
Comments									


DYNEGY ZIMMER ZIMMER STATION CCR WELLS.GPJ 11/23/16


Monitoring Well MW-18

Sheet 2 of 2

DYNEGY ZIMMER ZIMMER STATION CCR WELLS.GPJ 11/23/16

Project: Dynegy

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-7A Sheet 1 of 2

Date(s) Drilled	12/1/15			Logged E	Becky Smolenski	Checked By	Mike Wagner			
Drilling Method	Rotosonic			Drilling Contractor F	rontz Drilling	Total Depth of Borehole	64.0 feet			
Date of Ground Measurement	^{twater} 12/18/1	5		Sampler S	Sonic Sleeve	Surface Elevation	509.53 feet, msl			
Depth to Groundwater	54.32 ft bg	S		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.79 feet, msl			
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-inch			
Type of Sand Pack	#5 Silica S	and		Well Completion at Ground Surface Riser, With locking cap and protective casing.						
Comments										

DYNEGY ZIMMER ZIMMER STATION CCR WELLS GPJ 4/19/16

Project: Dynegy

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-7A

Sheet 2 of 2

DYNEGY ZIMMER ZIMMER STATION CCR WELLS GPJ 4/19/16

COMPA Proje Coord	CT Z	N-J	270	Pla E-J	WT 130		•		_	0.	EERING LABORATORY BORING BORING NO. 2124 DATE 4-20-89 SH TYPE OF SAMPLES: SPT 3" TUBE CASING USED SIZE DRILLING M	EETO
LOCA WATE TIME	TION OF	EL	Floo 8.5	s pla	in ,	mon	ITAR	inc _u a	Ils		BORING BEGUN <u>4-20-89</u> BORING COMPLETED GROUND ELEVATION <u>SH.1</u> REFERRED T	4-25-
DAT			-20.	-89					Ì		FIELD PARTY Howell - DARST	Rig
SAMPLE Number	0 E I IN 1	TO	PEN	ANDA ETRA SISTA OW	RD TION NCE / 6"	TOTAL LENGTH RECOVERY	R 9 D	DEPTH IN FEET	GRAPH LOG	USCS	SOIL / ROCK IDENTIFICATION	DRILL
1	30	4.5	4	5	5	0		- The second			Lime store Road base	
								huh				
								- The second sec				
2	8.0	9.5	20	29	42	12"				sP	SAWD- BA- MOIST - QUARTE STRONG REACTION TO HOL	
								10 -				
3	13,0	14.5	16	39	5%	14"					CLAYEX SAND BA. MOIST QUARTZ- TRACE OF GRAVEL	
								and and an	6 11	sr.	QUARTZ- TRACE OF GRAVEL STRONG REACTION TO HOL	
								- Turn				1
4	18.0	19.5	17	29	45	16"		lan lan			SAN d- BR- MUIST - STRONG LEACTUR TO HEL- 90%0 FING GRAIN - QUARTZ	
		121		1	İ					sp	GUARIC	

PROJEC	ст						1.5.7			OF	BORING BORING NO. 2-124 DATES TYPE OF SAMPLES: SPT3"TUBE	HEET <u>2</u> of
		BORING								1	CASING USED SIZE DRILLING DRING BEGUN BORING COMPLETE	NUD USED
WATE	RLEVE	L								1	GROUND ELEVATION REFERRED	το
TIME	_											C
DATE											FIELD PARTY	Rig
SAMPLE Number	SAM DEP IN F FRON	PLE TH EET TO	ST PEN RES BL	ANDA ETRA IISTAI	RD T10N NCE / 6	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPH LOG	r s c s	SOIL / ROCK IDENTIFICATION	DRILLE
								20				
								1				
										-		
ব	23.0	24.5	12	19	35	15"					Sand- BR- moist. STRong	
								Ξ			Sound - BR- MOIST. STRONG REMETION TO HEL QUARTZ 80% Fine GRAIN	
										-	80% FIRE GRAIN	
								9		8		
								Ξ				
			59			. 11						
6	28.0	29.5	12.4			6"				-	SANd- BR. SATURATEd -	
										-	QUARTZ W/3 BLOKEN Lime STON FRAG- STRONG REACTION TO HEL-	
					1				1		TO Heh-	
					1			30		SP		
			ļ 		1					X		
		1			1	1		ĺ				
			ļ							-		
7	390	34.5	18	15	21	14"				-	Charle Ba- mark Fe med to	
1	00,0	1	i	1	1	1		3	1		CIAY- BR- MOIST - med to	
			ļ		ļ						, ,	
				ĺ					1	a		
					1					-		
			<u> </u>					_				
								-		-		
					-					-		
8	28.0	39.5	7	9	12	16"				_	SHARE AS - 7 TRACE OF	
					1					-	V-Fine SANd	
			1		1					-		
								-				
		3.25 H Casing						40-				

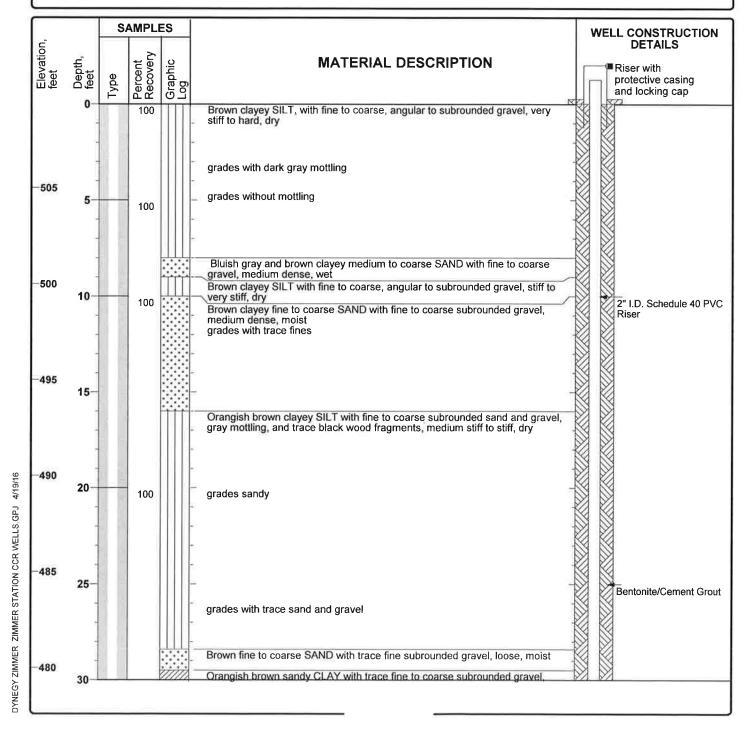
FORM Rev. I	CE-5 /87		٠.		AME						WER SERVICE CORPORATION	
Jon N	o										ERING LABORATORY	
											BORING NO. Z-124 DATE	SHEET 3 OF T
											TYPE OF SAMPLES: SPT 3" TUBE	CORE
LOCA	TION OF	BORING	. :					· · · ·	с. -	1	CASING USED SIZE DRILLING BORING BEGUN BORING COMPLET	
WAT	ER LEVE	.									GROUND ELEVATION REFERRED	то
TIM										1		DATUM
DAT	ε									1	FIELD PARTY	Rig
w e	5 A M	PLE		ANDA	RO	н ж Х	RQD	OEPTH	LOG	9	SOIL / ROCK	DRILLER'S
SAMPLE Number	DEP IN F			ETRA: SISTAI	NCE	OTA ENGI	0/	DEPTH IN FEET	H	s c	IDENTIFICATION	NOTES
SN	FRON	το	80	0 .	/ 6-		/0	PÉET	3	2		
										<u> </u>		
							1	40-		<u> </u>		
						-						
								. 3			109-6	
							-		4		Alla la Ra- i Francisca I and	
9	43.0	44.5	5	6	8	16'`			1		CIA+ BR- WET- med to Low PLASTICITY	4
<u> </u>				-					1		First Kirp	
				ļ				-	-	CL	-	
									3		Bottom 10"	
										-	CAYEN SAND- BA- SARAAR 100 % Fine GRAM. QUARTZ	4
									1			
								3	1	sc		ă
									1			
10	48,0	49.5	5	10	16	18"			-		Clayey SANd - BR- SATURA to	4
	1				I			1	1		QUANTZ	
										SC		
1					ł				1	PC		
1	1		1					30				
				1	1 4				2	-		
									1	-		
			1	-	1	1			1			
11	\$3,0	54.5	12	15	15	164			1		JAND- BR- SATURATED	
İ			l l	İ	l				-		QUARTZ - med To Fine Germ	
<u> </u>				-						SP		
									1			
												5
			-	<u> </u>	+			-	1	-		
									1			
											SANd- BR- QUARTZ - SATUR.	ared
12	58.0	59.5	12	15	23	15		-		-	WY TRACE OF PEAGAAJEI	
										Sw		
<u> </u>	1		-		1							
-		1	1					60-	1			
		3.25 H Casing										
		CASING . Core R		LER 9	,							
-		CASING			5"							
	sw	CASING		e	5"						RECORDER	

JOS N	lo			-		• •			00	0	EERING LABORATORY	
								L	.06	01	BORING BORING NO. 2-12-4 DATES TYPE OF SAMPLES: SPT3"TUBE CASING USEDSIZEDRULLING	
PROJE	CT						-		_		BORING NO. TO DATE S	HEET 4 OF
					-					e 8	CASING USED STE	CORE
LOCA	TION O	F BORIN	G:								CASING USED SIZE DRILLING I BORING BEGUN BORING COMPLETE	WUD USED
WATI	ER LEV	e.								1	GROUND ELEVATION REFERRED	TO
TIME												
DATI	2]	FIELD PARTY	Rig
	1	PLE	1.,			1.		1	1			
SAMPLE Number	0 6	РТН	1		TION	L H H	RGD	DEPTH IN FEET	l °	0	SOIL / ROCK	DRILLE
A N	111 1	EET	RE	SISTA	NCE	ENG COV	0/2	IN	1 H	5	IDENTIFICATION	NOTE
νz	FRON	то		LOW	/ 6*	- - 2	10	FEET	E.	2		NOTE
								60				
			1									
					-	-		1				
								. =		-		
					1						SAND- BR- SATURATEd	
13	63,0	64.5	8	10	12	10") <u>é</u>			med TO Fine GRAIN - QUARTY	
											/////	
					<u> </u>		*			SP		
					Ę.,							
					1							
								3		-		
				1								
								3				
								ahuu kuutu			SAME AS 13 - STRONG	
14	68.0	69.5	8	10	15	14"					Reaction TO HeL	
		i 1							ļ			
								1				
									ł	_		
						1	1	70	į	i		and the second second second second second second second second second second second second second second second
- 3					i			11	t	1		
f					l			. 1				
										1		
1-	720	745	1	10		- 11	i	יייוידייןדייונידי	ł			
12	13.0	140		10	76	12			÷		SAND- BR- QUARTZ. SAFURA	red
3						Ĭ	İ	F	ł	-	100 % Fire GAAR	
	2	1				1			1			
								Ξ	T	1		1
		I							Ē			
									ļ			
i								Ξ	ŀ	-		
1								듹	ŀ	-		
11.	78.0	74.5	6	16	24	15"		E	ŀ	-	Camp 11 10	
						-			F		SAME AS 15	
								ليتيناند	t	t		
!	1	1	i			i		11	ſ			
								=		1		
		.25 H			.							
	1177 1.	≂әнчы А	UVANC	rn 4			- 11 I			1		

N
010

NEV.	/47										WER SERVICE CORPORATION	
JOS N Comp	0	4									DODING	
											BORING NO. 2124 DATE	SHEET S OF S
											TYPE OF SAMPLES: SPT 3"TUBE	CORE
		F BORIN								1		NO MOD USED
-									_		BORING BEGUN BORING COMPLE	ETED
WAT	ER LEVI	EL	_							1	GROUND ELEVATION REFERRE	
DAT											Sicila Brazz	DATUN
041	-				_					1	FIELD PARTY	RIG
	-	PLE	51	-	RD	- 2	ROD	DEPTH	Los	5		
SAMPLE Number	0 6 1		PEN	ETRA	TION	VET		DEPTH IN FEET	1 I	0	SOIL / ROCK	DRILLER'S
SAM	IN P		RE	SISTA	NCE	LEN	%	FRET	A A	S S	IDENTIFICATION	NOTES
	FROM	то	81	LOW	/ 6"	a a			Ū	-		
											······	
		-	-	-	-	1		80				
	1	1	1	1	1	1		1 3	1			
									1			
17	83,0	84,5	16	27	43	13					SIITI SANd + GRAVEL- BR	
								1 3			SATURATEd - QUARTZ- 1"	
										-	SATURATEd - QUARTZ- 1" MAX Size - AngulAR -	
								E				
					-	-		1 3		GM		
_				-	-					-		
	1						i	3				
			1		1		1					
18	88.0	89.5	11	14	15	12"					SAND- BR- SATURATEd -	
12			1		1			1 3			TRACE DE FINES - STRANS	
					1			- 4		-	REACTION TO HOL - TRACE	
	1		1		1			3			OF FILes	
-		1		-	1		<u> </u>	90	1	6.1		
	ļ		ļ					2		sw		
1			1	1	1		1		1	-		
	1		1		Į.			=				
	1	1	1		1							
19	93.0	94.5	10	14	16	14.					SAME AS 18"	
2	1		i		1							
	<u> </u>											
				Î.								
				-						-		
	1							3		-		
	i			1		t				-		
		1						1 3	8 1		STOPped Hole 96.1	
											INSTALLED WELL	
								=				
				ļ		-						
	Ì			1	1			3				
			L	1						-		
		3.25 H Casing		A								
	1	CORE R		 4								
		CASING		3	"							
		CASING		6	я			1			Brconore	

. . .

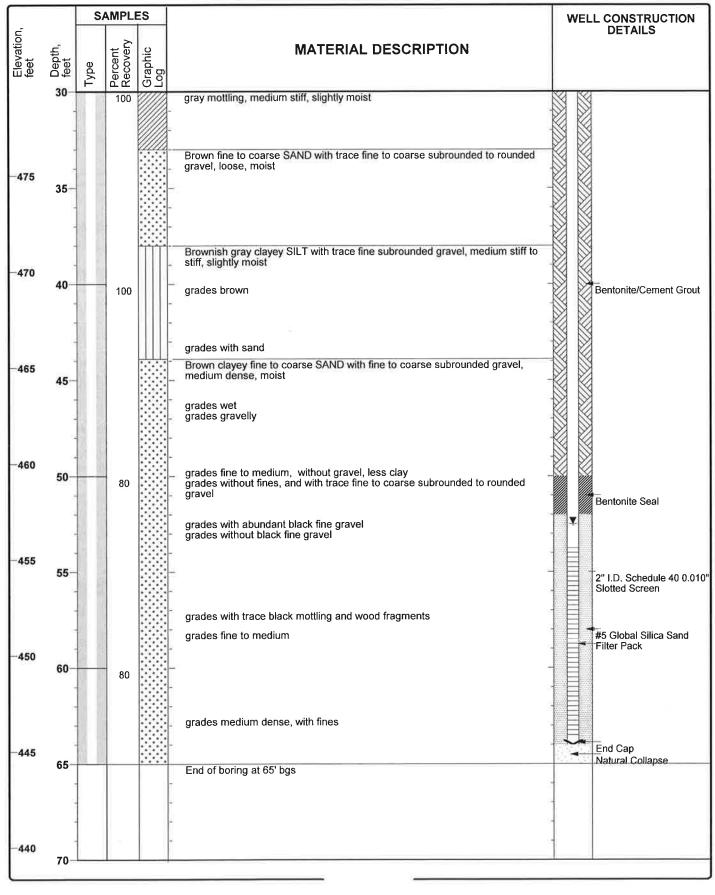

Project: Dynegy

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-10

Sheet 1 of 2

Date(s) Drilled	12/10/15			Logged By	Becky Smolenski	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor	Frontz Drilling	Total Depth of Borehole	65.0 feet
Date of Ground Measurement	^{lwater} 12/21/1	5		Sampler Type	Sonic Sleeve	Surface Elevation	509.36 feet, msl
Depth to Groundwater	52.5 ft bgs			Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	512.18 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-lnch
Type of Sand Pack	#5 Silica S	and		Well Completi at Ground Sur		rotective casing.	
Comments				1			

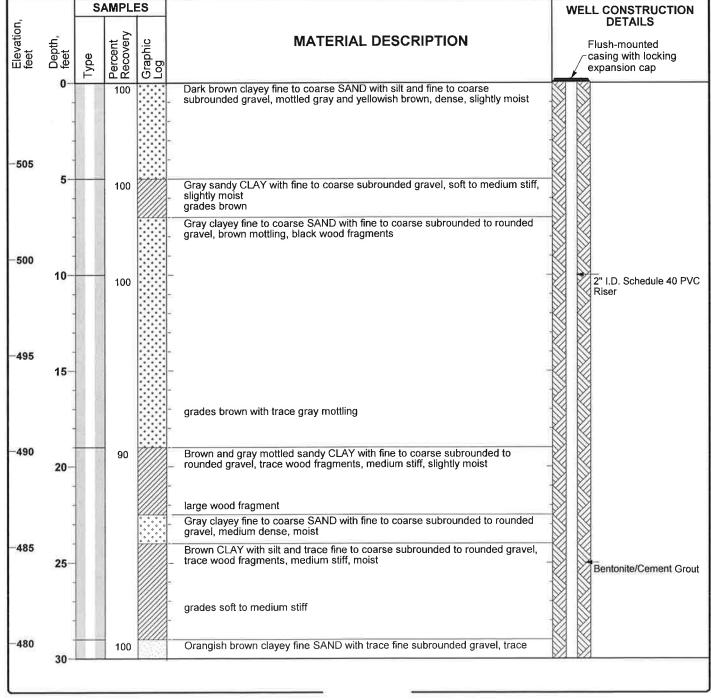

Project: Dynegy

Project Location: Zimmer Station

Project Number: 60442412

Monitoring Well MW-10

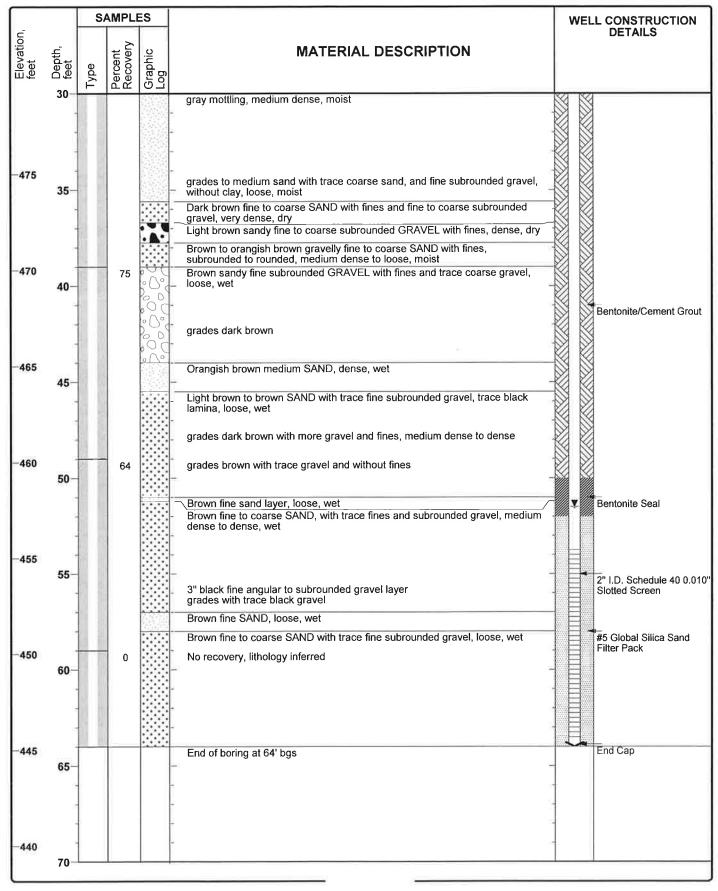
Sheet 2 of 2

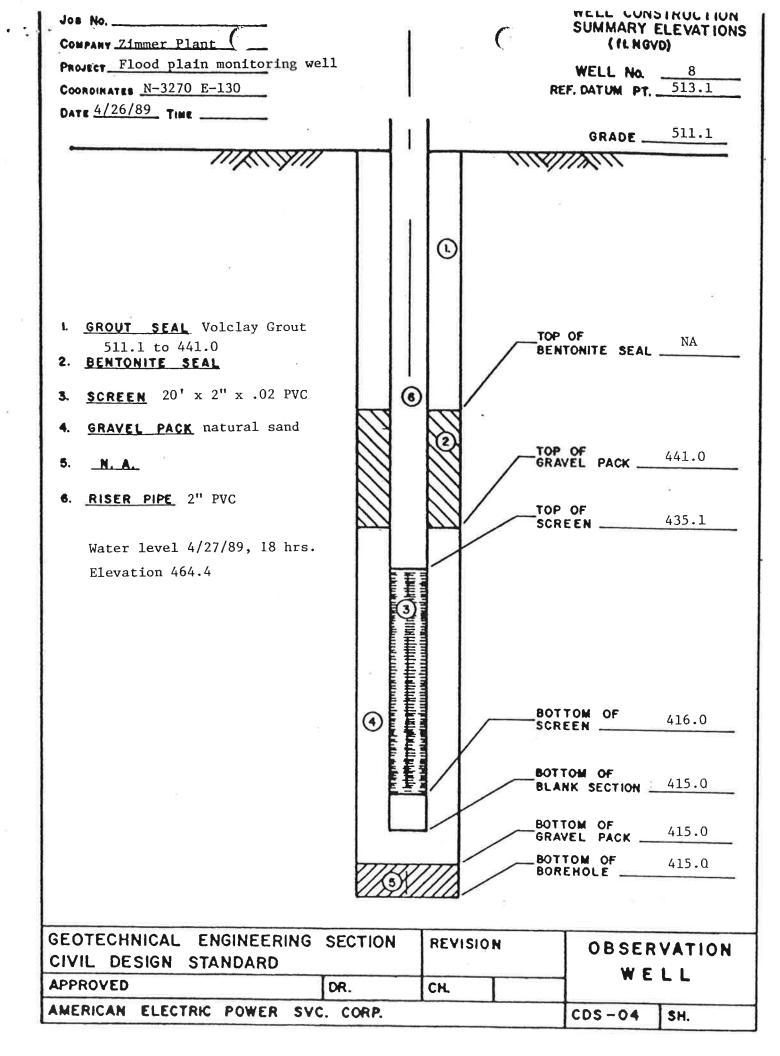

DYNEGY ZIMMER ZIMMER STATION CCR WELLS GPJ 4/19/16

Project: Dynegy Project Location: Zimmer Station

Monitoring Well MW-11 Sheet 1 of 2

Project Number: 60442412


Date(s) Drilled	12/2/15			Logged By	Becky Smolenski	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor	Frontz Drilling	Total Depth of Borehole	64.0 feet
Date of Ground Measurement	water 12/21/1	15		Sampler Type	Sonic Sleeve	Surface Elevation	509.18 feet, msl
Depth to Groundwater	51.5 ft bgs			Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	508.87 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica S	and		Well Completi at Ground Sur		rotective casing.	
Comments							



Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-11

Sheet 2 of 2

PROJE COORD	CT Z	N. ST	er. 940 Floc	Pli W.	nat 5	20 20		L 	0G 	0F 11	WER SERVICE CON DRATION ERING LABORATORY BORING BORING NO. <u>7</u> ¹¹⁷ DATE <u>4-26-89</u> SITUBE CASING USED <u>512E (11)</u> BORING BEGUN <u>4-26-89</u> BORING COMPLETED GROUND FLEVATION 5/1/1 BEFERRED T	HEETC CORE NUO USED D 4-27-
			1:00								GROUND ELEVATION SILL REPERRED T FIELD PARTY Howcil - DAMST	1
			- <u>27</u> -			1	(* 					N
SAMPLE Number	SAM DEP IN F FROM	EET	PEN	ETRA	1 1 0 M	TOTAL LENGTH RECOVERY	%	DEPTH In Feet	GRAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILI
					-							
1	25	4.0	2	5	8	15"					Clay- Be- moist - med to Low plasticity	
										CL		
-					-			-				
2	7.5	9.0	3	5	8	18.				_	SAME AS 1	
						1				_		
					1			10-				
					<u> </u>							
3	125	14.0	3	4	5	18.					Sitt CIAt - multi-coloned Br med to how plasticity	
	1		i	1	1		!			CL		
				<u> </u>	-							
												-
4	17.5	19.0	3	4	5	18					SAME AS R	
								L'ere				
								20-		-		

	0					Α	EP (C 11	Ollar	WER SERVICE CORFORATION ERING LABORATORY	
COMPA	NY							L	0G	OF	BORING BORING NO. 717 DATE SI TYPE OF SAMPLES: SPT 3"TUBE CASING USED SIZE DBILLING M	
									_		BORING NO. Z DATE SI	HEET Z OF
COORD	INATES						-		-		TYPE OF SAMPLES: SPT 3" TUBE	_ CORE
Loca	TION OF	BORIN	G 1							1	Gasing Used Size Driceling w	00 0360
14/	RLEVE									{	BORING BEGUN BORING COMPLETED	100000000000000000000000000000000000000
TIME		<u>-</u>		_						1	GROUND ELEVATION REFERRED T	0
DATI			- 11.1		_				-	1	FIELD PARTY	Ric
	SAM	PLE	ST	ANDA	RD	>	800	DEPTH	r oe			
R R	DEP	тн	PEN	ETRA	TION	AL AL		DEPTH IN FEET	2	2	SOIL / ROCK	DRILLE
AMF	IN P	εετ	RES	5157A	NCE	CO NOT	0/		A A	5	IDENTIFICATION	NOTE
νž	FROM	то	6.	0 W 0	/ 6*		10	FEET	24 19	2		
		1		1								
								20_				
			1					2	1			
											tot q ~	
								- E	1			
5	22.5	24.0	2	3	4	19"					Clay- yellowish BR- moist To Wet- med TO Low PLASTICITY	
								E		-	wet- med TO Low PLASTICITY	
						-		÷		CL		
								=			Cottom 9"	
				-						-	Clay- GRAY- Wet- med to tous plasticity	
			ł					3			Low plasticity	
				-				-		-		
				1						cu		
								-		-		
1	27.5	200	2	3	3	18"					Elas Con I wet mad to	
9	×1.5	1.0	-	12	10	10				<u> </u>	ElAY- GAAJ- WET- med To how plasticity	
								2			For prasment	
-	i		1	1	1			- TE		12		
					1			1		-		
					Ī			1 3				
			I		1			30-				
				1	i	İ		=				
			Ì	ļ	<u>i</u>	I		<u> </u>]			
	ŀ	1			1			_				
_7	325	34.0	1	2	3	18"				-	SAME AS 6	
								1 3				
	M		£	<u> </u>	<u>.</u>	<u>.</u>		-		<u> </u>		
			İ.	ł	ĺ –	1				-		
			1	1	1							
					-							9
					1			3				
	İ		1	<u>.</u>						-		
8	37,5	340	20	26	12	16"		1 3			Spard + Gonvel- GRAY- RA-	
u_	serve .		1	1 all	T	1		1 1			SAND + GRAVE - GRAJ-BA- SATURATEd - QUARTZ-ROUNDED 1/2"MALSIER" uf Fines	
								. 3			1/2"MALSize - ul Finc. (
			1		1						a contract of the second	
						1			1	61		
				1	1			1 -				
		3.25 H						10-				
	нж с	ASING	ADVAN	CER 4	F			1				
	NQ	CORE F	lock									
		CASING			3"	1						

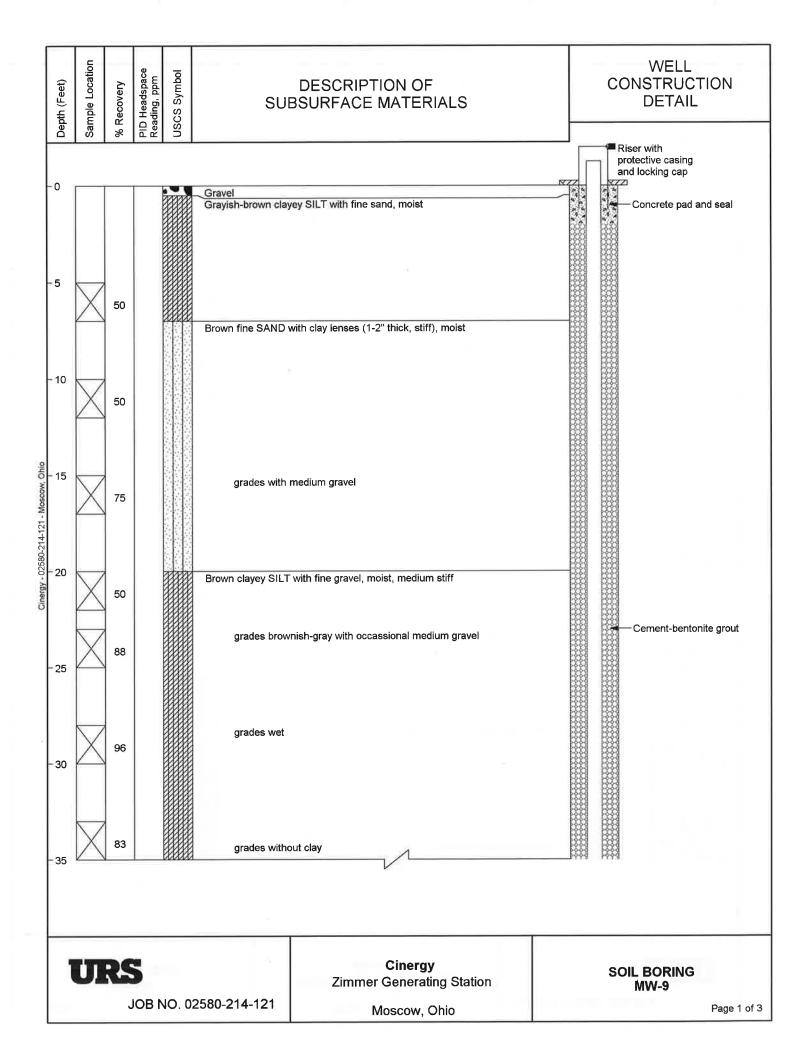
FORM Nev. I	CE-5 /87	201			AME	RICA					WER SERVICE CORPORATION	
Joe N	o										ERING LABORATORY	
COMPA	NY											
											BORING NO. Z 117 DATE TYPE OF SAMPLES: SPT3" TUBE	SHEET JOF
	INATES					-	100				CASING USED SIZE DRILLING	CURE
LOCA	TION OF	BORIN	G 1								BORING BEGUN BORING COMPLET	ED
	ER LEVE	L									GROUND ELEVATION REFERRED	то
TIME									_			
					STITE -						FIELD PARTY	Rig
w ec	5 A M	-		ANDA	RD	H H	RQD	OEPTH	r oe	Ś	SOIL / ROCK	DRILLI
SAMPLE Number	IN F	тн ЕЕТ			NCE	DTA DNG	0/	DEPTH In Feet	H L	U S		NOTE
N SA	FRON		81		/ 6"	E - J	70	FEET	6 8	∍	I DENTITION TON	NOTE
		1	1	T	1							
						1		40_				
								1				
									ŀ			
9	42.5	440	10	15	15	12"		· 3	ŀ	-	SAND- BR- QUANTZ- Moisi	
	160	44.0	10	12	10	1	-			_	ARO- DR- FYSHIN E MOISI	
								2		SW		
								-				
						<u> </u>						
								Ξ	L			
									ł			
								Ξ	F			
			1		1				e.		SAND. BR- QUART - SATURA	tr.d
10	47.5	44,0	8	12	17	12"					Corried Con Contract Street	v c e
					1			Ξ				
									-	sp		
				1				-	-			
									ŀ	-		
	- 12 			I	I.			50-	ľ			
			1		1							-
			1		i				Ē		1	
		-			Ì			E			SANd + GARYEL- BA- SAFURATES	4
μ	52.5	540	15	17	10	14			H	_	CUARTZ - Rounded - 1 MAX SIZ	E E
	l,		ļ				l	\$ 	ŀ		QUARTZ - Rounded - 1"MAX Siz u/ FINES - STRONG REACTION IN 14CL	1
	1	1	1	1	\$					GM	p	
									Ľ			
	1		1	1				-	ſ			
								mutuu				
					1				-			18
	i			<u> </u>					ŀ			
12	57.5	59.0	12	14	16	15"		1 miliur	ł		SAND- BR- SATURATEd.	
	21.0	- and		-	1				ľ		QUARTZ- TRACE OF POR GRAVE	1
					•						STRONG REALTION TO HEL	
								=	Ļ	SP		
								F	-	-		
			1	1	1			F				
	6"+	1 3.25 H	I SA	1	I	-	L	60	ł			
		CASING		CER 4	."							
		CORE F										
		CASING			"	1						

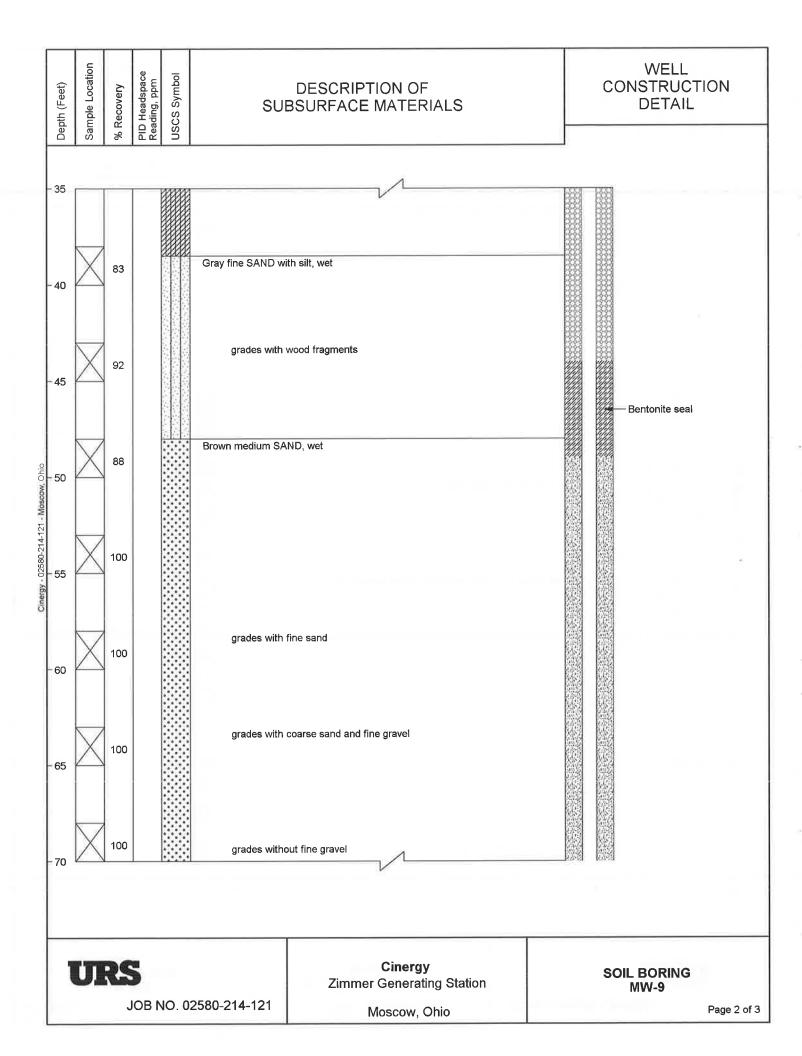
Compa Proje	NY								0G 	OF	BORING BORING NO. 2117 DATE TYPE OF SAMPLES: SPT3"TUBE	SHEET 4 OF
									-		CASING USED SIZE DRILLING	CORE
LOCA	TION OF	BORING	3:								BORING BEGUN BORING COMPLET	ED
WATE	RLEVE	.									GROUND ELEVATION REFERRED	TO
TIME							_					
DATE			*****		*****						FIELD PARTY	Ric
SAMPLE Number	DEP IN F	PLE TH EET TO	ST PEN RES BL	ANDAI ETRAT	RD T10N NCE / 6	TOTAL LENGTH Recovery	rqd %	DEPTH IN FEET	GRAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILL
				1					Ļ	_		
					-			40-	ł			
								Ξ	Ì			
								. 3				
13	62.5	64.0	16	17	11	13					GRAVELLY SUITY SAND- BR-	
								E	H		GRAVELLY SITTY SAND- BR- GATURATEd- QUARTZ - 34" MAS SIZE - STRUM REALTION	1
			-	1				Ξ	t		to HeL	
					1			1 3				
				1	-			1 =		_		
					I			Ξ				
								-				
14	67,5	64.0	29	39	31	16			F	_	SANd+ GRAJE - BA. SATUART	ed
				į.		0			t	-	QUARTZ- 1"MAN Size - up FINCS - STRUNG REACTION	
						1		=			TO HEL	
					ļ			1 3		_		
					1 12			3	ŀ			
<u> </u>			i	1	1			70-	F			1
			L									
10		17.1-	1.	22	11-	a'		=				
15	72,5	74,0	12	18	40	0		_	ŀ		CLAYEY SANd + GRAVET BA. SATURATEd - 1"MAX Size	
l i				6	1				ł		Rounded - QUARTZ-STRONG	
		1	i	l l	1	F		-	Ī	-	REACTION TO NEL	
					-				ŀ	40		
				1				3	ł			
			1							_		÷.
								_				
11	har-	nan	11	20	20	9"		Ξ	ł		C III	
16	TIS.	79.D	19	20	38	14		÷.	ŀ		SAME AS 15	
					1			4		_		
I 0		1 3.25 H		1	-		-	80-				

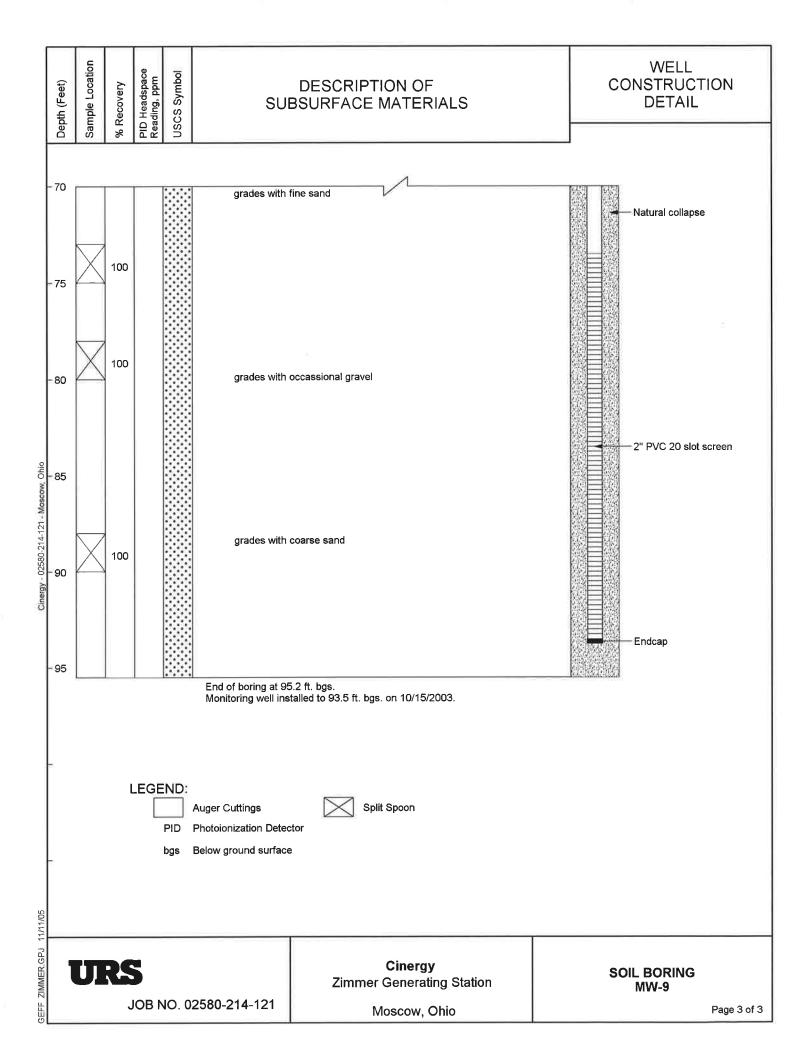
ice No Compai). NY						5			OWER SERVICE CONFORATION IEERING LABORATORY F BORING BORING NO. Z-117 BORING NO. Z-117 DATE	۳.
COORDI	NATES -								_	TYPE OF SAMPLES: SPT3 TUBE CORE CASING USED SIZE DRILLING MUD USED	
LOCAT	ION OF	BORING	5:							BORING BEGUN BORING COMPLETED	
	RLEVE	<u> </u>								GROUND ELEVATION REFERRED TO	
TIME		<u> </u>	_						-		D
DATE		_								FIELD PARTYRIG	<u></u>
UATE								-			-
SAMPLE Vumber	SAM DEP IN F	T N E E T	ST PEN RES	ANDA ETRA SISTA	RD TION NCE	TOTAL LENGTH Recovery	RQ D %	DEPTH IN FEET	RAPH LOG		_
	FROM	то	81	0 ₩	/ 6"	-					-
	1								-		
			-		-			80-	-		
					1						
								- 6			
11	82.5	Gila	0	11	12	11"				GRAVILLY SAND. BR. SATURATEd	
11	Dais	840	10	111_	15					QUARTE 14" MAX Sizt - Rounded	
				1				3		uf FINES + BIACIC LISMITE	_
_			1					-		STRONG REACTION TO HEL	
										STRONG REACTION TO NEE	
			-								
						-					
19	87.5	800	13	11	14	13"		1 3		GRAVELLY SAND - BR. SATURATEd	
10	01.5	010	IA	11	IT	10	1	1 3		Quarte Royaded - 314" max Site	
										QUARTE - Kounded - Hu" MAR SIZE UJ FINCS - STRONG REALTION TO MEL	
	1			1	1	1				TOMEL	
		1						1 3			
-			1		1	1		1 3			_
	1				Į.			1			
		1	1		1		1		1 E		
					1			1 3	1 [
	l	1	1		1	1		1 :	1 [
				-					1 E	Stopped Nole- 89,9 AWd	
	1				1	1				STOpped Nole - 89,9 AND INSTAILED Z'OB. Well	
i		!		!	<u>1</u>	1	!	1 3			_
	1	1	1	i	1	1	1		1 L		_
		1			-						
				1					1		
					-					ŧ	
					-				1 1		
									1		
			-		-	1		4 4	1		
							1		4 4		
			-			-		4 -4	4 1		
									4 1		-
								4 4	1 -		
	1			1	Ĩ				4 1		
		1	1	1					4 1		
		3.25			. "			-			
		CASING		NCER	4			-			
		CORE			3"				1		-

COMPA Proje Coord	CT Z	N-J	270	Pla E-J	WT 130		•		_	0.	EERING LABORATORY BORING BORING NO. 2124 DATE 4-20-89 SH TYPE OF SAMPLES: SPT 3" TUBE CASING USED SIZE DRILLING M	EETO
LOCA WATE TIME	TION OF	EL	Floo 8.5	s pla	in ,	mon	ITAR	inc _u e	Ils		BORING BEGUN <u>4-20-89</u> BORING COMPLETED GROUND ELEVATION <u>SH.1</u> REFERRED T	4-25-
DAT			-20.	-89					Ì		FIELD PARTY Howell - DARST	Rig
SAMPLE Number	0 E I IN 1	TO	PEN	ANDA ETRA SISTA OW	RD TION NCE / 6"	TOTAL LENGTH RECOVERY	R 9 D	DEPTH IN FEET	GRAPH LOG	USCS	SOIL / ROCK IDENTIFICATION	DRILL
1	30	4.5	4	5	5	0		- The second			Lime store Road base	
								huh				
								- The second sec				
2	8.0	9.5	20	29	42	12"				sP	SAWD- BA- MOIST - QUARTE STRONG REACTION TO HOL	
								10 -				
3	13,0	14.5	16	39	5%	14"					CLAYEX SAND BA. MOIST QUARTZ- TRACE OF GRAVEL	
								and and an	6 11	sr.	QUARTZ- TRACE OF GRAVEL STRONG REACTION TO HOL	
								- Turn				1
4	18.0	19.5	17	29	45	16"		lan lan			SAN d- BR- MUIST - STRONG LEACTUR TO HEL- 90%0 FING GRAIN - QUARTZ	
		121		1	İ					sp	GUARIC	

PROJEC	ст									OF	BORING BORING NO. 2-124 DATES TYPE OF SAMPLES: SPT3"TUBE	HEET <u>2</u> of
		BORING								1	CASING USED SIZE DRILLING I BORING BEGUN BORING COMPLETE	NUD USED
WATE	RLEVE	L								1	GROUND ELEVATION REFERRED	το
TIME	_											C
DATE											FIELD PARTY	Rig
SAMPLE Number	SAM DEP IN F FRON	PLE TH EET TO	ST PEN RES BL	ANDA ETRA IISTAI	RD T10N NCE / 6	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPH LOG	r s c s	SOIL / ROCK IDENTIFICATION	DRILLE
								20				
								1				
										-		
ব	23.0	24.5	12	19	35	15"					Sand- BR- moist. STRong	
								Ξ			SAND- BA- MOIST. STRONG REMETION TO HEL QUARTZ 80% Fine GRAIN	
										-	80% FIRE GRAIN	
								9		8		
								Ξ				
			59			. 11						
6	28.0	29.5	12.4			6"				-	SANd- BR. SATURATEd -	
										-	QUARTZ W/3 BLOKEN Lime STON FRAG- STRONG REACTION TO HEL-	
					1				1		TO Heh-	
					1			30		SP		
			ļ 		1					X		
		1			1	1		ĺ				
										-		
7	390	34.5	18	15	21	14"				-	Charle Ba- marste med to	
1	00,0	1	i	1	1	1		3	1		CIAY- BR- MOIST - med to Low plasticity	
			ļ	1	<u> </u>	1						
				ĺ					1	a		
					1					-		
			<u> </u>					_				
								-		-		
					-					-		
8	28.0	39.5	7	9	12	16"				_	SHAME AS - 7 TRACE OF	
					1					-	V-Fine SANd	
			1		1					-		
								-				
		3.25 H Casing						40-				

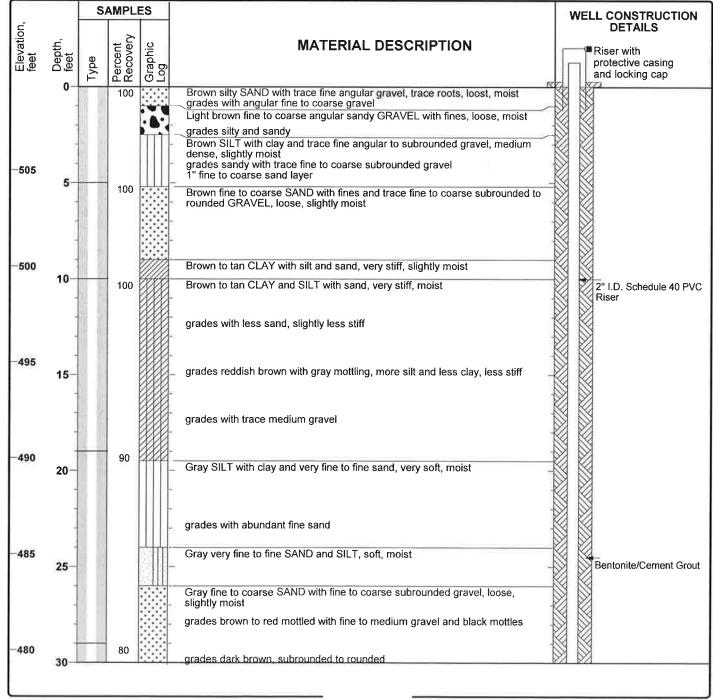

FORM Rev. I	CE-5 /87		٠.		AME						VER SERVICE CORPORATION	
Jon N	o										ERING LABORATORY BORING	
											BORING NO. Z-124 DATE	SHEET 3 OF T
											TYPE OF SAMPLES: SPT 3" TUBE	CORE
LOCA	TION OF	BORING	. :						с. -	1	CASING USED SIZE DRILLING BORING BEGUN BORING COMPLET	
WAT	ER LEVE	.									GROUND ELEVATION REFERRED	то
TIM										1		DATUN
DAT	ε									1	FIELD PARTY	Rig
w e	5 A M	PLE		ANDA	RO	н ж Х	RQD	OEPTH	LOG	9	SOIL / ROCK	DRILLER'S
SAMPLE Number	DEP IN F			ETRA: SISTAI	NCE	OTA ENGI	0/	DEPTH IN FEET	H	s c	IDENTIFICATION	NOTES
SN	FRON	το	80	0 .	/ 6-		/0	PÉET	3	2		
										<u> </u>		
							1	40-		<u> </u>		
						-		,			· · · · · · · · · · · · · · · · · · ·	
											109-6	
									4		Alla Ada to the day of the day	
9	43.0	44.5	5	6	8	16'`			1	-	CIA+ BR- WET- med to Low plasticity	4
<u> </u>				-					1		finasi di i p	
				ļ				-	-	CL	-	
									3		Bostom 10"	
										-	CLAYEN SAND- BA- SARAAR 100 % Fine GRAM. QUARTZ	9
									1			
								3		sc		ă.
10	48.0	49.5	5	10	16	18"			-		Clayey SAND- BR- SATURATE	4
-	1			1					-		QUANTZ	
										-		
					ł				1	SC		
1	1		1		1			50	Ì			
	<u> </u>				i t					-		
			1	1						-		
			1	-	1				1			
11	\$3,0	54.5	12	15	15	164	!	1 3			JAND- BR- SATURATED	
1			Í	1	l				Ē		QUARTZ- med TO Fine Garm	
\vdash				-						SP		
L										Ľ		
										_		1. 2.
			-	1				-	1	-		
									F	-		
											SAND- BR- QUARTZ - SATUR	Ared
12	58.0	59.5	12	15	23	15		-	-	-	WY TRACE OF PEAGAAJEI	
										Sw		
<u> </u>	1		-		1							
-		ĺ	1					60-	1			
		3.25 H Casing										
		CASING . Core R		CER 9								
-		CASING			5"							
	sw	CASING		€	5"						RECORDER	


JOS N	10			-		•••			00		EERING LABORATORY	
								L	.06	01	BORING BORING NO. 2-12 DATE S TYPE OF SAMPLES: SPT 3"TUBE CASING USED SIZE DRILLING A	
PROJE			-				-		-		BORING NO. TO DATE S	HEET 4 OF
					-				-	8	CASING USED SITE DOWN	CORE
LOCA	ATION O	F BORIN	G:								CASING USED SIZE DRILLING & BORING BEGUN BORING COMPLETE	UD USED
WATI	ER LEV	٤.									GROUND ELEVATION REFERRED T	
TIME									_			
DATI	2								•	e.	FIELD PARTY	Rig
		PLE	1.,			1.		1				
SAMPLE Number	0 6	РТН			TION	L H H	RGD	DEPTH IN FEET	2	1 0	SOIL / ROCK	DRILLE
A N	- 111 - 1	TEET	RE	SISTA	NCE	ENG COV	0/2	IN	E.	ŝ	IDENTIFICATION	NOTE
νz	FRON	то	81	LOW	/ 6*	- - 2	10	FEET		þ		NUTE
								60				
			1									
			-		-			-				
								. E				
								1			SAWD- BR- SATURATEd	
13	63,0	64.5	8	10	12	10"		<u> </u>			med TO Five GRAIN - GUANTO	
								1 1			/	-
					<u> </u>					SP		
					F .					-		
									ł			
									}			
				1					ł			
								1	t			
								nhun huntu			SAME AS 13 - STRONG	
14	68.0	69.5	8	10	D	14					Reaction TO HeL	
		1 1						Ē	ŀ			
					1		1		ł			
K	5				ı.	1	1	70	Ī	i		
					i			11	ſ	1		
1					ļ			. H	1			
									-			
15	730	74.5	6	10	110	17 11	į	יייוידייןדייונידי	ł		Carl and a	
-	10.4					<u> </u>		1	T	1	SAND- BA-QUANTZ. SATURA	red
							İ		F	1	or to play bran	
1	8					i	i		Ţ	1		
								1	Ĺ			
			Í						L			
								-1	F			
i				ļ				Ξ	ŀ			-
1								Ţ	F	-		and the second second
16	78.0	74.5	6	16	24	15"		E	F		Same AS 15	
									t		and the 12	
								ليتيناند				
1	1	1	i	1		i		E.				
	6	.25 H							L	-		
		ASING A		FR 4'	. }							


N
010

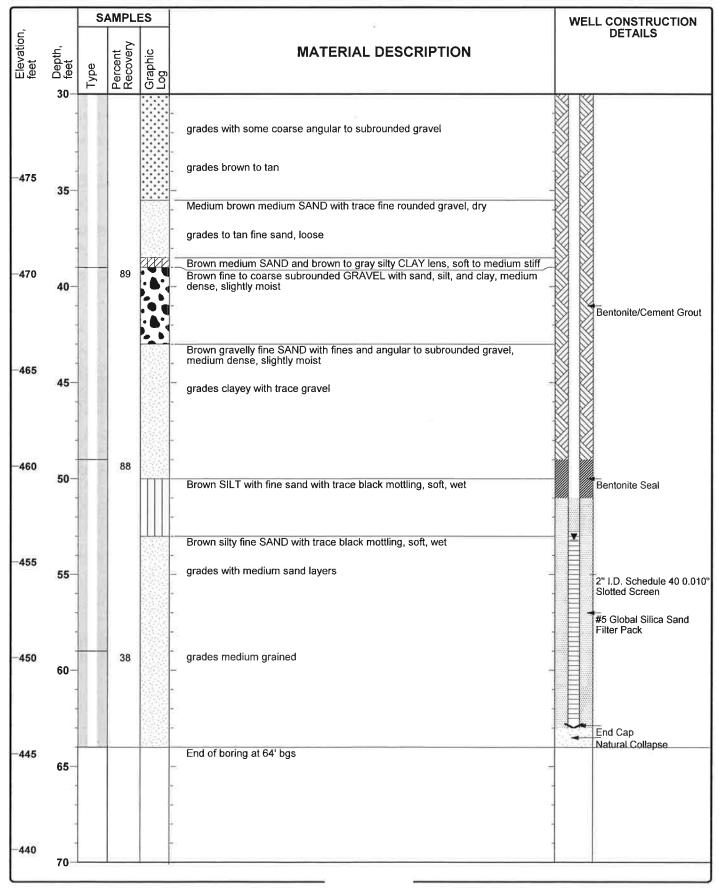
NEV.	/47										WER SERVICE CORPORATION	
JOS N Comp	0	4									DODING	
											BORING NO. 2124 DATE	SHEET S OF S
											TYPE OF SAMPLES: SPT 3"TUBE	CORE
		F BORIN								1		NO MOD USED
-			-		_				_		BORING BEGUN BORING COMPLE	ETED
	ER LEVI	EL								ł	GROUND ELEVATION REFERRE	
TIM. DAT								-		1		DATUM
UAI										1	FIELD PARTY	Rig
	-	PLE	51		RD	- ×	RQD	DEPTH	L OG	5		
APL ABE	0 6 1		PEN	ETRA	TION	19L	01	IN	Ŧ	U	SOIL / ROCK	DRILLER'S
SAMPLE Number	IN P		RE	SISTA	NCE	LE)	%	DEPTH IN FEET	4	n N	IDENTIFICATION	NOTES
	FROM	то	81	LOW	/ 6-							
	-	1.000	1	-	1	1		80				
								1 5				
		1	1	1	1			1 3				
								1 7	1			
17	83,0	84,5	16	27	43	13		<u> </u>	1		SIITI SANd + GRAVEL- BR	
								1 3			SATURATEd - QUARTZ- 1" MAX Size - AngulAR -	
					-						MAX Sizr - Angvink -	
								3		-		
					<u> </u>					GM		
								E (1		-		
								-				
					1	1 1	e j	2				
			1		-					-		
18	880	89.5	In	14	15	12"		8			SAND- BR- SATURATEd-	
10_	1	010	1		1	1-					TARCE DE FIRES - STRENS	
			1								REACTION TO HOL - TRACE	
			1		i			1 3			OF FILes	
			1		1			90-				
	1.		i					2		SW		
	i		i		<u> </u>			<u> </u>				
	1		1	1 1	1				1			
	!											
10	62.0	hur	1.0	1.1		L. DI					C	
14-	43.0	94.5	10	17	16	14					SAME AS 18"	
	1				İ i			-				
	<u> </u>				<u>†</u>							
	1		1									-
								1 3				12
								1				
					1		1					
							κ.				STOpped Hole 96,1	
				1					(i)		INSTALLED WELL	
								E				
				ļ		-	_					
	1			1				1				
			L	1								
		3.25 H		4								
	1	Casing . Core R		CER 4								
		CASING	UCR	7						L		
		CASING		6	н						Breasars	

. . .



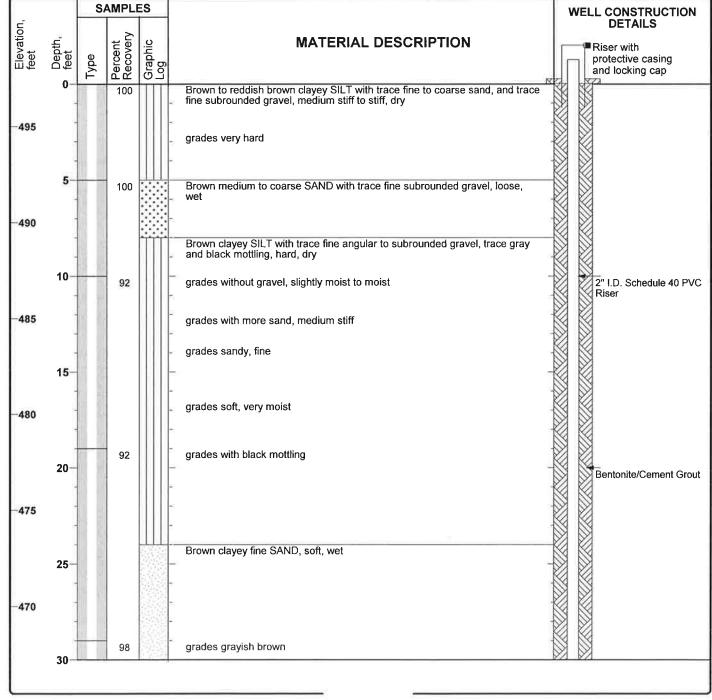
Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-12 Sheet 1 of 2


Date(s) Drilled Logged By Checked Becky Smolenski Mike Wagner 11/20/15 By Drilling Contractor Drilling Total Depth of Borehole Rotosonic Frontz Drilling 64.0 feet Method Date of Groundwater 12/08/15 Sampler Surface Sonic Sleeve 509.34 feet, msl Measurement Туре Elevation Depth to Hydrated 3/8-inch Bentonite Top of PVC 53.19 ft bgs Seal Material 511.92 feet, msl Groundwater Chips Elevation Diameter of Diameter of Type of Well Casing Screen 6.0 2 Schedule 40 PVC 0.010-Inch Hole (inches) Well (inches) Perforation Type of Sand Pack Well Completion #5 Silica Sand Riser, With locking cap and protective casing. at Ground Surface Comments

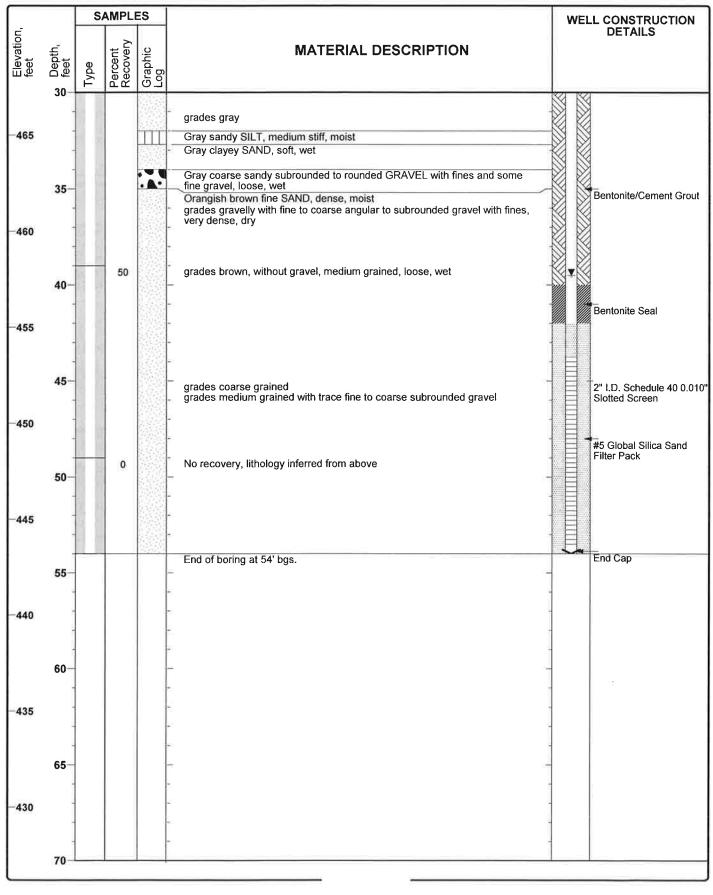
Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-12


Sheet 2 of 2

Project Location: Zimmer Station Project Number: 60442412

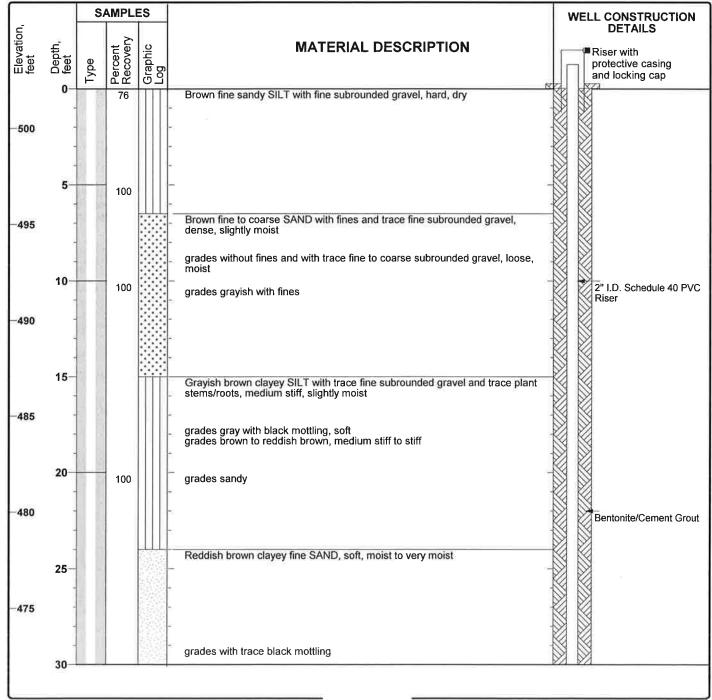
Monitoring Well MW-13 Sheet 1 of 2


Date(s) Drilled	11/24/15			Logged E	ecky Smolenski	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor F	rontz Drilling	Total Depth of Borehole	54.0 feet
Date of Ground Measurement	^{dwater} 12/08/1	5		Sampler S Type	onic Sleeve	Surface Elevation	497.21 feet, msl
Depth to Groundwater	39.51 ft bg	s		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	499.4 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of sand Pack #5 Silica Sand			Well Completio at Ground Surfa		rotective casing.		
Comments				11			

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-13

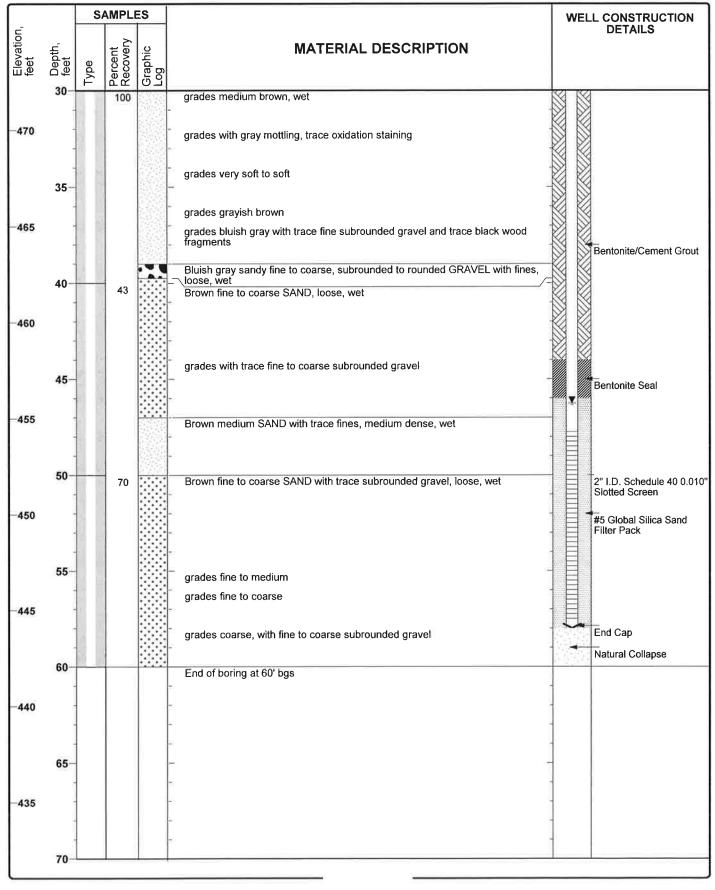
Sheet 2 of 2


Project: Dynegy Project Location: Zimmer Station

60442412

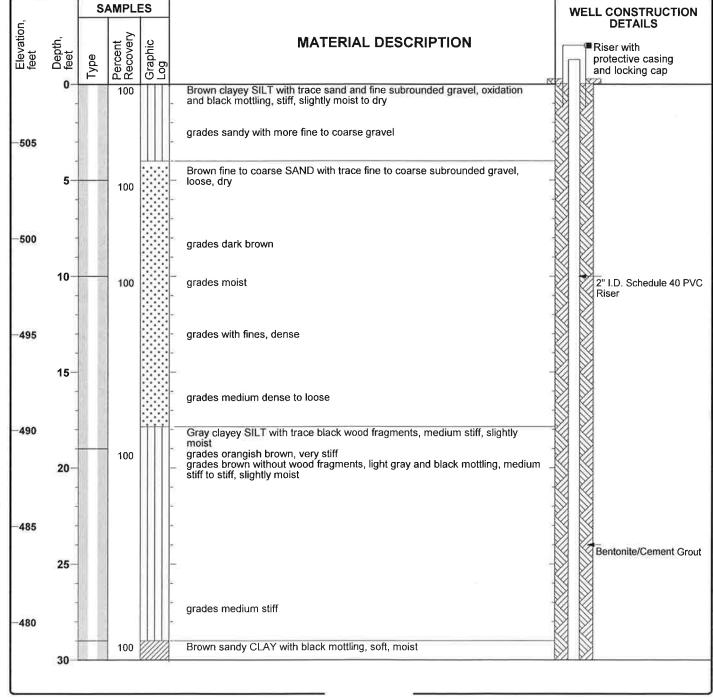
Project Number:

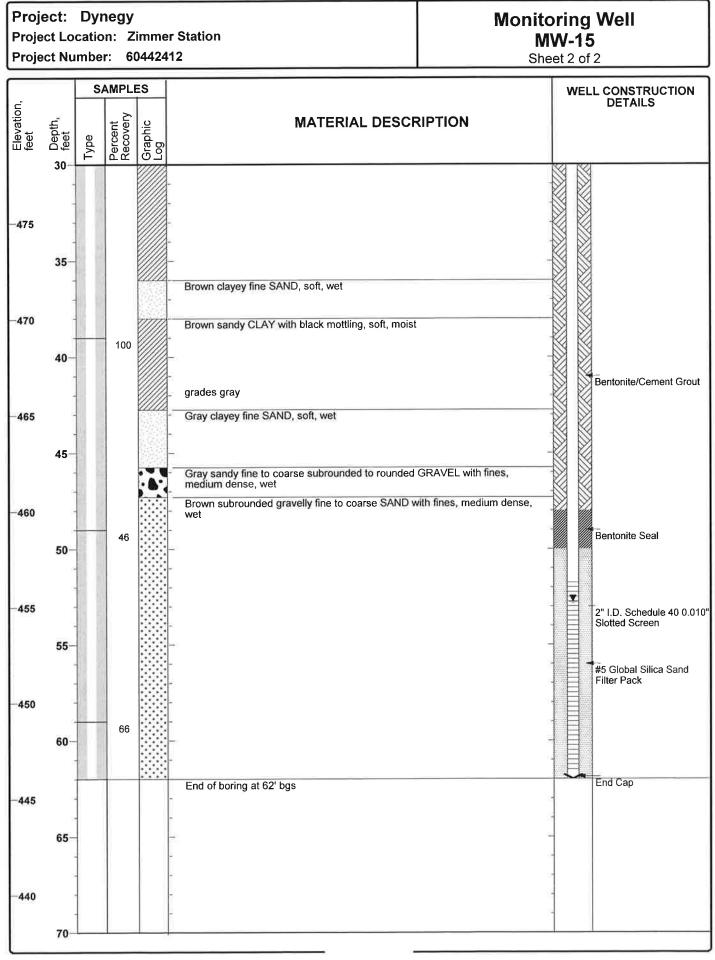
Monitoring Well MW-14 Sheet 1 of 2

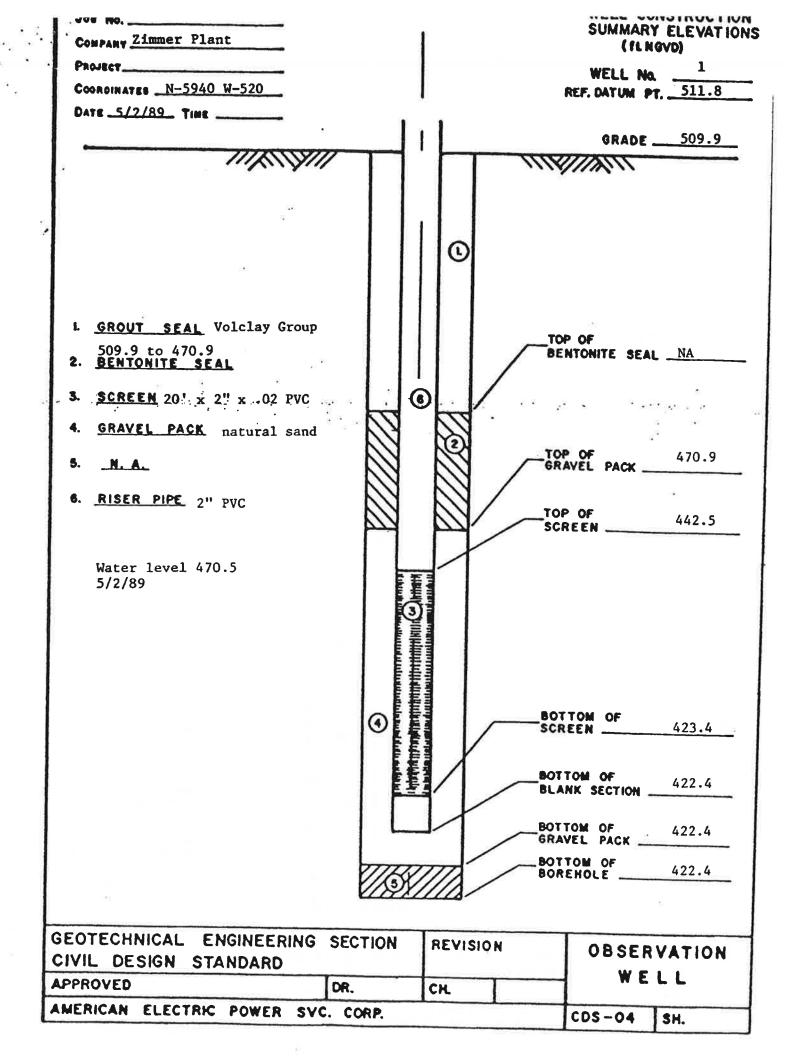

Logged By Date(s) Drilled Checked **Becky Smolenski Mike Wagner** 12/9/15 By Drilling Method Drilling Contractor Total Depth of Borehole Rotosonic Frontz Drilling 60.0 feet Date of Groundwater 12/18/15 Sampler Type Surface Sonic Sleeve 502.06 feet, msl Measurement Elevation Depth to Hydrated 3/8-inch Bentonite Top of PVC 503.81 feet, msl 46.27 ft bgs Seal Material Groundwater Chips Elevation Type of Well Casing Diameter of Diameter of Screen Schedule 40 PVC 0.010-inch 6.0 2 Perforation Hole (inches) Well (inches) Well Completion Type of Sand Pack #5 Silica Sand Riser, With locking cap and protective casing. at Ground Surface Comments

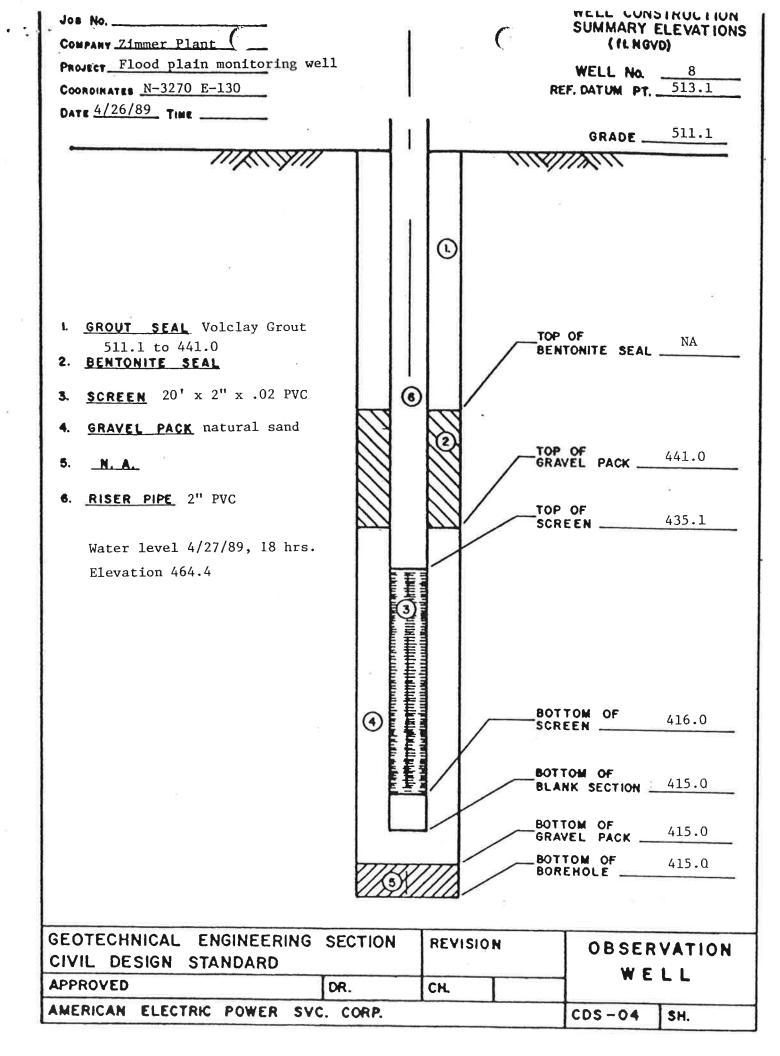
Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-14

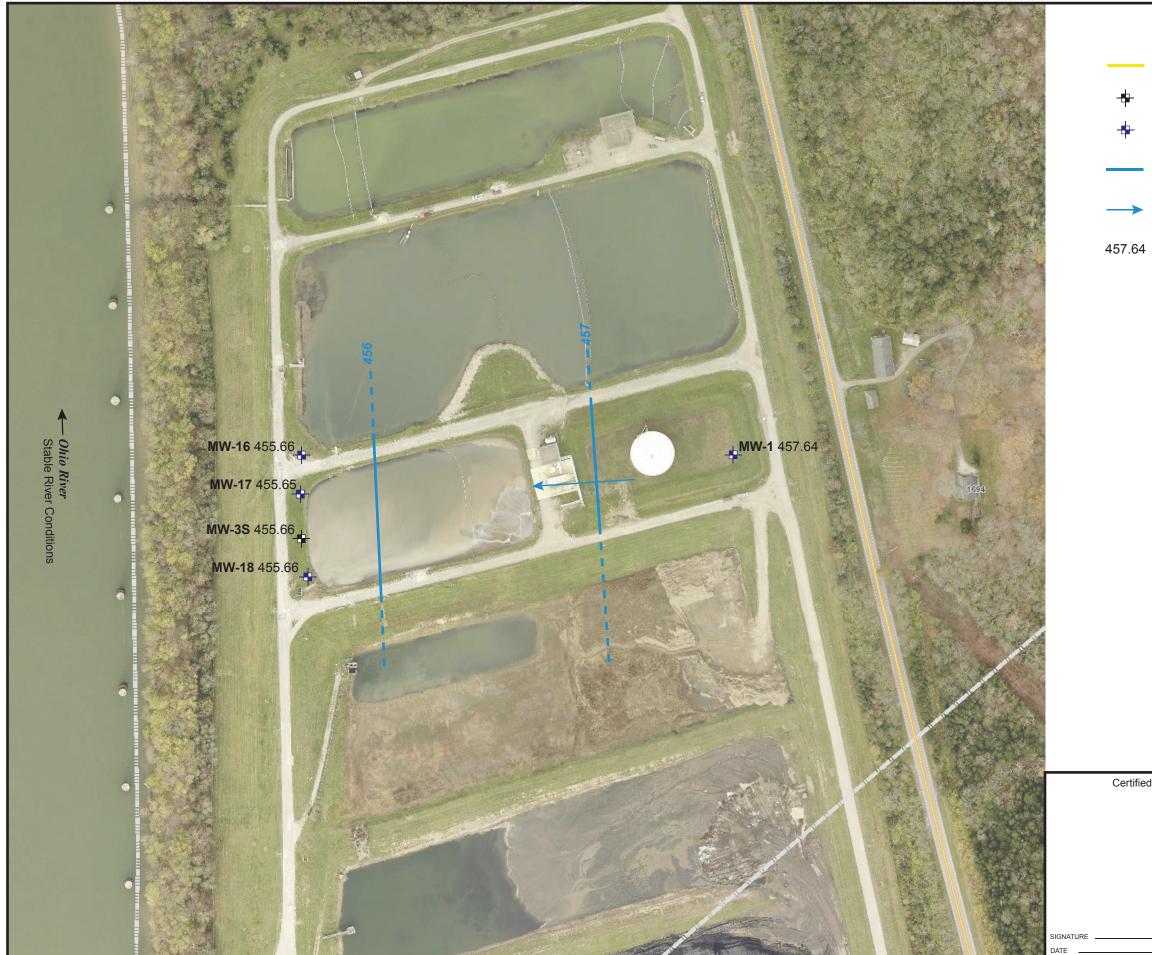

Sheet 2 of 2



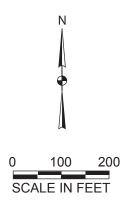

Project: Dynegy Project Location: Zimmer Station Project Number: 60442412


Monitoring Well MW-15 Sheet 1 of 2

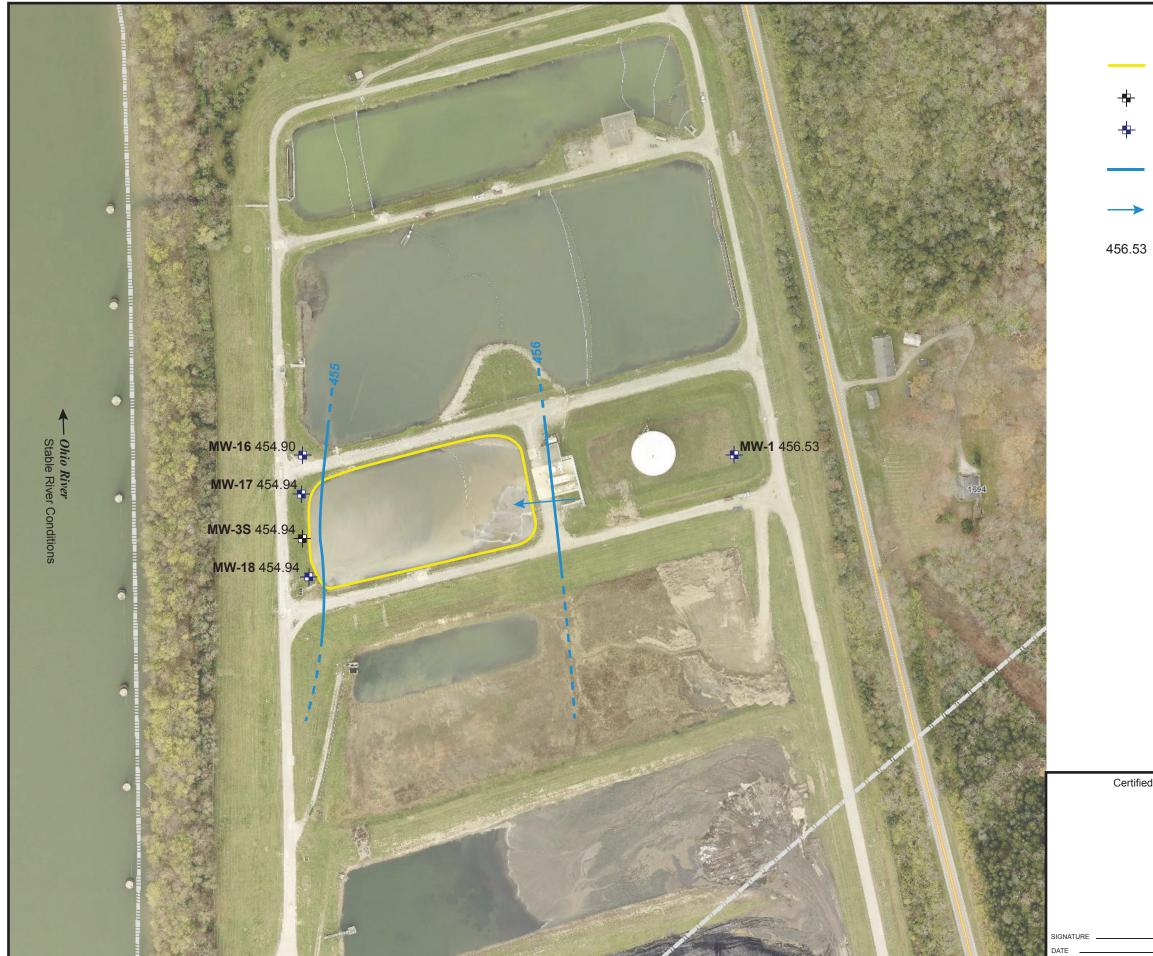
Date(s) Drilled	11/25/15			Logged By	ecky Smolenski	Checked By	Mike Wagner
Drilling Method			Drilling Contractor Frontz Drilling		Total Depth of Borehole	62.0 feet	
Date of Ground Measurement	^{dwater} 12/18/1	5		Sampler S	onic Sleeve	Surface Elevation	508.04 feet, msl
Depth to Groundwater	52.77 ft bg	S		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	510.58 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack #5 Silica Sand			Well Completion at Ground Surface Riser, With locking cap and protective casing.				
Comments							



APPENDIX C3 – MAPS OF THE DIRECTION OF GROUNDWATER FLOW


EXISTING MONITORING WELL LOCATION

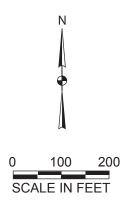
DOWNGRADIENT MONITORING WELL LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED AUGUST 31, 2016

ed By:	Dyneg	Ŷ		Zimmer Station t County, Ohio			
	FIGURE 1						
	GROUNDWATER SURFACE MAP-						
	AUGUST 31, 2016						
	COAL PIL	E RUNOFF	POND (UNI	T ID: 125)			
	CCR SAMPLING AND ANALYSIS PLAN						
	DATE REV NO. DWG. BY CHKD. BY						
	12/16/16	0	ALW	MAW			
	JOB NO. 604	42412		AECOM			


EXISTING MONITORING WELL LOCATION

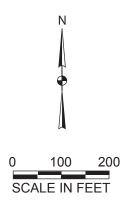
DOWNGRADIENT MONITORING WELL LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

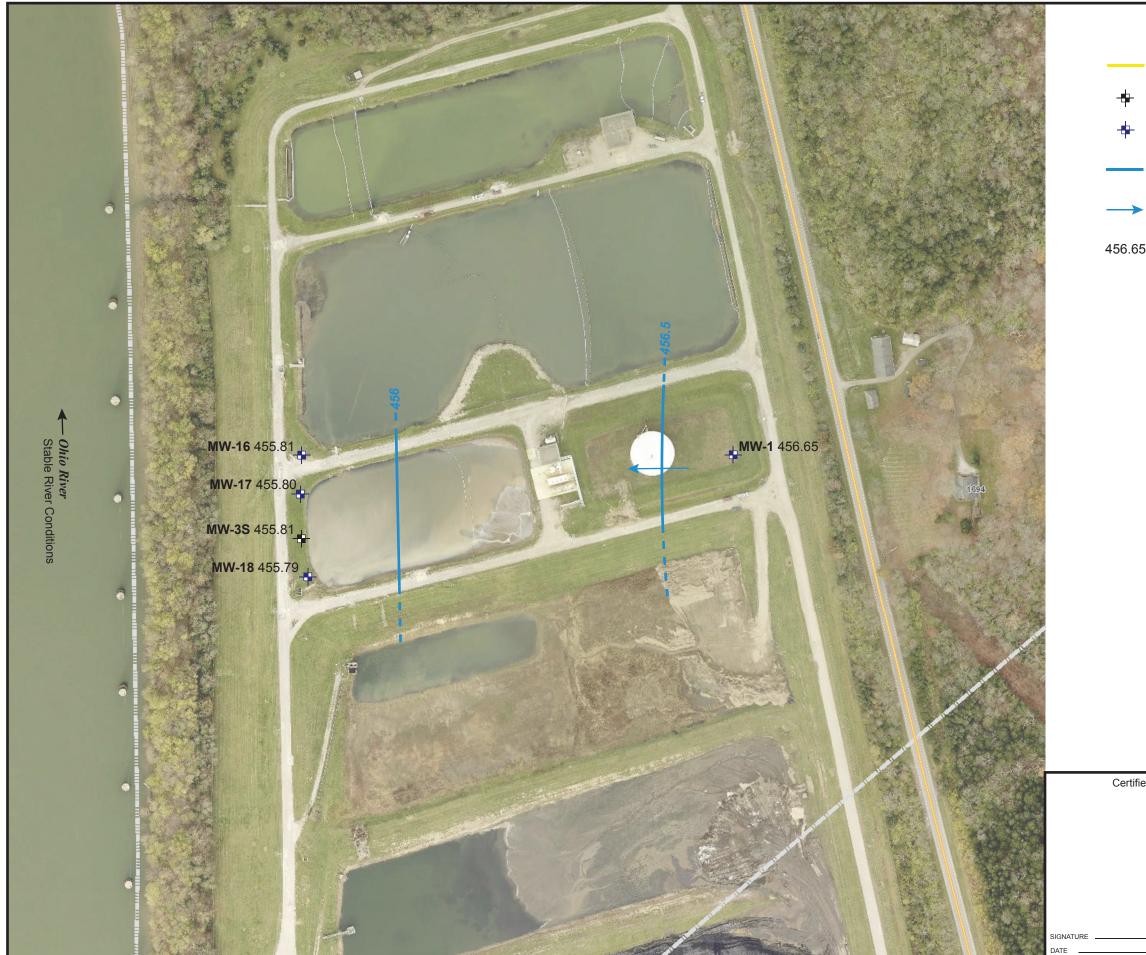
➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED SEPTEMBER 26, 2016

ed By:	Zimmer Sta DYNEGY						
	FIGURE 1						
	GROUNDWATER SURFACE MAP-						
	SEPTEMBER 26, 2016						
	COAL PILE RUNOFF POND (UNIT ID: 125)						
	CCR SAMPLING AND ANALYSIS PLAN						
	DATE REV NO. DWG. BY CHKD. BY						
	12/15/16	0	ALW	MAW			
	JOB NO. 604	142412		AECOM			


EXISTING MONITORING WELL LOCATION

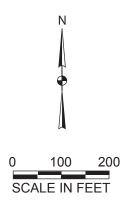
DOWNGRADIENT MONITORING WELL LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

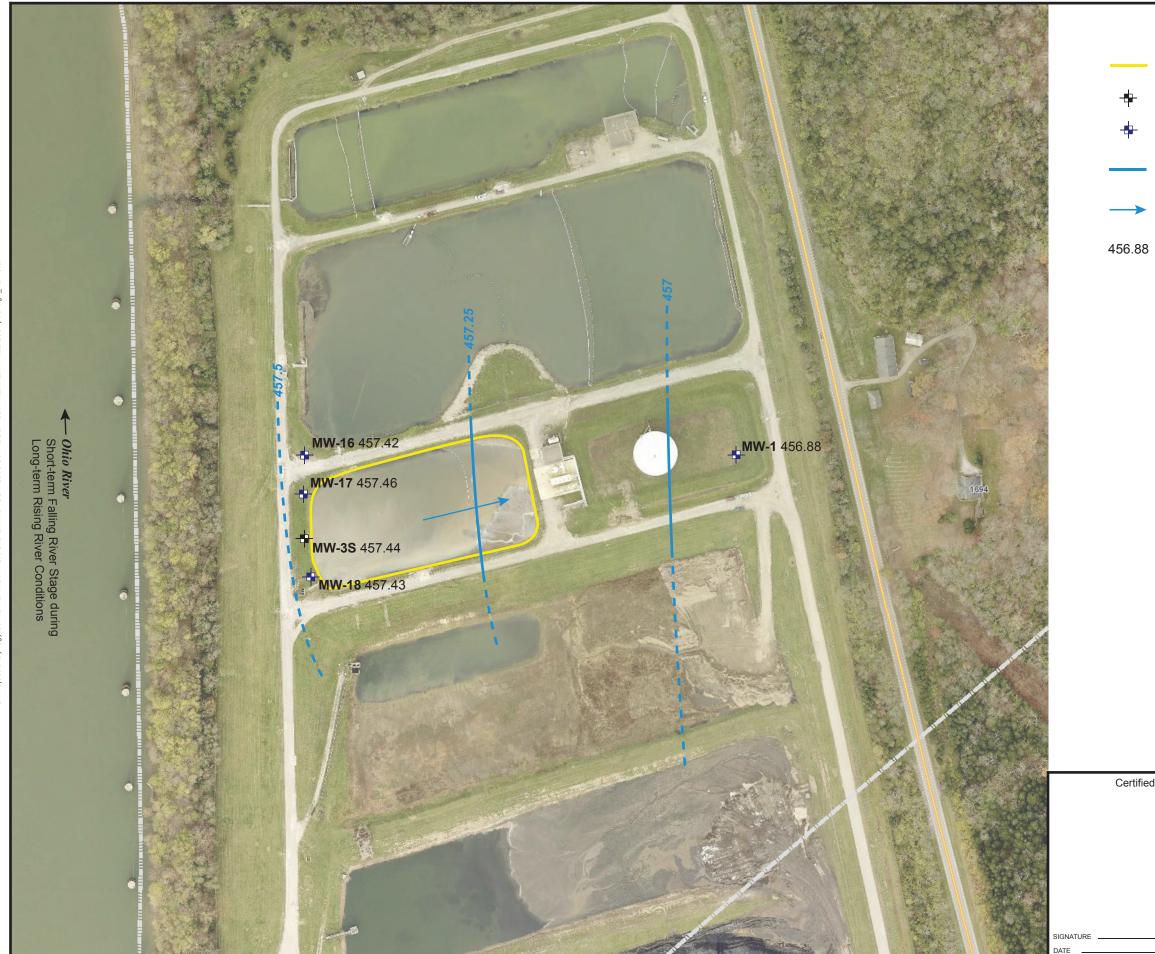
➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED OCTOBER 12, 2016

ed By:	Zimmer St. DYNEGY						
	FIGURE 1						
	GROUNDWATER SURFACE MAP-						
	OCTOBER 12, 2016						
	COAL PILE RUNOFF POND (UNIT ID: 125)						
	CCR SAMPLING AND ANALYSIS PLAN						
	DATE REV NO. DWG. BY CHKD. BY						
	- 12/16/16 0 ALW MAW						
	JOB NO. 604	142412		AECOM			


EXISTING MONITORING WELL LOCATION

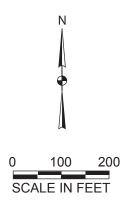
DOWNGRADIENT MONITORING WELL LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

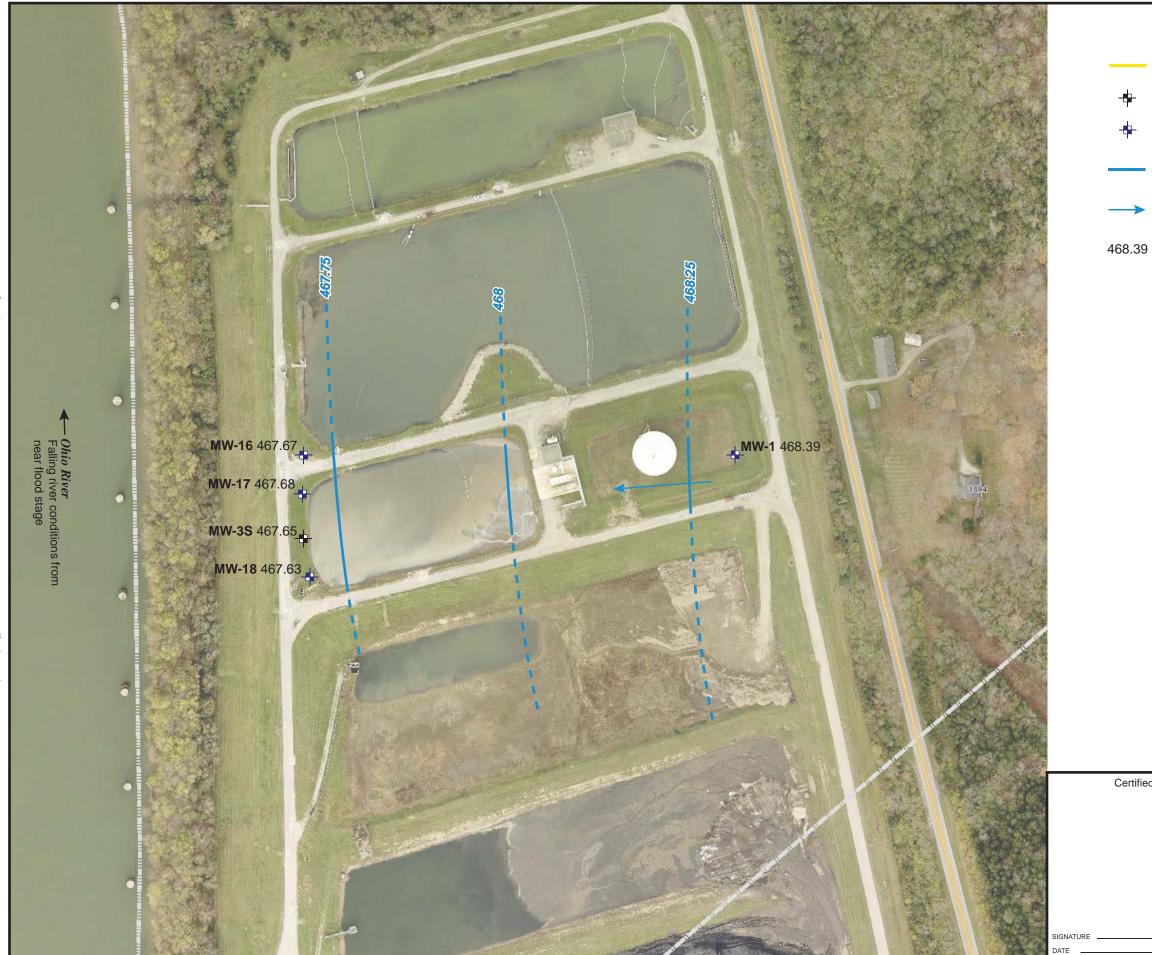
➤ GROUNDWATER FLOW DIRECTION

456.65 GROUNDWATER ELEVATION (FEET, MSL), MEASURED NOVEMBER 16, 2016

ed By:	Zimmer Sta Clermont County, C					
	FIGURE 1 GROUNDWATER SURFACE MAP- NOVEMBER 16, 2016 COAL PILE RUNOFF POND (UNIT ID: 125) CCR SAMPLING AND ANALYSIS PLAN					
	DATE REV NO. DWG. BY CHKD. BY					
	- 12/16/16 0 ALW MAW					
	JOB NO. 604	142412		AECOM		


EXISTING MONITORING WELL LOCATION

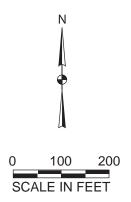
DOWNGRADIENT MONITORING WELL LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 12, 2016

ed By:	Zimmer Sta DYNEGY						
	FIGURE 1 GROUNDWATER SURFACE MAP-						
	DECEMBER 12, 2016 COAL PILE RUNOFF POND (UNIT ID: 125) CCR SAMPLING AND ANALYSIS PLAN						
	DATE REV NO. DWG. BY CHKD. BY						
<u> </u>	- 01/05/16 0 ALW MAW						
	JOB NO. 604	142412		AECOM			


EXISTING MONITORING WELL LOCATION

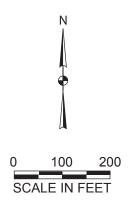
DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

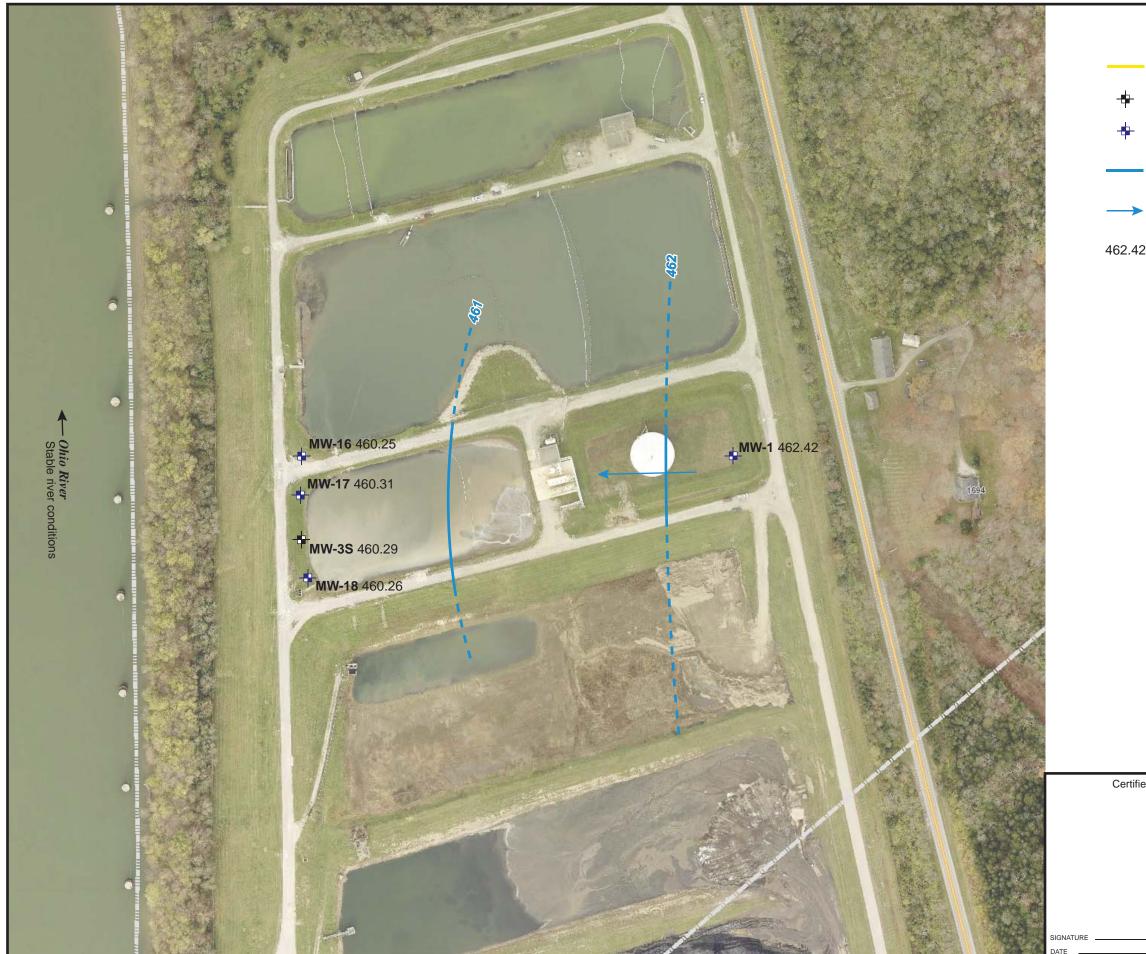
➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 8, 2017

ed By:	Zimmer S DYNEGY						
	FIGURE 1						
	GROUNDWATER SURFACE MAP-						
	MARCH 8, 2017						
	COAL PIL	E RUNOFF	POND (UNI	T ID: 125)			
	CCR SA	AMPLING AN	ND ANALYSI	S PLAN			
	DATE REV NO. DWG. BY CHKD. BY						
	09/07/17	0	ALW	MAW			
	JOB NO. 604	142412		AECOM			


EXISTING MONITORING WELL LOCATION

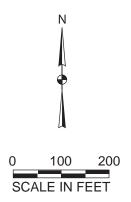
DOWNGRADIENT MONITORING WELL LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

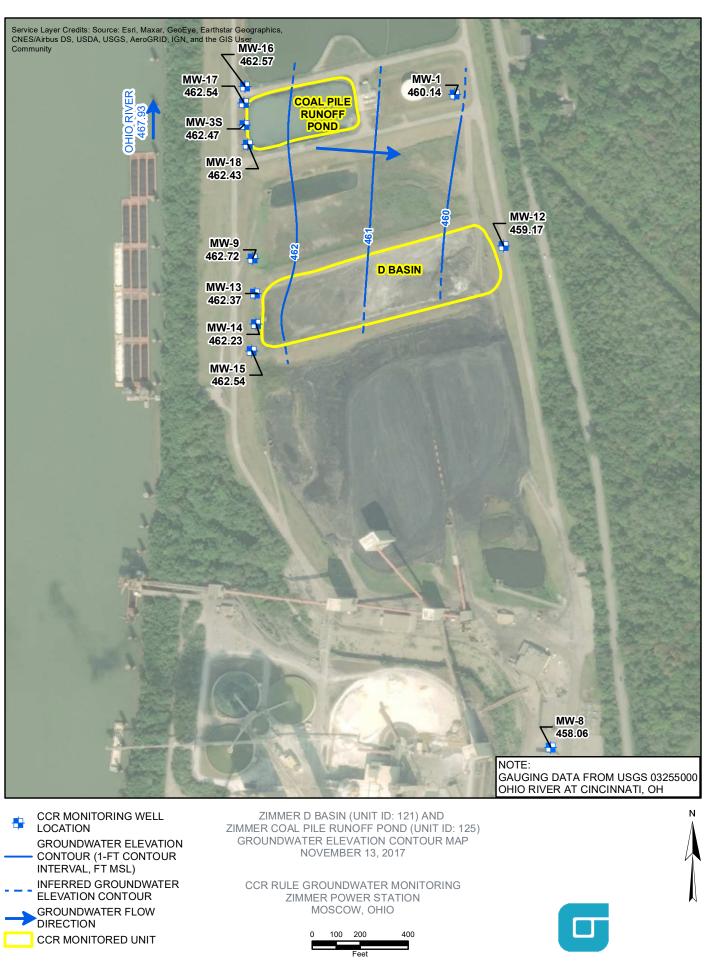
➤ GROUNDWATER FLOW DIRECTION

465.65 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 8, 2017

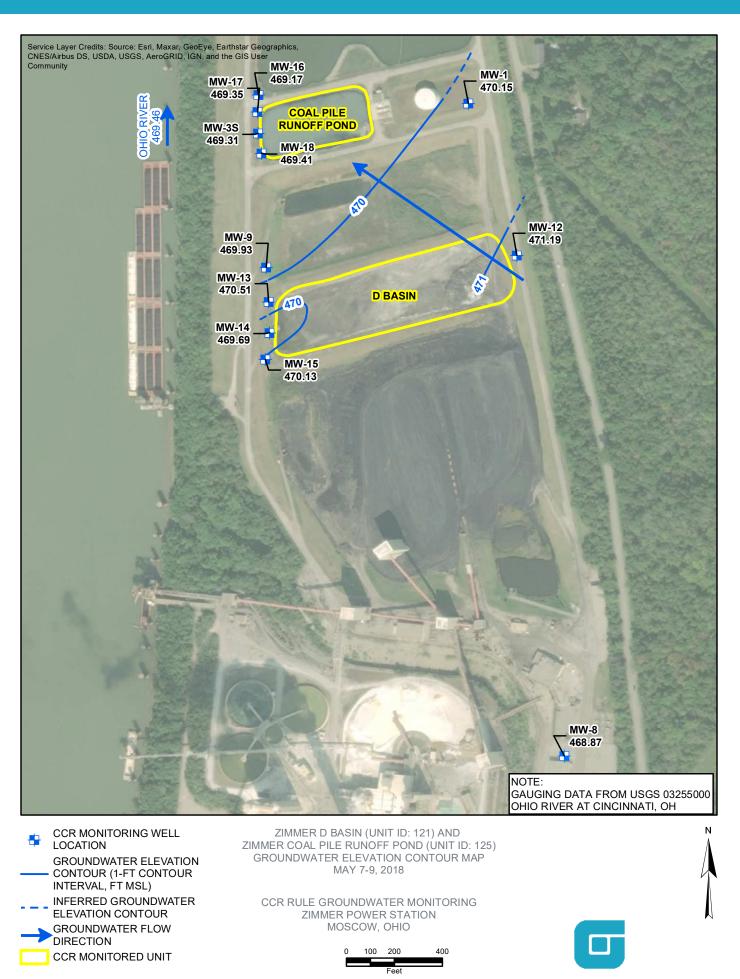
ed By:	Zimmer St DYNEGY						
	FIGURE 1						
	GROUNDWATER SURFACE MAP-						
	JUNE 8, 2017						
	COAL PIL	E RUNOFF	POND (UNI	T ID: 125)			
	CCR SAMPLING AND ANALYSIS PLAN						
	DATE REV NO. DWG. BY CHKD. BY						
	_ 09/07/17 0 ALW MAW						
	JOB NO. 604	142412		AECOM			


EXISTING MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION


462.42 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JULY 13, 2017

ed By:	Dyneg	Y Y		Zimmer Station t County, Ohio			
	FIGURE 1						
	GROUNDWATER SURFACE MAP-						
	JULY 13, 2017						
	COAL PILE RUNOFF POND (UNIT ID: 125)						
	CCR SA	AMPLING AN	ND ANALYSI	S PLAN			
	DATE REV NO. DWG. BY CHKD. BY						
	09/07/17	0	ALW	MAW			
	JOB NO. 60442412 AECON						

O'BRIEN & GERE ENGINEERS, INC.

1/28/2020 6:07:38 PM

ELEVATION CONTOUR

GROUNDWATER FLOW

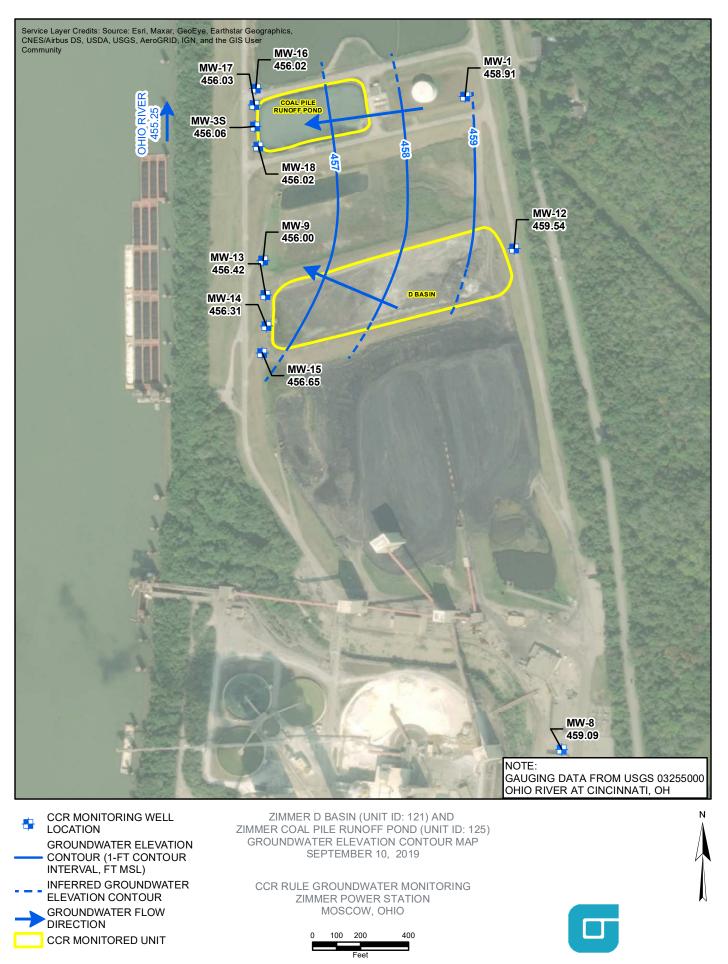
CCR MONITORED UNIT

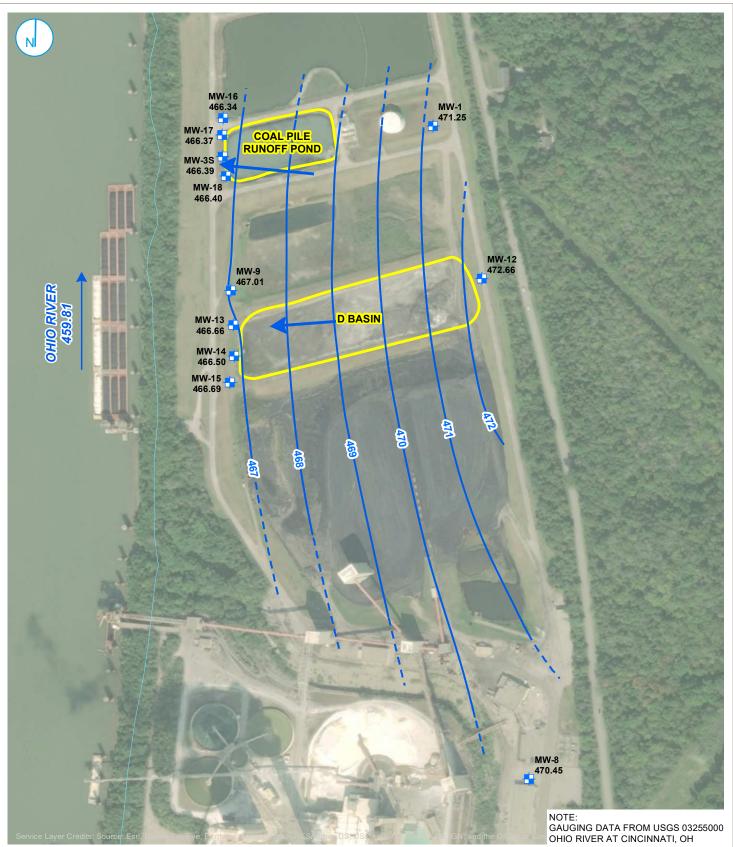

DIRECTION

100 200 400 Feet

ZIMMER POWER STATION MOSCOW, OHIO

0





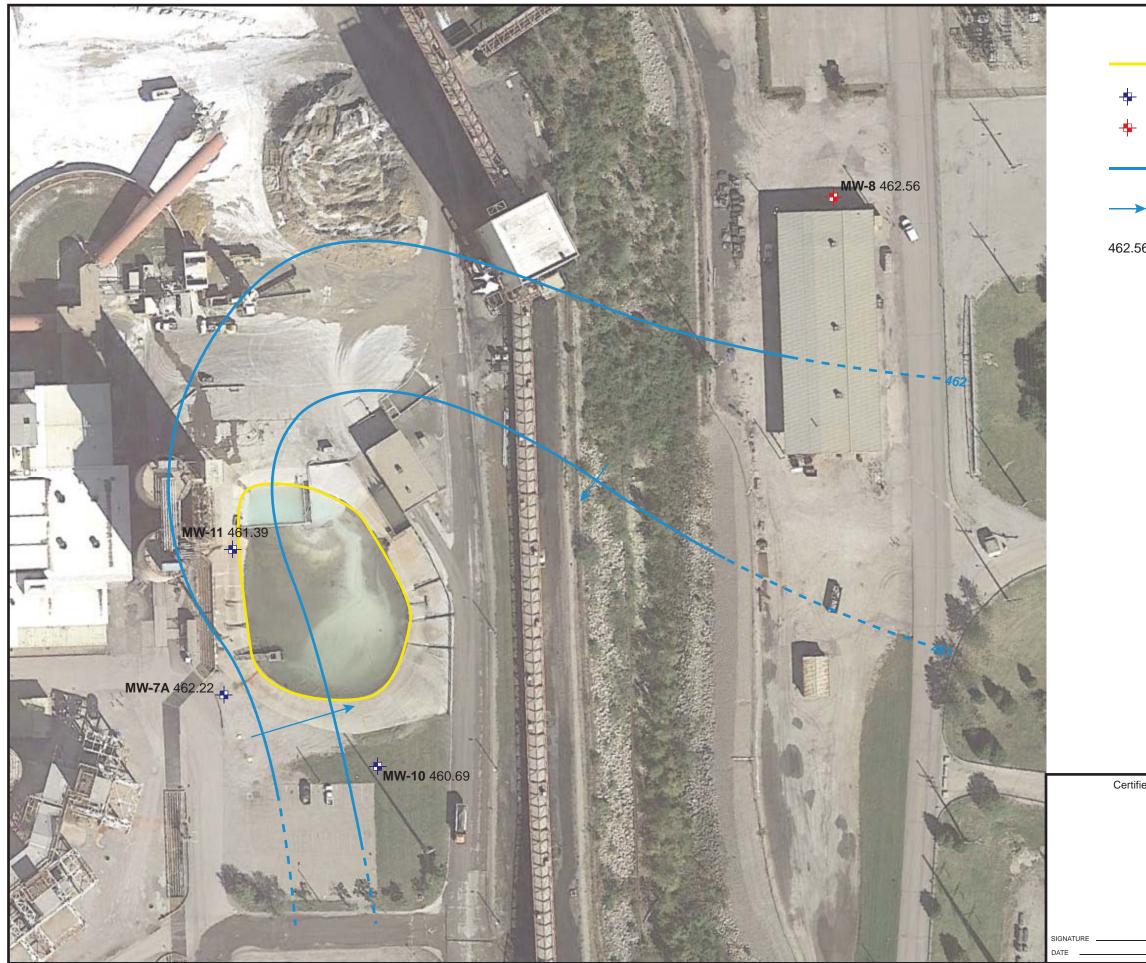
CCR MONITORED UNIT

100 200 400

0

CCR MONITORING WELL LOCATION
 GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, FT MSL)
 INFERRED GROUNDWATER ELEVATION CONTOUR
 GROUNDWATER FLOW DIRECTION
 SURFACE WATER FEATURE
 CCR MONITORED UNIT

200

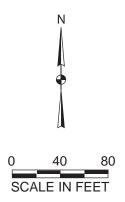

400

┛ Feet

GROUNDWATER ELEVATION CONTOUR MAP APRIL 9, 2020

ZIMMER D BASIN (UNIT ID: 121) AND ZIMMER COAL PILE RUNOFF POND (UNIT ID: 125) ZIMMER POWER STATION MOSCOW, OHIO RAMBOLL US CORPORATION A RAMBOLL COMPANY

DOWNGRADIENT MONITORING WELL LOCATION

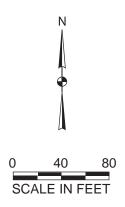

UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

→ GROUNDWATER FLOW DIRECTION

462.56 GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 29, 2015

NOTE- RISING OHIO RIVER CONDITIONS TO NEAR FLOOD STAGE

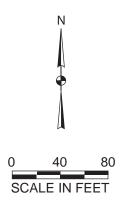

ed By:	Dyneg	Y Y		Zimmer Station ht County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	DECEMBER 29, 2015				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	08/04/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 468.40 GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 16, 2016

NOTE- RAPID RISING OHIO RIVER CONDITIONS FOLLOWING RAPID DECENDING CONDITIONS FROM NEAR FLOOD STAGE

ied By:	Dyneg	Y		Zimmer Station t County, Ohio	
		FIGU	IRE 1		
	GROUNDWATER SURFACE MAP-				
	MARCH 16, 2016				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. E				
<u> </u>	08/04/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

DOWNGRADIENT MONITORING WELL LOCATION


UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

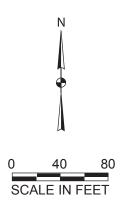
→ GROUNDWATER FLOW DIRECTION

461.68 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 15, 2016

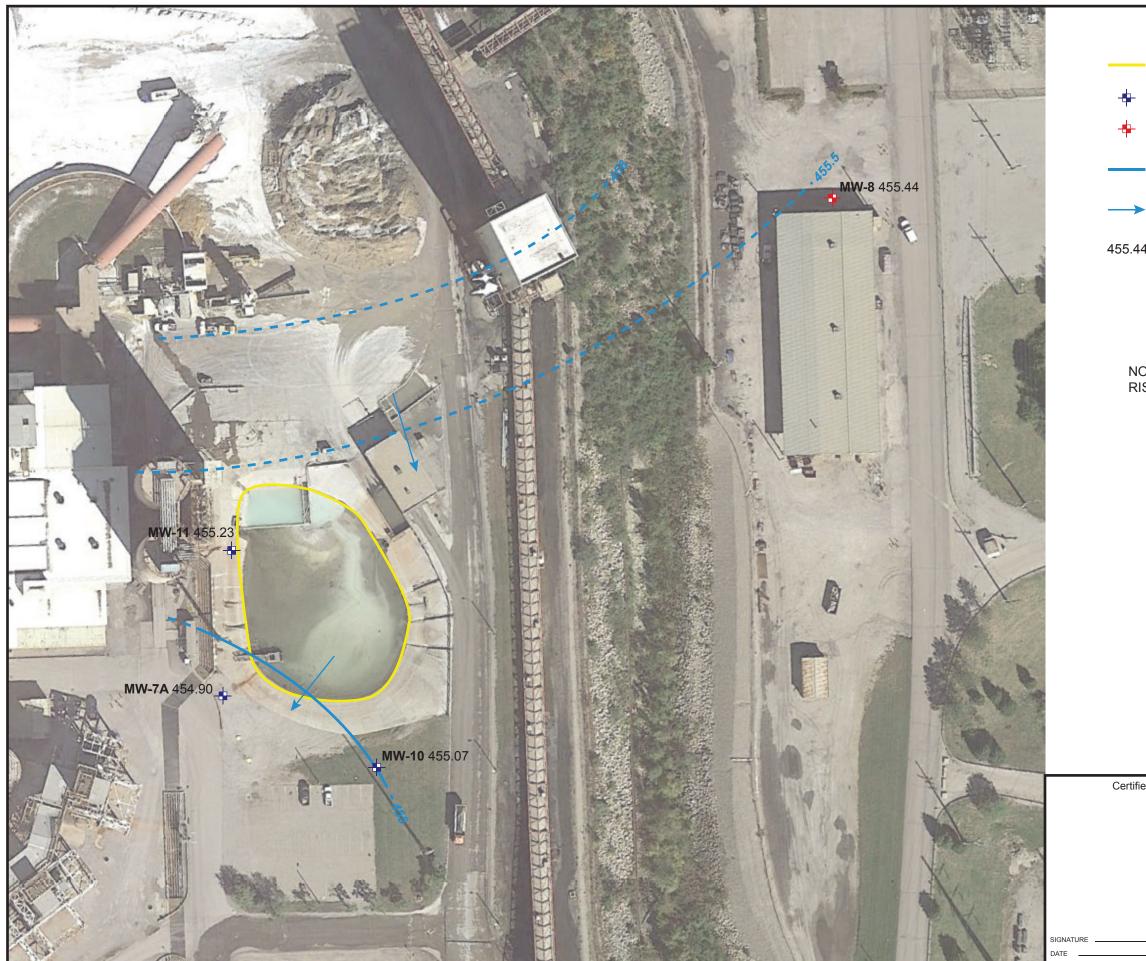
NOTE- STABLE OHIO RIVER CONDITIONS

ed By:	Dyneg	Y		Zimmer Station t County, Ohio	
	FIGURE 1				
	GRO	UNDWATER	SURFACE	MAP-	
	JUNE 15, 2016				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	08/04/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

DOWNGRADIENT MONITORING WELL LOCATION

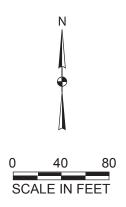

UPGRADIENT MONITORING WELL LOCATION

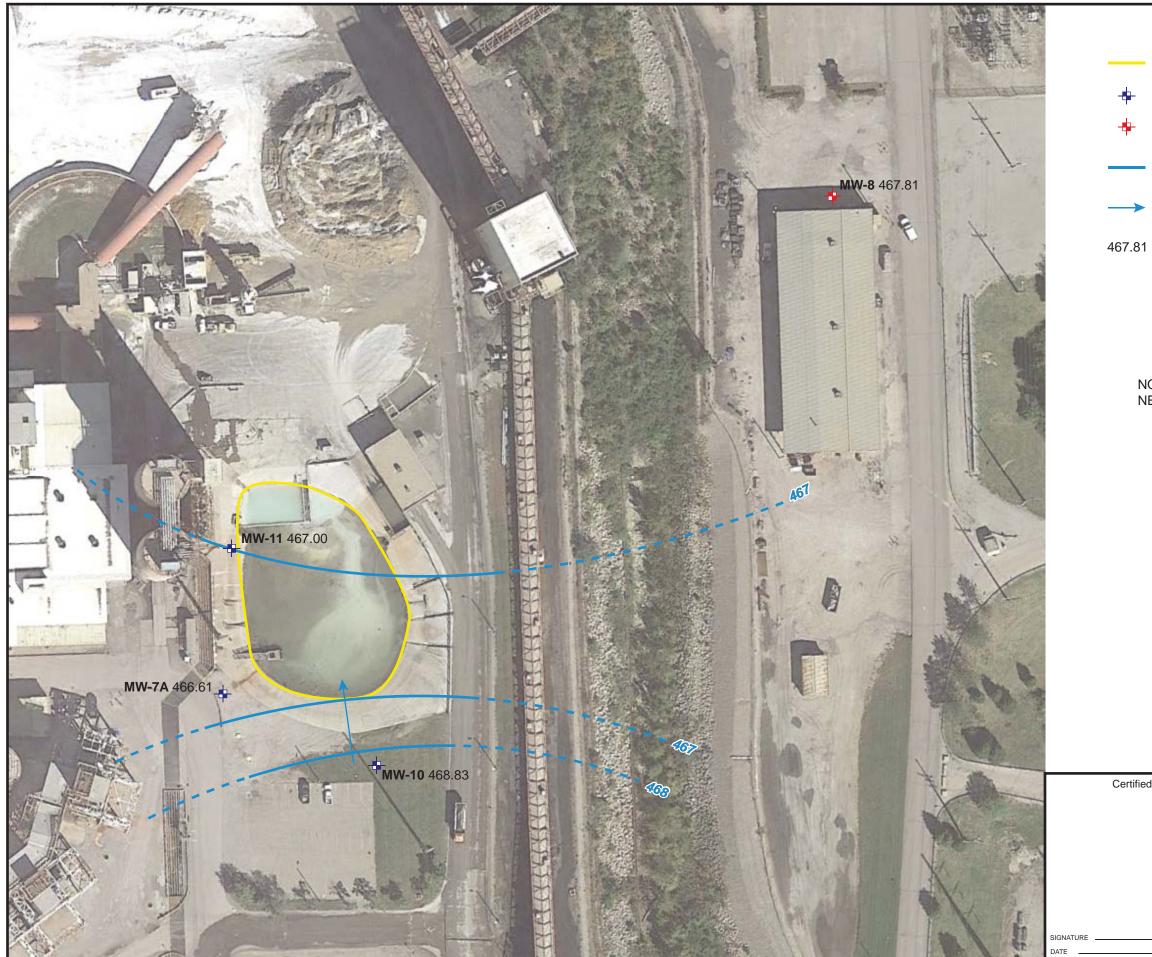
WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)


→ GROUNDWATER FLOW DIRECTION

455.20 GROUNDWATER ELEVATION (FEET, MSL), MEASURED SEPTEMBER 26, 2016

NOTE- STABLE OHIO RIVER CONDITIONS


ed By:	Dyneg	Y		Zimmer Station t County, Ohio	
	FIGURE 1				
	GRO	UNDWATER	SURFACE	MAP-	
	SEPTEMBER 26, 2016				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	12/44/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	


- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- ➤ GROUNDWATER FLOW DIRECTION
- 455.44 GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 12, 2016

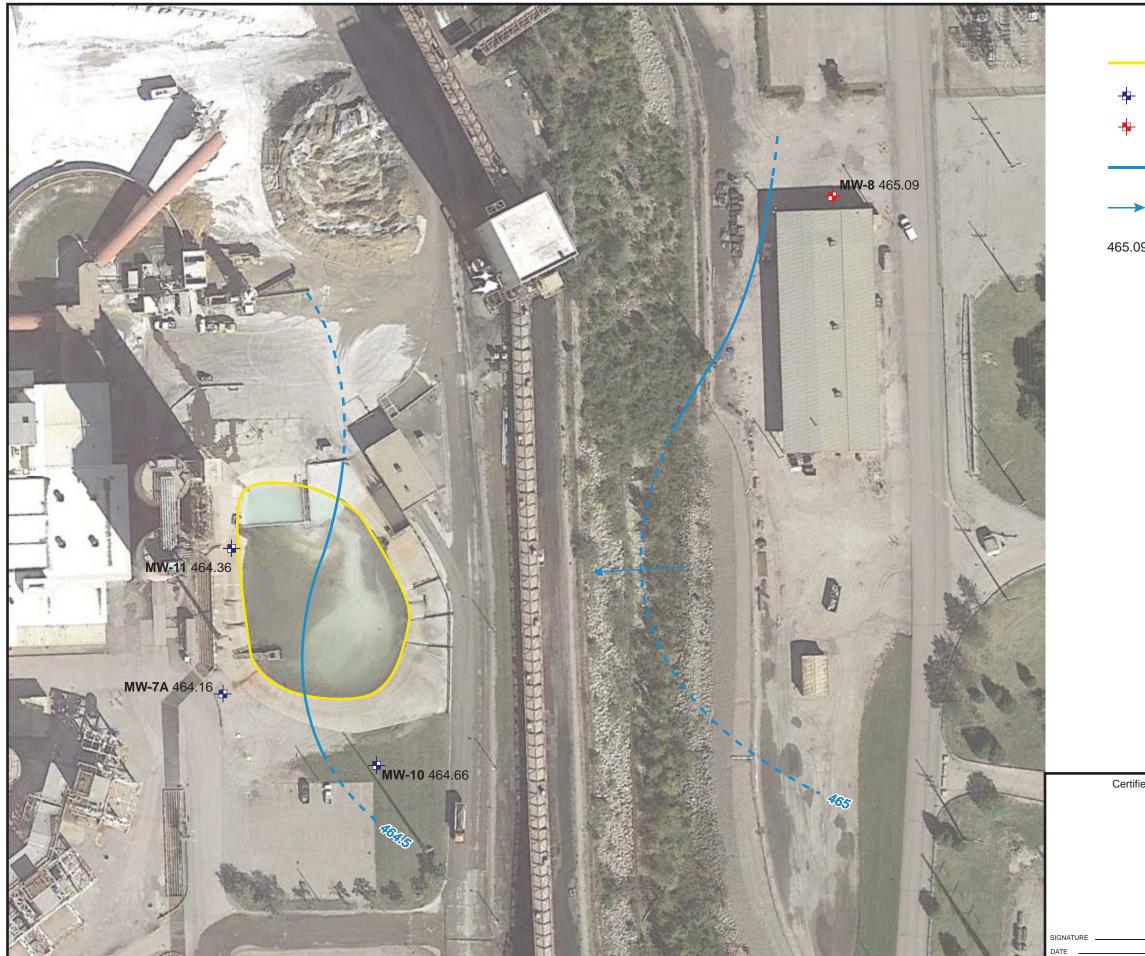
NOTE- SHORT-TERM FALLING RIVER STAGE DURING RISING LONG-TERM OHIO RIVER CONDITIONS

ed By:	Dyneg	Y	_	Zimmer Station It County, Ohio	
		FIGU	IRE 1		
	GROUNDWATER SURFACE MAP-				
	DECEMBER 12, 2016				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. E				
	01/05/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

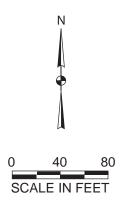

→ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 8, 2017

NOTE- FALLING OHIO RIVER CONDITIONS FROM NEAR FLOOD STAGE

ed By:	Dyneg	Y		Zimmer Station t County, Ohio	
		FIGU	IRE 1		
	GROUNDWATER SURFACE MAP-				
	MARCH 8, 2017				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	09/19/17	0	ALW	MAW	
	JOB NO. 604	42412		AECOM	

DOWNGRADIENT MONITORING WELL LOCATION


UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)


→ GROUNDWATER FLOW DIRECTION

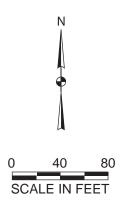
465.09 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 8, 2017

NOTE- FALLING OHIO RIVER CONDITIONS

ed By:	Dyneg	Y Y		Zimmer Station t County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	JUNE 8, 2017				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	09/19/17	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

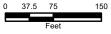
→ GROUNDWATER FLOW DIRECTION


GROUNDWATER ELEVATION (FEET, MSL), MEASURED JULY 13, 2017

NOTE- STABLE OHIO RIVER CONDITIONS

ed By:	Dyneg	Y		immer Station t County, Ohio
		FIGU	IRE 1	
	GROUNDWATER SURFACE MAP-			
	JULY 13, 2017			
	GYPSUM RECYCLING POND (UNIT ID: 124)			
	CCR SAMPLING AND ANALYSIS PLAN			
	DATE	REV NO.	DWG. BY	CHKD. BY
	09/19/17	0	ALW	MAW
	JOB NO. 604	142412		AECOM

 CCR MONITORING WELL LOCATION
 GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, FT MSL)
 INFERRED GROUNDWATER CONTOUR
 GROUNDWATER FLOW DIRECTION

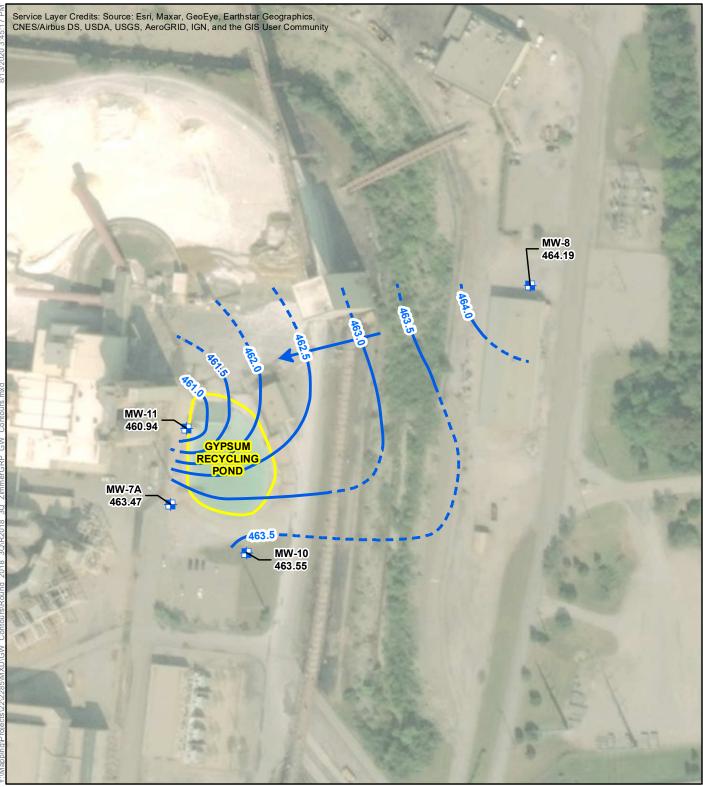

CCR MONITORED UNIT

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP NOVEMBER 13, 2017

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

CCR MONITORING WELL LOCATION GROUNDWATER ELEVATION CONTOUR (0.5-FT CONTOUR INTERVAL, FT MSL) INFERRED GROUNDWATER CONTOUR GROUNDWATER FLOW DIRECTION CCR MONITORED UNIT


ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP MAY 9, 2018

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

CCR MONITORING WELL LOCATION GROUNDWATER ELEVATION CONTOUR (0.5-FT CONTOUR INTERVAL, FT MSL) INFERRED GROUNDWATER CONTOUR GROUNDWATER FLOW DIRECTION CCR MONITORED UNIT

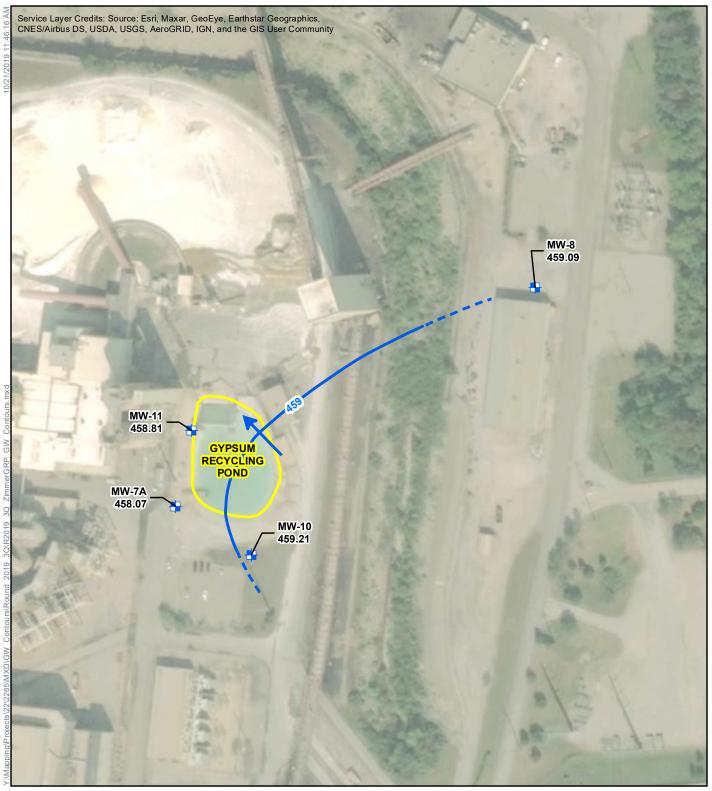
ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP MAY 9, 2018

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

0 37.5 75 150

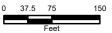
- CCR MONITORING WELL LOCATION
 GROUNDWATER ELEVATION
 CONTOUR (0.25-FT CONTOUR INTERVAL, FT MSL)
 INFERRED GROUNDWATER CONTOUR
 ODOL/NEW/ATER ELOW/
- GROUNDWATER FLOW DIRECTION CCR MONITORED UNIT


ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP MARCH 12, 2019

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

0 37.5 75 150


- CCR MONITORING WELL LOCATION GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, FT MSL) INFERRED GROUNDWATER CONTOUR GROUNDWATER FLOW
 - DIRECTION

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP SEPTEMBER 10, 2019

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

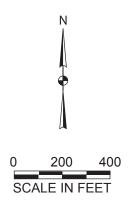
50

100 J Feet

 CCR MONITORING WELL LOCATION
 GROUNDWATER ELEVATION CONTOUR (0.5-FT CONTOUR INTERVAL, FT MSL)
 INFERRED GROUNDWATER ELEVATION CONTOUR
 GROUNDWATER FLOW DIRECTION
 CCR MONITORED UNIT

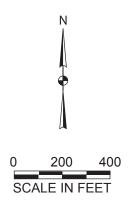
GROUNDWATER ELEVATION CONTOUR MAP APRIL 9, 2020

> RAMBOLL US CORPORATION A RAMBOLL COMPANY

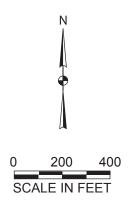


ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) ZIMMER POWER STATION MOSCOW, OHIO

AProject/D/Dynegy/60442412 Miami Fort and Zimmer CCR 2015-2017/Data-Tech/TI/ZIM/ZIM PIEZ/basin d fig1_12-15.

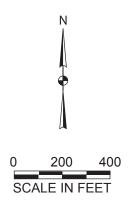

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 463.65 GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 29, 2015

ed By:	Dyneg	Y		immer Station t County, Ohio	
		FIGU	IRE 1		
	GROUNDWATER SURFACE MAP-				
	DECEMBER 29, 2015				
	D BASIN (UNIT ID: 121)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. B				
	08/04/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	


- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 469.30 GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 16, 2016

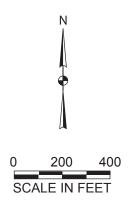
ed By:	Dyneg	Y		immer Station t County, Ohio
	FIGURE 1			
	GROUNDWATER SURFACE MAP-			
	MARCH 16, 2016			
	D BASIN (UNIT ID: 121)			
	CCR SAMPLING AND ANALYSIS PLAN			
	DATE	REV NO.	DWG. BY	CHKD. BY
	08/04/16	0	ALW	MAW
	JOB NO. 604	142412		AECOM

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 461.87 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 15, 2016

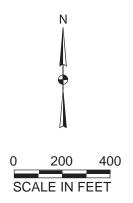


ed By:	Dyneg	Ŷ	_	Zimmer Station t County, Ohio
	FIGURE 1			
	GROUNDWATER SURFACE MAP-			
	JUNE 15, 2016			
	D BASIN (UNIT ID: 121)			
	CCR SAMPLING AND ANALYSIS PLAN			
	DATE	REV NO.	DWG. BY	CHKD. BY
	08/04/16	0	ALW	MAW
	JOB NO. 604	142412		AECOM

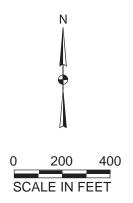
J:/Project/D/Dynegy/60442412 Miami Fort and Zimmer CCR 2015-2017/Data-Tech/TI/ZIM/ZIM PIEZ/basin d fig1_9-16.


- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 456.53 GROUNDWATER ELEVATION (FEET, MSL), MEASURED SEPTEMBER 26, 2016

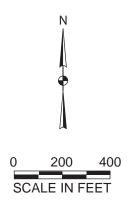
ied By:	Dyneg	Y		Zimmer Station t County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	SEPTEMBER 26, 2016				
	D BASIN (UNIT ID: 121)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. E				
<u> </u>	12/14/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

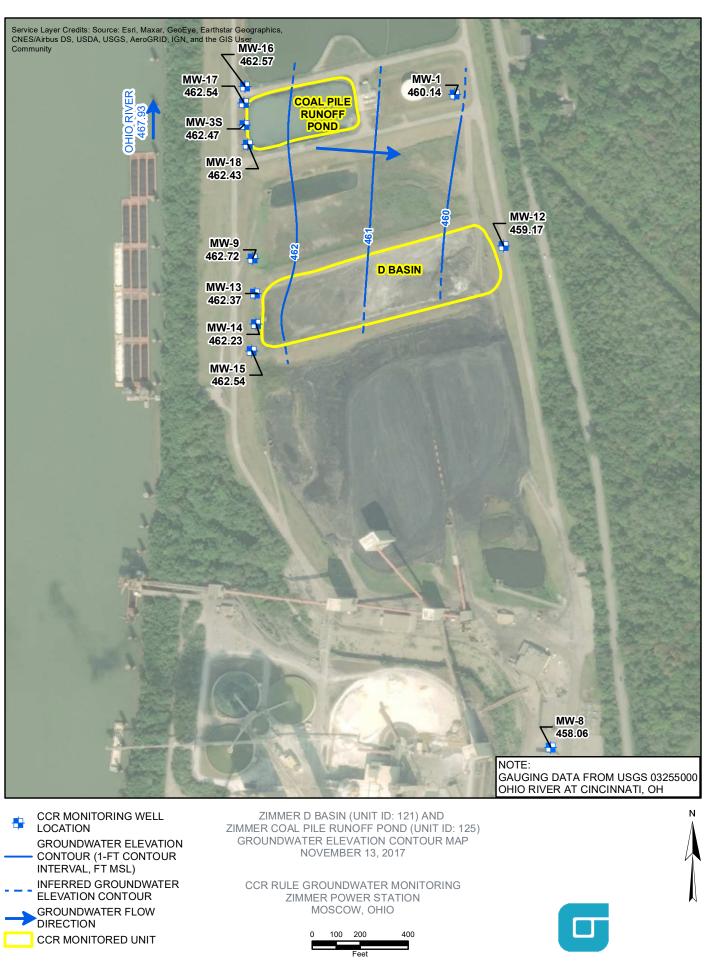

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
 - 7 GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 12, 2016

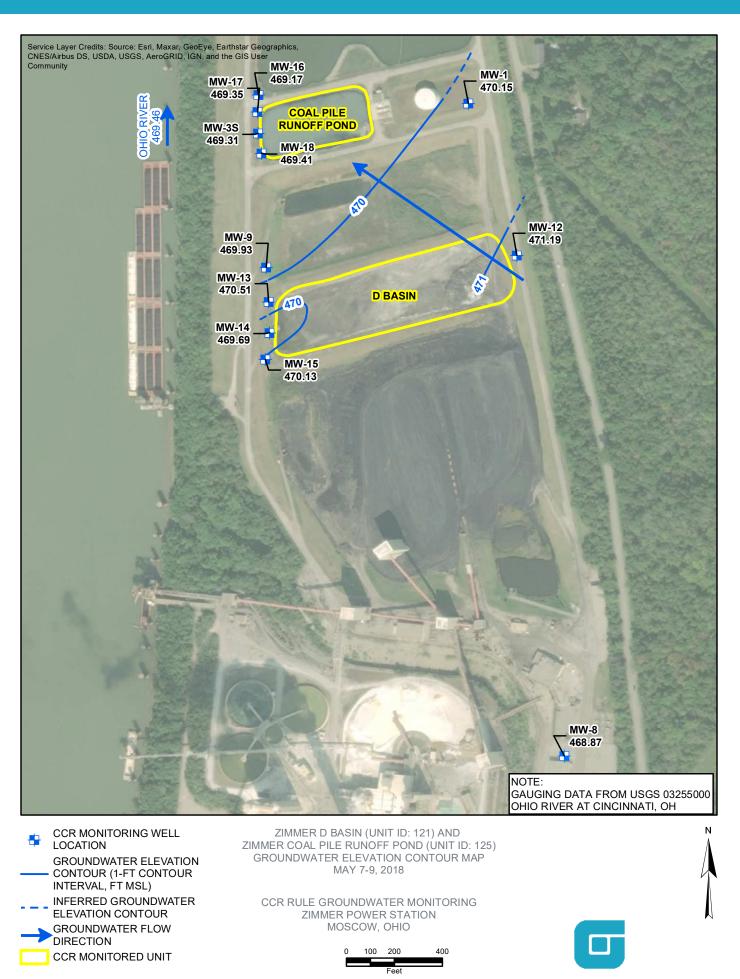
ed By:	Zimmer Statio DYNEGY						
		FIGU	IRE 1				
	GROUNDWATER SURFACE MAP-						
	DECEMBER 12, 2016						
	D BASIN (UNIT ID: 121)						
	CCR SAMPLING AND ANALYSIS PLAN						
	DATE	REV NO.	DWG. BY	CHKD. BY			
	01/05/16	0	ALW	MAW			
	JOB NO. 604	142412		AECOM			


- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 468.36 GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 8, 2017

ed By:	Zimmer Static Clermont County, Oh					
		FIGU	IRE 1			
	GROUNDWATER SURFACE MAP-					
	MARCH 8, 2017					
	D BASIN (UNIT ID: 121)					
	CCR SAMPLING AND ANALYSIS PLAN					
	DATE	REV NO.	DWG. BY	CHKD. BY		
	09/08/17	0	ALW	MAW		
	JOB NO. 604	142412		AECOM		


- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 466.54 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 8, 2017


ied By:	Dyneg	Y		Zimmer Station t County, Ohio		
		FIGU	IRE 1			
	GROUNDWATER SURFACE MAP-					
	JUNE 8, 2017					
	D BASIN (UNIT ID: 121) CCR SAMPLING AND ANALYSIS PLAN					
	DATE	REV NO.	DWG. BY	CHKD. BY		
	09/08/17	0	ALW	MAW		
	JOB NO. 604	142412		AECOM		



- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 463.14 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JULY 13, 2017

ed By:	Zimmer Statio Clermont County, Ohi					
		FIGU	IRE 1			
	GROUNDWATER SURFACE MAP-					
	JULY 13, 2017					
	D BASIN (UNIT ID: 121)					
	CCR SAMPLING AND ANALYSIS PLAN					
	DATE	REV NO.	DWG. BY	CHKD. BY		
	09/08/17	0	ALW	MAW		
	JOB NO. 604	142412		AECOM		

1/28/2020 6:07:38 PM

ZIMMER POWER STATION MOSCOW, OHIO

Feet

400

100 200

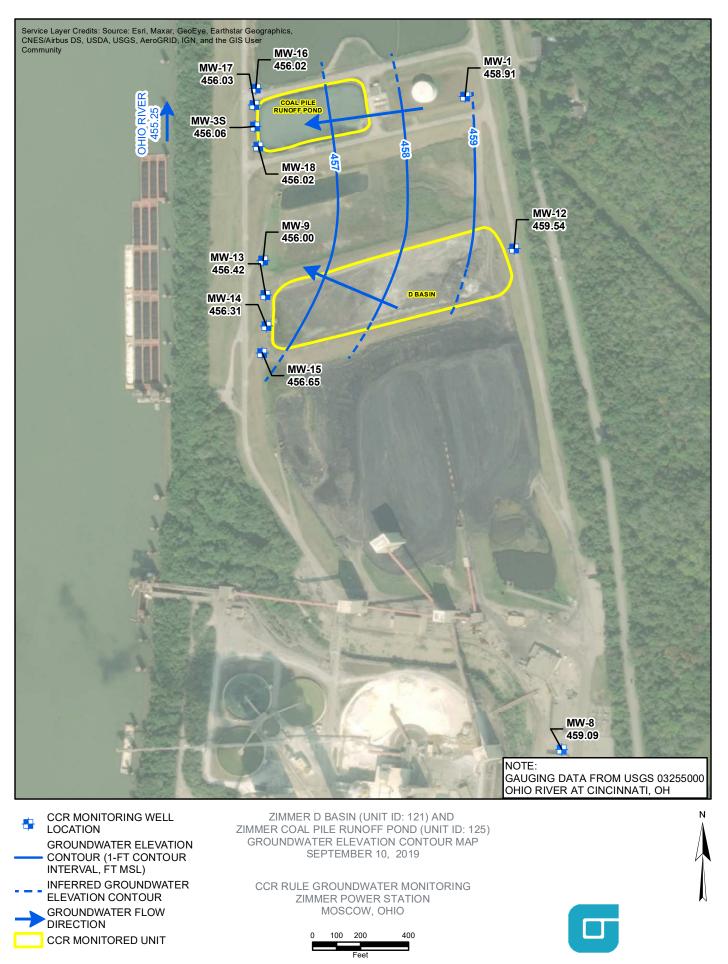
0

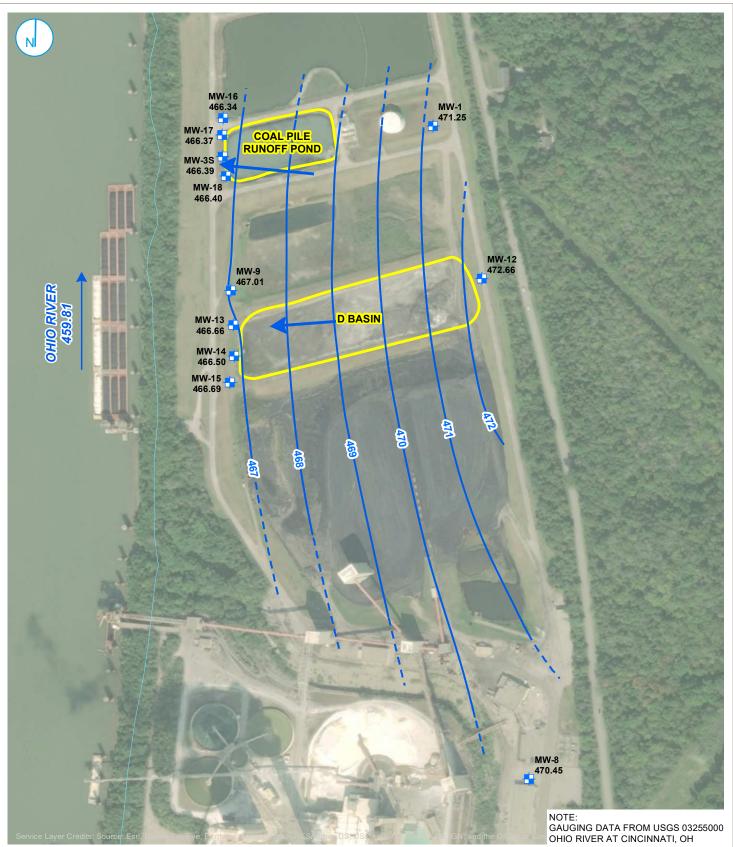

ELEVATION CONTOUR

GROUNDWATER FLOW

CCR MONITORED UNIT

DIRECTION





CCR MONITORED UNIT

100 200 400

0

CCR MONITORING WELL LOCATION
 GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, FT MSL)
 INFERRED GROUNDWATER ELEVATION CONTOUR
 GROUNDWATER FLOW DIRECTION
 SURFACE WATER FEATURE
 CCR MONITORED UNIT

200

400

┛ Feet

GROUNDWATER ELEVATION CONTOUR MAP APRIL 9, 2020

ZIMMER D BASIN (UNIT ID: 121) AND ZIMMER COAL PILE RUNOFF POND (UNIT ID: 125) ZIMMER POWER STATION MOSCOW, OHIO RAMBOLL US CORPORATION A RAMBOLL COMPANY

APPENDIX C4 – TABLES SUMMARIZING CONSTITUENT CONCENTRATIONS AT EACH MONITORING WELL

Analytical Results - Appendix III

Zimmer Coal Pile Runoff Pond

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
Background								
MW-1	12/30/2015	0.072	155	48.5	0.2	7.2	90.1	544
MW-1	03/16/2016	0.0233	206	59.1	0.146	7.1	85.2	583
MW-1	06/16/2016	0.0389	154	59.6	<1	7	95.3	648
MW-1	09/26/2016	0.0349	160	64.9	<1	7.1	93.1	621
MW-1	12/13/2016	0.0322	165	52.4	<1	7	93.3	561
MW-1	03/09/2017	<0.08	150	58.2	<1	8.3	85.9	589
MW-1	06/08/2017	<0.08	171	65.5	<1	7.1	87	582
MW-1	07/13/2017	<0.08	144	61.3	<1	7	79	608
MW-1	11/13/2017	<0.08	150	53.1	<1	6.9	89.1	571
MW-1	05/09/2018	<1	157	71	<1	7	88.9	631
MW-1	09/27/2018	<0.08	163	62.7	<1	6.9	113	578
MW-1	03/14/2019	<0.08	152	78.7	<1	7	90.2	617
MW-1	09/11/2019	<0.08	167	63.1	<1	7	90.6	637
MW-1	04/09/2020	0.123	170	80.5	<0.15	6.7	92.3	592
MW-1	09/16/2020	0.0365	169	84.3	<0.15	7.1	99.1	644
MW-1	03/22/2021	0.082	173	79.2	0.166	7	99.2	613
Complian	Compliance							
MW-3S	08/31/2016	0.109	194	<60	<1	6.9	371	860
MW-3S	09/26/2016	0.209	188	54.7	<1	6.9	338	830
MW-3S	10/12/2016	0.0983	168	66.3	<1	6.9	328	779
MW-3S	11/16/2016	0.071	169	44	<1	7.5	268	706

Analytical Results - Appendix III

Zimmer Coal Pile Runoff Pond

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-3S	12/12/2016	0.0567	131	36.4	<1	6.7	179	559
MW-3S	03/09/2017	<0.08	139	37.2	<1	8.3	242	665
MW-3S	06/08/2017	<0.08	208	69.5	<1	7	384	892
MW-3S	07/13/2017	0.0984	201	<60	<1	7.2	399	934
MW-3S	11/13/2017	<0.08	127	33.8	<1	6.5	176	560
MW-3S	05/09/2018	<1	115	32.1	<1	6.7	151	568
MW-3S	09/19/2018	0.188	162	41.3	<1	6.7	251	720
MW-3S	03/15/2019	0.143	160	37.3	<1	6.9	199	683
MW-3S	09/11/2019	1.91	228	39.2	<1	7.6	532	1090
MW-3S	04/10/2020	1.03	221	43	<0.15	7	447	949
MW-3S	09/16/2020	2.44	210	26.5	<0.15	7.2	550	1030
MW-3S	03/23/2021	1.14	190	25.4	<0.15	6.7	382	833
MW-16	08/31/2016	0.0506	143	41.8	<1	6.4	198	642
MW-16	09/26/2016	0.102	163	42.2	<1	6.8	173	639
MW-16	10/12/2016	0.0689	149	51.6	<1	7.2	172	609
MW-16	11/16/2016	0.0446	151	38.8	<1	6.4	168	628
MW-16	12/12/2016	0.0527	151	37.8	<1	7	175	612
MW-16	03/09/2017	<0.08	106	28	<1	8.5	121	484
MW-16	06/08/2017	<0.08	132	31.8	<1	7.1	155	541
MW-16	07/13/2017	<0.08	135	36.1	<1	7.2	161	605
MW-16	11/13/2017	<0.08	139	38.8	<1	7	169	592
MW-16	05/09/2018	<1	128	32.3	<1	7	145	571

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-16	09/19/2018	<0.08	153	38.5	<1	6.9	175	640
MW-16	03/15/2019	<0.08	153	39.4	<1	7	160	621
MW-16	09/12/2019	0.13	156	45.5	<1	6.8	187	686
MW-16	04/10/2020	0.0621	162	47.6	0.151	6.9	197	687
MW-16	09/16/2020	0.087	169	48.6	<0.15	7.1	253	741
MW-16	03/23/2021	0.133	170	47.1	<0.15	6.9	232	709
MW-17	08/31/2016	0.0584	128	36.3	<1	7.1	190	646
MW-17	09/26/2016	0.0757	147	32	<1	7.1	181	622
MW-17	10/12/2016	0.0478	126	39.5	<1	7.4	174	596
MW-17	11/16/2016	0.0447	142	38.7	<1	6.4	167	615
MW-17	12/12/2016	0.0569	145	37.6	<1	7.2	184	608
MW-17	03/09/2017	<0.08	112	<30	<1	8.4	159	528
MW-17	06/08/2017	<0.08	135	31.7	<1	7.1	182	602
MW-17	07/13/2017	<0.08	137	70.2	<1	7.1	390	626
MW-17	11/13/2017	<0.08	145	39.4	<1	7.1	180	627
MW-17	05/09/2018	<1	125	34.9	<1	7.1	167	603
MW-17	09/19/2018	<0.08	152	35.8	<1	6.9	187	659
MW-17	03/15/2019	<0.08	144	38.3	<1	7.1	174	620
MW-17	09/12/2019	0.0889	177	47.8	<1	7	280	776
MW-17	04/10/2020	0.0608	178	51.1	0.162	7	283	767
MW-17	09/16/2020	0.301	184	46.7	<0.15	7.1	337	840
MW-17	03/23/2021	0.209	192	46.9	0.169	7	346	783

Zimmer Coal Pile Runoff Pond

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-18	08/31/2016	4.54	312	67.4	<1	7	973	1640
MW-18	09/26/2016	4.11	321	70.6	<1	7.2	874	1660
MW-18	10/12/2016	3.78	287	66.2	<1	7.3	924	1570
MW-18	11/16/2016	4.46	307	<60	<1	7.7	1130	1570
MW-18	12/12/2016	5.14	336	63.3	<1	7.1	918	1570
MW-18	03/09/2017	4.43	287	77.9	<1	8.3	844	1510
MW-18	06/08/2017	3.27	311	59.1	<1	7	883	1440
MW-18	07/13/2017	4.85	318	70.8	<1	7.2	1170	1760
MW-18	11/13/2017	3.72	322	54	<1	6.9	931	1520
MW-18	05/09/2018	2.62	249	56.5	<1	7	748	1450
MW-18	09/19/2018	4.32	306	52.1	<1	6.9	795	1600
MW-18	03/15/2019	2.77	262	49	<1	7	711	1370
MW-18	09/12/2019	3	226	30.8	<1	7.1	612	1210
MW-18	04/10/2020	3.56	272	43.2	0.161	7	771	1300
MW-18	09/16/2020	2.76	179	19.1	<0.15	7.3	548	976
MW-18	03/23/2021	3.57	215	27.5	0.178	7.2	669	1160

Notes:

1. Abbreviations: mg/L - milligrams per liter; STD - standard units

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
Backgrou	nd															
MW-1	12/30/2015	<0.002	0.00142	0.0655	<0.002	<0.001	0.00191	<0.005	0.2	<0.005	<0.5	<0.0002	<0.01	<0.426	<0.01	<0.001
MW-1	03/16/2016	<0.01	<0.025	0.0863	<0.01	<0.005	<0.015	<0.025	0.146	<0.025	0.0101	<0.0002	<0.05	<0.937	<0.05	<0.005
MW-1	06/16/2016	<0.002	<0.001	0.0601	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.603	<0.005	<0.001
MW-1	09/26/2016	<0.002	<0.001	0.0627	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.168	<0.005	<0.001
MW-1	12/13/2016	<0.002	<0.001	0.0629	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	0.0002	<0.005	<5	<0.005	<0.001
MW-1	03/09/2017	<0.002	<0.001	0.0587	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0107	<0.0002	<0.005	<5	<0.005	<0.001
MW-1	06/08/2017	<0.002	<0.001	0.0643	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0116	<0.0002	<0.005	<5	<0.005	<0.001
MW-1	07/13/2017	<0.002	<0.001	0.0566	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-1	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-1	05/09/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-1	09/27/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-1	03/14/2019	<0.002	<0.001	0.0665	<0.001	<0.001	0.0023	<0.0005	<1	<0.001	0.00665	<0.0002	<0.005	<5	<0.005	<0.001
MW-1	09/11/2019	NA	<0.001	0.077	<0.001	NA	<0.002	<0.0005	<1	<0.001	0.0109	NA	<0.005	<5	<0.005	NA
MW-1	04/09/2020	<0.004	<0.002	0.0725	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00964	<0.0002	<0.005	0.0302	<0.002	<0.002
MW-1	09/16/2020	NA	<0.002	0.073	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00966	NA	<0.005	0.215	<0.002	NA
MW-1	03/22/2021	<0.004	<0.002	0.0713	<0.002	<0.001	<0.002	<0.002	0.166	<0.002	0.00782	<0.0002	<0.005	0.0171	<0.002	<0.002
Complian	ce		<u>.</u>	-			<u>.</u>		<u>.</u>	<u>.</u>	-	-	<u>-</u>		<u>.</u>	
MW-3S	08/31/2016	<0.002	<0.001	0.0519	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.138	<0.005	<0.001
MW-3S	09/26/2016	<0.002	<0.001	0.0515	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.364	0.00588	<0.001
MW-3S	10/12/2016	<0.002	<0.001	0.0508	<0.001	<0.001	<0.002	<0.0005	<1	0.00182	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-3S	11/16/2016	<0.002	0.0019	0.0491	<0.001	<0.001	<0.002	0.00254	<1	0.00134	<0.00959	<0.0002	<0.005	<5	0.00557	<0.001
MW-3S	12/12/2016	<0.002	<0.001	0.0393	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	0.00529	<0.001
MW-3S	03/09/2017	<0.002	<0.001	0.0383	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-3S	06/08/2017	<0.002	<0.001	0.0507	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-3S	07/13/2017	<0.002	<0.001	0.0513	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-3S	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-3S	05/09/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-3S	09/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-3S	03/15/2019	<0.002	<0.001	0.0517	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.005	<0.0002	<0.005	<5	<0.005	<0.001
MW-3S	09/11/2019	NA	<0.001	0.0715	NA	<0.001	0.00275	<0.0005	<1	<0.001	0.0118	NA	<0.005	<5	0.0111	NA
MW-3S	04/10/2020	<0.004	<0.002	0.0576	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00548	<0.0002	<0.005	0.888	0.0039	<0.002
MW-3S	09/16/2020	NA	<0.002	0.0589	NA	<0.001	<0.002	<0.002	<0.15	<0.005	0.00495	NA	<0.005	0.373	0.00601	NA
MW-3S	03/23/2021	<0.004	<0.002	0.0512	<0.002	<0.001	<0.002	<0.002	<0.15	<0.002	0.00512	<0.0002	<0.005	0.149	0.00681	<0.002
MW-16	08/31/2016	<0.002	<0.001	0.0371	<0.001	<0.001	<0.002	0.00402	<1	<0.001	<0.00959	<0.0002	0.00679	0.371	<0.005	<0.001
MW-16	09/26/2016	<0.002	<0.001	0.0414	<0.001	<0.001	<0.002	0.00416	<1	<0.001	<0.00959	<0.0002	0.00517	0.402	<0.005	<0.001
MW-16	10/12/2016	<0.002	0.00124	0.0432	<0.001	<0.001	<0.002	0.00417	<1	0.00383	<0.00959	<0.0002	0.00508	<5	<0.005	<0.001
MW-16	11/16/2016	<0.002	<0.001	0.0466	<0.001	<0.001	<0.002	0.00322	<1	<0.001	<0.00959	<0.0002	0.00572	<5	<0.005	<0.001
MW-16	12/12/2016	<0.002	<0.001	0.0453	<0.001	<0.001	<0.002	0.00461	<1	<0.001	<0.00959	<0.0002	0.00674	<5	<0.005	<0.001
MW-16	03/09/2017	<0.002	<0.001	0.0314	<0.001	<0.001	<0.002	0.00204	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-16	06/08/2017	<0.002	<0.001	0.0348	<0.001	<0.001	<0.002	0.00246	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-16	07/13/2017	<0.002	<0.001	0.0344	<0.001	<0.001	<0.002	0.00252	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-16	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-16	05/09/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-16	09/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-16	03/15/2019	<0.002	<0.001	0.114	<0.001	<0.001	<0.002	0.00203	<1	<0.001	0.00677	<0.0002	<0.005	<5	<0.005	<0.001
MW-16	09/12/2019	NA	<0.001	0.0538	NA	<0.001	0.00218	0.00201	<1	<0.001	0.0111	NA	<0.005	<5	<0.005	NA
MW-16	04/10/2020	<0.004	<0.002	0.0474	<0.002	<0.001	<0.002	0.00208	0.151	<0.005	0.00522	<0.0002	<0.005	1.85	<0.002	<0.002

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-16	09/16/2020	NA	<0.002	0.051	NA	<0.001	<0.002	<0.002	<0.15	<0.005	0.00467	NA	<0.005	0.869	0.0043	NA
MW-16	03/23/2021	<0.004	<0.002	0.0539	<0.002	<0.001	<0.002	0.00222	<0.15	<0.002	0.00552	<0.0002	<0.005	0.353	0.00312	<0.002
MW-17	08/31/2016	<0.002	<0.001	0.0489	<0.001	<0.001	<0.002	0.00177	<1	<0.001	<0.00959	<0.0002	0.00715	0.533	<0.005	<0.001
MW-17	09/26/2016	<0.002	<0.001	0.0537	<0.001	<0.001	<0.002	0.00189	<1	<0.001	<0.00959	<0.0002	0.00825	0.802	<0.005	<0.001
MW-17	10/12/2016	<0.002	<0.001	0.0532	<0.001	<0.001	<0.002	0.00203	<1	0.0015	<0.00959	<0.0002	0.009	<5	<0.005	<0.001
MW-17	11/16/2016	<0.002	<0.001	0.0642	<0.001	<0.001	<0.002	0.00159	<1	<0.001	<0.00959	<0.0002	0.0096	<5	<0.005	<0.001
MW-17	12/12/2016	<0.002	<0.001	0.0599	<0.001	<0.001	<0.002	0.00188	<1	<0.001	<0.00959	<0.0002	0.0095	<5	<0.005	<0.001
MW-17	03/09/2017	<0.002	<0.001	0.0423	<0.001	<0.001	<0.002	0.00102	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-17	06/08/2017	0.00232	<0.001	0.0498	<0.001	<0.001	<0.002	0.00109	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-17	07/13/2017	<0.002	<0.001	0.0468	<0.001	<0.001	<0.002	0.00117	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-17	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-17	05/09/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-17	09/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-17	03/15/2019	<0.002	<0.001	0.0619	<0.001	<0.001	<0.002	0.000964	<1	<0.001	<0.005	<0.0002	<0.005	<5	<0.005	<0.001
MW-17	09/12/2019	NA	<0.001	0.0815	NA	<0.001	0.00243	0.00139	<1	<0.001	0.0175	NA	<0.005	<5	<0.005	NA
MW-17	04/10/2020	<0.004	<0.002	0.0602	<0.002	<0.001	<0.002	<0.002	0.162	<0.005	0.00536	<0.0002	<0.005	0.806	0.00204	<0.002
MW-17	09/16/2020	NA	<0.002	0.0641	NA	<0.001	<0.002	<0.002	<0.15	<0.005	0.0057	NA	<0.005	0.456	0.00467	NA
MW-17	03/23/2021	<0.004	<0.002	0.0664	<0.002	<0.001	<0.002	<0.002	0.169	<0.002	0.0053	<0.0002	<0.005	0.905	0.00377	<0.002
MW-18	08/31/2016	<0.002	<0.001	0.0494	<0.001	<0.001	<0.002	0.00369	<1	<0.001	0.00973	<0.0002	<0.005	0.975	0.0112	<0.001
MW-18	09/26/2016	<0.002	<0.001	0.0471	<0.001	<0.001	<0.002	0.00279	<1	<0.001	<0.00959	<0.0002	<0.005	1.55	0.0142	<0.001
MW-18	10/12/2016	<0.002	<0.001	0.0468	<0.001	<0.001	<0.002	0.0024	<1	0.00106	<0.00959	<0.0002	<0.005	<5	0.0052	<0.001
MW-18	11/16/2016	<0.002	<0.001	0.0524	<0.001	<0.001	<0.002	0.00231	<1	<0.001	<0.00959	<0.0002	<0.005	<5	0.0128	<0.001
MW-18	12/12/2016	<0.002	<0.001	0.055	<0.001	<0.001	<0.002	0.00358	<1	<0.001	<0.00959	<0.0002	<0.005	<5	0.0134	<0.001
MW-18	03/09/2017	<0.002	<0.001	0.0416	<0.001	<0.001	<0.002	0.00168	<1	<0.001	0.0111	<0.0002	<0.005	<5	<0.005	<0.001

Zimmer Coal Pile Runoff Pond

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-18	06/08/2017	<0.002	<0.001	0.0475	<0.001	<0.001	<0.002	0.00203	<1	<0.001	0.0121	<0.0002	<0.005	<5	<0.005	<0.001
MW-18	07/13/2017	<0.002	<0.001	0.0407	<0.001	<0.001	<0.002	0.00172	<1	<0.001	<0.00959	<0.0002	<0.005	<5	0.00697	<0.001
MW-18	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-18	05/09/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-18	09/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-18	03/15/2019	<0.002	<0.001	0.0398	<0.001	<0.001	<0.002	0.00131	<1	<0.001	0.00562	<0.0002	<0.005	<5	0.0143	<0.001
MW-18	09/12/2019	NA	<0.001	0.0411	NA	<0.001	0.00252	0.00176	<1	<0.001	0.0134	NA	<0.005	<5	0.0157	NA
MW-18	04/10/2020	<0.004	<0.002	0.0317	<0.002	<0.001	<0.002	<0.002	0.161	<0.005	0.00537	<0.0002	<0.005	0.568	0.012	<0.002
MW-18	09/16/2020	NA	<0.002	0.02	NA	<0.001	<0.002	<0.002	<0.15	<0.005	0.00407	NA	<0.005	0.325	0.00615	NA
MW-18	03/23/2021	<0.004	<0.002	0.0274	<0.002	<0.001	<0.002	<0.002	0.178	<0.002	0.00477	<0.0002	<0.005	0.175	0.00502	<0.002

Notes: 1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
Backgrou	nd	-						
MW-8	12/30/2015	0.0783	108	10.3	0.0766	7.3	52	370
MW-8	03/16/2016	0.0359	165	32.4	0.106	7.1	59.1	468
MW-8	06/15/2016	0.0455	114	13.8	<1	7.1	64.4	474
MW-8	09/27/2016	0.0413	119	13.1	<1	7	66	446
MW-8	12/13/2016	0.0405	128	19.2	<1	7	65.2	455
MW-8	03/09/2017	<0.08	114	21.1	<1	8.6	57.3	474
MW-8	06/08/2017	<0.08	118	31.6	<1	7.5	63.4	534
MW-8	07/13/2017	<0.08	109	27.5	<1	6.9	61.1	491
MW-8	11/13/2017	<0.08	113	15	<1	6.8	<50	434
MW-8	05/08/2018	<1	127	33.8	<1	7	62.8	491
MW-8	09/27/2018	<0.08	121	14.5	<1	7	66.5	439
MW-8	03/14/2019	<0.08	117	23.8	<1	6.9	62.5	462
MW-8	09/11/2019	<0.08	129	34	<1	6.8	59.5	508
MW-8	04/09/2020	<0.03	122	16	<0.15	6.8	65.2	421
MW-8	09/16/2020	0.0434	122	13.8	<0.15	7	67.2	473
MW-8	03/22/2021	0.0734	134	38.6	<0.15	6.9	67.7	517
Complian	ce							
MW-7A	12/30/2015	1.63	135	81.4	0.206	7	259	737
MW-7A	03/16/2016	2.82	180	134	0.0655	6.6	444	1090
MW-7A	06/16/2016	0.84	122	90.7	<1	6.8	261	765
MW-7A	09/27/2016	4.51	198	108	<1	6.7	512	1180

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-7A	12/13/2016	1.41	121	160	<1	6.7	553	721
MW-7A	03/10/2017	6.14	260	156	<1	7.7	682	1870
MW-7A	06/08/2017	1.58	146	78.6	<1	6.7	311	854
MW-7A	07/13/2017	1.22	116	69.1	<1	6.8	247	725
MW-7A	11/14/2017	1.4	118	64.7	<1	6.7	277	718
MW-7A	05/08/2018	1.54	135	63.7	<1	6.8	318	923
MW-7A	09/27/2018	1.57	119	55.7	<1	6.7	205	667
MW-7A	03/13/2019	3.03	175	111	<1	6.5	517	1170
MW-7A	09/11/2019	3.38	159	62.8	<1	7.3	376	912
MW-7A	04/10/2020	2.43	156	62.8	<0.15	7.2	366	876
MW-7A	09/17/2020	3.26	148	66.4	<0.15	6.9	397	974
MW-7A	03/22/2021	1.58	115	41.2	0.167	6.8	270	680
MW-10	12/29/2015	5.42	135	57.3	0.218	7.7	234	1050
MW-10	03/16/2016	9.05	189	122	0.181	7.1	550	1230
MW-10	06/16/2016	4.91	81.5	146	<1	7.2	409	960
MW-10	09/27/2016	0.27	137	149	<1	7.1	606	1400
MW-10	12/13/2016	6.63	127	221	<1	6.8	527	1190
MW-10	03/10/2017	6	103	77.9	<1	7.9	426	1160
MW-10	06/08/2017	5.87	99.7	99.5	<1	6.9	452	1050
MW-10	07/13/2017	4.87	79.1	75.7	<1	7.1	367	883
MW-10	11/14/2017	4.07	126	<150	1.44	6.9	582	1210
MW-10	05/08/2018	5.72	249	146	2.49	6.9	1070	2180

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-10	09/27/2018	4.89	150	113	1.77	6.9	534	1230
MW-10	03/13/2019	5.9	308	176	2.38	6.7	1420	2390
MW-10	09/12/2019	2.79	140	73.3	1.41	6.8	513	1100
MW-10	04/10/2020	4.38	108	60.5	1.92	7.3	372	845
MW-10	09/17/2020	2.03	94.6	55	1.63	7.1	289	735
MW-10	03/22/2021	2.01	86.8	40.2	2.25	7.2	239	622
MW-11	12/29/2015	0.581	176	70.4	0.175	7	252	768
MW-11	03/16/2016	0.489	270	126	0.0952	6.8	447	1140
MW-11	06/16/2016	0.572	130	81.1	<1	6.9	170	640
MW-11	09/27/2016	0.444	137	74.8	<1	6.9	196	703
MW-11	12/13/2016	1.45	225	131	<1	6.8	545	1110
MW-11	03/10/2017	0.434	147	66.9	<1	8.1	209	736
MW-11	06/08/2017	0.508	167	69.9	<1	6.8	248	767
MW-11	07/13/2017	0.825	149	66.7	<1	6.8	195	728
MW-11	11/14/2017	0.498	133	68.1	<1	6.8	188	634
MW-11	05/08/2018	<1	139	75.1	<1	7	197	793
MW-11	09/27/2018	0.921	164	78.1	<1	6.8	<250	771
MW-11	03/13/2019	0.458	181	58.2	<1	6.7	352	959
MW-11	09/12/2019	0.45	119	45.1	<1	6.9	145	590
MW-11	04/10/2020	0.719	110	48.9	0.17	7.4	135	510
MW-11	09/17/2020	0.395	85.4	31.7	0.184	7.2	107	427
MW-11	03/22/2021	0.525	146	46.6	0.174	6.9	278	714

Zimmer Gypsum Recycle Pond

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
----------	-------------	---------------------------	-----------------------------	------------------------------	------------------------------	---------------------	-----------------------------	--

Notes:

1. Abbreviations: mg/L - milligrams per liter; STD - standard units

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
Backgrou	nd															
MW-8	12/30/2015	<0.002	0.00115	0.0378	<0.002	<0.001	<0.003	<0.005	0.0766	<0.005	<0.5	<0.0002	<0.01	<0.265	<0.01	<0.001
MW-8	03/16/2016	<0.01	<0.025	0.0681	<0.01	<0.005	<0.015	<0.025	0.106	<0.025	0.00635	<0.0002	<0.05	<0.849	<0.05	<0.005
MW-8	06/15/2016	<0.002	<0.001	0.0418	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.0694	<0.005	<0.001
MW-8	09/27/2016	<0.002	<0.001	0.043	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.214	<0.005	<0.001
MW-8	12/13/2016	<0.002	<0.001	0.0458	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	0.0002	<0.005	<5	<0.005	<0.001
MW-8	03/09/2017	<0.002	<0.001	0.0423	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-8	06/08/2017	<0.002	<0.001	0.0491	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-8	07/13/2017	<0.002	<0.001	0.0447	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-8	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-8	05/08/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-8	09/27/2018	NA	<0.001	NA	NA	NA	<0.002	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-8	03/14/2019	<0.002	<0.001	0.0454	<0.001	<0.001	0.00201	<0.0005	<1	<0.001	<0.005	<0.0002	<0.005	<5	<0.005	<0.001
MW-8	09/11/2019	NA	<0.001	0.0552	<0.001	NA	0.00206	<0.0005	<1	<0.001	0.00754	NA	<0.005	<5	<0.005	NA
MW-8	04/09/2020	<0.004	<0.002	0.046	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00464	<0.0002	<0.005	0.292	<0.002	<0.002
MW-8	09/16/2020	NA	<0.002	0.0452	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00612	NA	<0.005	0.0611	<0.002	NA
MW-8	03/22/2021	<0.004	<0.002	0.0545	<0.002	<0.001	<0.002	<0.002	<0.15	<0.002	0.00553	<0.0002	<0.005	0	<0.002	<0.002
Complian	ce		-		<u>.</u>			<u>.</u>		-	<u>.</u>				<u>.</u>	<u></u>
MW-7A	12/30/2015	<0.002	0.00217	0.0597	<0.002	<0.001	<0.003	0.0126	0.206	<0.005	<0.5	<0.0002	0.00369	<0.393	<0.01	<0.001
MW-7A	03/16/2016	0.000634	0.0978	0.0543	<0.002	0.0004	0.0123	0.00783	0.0655	<0.005	0.00136	<0.0002	0.0014	<0.698	0.00267	<0.001
MW-7A	06/16/2016	<0.002	<0.001	0.0377	<0.001	<0.001	<0.002	0.00291	<1	<0.001	<0.00959	<0.0002	<0.005	0.256	<0.005	<0.001
MW-7A	09/27/2016	<0.002	<0.001	0.0544	<0.001	<0.001	<0.002	0.00411	<1	<0.001	<0.00959	<0.0002	<0.005	0.471	<0.005	<0.001
MW-7A	12/13/2016	<0.002	<0.001	0.0319	<0.001	<0.001	<0.002	0.00298	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-7A	03/10/2017	<0.002	<0.001	0.0437	<0.001	<0.001	<0.002	0.00528	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-7A	06/08/2017	<0.002	<0.001	0.0287	<0.001	<0.001	<0.002	0.00149	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-7A	07/13/2017	<0.002	<0.001	0.0263	<0.001	<0.001	<0.002	0.00113	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-7A	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-7A	05/08/2018	<0.003	<0.005	<0.2	<0.004	<0.005	0.00755	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-7A	09/27/2018	NA	<0.001	NA	NA	NA	0.00207	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-7A	03/13/2019	<0.002	<0.001	0.0483	<0.001	<0.001	<0.002	0.00245	<1	<0.001	<0.005	<0.0002	<0.005	<5	<0.005	<0.001
MW-7A	09/11/2019	NA	<0.001	0.0458	NA	<0.001	<0.002	0.00101	<1	<0.001	0.0124	NA	<0.005	<5	<0.005	NA
MW-7A	04/10/2020	<0.004	<0.002	0.0371	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	<0.002	<0.0002	<0.005	0.785	0.00204	<0.002
MW-7A	09/17/2020	NA	<0.002	0.0395	NA	<0.001	<0.002	<0.002	<0.15	<0.005	0.00314	NA	<0.005	0.427	0.00266	NA
MW-7A	03/22/2021	<0.004	<0.002	0.0277	<0.002	<0.001	<0.002	<0.002	0.167	<0.002	<0.002	<0.0002	<0.005	0.863	<0.002	<0.002
MW-10	12/29/2015	<0.002	0.00228	0.13	<0.002	<0.001	0.00293	0.01	0.218	<0.005	<0.5	<0.0002	0.0146	0.434	<0.01	<0.001
MW-10	03/16/2016	<0.002	0.00263	0.114	<0.002	0.0004	<0.003	0.00835	0.181	<0.005	0.00132	<0.0002	0.0075	0.382	0.0006	<0.001
MW-10	06/16/2016	<0.002	0.00139	0.0729	<0.001	<0.001	<0.002	0.0041	<1	<0.001	<0.00959	<0.0002	0.00793	0.787	<0.005	<0.001
MW-10	09/27/2016	<0.002	0.00203	0.0577	<0.001	<0.001	<0.002	0.00756	<1	<0.001	0.0103	<0.0002	0.0109	0.521	<0.005	<0.001
MW-10	12/13/2016	<0.002	0.00127	0.0436	<0.001	<0.001	<0.002	0.00883	<1	<0.001	<0.00959	<0.0002	0.0059	<5	<0.005	<0.001
MW-10	03/10/2017	<0.002	0.00164	0.0564	<0.001	<0.001	<0.002	0.00593	<1	<0.001	<0.00959	<0.0002	0.00513	<5	<0.005	<0.001
MW-10	06/08/2017	<0.002	0.00286	0.0618	<0.001	<0.001	<0.002	0.00417	<1	<0.001	<0.00959	<0.0002	0.00752	<5	<0.005	<0.001
MW-10	07/13/2017	<0.002	<0.001	0.0453	<0.001	<0.001	<0.002	0.00371	<1	<0.001	<0.00959	<0.0002	0.00731	<5	<0.005	<0.001
MW-10	11/14/2017	NA	NA	NA	NA	NA	NA	NA	1.44	NA	NA	NA	NA	NA	NA	NA
MW-10	05/08/2018	<0.003	0.00535	<0.2	<0.004	<0.005	<0.005	<0.005	2.49	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-10	09/27/2018	NA	0.00153	NA	NA	NA	<0.002	NA	1.77	NA	NA	NA	NA	<5	NA	NA
MW-10	03/13/2019	<0.002	0.00407	0.021	<0.001	<0.001	<0.002	0.00112	2.38	<0.001	0.0187	<0.0002	<0.005	<5	<0.005	<0.001
MW-10	09/12/2019	NA	0.00501	0.0127	NA	<0.001	<0.002	0.00464	1.41	<0.001	0.0144	NA	0.0105	<5	<0.005	NA
MW-10	04/10/2020	<0.004	0.00201	<0.02	<0.002	<0.001	<0.002	<0.002	1.92	<0.005	0.00934	<0.0002	0.00628	1.29	<0.002	<0.002

Zimmer Gypsum Recycle Pond

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-10	09/17/2020	NA	0.00241	<0.02	NA	<0.001	<0.002	<0.002	1.63	<0.005	0.00856	NA	<0.005	0.107	<0.002	NA
MW-10	03/22/2021	<0.004	0.00719	<0.02	<0.002	<0.001	<0.002	0.00417	2.25	<0.002	0.00772	<0.0002	0.00889	0.59	<0.002	<0.002
MW-11	12/29/2015	<0.002	0.00194	0.00977	<0.002	<0.001	0.000794	0.0092	0.175	<0.005	<0.5	<0.0002	0.00471	0.471	<0.01	<0.001
MW-11	03/16/2016	<0.002	0.0035	0.116	<0.002	0.0004	<0.003	0.00422	0.0952	<0.005	0.0014	<0.0002	0.00219	0.523	0.0006	<0.001
MW-11	06/16/2016	<0.002	<0.001	0.0539	<0.001	<0.001	<0.002	0.00192	<1	<0.001	<0.00959	<0.0002	<0.005	0.525	<0.005	<0.001
MW-11	09/27/2016	<0.002	<0.001	0.0643	<0.001	<0.001	<0.002	0.00147	<1	<0.001	<0.00959	<0.0002	<0.005	0.891	<0.005	<0.001
MW-11	12/13/2016	<0.002	<0.001	0.0921	<0.001	<0.001	<0.002	0.0019	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-11	03/10/2017	<0.002	<0.001	0.0585	<0.001	<0.001	<0.002	0.00176	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-11	06/08/2017	<0.002	0.00166	0.0643	<0.001	<0.001	<0.002	0.002	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-11	07/13/2017	<0.002	<0.001	0.0589	<0.001	<0.001	<0.002	0.00172	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-11	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-11	05/08/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-11	09/27/2018	NA	<0.001	NA	NA	NA	<0.002	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-11	03/13/2019	<0.002	0.00123	0.0764	<0.001	<0.001	<0.002	0.00175	<1	<0.001	<0.005	<0.0002	<0.005	<5	<0.005	<0.001
MW-11	09/12/2019	NA	0.00109	0.0493	NA	<0.001	<0.002	0.00136	<1	<0.001	0.00609	NA	<0.005	<5	<0.005	NA
MW-11	04/10/2020	<0.004	<0.002	0.0443	<0.002	<0.001	<0.002	<0.002	0.17	<0.005	<0.002	<0.0002	<0.005	0.955	<0.002	<0.002
MW-11	09/17/2020	NA	<0.002	0.0329	NA	<0.001	<0.002	<0.002	0.184	<0.005	<0.002	NA	<0.005	1.26	<0.002	NA
MW-11	03/22/2021	<0.004	0.0033	0.0575	<0.002	<0.001	0.00344	0.00619	0.174	<0.002	<0.002	<0.0002	0.00548	0.43	<0.002	<0.002

Notes: 1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
Backgrou	nd							
MW-1	12/30/2015	0.072	155	48.5	0.2	7.2	90.1	544
MW-1	03/16/2016	0.0233	206	59.1	0.146	7.1	85.2	583
MW-1	06/16/2016	0.0389	154	59.6	<1	7	95.3	648
MW-1	09/26/2016	0.0349	160	64.9	<1	7.1	93.1	621
MW-1	12/13/2016	0.0322	165	52.4	<1	7	93.3	561
MW-1	03/09/2017	<0.08	150	58.2	<1	8.3	85.9	589
MW-1	06/08/2017	<0.08	171	65.5	<1	7.1	87	582
MW-1	07/13/2017	<0.08	144	61.3	<1	7	79	608
MW-1	11/13/2017	<0.08	150	53.1	<1	6.9	89.1	571
MW-1	05/09/2018	<1	157	71	<1	7	88.9	631
MW-1	09/27/2018	<0.08	163	62.7	<1	6.9	113	578
MW-1	03/14/2019	<0.08	152	78.7	<1	7	90.2	617
MW-1	09/11/2019	<0.08	167	63.1	<1	7	90.6	637
MW-1	04/09/2020	0.123	170	80.5	<0.15	6.7	92.3	592
MW-1	09/16/2020	0.0365	169	84.3	<0.15	7.1	99.1	644
MW-1	03/22/2021	0.082	173	79.2	0.166	7	99.2	613
MW-8	12/30/2015	0.0783	108	10.3	0.0766	7.3	52	370
MW-8	03/16/2016	0.0359	165	32.4	0.106	7.1	59.1	468
MW-8	06/15/2016	0.0455	114	13.8	<1	7.1	64.4	474
MW-8	09/27/2016	0.0413	119	13.1	<1	7	66	446
MW-8	12/13/2016	0.0405	128	19.2	<1	7	65.2	455

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-8	03/09/2017	<0.08	114	21.1	<1	8.6	57.3	474
MW-8	06/08/2017	<0.08	118	31.6	<1	7.5	63.4	534
MW-8	07/13/2017	<0.08	109	27.5	<1	6.9	61.1	491
MW-8	11/13/2017	<0.08	113	15	<1	6.8	<50	434
MW-8	05/08/2018	<1	127	33.8	<1	7	62.8	491
MW-8	09/27/2018	<0.08	121	14.5	<1	7	66.5	439
MW-8	03/14/2019	<0.08	117	23.8	<1	6.9	62.5	462
MW-8	09/11/2019	<0.08	129	34	<1	6.8	59.5	508
MW-8	04/09/2020	<0.03	122	16	<0.15	6.8	65.2	421
MW-8	09/16/2020	0.0434	122	13.8	<0.15	7	67.2	473
MW-8	03/22/2021	0.0734	134	38.6	<0.15	6.9	67.7	517
MW-12	12/30/2015	0.3	179	27.3	0.145	7.1	127	608
MW-12	03/18/2016	0.22	200	66	0.172	6.8	99.8	666
MW-12	06/15/2016	0.273	159	42.4	<1	7	137	649
MW-12	09/27/2016	0.276	160	29.5	<1	7.1	110	600
MW-12	12/13/2016	0.241	151	31	<1	6.9	88.8	555
MW-12	03/09/2017	0.246	160	42.9	<1	8.4	113	610
MW-12	06/08/2017	0.215	168	39.6	<1	7	110	606
MW-12	07/13/2017	0.199	154	35.6	<1	6.9	105	579
MW-12	11/13/2017	0.199	146	30	<1	6.8	95.5	550
MW-12	05/09/2018	<1	143	30.7	<1	6.9	104	584
MW-12	09/19/2018	0.272	163	31.9	<1	6.8	104	577

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-12	03/14/2019	0.256	147	33.2	<1	6.9	106	596
MW-12	09/11/2019	0.204	148	26.6	<1	7.7	90	557
MW-12	04/09/2020	0.21	162	32.5	<0.15	6.9	98.3	598
MW-12	09/16/2020	0.207	149	31.7	<0.15	7	98.3	579
MW-12	03/23/2021	0.892	152	40	<0.15	6.9	98.1	565
Complian	ce	-				_	-	
MW-9	12/30/2015	3.31	331	106	0.152	7.2	944	1770
MW-9	03/17/2016	1.98	363	111	0.139	7	789	1680
MW-9	06/15/2016	1.12	235	55.6	<1	7.2	630	1170
MW-9	09/27/2016	0.628	213	38.3	<1	7.2	512	989
MW-9	12/12/2016	1.96	280	71.8	<1	7	740	1430
MW-9	03/09/2017	2.65	300	104	<1	8.3	837	1680
MW-9	06/08/2017	0.521	262	72.6	<1	7	658	1240
MW-9	07/13/2017	1.3	291	<150	<1	7.1	729	1380
MW-9	11/13/2017	0.869	264	50.7	<1	7	650	1190
MW-9	05/09/2018	2.47	360	110	<1	6.9	905	1870
MW-9	09/19/2018	1.62	277	53.5	<1	6.8	658	1320
MW-9	03/14/2019	2.29	299	111	<1	7	995	1840
MW-9	09/11/2019	0.737	236	30.7	<1	8.3	495	1190
MW-9	04/09/2020	0.511	270	32.3	<0.15	6.9	589	1160
MW-9	09/16/2020	0.127	220	21.4	<0.15	7.2	485	999
MW-9	03/23/2021	0.709	237	32.3	<0.15	7.2	570	920

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-13	12/29/2015	0.0968	220	13.9	0.28	7.2	328	710
MW-13	03/17/2016	0.0482	165	20.7	0.294	7.2	276	667
MW-13	06/15/2016	0.0739	134	39.9	<1	7.1	256	685
MW-13	09/27/2016	0.0594	163	21.9	<1	7.2	215	672
MW-13	12/13/2016	0.0612	162	19.6	<1	7.1	239	678
MW-13	03/09/2017	<0.08	140	17.3	<1	8.5	267	705
MW-13	06/08/2017	<0.08	154	17.2	<1	7.1	256	683
MW-13	07/13/2017	<0.08	149	15.9	<1	7.2	302	722
MW-13	11/13/2017	<0.08	151	19	<1	6.9	<250	667
MW-13	05/09/2018	<1	147	17.2	<1	7.1	236	674
MW-13	09/19/2018	<0.08	167	19.2	<1	6.9	260	732
MW-13	03/14/2019	0.083	141	18.5	<1	7.1	260	717
MW-13	09/11/2019	<0.08	144	14.4	<1	7.6	146	616
MW-13	04/09/2020	0.0597	166	20.4	0.165	7	281	715
MW-13	09/17/2020	0.0557	132	17.7	0.176	7.2	135	577
MW-13	03/23/2021	0.354	142	19.9	0.196	7.1	198	622
MW-14	12/29/2015	0.11	262	<3	<1	7.3	467	1010
MW-14	03/17/2016	0.0453	245	33.7	0.225	7.2	470	992
MW-14	06/15/2016	0.0595	172	<30	<1	7.1	348	837
MW-14	09/27/2016	0.0661	183	29.6	<1	7.1	303	814
MW-14	12/13/2016	0.0702	196	33.4	<1	7	365	905
MW-14	03/09/2017	<0.08	192	29.9	<1	8.4	408	916

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-14	06/08/2017	<0.08	181	<30	<1	7	354	843
MW-14	07/13/2017	<0.08	198	30.8	<1	7.2	477	1020
MW-14	11/13/2017	<0.08	194	30.6	<1	7	340	893
MW-14	05/09/2018	<1	199	27.9	<1	7.1	398	947
MW-14	09/19/2018	<0.08	207	31.6	<1	6.9	416	1000
MW-14	03/14/2019	<0.08	186	29.5	<1	7.1	420	946
MW-14	09/11/2019	0.139	181	28.8	<1	7.4	287	836
MW-14	04/09/2020	0.116	213	40	0.179	7.4	427	939
MW-14	09/17/2020	0.119	156	29.4	0.2	7.1	237	745
MW-14	03/23/2021	<0.3	184	37	0.205	7	360	845
MW-15	12/30/2015	0.11	296	31.1	0.298	7.1	505	1100
MW-15	03/18/2016	0.0557	233	34	0.29	6.9	447	1110
MW-15	06/15/2016	0.0737	213	34.9	<1	6.9	606	1120
MW-15	09/27/2016	0.0833	237	38	<1	7.1	493	1160
MW-15	12/13/2016	0.0816	247	38.2	<1	7	522	1140
MW-15	03/09/2017	<0.08	212	32.8	<1	8.4	505	1100
MW-15	06/08/2017	<0.08	226	32.4	<1	7	524	1090
MW-15	07/13/2017	<0.08	217	36.6	<1	7.1	549	1120
MW-15	11/13/2017	<0.08	224	36.5	<1	6.8	498	1110
MW-15	05/09/2018	<1	203	31.1	<1	7	414	1000
MW-15	09/19/2018	0.0939	240	38.7	<1	6.9	529	1170
MW-15	03/14/2019	0.0807	198	38.6	<1	6.9	486	1090

Zimmer D Basin

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-15	09/11/2019	0.12	241	36.2	<1	7.4	535	1170
MW-15	04/09/2020	0.079	258	41.1	0.175	7.4	567	1090
MW-15	09/17/2020	0.126	245	46.8	0.168	6.9	560	1250
MW-15	03/23/2021	<0.3	235	43.4	0.201	7	556	1170

Notes:

1. Abbreviations: mg/L - milligrams per liter; STD - standard units

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
Backgrou	nd															
MW-1	12/30/2015	<0.002	0.00142	0.0655	<0.002	<0.001	0.00191	<0.005	0.2	<0.005	<0.5	<0.0002	<0.01	<0.426	<0.01	<0.001
MW-1	03/16/2016	<0.01	<0.025	0.0863	<0.01	<0.005	<0.015	<0.025	0.146	<0.025	0.0101	<0.0002	<0.05	<0.937	<0.05	<0.005
MW-1	06/16/2016	<0.002	<0.001	0.0601	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.603	<0.005	<0.001
MW-1	09/26/2016	<0.002	<0.001	0.0627	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.168	<0.005	<0.001
MW-1	12/13/2016	<0.002	<0.001	0.0629	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	0.0002	<0.005	<5	<0.005	<0.001
MW-1	03/09/2017	<0.002	<0.001	0.0587	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0107	<0.0002	<0.005	<5	<0.005	<0.001
MW-1	06/08/2017	<0.002	<0.001	0.0643	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0116	<0.0002	<0.005	<5	<0.005	<0.001
MW-1	07/13/2017	<0.002	<0.001	0.0566	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-1	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-1	05/09/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-1	09/27/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-1	03/14/2019	<0.002	<0.001	0.0665	<0.001	<0.001	0.0023	<0.0005	<1	<0.001	0.00665	<0.0002	<0.005	<5	<0.005	<0.001
MW-1	09/11/2019	NA	<0.001	0.077	<0.001	NA	<0.002	<0.0005	<1	<0.001	0.0109	NA	<0.005	<5	<0.005	NA
MW-1	04/09/2020	<0.004	<0.002	0.0725	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00964	<0.0002	<0.005	0.0302	<0.002	<0.002
MW-1	09/16/2020	NA	<0.002	0.073	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00966	NA	<0.005	0.215	<0.002	NA
MW-1	03/22/2021	<0.004	<0.002	0.0713	<0.002	<0.001	<0.002	<0.002	0.166	<0.002	0.00782	<0.0002	<0.005	0.0171	<0.002	<0.002
MW-8	12/30/2015	<0.002	0.00115	0.0378	<0.002	<0.001	<0.003	<0.005	0.0766	<0.005	<0.5	<0.0002	<0.01	<0.265	<0.01	<0.001
MW-8	03/16/2016	<0.01	<0.025	0.0681	<0.01	<0.005	<0.015	<0.025	0.106	<0.025	0.00635	<0.0002	<0.05	<0.849	<0.05	<0.005
MW-8	06/15/2016	<0.002	<0.001	0.0418	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.0694	<0.005	<0.001
MW-8	09/27/2016	<0.002	<0.001	0.043	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.214	<0.005	<0.001
MW-8	12/13/2016	<0.002	<0.001	0.0458	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	0.0002	<0.005	<5	<0.005	<0.001
MW-8	03/09/2017	<0.002	<0.001	0.0423	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-8	06/08/2017	<0.002	<0.001	0.0491	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-8	07/13/2017	<0.002	<0.001	0.0447	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-8	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-8	05/08/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-8	09/27/2018	NA	<0.001	NA	NA	NA	<0.002	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-8	03/14/2019	<0.002	<0.001	0.0454	<0.001	<0.001	0.00201	<0.0005	<1	<0.001	<0.005	<0.0002	<0.005	<5	<0.005	<0.001
MW-8	09/11/2019	NA	<0.001	0.0552	<0.001	NA	0.00206	<0.0005	<1	<0.001	0.00754	NA	<0.005	<5	<0.005	NA
MW-8	04/09/2020	<0.004	<0.002	0.046	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00464	<0.0002	<0.005	0.292	<0.002	<0.002
MW-8	09/16/2020	NA	<0.002	0.0452	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00612	NA	<0.005	0.0611	<0.002	NA
MW-8	03/22/2021	<0.004	<0.002	0.0545	<0.002	<0.001	<0.002	<0.002	<0.15	<0.002	0.00553	<0.0002	<0.005	0	<0.002	<0.002
MW-12	12/30/2015	<0.002	0.00169	0.0697	<0.002	<0.001	0.000518	<0.005	0.145	<0.005	<0.5	<0.0002	<0.01	<0.387	0.00131	<0.001
MW-12	03/18/2016	<0.01	<0.025	0.0813	<0.01	<0.005	<0.015	<0.025	0.172	<0.025	0.00875	<0.0002	<0.05	<0.789	<0.05	<0.005
MW-12	06/15/2016	<0.002	<0.001	0.0605	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.13	<0.005	<0.001
MW-12	09/27/2016	<0.002	<0.001	0.0614	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	1.11	<0.005	<0.001
MW-12	12/13/2016	<0.002	<0.001	0.0588	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-12	03/09/2017	<0.002	<0.001	0.0563	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-12	06/08/2017	<0.002	<0.001	0.0618	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-12	07/13/2017	<0.002	<0.001	0.0579	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-12	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-12	05/09/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-12	09/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-12	03/14/2019	<0.002	<0.001	0.0631	<0.001	<0.001	0.00218	<0.0005	<1	<0.001	0.00543	<0.0002	<0.005	<5	<0.005	<0.001
MW-12	09/11/2019	NA	<0.001	0.0692	<0.001	NA	0.00249	<0.0005	<1	<0.001	0.0114	NA	<0.005	<5	<0.005	NA
MW-12	04/09/2020	<0.004	<0.002	0.0657	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00591	<0.0002	<0.005	3.9	<0.002	<0.002
MW-12	09/16/2020	NA	<0.002	0.0629	<0.002	NA	<0.002	<0.002	<0.15	<0.005	0.00612	NA	<0.005	0.409	<0.002	NA

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-12	03/23/2021	<0.004	<0.002	0.0605	<0.002	<0.001	<0.002	<0.002	<0.15	<0.002	0.00627	<0.0002	<0.005	0.297	<0.002	<0.002
Complian	ce						-		-	-	-		-		-	-
MW-9	12/30/2015	<0.002	0.00454	0.045	<0.002	0.000721	0.00159	0.00327	0.152	0.00021	0.00836	<0.0002	0.00145	0.649	<0.01	<0.001
MW-9	03/17/2016	<0.01	<0.025	0.0567	<0.01	<0.005	<0.015	0.00406	0.139	<0.025	0.011	<0.0002	<0.05	<0.854	<0.05	<0.005
MW-9	06/15/2016	<0.002	0.00127	0.0253	<0.001	<0.001	<0.002	0.00253	<1	<0.001	<0.00959	<0.0002	<0.005	0.573	<0.005	<0.001
MW-9	09/27/2016	<0.002	0.0014	0.0239	<0.001	<0.001	<0.002	0.00202	<1	<0.001	<0.00959	<0.0002	<0.005	0.841	<0.005	<0.001
MW-9	12/12/2016	<0.002	0.00151	0.0269	<0.001	<0.001	<0.002	0.00299	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-9	03/09/2017	<0.002	0.00161	0.033	<0.001	<0.001	<0.002	0.00403	<1	<0.001	0.0126	<0.0002	<0.005	<5	<0.005	<0.001
MW-9	06/08/2017	<0.002	0.00257	0.0337	<0.001	<0.001	<0.002	0.00219	<1	<0.001	0.0124	<0.0002	<0.005	<5	<0.005	<0.001
MW-9	07/13/2017	<0.002	0.00178	0.0308	<0.001	<0.001	<0.002	0.00292	<1	<0.001	0.0116	<0.0002	<0.005	<5	<0.005	<0.001
MW-9	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-9	05/09/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-9	09/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-9	03/14/2019	<0.002	0.00171	0.0333	<0.001	<0.001	<0.002	0.00351	<1	<0.001	0.00779	<0.0002	<0.005	<5	<0.005	<0.001
MW-9	09/11/2019	NA	0.00188	0.0261	<0.001	NA	0.00237	0.00267	<1	<0.001	0.0135	NA	<0.005	<5	<0.005	NA
MW-9	04/09/2020	<0.004	<0.002	0.026	<0.002	<0.001	<0.002	0.00286	<0.15	<0.005	0.00709	<0.0002	<0.005	6.29	<0.002	<0.002
MW-9	09/16/2020	NA	<0.002	0.0215	<0.002	NA	<0.002	0.00242	<0.15	<0.005	0.0068	NA	<0.005	0.727	<0.002	NA
MW-9	03/23/2021	<0.004	<0.002	<0.02	<0.002	<0.001	<0.002	0.00236	<0.15	<0.002	0.00656	<0.0002	<0.005	0.184	<0.002	<0.002
MW-13	12/29/2015	0.000841	0.0026	0.0564	<0.002	<0.001	<0.003	0.00653	0.28	<0.005	<0.5	<0.0002	0.00495	0.574	0.000664	<0.001
MW-13	03/17/2016	<0.01	0.0048	0.0691	<0.01	<0.005	<0.015	0.00516	0.294	<0.025	0.00426	<0.0002	0.00674	<1.01	<0.05	<0.005
MW-13	06/15/2016	<0.002	0.00264	0.0521	<0.001	<0.001	<0.002	0.00641	<1	<0.001	<0.00959	<0.0002	<0.005	0.459	<0.005	<0.001
MW-13	09/27/2016	<0.002	0.0046	0.0524	<0.001	<0.001	<0.002	0.00514	<1	<0.001	<0.00959	<0.0002	<0.005	0.612	<0.005	<0.001
MW-13	12/13/2016	<0.002	0.00324	0.0536	<0.001	<0.001	<0.002	0.00477	<1	<0.001	<0.00959	<0.0002	0.005	<5	<0.005	<0.001
MW-13	03/09/2017	<0.002	0.00348	0.0516	<0.001	<0.001	<0.002	0.00348	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-13	06/08/2017	<0.002	0.00319	0.0503	<0.001	<0.001	<0.002	0.00237	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-13	07/13/2017	<0.002	0.00222	0.0446	<0.001	<0.001	<0.002	0.00244	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-13	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-13	05/09/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-13	09/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-13	03/14/2019	<0.002	0.0183	0.054	<0.001	<0.001	<0.002	0.00295	<1	<0.001	<0.005	<0.0002	<0.005	<5	<0.005	<0.001
MW-13	09/11/2019	NA	0.00525	0.0461	<0.001	NA	0.00231	0.00368	<1	<0.001	0.00811	NA	<0.005	<5	<0.005	NA
MW-13	04/09/2020	<0.004	0.00261	0.0477	<0.002	<0.001	<0.002	0.00297	0.165	<0.005	0.00266	<0.0002	<0.005	3.43	<0.002	<0.002
MW-13	09/17/2020	NA	<0.002	0.039	<0.002	NA	<0.002	0.0028	0.176	<0.005	0.00274	NA	<0.005	1.73	<0.002	NA
MW-13	03/23/2021	<0.004	<0.002	0.0394	<0.002	<0.001	<0.002	0.00254	0.196	<0.002	0.00216	<0.0002	<0.005	0.12	<0.002	<0.002
MW-14	12/29/2015	0.00067	0.00263	0.0509	<0.002	<0.001	<0.003	0.00857	<1	0.000291	<0.5	<0.0002	0.00142	0.594	<0.01	<0.001
MW-14	03/17/2016	<0.01	<0.025	0.0641	<0.01	<0.005	<0.015	0.00514	0.225	<0.025	0.00379	<0.0002	0.00276	0.957	<0.05	<0.005
MW-14	06/15/2016	<0.002	0.00171	0.048	<0.001	<0.001	<0.002	0.00547	<1	<0.001	<0.00959	<0.0002	<0.005	0.534	<0.005	<0.001
MW-14	09/27/2016	<0.002	0.00163	0.0464	<0.001	<0.001	<0.002	0.00435	<1	<0.001	<0.00959	<0.0002	<0.005	0.496	<0.005	<0.001
MW-14	12/13/2016	<0.002	0.00173	0.0535	<0.001	<0.001	<0.002	0.00563	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-14	03/09/2017	<0.002	0.00168	0.0465	<0.001	<0.001	<0.002	0.00367	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-14	06/08/2017	<0.002	0.00158	0.0465	<0.001	<0.001	<0.002	0.00278	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-14	07/13/2017	<0.002	0.00124	0.044	<0.001	<0.001	<0.002	0.00231	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-14	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-14	05/09/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-14	09/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-14	03/14/2019	<0.002	<0.001	0.0507	<0.001	<0.001	0.00213	0.00229	<1	<0.001	<0.005	<0.0002	<0.005	<5	<0.005	<0.001
MW-14	09/11/2019	NA	0.00155	0.0554	<0.001	NA	0.00254	0.00239	<1	<0.001	0.00843	NA	<0.005	<5	<0.005	NA
MW-14	04/09/2020	<0.004	<0.002	0.0501	<0.002	<0.001	<0.002	0.00223	0.179	<0.005	0.00236	<0.0002	<0.005	1.6	<0.002	<0.002

Zimmer D Basin

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-14	09/17/2020	NA	<0.002	0.0417	<0.002	NA	<0.002	<0.002	0.2	<0.005	0.0024	NA	<0.005	0.919	<0.002	NA
MW-14	03/23/2021	<0.004	<0.002	0.0462	<0.002	<0.001	<0.002	0.00212	0.205	<0.002	0.0021	<0.0002	<0.005	1.42	<0.002	<0.002
MW-15	12/30/2015	0.000823	0.00265	0.0896	<0.002	<0.001	<0.003	0.0109	0.298	<0.005	<0.5	<0.0002	0.00554	0.59	<0.01	<0.001
MW-15	03/18/2016	<0.01	<0.025	0.0835	<0.01	<0.005	<0.015	0.00798	0.29	<0.025	0.00298	<0.0002	0.00495	<0.946	<0.05	<0.005
MW-15	06/15/2016	<0.002	<0.001	0.0687	<0.001	<0.001	<0.002	0.00751	<1	<0.001	<0.00959	<0.0002	<0.005	0.735	<0.005	<0.001
MW-15	09/27/2016	<0.002	<0.001	0.0773	<0.001	<0.001	<0.002	0.00778	<1	<0.001	<0.00959	<0.0002	<0.005	1.26	<0.005	<0.001
MW-15	12/13/2016	<0.002	<0.001	0.0767	<0.001	<0.001	<0.002	0.00701	<1	<0.001	<0.00959	<0.0002	0.00524	<5	<0.005	<0.001
MW-15	03/09/2017	<0.002	<0.001	0.0677	<0.001	<0.001	<0.002	0.00593	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-15	06/08/2017	<0.002	<0.001	0.0663	<0.001	<0.001	<0.002	0.00353	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-15	07/13/2017	<0.002	<0.001	0.0676	<0.001	<0.001	<0.002	0.00427	<1	<0.001	<0.00959	<0.0002	<0.005	<5	<0.005	<0.001
MW-15	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-15	05/09/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-15	09/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	<5	NA	NA
MW-15	03/14/2019	<0.002	<0.001	0.06	<0.001	<0.001	<0.002	0.00318	<1	<0.001	<0.005	<0.0002	<0.005	<5	<0.005	<0.001
MW-15	09/11/2019	NA	<0.001	0.0836	<0.001	NA	0.00257	0.00381	<1	<0.001	0.00845	NA	<0.005	<5	<0.005	NA
MW-15	04/09/2020	<0.004	<0.002	0.0663	<0.002	<0.001	<0.002	0.00374	0.175	<0.005	0.00213	<0.0002	<0.005	3.26	<0.002	<0.002
MW-15	09/17/2020	NA	<0.002	0.069	<0.002	NA	<0.002	0.00289	0.168	<0.005	0.00244	NA	<0.005	1.13	<0.002	NA
MW-15	03/23/2021	<0.004	<0.002	0.0533	<0.002	<0.001	<0.002	0.00296	0.201	<0.002	<0.002	<0.0002	<0.005	0.476	<0.002	<0.002

Notes: 1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
Backgrou	nd							
MW-3	01/27/2016	0.0275	244	181	0.127	7.1	47.2	777
MW-3	03/14/2016	0.0397	274	185	0.115	6.9	51.6	689
MW-3	06/14/2016	0.0191	168	159	<1	6.9	54.2	771
MW-3	09/29/2016	0.0276	174	161	<1	6.9	56.4	698
MW-3	12/20/2016	0.0453	170	201	<1	6.9	69.4	739
MW-3	04/18/2017	<0.08	178	195	<1	NA	53.1	792
MW-3	06/07/2017	<0.08	185	175	<1	7.3	<100	912
MW-3	07/12/2017	0.115	167	167 <1 6.9 <100		<100	798	
MW-3	03/12/2019	12/2019 <0.08 19		206	<1	6.8	50	827
MW-3	09/11/2019	<0.08	176	154	<1	6.6	56.3	827
MW-3	04/07/2020	0.0416	191	193	<0.15	6.9	52.7	875
MW-3	09/16/2020	0.0487	181	190	<0.15	6.9	57.5	916
MW-3	03/23/2021	0.0888	190	224	<0.15	6.9	50.7	858
MW-13S	01/28/2016	0.03	148	142	0.278	7.2	34.3	479
MW-13S	03/16/2016	0.0122	124	128	0.761	7	35.1	482
MW-13S	04/20/2017	<0.08	94.2	154	<1	NA	37.4	526
MW-13S	06/07/2017	<0.08	105	136	<1	6.9	36.5	561
MW-13S	07/12/2017	<0.08 105 125		<1	6.9	<50	526	
MW-13S	11/14/2017	1/14/2017 <0.08 101		141	NA	7	<50	505
MW-13S	05/07/2018	<1	87.4	92.2	<1	7.1	31.3	448
MW-13S	09/17/2018	<0.08	108	99.4	<1	6.7	30.9	517

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-13S	03/12/2019	<0.08	109	140	<1	7.1	36.9	499
MW-13S	04/07/2020	<0.03	72	81.9	0.209	7.1	27	308
MW-13S	03/23/2021	<0.03	76.8	78.6	0.161	7	27.9	352
MW-18	01/26/2016	0.101	138	19.8	0.259	7.2	187	670
MW-18	03/17/2016	0.0837	128	111	0.269	6.8	NA	679
MW-18	04/20/2017	0.0844	104	19.7	<1	NA	176	675
MW-18	06/07/2017	0.106	95.3	<30	<1	7.2	167	653
MW-18	07/12/2017	0.111	86.5	<30	<30 <1 7.1		160	649
MW-18	11/15/2017	<0.08	78.9	18.1	18.1 NA 7.3 132		132	574
MW-18	05/07/2018	<1	83.6	83.6 17.4 <1 7.2 142		142	594	
MW-18	09/27/2018	0.125	111	19.4	<1	7.1	219	676
MW-18	03/12/2019	<0.08	90.3	19.9	<1	7.2	153	595
MW-18	04/07/2020	0.0818	88.8	18.8	0.238	7.1	147	597
MW-18	03/23/2021	<0.3	90.7	18	0.179	7.2	143	588
MW-21	01/28/2016	1.36	151	170	0.57	7	58.9	760
MW-21	03/14/2016	1.41	115	114	0.454	6.9	64.1	652
MW-21	06/13/2016	1.45	92.3	122	<1	7	93.7	687
MW-21	09/29/2016	1.23	93.6	134	<1	7.1	64.8	703
MW-21	12/20/2016	1.65	89.9	.9 125 <1 7		64.3	704	
MW-21	04/19/2017	2017 1.34 81.4		148	<1	NA	69.8	698
MW-21	06/07/2017	1.88	74.2	153	<1	6.6	68.8	751
MW-21	07/12/2017	1.23	83	152	<1	7.2	65.9	748

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-21	03/12/2019	1.22	85.2	168	<1	7.1	68.4	759
MW-21	09/11/2019	1.4	93	129	<1	7.2	66.4	687
MW-21	04/07/2020	1.36	90.2	174	0.635	7.3	73	1460
MW-21	09/16/2020	1.73	92.6	225	0.491	7.2	74	881
MW-21	03/23/2021	1.3	88.6	184	0.516	7.3	73.3	780
Complian	ce	-					-	
MW-9D	01/26/2016	0.576	130	197	0.212	7.2	0.6	773
MW-9D	03/16/2016	0.584	91.2	237	0.244	7.2	0.413	809
MW-9D	06/13/2016	0.6	92.5	207	<1	7.1	<5	781
MW-9D	09/29/2016	0.523	93.8	260	<1	7.2	<5	794
MW-9D	12/20/2016	0.81	101	270	<1	7.1	<5	827
MW-9D	04/19/2017	0.493	85.9	238	<1	NA	<5	793
MW-9D	06/07/2017	1.29	64.2	384	<1	6.4	<5	1080
MW-9D	07/12/2017	0.728	75.3	351	<1	7.2	<5	1080
MW-9D	11/14/2017	1.05	73.1	638	<1	7	<5	1020
MW-9D	05/08/2018	<1	75.1	301	<1	7.2	<5	852
MW-9D	09/18/2018	1.64	71.7	337	<1	7.1	<5	909
MW-9D	03/13/2019	0.499	90.4	206	<1	7.1	<5	790
MW-9D	09/11/2019	0.73	84.4	193	<1	7.1	<5	849
MW-9D	04/07/2020	0.618	93.4	233	0.308	7.1	<5	812
MW-9D	09/16/2020	0.981	85.4	309	0.29	7.3	<5	953
MW-9D	03/22/2021	0.91	83.9	312	0.266	7.5	<5	966

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-11D	01/27/2016	0.197	100	7.02	0.264	7.3	10.7	369
MW-11D	03/16/2016	0.174	76	5.84	0.285	7.2	10.1	364
MW-11D	06/13/2016	0.172	74	6.11	<1	7.3	13.3	364
MW-11D	09/29/2016	0.147	80.3	6.5	<1	7.1	11.4	363
MW-11D	12/20/2016	0.221	78.3	11.9	<1	7.2	9.29	402
MW-11D	04/18/2017	0.156	74.1	5.2	<1	NA	11.9	360
MW-11D	06/07/2017	0.205	72.4	5.14	<1	7.4	12.1	361
MW-11D	07/12/2017	0.163	70.5	5.01	<1	7.1	11.3	355
MW-11D	11/14/2017	0.179	76.6	6.17	<1	6.8 8		381
MW-11D	05/08/2018	<1	71.5	5.15	<1	7.2	11.8	389
MW-11D	09/18/2018	0.207	78.2	5.56	<1	7	12.8	367
MW-11D	03/13/2019	0.156	76.3	5.06	<1	7.2	11.3	385
MW-11D	09/11/2019	0.169	75.2	3.67	<1	7.3	11.9	352
MW-11D	04/07/2020	0.172	76.6	5.4	0.286	7.3	11.4	367
MW-11D	09/16/2020	0.18	75	4.96	0.223	7.4	11.7	383
MW-11D	03/22/2021	0.173	76.6	5.17	0.224	7.6	10.7	384
MW-16D	01/28/2016	1.01	70.2	62.5	0.546	7.4	0.6	516
MW-16D	03/15/2016	1.06	59.9	57	0.456	0.456 7.2 0.18		505
MW-16D	06/14/2016	1.11	51.1	56.7	<1	7.3	<5	522
MW-16D	09/29/2016	0.934	50.9	64	<1	7.2	<5	530
MW-16D	12/20/2016	1.28	50.6	57	<1	7.3	<5	528
MW-16D	04/18/2017	0.91	45.9	57	<1	NA	<5	504

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-16D	06/07/2017	1.11	48.7	53.3	<1	6.7	<5	521
MW-16D	07/12/2017	0.839	48	53.5	<1	7.3	<5	520
MW-16D	11/15/2017	1.02	48.7	61.2	<1	7.2	<5	533
MW-16D	05/07/2018	<1	50.2	57.9	<1	7.3	<5	537
MW-16D	09/18/2018	1.2	54.4	60.2	<1	7.1	<5	520
MW-16D	03/12/2019	0.895	51.5	59.5	<1	7.3	<5	541
MW-16D	09/11/2019	0.979	51	56.6	<1	7	<5	514
MW-16D	04/07/2020	0.922	51.7	58.2	0.502	7.3	<5	536
MW-16D	09/17/2020	1.06	51.3	61.4	0.447	7.4	<5	535
MW-16D	03/23/2021	0.889	52.3	56.8	0.462	7.3	<5	503
MW-20D	01/28/2016	0.256	136	39.9	0.273	7.2	17.6	368
MW-20D	03/15/2016	0.446	95.1	34.6	0.224	7.1	19.4	375
MW-20D	06/14/2016	0.241	71.2	13.7	<1	7.3	<25	326
MW-20D	09/29/2016	0.225	83	24.5	<1	7.1	19.6	344
MW-20D	12/20/2016	0.323	84.7	44	<1	7.1	17.8	399
MW-20D	04/18/2017	0.207	71.7	12.3	<1	NA	20.1	328
MW-20D	06/07/2017	0.261	77.2	13.3	<1	7.1	19.6	332
MW-20D	07/13/2017	0.221	73.1	17.9	<1	7	<25	347
MW-20D	11/15/2017	0.266	76.5	16.1	<1	7.1	20.9	330
MW-20D	05/07/2018	<1	72.8	14.6	<1	7.2	20.7	337
MW-20D	09/17/2018	0.29	80.2	24.1	<1	6.9	19.3	371
MW-20D	03/12/2019	0.224	81.5	23.4	<1	7.2	18.9	353

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-20D	09/12/2019	0.274	85.3	23	<1	6.7	19	362
MW-20D	04/07/2020	0.245	80.2	22.8	0.272	7.3	18.9	347
MW-20D	09/16/2020	0.254	75.7	13.2	0.222	7.3	19.3	336
MW-20D	03/22/2021	0.216	77.6	9.66	0.235	7.6	19.4	313
MW-22	01/26/2016	0.532	180	45.5	0.06	7	106	621
MW-22	03/16/2016	0.4	107	31.9	0.333	7	81.9	550
MW-22	06/13/2016	0.372	108	25.9	<1	7	79.5	531
MW-22	09/29/2016	0.364	114	35.4	<1	<1 7 94		557
MW-22	12/20/2016	0.575	112	38.7	<1	6.9	91.9	601
MW-22	04/19/2017	0.457	112	38.9	<1	NA	94.2	584
MW-22	06/07/2017	0.443	113	<30	<1	7.2	83.1	547
MW-22	07/25/2017	0.448	99.7	34.6	<1	6.9	92.9	569
MW-22	11/14/2017	0.522	121	39	<1	6.7	101	604
MW-22	05/08/2018	<1	114	32.1	<1	7	99.7	585
MW-22	09/18/2018	0.521	122	37.3	<1	6.9	91	595
MW-22	03/13/2019	0.392	118	36.9	<1	7	96.1	590
MW-22	09/11/2019	0.466	117	36.4	<1	6.9	93.7	589
MW-22	04/08/2020	0.431	118	35	0.289	6.9	93.4	558
MW-22	09/16/2020	0.514	121	40.1	0.255	7.1	281	619
MW-22	03/22/2021	0.469	121	121 37.5 0.269 7.4 1		104	595	
MW-24	01/27/2016	27/2016 0.175 75.6 4.46 0.418		7.8	17.2	248		
MW-24	03/15/2016	0.178	57.2	5.84	0.348	7.4	19	233

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-24	06/14/2016	0.144	45.4	5.89	<1	7.5	<25	242
MW-24	09/29/2016	0.15	50.4	6.3	<1	7.4	22.3	245
MW-24	12/20/2016	0.213	49.4	6.61	<1	7.5	23	252
MW-24	04/18/2017	0.146	43.3	5.66	<1	NA	21.8	236
MW-24	06/07/2017	0.164	46.2	5.65	<1	7.6	22.8	232
MW-24	07/12/2017	0.139	47.1	6.22	<1	7.6	<25	246
MW-24	11/14/2017	0.183	51.4	6.84	<1	7.1	26.5	260
MW-24	05/07/2018	<1	46.3	6.74	<1	7.5	25.1	245
MW-24	09/27/2018	0.217	53.4	6.46	<1	<1 7.4 25.2		251
MW-24	03/12/2019	0.13	54.9	9.41	<1	7.4	36.3	269
MW-24	09/11/2019	0.184	53.4	5.8	<1	7.4	27.1	246
MW-24	04/08/2020	0.172	54.5	6.33	0.35	7.2	24.4	238
MW-24	09/16/2020	0.193	52.6	6.22	0.284	7.5	24.9	273
MW-24	03/22/2021	0.165	55.3	5.14	0.272	7.8	22	253
MW-D	01/28/2016	4.26	5.1	23.5	2.11	8.7	12.8	532
MW-D	03/15/2016	5	5.18	23.9	1.86	8.5	13.8	528
MW-D	06/14/2016	5.99	4.01	25.6	1.82	8.7	13	518
MW-D	09/30/2016	4.31	3.51	29.4	1.99	7.2	12.7	524
MW-D	12/21/2016	5.92	8.19	32.1	1.91	8.5	12.9	562
MW-D	04/18/2017	4.72	3.09	39	2.11	NA	13.9	565
MW-D	06/07/2017	5.22	2.75	35.4	2.19	2.19 6.9 13.3		559
MW-D	07/12/2017	4.03	2.81	29.9	2.1	8.2	13.2	545

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-D	11/14/2017	5.69	3.55	26.2	2.63	8.2	14.1	527
MW-D	05/08/2018	4.62	3.17	32.5	2.01	8.2	12.2	544
MW-D	09/18/2018	5.3	3.43	30.7	1.9	7.7	12.6	532
MW-D	03/13/2019	4.18	2.93	29.6	2.2	8.4	14.4	533
MW-D	09/11/2019	4.41	3.42	22.3	1.95	8.2	12.3	508
MW-D	04/08/2020	4.29	3.84	28.7	2.04	8.2	12.5	517
MW-D	09/16/2020	4.86	3.72	25.1	1.67	8.5	12	499
MW-D	03/22/2021	3.9	3.42	25.6			12.5	515
MW-E	01/27/2016	3.8	141	338	1.25	8.4	78.1	978
MW-E	03/17/2016	3.03	74.9	152	0.28	8.1	96.8	819
MW-E	06/14/2016	2.03	58.8	131	<1	7.4	<50	572
MW-E	09/30/2016	1.9	59.7	96.9	1.03	7.6	34.1	475
MW-E	12/21/2016	3.74	56.6	114	<1	7.4	36.7	596
MW-E	04/18/2017	0.999	46.5	21.4	<1	NA	30	376
MW-E	06/07/2017	1.08	46.9	<30	<1	6.9	24.8	372
MW-E	07/25/2017	0.934	48.2	21.5	<1	7.5	25.9	385
MW-E	11/14/2017	2.08	51	43.1	<1	7.1	27.4	448
MW-E	05/08/2018	<1	45.2	14.8	<1	7.3	20	345
MW-E	09/18/2018	0.968	55.8	19.9	<1	7.2	19.5	361
MW-E	03/13/2019	0/2019 0.805 50.7 17.6 <1 7.3		20.5	361			
MW-E	09/11/2019 1.01 51.2 25.6 <1		<1	7.3	40	450		
MW-E	04/08/2020	0.758	55.3	14.2	0.782	7.3	18.4	330

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-E	09/16/2020	1.16	55.3	24.6	0.652	7.5	17.2	365
MW-E	03/22/2021	0.751	53.8	15.2	0.699	7.7	18.5	347
MW-F	01/28/2016	4.11	265	515	1.02	7.4	164	1440
MW-F	03/18/2016	4.78	134	483	0.674	6.9	165	1440
MW-F	06/14/2016	8.38	139	561	<1	7.1	159	1490
MW-F	09/30/2016	4.37	114	572	1.05	7.2	167	1440
MW-F	12/21/2016	6.64	133	685	<1	7.1	177	1760
MW-F	04/18/2017	5.05	106	522	<1	NA	206	1580
MW-F	06/07/2017	5.36	103	582	<1	6.6	<250	1610
MW-F	07/25/2017	4.88	100	766	<1	7.2	<250	1500
MW-F	11/15/2017	5.83	113	531	<1	7	185	1420
MW-F	05/08/2018	6.14	93.1	628	<1	7.3	181	1620
MW-F	09/18/2018	4.79	105	568	<1	6.9	158	1510
MW-F	03/13/2019	4.04	92.3	548	<1	7.3	169	1490
MW-F	09/11/2019	4.42	98.4	506	<2.5	7.3	151	1390
MW-F	04/08/2020	1.16	72.7	120	0.607	7.2	105	564
MW-F	07/01/2020	2.06	90	264	0.491	7.2	124	404
MW-F	09/16/2020	2.71	92.6	315	0.539	7.3	132	1040
MW-F	03/23/2021	2.57	89.6	323	0.589	7.3	138	1020
MW-G	01/27/2016	0.79	97.1	131	0.597	7.3	6.66	671
MW-G	03/15/2016	1.22	88.1	156	0.359	7.2	2.98	659
MW-G	06/14/2016	1.04	65.2	158	<1	7.3	<5	674

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-G	09/30/2016	0.738	67.6	155	<1	7.2	<5	672
MW-G	12/14/2016	0.979	66.9	158	<1	7.2	<5	685
MW-G	04/18/2017	0.94	65.5	155	<1	NA	<5	699
MW-G	06/07/2017	1.08	64.7	162	<1	7.2	<5	707
MW-G	07/13/2017	0.892	63.1	166	<1	7.1	<5	719
MW-G	11/15/2017	1.22	70.6	189	<1	7.2	<5	712
MW-G	05/07/2018	<1	60.1	167	<1	7.2	<5	711
MW-G	09/17/2018	1.24	69.1	173	<1	6.9	<5	744
MW-G	03/12/2019	0.875	68.3	180	<1 7.2 <		<5	704
MW-G	09/11/2019	1.03	70.2	151	<1	7.2	<5	693
MW-G	04/08/2020	0.869	68.4	172	0.502	7.1	<5	665
MW-G	09/17/2020	1.12	69.2	174	0.372	7.3	<5	743
MW-G	03/23/2021	0.926	68.3	175	0.383	7.3	<5	700
MW-H	01/27/2016	0.481	148	95.8	0.679	7.3	25.1	622
MW-H	03/15/2016	0.563	134	124	0.384	7	40.1	640
MW-H	06/14/2016	0.617	129	127	<1	7	<50	705
MW-H	09/30/2016	0.469	111	119	<1	7	26	621
MW-H	12/20/2016	0.65	107	116	<1	7	21.9	624
MW-H	04/18/2017	0.494	105	110	110 <1 NA 25.9		25.9	671
MW-H	06/07/2017	0.576	103 129 <1 6.8 38.5		38.5	726		
MW-H	07/25/2017	0.56	120	159	<1	6.8	37.1	724
MW-H	11/15/2017	0.678	121	138	<1	7	32.8	677

Zimmer Landfill

Location	Sample Date	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-H	05/07/2018	<1	105	123	<1	7.1	36.2	729
MW-H	09/18/2018	0.674	122	2 120 <1 6.9		39	722	
MW-H	03/12/2019	0.548	114	132	<1	7	39.6	671
MW-H	09/12/2019	0.627	118	105	<1	6.7	29	629
MW-H	04/08/2020	0.58	114	126	0.443	6.9	34.4	637
MW-H	09/17/2020	0.651	113	113 121 0.394 7		33.7	690	
MW-H	03/23/2021	0.577	114	130	0.405	7.1	34.2	656

Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; STD - standard units

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
Backgrou	nd					•			<u> </u>					•	•	
MW-3	01/27/2016	<0.02	<0.005	<0.2	<0.02	<0.01	<0.003	0.0005	0.127	<0.005	0.0093	<0.0002	<0.01	<0.384	<0.01	<0.001
MW-3	03/14/2016	0.000743	0.00594	0.0464	<0.002	<0.001	<0.003	<0.005	0.115	<0.005	0.00807	<0.0002	<0.01	0.632	<0.01	0.00159
MW-3	06/14/2016	<0.002	<0.001	0.042	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	0.499	<0.005	<0.001
MW-3	09/29/2016	<0.002	<0.001	0.0455	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	0.514	<0.005	<0.001
MW-3	12/20/2016	<0.002	<0.001	0.0482	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-3	04/18/2017	<0.002	<0.001	0.0413	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-3	06/07/2017	<0.002	<0.001	0.0495	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-3	07/12/2017	<0.002	<0.001	0.0455	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-3	05/07/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	NA	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-3	09/17/2018	NA	<0.001	0.0637	NA	NA	<0.002	NA	NA	NA	0.014	NA	NA	<5	NA	NA
MW-3	03/12/2019	<0.002	<0.001	0.0468	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0134	<0.0002	<0.005	<5	<0.005	<0.001
MW-3	09/11/2019	NA	<0.001	0.0595	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0161	NA	<0.005	<5	<0.005	NA
MW-3	04/07/2020	<0.004	<0.002	0.0515	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00844	<0.0002	<0.005	1.16	<0.002	<0.002
MW-3	09/16/2020	NA	<0.002	0.0541	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.0136	NA	<0.005	1.13	<0.002	NA
MW-3	03/23/2021	<0.004	<0.002	0.057	<0.002	<0.001	0.00261	<0.002	<0.15	<0.002	0.0126	<0.0002	<0.005	0.454	<0.002	<0.002
MW-13S	01/28/2016	<0.02	<0.005	<0.2	<0.02	<0.01	<0.003	0.0005	0.278	<0.005	0.0123	<0.0002	<0.01	0.421	<0.01	<0.001
MW-13S	03/16/2016	<0.01	<0.025	0.0519	<0.01	<0.005	<0.015	<0.025	0.761	<0.025	0.0138	<0.0002	<0.05	0.853	<0.05	<0.005
MW-13S	04/20/2017	<0.002	<0.001	0.0344	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-13S	06/07/2017	<0.002	<0.001	0.0325	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-13S	07/12/2017	<0.002	<0.001	0.0447	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-13S	05/07/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-13S	09/17/2018	NA	<0.001	0.0579	NA	NA	0.00216	NA	<1	NA	0.0121	NA	NA	<5	NA	NA
MW-13S	03/12/2019	<0.002	<0.001	0.0349	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0138	<0.0002	<0.005	<5	<0.005	<0.001

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-13S	04/07/2020	<0.004	<0.002	0.0331	<0.002	<0.001	<0.002	<0.002	0.209	<0.005	0.00424	<0.0002	<0.005	0.273	<0.002	<0.002
MW-13S	03/23/2021	<0.004	<0.002	0.0397	<0.002	<0.001	<0.002	<0.002	0.161	<0.002	0.00631	NA	<0.005	1	<0.002	NA
MW-18	01/26/2016	<0.02	<0.005	<0.2	<0.02	<0.01	0.00782	0.0005	0.259	<0.005	0.101	<0.0002	<0.01	<0.747	<0.01	<0.001
MW-18	03/17/2016	<0.01	<0.025	0.02	<0.01	<0.005	<0.015	0.000605	0.269	<0.025	0.112	<0.0002	<0.05	1.1	<0.05	<0.005
MW-18	04/20/2017	<0.002	<0.001	0.016	<0.001	<0.001	<0.002	0.00101	<1	0.00147	0.0898	<0.0002	<0.005	<5	<0.005	<0.001
MW-18	06/07/2017	<0.002	<0.001	0.019	<0.001	<0.001	0.00263	0.00333	<1	0.00224	0.0877	<0.0002	<0.005	<5	<0.005	<0.001
MW-18	07/12/2017	0.00309	<0.001	0.0124	<0.001	<0.001	<0.002	0.00103	<1	<0.001	0.0886	<0.0002	<0.005	<5	<0.005	<0.001
MW-18	05/07/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	0.0747	<0.0002	<0.01	<5	<0.01	<0.002
MW-18	09/27/2018	NA	<0.001	0.0213	NA	NA	0.00203	NA	<1	NA	0.099	NA	NA	<5	NA	NA
MW-18	03/12/2019	<0.002	<0.001	<0.01	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0816	<0.0002	<0.005	<5	<0.005	<0.001
MW-18	04/07/2020	<0.004	<0.002	<0.02	<0.002	<0.001	<0.002	<0.002	0.238	<0.005	0.066	<0.0002	<0.005	0.309	<0.002	<0.002
MW-18	03/23/2021	<0.004	<0.002	<0.02	<0.002	<0.001	<0.002	<0.002	0.179	<0.002	0.0754	NA	<0.005	0.553	<0.002	NA
MW-21	01/28/2016	<0.02	<0.005	<0.2	<0.02	<0.01	<0.003	0.0005	0.57	<0.005	0.0773	<0.0002	<0.01	1.39	<0.01	<0.001
MW-21	03/14/2016	<0.002	0.00362	0.0717	<0.002	<0.001	0.00113	<0.005	0.454	<0.005	0.0626	<0.0002	<0.01	1.18	<0.01	0.00132
MW-21	06/13/2016	<0.002	<0.001	0.0663	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0639	<0.0002	<0.005	1.49	<0.005	<0.001
MW-21	09/29/2016	<0.002	<0.001	0.0694	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0669	<0.0002	<0.005	1.43	<0.005	<0.001
MW-21	12/20/2016	<0.002	<0.001	0.0612	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0684	<0.0002	<0.005	<5	<0.005	<0.001
MW-21	04/19/2017	<0.002	<0.001	0.0631	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0722	<0.0002	<0.005	<5	<0.005	<0.001
MW-21	06/07/2017	<0.002	<0.001	0.0909	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0895	<0.0002	<0.005	<5	<0.005	<0.001
MW-21	07/12/2017	0.00238	<0.001	0.0733	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0783	<0.0002	<0.005	<5	<0.005	<0.001
MW-21	05/07/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	NA	<0.005	0.0773	<0.0002	<0.01	<5	<0.01	<0.002
MW-21	09/27/2018	NA	<0.001	0.0768	NA	NA	<0.002	NA	NA	NA	0.07	NA	NA	<5	NA	NA
MW-21	03/12/2019	<0.002	<0.001	0.0777	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0752	<0.0002	<0.005	<5	<0.005	<0.001
MW-21	09/11/2019	NA	<0.001	0.0833	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0735	NA	<0.005	<5	<0.005	NA

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-21	04/07/2020	<0.004	<0.002	0.0944	<0.002	<0.001	<0.002	<0.002	0.635	<0.005	0.0707	<0.0002	<0.005	0.596	<0.002	<0.002
MW-21	09/16/2020	NA	<0.002	0.092	<0.02	<0.001	<0.002	<0.002	0.491	<0.005	0.103	NA	<0.005	1.49	<0.002	NA
MW-21	03/23/2021	<0.004	<0.002	0.0929	<0.002	<0.001	<0.002	<0.002	0.516	<0.002	0.0837	NA	<0.005	0.83	<0.002	NA
Complian	ce			<u>-</u>		5		<u>-</u>			<u>-</u>				-	
MW-9D	01/26/2016	<0.02	<0.005	0.622	<0.02	<0.01	<0.003	0.0005	0.212	<0.005	0.0414	<0.0002	<0.01	2.98	<0.01	<0.001
MW-9D	03/16/2016	<0.002	0.0635	0.581	<0.002	0.0004	0.0114	0.0024	0.244	0.000638	0.0427	<0.0002	<0.01	3.35	0.00262	<0.001
MW-9D	06/13/2016	<0.002	0.00434	0.551	<0.001	<0.001	<0.002	0.00209	<1	0.0012	<0.05	<0.0002	<0.005	2.47	<0.005	<0.001
MW-9D	09/29/2016	<0.002	0.00485	0.6	<0.001	<0.001	<0.002	0.002	<1	<0.001	<0.05	<0.0002	<0.005	2.64	<0.005	<0.001
MW-9D	12/20/2016	<0.002	0.00506	0.642	<0.001	<0.001	0.00936	0.00827	<1	0.00498	0.0585	<0.0002	<0.005	5.02	<0.005	<0.001
MW-9D	04/19/2017	<0.002	0.00447	0.503	<0.001	<0.001	0.00278	0.00256	<1	0.00187	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-9D	06/07/2017	<0.002	0.00164	0.773	<0.001	<0.001	0.0021	0.00365	<1	0.00155	0.075	<0.0002	<0.005	<5	<0.005	<0.001
MW-9D	07/12/2017	<0.002	0.00139	0.613	<0.001	<0.001	<0.002	0.00176	<1	<0.001	0.0567	<0.0002	<0.005	<5	<0.005	<0.001
MW-9D	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-9D	05/08/2018	<0.003	<0.005	0.677	<0.004	<0.005	<0.005	<0.005	<1	<0.005	0.0526	<0.0002	<0.01	<5	<0.01	<0.002
MW-9D	09/18/2018	NA	0.00319	0.757	NA	NA	0.00953	NA	<1	NA	0.0995	NA	NA	<5	NA	NA
MW-9D	03/13/2019	<0.002	0.00408	0.501	<0.001	<0.001	<0.002	0.000887	<1	<0.001	0.0396	<0.0002	<0.005	<5	<0.005	<0.001
MW-9D	09/11/2019	NA	0.00265	0.608	<0.001	<0.001	<0.002	0.00193	<1	<0.001	0.0523	NA	<0.005	<5	<0.005	NA
MW-9D	04/07/2020	<0.004	0.00423	0.627	<0.002	<0.001	<0.002	<0.002	0.308	<0.005	0.0364	<0.0002	<0.005	2.9	<0.002	<0.002
MW-9D	09/16/2020	NA	0.00221	0.7	<0.01	<0.001	0.00204	0.0025	0.29	<0.005	0.0667	NA	<0.005	1.87	<0.002	NA
MW-9D	03/22/2021	<0.004	0.00218	0.693	<0.002	<0.001	0.00221	0.00234	0.266	<0.002	0.0639	NA	<0.005	2.6	<0.002	NA
MW-11D	01/27/2016	<0.02	<0.005	0.202	0.01	0.004	0.00351	0.0005	0.264	<0.005	0.00852	<0.0002	<0.01	0.519	<0.01	<0.001
MW-11D	03/16/2016	<0.002	0.0577	0.174	<0.002	0.0004	0.0106	0.000505	0.285	<0.005	0.00711	<0.0002	<0.01	0.403	0.00174	<0.001
MW-11D	06/13/2016	<0.002	0.0019	0.16	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	0.823	<0.005	<0.001
MW-11D	09/29/2016	<0.002	0.00155	0.181	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	0.265	<0.005	<0.001

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-11D	12/20/2016	<0.002	<0.001	0.171	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-11D	04/18/2017	<0.002	0.00201	0.149	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-11D	06/07/2017	<0.002	0.00186	0.164	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-11D	07/12/2017	<0.002	0.00227	0.154	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-11D	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-11D	05/08/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-11D	09/18/2018	NA	0.00221	0.188	NA	NA	<0.002	NA	<1	NA	0.00938	NA	NA	<5	NA	NA
MW-11D	03/13/2019	<0.002	0.00191	0.161	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0103	<0.0002	<0.005	<5	<0.005	<0.001
MW-11D	09/11/2019	NA	0.00255	0.174	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0107	NA	<0.005	<5	<0.005	NA
MW-11D	04/07/2020	<0.004	0.00223	0.175	<0.002	<0.001	<0.002	<0.002	0.286	<0.005	0.00696	<0.0002	<0.005	1.12	<0.002	<0.002
MW-11D	09/16/2020	NA	0.00226	0.176	<0.002	<0.001	<0.002	<0.002	0.223	<0.005	0.00931	NA	<0.005	1.19	<0.002	NA
MW-11D	03/22/2021	<0.004	0.00216	0.177	<0.002	<0.001	<0.002	<0.002	0.224	<0.002	0.0074	NA	<0.005	0.33	<0.002	NA
MW-16D	01/28/2016	<0.02	0.0052	<0.2	<0.02	<0.01	<0.003	0.0005	0.546	<0.005	0.0394	<0.0002	<0.01	<0.368	<0.01	<0.001
MW-16D	03/15/2016	<0.002	0.00787	0.126	<0.002	<0.001	<0.003	<0.005	0.456	<0.005	0.0439	<0.0002	0.00146	0.35	<0.01	0.000731
MW-16D	06/14/2016	<0.002	0.00579	0.109	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	0.254	<0.005	<0.001
MW-16D	09/29/2016	<0.002	0.00539	0.108	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	0.563	<0.005	<0.001
MW-16D	12/20/2016	<0.002	0.00513	0.104	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-16D	04/18/2017	<0.002	0.00837	0.105	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-16D	06/07/2017	<0.002	0.00859	0.121	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-16D	07/12/2017	<0.002	0.00529	0.106	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.25	<0.0002	<0.005	<5	<0.005	<0.001
MW-16D	11/15/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-16D	05/07/2018	<0.003	0.0105	<0.2	<0.004	<0.005	0.00519	<0.005	<1	<0.005	0.0416	<0.0002	<0.01	<5	<0.01	<0.002
MW-16D	09/18/2018	NA	0.00724	0.13	NA	NA	<0.002	NA	<1	NA	0.0435	NA	NA	<5	NA	NA
MW-16D	03/12/2019	<0.002	0.00904	0.106	<0.001	0.00265	<0.002	<0.0005	<1	<0.001	0.0471	<0.0002	<0.005	<5	<0.005	<0.001

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-16D	09/11/2019	NA	0.00654	0.112	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0448	NA	<0.005	<5	<0.005	NA
MW-16D	04/07/2020	<0.004	0.00891	0.119	<0.002	<0.001	<0.002	<0.002	0.502	<0.005	0.0363	<0.0002	<0.005	0.413	<0.002	<0.002
MW-16D	09/17/2020	NA	0.00611	0.116	<0.01	<0.001	<0.002	<0.002	0.447	<0.005	0.0478	NA	<0.005	0.693	<0.002	NA
MW-16D	03/23/2021	<0.004	0.0116	0.121	<0.002	<0.001	<0.002	<0.002	0.462	<0.002	0.0414	NA	<0.005	1.34	<0.002	NA
MW-20D	01/28/2016	<0.02	<0.005	<0.2	<0.02	<0.01	<0.003	0.0005	0.273	<0.005	0.017	<0.0002	<0.01	0.395	<0.01	<0.001
MW-20D	03/15/2016	0.000643	0.00432	0.152	<0.002	<0.001	0.000585	<0.005	0.224	<0.005	0.0169	<0.0002	0.00662	0.819	<0.01	0.00133
MW-20D	06/14/2016	<0.002	0.00103	0.116	<0.001	<0.001	<0.002	<0.0005	<1	0.001	<0.05	<0.0002	<0.005	0.462	<0.005	<0.001
MW-20D	09/29/2016	<0.002	<0.001	0.142	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	0.00573	0.714	<0.005	<0.001
MW-20D	12/20/2016	<0.002	0.00116	0.141	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	0.0052	<5	<0.005	<0.001
MW-20D	04/18/2017	<0.002	0.00111	0.114	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-20D	06/07/2017	<0.002	0.00113	0.141	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	0.00515	<5	<0.005	<0.001
MW-20D	07/13/2017	<0.002	0.00123	0.128	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-20D	11/15/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-20D	05/07/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-20D	09/17/2018	NA	0.00124	0.149	NA	NA	<0.002	NA	<1	NA	0.0147	NA	NA	<5	NA	NA
MW-20D	03/12/2019	<0.002	0.00125	0.14	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0163	<0.0002	0.00525	<5	<0.005	<0.001
MW-20D	09/12/2019	NA	0.00187	0.162	<0.001	<0.001	0.0026	0.000771	<1	<0.001	0.0201	NA	0.00565	<5	<0.005	NA
MW-20D	04/07/2020	<0.004	<0.002	0.147	<0.002	<0.001	<0.002	<0.002	0.272	<0.005	0.0129	<0.0002	0.00587	0.349	<0.002	<0.002
MW-20D	09/16/2020	NA	<0.002	0.137	<0.002	<0.001	<0.002	<0.002	0.222	<0.005	0.0153	NA	0.00551	0.914	<0.002	NA
MW-20D	03/22/2021	<0.004	<0.002	0.139	<0.002	<0.001	0.00256	<0.002	0.235	<0.002	0.0115	NA	0.00543	1.36	<0.002	NA
MW-22	01/26/2016	<0.02	<0.005	<0.2	<0.02	<0.01	<0.003	0.0005	0.06	<0.005	0.0275	<0.0002	<0.01	0.92	<0.01	<0.001
MW-22	03/16/2016	<0.002	0.0737	0.0535	<0.002	0.0004	0.0113	0.000745	0.333	<0.005	0.0207	<0.0002	0.00075	0.485	0.00231	<0.001
MW-22	06/13/2016	<0.002	0.00204	0.0491	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	0.849	<0.005	<0.001
MW-22	09/29/2016	<0.002	0.00348	0.0563	<0.001	<0.001	<0.002	<0.0005	<1	0.00349	<0.05	<0.0002	<0.005	0.92	<0.005	<0.001

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-22	12/20/2016	<0.002	0.00325	0.0549	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-22	04/19/2017	<0.002	0.00305	0.0489	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-22	06/07/2017	<0.002	0.00266	0.0478	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-22	07/25/2017	<0.002	0.00283	0.0567	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-22	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-22	05/08/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-22	09/18/2018	NA	0.00379	0.0544	NA	NA	<0.002	NA	<1	NA	0.0243	NA	NA	<5	NA	NA
MW-22	03/13/2019	<0.002	0.00182	0.0484	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0239	<0.0002	<0.005	<5	<0.005	<0.001
MW-22	09/11/2019	NA	0.00294	0.0526	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0246	NA	<0.005	<5	<0.005	NA
MW-22	04/08/2020	<0.004	0.00262	0.0491	<0.002	<0.001	<0.002	<0.002	0.289	<0.005	0.0202	<0.0002	<0.005	0.292	<0.002	<0.002
MW-22	09/16/2020	NA	0.00523	0.0513	<0.002	<0.001	<0.002	<0.002	0.255	<0.005	0.0207	NA	<0.005	0.429	<0.002	NA
MW-22	03/22/2021	<0.004	<0.002	0.0531	<0.002	<0.001	<0.002	<0.002	0.269	<0.002	0.0227	NA	<0.005	0.831	<0.002	NA
MW-24	01/27/2016	<0.02	<0.005	<0.2	<0.02	<0.01	<0.003	0.0005	0.418	<0.005	0.0166	<0.0002	<0.01	<0.326	<0.01	<0.001
MW-24	03/15/2016	<0.002	0.00261	0.0444	<0.002	<0.001	<0.003	<0.005	0.348	<0.005	0.0155	<0.0002	<0.01	<0.341	<0.01	<0.001
MW-24	06/14/2016	<0.002	<0.001	0.0359	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	0.348	<0.005	<0.001
MW-24	09/29/2016	<0.002	<0.001	0.0407	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	0.905	<0.005	<0.001
MW-24	12/20/2016	<0.002	<0.001	0.0392	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-24	04/18/2017	<0.002	<0.001	0.0344	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-24	06/07/2017	<0.002	<0.001	0.0411	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-24	07/12/2017	<0.002	<0.001	0.0374	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-24	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-24	05/07/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-24	09/27/2018	NA	<0.001	0.0467	NA	NA	<0.002	NA	<1	NA	0.0177	NA	NA	<5	NA	NA
MW-24	03/12/2019	<0.002	<0.001	0.0394	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0186	<0.0002	<0.005	<5	<0.005	<0.001

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-24	09/11/2019	NA	<0.001	0.0452	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0194	NA	<0.005	<5	<0.005	NA
MW-24	04/08/2020	<0.004	<0.002	0.0449	<0.002	<0.001	<0.002	<0.002	0.35	<0.005	0.0151	<0.0002	<0.005	0.788	<0.002	<0.002
MW-24	09/16/2020	NA	<0.002	0.0438	<0.002	<0.001	<0.002	<0.002	0.284	<0.005	0.0145	NA	<0.005	0.178	<0.002	NA
MW-24	03/22/2021	<0.004	<0.002	0.0472	<0.002	<0.001	<0.002	<0.002	0.272	<0.002	0.0161	NA	<0.005	0.486	<0.002	NA
MW-D	01/28/2016	<0.1	<0.005	<0.2	<0.02	<0.01	<0.003	0.0005	2.11	<0.005	0.12	<0.0002	<0.01	<0.621	<0.01	<0.001
MW-D	03/15/2016	<0.002	0.00224	0.0247	<0.002	<0.001	0.000694	<0.005	1.86	<0.005	0.12	<0.0002	0.000631	0.296	<0.01	<0.001
MW-D	06/14/2016	<0.002	<0.001	0.0225	<0.001	<0.001	<0.002	<0.0005	1.82	<0.001	0.116	<0.0002	<0.005	0.0247	<0.005	<0.001
MW-D	09/30/2016	<0.002	<0.001	0.0235	<0.001	<0.001	<0.002	<0.0005	1.99	<0.001	0.118	<0.0002	<0.005	0.682	<0.005	<0.001
MW-D	12/21/2016	<0.002	<0.001	0.0273	<0.001	<0.001	0.00292	0.000997	1.91	<0.001	0.125	<0.0002	<0.005	<5	<0.005	<0.001
MW-D	04/18/2017	<0.002	<0.001	0.0257	<0.001	<0.001	<0.002	<0.0005	2.11	<0.001	0.119	<0.0002	<0.005	<5	<0.005	<0.001
MW-D	06/07/2017	<0.002	<0.001	0.0273	<0.001	<0.001	<0.002	<0.0005	2.19	<0.001	0.113	<0.0002	<0.005	<5	<0.005	<0.001
MW-D	07/12/2017	<0.002	<0.001	0.0239	<0.001	<0.001	<0.002	<0.0005	2.1	<0.001	0.123	<0.0002	<0.005	<5	<0.005	<0.001
MW-D	11/14/2017	NA	NA	NA	NA	NA	NA	NA	2.63	NA	NA	NA	NA	NA	NA	NA
MW-D	05/08/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	2.01	<0.005	0.125	<0.0002	<0.01	<5	<0.01	<0.002
MW-D	09/18/2018	NA	<0.001	0.0282	NA	NA	<0.002	NA	1.9	NA	0.125	NA	NA	<5	NA	NA
MW-D	03/13/2019	<0.002	<0.001	0.0281	<0.001	<0.001	<0.002	<0.0005	2.2	<0.001	0.125	<0.0002	<0.005	<5	<0.005	<0.001
MW-D	09/11/2019	NA	<0.001	0.027	<0.001	<0.001	0.00646	<0.0005	1.95	<0.001	0.119	NA	<0.005	<5	<0.005	NA
MW-D	04/08/2020	<0.004	<0.002	0.0299	<0.002	<0.001	<0.002	<0.002	2.04	<0.005	0.107	<0.0002	<0.005	0.611	<0.002	<0.002
MW-D	09/16/2020	NA	<0.002	0.0268	<0.002	<0.001	<0.002	<0.002	1.67	<0.005	0.104	NA	<0.005	0.112	<0.002	NA
MW-D	03/22/2021	<0.004	<0.002	0.0295	<0.002	<0.001	<0.002	<0.002	1.81	<0.002	0.114	NA	<0.005	0.191	<0.002	NA
MW-E	01/27/2016	<0.1	0.00507	0.462	<0.02	<0.01	0.0229	0.0141	1.25	0.00625	0.163	<0.0002	<0.01	2.49	<0.01	<0.05
MW-E	03/17/2016	<0.01	<0.025	0.441	<0.01	<0.005	0.00386	0.00331	0.28	0.00147	0.132	<0.0002	0.00367	1.79	<0.05	<0.005
MW-E	06/14/2016	<0.002	0.00224	0.251	<0.001	<0.001	0.00728	0.00447	<1	0.00255	0.0651	<0.0002	0.0117	0.637	<0.005	<0.001
MW-E	09/30/2016	<0.002	0.00162	0.353	<0.001	<0.001	0.00314	0.00451	1.03	0.00263	0.0623	<0.0002	0.00515	1.39	<0.005	<0.001

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-E	12/21/2016	<0.002	0.00412	0.421	<0.001	<0.001	0.0144	0.00958	<1	0.00457	0.101	<0.0002	0.0101	<5	<0.005	<0.001
MW-E	04/18/2017	<0.002	<0.001	0.214	<0.001	<0.001	<0.002	0.00123	<1	<0.001	<0.05	<0.0002	0.0103	<5	<0.005	<0.001
MW-E	06/07/2017	<0.002	<0.001	0.271	<0.001	<0.001	0.00293	0.00272	<1	0.00115	<0.05	<0.0002	0.00652	<5	<0.005	<0.001
MW-E	07/25/2017	<0.002	<0.001	0.193	<0.001	<0.001	<0.002	0.000653	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-E	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-E	05/08/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-E	09/18/2018	NA	<0.001	0.166	NA	NA	<0.002	NA	<1	NA	0.0324	NA	NA	<5	NA	NA
MW-E	03/13/2019	<0.002	<0.001	0.186	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0344	<0.0002	<0.005	<5	<0.005	<0.001
MW-E	09/11/2019	NA	0.00106	0.246	<0.001	<0.001	0.00351	0.00232	<1	0.00131	0.0416	NA	<0.005	<5	<0.005	NA
MW-E	04/08/2020	<0.004	<0.002	0.175	<0.002	<0.001	<0.002	<0.002	0.782	<0.005	0.0292	<0.0002	<0.005	0.861	<0.002	<0.002
MW-E	09/16/2020	NA	<0.002	0.218	<0.002	<0.001	<0.002	<0.002	0.652	<0.005	0.0317	NA	<0.005	1.55	<0.002	NA
MW-E	03/22/2021	<0.004	<0.002	0.218	<0.002	<0.001	<0.002	<0.002	0.699	<0.002	0.0312	NA	<0.005	0.993	<0.002	NA
MW-F	01/28/2016	<0.1	0.0106	0.264	<0.02	<0.01	0.0337	0.0222	1.02	0.0233	0.26	<0.0002	<0.01	<1.37	<0.01	<0.05
MW-F	03/18/2016	<0.01	<0.025	0.146	<0.01	<0.005	0.00665	0.00423	0.674	0.00393	0.328	<0.0002	<0.05	1.06	<0.05	<0.005
MW-F	06/14/2016	<0.002	0.00602	0.0938	<0.001	<0.001	0.0187	0.00944	<1	0.0103	0.249	<0.0002	<0.005	2.72	<0.005	<0.001
MW-F	09/30/2016	<0.002	0.00118	0.071	<0.001	<0.001	0.00307	0.00243	1.05	0.00253	0.261	<0.0002	<0.005	6.36	<0.005	<0.001
MW-F	12/21/2016	<0.002	0.00801	0.0901	0.00113	<0.001	0.0301	0.0142	<1	0.0124	0.289	<0.0002	<0.005	<5	<0.005	<0.001
MW-F	04/18/2017	<0.002	<0.001	0.039	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.232	<0.0002	<0.005	<5	<0.005	<0.001
MW-F	06/07/2017	<0.002	<0.001	0.0426	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.224	<0.0002	<0.005	<5	<0.005	<0.001
MW-F	07/25/2017	<0.002	<0.001	0.0404	<0.001	<0.001	<0.002	0.000653	<1	<0.001	0.235	<0.0002	<0.005	<5	<0.005	<0.001
MW-F	11/15/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-F	05/08/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	0.265	<0.0002	<0.01	<5	<0.01	<0.002
MW-F	09/18/2018	NA	<0.001	0.039	NA	NA	<0.002	NA	<1	NA	0.249	NA	NA	<5	NA	NA
MW-F	03/13/2019	<0.002	<0.001	0.0326	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.231	<0.0002	<0.005	<5	<0.005	<0.001

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-F	09/11/2019	NA	0.00103	0.0423	<0.001	<0.001	<0.002	<0.0005	<2.5	<0.001	0.232	NA	<0.005	<5	<0.005	NA
MW-F	04/08/2020	<0.004	<0.002	0.0284	<0.002	<0.001	<0.002	<0.002	0.607	<0.005	0.0613	<0.0002	<0.005	2.24	<0.002	<0.002
MW-F	07/01/2020	<0.004	<0.002	0.0396	<0.002	<0.001	<0.002	<0.002	0.491	<0.005	0.115	<0.0002	<0.005	NA	<0.002	<0.002
MW-F	09/16/2020	NA	<0.002	0.0409	<0.002	<0.001	<0.002	<0.002	0.539	<0.005	0.117	NA	<0.005	2.15	<0.002	NA
MW-F	03/23/2021	<0.004	<0.002	0.0335	<0.002	<0.001	<0.002	<0.002	0.589	<0.002	0.137	NA	<0.005	1.01	<0.002	NA
MW-G	01/27/2016	<0.02	0.00747	0.496	<0.02	<0.01	<0.003	0.0005	0.597	<0.005	0.0341	<0.0002	<0.01	1.31	<0.01	<0.001
MW-G	03/15/2016	<0.002	0.00788	0.466	<0.002	<0.001	<0.003	<0.005	0.359	<0.005	0.0362	<0.0002	0.00252	1.07	<0.01	0.000537
MW-G	06/14/2016	<0.002	0.00352	0.406	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	1.42	<0.005	<0.001
MW-G	09/30/2016	<0.002	0.00295	0.425	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	1.05	<0.005	<0.001
MW-G	12/14/2016	<0.002	0.00315	0.438	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-G	04/18/2017	<0.002	0.00293	0.387	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-G	06/07/2017	<0.002	0.00257	0.432	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-G	07/13/2017	<0.002	0.00276	0.392	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-G	11/15/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-G	05/07/2018	<0.003	<0.005	0.417	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-G	09/17/2018	NA	0.00202	0.441	NA	NA	<0.002	NA	<1	NA	0.0425	NA	NA	<5	NA	NA
MW-G	03/12/2019	<0.002	0.00171	0.53	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0391	<0.0002	<0.005	<5	<0.005	<0.001
MW-G	09/11/2019	NA	0.00196	0.452	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0416	NA	<0.005	<5	<0.005	NA
MW-G	04/08/2020	<0.004	<0.002	0.445	<0.002	<0.001	<0.002	<0.002	0.502	<0.005	0.0324	<0.0002	<0.005	1.89	<0.002	<0.002
MW-G	09/17/2020	NA	<0.002	0.425	<0.002	<0.001	<0.002	<0.002	0.372	<0.005	0.0342	NA	<0.005	1.87	<0.002	NA
MW-G	03/23/2021	<0.004	<0.002	0.45	<0.002	<0.001	<0.002	<0.002	0.383	<0.002	0.0362	NA	<0.005	1.11	<0.002	NA
MW-H	01/27/2016	<0.02	<0.005	0.0005	<0.02	<0.01	<0.003	<0.05	0.679	<0.005	0.03	<0.0002	<0.01	0.454	<0.01	<0.001
MW-H	03/15/2016	<0.002	0.00548	0.127	<0.002	<0.001	0.000966	<0.005	0.384	<0.005	0.0303	<0.0002	<0.01	0.622	<0.01	<0.001
MW-H	06/14/2016	<0.002	0.00129	0.126	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	0.599	<0.005	<0.001

Zimmer Landfill

Location	Sample Date	Antimony, total (mg/L)	Arsenic, total (mg/L)	Barium, total (mg/L)	Beryllium, total (mg/L)	Cadmium, total (mg/L)	Chromium, total (mg/L)	Cobalt, total (mg/L)	Fluoride, total (mg/L)	Lead, total (mg/L)	Lithium, total (mg/L)	Mercury, total (mg/L)	Molybdenum, total (mg/L)	Radium-226 + Radium-228, total (pCi/L)	Selenium, total (mg/L)	Thallium, total (mg/L)
MW-H	09/30/2016	<0.002	0.00132	0.103	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	0.601	<0.005	<0.001
MW-H	12/20/2016	<0.002	0.00131	0.0974	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-H	04/18/2017	<0.002	0.00126	0.0837	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-H	06/07/2017	<0.002	<0.001	0.11	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-H	07/25/2017	<0.002	0.00101	0.121	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	<0.0002	<0.005	<5	<0.005	<0.001
MW-H	11/15/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-H	05/07/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	<0.0002	<0.01	<5	<0.01	<0.002
MW-H	09/18/2018	NA	<0.001	0.135	NA	NA	<0.002	NA	<1	NA	0.0376	NA	NA	<5	NA	NA
MW-H	03/12/2019	<0.002	0.00107	0.111	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0376	<0.0002	<0.005	<5	<0.005	<0.001
MW-H	09/12/2019	NA	0.00105	0.124	<0.001	<0.001	0.00216	<0.0005	<1	<0.001	0.04	NA	<0.005	<5	<0.005	NA
MW-H	04/08/2020	<0.004	<0.002	0.119	<0.002	<0.001	<0.002	<0.002	0.443	<0.005	0.0337	<0.0002	<0.005	0.673	<0.002	<0.002
MW-H	09/17/2020	NA	<0.002	0.116	<0.002	<0.001	<0.002	<0.002	0.394	<0.005	0.0321	NA	<0.005	0.12	<0.002	NA
MW-H	03/23/2021	<0.004	<0.002	0.125	<0.002	<0.001	<0.002	<0.002	0.405	<0.002	0.0352	NA	<0.005	0.46	<0.002	NA

Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter

April 8, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a coal combustion residuals (CCR) unit 90 days from the date of determination of statistically significant levels (SSLs) over groundwater protection standards of groundwater constituents listed in Appendix IV of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (alternate source demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Zimmer, LLC, by O'Brien & Gere Engineers, Inc., part of Ramboll, to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for the Zimmer Landfill located near the Zimmer Power Station and Moscow, OH.

The first Assessment Monitoring sampling event was completed on May 7, 2018, and May 8, 2018. As stipulated in 40 C.F.R. § 257.95(d)(1), all wells were resampled on September 17, 2018, and September 18, 2018, for all Appendix III parameters and Appendix IV parameters detected during the first Assessment Monitoring sampling event. Due to shipping delays, samples from monitoring wells MW-18, MW-21, and MW-24 arrived at the analytical laboratory above the temperature allowable by the analysis method. These three wells were resampled on September 27, 2018 and submitted for analysis. Analytical data from all sampling events from December 2015 through the resampling event on September 27, 2018, were evaluated in accordance with the statistical analysis plan¹ to determine any statistically significant levels (SSLs) of Appendix IV parameters over the Groundwater Protection Standards (GWPSs) established in accordance with 40 C.F.R. § 257.95(h). That evaluation identified SSLs at downgradient monitoring wells as follows:

Lithium at well MW-F

Pursuant to 40 C.F.R. § 257.95(g)(3)(ii), the following lines of evidence demonstrate that sources other than the Zimmer Landfill were the cause of the SSL listed above. This alternate source demonstration (ASD) was completed within 90 days of determination of the SSLs (January 9, 2019), as required by 40 C.F.R. § 257.95(g)(3)(ii).

ISOTOPIC EVALUATION

Isotopes are commonly used in age dating, provenance studies, and to differentiate between sources of groundwater. Multiple studies have shown that boron and strontium isotope ratios can be successfully used in identifying CCR impacts to groundwater²⁻³. When a material is altered, the mass of a given element in the resulting material may be conserved or reduced. Alteration processes, such as combustion, may also affect the isotopic ratios of a given element, referred to as fractionation. Isotopes that have minimal fractionation during the alteration process, such as boron and strontium isotopes, make good groundwater tracers. This ASD compares boron and strontium isotope ratios to published ranges for CCR impacted groundwater and CCR leachate.

Boron

Boron isotopes do not fractionate during combustion, meaning the isotopic ratio in the coal and in the subsequent CCR are similar, regardless of the total boron in the coal and the combusted coal². The isotopic ratio is also conserved when mobilized to water; thus, CCR-impacted groundwater will have similar isotopic ratios as the original coal and the CCR².

Because variations in boron isotope ratios are usually small, they are reported in parts per thousand or *per mil* variations, denoted ‰, from a standard.

$$\delta^{11}B = \left[\frac{(^{11}B/^{10}B)_{sample}, (^{11}B/^{10}B)_{std}}{(^{11}B/^{10}B)_{std}}\right] \times 1000$$

Strontium

One of the four stable isotopes (⁸⁷Sr) is subject to long-term radiogenic ingrowth by radioactive decay of rubidium (⁸⁷Rb). The isotopic ratio, ⁸⁷Sr/⁸⁶Sr, is commonly used to trace the mixing of global reservoirs and to evaluate the environmental conditions in surface waters, oceans, and sediments. Strontium isotopes are very useful for provenance identification because the isotopic signature of rock is transferred to the soil, vegetation, and up the food web with minimal isotopic fractionation⁶.

ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

Lines of evidence supporting this ASD include the following:

- 1. Boron isotope ratios in downgradient groundwater are not consistent with boron isotope ratios in CCR and CCR-impacted waters.
- 2. Strontium isotope ratios in groundwater are lower than the typical range for CCRs.

These lines of evidence are described and supported in greater detail below.

LOE #1: BORON ISOTOPE RATIOS DOWNGRADIENT ARE WITHIN THE TYPICAL RANGE FOR GROUNDWATER.

Strontium isotope ratios (⁸⁷Sr/⁸⁶Sr) for groundwater and leachate are plotted against boron isotope ratios ($\delta^{11}B$) in Figure 2. The $\delta^{11}B$ range for typical groundwater, shaded green, is 10% to 40% ⁷. The area shaded orange represents $\delta^{11}B$ range for CCR-impacted water, which has a distinctive negative $\delta^{11}B$ signature ranging from -70 % to -1%^{2,8}.

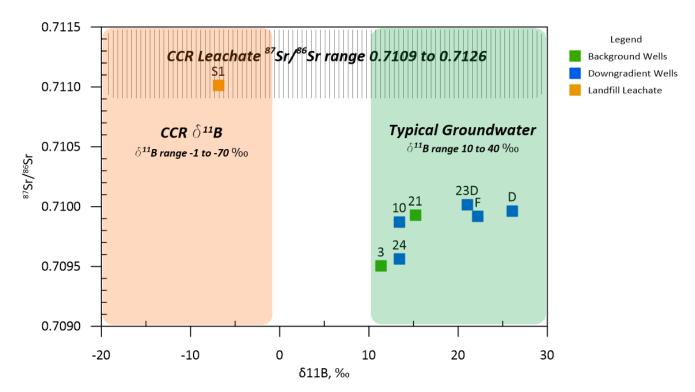


Figure 2. Strontium isotope ratio vs boron isotope ratio²

All groundwater results are within the typical δ^{11} B range for groundwater². The leachate results, S1, are within the typical negative δ^{11} B range for CCR leachates². Figure 2 shows that δ^{11} B groundwater results are well grouped, and that the leachate is not mixing with the groundwater.

LOE #2: STRONTIUM ISOTOPE RATIOS DOWNGRADIENT ARE LOWER THAN THE TYPICAL RANGE FOR CCR IMPACTED WATERS.

Strontium isotope ratios in coal, fly ash, and bottom ash range from 0.7109 to 0.7126, indicated by the vertical hatching in Figure 2.

The groundwater results are within the typical groundwater range². The leachate sample is within the typical ⁸⁷Sr/⁸⁶Sr range for CCR leachates². Figure 2 shows that ⁸⁷Sr/⁸⁶Sr groundwater results are well grouped, and that the leachate is not mixing with the groundwater.

Based on these two lines of evidence, it has been demonstrated that the Zimmer Landfill has not caused the Lithium SSL in MW-F.

This information serves as the written ASD, prepared in accordance with 40 C.F.R. § 257.95(g)(3)(ii), that the lithium SSL observed during the assessment monitoring program was not due to Zimmer Landfill, but naturally-occurring conditions. Therefore, a corrective measures assessment is not required, and the Zimmer Landfill will remain in assessment monitoring.

REFERENCES

1. Natural Resource Technology, Statistical Analysis Plan. 2017.

 Ruhl, L. S.; Dwyer, G. S.; Hsu-Kim, H.; Hower, J. C.; Vengosh, A., Boron and Strontium Isotopic Characterization of Coal Combustion Residuals; Validation of New Environmental Tracers. *Environmental Science & Technology* 2014, 9.
 Harkness, J. S.; Ruhl, L. S.; Millot, R.; Kloppman, W.; Hower, J. C.; Hsu-Kim, H.; Vengosh, A., Lithium Isotope Fingerprints in Coal and Coal Combusion Residuals from the United States. *Procdia Earth and Planetary Science* 2015, 4.

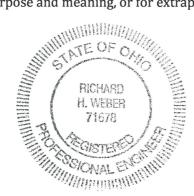
4. Hensel, B. R. Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate; 2012.

5. Vengosh, A.; Heumann, K. G.; Juraske, S.; Kasher, R., Boron Isotope Application for Tracing Sources of Contamination in Grounwater. *Environmental Science & Technology* **1994**, *26* (11), 7.

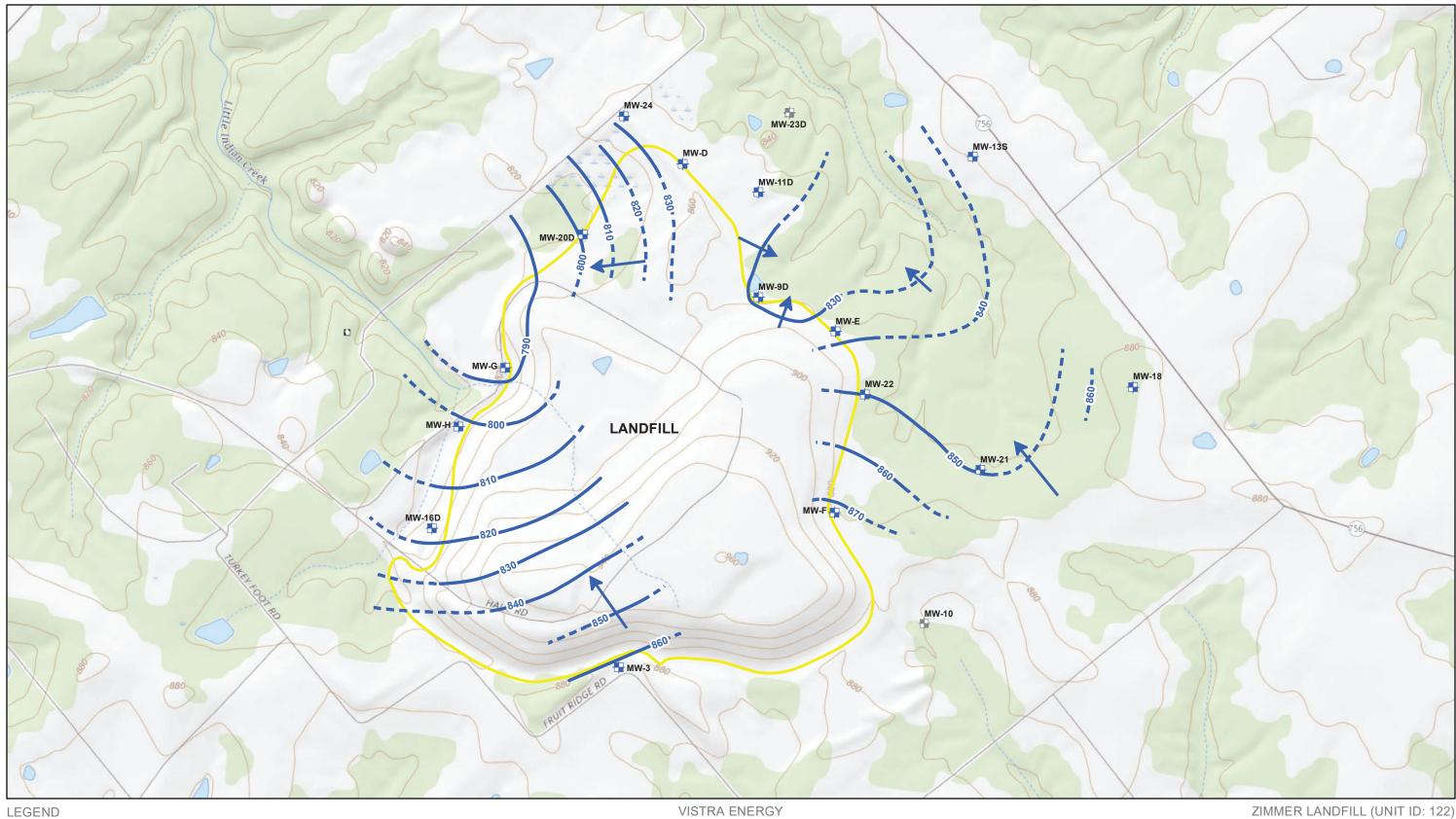
6. Bataille, C. P.; Bowen, G. J., Mapping 87Sr/86Sr Variations in Bedrock and Water for Large Scale Provenance Studies. *Chemical Geology* **2012**, 14.

7. Kloppman, W.; Petelet-Giraud, E.; Guerrot, C.; Cary, L.; Pauwels, H., Extreme Boron Isotope Ratios in Groundwater. *Procedia Earth and Planetary Science* **2015**, 5.

8. Williams, L. B.; Hervig, R. L., Boron isotope composition of coals: a potential tracer of organic contaminated fluids. *Applied Geochemistry* **2004**, *19* (10), 1625-1636.


40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION ZIMMER LANDFILL

I, Nicole M. Pagano, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.


Nicole M. Pagano Senior Managing Engineer OBG, part of Ramboll Date: April 8, 2019

I, Richard H. Weber, a qualified professional engineer in good standing in the State of Ohio, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Richard H. Weber Qualified Professional Engineer 71678 Ohio OBG, part of Ramboll Date: April 8, 2019

CCR MONITORED UNIT

VISTRA ENERGY ZIMMER POWER STATION MOSCOW, OHIO

700

175 350

1,050

1,400

FIGURE NO. 1

ZIMMER LANDFILL (UNIT ID: 122) MONITORING WELL MAP WITH GROUNDWATER DIVIDE GROUNDWATER ELEVATION CONTOUR MAP NOVEMBER 14, 2017

O'BRIEN & GERE ENGINEERS, INC.

October 28, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a coal combustion residuals (CCR) unit 90 days from the date of determination of statistically significant levels (SSLs) over groundwater protection standards of groundwater constituents listed in Appendix IV of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (alternate source demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Zimmer, LLC, by O'Brien & Gere Engineers, Inc., part of Ramboll, to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for the Zimmer Landfill located near the Zimmer Power Station and Moscow, OH.

The second Assessment Monitoring sampling event (A2) was completed on March 13, 2019 and analytical data were received on April 29, 2019. Analytical data from all sampling events, from December 2015 through A2, were evaluated in accordance with the Statistical Analysis Plan¹ to determine any Statistically Significant Increases (SSIs) of Appendix III parameters over background concentrations or SSLs of Appendix IV parameters over Groundwater Protection Standards (GWPSs). That evaluation identified SSLs at downgradient monitoring wells as follows:

Lithium at well MW-F

Pursuant to 40 C.F.R. § 257.95(g)(3)(ii), the following lines of evidence demonstrate that sources other than the Zimmer Landfill were the cause of the SSL listed above. This alternate source demonstration (ASD) was completed within 90 days of determination of the SSLs (July 29, 2019), as required by 40 C.F.R. § 257.95(g)(3)(ii).

ISOTOPIC EVALUATION

Isotopes are commonly used in age dating, provenance studies, and to differentiate between sources of groundwater. Multiple studies have shown that boron and strontium isotope ratios can be successfully used in identifying CCR impacts to groundwater²⁻³. When a material is altered, the mass of a given element in the resulting material may be conserved or reduced. Alteration processes, such as combustion, may also affect the isotopic ratios of a given element, referred to as fractionation. Isotopes that have minimal fractionation during the alteration process, such as boron and strontium isotopes, make good groundwater tracers. This ASD compares boron and strontium isotope ratios to published ranges for CCR impacted groundwater and CCR leachate.

Boron

Boron isotopes do not fractionate during coal combustion, meaning the isotopic ratio in the coal is preserved, regardless of the total boron in the coal and the combusted coal². The isotopic ratio is also conserved when mobilized to water; thus, CCR-impacted groundwater will have similar isotopic ratios as the original coal and the CCR².

Because variations in boron isotope ratios are usually small, they are reported in parts per thousand or *per mil* variations, denoted ‰, from a standard.

$$\delta^{11}B = \left[\frac{(^{11}B/^{10}B)_{sample}, (^{11}B/^{10}B)_{std}}{(^{11}B/^{10}B)_{std}}\right] \times 1000$$

Strontium

One of the four stable isotopes (⁸⁷Sr) is subject to long-term radiogenic ingrowth by radioactive decay of rubidium (⁸⁷Rb). The isotopic ratio, ⁸⁷Sr/⁸⁶Sr, is commonly used to trace the mixing of global reservoirs and to evaluate the environmental conditions in surface waters, oceans, and sediments. Strontium isotopes are very useful for provenance identification because the isotopic signature of rock is transferred to the soil, vegetation, and up the food web with minimal isotopic fractionation⁴.

ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

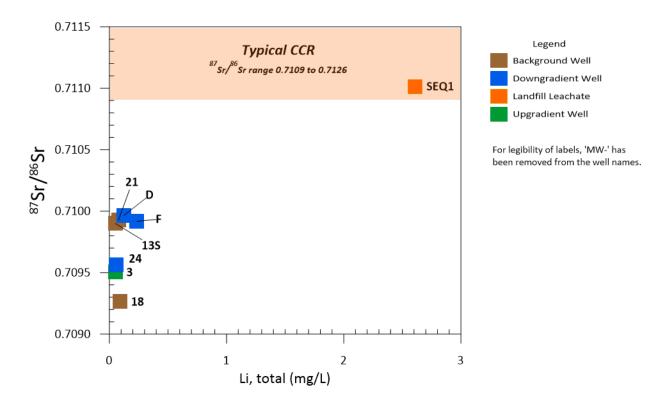
Lines of evidence (LOE) supporting this ASD include the following:

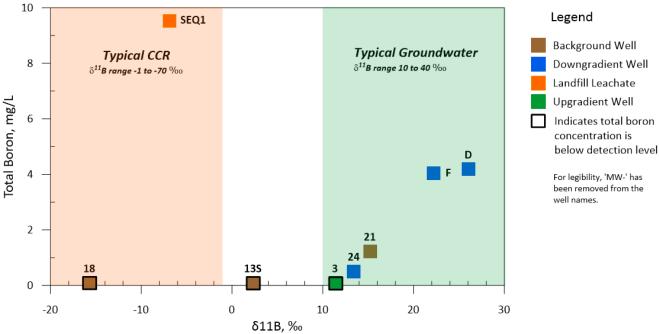
- 1. Strontium isotope ratios in groundwater are lower than the typical range for CCR impacted waters.
- 2. Boron isotope ratios in downgradient groundwater are not consistent with boron isotope ratios in CCR and CCR impacted waters.

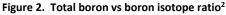
These lines of evidence are described and supported in greater detail below.

LOE #1: STRONTIUM ISOTOPE RATIOS DOWNGRADIENT ARE LOWER THAN THE TYPICAL RANGE FOR CCR IMPACTED WATERS.

Strontium isotope ratios (⁸⁷Sr/⁸⁶Sr) for groundwater and leachate are plotted against total lithium in Figure 1. Strontium isotope ratios in coal, fly ash, and bottom ash impacted waters range from 0.7109 to 0.7126², indicated by the area shaded orange in Figure 1.




Figure 1. Strontium isotope ratio vs total lithium²



The groundwater results are within the typical groundwater range². The leachate sample is within the typical ⁸⁷Sr/⁸⁶Sr range for CCR impacted waters². Figure 2 shows that ⁸⁷Sr/⁸⁶Sr groundwater results are well grouped, and that the leachate is not mixing with the groundwater.

LOE #2: BORON ISOTOPE RATIOS DOWNGRADIENT ARE WITHIN THE TYPICAL RANGE FOR GROUNDWATER.

Total boron (B) for groundwater and leachate are plotted against boron isotope ratios ($\delta^{11}B$) in Figure 2. The $\delta^{11}B$ range for typical groundwater, shaded green, is 10% to 40% ⁵. The area shaded orange represents $\delta^{11}B$ range for CCR impacted water, which has a distinctive negative $\delta^{11}B$ signature ranging from -70 % to -1%^{2, 6}.

All groundwater results are within the typical δ^{11} B range for groundwater² at wells with total boron concentration above the detection limit. The leachate results, SEQ1, are within the typical negative δ^{11} B range for CCR leachates². Figure 2 shows that δ^{11} B groundwater results are well grouped, except for background wells MW-13S and MW-18, which did not have detectable concentrations of total boron, and that the leachate is not mixing with the groundwater. The landfill is not influencing MW-13S and MW-18 as evidenced by groundwater flow shown on Figure 3.

Based on these two lines of evidence, it has been demonstrated that the Zimmer Landfill has not caused the Lithium SSL in MW-F.

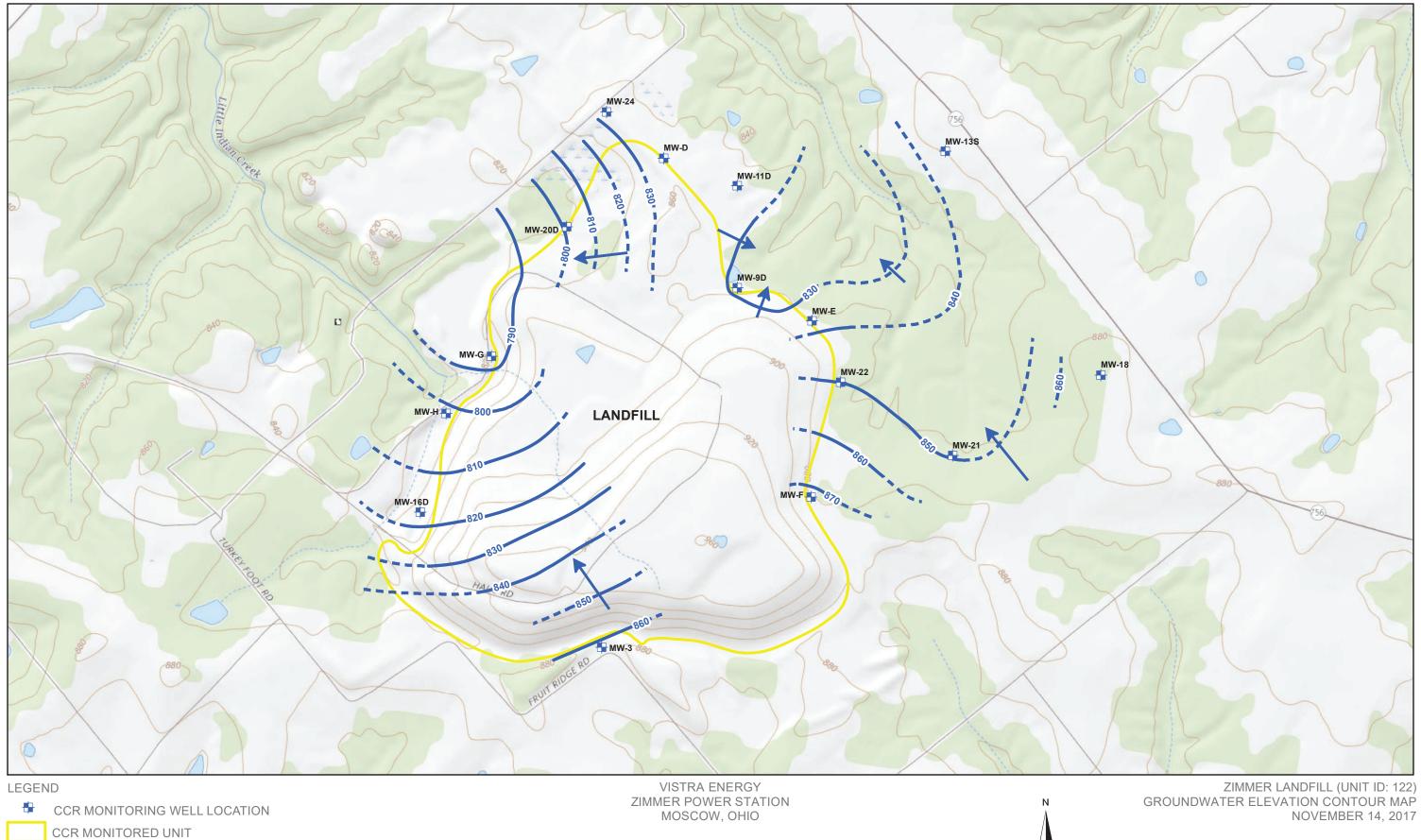
This information serves as the written ASD, prepared in accordance with 40 C.F.R. § 257.95(g)(3)(ii), that the lithium SSL observed during the assessment monitoring program was not due to Zimmer Landfill. Therefore, a corrective measures assessment is not required, and the Zimmer Landfill will remain in assessment monitoring.

REFERENCES

1. Natural Resource Technology, Statistical Analysis Plan. 2017.

 Ruhl, L. S.; Dwyer, G. S.; Hsu-Kim, H.; Hower, J. C.; Vengosh, A., Boron and Strontium Isotopic Characterization of Coal Combustion Residuals; Validation of New Environmental Tracers. *Environmental Science & Technology* 2014, 9.
 Harkness, J. S.; Ruhl, L. S.; Millot, R.; Kloppman, W.; Hower, J. C.; Hsu-Kim, H.; Vengosh, A., Lithium Isotope Fingerprints in Coal and Coal Combusion Residuals from the United States. *Procdia Earth and Planetary Science* 2015, 4.

4. Bataille, C. P.; Bowen, G. J., Mapping 87Sr/86Sr Variations in Bedrock and Water for Large Scale Provenance Studies. *Chemical Geology* **2012**, 14.


5. Kloppman, W.; Petelet-Giraud, E.; Guerrot, C.; Cary, L.; Pauwels, H., Extreme Boron Isotope Ratios in Groundwater. *Procedia Earth and Planetary Science* **2015**, 5.

6. Williams, L. B.; Hervig, R. L., Boron isotope composition of coals: a potential tracer of organic contaminated fluids. *Applied Geochemistry* **2004**, *19* (10), 1625-1636.

ATTACHMENTS

Figure 3 Groundwater Elevation Contour Map

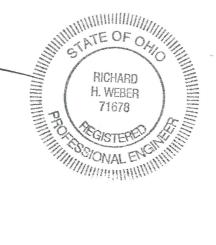
1,050 1,400 175 350 700

FIGURE NO. 3

NOVEMBER 14, 2017

O'BRIEN & GERE ENGINEERS, INC.

40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION ZIMMER LANDFILL


I, Nicole M. Pagano, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Senior Managing Engineer OBG, part of Ramboll Date: October 28, 2019

I, Richard H. Weber, a qualified professional engineer in good standing in the State of Ohio, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

2 Richard H. Weber

Qualified Professional Engineer 71678 Ohio OBG, part of Ramboll Date: October 28, 2019

Intended for Dynegy Zimmer, LLC

Date May 4, 2020

Project No. **74924**

40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION ZIMMER LANDFILL

40 C.F.R. § 257.95(g)(3)(ii): Alternate Source Demonstration Zimmer Landfill

CERTIFICATIONS

I, Jacob J. Walczak, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Jacob J. Walczak Senior Hydrogeologist O'Brien & Gere Engineers, Inc., a Ramboll Company Date: May 4, 2020

I, Nicole M. Pagano, a qualified professional engineer in good standing in the State of Ohio, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole⁴M. **P**agano Qualified Professional Engineer 85428 Ohio O'Brien & Gere Engineers, Inc., a Ramboll Company Date: May 4, 2020

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA T 414-837-3607 F 414-837-3608 https://ramboll.com

CONTENTS

1.	Introduction	3
2.	Background	4
2.1	Site Location and Description	4
2.2	Description of Landfill CCR Unit	4
2.3	Groundwater Flow	4
2.4	Isotopic Evaluation	4
2.4.1	Strontium	5
2.4.2	Boron	5
3.	Alternate Source Demonstration: Lines of Evidence	6
3.1	LOE #1: Strontium Isotopic Ratios in Groundwater Near the	
	Zimmer Landfill are Lower Than the Published Typical Range of	
	Strontium Isotopic Ratios for CCR Impacted Waters.	6
3.2	LOE #2: Boron Isotopic Ratios in Groundwater Near the Zimmer	
	Landfill are Within the Published Typical Range of Boron Isotopic	
	Ratios for Groundwater and are Not Consistent With the Published	
	Typical Boron Isotopic Ratios in CCR and CCR Impacted Waters.	7
4.	Conclusions	9
5.	References	10

FIGURES (IN TEXT)

Figure A	Strontium Isotopic Ratios for Monitoring Well and Sampling Locations
Figure B	Boron Isotopic Ratios for Monitoring Well and Sampling Locations

FIGURES

Figure 1	Monitoring Well and Sampling Location Map
Figure 2	Groundwater Elevation Contour Map, September 10, 2019

ACRONYMS AND ABBREVIATIONS

‰ ¹⁰B	parts per thousand or <i>per mil</i> variations boron-10
¹¹ B	boron-11
D	
⁸⁶ Sr	strontium-86
⁸⁷ Sr	strontium-87
⁸⁷ Sr/ ⁸⁶ Sr	isotopic ratio of strontium-87 to strontium-86
40 C.F.R.	Title 40 of the Code of Federal Regulation
ASD	Alternate Source Demonstration
CCR	Coal Combustion Residuals
C.F.R.	Code of Federal Regulations
ft	feet
GWPS	Groundwater Protection Standard
LOE	line of evidence
mg/L	milligrams per liter
msl	above Mean Sea Level
NRT/OBG	Natural Resource Technology, an OBG Company
PTI	permit-to-install
Site	Zimmer Power Station Landfill
SSI	Statistically Significant Increase
SSL	Statistically Significant Level
std	standard

1. INTRODUCTION

Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Levels (SSLs) over Groundwater Protection Standards (GWPSs) of groundwater constituents listed in Appendix IV of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Zimmer, LLC, by O'Brien & Gere Engineers, Inc., a Ramboll Company (Ramboll), to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for Zimmer Landfill located near Moscow, Ohio.

The most recent Assessment Monitoring sampling event (A2D) was completed on September 11 and September 12, 2019 and analytical data were received on November 4, 2019. Analytical data from all sampling events, from December 2015 through A2D, were evaluated in accordance with the Statistical Analysis Plan¹ to determine any Statistically Significant Increases (SSIs) of Appendix III parameters over background concentrations or SSLs of Appendix IV parameters over GWPSs. That evaluation identified one SSL at downgradient monitoring wells as follows:

• Lithium at well MW-F

Pursuant to 40 C.F.R. § 257.95(g)(3)(ii), the following lines of evidence demonstrate that sources other than the Zimmer Landfill were the cause of the lithium SSL listed above. This ASD was completed by May 4, 2020, within 90 days of determination of the SSLs (February 3, 2020), as required by 40 C.F.R. § 257.95(g)(3)(ii).

2. BACKGROUND

2.1 Site Location and Description

The W. H. Zimmer Power Station is located in southwest Ohio, approximately 30 miles southeast of Cincinnati, Ohio. The Zimmer Power Station Landfill (Site) is located approximately 3 miles east of the power station and is bounded by State Route 756 on the northeast, Turkeyfoot Road on the northwest, and Fruit Ridge Road on the southwest (Figure 1).

2.2 Description of Landfill CCR Unit

The landfill footprint covers approximately 288 acres (Figure 1). CCR generated at the station is trucked to the landfill for disposal. Materials approved for disposal include fly ash, dewatered bottom ash, dewatered and stabilized flue gas desulfurization wastes, and gypsum. Disposal activities commenced in January 1991 and have progressed through a series of fill areas or phases.

2.3 Groundwater Flow

The Uppermost Aquifer is continuous beneath the Site and is comprised of the upper 20 feet (ft) or less of the fractured and weathered bedrock. Bedrock is typically encountered 15 to 25 ft below ground surface and overlain by clay, although it may be deeper in the two major surface drainage channels at the Site (Little Indian Creek and an unnamed tributary to Little Indian Creek). The bedrock unit is the interbedded shale and limestone of the Fairview and Kope Formations.

In order to collect all groundwater elevations within the same day, as required by the Sampling and Analysis Plan², groundwater measurements during A2D were collected on September 10, 2019, the day prior to the first day of analytical sampling at the Site (September 11, 2019). Groundwater elevations across the Site ranged from approximately 787 to 873 ft above Mean Sea Level (msl) during A2D (Figure 2). Groundwater in the Uppermost Aquifer generally flows from bedrock highs towards the drainage channels, paralleling the direction of topographic slope, in a manner similar to the flow of surface runoff. However, because this groundwater occupies secondary porosity in the thin limestone units of the predominantly shale bedrock, the potential exists for locally unpredictable flow patterns, as groundwater movement may be controlled by preferential pathways created by open fractures and their degree of interconnection.

2.4 Isotopic Evaluation

Stable isotope analysis is commonly used in age dating, provenance studies and to differentiate between sources of groundwater. Multiple studies have shown that strontium and boron isotopic ratios can be successfully used in identifying CCR impacts to groundwater.^{3,4}. When a material is altered, the mass of a given element in the resulting material may be conserved or reduced. Alteration processes, such as combustion, may also affect the isotopic ratios of a given element, referred to as fractionation. Isotopes that have minimal fractionation during the alteration process, such as strontium and boron isotopes, make good groundwater tracers, therefore, strontium and boron isotopic ratios can be used to identify CCR impacted groundwater and CCR leachate³. This ASD compares strontium and boron isotopic ratios of groundwater in the vicinity of Zimmer Landfill and landfill leachate to typical published ranges for groundwater and CCR impacted waters.

2.4.1 Strontium

The ratio of stable strontium isotopes, strontium-87 to strontium-86.⁵(⁸⁷Sr/⁸⁶Sr), is commonly used to trace the mixing of global reservoirs and to evaluate the environmental conditions in surface waters, oceans, and sediments. Strontium isotopes are very useful for provenance identification because the isotopic signature of rock is transferred to the soil, vegetation, and up the food web with minimal isotopic fractionation.⁶.

Strontium isotopic ratios are typically expressed and reported as an absolute ratio (i.e., ⁸⁷Sr/⁸⁶Sr) due to strontium-86 (⁸⁶Sr) being a stable isotope with a constant abundance^{7,8}. This is the exception for stable isotope analysis, since most results are reported relative to a standard, as described in further detail for boron below in Section 2.3.

2.4.2 Boron

Boron isotopes do not fractionate during coal combustion, meaning the isotopic ratio in the coal is preserved, between the coal and the combusted coal³. The isotopic ratio is also conserved when mobilized to water; thus, CCR-impacted groundwater will have similar isotopic ratios as the original coal and the CCR³.

Because variations in boron isotopic ratios are usually small, they are reported in parts per thousand or *per mil* variations, denoted ‰, from a standard.

$$\boldsymbol{\delta}^{11}\mathsf{B} = \left[\frac{(^{11}\mathsf{B}/^{10}\mathsf{B})_{\text{sample}} - (^{11}\mathsf{B}/^{10}\mathsf{B})_{\text{std}}}{(^{11}\mathsf{B}/^{10}\mathsf{B})_{\text{std}}}\right] \times \mathbf{1000}$$

3. ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

This ASD is based on the following lines of evidence (LOEs):

- 1. Strontium isotopic ratios in groundwater near the Zimmer Landfill are lower than the published typical range of strontium isotopic ratios for CCR impacted waters.
- 2. Boron isotopic ratios in groundwater near the Zimmer Landfill are within the published typical range of boron isotopic ratios for groundwater and are not consistent with the published typical boron isotopic ratios in CCR and CCR impacted waters.

These LOEs are described and supported in greater detail below. Monitoring wells and landfill leachate sample locations are shown on Figure 1.

3.1 LOE #1: Strontium Isotopic Ratios in Groundwater Near the Zimmer Landfill are Lower Than the Published Typical Range of Strontium Isotopic Ratios for CCR Impacted Waters.

Strontium isotopic ratios (⁸⁷Sr/⁸⁶Sr) for samples collected from groundwater monitoring wells and landfill leachate (SEQ1) on September 17, 18 and 27, 2018 are plotted in Figure A below. Published ⁸⁷Sr/⁸⁶Sr in coal, fly ash, and bottom ash impacted waters range from 0.7109 to 0.7126³, as indicated by the area shaded orange in Figure A.

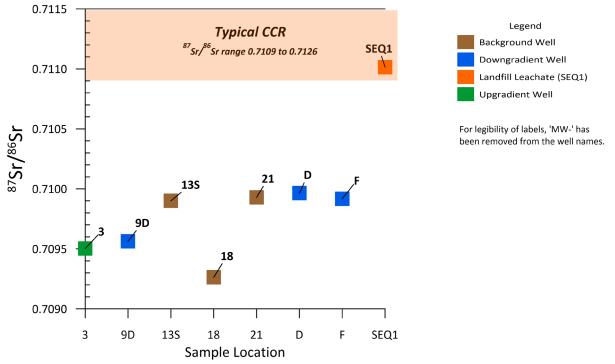


Figure A. Strontium Isotopic Ratios for Monitoring Well and Sampling Locations³.

The range of ⁸⁷Sr/⁸⁶Sr found in groundwater, 0.70926 to 0.70996, near Zimmer Landfill are below the published typical range of ⁸⁷Sr/⁸⁶Sr for CCR impacted waters indicating groundwater near Zimmer Landfill is not impacted by CCR³ The ⁸⁷Sr/⁸⁶Sr found in the landfill leachate sample (SEQ1), 0.71101, is within the published typical range of ⁸⁷Sr/⁸⁶Sr for CCR impacted waters (0.7109 to 0.7126) indicating leachate collected at location SEQ1 is impacted by CCR³. Figure A also shows that ⁸⁷Sr/⁸⁶Sr in groundwater near Zimmer Landfill are well grouped, and that the ⁸⁷Sr/⁸⁶Sr in landfill leachate (SEQ1) is distinctly different than groundwater near Zimmer Landfill. The ⁸⁷Sr/⁸⁶Sr in groundwater near Zimmer Landfill indicate that groundwater is not influenced by CCR impacted waters, including landfill leachate (SEQ1), therefore lithium in groundwater near Zimmer Landfill is from a source other than the Zimmer Landfill CCR unit and the associated landfill leachate.

3.2 LOE #2: Boron Isotopic Ratios in Groundwater Near the Zimmer Landfill are Within the Published Typical Range of Boron Isotopic Ratios for Groundwater and are Not Consistent With the Published Typical Boron Isotopic Ratios in CCR and CCR Impacted Waters.

Boron isotopic ratios (δ 11B) for samples collected from groundwater monitoring wells and landfill leachate (SEQ1) on September 17, 18 and 27, 2018 are plotted in Figure B below. The published typical range of δ^{11} B for groundwater, shaded green in Figure B, is 10‰ to 40‰³. The area shaded orange in Figure B represents the published typical range of δ^{11} B for CCR and CCR impacted water, which has a distinctive negative δ^{11} B signature ranging from -70 ‰ to -1‰^{3,9}.

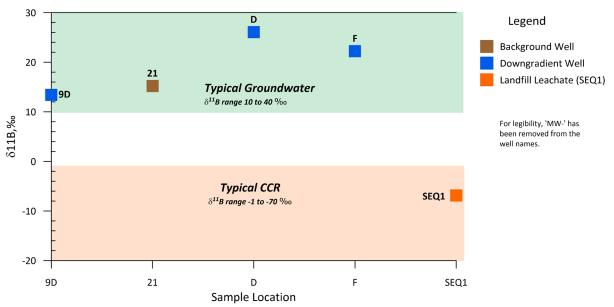


Figure B. Boron Isotopic Ratios for Monitoring Well and Sampling Locations³ (note: total boron concentrations at sample locations MW-3, MW-13S and MW-18 were below detection level and were not included).

The range of δ^{11} B found in groundwater, 13.43 to 26.07‰, near Zimmer Landfill are within the published typical range of δ^{11} B for groundwater (10‰ to 40‰), and are not consistent with the published typical range of δ^{11} B for CCR and CCR impacted water (-70 ‰ to -1‰) indicating groundwater near Zimmer Landfill is not impacted by CCR ³. The δ^{11} B found in the landfill

leachate sample (SEQ1), -6.86‰, is within the published typical range of δ^{11} B for CCR and CCR impacted waters (-70 ‰ to -1‰) indicating leachate collected at location SEQ1 is impacted by CCR³. Figure B also shows that δ^{11} B in groundwater near Zimmer Landfill are well grouped, and that the δ^{11} B in landfill leachate (SEQ1) is distinctly different than groundwater near Zimmer Landfill. The δ^{11} B in groundwater near Zimmer Landfill indicate that groundwater is not influenced by CCR or CCR impacted waters, including landfill leachate (SEQ1), therefore lithium in groundwater near Zimmer Landfill is from a source other than the Zimmer Landfill CCR unit and the associated landfill leachate.

4. CONCLUSIONS

Based on the following two lines of evidence, it has been demonstrated that the lithium SSL at MW-F is not due to Zimmer Landfill but is from a source other than the CCR unit being monitored:

- Strontium isotopic ratios in groundwater near the Zimmer Landfill are lower than the published typical range of strontium isotopic ratios for CCR impacted waters. This indicates that groundwater is not influenced by CCR impacted waters, including landfill leachate (SEQ1), therefore lithium in groundwater near Zimmer Landfill is from a source other than the Zimmer Landfill CCR unit and the associated landfill leachate.
- 2. Boron isotopic ratios in groundwater near the Zimmer Landfill are within the published typical range of boron isotopic ratios for groundwater and are not consistent with the published typical boron isotopic ratios in CCR and CCR impacted waters. This indicates that groundwater is not influenced by CCR or CCR impacted waters, including landfill leachate (SEQ1), therefore lithium in groundwater near Zimmer Landfill is from a source other than the Zimmer Landfill CCR unit and the associated landfill leachate.

This information serves as the written ASD prepared in accordance with 40 C.F.R. § 257.95(g)(3)(ii) that the SSL observed during the A2D sampling event was not due to Zimmer Landfill. Therefore, a corrective measures assessment is not required, and Zimmer Landfill will remain in assessment monitoring.

5. **REFERENCES**

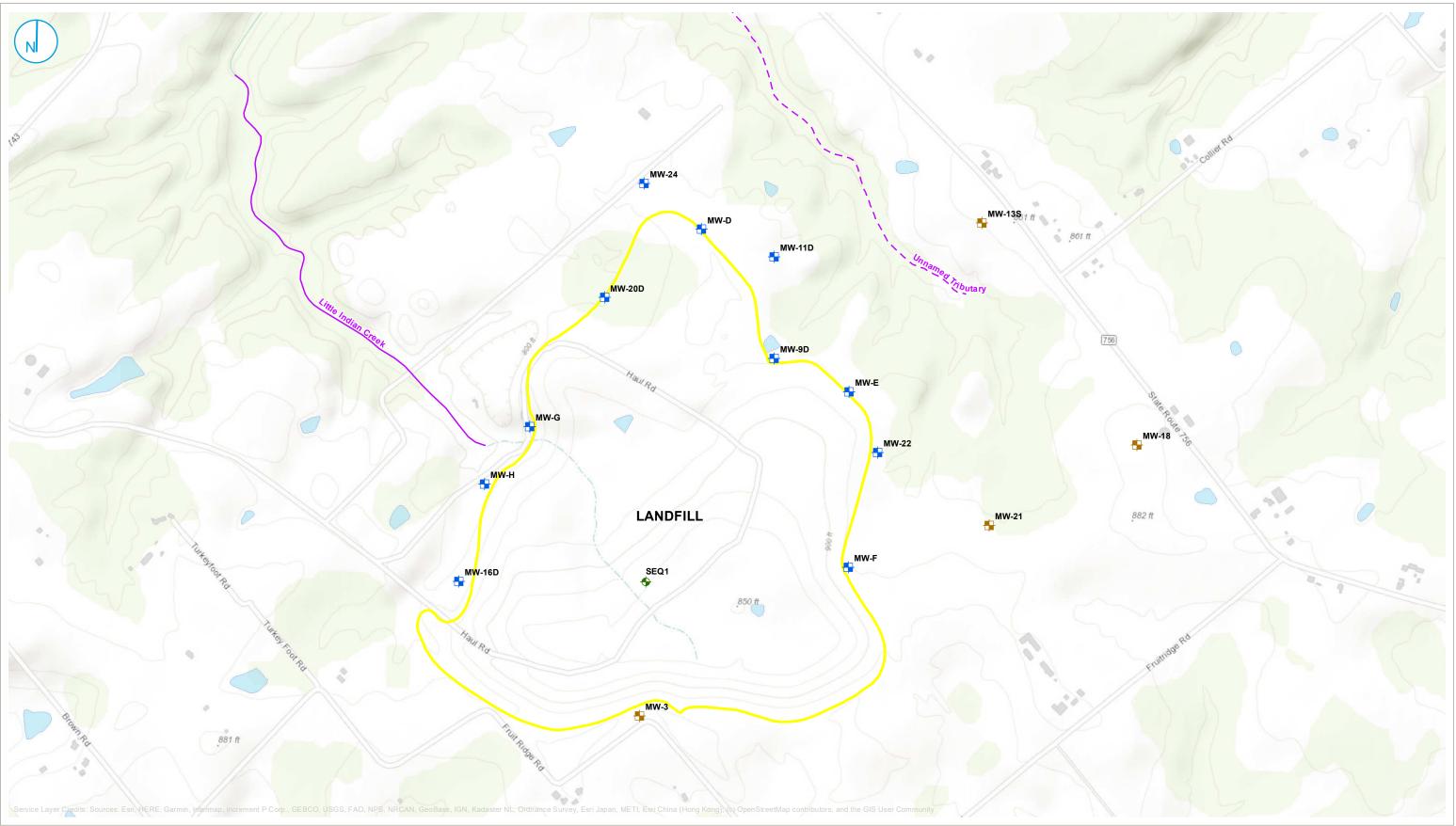
1 Natural Resource Technology, an OBG Company (NRT/OBG), 2017, Statistical Analysis Plan, Zimmer Power Station, Dynegy Zimmer, LLC, October 17, 2017.

2 AECOM, 2017, Sampling and Analysis Plan, Zimmer Power Station Landfill, Dynegy Zimmer, LLC, October 17, 2017.

3 Ruhl, L. S.; Dwyer, G. S.; Hsu-Kim, H.; Hower, J. C.; Vengosh, A., Boron and Strontium Isotopic Characterization of Coal Combustion Residuals; Validation of New Environmental Tracers. *Environmental Science & Technology* **2014**, 9.

4 Harkness, J. S.; Ruhl, L. S.; Millot, R.; Kloppman, W.; Hower, J. C.; Hsu-Kim, H.; Vengosh, A., Lithium Isotope Fingerprints in Coal and Coal Combusion Residuals from the United States. *Procedia Earth and Planetary Science* **2015**, 4.

5 Kendall, C.; Caldwell, E; and Snyder, D. (U.S. Geological Survey, Menlo Park, CA), *Isotope Tracers Project, Resources on Isotopes, Periodic Table--Strontium*, U.S. Geological Survey, August 2003, *https://wwwrcamnl.wr.usgs.gov/isoig/period/sr_iig.html*


6 Bataille, C. P.; Bowen, G. J., Mapping ⁸⁷Sr/⁸⁶Sr Variations in Bedrock and Water for Large Scale Provenance Studies. *Chemical Geology* **2012**, 14.

7 Cook, Peter & Herczeg, Andrew., Appendix 1: Stable Isotope Notation and Fractionation, *Environmental Tracers in Subsurface Hydrology* **2000**, 511-529.

8 Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA), Isotopes and Hydrology, Periodic Table Menu--Strontium, Arizona Board of Regents, 2005, http://web.sahra.arizona.edu/programs/isotopes/strontium.html

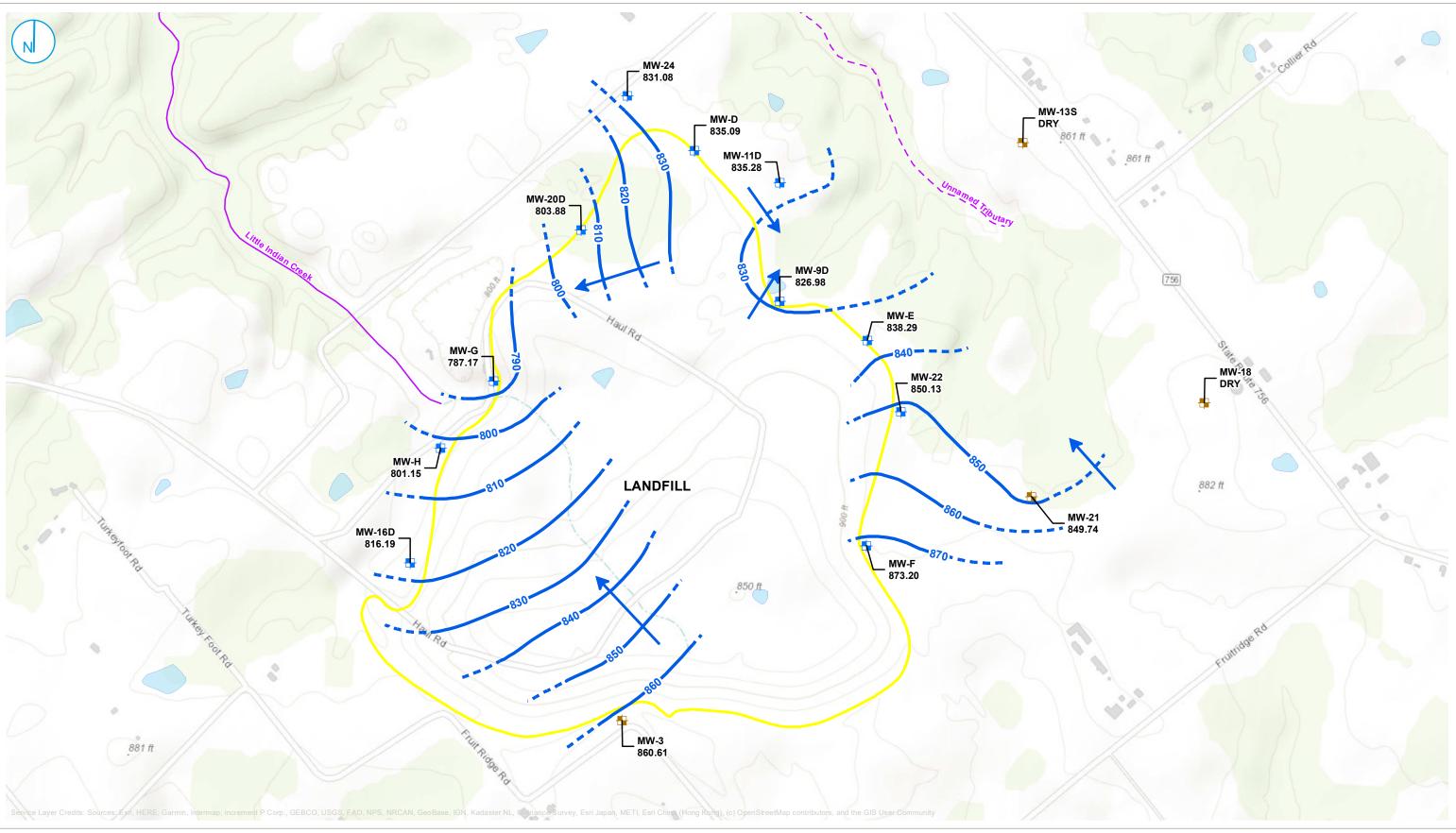
9 Williams, L. B.; Hervig, R. L., Boron isotope composition of coals: a potential tracer of organic contaminated fluids. *Applied Geochemistry* **2004**, 19 (10), 1625-1636.

FIGURES

ZIMMER LANDFILL CCR MONITORING WELL LOCATION \oplus ZIMMER LANDFILL BACKGROUND CCR MONITORING WELL LOCATION \frown PERENNIAL STREAM

- ZIMMER LANDFILL LEACHATE SAMPLE LOCATION
- CCR MONITORED UNIT

- NATIONAL HYDROGRAPHY DATASET
- INTERMITTENT STREAM
 - S WATERBODY


MONITORING WELL AND SAMPLING LOCATION MAP

ZIMMER LANDFILL (UNIT ID: 122) ALTERNATE SOURCE DEMONSTRATION VISTRA ENERGY ZIMMER POWER STATION MOSCOW, OHIO

FIGURE 1

RAMBOLL US CORPORATION A RAMBOLL COMPANY

- ZIMMER LANDFILL CCR MONITORING WELL LOCATION
- 🖶 ZIMMER LANDFILL BACKGROUND CCR MONITORING WELL LOCATION 🔨 PERENNIAL STREAM
- GROUNDWATER ELEVATION CONTOUR (10-FT INTERVAL)
- INFERRED GROUNDWATER ELEVATION CONTOUR
- GROUNDWATER FLOW DIRECTION

- Feet

- NATIONAL HYDROGRAPHY DATASET
- INTERMITTENT STREAM
- S WATERBODY

GROUNDWATER ELEVATION CONTOUR MAP SEPTEMBER 10, 2019

FIGURE 2

RAMBOLL US CORPORATION A RAMBOLL COMPANY

ZIMMER LANDFILL (UNIT ID: 122) ALTERNATE SOURCE DEMONSTRATION VISTRA ENERGY ZIMMER POWER STATION MOSCOW, OHIO

Intended for Dynegy Zimmer, LLC

Date **October 26, 2020**

Project No. 1940074924

40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION ZIMMER LANDFILL

40 C.F.R. § 257.95(g)(3)(ii): Alternate Source Demonstration Zimmer Landfill

CERTIFICATIONS

I, Jacob J. Walczak, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Jacob J. Walczak Senior Hydrogeologist Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc. Date: October 26, 2020

I, Nicole M. Pagano, a qualified professional engineer in good standing in the State of Ohio, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Qualified Professional Engineer 85428 Ohio Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc. Date: October 26, 2020

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA T 414-837-3607 F 414-837-3608 https://ramboll.com

ACRONYMS AND ABBREVIATIONS

40 C.F.R.	Title 40 of the Code of Federal Regulations
ASD	Alternate Source Demonstration
CCR	Coal Combustion Residuals
f/k/a	formerly known as
GWPS	Groundwater Protection Standard
NRT/OBG	Natural Resource Technology, an OBG Company
SSI	Statistically Significant Increase
SSL	Statistically Significant Level

ALTERNATE SOURCE DEMONSTRATION

Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Levels (SSLs) over Groundwater Protection Standards (GWPSs) of groundwater constituents listed in Appendix IV of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Zimmer, LLC, by Ramboll Americas Engineering Solutions, Inc., formerly known as (f/k/a) O'Brien & Gere Engineers, Inc. to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for Zimmer Landfill located near Moscow, Ohio.

The most recent Assessment Monitoring sampling event (A3) was completed on April 8, 2020, and analytical data were received on April 27, 2020. Analytical data from all sampling events, from December 2015 through A3, were evaluated in accordance with the Statistical Analysis Plan¹ to determine any Statistically Significant Increases (SSIs) of Appendix III parameters over background concentrations or SSLs of Appendix IV parameters over GWPSs. That evaluation identified one SSL, as determined on July 27, 2020 and included in the Notification for Statistically Significant Levels of 40 C.F.R. Part 257 Appendix IV Constituents Above Groundwater Protection Standards for Zimmer Landfill dated August 13, 2020, at a downgradient monitoring well as follows:

• Lithium at well MW-F

In accordance with the Statistical Analysis Plan, MW-F was resampled on July 1, 2020 and analyzed for lithium to confirm the SSL. Following evaluation of analytical data from the resample event, no SSL remained. This ASD was completed by October 26, 2020, within 90 days of determination of the SSLs, as required by 40 C.F.R. § 257.95(g)(3)(ii).

¹ Natural Resource Technology, an OBG Company (NRT/OBG), 2017, Statistical Analysis Plan, Zimmer Power Station, Dynegy Zimmer, LLC, October 17, 2017.

APPENDIX C5 – SITE HYDROGEOLOGY AND STRATIGRAPHIC CROSS-SECTIONS OF THE SITE

CONCEPTUAL SITE MODEL AND DESCRIPTION OF SITE HYDROGEOLOGY (ASH POND AREAS)

The Zimmer Power Station (Zimmer Station) conceptual site model (CSM) and Description of Site Hydrogeology for the D Basin, the Gypsum Recycling Pond, and the Coal Pile Runoff Pond, hereinafter referred to as the 'Site', located near Moscow, Ohio are described in the following sections.

REGIONAL SETTING

The Ohio River Valley generally separates the Till Plains Section of the Central Lowlands Physiographic Province from the Lexington Plain Section of the Interior Low Plateaus Physiographic Province. The Central Lowlands Physiographic Province is characterized by plains of low relief with youthful to mature dissection developed on soil and rock deposits. The Till Plains Section is generally north of the Ohio River and is characterized by hills of low relief that are developed on nearly horizontal, Paleozoic sedimentary strata. Continental glaciation has affected most of the province so that bedrock is almost entirely concealed by glacial drift. Common valley fill material consists of coarse-grained outwash deposits, fine-grained lacustrine and overbank deposits, and glacial till. The bedrock consists of interbedded shales and limestones typical of the Cincinnatian Series.

SITE GEOLOGY

Zimmer Station is located on the relatively flat floor of the Ohio River Valley and is underlain by valley-fill glacial deposits. Glacial deposits directly beneath Zimmer Station consist of fine-grained fluvial and lacustrine deposits (clay and silt) to a maximum depth of 45 feet below the present ground surface. These deposits are underlain by coarser alluvial deposits that are composed of well-graded to poorly-graded sands having greater amounts of gravel with increasing depth. Bedrock beneath the unconsolidated sediments belongs to the Fairview and Kope formations. Depth to bedrock beneath the site varies between 60 and 90 feet below the ground surface.

Cross-sections showing the subsurface materials encountered at the Site are included in an attachment to this demonstration.

SITE HYDROGEOLOGY

The CCR groundwater monitoring system consists of the follow:

- Seven monitoring wells are installed in the uppermost aquifer and adjacent to the D Basin (MW-1, MW-8, MW-9, MW 12, MW-13, MW-14 and MW-15). The unit utilizes three background monitoring wells (MW-1, MW-8 and MW-12) as part of the CCR groundwater monitoring system.
- Four monitoring wells are installed in the uppermost aquifer and adjacent to the Gypsum Recycling Pond (MW-7A, MW-8, MW-10 and MW-11). The unit utilizes one background monitoring wells (MW-8) as part of the CCR groundwater monitoring system.
- Five monitoring wells are installed in the uppermost aquifer and adjacent to the Coal Pile Runoff Pond (MW-1, MW-3S, MW-16, MW-17 and MW-18). The unit utilizes one background monitoring wells (MW-1) as part of the CCR groundwater monitoring system.

See Monitoring Well Location Map, and Well Construction Diagrams and Drilling Logs attached to this demonstration.

Groundwater is encountered in the Ohio River valley aquifer. The aquifer consists primarily of the coarser alluvial deposits described above. The thickness of the deposits ranges from approximately 50 to 65 feet and covers much of the width of the flood plain between the river and Route 52 located to the east. Porosity of the aquifer material is likely to be on the order of 20 to 40 percent given the distribution of grain sizes. The groundwater potentiometric surface on site is encountered at depths of 25 to 50 feet below ground surface (bgs) (approximately 455 to 470 feet above mean sea level [msl]). The large variability is introduced by rising and falling river stage because of a relatively direct hydraulic connection between the riverbed and the aquifer.

The aquifer receives most of its recharge from infiltration of precipitation on the valley floor; however, secondary recharge sources include adjacent upgradient aquifers in the upland, and bank storage from the Ohio River during flood stages. Recharge to the aquifer from bank storage is periodic and short-lived, and the main movement of groundwater discharge is toward the river.

Zimmer Station withdraws water from the underlying sand and gravel aquifer through eight onsite production wells, all of which are located on the southern half of the facility. In general, each of the production wells is capable of yielding between 0.720 and 0.432 million gallons per day (mgd); however, the average daily yield is approximately 0.206 mgd.

When pumping, a localized cone of depression in the groundwater surface is created that encompasses the southern and, occasionally, the central portion of the site (AEP, November, 1986). This cone of depression induces flow from the Ohio River toward the pumping wells. The hydraulic gradient of the aquifer was calculated to be on the order of 0.0025 toward the Ohio River with a west-northwest to west southwest direction. The transmissivity of the aquifer is approximately 50,000 gallons per day per foot (gpd/ft), the hydraulic conductivity is approximately 1,000 gpd/ft² (134 ft/day), and the storage coefficient of the aquifer is 0.17 (Wm. H. Zimmer, 1983).

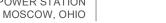
Material overlying the uppermost aquifer directly beneath Zimmer Station is comprised of glacial deposits consisting of fine-grained fluvial and lacustrine deposits (clay and silt) to a maximum depth of 45 feet bgs. Permeability tests conducted on in-situ cohesive material by American Electric Power Service Corporation, Civil Engineering Division in 1986 suggested values in the range of 9.7×10^{-9} to 1.4×10^{-8} cm/sec.

The lower confining unit underlying Zimmer Station is bedrock consisting of interbedded shales and limestones belonging to the Fairview and Kope formations. Depth to bedrock beneath the site varies between 60 and 90 feet bgs. These low-yielding shale and limestone formations are approximately 400- to 600-feet thick (Luft, et. al., 1973). Groundwater yields from the bedrock strata in this region are quite limited. Generally, the bedrock is not tapped for water due to its low permeability. Those wells which do tap the bedrock aquifers generally draw water from the bedding planes and fracture zones. Due to the relatively impermeable nature of the shales and limestone underlying this region, water yields are generally insufficient for domestic use. Fresh water does not typically occur at depths greater than 150 feet bgs (Wm. H. Zimmer, 1983).

REFERENCES

American Electric Power Service Corporation, Civil Engineering Division, November 1986, Geotechnical report for the WM. H. Zimmer Coal Conversion Project.

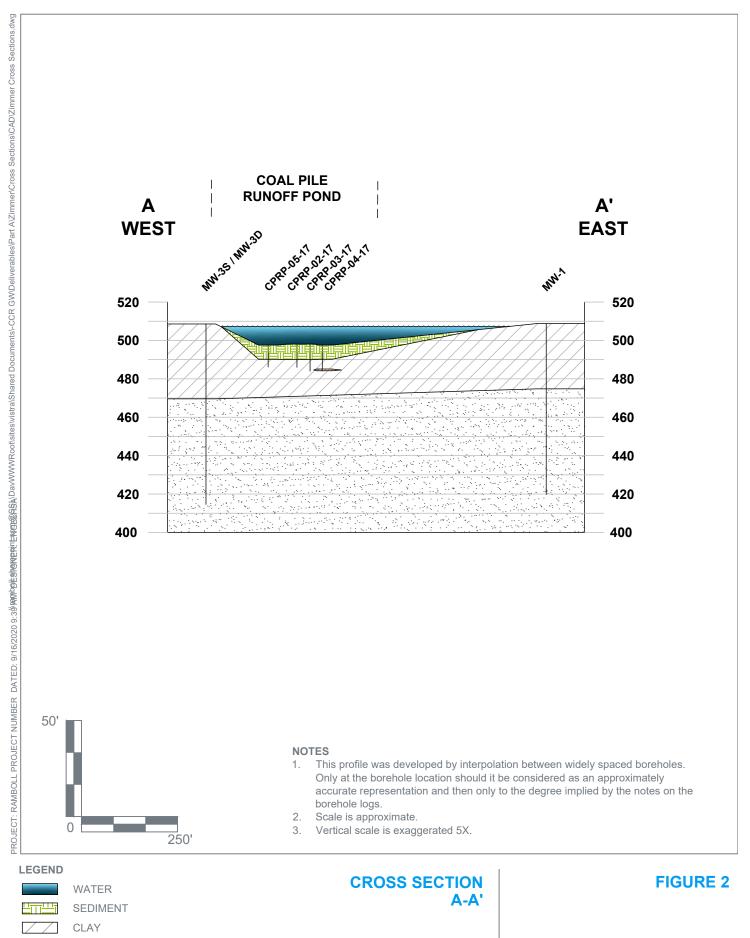
Luft, Stanley J.1 Osborne, Robert H., and Malcolm P. Weiss. Geologic Map of the Moscow Quadrangle, Ohio - Kentucky (GQ-I069). Prepared in cooperation with The Commonwealth of Kentucky, University of Kentucky, Kentucky Geological Survey, 1973.


Zimmer, William. H., 1983, Nuclear Power Station Unit 1 Environmental Report Operating License Stage, Volume 1, Section Number 245.

CROSS SECTION LOCATION MAP

ZIMMER D BASIN (UNIT ID: 121), ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) AND ZIMMER COAL PILE RUNOFF POND (UNIT ID: 125) ZIMMER POWER STATION RAMBOLL US CORPORATION A RAMBOLL COMPANY

RAMBOLL



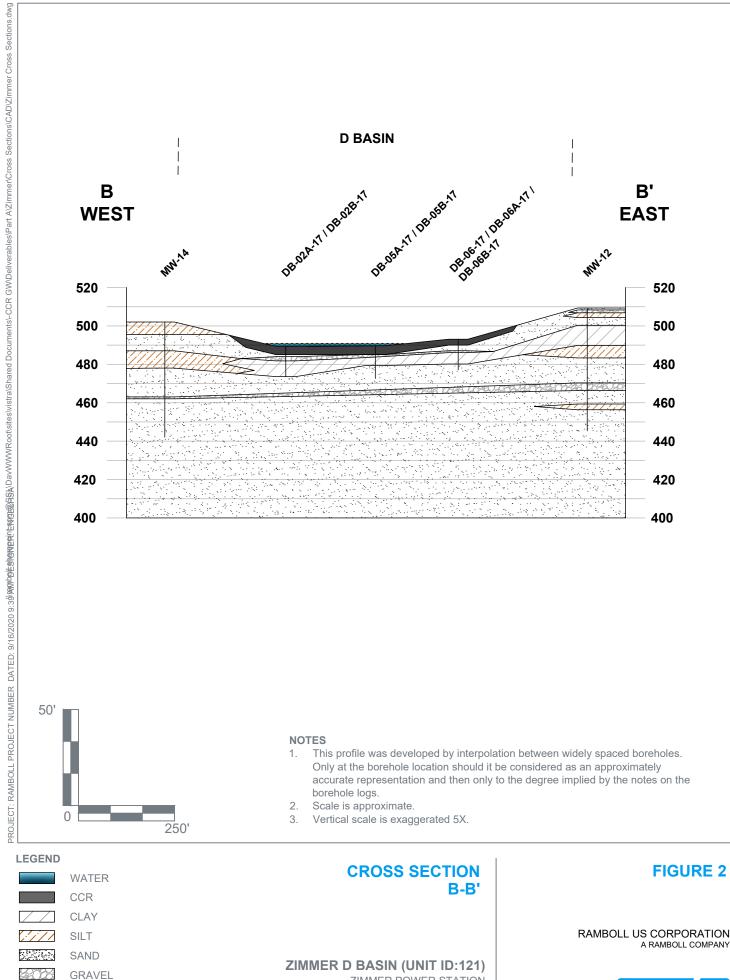
200 400

CCR MONITORING WELL LOCATION

TEST BORING LOCATION CROSS SECTION LOCATION CCR MONITORED UNIT

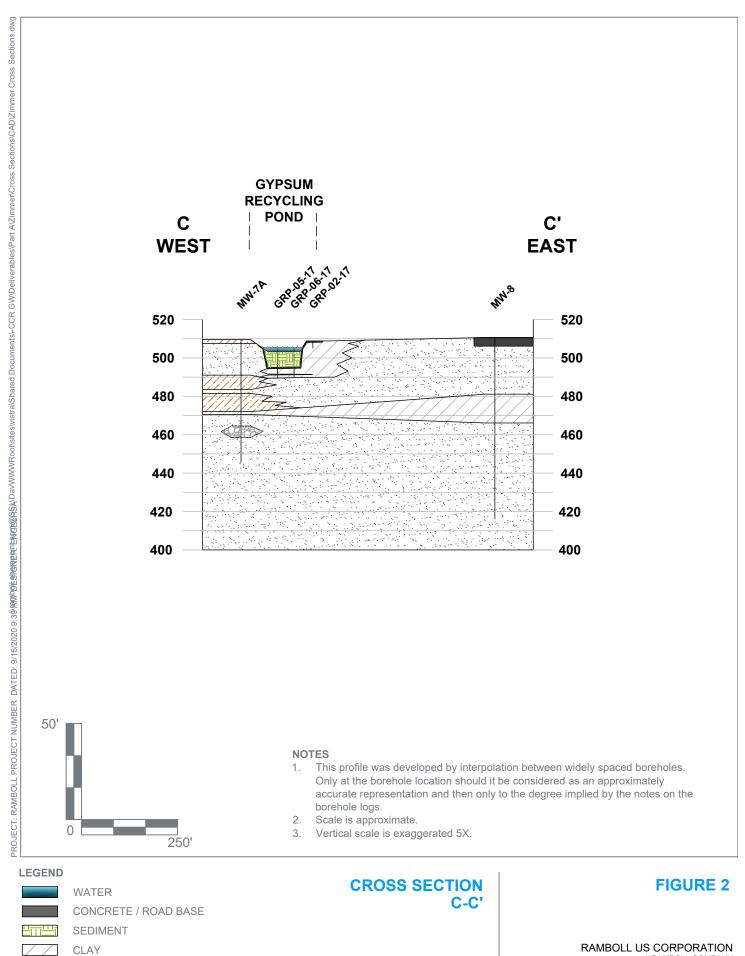
0

RAMBOLL US CORPORATION A RAMBOLL COMPANY



ZIMMER COAL PILE RUNOFF POND (UNIT ID: 125) ZIMMER POWER STATION MOSCOW, OHIO

SILT


SAND

;i//

RAMBOLL

ZIMMER D BASIN (UNIT ID:121) ZIMMER POWER STATION MOSCOW, OHIO

A RAMBOLL COMPANY

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) ZIMMER POWER STATION MOSCOW, OHIO

;;]]

42786

SILT

SAND

GRAVEL

HYDROGEOLOGICAL CHARACTERIZATION REPORT

CCR MANAGEMENT UNIT – 122 (Landfill)

ZIMMER POWER STATION CLERMONT COUNTY, OHIO

Prepared for:

Dynegy Zimmer, LLC Job Number: 60442412 October 11, 2017

Prepared by:

525 Vine Street, Suite 1800 Cincinnati, Ohio 513.651.3440 tel 877.660.7727 fax

Approved by: Dennis P. Connair, CPG

Signature

Date:

CONTENTS

Sectior	ו		Page
1.0		RODUCTION	
2.0	SITE	E DESCRIPTION	1
3.0	SITE	E CHARACTERIZATION MEANS AND METHODS	1
4.0	CONC	NCEPTUAL SITE MODEL	2
	4.1	Regional Physiography	2
	4.2	Site Geology and Hydrogeology	3
		4.2.1 Uppermost Aquifer	
		4.2.2 Material Overlying the Uppermost Aquifer	4
		4.3.3 Materials Comprising the Lower Confining Unit	
5.0	GRO	DUNDWATER MONITORING SYSTEM	4
	5.1	Monitoring Well System Installation	5
	5.2	Groundwater Flow – Unit 122	6
6.0	REFE	ERENCES	7

List of Tables

Table 1	Sample Location Summary, CCR Groundwater Monitoring System
Table 2	Monitoring Well Groundwater Elevations, January 2016-July 2017

List of Figures

- Figure 1 Site Vicinity Map
- Figure 2 Site and Well Location Map, Zimmer Station Landfill (Unit ID 122)
- Figure 3 Groundwater Surface Map March 14, 2016 Zimmer Station Landfill (Unit ID: 122)
- Figure 4 Groundwater Surface Map December 14, 2016 Zimmer Station Landfill (Unit ID: 122)

List of Attachments

Attachment A	Boring Logs and Well Construction Logs
Attachment B	Well Wizard Sampling Pumps, Equipment Specifications

HYDROGEOLOGICAL CHARACTERIZATION REPORT

ZIMMER POWER STATION CLERMONT COUNTY, OHIO

[Unit 122 - Landfill]

1.0 INTRODUCTION

This Hydrogeological Characterization Report (HCR) was prepared on behalf of Dynegy Zimmer, LLC to document the character of site conditions that control the occurrence and flow of groundwater relative to the monitoring requirements for coal combustion residual (CCR) management units at the Zimmer Power Station (Zimmer) in accordance with Part 257.91 of the United States Environmental Protection Agency (USEPA) Final Rule to regulate the disposal of CCR under Subtitle D of the Resource Conservation and Recovery Act (RCRA) [40 Code of Federal Regulations (CFR) 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015].

This HCR will apply specifically to the following CCR Unit; Unit 122 (Zimmer Landfill), as defined further below.

The HCR describes the hydrogeologic context of the entire landfill site so as to inform the Qualified Professional Engineer (QPE) who is charged with certifying that the groundwater monitoring system proposed for the CCR unit meets the requirements stated in 40 CFR 257.91.

2.0 SITE DESCRIPTION

The Unit 122 is located at the intersection of State Route 756 and Turkeyfoot Road in Washington Township approximately 3 miles east of the W. H. Zimmer Station (**Figure 1**).

The Unit 122 footprint covers approximately 288 acres and is bounded by S.R. 756 on the northeast, Turkeyfoot Road on the northwest, and Fruit Ridge Road on the southwest. The area bounded by the roadway boundaries is 680 acres. Turkeyfoot Road, which is now vacated, provides limited access for local landfill construction traffic. Primary access to Unit 122 is provided by a dedicated, paved haul road from the Station to the Unit 122. The dedicated haul road is gated and not open to public traffic.

Residual wastes generated at the station are trucked to the facility for disposal in accordance with permitto-install [PTI] (Permit No. 05-9746) conditions. The PTI was effective November 2, 1988. Wastes approved for disposal include fly ash, dewatered bottom ash, pyrites, pond sediments, dewatered and stabilized flue gas desulfurization (FGD) wastes, and gypsum. Disposal activities commenced in January 1991 and have progressed through a series of fill areas or phases.

3.0 SITE CHARACTERIZATION MEANS AND METHODS

The site conditions that control the occurrence and flow of groundwater relative to the monitoring of CCR units was evaluated through a series of investigation and well installation efforts on site. The available data were primarily derived from the following resources:

• Hydrogeologic Report - December 1985, The Zimmer Plant Flue Gas Desulfurization Waste Landfill Site, prepared for The Cincinnati Gas & Electric Company, The Dayton Power and Light

Company, Columbus and Southern Ohio Electric Company, prepared by American Electric Power Service Corporation, Civil Engineering Division, Columbus, Ohio.

- Addendum to the Hydrogeologic Report June 1987, The Zimmer Plant Flue Gas Desulfurization Waste Landfill Site, prepared for The Cincinnati Gas & Electric Company, The Dayton Power and Light Company, Columbus and Southern Ohio Electric Company, prepared by American Electric Power Service Corporation, Columbus, Ohio.
- Groundwater Monitoring Program Plan (Lateral Expansion PTI, OAC 3745-30-05(C)), William H. Zimmer Residual Solid Waste Landfill, Clermont County, Ohio, prepared by Duke Energy Ohio, Inc., Cincinnati, Ohio and S&ME, Inc., Dublin, Ohio, BBCM August 1998 (revised November 2012).
- Well logs for supplemental CCR monitoring wells installed around the Unit 122 (Attachment A).
- Annual evaluations (and Addendum 1-24-17) of the permit-required groundwater monitoring system conducted as required by Ohio Administrative Code (OAC) 3745-30-08(B)(5) and Section B(5) of the Facility permit-to-install (PTI) (Permit No. 05-9746) Groundwater Monitoring Plan (GWMP) dated August 1998 (revised November 2012). An evaluation of groundwater flow data is performed in order to evaluate whether the Groundwater Monitoring System is adequate for the facility.

The data from these reports were reviewed and used to evaluate geologic cross sections and potentiometric surface maps, that constitute the unified conceptual model of Unit 122 conditions as described in Section 4.0 below. Specific data cited in the sections below can be found within the documents listed above.

4.0 CONCEPTUAL SITE MODEL

The Conceptual Site Model (CSM) as described in the following sections addresses the requirements of 40 CFR 257.91(b), which specifies that the monitoring system design shall be based upon site-specific technical information that characterizes the following:

- 1. Aquifer thickness, groundwater flow rate, groundwater flow direction including seasonal and temporal fluctuations in groundwater flow; and
- 2. Saturated and unsaturated geologic units and fill materials overlying the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer, including but not limited to, thicknesses, stratigraphy, lithology, hydraulic conductivities, porosities and effective porosities.

4.1 Regional Physiography

The Ohio River valley generally separates the Till Plains Section of the Central Lowlands Physiographic Province from the Lexington Plain Section of the Interior Low Plateaus Physiographic Province. The Central Lowlands Physiographic Province is characterized by plains of low relief with youthful to mature dissection developed on soil and rock deposits. The Till Plains Section is generally north of the Ohio River and is characterized by hills of low relief that are developed on nearly horizontal, Paleozoic sedimentary strata. Continental glaciation has affected most of the province so that bedrock is almost

entirely concealed by glacial drift. Hills in the Till Plains are often composed of moraines or other glacial deposits (Hydrogeologic Report, December 1985). The bedrock consists of interbedded shales and limestones typical of the Cincinnatian Series.

Unit 122 is located in a transition zone between the Central Lowlands and Interior Low Plateaus Physiographic Provinces. Unit 122 lies east of the Ohio River on the uplands that rise to an elevation ranging between 700 and 850 feet National Geodetic Vertical Datum of 1929. These uplands are dissected by numerous small intermittent streams that result in an irregular set of ridges of similar elevation.

4.2 Site Geology and Hydrogeology

Unit 122 is underlain by a layer of unconsolidated sediments (glacial till) that ranges from 10 to 40 feet in thickness. The till is hard and consists of coarse, angular, gravel-sized material in a clay- and silt-rich matrix. Below the till is bedrock consisting of interbedded shales and limestones belonging to the Fairview and Kope formations.

4.2.1 Uppermost Aquifer

The uppermost groundwater is typically encountered near the interface between the bedrock and overlying till deposits. This uppermost aquifer is continuous beneath Unit 122 and is comprised of the upper 20 feet or less of the fractured and weathered bedrock. Groundwater in this uppermost aquifer generally flows parallel to the direction of topographic slope in a manner similar to the flow of surface runoff. This is suggested by the relatively shallow depth-to-groundwater as compared to the topographic relief of the area. However, because this groundwater occupies secondary porosity in the thin limestone units of the predominantly shale bedrock, the potential exists for locally unpredictable flow patterns as groundwater movement may be controlled by the location of open fractures and their degree of interconnection.

A groundwater flow divide occupies the high ground between two major surface drainage channels at the site (Little Indian Creek and an unnamed tributary to Little Indian Creek). The divide runs roughly northwest-southeast. Groundwater flows from the divide to the centerline of the drainage channels in the general downhill direction. These channels run roughly westward, exiting the site at the northern and western corners of the property.

As stated within the Addendum to the Hydrogeologic Report dated June 1987, field slug tests were performed on a total of nine observation wells in order to provide information on the site's hydrogeologic properties. These test data were used to evaluate the transmissivities of the Fairview and Kope formations, which underlie Unit 122. The aquifer test results had an average transmissivity value of 1.28 x 10^{-5} square meters per second (m²/sec) and storage coefficient of 1.27×10^{-2} , which is indicative of the low permeability characterizing the site. The observation wells, with the exception of IJ_t and IK (noted in the Addendum to the Hydrogeologic Report dated June 1987), are designed to monitor the basal contact of the glacial till and the bedrock formations. Observation Wells IJ_t and IK are screened in the glacial till and exhibit lower transmissivity values (Addendum to the Hydrogeologic Report – June 1987).

The primary influences on groundwater flow beneath Unit 122 are infiltration of rainfall and other surface water and the lack of infiltration due to temporary or permanent capping of the landfill.

4.2.2 Material Overlying the Uppermost Aquifer

Material overlying the uppermost aquifer is comprised of unconsolidated sediments (glacial till) that range from 10 to 40 feet in thickness. The till is hard and consists of coarse, angular, gravel-sized material in a clay- and silt-rich matrix. Permeability tests conducted on test pit samples by American Electric Power Service Corporation, Civil Engineering Division in 1985 suggested a mean value of 6.18 x 10^{-6} centimeters per second (cm/sec) within the boundaries of Unit 122. Permeability tests conducted on the undisturbed Shelby tube samples gave a mean value of 5.78 x 10^{-8} cm/sec (Hydrogeologic Report - December 1985).

4.3.3 Materials Comprising the Lower Confining Unit

The lower confining unit underlying the site is bedrock consisting of interbedded shales and limestones belonging to the Fairview and Kope formations. These low-yielding shale and limestone formations are approximately 400- to 600-feet thick (Luft, et. al., 1973).

Groundwater yields from the bedrock strata in this region are quite limited. Generally, the bedrock is not tapped for water due to its low permeability. Those wells that do tap the bedrock aquifers generally draw water from the bedding planes and fracture zones. Due to the relatively impermeable nature of the shales and limestone underlying this region, water yields are generally insufficient for domestic use. Saline to brackish waters have been encountered at 50 feet below the surface of Unit 122. Fresh water does not typically occur at depths greater than 150 feet below the surface.

5.0 GROUNDWATER MONITORING SYSTEM

Pursuant to 40 CFR § 257.90(b)(1), by October 17, 2017, an owner and operator of a CCR unit must install a groundwater monitoring system that meets the requirements of 40 CFR § 257.91. The groundwater monitoring system must meet the CCR Rule's performance standard, which requires the system to consist of a sufficient number of wells, installed at appropriate locations and depths, to yield groundwater samples from the uppermost aquifer that accurately represent the quality of:

- (1) background groundwater that has not been affected by leakage from a CCR unit; and
- (2) groundwater passing the waste boundary of the CCR unit—the downgradient monitoring system must be installed at the waste boundary that ensures detection of groundwater contamination in the uppermost aquifer and must monitor all potential contaminant pathways.

The collection of monitoring wells that comprise the CCR groundwater monitoring system for Unit 122 consists of the following:

- Ten (10) PTI-required monitoring wells (MW-3, MW-9D, MW-11D, MW-13S, MW-16D, MW-18, MW-20D, MW-21, MW-22, and MW-24), installed July 1985 through August 1989, February 1997, February 2009, and April 2010,
- Five (5) supplemental monitoring wells (MW-D, MW-E, MW-F, MW-H, and MW-G), installed November/December 2015.

The monitoring well locations are illustrated on **Figure 2**. As-built specifics of each well installation are summarized on **Table 1**. The boring and well construction logs for the wells are located in **Attachment A**.

The section below provides details of the design, installation, development, and decommissioning of any monitoring wells, piezometers and other measurement, sampling, and analytical devices constituting the groundwater monitoring system for the subject site so as to support QPE certification of the system as required under 40 CFR 257.91(e)(1).

5.1 Monitoring Well System Installation

Preparation tasks prior to the installation of any part of the groundwater monitoring system involved preparation of a health and safety plan for all site activities; coordination of site activities with Station security requirements; and clearance and placement of drilling locations with Duke Energy/Dynegy Zimmer engineering staff to ensure safe work conditions by avoiding underground and overhead utilities, traffic hazards, and other operational hazards.

Field activities for all monitoring well installations involved a survey and utility clearance of the proposed monitoring well locations, drilling and installation of the monitoring wells, development of monitoring wells, and a final elevation and location survey of the monitoring wells. For all monitoring wells installed at Unit 122, the drill rig and all downhole equipment were decontaminated by pressure cleaning after mobilization to the first well site and between drilling locations in order to prevent the introduction of contaminants to the wells.

Permit-Required Monitoring Wells

Drilling and well installation activities for monitoring wells MW-3, MW-9D, MW-11D, MW-13S, MW-16D, MW-18, MW-20D, MW-21, MW-22, and MW-24) were conducted between July 1985 and August 1989, February 1997, February 2009, and April 2010. The PTI groundwater monitoring system wells were installed by S&ME (formerly BBCM). The monitoring wells installed at the site were set into boreholes drilled with auger and rotary drilling methods. It is reported that proper decontamination procedures were used during the drilling of the borings and installation of the wells.

The wells have similar construction: 2-inch diameter polyvinyl chloride (PVC) casing with machine-slotted PVC well screens ranging from 5 to 20 feet in length located at the bottom. Annular space adjacent to the screens is filled with sand, and a bentonite seal is located atop the sand. The remaining annular space is filled with cement/bentonite grout. The wells are finished in concrete well pads with steel protective casings and locking caps.

Monitoring well installation was conducted in accordance with the specifications of the approved Groundwater Monitoring Program Plan (Lateral Expansion PTI, OAC 3745-30-05(C)) as described in Part G of the Site Investigation Report included as Section 4 of the PTI application. As-built specifics of each well installation are summarized on **Table 1**.

Supplemental Monitoring Well

Monitoring wells MW-D, MW-E, MW-F, MW-H, and MW-G were installed November/December 2015 by roto-sonic drilling methods. Drilling was conducted by Frontz Drilling Inc. located in Wooster, Ohio (Ohio Certified Driller ODH Registration Number 0120) under the observation of AECOM (formerly URS) personnel. Soil samples were collected continuously in 5- or 10-foot intervals in order to classify the physical characteristics of the unsaturated and saturated zones. The wells were constructed following the same protocols as the existing wells on site with 10 feet of 0.010 slot, 2-inch diameter PVC screen. The targeted depths placed the well screens at roughly the same elevation as the existing uppermost aquifer monitoring wells to facilitate integration of new and old data.

Surface Completion – All Monitoring Wells

With the exception of monitoring well MW-G, all of the monitoring wells were completed 1 to 3 feet above ground surface with a locking steel casing, 4 by 4 foot concrete pad (sufficiently deep to protect against frost heave), and in areas of high traffic three (3) or four (4) surrounding bollard posts were installed to protect against vehicle strikes. Monitoring well MW-G was completed at the surface as a flush-mount casing to accommodate for vehicle access to key landfill operations. Each casing was painted with a high visibility, rust-preventative paint and the well number was painted on the casing in a contrasting color.

All of the wells were developed after installation to promote hydraulic connection to the aquifer. Development involved hand-bailing equipment and /or the use of a small submersible pump to over-pump and surge the well until water from the entire screened interval ran clear.

The location, ground surface elevation, and top of internal casing elevation for each monitoring well were surveyed by a licensed surveyor utilizing the local reference datum elevations. These survey data, along with well construction details, are presented in **Table 1**.

All of the monitoring wells were equipped with dedicated Well Wizard[®] bladder pumps. The bladder pump specifications, installation guide, and warranty information supplied by the vendor are provided as **Attachment B**.

5.2 Groundwater Flow – Unit 122

Groundwater flow conditions for Unit 122 were evaluated through eight baseline CCR monitoring events, supplemented by permit-required annual evaluation of the groundwater monitoring system since 2003.

Water level data collected during the eight baseline CCR monitoring events from January 2016 through July 2017 are summarized on **Table 1**. These data were used to construct piezometric surface maps to illustrate seasonal groundwater flow conditions for the uppermost aquifer [**Figure 3** (March 2016) and **Figure 4** (December 2016)]. These data and figures are representative of general conditions at the site and support the following analysis.

The uppermost groundwater is typically encountered near the interface between the bedrock and overlying till deposits. This uppermost aquifer is continuous beneath the site and is comprised of the upper 20 feet or less of the fractured and weathered bedrock. Groundwater in this uppermost aquifer generally flows parallel to the direction of topographic slope in a manner similar to the flow of surface runoff. This is suggested by the relatively shallow depth-to-groundwater as compared to the topographic relief of the area. However, because this groundwater occupies secondary porosity in the thin limestone units of the predominantly shale bedrock, the potential exists for locally unpredictable flow patterns as groundwater movement may be controlled by the location of open fractures and their degree of interconnection.

A groundwater flow divide occupies the high ground between two major surface drainage channels at the site (Little Indian Creek and an unnamed tributary to Little Indian Creek). The divide runs roughly northwest-southeast. Groundwater flows from the divide to the centerline of the drainage channels in the general downhill direction. These channels run roughly westward, exiting the site at the northern and western corners of the property.

6.0 **REFERENCES**

- Addendum to the Hydrogeologic Report June 1987, The Zimmer Plant Flue Gas Desulfurization Waste Landfill Site, prepared for The Cincinnati Gas & Electric Company, The Dayton Power and Light Company, Columbus and Southern Ohio Electric Company, prepared by American Electric Power Service Corporation, Columbus, Ohio.
- Groundwater Monitoring Program Plan (Lateral Expansion PTI, OAC 3745-30-05(C)), William H. Zimmer Residual Solid Waste Landfill, Clermont County, Ohio, prepared by Duke Energy Ohio, Inc., Cincinnati, Ohio and S&ME, Inc., Dublin, Ohio, BBCM August 1998 (revised May 2012).
- Hydrogeologic Report December 1985, The Zimmer Plant Flue Gas Desulfurization Waste Landfill Site, prepared for The Cincinnati Gas & Electric Company, The Dayton Power and Light Company, Columbus and Southern Ohio Electric Company, prepared by American Electric Power Service Corporation, Civil Engineering Division, Columbus, Ohio.
- Luft, Stanley J.1 Osborne, Robert H., and Malcolm P. Weiss. Geologic Map of the Moscow Quadrangle, Ohio - Kentucky (GQ-I069). Prepared in cooperation with The Commonwealth of Kentucky, University of Kentucky, Kentucky Geological Survey, 1973.

Tables

Table 1. Sample Location Summary CCR Groundwater Monitoring System CCR Rule Groundwater Monitoring CCR Unit Name: Unit ID:

Zimmer Landfill 122

Well ID	MW-3	MW-9 D	MW-11 D	MW-13 S	MW-16 D	MW-18	MW-20 D	MW-21
Well Location Latitude	38° 51' 2.0988"	38° 51' 29.4582"	38° 51' 37.3566"	38° 51' 39.5382"	38° 51' 11.8512"	38° 51' 23.3208"	38° 51' 32.9502"	38° 51' 17.9166"
Well Location Longitude	-84° 10' 0.6672"	-84° 9' 47.7252"	-84° 9' 47.649"	-84° 9' 27.4176"	-84° 10' 18.948"	-84° 9' 12.369"	-84° 10' 6.204"	-84° 9' 26.3052"
Well Construction Material	PVC							
Well Diameter (inches)	2	2	2	2	2	2	2	2
Top of Casing Well Elevation (ft)	872.85	857.91	851.85	862.1	825.22	888.57	824.68	862.15
Well Depth Below Ground Surface (ft)	35.34	69.53	35.79	19.01	30.07	17.47	38.61	37.16
Screen Length (ft)	10	10	10	10	10	10	10	10
Top of Screen Elevation (ft)	845.65	796.44	824.3	851.6	803.6	877.17	794.38	832.25
Bottom of Screen Elevation (ft)	835.65	786.44	814.3	841.6	793.6	867.17	784.38	822.25
Well Stick-up Above Ground Surface (ft)	1.86	1.94	1.76	1.49	1.55	3.93	1.69	2.74
Hydraulic Position of Well ⁽¹⁾	U	D	D	D	D	U	D	D

Notes:

ft = feet

PVC = polyvinyl chloride

1. upgradient (U) or downgradient (D)

Table 1. Sample Location Summary CCR Groundwater Monitoring System CCR Rule Groundwater Monitoring CCR Unit Name: Unit ID:

Zimmer Landfill 122

Well ID	MW-22	MW-24	MW-D	MW-E	MW-F	MW-G	MW-H
Well Location Latitude	38° 51' 22.482"	38° 51' 42.624"	38° 51' 40.0962"	38° 51' 27.09"	38° 51' 13.5936"	38° 51' 22.7298"	38° 51' 17.463"
Well Location Longitude	-84° 9' 37.08"	-84° 10' 1.0446"	-84° 9' 55.7856"	-84° 9' 40.4064"	-84° 9' 40.4526"	-84° 10' 11.6826"	-84° 10' 17.1804"
Well Construction Material	PVC	PVC	PVC	PVC	PVC	PVC	PVC
Well Diameter (inches)	2	2	2	2	2	2	2
Top of Casing Well Elevation (ft)	866.94	852.36	852.34	863.42	884.02	821.4	811.13
Well Depth Below Ground Surface (ft)	37.29	34.41	35.02	32.73	29.78	67.7	27.02
Screen Length (ft)	10	10	10	10	10	10	10
Top of Screen Elevation (ft)	836.97	826.65	824.82	838.03	861.7	764.39	792.03
Bottom of Screen Elevation (ft)	826.97	816.65	814.82	828.03	851.7	754.39	782.03
Well Stick-up Above Ground Surface (ft)	2.68	1.3	2.75	2.91	2.79	(0.44)	2.33
Hydraulic Position of Well ⁽¹⁾	D	D	D	D	D	D	D

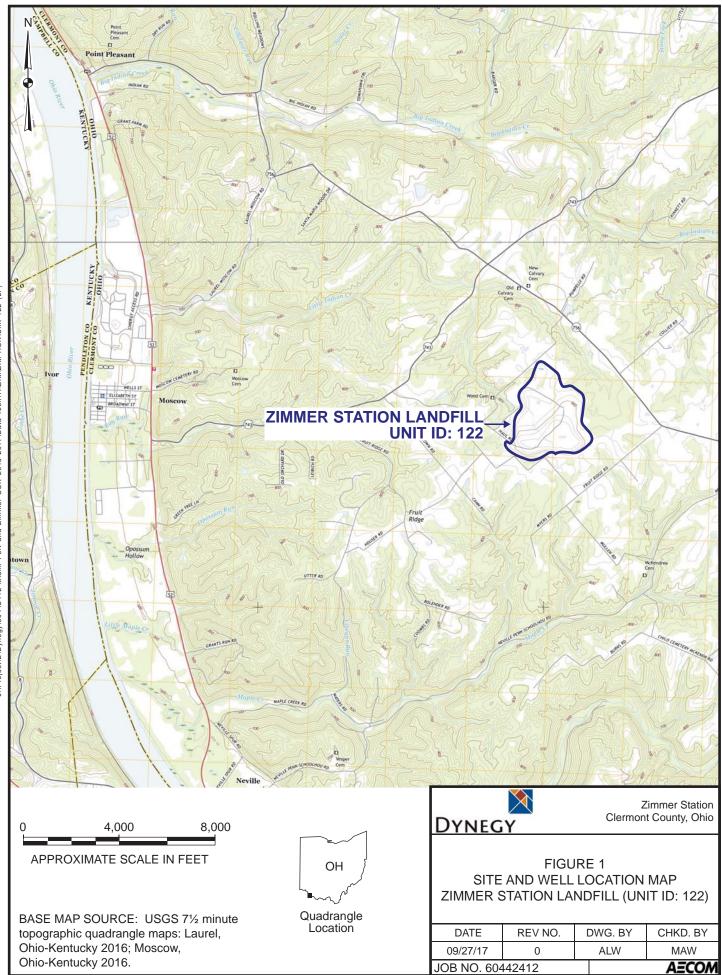
Notes:

ft = feet PVC = polyvinyl chloride

1. upgradient (U) or downgradient (D)

TABLE 2

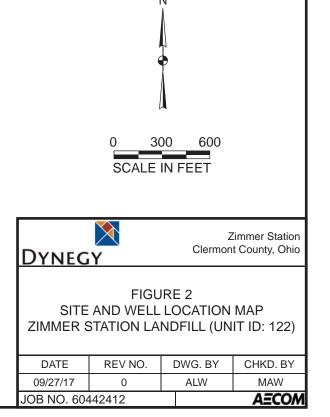
MONITORING WELL GROUNDWATER ELEVATIONS - JANUARY 2016-JULY 2017

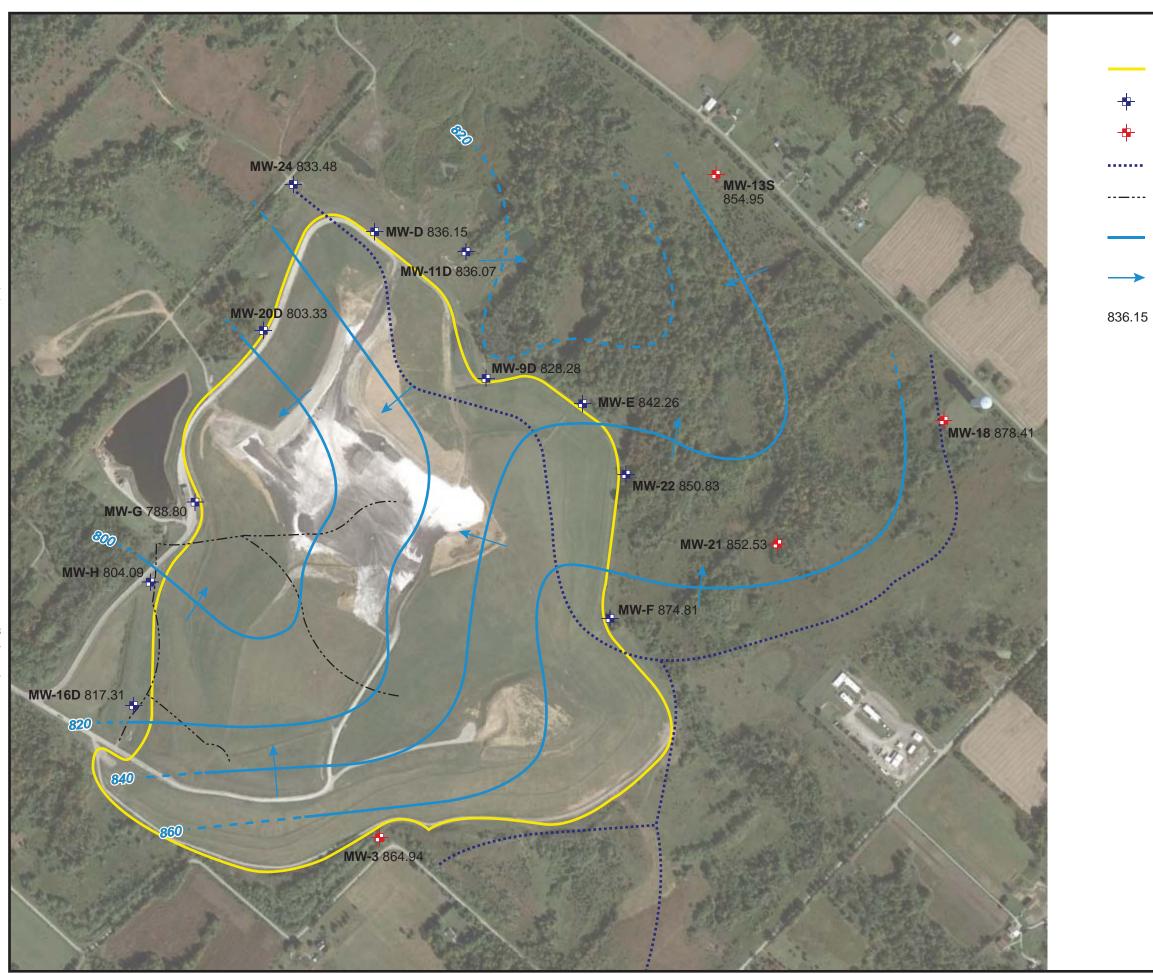

ZIMMER STATION - CLERMONT COUNTY, OHIO

ZIMMER LANDFILL (122)

	Reference	Januar	y 26, 2016	March 14, 2016		June 13, 2016		Septemb	er 28, 2016	Decembe	er 14, 2016	April 1	17, 2017	June	8, 2017	July 1	2, 2017
Well ID	Elevation Top of Casing* (feet, NAVD 88)	Depth to Wate (feet)	Groundwater r Elevation (feet, NAVD 88)	Depth to Water (feet)	Groundwater Elevation (feet, NAVD 88)												
MW-3	872.85	10.68	862.17	7.91	864.94	11.20	861.65	13.13	859.72	12.87	859.98	9.81	863.04	10.78	862.07	11.11	861.74
MW-9D	857.91	30.80	827.11	29.63	828.28	30.83	827.08	31.11	826.80	30.96	826.95	30.89	827.02	30.91	827.00	30.93	826.98
MW-11D	851.85	16.85	835.00	15.78	836.07	17.20	834.65	17.54	834.31	17.54	834.31	17.31	834.54	17.27	834.58	17.16	834.69
MW-13S	862.1	8.54	853.56	7.15	854.95	NM**	NM	NM**	NM	NM**	NM	8.53	853.57	11.80	850.30	10.38	851.72
MW-16D	825.22	9.03	816.19	7.91	817.31	9.07	816.15	9.43	815.79	9.53	815.69	9.22	816.00	9.19	816.03	9.05	816.17
MW-18	888.57	13.28	875.29	10.16	878.41	NM	NM	NM	NM	NM	NM	12.54	876.03	15.77	872.80	14.67	873.90
MW-20D	824.68	23.83	800.85	21.35	803.33	22.70	801.98	21.75	802.93	23.12	801.56	23.79	800.89	24.01	800.67	23.82	800.86
MW-21	862.15	11.35	850.80	9.62	852.53	10.81	851.34	13.92	848.23	15.80	846.35	11.13	851.02	10.94	851.21	11.48	850.67
MW-22	866.94	17.38	849.56	16.11	850.83	17.18	849.76	17.36	849.58	17.59	849.35	17.94	849.00	17.77	849.17	17.75	849.19
MW-24	852.36	21.13	831.23	18.88	833.48	20.59	831.77	22.87	829.49	23.06	829.30	19.40	832.96	20.17	832.19	20.03	832.33
MW-D	852.34	17.28	835.06	16.19	836.15	17.45	834.89	18.83	833.51	19.44	832.90	18.49	833.85	17.66	834.68	17.51	834.83
MW-E	863.42	26.02	837.40	21.16	842.26	26.01	837.41	26.30	837.12	26.18	837.24	25.19	838.23	25.23	838.19	25.66	837.76
MW-F	884.02	9.74	874.28	9.21	874.81	9.82	874.20	12.97	871.05	14.54	869.48	9.56	874.46	10.11	873.91	11.07	872.95
MW-G	821.4	34.19	787.21	32.60	788.80	34.03	787.37	34.40	787.00	34.49	786.91	34.12	787.28	34.38	787.02	34.37	787.03
MW-H	811.13	8.60	802.53	7.04	804.09	8.70	802.43	10.25	800.88	10.68	800.45	8.24	802.89	9.24	801.89	9.37	801.76

* = Reference elevations of monitoring wells surveyed by American Land Surveys 1-27-16 ** = Well was dry to the top of pump


Figures



MW-13S MW-24 MW-D MW-11D MW-20D MW-9D MW-E MW-18 MW-22 MW-G **MW-21** MW-H MW-F MW-16D MW-3

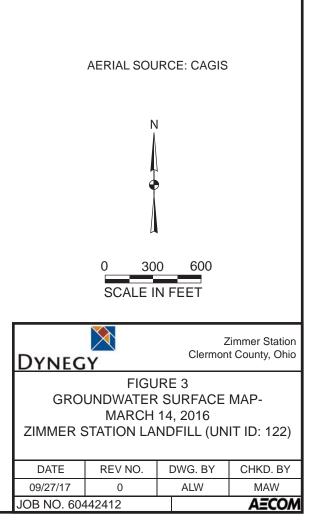
-∲--∳- UNIT BOUNDARY DOWNGRADIENT MONITORING WELL LOCATION UPGRADIENT MONITORING WELL LOCATION

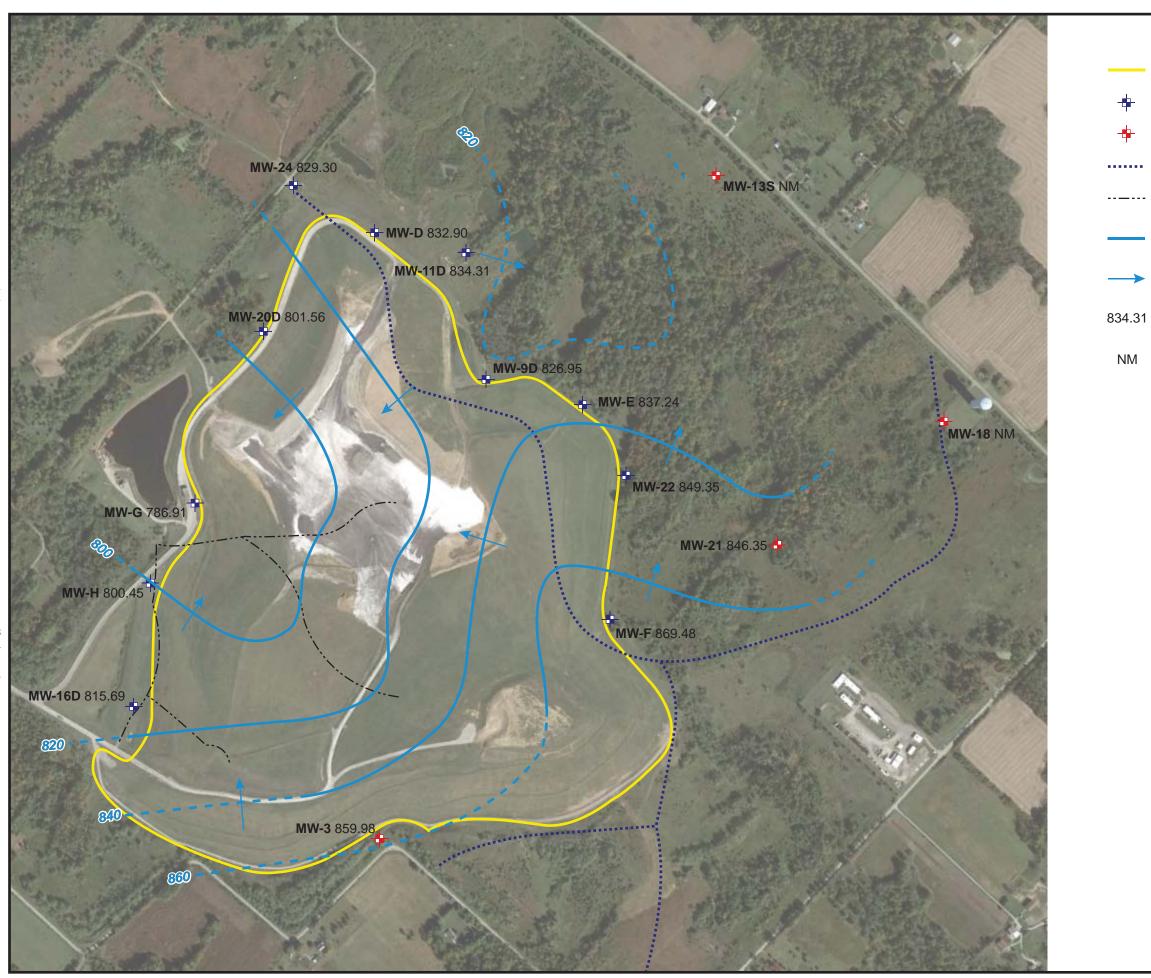
AERIAL SOURCE: CAGIS

UNIT BOUNDARY

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION


GROUNDWATER DIVIDE


······· FORMER DRAINAGE PATH LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 14, 2016

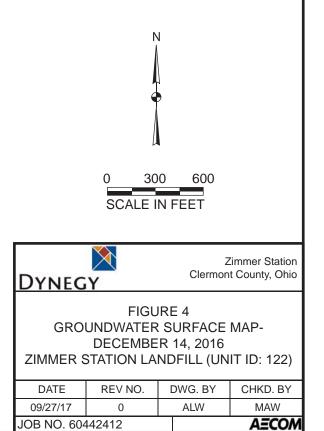
UNIT BOUNDARY

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

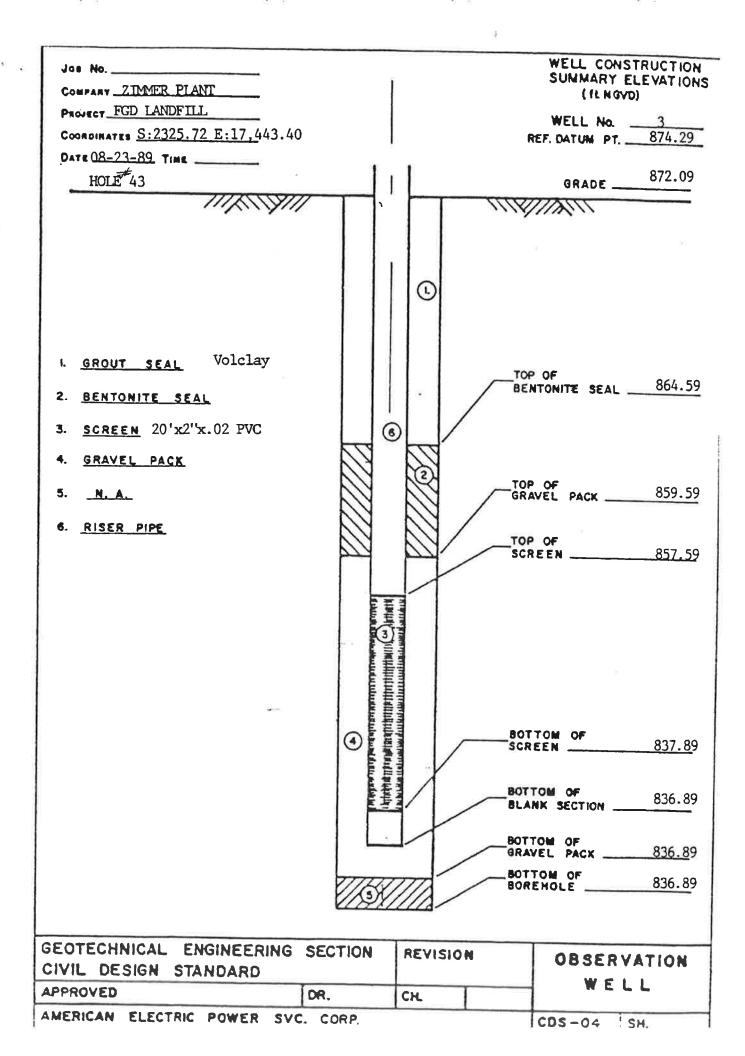
GROUNDWATER DIVIDE

······· FORMER DRAINAGE PATH LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

→ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 14, 2016


NM NOT MEASURED

Attachment A

Boring Logs and Well Construction Logs

	EV. Comp Roje Coord	ANY LGT DINAT NTION ER LI	Zin		32 32	м.d 5.7 ша:	ANI Fi 2 2 Dr	11 E: 19	AEP 7. 44 	CIVIL 43.40			DWER SERVICE CORPORATION IEERING LABORATORY F BORING Well 3 BORING NO. 43. DATE 5-22-89 SHEET 1 OF 2 TYPE OF SAMPLES: SPT X 3" TUBE CORE X CASING USED SIZE HW DRILLING NUO USED BORING BEGUN A-22-89 BORING COMPLETED F-22-89 GROUND ELEVATION 872.09 REPEARED TO DATUM FIELD PARTY HOINCIL- DREST RIG 75
-	NUMBER	0 18	м Р С В Р Г Н Р Е Е 1 1 М Т		37 PER RE:	TANDA NETRA SISTA	AD TION NCE / 8*	TOTAL LENGTN MECONERY	P40	DEPTH IN PEET	644FH 106	0 5 6 8	DENTIFICATION
		9.0 4.0 3. , 2 1. , 3 1	5.25 H ASING									CL	Clusy - Multi-celon Br-moist med to how plusticity
	N	W C	_	1068		3" 6"			_	[1	RECORDER

<u>___</u>

8 V.

FORM CE-5 Rev. 1/87

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY ORING

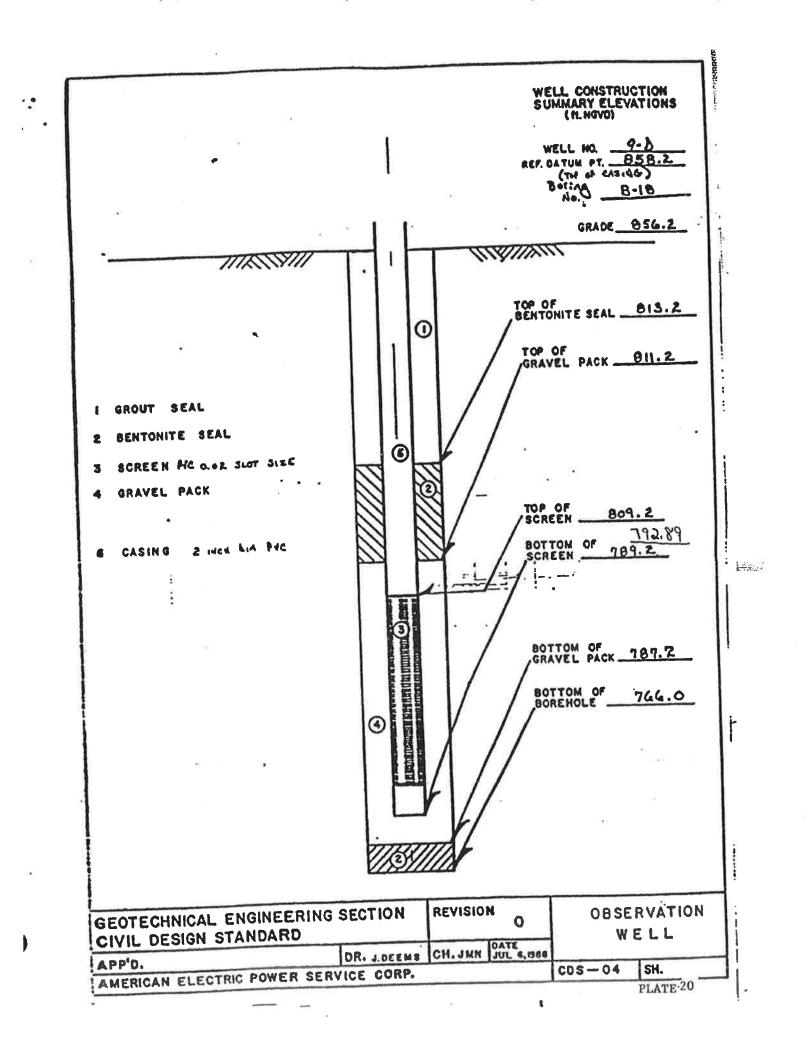
LO	GΟ	F	8
----	----	---	---

Jos No.	_
COMPANY	_
DEALECT	

PROJECT

COORDINATES

	1.1		
LOCATION	0#	BORING	


WATER LEVEL	
TIME	
DATE	

.

BORING NO. 43 DA	E3" Tuee	SHEET Z OF Z
CASING USED	SIZE DRILLING	NUD USED
	AEFERNED	to
FIELD PARTY		DATUM

.

SAMPLE Number	0 6 1	TH TH TO	PEN	ANDAI ETRAT 157AN	10 104 102 102	TOTAL LENGTH RECOVERY	*** %	DEPTH IN PEET		8 U 8 0 8 0	SOIL / ROCK IDENTIFICATION	DRILLER'S Notes
											19:1 - 35.2 General Man 2 1' 57010 11	
	19.1	22.7	(4)			35	0	nutr			19.1 - 35.2 GRAY HARD bime STONE W/ LAYERS OF GRAY CITY SHALE	
_								utun lu				
	22.7	30.0				6.9	0	1				
								hun		_		
					*			ntur				
			-				_	untun				
	30.0	35.Z	İ	1		5.1	37	30-11				1
 			_		_	_	_	חודו	ŀ			
ļ	i		1	ļ	1	i		hun	Ē			
	1				-		_	atudaadaa 86 atudaadaadaadaadaadaadaadaadaadaadaadaadaa	F	+		BRUSTHILE JW
	_		-	Î	_	_		utu	F	-	Stopped Hole 35,2	
								سليسليب				
		25 HS		Ì				hud	F	+		
+				3" 6"	_					+	RECORDER	

Protect Zienmert, EGO based Eini interner of Boning, M. Soo E 18170 white Level Time Date Sause Level Time Date Sause Level Time Date Sause Level Sause Level Sause Level Time Date Sause Level Sause Sause Level Sause Level Sause Sause Level Sause Level Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Sause Level Sause Level Sause Sause Level Sause Sause Level Sause Sause L	DRILLING NUG USED NG COMPLETED REFERED TO
GAOUND ELEVATION $\frac{g_{54}}{25.20}$ GAOUND ELEVATION $\frac{g_{54}}{25.20}$ GAOUND ELEVATION $\frac{g_{54}}{25.20}$ FIELD PARTY Smith - Buman STANDARD	REFEREND TO DA
FIELD PARTY SouTH - Byong of 3 AUPLE 3	DANKER BAIL RIG 7
PIELO PART Smith - Bumer SAMPLE SAM	DRILLER
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c} $	
$ \begin{array}{c} $	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
9.0 10.5 5 R 9 18" 9.0 10.5 5 R 9 18" 10 10.5 5 R 9 18" 10 10.5 5 R 9 18" 10 10.5 5 R 9 18" 10 10 10.5 5 R 9 18" 10 10 10 10 10 10 10 10 10 10 10 10 10 1	
9.0 10.5 5 R 9 18 9.0 10.5 5 R 9 18 10 10 10 10 10 10 10 10 10 10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TTled
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
9.0 10.5 5 R 9 $I8^{"}$ Same as Sample No. 1 I°	
9.0 10.5 5 R 9 $I8^{"}$ Same as Sample No. 1 I^{o}	
9.0 10.5 5 R 9 $I8^{"}$ Some as Sample No. 1 10 10 10 10 10 10 10 10 10 1	
9.0 10.5 5 R 9 $I8^{"}$ Some as Sample No. 1 10 10 10 10 10 10 10 10 10 1	
$\frac{1}{14,0} \frac{1}{15,5} \frac{22}{22} \frac{50}{50} - 11'' \frac{1}{14} = \frac{5ame \ As \ Sample \ No. 1}{5ame \ As \ Sample \ No. 1}$	
$\frac{1}{140} \frac{1}{15.5} \frac{22}{22} \frac{50}{70} \frac{-11}{11} \frac{1}{14} 1$	
10^{-1}	
14,0 15,5 22 50 - 11" (4 - Sowdy Clay- Re 50+1	
14,0 15,5 22 50 - 11" 14 - Sowdy Clay- Re 50+1	
14,0 15,5 22 50 - 11" (4 - Sowdy Clay- Re 50+1	
14,0 15,5 22 50 - 11" (4 - Sowdy Clay- Re 50+1	
Jaway CIA- Ve Se + 1	
Jaway CIA- Ve Se + 1	
Jaway CIA- Ve Se + 1	
Limestone Fanc- STrom Renction To Net	Rny
16 - Renc Tion To Het	
	1
190 205 10 18 22 12 - SANdy GARYCHY CIRY- B	lyc
= maist - STROWA REPETIO	m 70
6" x 3.25 HSA 20 HCL - Limestone GRAVES	
HW CASING ADVANCER 4" X	
NO CORE ROCK	

08 8 0MP	NO	P BORIN	01								WER SERVICE COPPORATION ERING LABORAL VY SEA BORING BORING BORING NO. B-18 DATE TYPE OF BORING, SPT 3"TUBE CASING USED SIZE DRILLING BORING BEGUN BORING COMPLETI	SHEET 2 OF
WAT	ER LEV	EL			91.1					1 S.	GROUND ELEVATION REFERRED	
												DAT
DAT	ε						-			J	FIELD PARTY	Rie
NUMBER	0 0	4 P L E P T H P E E T	STANDARD E RAC PENETRATION RESISTANCE					DEPTH	HAPH LOG	s c s	SOIL / ROCK IDENTIFICATION	CRILLER'S
0 2	FROM	ет <u>і</u>	8	1.0*	/ 8*	1-12	70	FEET	2 9	2		
	<u> </u>			ļ				20				
										-		
		-									1	
					1			22				
-		-	-	-	-							
٢_	34.0	25.5	4	8	12	14		24 -			Clay- Blue- moist- strong	
											Rend Tion TO HCL. W/ Some 1 GRAVE	
								3			14d 142	
					\square			26				
				-						-		
				ļ				28 -				
L	29.0	30.5	5	8	10	16					SAME BS SAMPLE NO. 5	
								E				
							-	Jo		_		
-				-	-			i li				
								32-		_		
							- 11				- -	
,	34.0	35.5	4	,	10	¥-					·	
-	¥F.0			1						_	Same AS Sample NO 5	
				^								
					1			36-	ł	_		
			-	2 - 19-1		3				_		
		•	274		- 90 - 90			31 IIIIII	ļ	_		
							-		t	_	SAME AS Somple NO. 5	
2	39.0	40.5	4	5	16	13	-	, indu		-		
- 1	ell							+. =	þ			
	HWC	H CS.C	5 A	6"x 3.25 H SA HW Casing Advances 4"								C. MARS

- 25

OMP ROJ	ECT	Control 7	•••••	nge er State			.	den 84		<u>.</u>	بة من به ر	WER SERVICE COF ORATION EERING LABORATURY BORING BORING NO. 12-18 DATE TYPE OF BORING: SPT 3"TUBE CASING USED SIZE DRILLING BORING BEGUN BORING COMPLET GROUND ELEVATION REFEREED	SHEET 3 OF
	ATION	or Born	NGL		-						1	CASING USED SIZE DRILLING	CORE
WA		WPI I				-	1	·			-	BORING BEGUN BORING COMPLET	E0
TIN	E	-								_	-	GROUND ELEVATION REFERRED	то
DA1	'E								_		1		D
											-	FIELD PARTY	Rig
س مع		WPLE		TAND	490	1 1	RQI	0 000	ргн	3	1 10		
NUMBER		ЕРТН. 	100		ATICH Ance	1453	101	1 0	N	1	10	SOIL / ROCK	DRILLER
	1	тен) Н то	1		/ e*	Lo Lo	1%) FE	ET	44	0	IDENTIFICATION	NOTES
	1	1 19	1 8	<u> </u>	1 6				_	()	<u> </u>		
		1									-		
				1		1	1	- 40			-		
									=				
					1		1		Ξ				
						1	-	42				1 141 1 14	
						1			Ξ				1
			-				-	-	-				
	-	1955		4	ł,	1. "	0		Ξ			Clay- Blue GRAY maist	
T	199.5	1953	1.	17	16	16		- 44			-	To we T- med. to low	
	1	1							=			DIASTICITY - MUDERATC REACTION	
-		1		1	1	-		1	-			TO NEL	
				į					Ξ		CL		
			1.0		1		1	46	-		64		
		-	-						F	t			
	1							1	-	[1	
-					-		_	48 -	-	1			
		SAS	1 2 2	1.4	59	3		1	Ξ			Lime STONE Rick FRAg. +	
_	4-1.0	1303	22	15	1.9	3	_	1	-1	ŀ		Clay miature	
									Ξ	ł			
		1						50 -	-	h	-		
									Intitu	T			
		50				_			11	E			
-	52.0	150						sz-	-				
	220	55.1				2.3	0		1	-	_		
1	14/6	23.1				6,5	-		1	-	+		
									3	F	-	Erry Hard Limestone	
T					- 642			33-	-	F	\rightarrow		
									Ξ	1	-		
									-			Beakow Shalp	
+								54 -	-	T			
								'	Ξ	L		Broken hims store of shale	
+	-						-		=		-	-EWS	
									=	F	_		
T					-		-	55 -	T		-4	GRAY JOST Shale	
-	5.1	65.1				9.0	0		3-	-	-	Cana Lost ?	
1				1			-		Ξ			SEI TO SG.4 GARY SOFT	
								56 -	=		+	Shale - Braken LARGE "10 Fassil AT 55.3 = 56.2	
1	6″x 3	.25 H	SA	•				30-			-		
	HW C	ASING A	OVANCE	n 4"	- L							and the Assessment of	
		OFF DA	100 M										

8	No				1.94	and and a second second second second second second second second second second second second second second se Second second second second second second second second second second second second second second second second s		Sherina de astronom	LOG	0	WER SERVICE COPPORATION EERING LABORATURY F BORING BORING NO. <u>B-10</u> Date SH Type of Boring, SPT 3" Tube Casing used Size DRILLING M	- R
MP	ANY -		· · · · ·				-				BORING NO. 15-18 DATE SH	EET 4 OF
0	- 201						-		-	-	CARING USE SPT 3 TUSE	CORE
,	ATION	or Bon	HG.	2 X	2		- 31			1		
NAT	TER LE	VEL								1	BORING BEGUN BORING COMPLETED	
TIN	_									1	GROUND ELEVATION REFERRED T	
) A 1	· £									1	Fist o Bears	DAT
		l.								1	FIELD PARTY	Rig
		MPLE	5	TAND	480		RED	OEPTH IN FEET	:2	5	1	
	3 6	:ртн <i>FEE</i> T	PE	NETR	AT 10 N	115	-	1 1N		5		DRILLER
	11	FEET	A	ESISTA	ANCE	101	3 %			5		NOTES
-	1180	<u>н то</u>	8	LOW	1 5"	1	2 70	PEEI	3	2		
		1							1			
					1		1-	\$4-	Ξ	-		
_							1			-	56.4 ro 57.0 GARA HARD Lina	
			1		1				-	-	STATE I Charlen and Lime	
							1	57 -	7		STONE W Shale Lows AT	
								1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,				
-		-		_							57.0 - 62.6 - GRAY SOFT SAAK	
		1	1		4						ELCOT When Nored	
_		1	_		-			- 58	3			
		1									- 1	
-	-		-	-	-				E		s.	
	1	1									58.6-58.8 GRAX HARd Lime	
_	-	_	-		_		_	59-			STARLE	
								1 2	=		•	
				-	-		L	1 2	-		59.2-59.4 - Shale w/ Fossil	
									1 1		FRASMENT CORE LOST THIS AREA - ?	
		-		-				60-			CORY LOST THis AREA - ?	
								=			60,0-60, 3 GRAY HAMI WIMS	
-	<u> </u>				1-					-	STOMC .	
					1	1					60.3 - 60.7 SARIE up Fossil	
			+	-	1-	-	-	61-	1		ERAS MUNT.	
			1.1		1	1		=		-		
				1	-		-				61.4-62.6	
								3		-	GRAY HARd Lim- STORE	
		1	1					62 -		-		
									\vdash			
			1	1						-		
								, - E		-	62.6- 65.0	
		1						63			Sany SOFT CIAY Shale	
_		1						, industry	F		, with property	
								64 <u>-</u>	Ľ			
								=	E			
-								Ξ	L			
								Ē	L	_	· · · ·	
-	-							65-	_			
	65.1	700				100	600 70.0	3		-	65.0-65.1 GRAY HARd Limy	
-	100.1	12.P				10.0	70.0	-		-	stone.	
								E	F	_		
4	6"	5.25 H	SA.					46		_		
		ASING /									0	
		CORE R					-	1			×	a de la comercia de la Comercia de la comercia de la comercia de la comercia de la comercia de la comercia de la comercia de la comercia de la comercia de la comercia de la comercia de la comercia de la comercia de la comercia de la comercia de la comercia de la comer Comercia de la come
+	_	CASING		. 3'		-				-		0)

OM	PANY	ملتد العبير	يهده مان	de mas	-	22		1	(inite	1	BORING NO. 8-18 DATE	
RO	ECT	• • • •	QC 11	sta e		، - ک	2,11	See the second	71		WER SERVICE COPPORATION EERING LABORA, RY BORING BORING NO. <u>B-18</u> Date Type of Boring, SPT	CORE
к. Н	CATION	-	(G)			- 15	1	A RE I	1.1	I N	CASING USED SIZE DRILLING	NO USED
WA	TER LE	VEL			2		-			{	BORING BEGUN BORING COMPLETE	0
TH												10
0 A	TE									1	FIELD PARTY	0.
u a	2 S A	MPLE		TANO-		= *	1 400	OEPTH	10	5		
SAMPLE		EPTH FEET		NETRI Isista		TAL DVC	101	IN FEET	4 4 4	U N		DRILLER
s		N TO		104		10 LE HEC	1%	FEET		5	IDENTIFICATION	NOTES
	1	1	1	1	1	1	: I		-	<u> </u>		
								66 -		-	151. 251- GDAN SOFT - 144	
							1] =			SAL- 15.1- GRAY SOFT CIAS SARI- Except WATER Noted	
_		-	1					1 3			and the second second	
								Ξ				
	1-					1		67 -	×	-		<u> </u>
								3				
	1	1	1	1	1			E I				
		_			1			68 -				
								68 -	_			
-			-		-			F I			68.2-68.3- GRAY HARD LimesTone	
					1			E			FOSSIL FRASMENTIN Shole	
-				-	-			69		-	68.9- 69.8	(lag
								E		-	Shale Series	
	T		1	1	1			E	T		2/1A/F JEAM	
_		-	<u> </u>	-	-			70-				
		1						Ξ				
_	-	-						-				
		1						Ξ				
								7/	1			
	L							Ξ	Ì		-	
								Ξ	1			
_								72	ł	_		
								-	ł			
_	1								-it	-		
_					10			73 -	Tt.			
								3 =	[
-								Ξ	ŀ	_		
		1.1		- <u>S</u> 1	33			E	ŀ	-		
	1							74	7	-+	73.9 TO 743 Gary Hard Limestone	
								Ē	1			
j=		18	\mathbb{P}_{22}					1	·			
_	75.1	85.1				9.9	61.0	75-	E	_		
×. [1.2	- 0		- V.			E	-	_	•	
	1	1		-				1	=	-	25.4 - 76.3 -GRAY Limpstone w/	
	N 0	- 1° T	163				- Š. I	1		-+	Levers of Clay Shorton	-
		3.25 H		-				76	-	+	TELED BEL Con a state	
ă I		CASING A		ER 4							751 TO BS.I GRAY SOPT SHARE Except where noted	
2	NQ	CORE RO	CK	3	100			(#1.14m *1)			PROCEPT WHERE NOTED	

COORD	CT	- BORIN	G 1					H. 16 Ks			WER SERVICE CORPORATION EERING LABORATORY BORING BORING NO. 19 DATES TYPE OF SAMPLES: SPT3" TUBE CASING USEDSIZEDRILLING	HEET 6 OF CORE NUD USED
	ER LEV										BORING BEGUN BORING COMPLETE GROUND ELEVATION REFERRED	
TIM	_											DA
DAT	٤							10			FIELD PARTY	Aig
AMPL E	5 A D E 1 N	HPLE PTH PEET 4 TO	51 PEP 4E		80 7108 90 E	TOTAL LENGTH	R40	DEPTH IN PEET	APH LOG	u s c s	IDENTIFICATION	DRILLER
0 2	1 401	6 TO	-	104	1 1				13	_		l
	1				1			76-			l	
					1			-				
											176.3 - 77 / Sucy 1-2-2 Lim-	
				i				20			STORE	
								77	+			
_	-		-		-			-		-		
								70			· · · · · · · · · · · · · · · · · · ·	
								78 -			18.1 - 78.3 GRAY Hadd him -	
								79-		X	STORE	
											18.3-78.5 Fossil FRASMUNT	
_				1	1							
											19.2-79 4 GRAY HARI Lime	·
			,ä								STORS	
				1	1						×	
_					<u> </u>]			
					1					-		
		1			1			BI —	1-1		GARY HARd Limestone 81.1-81.3	
	l				<u> </u>			-			,	
									1 F	-		
		1			1			82	1 1		•	
					<u> </u>			Ē				
										-	1	
			0		-			83-			FUSSI FRASMENT in SHALE 83.0-83.2	
								1				
								-	-			
-					-			81-				
1				п.,	- C				1.1			
863				3			1					
_								85-		•	т	
	85.1	92.4				7.3	24.0					
				- 1				.: E			GRAY HARD BS. 5-85.8 fime	$\mathcal{H}(M)$.
-	6"× .	3.25 H	SA		-			86-		6	STORE 158-05.9 FOISIL FRASMENT IN	A
	HW	CASING A	OVANO	źn 4	•			19			shale	
_		CORE RI	00%		a			<u> </u>		-	4 4 4	
		CASING	3	3	• E - }			R		1.4-1	RECONDER	28 A. 1. 1. 1.

S 12

	CT				_	1.4	AL.	8.1			WER SERVICE CORPORATION ERING LABORATORY BORING BORING NO. <u>A-18</u> Date	SHEET 7
COORDI	NATES			_	_				_		TYPE OF SANPLES: SPT 3"TUBE	CORE
Loca	TION OF	BORING	Q 1							1	CASING USED DRILL BORING BEGUN BORING COMP	ING MUD USED
WATE	R LEVEL									1	GROUND ELEVATION REPEAR	
TIME												
UATE										1	FIELD PARTY	F
we	5 A M P	LE	5 7		R Q	7 × 4	AGO	-	Lot		SOIL / ROCK	
MPL	0 E P T 18 F E	гн 11	RE	167841 3:3741	NCE	DYAL	0/	1 10	3	U N	IDENTIFICATION	ORIL
SA	5469 0 2 9 7 18 7 2 7 900	то	81		1 0-	유수 공	/0	IN FEET	A A	5	IDENTIFICATION	L UT
				-	-			86-				
								87_				
					<u> </u>			87_			All Sear of Lunestone	
								- 3		-	37.2 11	
								1 3			87.4-87.1, Fussil Frances	
								88 _			87.4-87.1, Fussil Francer w shale	
								=			87.7 - 91.4	
											GRAY HARD hime stone at	
- 1			į. 1					. 3		-	tayons of clay shale	
							3	81-		1		
_								Ξ				
								89	ł	_		
								90-	ł	-	•	
								2	t			
								. 3		_		
								91	ł	-		
								11	_	-		
I	1				1	1		. 1	T	İ	91.4 - 92.4	İ
								92-	Ľ		SCAY SOFT BIAY SHATE	
								. 1	Ļ	-	/ /	
-+							-	1	7	-+		_
	i								ł	-		
								93				
		_			_	_		miliui		_	STOPPEd Hole 92,4 + Installed Piezometer	
								E		+	Installed Piezomater	
		-+			-+		-		ŀ	-		
					-	-		untun	L		1	
				T	T			Ξ	E			
							_	The second second second second second second second second second second second second second second second se		-		
									F	-		
							-	mhu	F	-		
		_	(+)					-	E			
	5"x 3.2				L				Γ			
	HW CASI			tn 4"	F	-					1 ¹⁶¹	
	WW CAR			3"	-+		\rightarrow			-		1
	SW CAS			6"							RECONDER	

ATE

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY LOG OF BORING

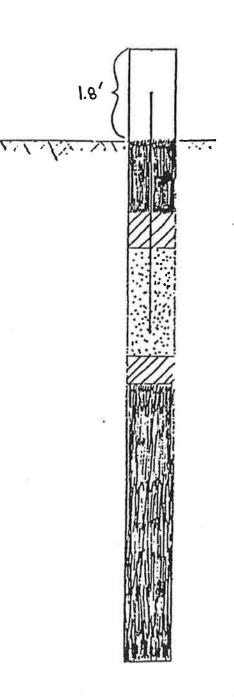
- 6 NO				
•	AEP			
	Zimmer	FGD	Landfill	
	-	6.		
WATER L	C/IL			
¥				

Mw		
BORING NO. IJB DATE	2-13-80	SHEET 1 or 1
TYPE OF BORING		Ris CME-75
CASING USED	Size	DRILLING MUD USED
BORINE BEEUN		
GAOURO ELEVATION _85	0.5	ACTEAALD TO
<u> </u>		Datu
FILLO PARTY: Smith	- Bumgarn	er

?" PVC rizer pipe

2" PVC :02 well screen

3" steel protector set in grout


Grout from 0 to 31.0 ft.

Bentonite seal from 31.0 to 33.5 ft.

-und from 33.5 to 47.5 ft.

Screen from 35.5 to 45.5 ft.

Bentonite seal from 47.5 to 48.3 ft. Cuttings from 48.3 to 85.0 ft.

stom of boring 85.0 ft.

	о нтА	. E. F	2	-						B-10 BORING NO. II DATE 7-23-BS SHEET 1 TYPE OF BORING RIG CME-75 CASING USED 20 SIZE NW DRILLING MUD USED
OJE	T Z	MM		FG		_		-		CASING USED SIZE NW DRILLING MUD USED
Loca	TION OF	BORING	•							BORING BESUN 7-23-85 BORING COMPLETED 7-2
	IN LEVE					_				
DATE	_									FIELD PARTY, Smith - BumerARNER
									Т	DESCRIPTION
Ň	SAM			ANDAR ETRATI		TOTAL LENGTH RECOVERY		DEPT	н	SOIL TYPE, COLOR, TEXTURE, CONSISTENCY, SAMPLER DRIVIN
PLE	DEP			ISTAN		L'S S	ELEVATION	IN FEET	-1	BLOWS PER FOOT ON CASING, DEPTHS WASH WATER LOST, O
SAMP	FROM			ws /		R L H		FEE	1	FLUCTUATIONS IN WATER LEVEL, NOTES ON DRILLING EASE.
2	FROM									
								0-	_	ROTARY WASH + NO CORE
								5	-	1
_								1.	-	
									-	
								2	-	
								3.	-	
									-	6 Sec. 1200 PSI 2.0 PUSH TOP 7" MED. BRWN SDY CLAY CS SD SIZE
1	3.0	5.0				1.6		- •	-	NODULES & 35 FRAG
									Ξ	BOTTOM 13" TAN - ORE BEWH SAY CLAY CS
						1		1 "	Ξ	SIZE DEON NOL & SE FRAG.
								- 6	_	
									-	Couldon I push Ispe
2	6.0	9.0						- 7	-	
									-	
			1.00		1	1		7 °	1	Sandy Clay. Be. moist - Qu
3	8.0	9.5	16	21	33	12		- 9		+ Linde stone soud size matter
										STRONG REACTION - (TUI)
						-		110	-	(144)
								1	3	
-	1				1			1		
								- 2	-	
					1				-	
\vdash					-	1		۰ ۱	1	Soudy MAY SilT - GRAY-MOIST
4	12.4	14.4	36	28	59.4	10			2	I wing ETONIELS QUARTZ SAND SIZE
۲	1 mars	T								MATCRIAL - STRONG REACTION TO
								- 5	-	(711)
									100	
-				1	1	1		- 6	100	
								- 7	ļ	
		1							01.0	
						-		- •	-	
						1				
1				1-	1	1		7 %	1	Sand y SITY CLAY - GRAY + GRA motthed - Maist - STRANG REAL
5	19.5	21.0	10	15	19	8	'	20	5	TO Nel - (TIL)
-		1	1							

FORM CE-5

うちろう にはない ひんぼうけいがあしてる うちょう ノスティー・アール

e unitida table de este

1000

.

1

ŝ

ł

ţ

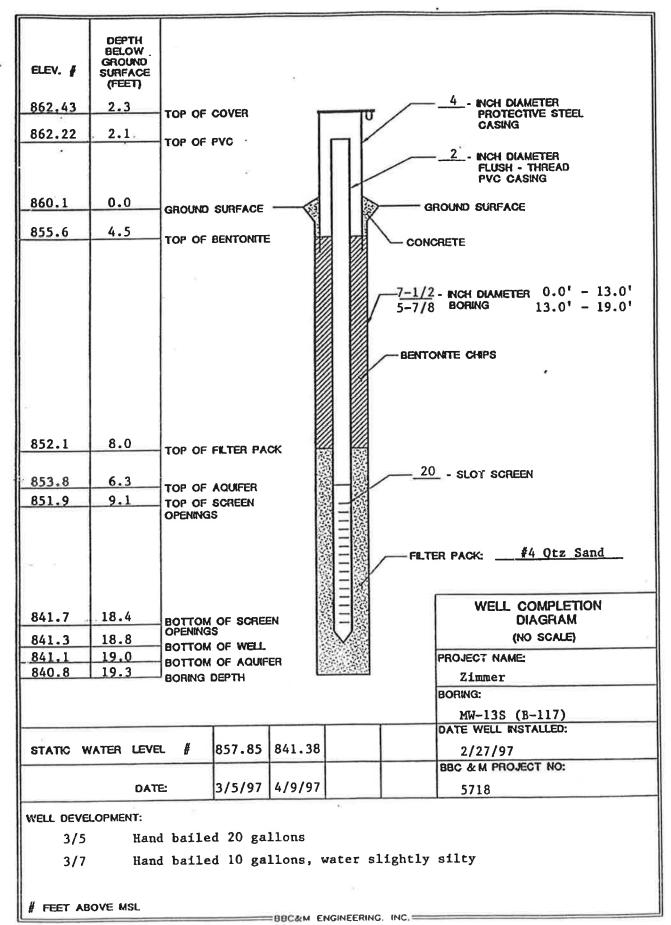
and the second second

.

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY LOG OF BORING

- 65 -

										TYPE OF BORING	R16
			-							CASING USED SIZE	DRILLING WUD USED
Loca	TION OF	BORIN								BORING BESUN BORI	
WATI	ER LEV	n.								GROUND ELEVATION	_ REFERRED TO DATU
Тімі	L									FIELD PAATY:	
DATI				-	_		-		_		
à		1		ANDAR	0	->			Т	DESCRIP	TION
Ň		PLE		ETRAT		1 HE		DEPT	н	SOIL TYPE, COLOR, TEXTURE, CONSIST	ENCY, SAMPLER DRIVING NOTES
5	DEI			ISTAN		TOTAL LENGTH RECOVERY	ELEVATION	IN FEE	- 1	BLOWS PER FOOT ON CASING, DEPTHS	
SAMPL				ws /	6 ¹¹			FEE	1	FLUCTUATIONS IN WATER LEVEL, NOT	S ON PRILLING EASE, ETC.
2	FROM	10		/#3 <i>/</i>	<u> </u>				+		
						1 1					
						1		20	-		
								1.	-		
						1		1 '	-		
								2	-		
								1 -	4	•	
								3	-		
			L 1			1			3		
								4 43	-	CLAY. Blue GRAY- M	nisT. Slight
		24.0		2	1 2 2	1			-	REALTION TO HEL - T	RACE OF SAND
6	24.5	24.0	<u> </u>	46	1	14		1 7	1	Bab Ct In LAM Come Part 1 12 March	•
								- 6	1		
-	1				1] ີ	Ξ		
						1		1 7	_		
	1								-		
					-			- 8	-		
									-		
								- 9	-	Clay- Blue Gany- n how plasticity- TD material- 8	noist - med to
	lan r	31.0	1.14	11-	11	115	1	20	-	LOW PLASTICITY - TD	ALE OF ORGANIL
7	1242	31.0	1 IF	1.10	1			730	Ξ	material - 8	U
								1 2	-	1	
	1					E.			1		
	_	-	1	-	-			2	-		
		t	1						-		
_								- 3	-		
									-		
-			1	1	1			1 •		Clay. Blue GREEN .	maist-med To
9	74.0	31.0	12	14	20	16		4 5	5	have plasticity - a	nodenATE REACTING
10		- and								To Hell	
							_	- 6	÷		
	1	1							-		and the second sec
-								- 7			
										-	
-				1	1			• ۱	-	-	
	1	1							2		
F	1	1	501		1			7	-		
9	.39.3	39.1	5%	-				-40	-	Drilled in TO ROCK	10 41.0
		1						1			
1			-	-				-			
	1	1	-	1	1	1	1			Emainten	


FORM 18-5

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY LOG OF BORING

OCATION	or 8ar	_							BORING NO. I.T.T. DATE SHEET 3 of 4 TYPE OF BORING Ris CASING USED SIZE BORING BEGUN BORING COMPLETED GROUND ELEVATION REFERRED TO FIELD PARTY: OAT
	MPLE EPTH FEET		PENET RESIS	CE	TOTAL LENGTH RECOVERY	ELEVATION RQ D	DEPT IN FEE	тн	DESCRIPTION SOIL TYPE, COLOR, TEXTURE, CONSISTENCY, SAMPLER DRIVING NOTE
41,0	2 43.	7			1.9	٥	40	A	GRAY CLAY Shale
43.	7 50	0			4.3	31%			* +3,7 - 55 Gany Clay Shale of Lammared Laytons of Lime Stone
							\prod		
	0 55	:0			4.8	2.8 %			
						-			55.0 - 66.0
55	.0 43	.7			8.7	21%		6 7 	GRAY CLAY SHALE
							V	9 0 -	Emoincen

12 P A	LNY	-								BORING BORING NO. I T DATE SHEET 4 OF 4 TYPE OF BORING RIG CASING USED SIZE DRILLING MUD USED
.00.	EA E	(C	BORIN							BORING BESUN BORING COMPLETED GROUND ELEVATION REFERRED TO FIELD PARTY: OAT
SAMPLE No.	1	SAM DEP IN F	TH	PENE	TRAT	ICE	TOTAL LENGTH RECOVERY	ELEVATION RQ D	DEPTH IN FEET	Sold Tipe, Coldm, Teating, Constanting, Subreak Saltan Andrea
									14 0 1	,

2.3 0 45.7 66.0 66.0- 70.0 GRAY CLAY Shale of L LAYERS OF Limestone min ATEd 60 58 % 4.0 66.0 70.0 7 9 Ar GRAY clay shale 67% 5.0 70.0 75.0 I. GRAY CLA Y SHALE W/ LAMINATED 38 % 750 85.0 10.0 Bolled WATER 7-23-85 7-25-85 MATCH 1 . 9 WATER 11.5 INSTAILED 9 g 0 -Stopped boring 85.0 2" PVS + BAILEd WATER TO 32.0 - 8-1-85 WATER ELEV. 11.0 ENDINEER

								2)	· · · · · · · · · · · · · · · · · · ·
FORM					AME	RICA	N E	LEC	TRI	C F	٧O	VER SERVICE CORPORATION Well 13
	/87			τ.		A	EP	CIVI	LE	ENG	INE	ERING LABORATORY
COMPI	0	AEP)		2							BORING
PROJE	CT Z	imm	en.	SIV	220	hn.	~d_	Fil	L	-		BORING NO. 3-22 DATE 2-26-87 SHEET 1 OF 3 TYPE OF SAMPLES: SPT X 3" TUBE CORE X
		N		o - 6	<u> </u>	197.	50					TYPE OF SAMPLES: SPT X 3"TUBE CORE X
Loca	TION C	or Soria	iG.									CASING USED SIZE DRILLING NUD USED BORING BEGUN 2.26-87 BORING COMPLETED 2.26-87
	ER LEN	186	Day	8								GROUND ELEVATION <u>259,98</u> REFERRED TO
DAT	_											FIELD PARTY T. Smith - Bung ARNert Rig 75
<u> </u>											_	
	54	MPLE	5 1		R D	E	AGO	OEP	тн	100		SOIL / ROCK DRILLER'S
SAMPLE	IN	РТН 7617	AE	SISTA	NCE	TOTAL LENGTH MECOVERY	0/_	1.11			2 2	IDENTIFICATION NOTES
s =	-	4 TO	91	LOW	/ 6*	1-23	10	1	ET	ŝ	2	
			1							H	_	
_	1		-	1	1	1	1	1	T		1	
				-				1	ЦL			
1	7.0	3.5	4	1	10	2"			առահահահահահահա	\vdash	-	
	1 2.0	1	1	1		1		2.	=			Clarey Silf- Ra- br.
				-	_			1	=		_	mist
			290						Ŧ		+	
		1	1	1	1			1 .	=	E		
				-					H		+	
									Η	F	1	
		1.	-			2"			Ξ			
2	7,0	7.5	50		1	12			uhu	+	-1	WEATHEREd Lime STone
								8-		E		
									-	-	+	•
		1	1	1				· ·		F	+	
		1						10 -			_	ANYER ROFISAL 10.5
ļ	ne	15.0				3.1	0		ПП	_	-	
i	<u> </u>	1					~		mulunt			
	8							12-	-	H		Ga. fime Store . 1 = 2 Long w/ clay Shale hayses
1									Т	÷		up cray shall baysed
1		1				Ĭ			ITT	F	1	1
	_					1		14 -	11.	-	+	
		1							E		i	
						6.8			E		1	
	15.0	<u>as.o</u> i	1	1		6.8	0	16 -			1	1000 STONE GR. MAX LEngTH
									I		1	" vary varre
									E	-	-	
						1		18 -	լափակափարութ			
									F		1	
									T	-	+	
-		5.25 H						20-			+	
		i nging 1		55 4"	ļ	X						
-		CASING	JCK	3"	-	_X					+	
		CASING		6"	<u> </u>							RECORDER

Seale of the sealest

ROJE	ст							_	BORING NO. B-	Z DATE	3" Tuee	SHEET	2 or 3
0080	MATES								TYPE OF SAMPL	ESI SPT	3" Tuee	Con	ε
									CASING USED		SIZE DAM	LLING HUD USE	
-0C7.	TION O	Soring	1						BORING BEGUN		BOAING CON	PLETED	
WATE	RLEVI								GROUND ELEVA	ION	4676	ARES TO	
TIME	_												DATU
DATE									FIELD PARTY				Rig
													10 0 1
	1				L.		GEPTH IN PEET	1.2	1			1	
	248		PENET	AATION	133	NGU	GEFTA	4 5		SOIL /	ROCK	07	RILLER'S
1.01		EET	RESIS	TANCE	PIC NO	0/	IN				CATION	- 4	NOTES
					PLC PLC	10	PEET		2				
	PROM	10	310						1				
									1			1	
_							20		1				
								1 -	1				
_													
					-		22-						
_					1	I							
							24		1				
						3	24-						-
				1									
	25 0	35.0			9.5	0	26		Gary Lu	ne sto	me up hay	ens	
	az.se				1 1			ſ	DE CLAY	shale	- max son	FA 1	
									las Line	Bet .	25 + C/H)	, 1	
					1		26		Shale . 3		a de l	1	
									Janie in			1	
-					i i				1			1	
						1	·					1	
					1		28-	. –	2			1	
							-	-				1	
						-	-	-					
							-						
1		1		_			Jo	-					
1					1 1	1		. –					
		1			1 1		-	-					
		1			1 1		1 3	i 🖵				+	
			i				32						
1					1 1								
			1	1	1 3		34		3				
1		1	1		i 1				1			<u>e</u>	
					<u>E</u>		34 —		1			1	
			1				- T		1				
							=		1				
1		1					-		1			1	
Į	350	4.5 0			8.2	12	3		Clay cha	le. Ge	w/ Laver	1 2	
	0.40	T 1		i	1 1		36		DELLing	CTON	max Lon 75 Lim	THI	_
							=		In F dune	Cha la	75 - 1:-	6 - 1	
-									ICE	- mm Iv			
							=	-	prome the				
_		<u> </u>					38						
							1	-			and an international states of		
				1	<u> </u>		_						
1					1								
							40		_				
T	6"x :	3.25 H	SA				- <u> </u>						
			OVANCER					1	1 N				

RECONDER

3" 6"

.

NW CASING

SW CASING

AMERICAN ELECTRIC POWER SERVICE COMPORATION

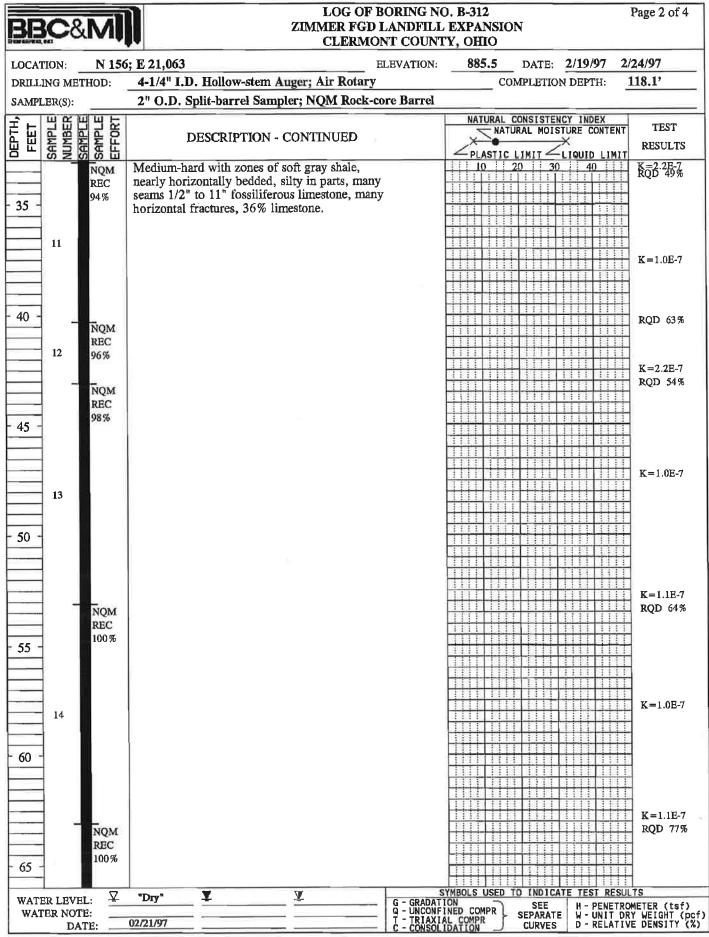
and of the FEET AESISTANCE Event of the FEET IDENTIFICATION NOTES and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of the FEET and of	BLOR											BORING NO. B-22	DATE		SHERT S OF S
LICANDO OF BOHMEN WITCH LEVEL												TYPE OF SAMPLES:	SPT	3" TUBE	CORE
Warter Level Banks stow Bankstow Banks stow Banks s	_	_		_						-	1	CASING USED	SIZE	DAILLIN	G MUD USED
True Out Dot <thdot< th=""> <thdot< th=""></thdot<></thdot<>			_					_		-	4	BORING BEGUN		BORING COMPLE	763
DATE STANDARD DEFT STANDARD DEFT STANDARD DEFT STANDARD DEFT STANDARD DEFT SOIL / ROCK IDENTIFICATION DRILLER'S NOTES 1 Assistance (200 / 4)	_	_	EL		_		_					GROUND ELEVATION			
JAN PLE STANDARD Standard Standard ORILLER'S 10 BEFTA RESTANTION 10	-	_			_					_	-			4	DATU
1 1 1 1 1 1 1 1 <td>UATI</td> <td><u></u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>FIELD PARTY</td> <td></td> <td></td> <td> Rig</td>	UATI	<u></u>									1	FIELD PARTY			Rig
1 1 1 1 1 1 1 1 <td></td> <td>5.4.4</td> <td>PLE</td> <td>57</td> <td></td> <td>A G</td> <td></td> <td>800</td> <td>GEPTH</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td>i</td>		5.4.4	PLE	57		A G		800	GEPTH	3					i
1 1 1 1 1 1 1 1 <td>FL E</td> <td>30</td> <td>етн.</td> <td>PEN</td> <td>ETRA</td> <td>T10H</td> <td>VE S</td> <td>-</td> <td>1 1N</td> <td>1</td> <td>10</td> <td>\$ 0 </td> <td>IL / ROC</td> <td>ĸ</td> <td>DRILLER'S</td>	FL E	30	етн.	PEN	ETRA	T10H	VE S	-	1 1N	1	10	\$ 0	IL / ROC	ĸ	DRILLER'S
1 1 1 1 1 1 1 1 <td>Ner Pole</td> <td>111 1</td> <td>TEET</td> <td>RES</td> <td>ISTA</td> <td>NCE</td> <td>101 FCN</td> <td>1%</td> <td>1111</td> <td>1</td> <td>2</td> <td>IDE</td> <td>ATIFICATI</td> <td>0 N</td> <td>NOTES</td>	Ner Pole	111 1	TEET	RES	ISTA	NCE	101 FCN	1%	1111	1	2	IDE	ATIFICATI	0 N	NOTES
42 42 <td></td> <td>FROM</td> <td>10</td> <td>8L</td> <td>0 W</td> <td>/ 0"</td> <td>1</td> <td>1.0</td> <td>r c c r</td> <td>ü</td> <td></td> <td></td> <td></td> <td></td> <td>•</td>		FROM	10	8L	0 W	/ 0"	1	1.0	r c c r	ü					•
42 42 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
use use <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>-</td> <td>148</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>			1			1	1	-	14 8		-				
use use <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>															1
use use <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1 3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>			1			1	1	1	1 3						1
STupped Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 									42 -	1					Ī
STUPPEd Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 									Ξ						
STUPPEd Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 						-			-						1
STUPPEd Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 									3						
STupped Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 	_							·	44						
STUPPEd Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 				1.1					3						
STUPPEd Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 		45.0	20'3				5.5	1							
STupped Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 									3			60. By hime	STORE	of LAYERS	
STUPPEd Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 							-		46-			OF CIAX Shi	Ale - ma	K hengTH	0
STUpped Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 						1			=			OF hime STO	re i 6 -	clay	
STUpped Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 			1	1			1				1	Shale I			1
STUpped Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 	Ē								40		,				1
STUpped Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 	1			1					T 8		1	AL 31			1
STUpped Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 									F						
STUpped Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 	1								H		1				1
STUpped Hole SOIS FT + INSTALLED PLEZOMETERS + INSTALLED PLEZOMETERS 	1								so		1				1
52 + INSTAILE d plezome Tert Image: Im	1			i					1				100	1	1
6"x 3.25 H SA												Stupped H	ola 50	IS FT	
6"x 3.25 MSA	Į													1 0	1
6"x 3.25 H SA						-			52			TINSTALLED	Olez on	nererc	1
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock	1			1		(†)	L I		1			. ared law	1 455	CT	
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock				1	1	1		1		Î	e.		1 10 10		
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock	1				1				1	1	1	16 HES LAT	ere 6.0		
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock	T		1	1		1		I	E_		1				
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock									Ξ	[1				1
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock	1		1	1					111		<u> </u>				1
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock	1			1	1						1		_		*
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock	- î	1	1												
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock									1						÷
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock			1						1	ł	1				
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock					1		-			ł					
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock									E	ł					E.
6"x 3.25 H SA HW Casing Advancer 4" NQ Core Rock			i	1	1	1	1			ł	- i				I
HW CASING ADVANCER 4"									Ξ	ł					1
HW CASING ADVANCER 4"									-		-				1
NG CORE ROCK					.π 4 ⁴						1				
														3	

-2

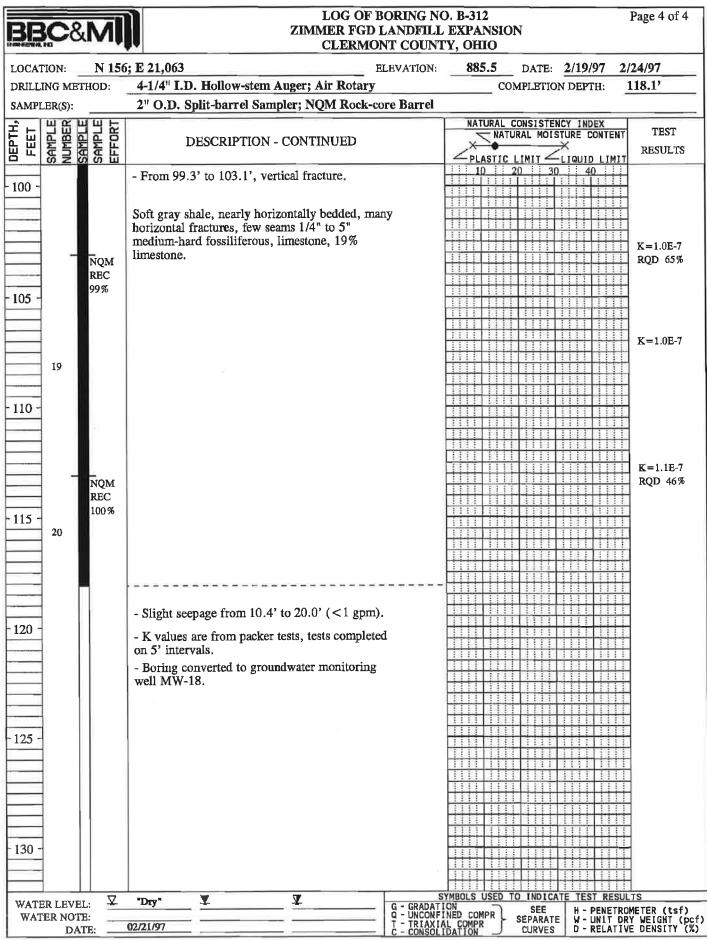
٠

			/12/07
	1; E 15,918 ELEVATION:		/13/97
RILLING METHOD:	4-1/4" I.D. Hollow-stem Auger; Air Rotary	COMPLETION DEPTH:	68.5'
MPLER(S):	2" O.D. Split-barrel Sampler; NQM Rock-core Barrel		
FEET SAMPLE NUMBER SAMPLE SAMPLE EFFORT	DESCRIPTION	NATURAL CONSISTENCY INDEX	RESULTS
1 1,3,	FILL: Medium-stiff to very-stiff brown with gray lean clay with sand (CL).		H=0.6-3.4
2A - 5 /2 3			H=0.6-1.2
2B ⁵ / ₅ / ₆	Very-stiff to hard brown sandy lean clay, few desiccation planes with oxidation, (CL).		H=3.7-4.5
$5 - 3 = \frac{8}{12} \frac{12}{12} \frac{11}{12}$			H=4.5+
			H=4.5+
$\begin{array}{c} 4A \\ 4B \\ 5 \end{array} - \frac{7}{7} \frac{12}{12} \\ 7 \frac{11}{12} \\ 7 \frac{110}{$	Very-stiff to hard gray lean clay with sand, few cobbles.		H=4.5+
$\frac{5}{0} - \frac{5}{6A} - \frac{8}{11^{32}} - \frac{8}{11^{32}} - \frac{1}{11$			H=2.4-4.5
6B ¹ 12 ₁	Medium-dense brown poorly graded sand with gravel, (SP-SC). Medium-dense elastic silt, (MH).		H=3.2-4.5
∇_{7} $\gamma_{10}^{/1413}$	Very-stiff to hard gray silty clay, few seams $(<1/4")$ silt to fine sand, (CL-ML).	****	H=3.1-4.4
5 - 8 5/12	- At 12.7', 1" seam of fine to coarse sand. Very-stiff to hard gray lean clay with sand,		H=2.6-4.5
$-7/6^{6}$	occasional desiccation plane, (CL).		- H=4.5+
			H=2.1-4.5
$\frac{10B}{10B}$ $\frac{103}{148}$	Very-soft gray with brown shale, nearly horizontally bedded, similar to soil.		H=4.5+ RQD 0%
11 NQM REC 38%	Very-soft gray shale, nearly horizontally bedded, many seams 1/4" to 5" of medium-hard		
	fossiliferous limestone, numerous horizontal fractures, partly similar to soil, 26% limestone.		RQD 109
NQM REC			K=9.4E-3
22 %			
- NQM			RQD 0% K=3.2E-3
0 - 13 REC 29%			
14 REC			RQD 219
	On the second standard to the second state of		RQD 449 K=3.3E-3
15 - REC 84%	Soft gray with streaks of brown shale, nearly horizontally bedded, horizontal fractures, few seams 1/4" to 3" medium-hard fossiliferous limestone, 15% limestone.		
WATER LEVEL: ¥		SYMBOLS USED TO INDICATE TEST RESU	
WATER LEVEL:	G - GRADAT	IND COMPR SEE H - PENETR AL COMPR SEPARATE W - UNIT D	OMETER (tsf RY WEIGHT (

. C.

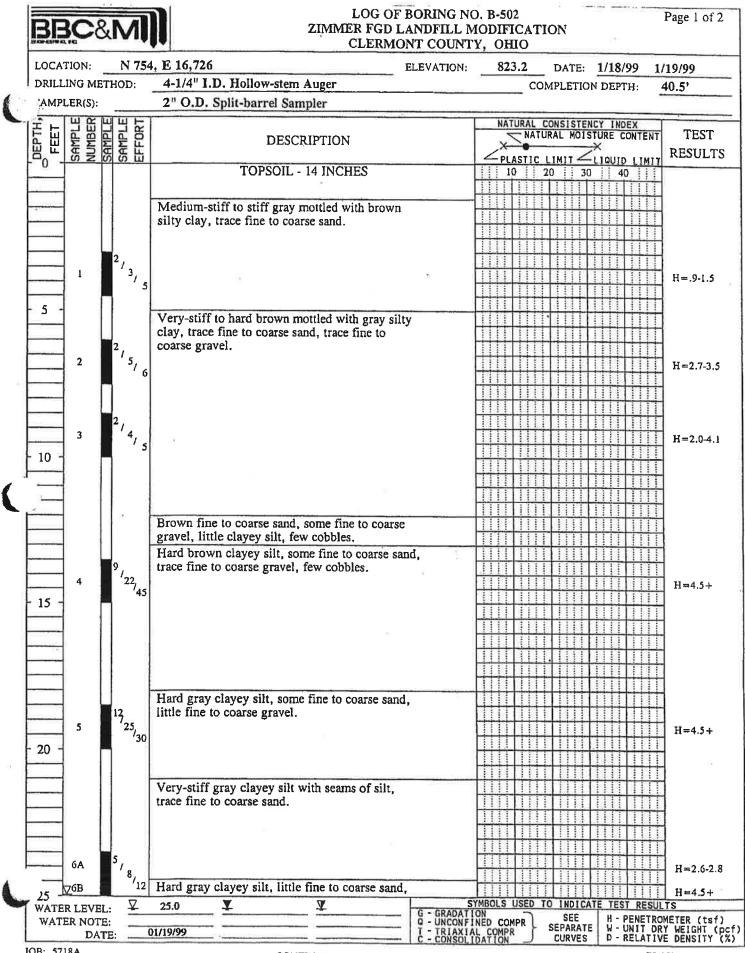

BC&M	2	LOG OF BORING NO IMMER FGD LANDFILL CLERMONT COUNT	EXPANSION	Page 2 of 2
DCATION: S 1,46	1; E 15,918	ELEVATION:	823.5 DATE: 2/11/9'	7 2/13/97
RILLING METHOD:	4-1/4" I.D. Hollow-stem Aug	er; Air Rotary	COMPLETION DEPTH	: 68.5'
MPLER(S):	2" O.D. Split-barrel Sampler	: NOM Rock-core Barrel		
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	NATURAL CONSISTENCY INDE	v T
FEET SAMPLE NUMBER SAMPLE SAMPLE EFFORT	DESCRIPTION OF		NATURAL MOISTURE CON	
FEET UMBE AMPL AMPL FFOR	DESCRIPTION - CO	NTINUED	×-`•×	RESULTS
	TT - C M 11 1		PLASTIC LIMIT -LIQUID	
NQM	Very-soft gray with yellow-bro horizontally bedded, few thin s			KQD 0%
0 - 16 REC	medium-hard fossiliferous lime	stone many		K=3.9E-3
45%	horizontal fractures.			
				RQD 0%
17REC				
17%				RQD 0%
5 - 18 NQM				K=3.3E-3
REC				ROD 0%
32%		ft		
19 NQM	- From 46.6' to 47.1', vertical			
	Soft gray shale, nearly horizont horizontal fractures, few seams	ally bedded, many $1/2$ " to 2"		
NQM	medium-hard gray fossiliferous	1/2 to 2 , limestone 31%		RQD 32% K=2.6E-3
	limestone.	linestone, 5176		K-2.02-5
76%	- From 50.3' to 50.8', vertical	fracture.		
20	- From 50.3' to 51.3', limestor	le.		
	-			+++
				44
NQM		A		RQD 72%
REC				K=5.9E-4
55 - 100%				
21	- From 55.9' to 57.2', limestor	I C		
				RQD 78%
NQM				
50 - REC 99%				
9970				K=2.0E-5
	Medium-hard gray limestone, i	early horizontally		
	bedded, fossiliferous, many ho			
22	many seams 1/4" to 1.5' shale,	43% shale.		K=1.5E-3
			<u><u><u></u><u></u></u></u>	
55 -				
70	- Slight seepage from 10.1' to	10.9'.		
70 -	- Seepage at 12.7'.			
	- Encountered water from 20.7	' to 34.5' (3-5		
	gpm).			
	- Encountered water from 38.0			
	- K values from packer tests, to	ests completed on		
	5' intervals.	ster monitoring		
75 -	- Boring converted to groundw well MW-16D.	ater mountoring		
	WOLL IVE W-1012.			
				DECHUTO
WATER LEVEL.	13.1 🗶 🔤	G - GRADATI	YMBOLS USED TO INDICATE TEST	RESULTS
WATER LEVEL: 👱		Q - UNCONFI		

ELEV. #	DEPTH BELOW GROUND SURFACE (FEET)			÷			ас. Э
825.59	2.1	TOP OF	COVER				-4- INCH DIAMETER PROTECTIVE STEEL
825.35	1.9	TOP OF	PVC				CASING
							- <u>2</u> - INCH DIAMETER FLUSH - THREAD PVC CASING
823.5	0.0	GROUND	SURFACE) G	ROUND SURFACE
819.0	4.5	TOP OF	BENTONITE	=		CON	CRETE
							^{8.} INCH DIAMETER BORING DNITE CHIPS
	54 25						
801.3	22.2	TOP OF	FILTER PA	ск			
804.9	18.6	TOP OF	aquifer	101		20	- SLOT SCREEN
801.3	22.2	TOP OF OPENING	SCREEN			FILTE	ER PACK:#4 Qtz Sand
794.1	29.4	BOTTOM	OF SCREI	EN			WELL COMPLETION DIAGRAM
793.5	30.0	OPENING	S OF WELL	2			(NO SCALE)
776.2	47.3		OF WELL				PROJECT NAME:
755.0	68.5	BORING		K			Zimmer
		•			ar of		BORING:
Bottom S	Seal (Bent	tonite	Chips)	31./' -	35.0'	1	MW-16D (B-109) DATE WELL INSTALLED;
STATIC W	ATER LEVE	L #	812.29	812.42	811.54		2/13/97
	D 4 7		2/1//03	2/7/07	1.10.107		BBC & M PROJECT NO:
WELL DEVEL 2/19			2/14/97 d 20 ga	3/7/97 11ons	4/9/97		5718
3/7	Hand	i baile	d 15 ga	llons, v	water si	lightly	silty
# FEET ABO	OVE MSL			=BBC&M E			


ELEV. 🛔	DEPTH BELOW GROUND SURFACE (FEET)						3
887.61	2.1	TOP OF	COVER	1		J /	NCH DIAMETER PROTECTIVE STEEL
887.37	1.9	TOP OF	PVC			/	CASING
	_					/	- <u>2</u> - INCH DIÀMETER FLUSH - THREAD PVC CASING
885.5	0.0	GROUND	SURFACE	$\neg \langle$		a	ROUND SURFACE
881.0	4.5	TOP OF	BENTONITI	E		CON	CRETE
						5-7/3	8- INCH DIAMETER BORING
						BENTC	DNITE CHIPS
875.1	10.4	TOP OF	FILTER PA	ск			
877.1	8.4	TOP OF	AQUIFER				0 - SLOT SCREEN
875.1	10.4	TOP OF OPENING				FLTI	ER PACK:44 Qtz Sand
866.0	19.5	BOTTOM	OF SCREI	EN			WELL COMPLETION DIAGRAM
865.4	20.1	OPENING	S	2	\mathbf{V}		(NO SCALE)
865.5	20.0		OF WELL				PROJECT NAME:
766.7	118.8	BORING I		8	449 B B B B B B B B B B B B B B B B B B		Zimmer
Potton C	eal (Bent	enite (Phine) 2	20 71 -	24 01		BORING:
BUCCOM S	car (bent	ource (mrha) v	1	27.0	1	MW-18 (B112) DATE WELL INSTALLED:
STATIC W	ATER LEVE	L #	877.61	876.20			2/24/97
	DATE	2	2/26/97	4/9/97			BBC & M PROJECT NO: 5718
WELL DEVEL 2/26	OPMENT:		L	lons, ne	arly d	ry	1
3/6	Hand	bailed	1 5 gall	lons, ne	arly d	ry, wate	r silty
FEET AB	DVE MSL					IG. INC.	PLATE 35

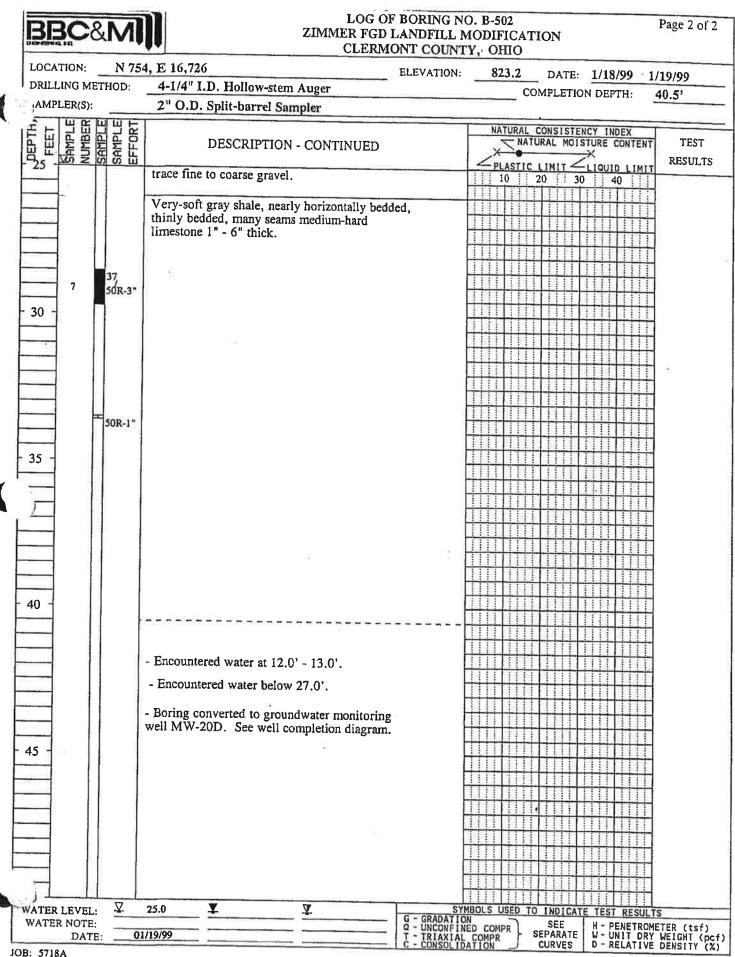
10

BBC&M	LOG OF BORING N ZIMMER FGD LANDFILI CLERMONT COUNT	L EXPANSION	Page 1 of 4
LOCATION: N 156	ELEVATION:	885.5 DATE: 2/19/97 2/2	24/97
DRILLING METHOD:	4-1/4" I.D. Hollow-stem Auger; Air Rotary	COMPLETION DEPTH: 1	18.1'
SAMPLER(S):	2" O.D. Split-barrel Sampler; NQM Rock-core Barrel		
		NATURAL CONSISTENCY INDEX	
DEPTH, FEET SAMPLE NUMBER SAMPLE SAMPLE FFORT	DESCRIPTION	NATURAL MOISTURE CONTENT	TEST RESULTS
	TODODI 10 INCLES	- PLASTIC LIMIT - LIQUID LIMIT	
	TOPSOIL - 10 INCHES		H=0.8-1.6
$\frac{1}{1} \frac{1}{2} \frac{2}{3}$	Medium-stiff to stiff brown lean clay, (CL).		11-0.8-1.0
3/2	Very-stiff to hard brown mottled gray fat clay,		
2 ³ / _{3/6}	(CH).		H=2.3-4.5+
/8			
		<u> </u>	
-5-3 $-16/7$			H=2.3-3.6
/10 '			
⁴ / ₁₀			
4 13 _{/13} /11			H=2.4-3.4
= /7 ¹¹			H=3.2-3.6
5A 15/ 5B 29/ 5B 5B 29/ 5B 50-4 ³ R	Very-soft brown shale, nearly horizontally		
5B 29/	bedded, many seams 1/2" to 1" medium-hard		H=2.7-4.5+
- 10 - 6 /50-4°R	gray limestone, partly similar to soil.		H=4.5+
50-5"R	Soft to medium-hard gray with streaks of brown		RQD 24%
NQM	interbedded shale and limestone, nearly		
7 REC 76%	horizontally bedded, many horizontal fractures,		
10 %	limestone beds 1/2" to 6", shale beds 1/4" to 8",		
- NQM	44% limestone.		RQD 44%
REC			
94%			
- 15 - 8			K=1.3E-4
°			
			K=6.8E-5
			ROD 54%
NQM REC			1.00 0110
96%			
	Medium-hard with zones of soft gray shale,		
9	nearly horizontally bedded, silty in parts, many		
	seams 1/2" to 11" fossiliferous limestone, many		
	horizontal fractures, 36% limestone.		
			K=2.2E-7
NQM			RQD 81%
REC			
- 25 -			
			K = 5.2E-7
10			
- 10			
- 30 -			
	"Dry" ¥ ¥ G. (PADAT	SYMBOLS USED TO INDICATE TEST RESUL	rs
	"Dry" 4 G - GRADAT	ION SEE H - PENETRON	ETER (tsf)
WATER NOTE: DATE:	02/21/97 T - TRIAXI		WEIGHT (pcf DENSITY (%)
JOB: 5718			ATE 1



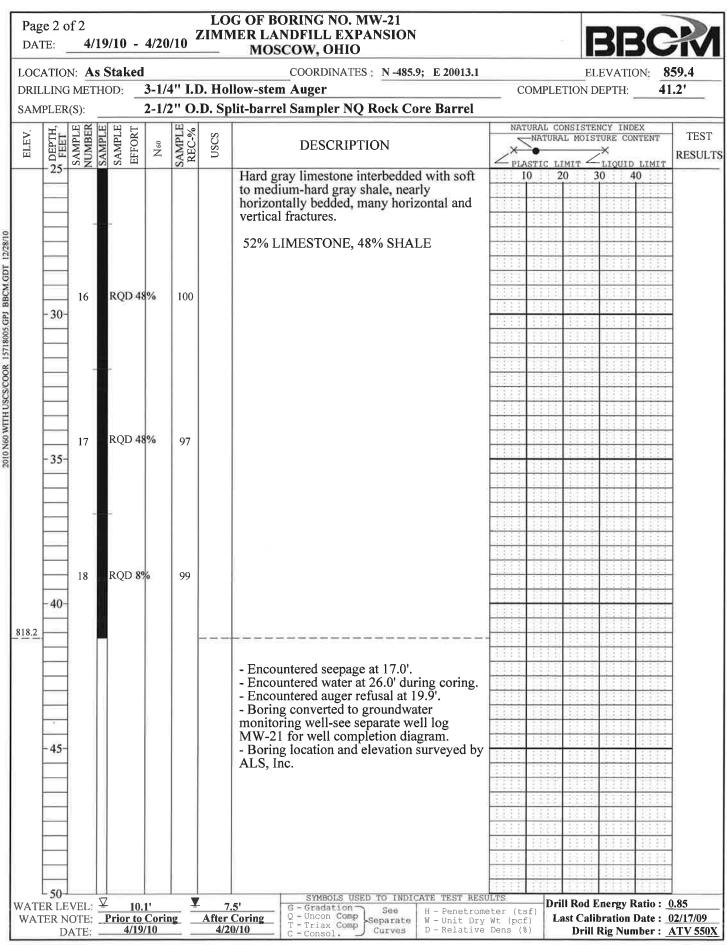
BBC&MI	LOG OF BORING N ZIMMER FGD LANDFILI CLERMONT COUNT	L EXPANSION	Page 3 of 4
LOCATION: N 156	; E 21,063 ELEVATION:	885.5 DATE: 2/19/97 2	/24/97
DRILLING METHOD:	4-1/4" I.D. Hollow-stem Auger; Air Rotary	COMPLETION DEPTH:	118.1'
SAMPLER(S):	2" O.D. Split-barrel Sampler; NQM Rock-core Barrel		
DEPTH, FEET SAMPLE NUMBER NUMBER SAMPLE SAMPLE EFFORT	DESCRIPTION - CONTINUED	NATURAL CONSISTENCY INDEX	TEST RESULTS
	Medium-hard with zones of soft gray shale, nearly horizontally bedded, silty in parts, many seams 1/2" to 11" fossiliferous limestone, many horizontal fractures, 36% limestone.	PLASTIC LIMIT LIQUID LIMIT 10 20 30 40 10 20 30 40	K=1.0E-7
70 -	Medium-hard gray limestone, nearly horizontally bedded, fossiliferous, many horizontal fractures, numerous 1/8" to 1/2" shale partings, few seams 2" to 6" of soft shale.		K=3.2E-7
NQM REC 99%			RQD 49%
16 80 -	Soft to medium-hard gray interbedded shale and fossiliferous, limestone, nearly horizontally bedded, many horizontal fractures, shale beds 1/4" to 8", limestone beds 1/2" to 3", 52% shale.		K=1.0E-7
NQM REC 100%			K=1.1E-7 RQD 51%
90 -	Soft gray shale, nearly horizontally bedded, many horizontal fractures, few seams 1/4" to 5" medium-hard fossiliferous, limestone, 19% limestone.		K=4.2E-7
NQM REC 88 %	- From 95.3' to 95.6', vertical fracture.		K=5.4E-7 RQD 46%
	- From 97.6' to 98.6', vertical fracture.	WMBOLS USED TO INDICATE TEST RESUL	K=1.0E-7
WATER LEVEL: $\underline{-}$ WATER NOTE:	G - GRADAT		METER (tsf)
DATE;	1 - TRIAXI. C - CONSOL	AL COMPR DATION CURVES D - RELATIV	Y WEIGHT (pcf E DENSITY (%)

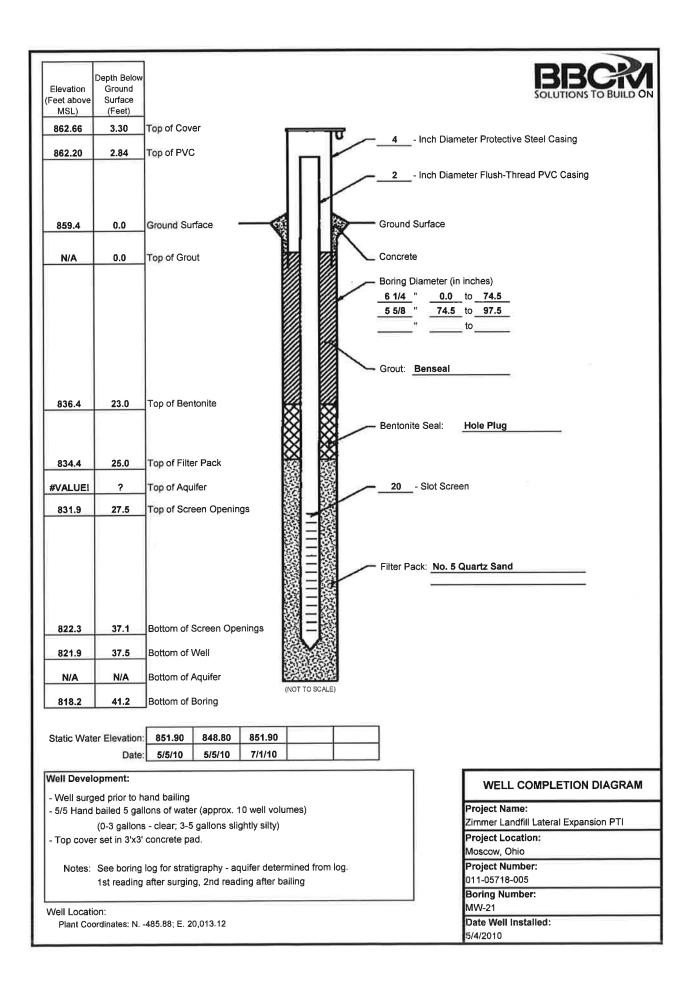
ELEV. #	DEPTH BELOW GROUND SURFACE (FEET)						
887.61	2.1	TOP OF	COVER	1	T	ਗ਼ ∕	- <u>4</u> - INCH DIAMETER PROTECTIVE STEEL
887.37	1.9	TOP OF	PVC			/	CASING
							- <u>2</u> - INCH DIAMETER FLUSH - THREAD PVC CASING
885.5	0.0	GROUND	SURFACE	-		>	BROUND SURFACE
881.0	4.5	TOP OF	BENTONITE	=			CRETE
						<u>5-7/</u>	8- INCH DIAMETER BORING
						BENT	ONITE CHIPS
875.1	10.4	TOP OF	Filter Pa	ск			
877.1	8.4	TOP OF	AQUIFER			2	10 - SLOT SCREEN
875.1	10.4	OPENING				FILT	ER PACK:#4 Qtz Sand
866.0	19.5	BOTTOM	OF SCREE	EN			WELL COMPLETION DIAGRAM
865.4	20.1	OPENING			\mathbf{V}		(NO SCALE)
865.5	20.0		OF AQUIF			•	PROJECT NAME:
766.7	118.8	BORING	DEPTH		1.1.1		Zimmer
Bottom S	eal (Bent	onite (Chine) 2	0 7' -	24.01		BORING:
Doccom 5	Car (Deff						MW-18 (B112) DATE WELL INSTALLED:
STATIC W	ATER LEVE	L #	877.61	876.20			2/24/97
							BBC & M PROJECT NO:
	DAT	E:	2/26/97	4/9/97			5718
WELL DEVE 2/26 3/6	Hand		1 7 gall 1 5 gall		_	lry lry, wate	er silty
# FEET AB	OVE MSL					NG. INC.	


÷.

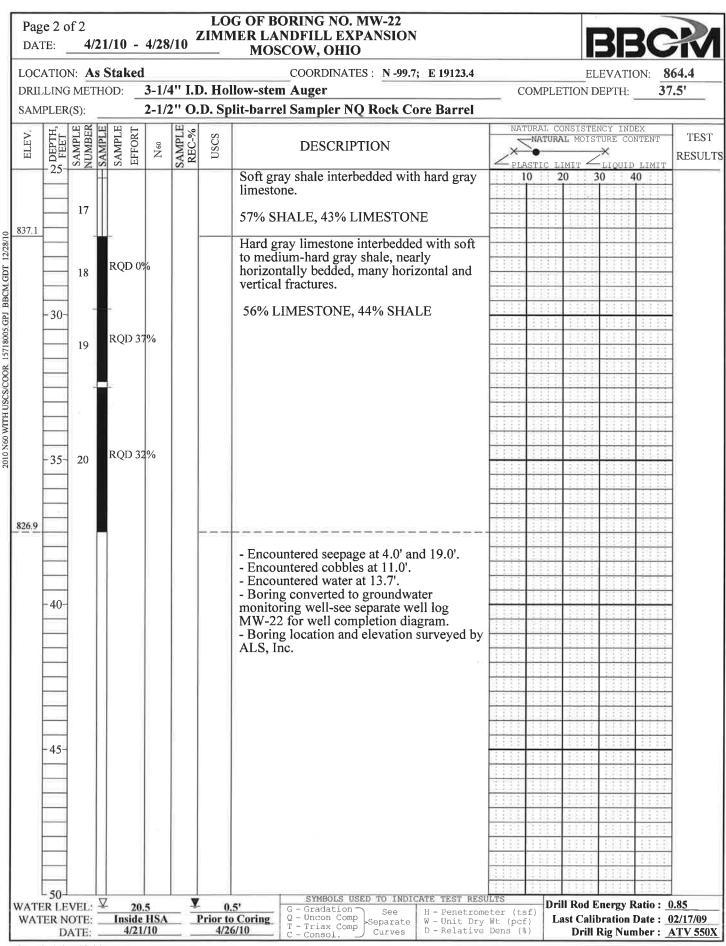
JOB: 5718A

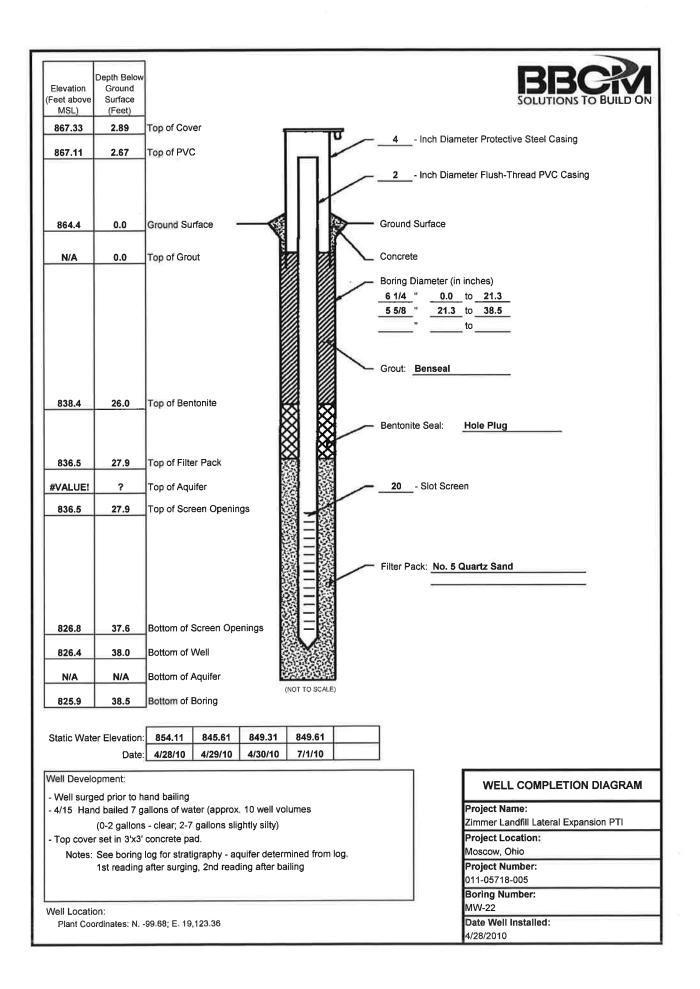
-CONTINUED-

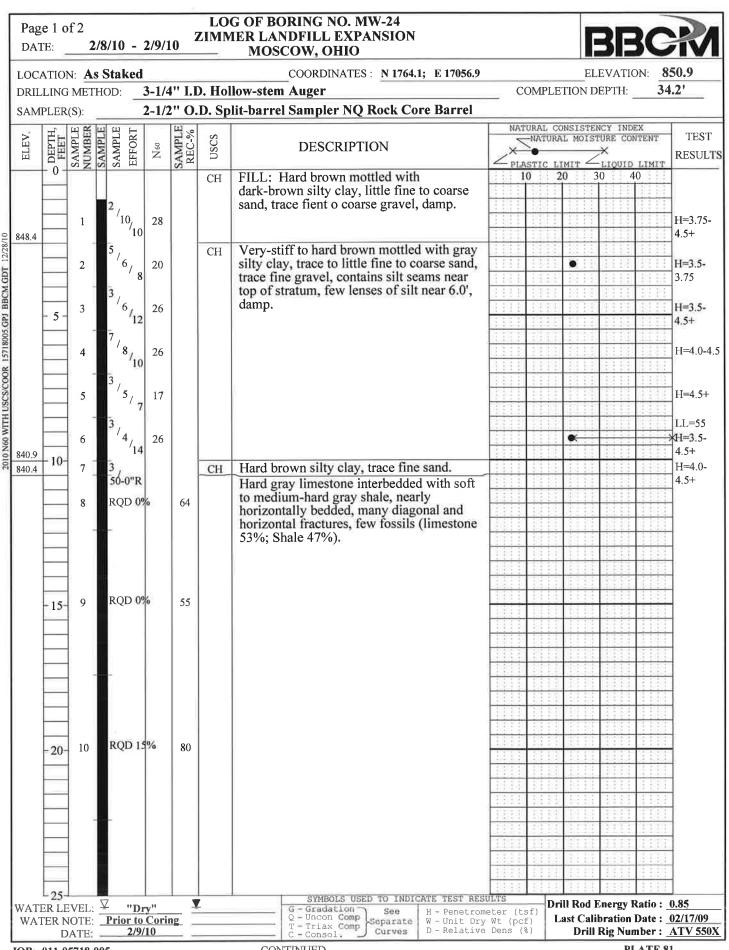

PLATE



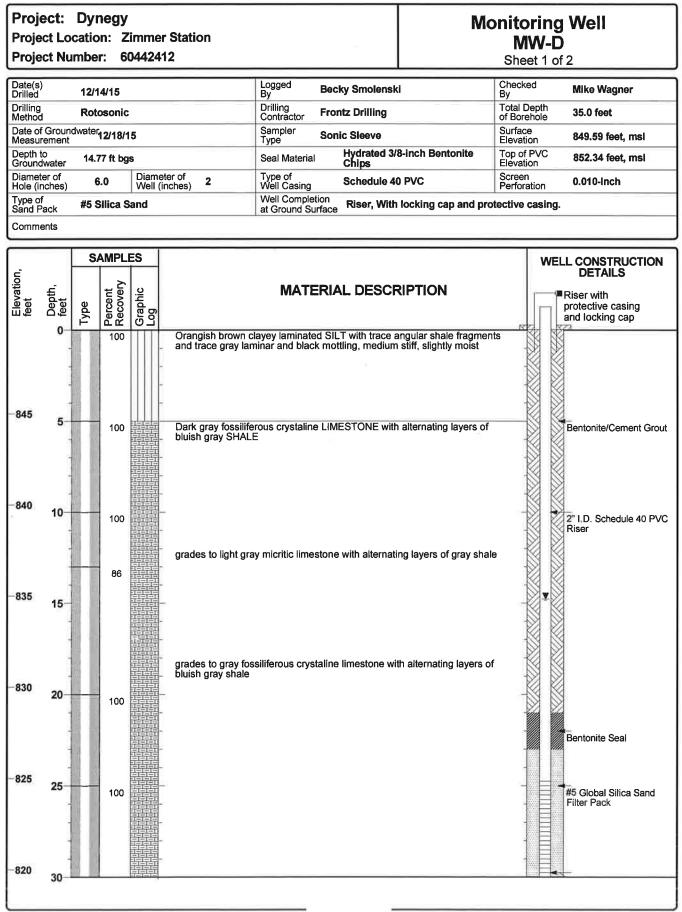
PLATE

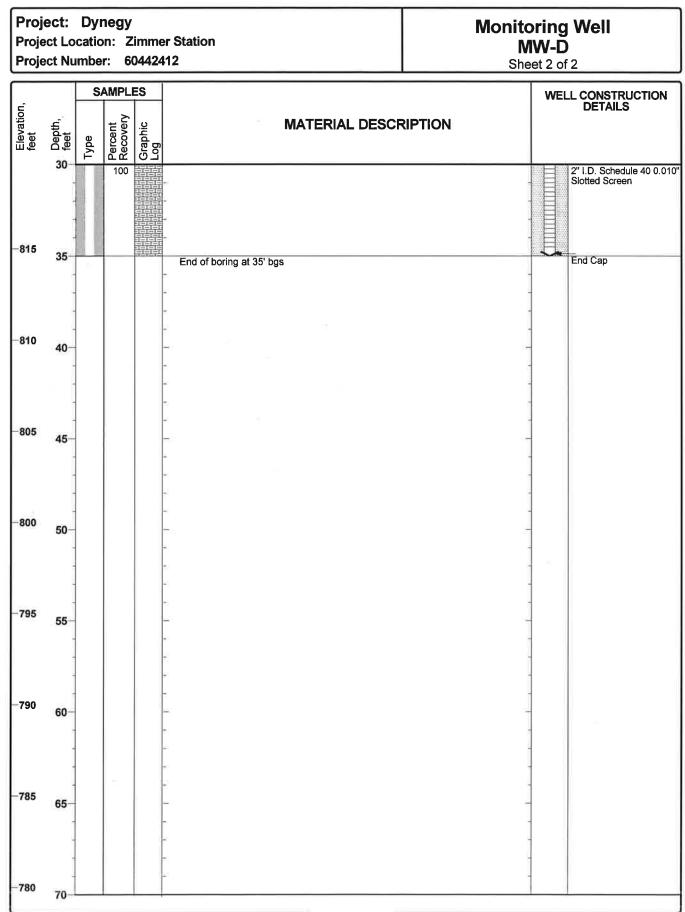

DAT	-		9/10 - Stake			-	MOS	COW, OHIO COORDINATES : N -485.9	; E 20013.1			EL	EVATIO	DN: 8	59.4
		METH			4" I.I). Hol	low-sten	-	,	СС	OMPLE	TION D	EPTH:	41	.2'
SAME	PLER((S):	-	2-1/2	2" O.	D. Sp	lit-barre	l Sampler NQ Rock Co	re Barrel						
ELEV	DEPTH, FEET	SAMPLE	SAMPLE	N60	SAMPLE REC-%	USCS		DESCRIPTION					URE CON	TENT	TEST
_	-0^{-}	NS N	S/S		S/R			TOPSOIL - 11 INCH	25	Z PLA	STIC LI	<u>іміт</u> — 3	LIQUID	LIMIT 0	
58,4								TOPSOIL - IT INCIN	00						
		1	¹ /1/	3	87	СН	Stiff br	own mottled with gray sine to coarse sand, trace fin	lty clay, ne gravel,						H=1.5-
İ				1			few roc	ts, moist.							1.75
56.4							C4:664-		with anou	3.1.1.1				1111	
	-		Р			CH	and ora	very-stiff brown mottled nge-brown silty clay, sor	ne fine to		1111			1111	
		2			67		coarse	sand, trace fine gravel, co	bbles near	8833	88	1993	13.13	3 7 5 3	H=2.75
	- 5 -		-				bottom	of stratum, damp.		1911	1 1 1 1	1212	13.13	1111	-
		3	³ / ₅ /	13	60						111				H=2.75
		3	51	4	00									111	3.5
		-	5								200	10.13	1411	3 543	1
		4	^{' 8} / ₂	47	73					431 F	33-32	1111	1111		H=2.0-
		-	12	5							101 101				
		5	¹⁷ 11,		67										H=1.25
49 9			50-3"	R							8.8				
	- 10-		46			CH	Very-st	iff to hard brown mottled	l with gray	1.1.2	1111	1211	1111	1 23 4	1
		6	'17 _{/2}	5 60	73		silty cla	ay, little fine to coarse san	and, trace		×		×	10101 11101	H=3.1 G
			22						umpi				1121	1111	
		7	⁷ 17/1	40	73						913		313		H=4.5
j		-	'1	1											
		8	⁴ / ₅ ,		100							×			LL=68 *H=3.5-
		Ů	50-5"	R	100										
1		1	12,									1211	1111	1111	
	- 15-	9	¹² / _{32/4}	102	53										H=4.5
43,9		10 -	50-3"		33		Grov fi	ne to coarse gravel (lime	stone			110014			-
		Ň	0.0-5	`			fragme	nts), estimated medium t	o hard gray						-
							limesto	ne interbedded with soft	to]
		11	50-3"	۲	100		mediur	n-hard gray shale.					1111		-
													1111		
		12	50-2"	2	50								1111		1
39.5	-20-	13	50-6"]	<	100		Hord a	ray limestone interbedde	with soft	1111		1 1			-
								ium-hard gray shale, near		1111					
		14	RQD	17%	100		horizor	stally bedded, many horiz	ontal and	1111	1111	1111	1 5 5 5		1
		_	_				vertica	fractures.		1111	1333	3111	1191	3 84 1	
							52% L	IMESTONE, 48% SHAI	LE	111	111	1111		111	-
		15	RQD	8%	47					1111	1111			1111 1111	-
	\vdash									1111	1111				1
										14.14	1111	11 1435	1111	3111	1
	25							SYMBOLS USED TO INDIC	AND NEON DEA	11 TC	3333	1.113	3 33 1	8383	
	ERLE	VEL	∇ 1	0.1'		. 7	.5'	G - Gradation See	H - Penetrome		Dr	ill Rod l	Energy l	Ratio : _	0.85


- C. I



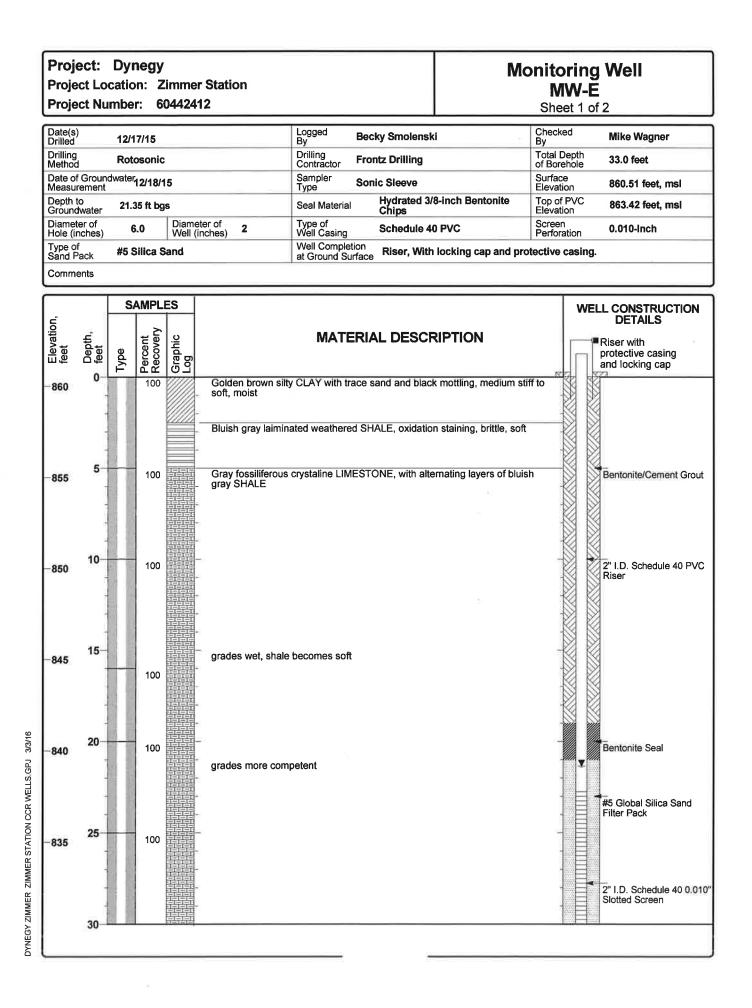
LOCA	ATIO	V: As	St					COORDINATES : N -99.7; E 19123.4				EVATIO		64.4	
DRIL	LING	METI	IOI					low-stem Auger	C	OMPLE	ETION D	EPTH:	37	'.5'	
SAM	PLER		_		_		D. Sp	lit-barrel Sampler NQ Rock Core Barrel							
ELEV	DEPTH, FEET SAMPLE SAMPLE SAMPLE EFFORT N60 N60 SAMPLE EFFORT REC-%				N60	SAMPLE REC-%	USCS	DESCRIPTION				NSISTENCY INDEX L MOISTURE CONTENT			
	- 0 -	2				0.1		TOPSOIL - 13 INCHES	1	0	20 3		0		
63.3		1	3	[/] 4/ 0	9	47	СН	Stiff to very-stiff brown mottled with gray silty clay, trace to little fine to coarse sand,						H=1.0	
		2	3	′2 ′ ₃	10	53		trace fine gravel, few roots near bottom of stratum, damp.			×9-			LL=65 H=2.25	
50,4		-	1	4			CL	Very-stiff to hard brown mottled with gray		1311 1118				2.5 G	
	- 5 -	3 -	2	^{′2} ′3	7	67		silty clay, some fine to coarse sand, trace fine gravel, damp,						H=2.0	
		4		′5 _{/9}	20	73								H=3.0	
		5		¹ 6 _{/14}	28	100					•			H=3.0- 3.25	
	- 10-		Т												
53.4		6		Р 4			CL	Hard brown mottled with gray silty clay,							
		8	5	⁷ 26, 50-5"R		100	CL	some fine to coarse sand, trace fine gravel, numerous cobbles, damp.						H=4.5-	
		9	5	⁷ 35 50-3"R		80				×	×			H=4.5	
	-15-	10	5	0-2"R		100									
		11	3: 5	2 0-4"R		20									
17.4		12	1. 5	5 0-5"R		36	CL	Hard gray silty clay, some fine to coarse sand, trace fine gravel, numerous cobbles, damp.							
		13		9 /43 50-2"R		79									
43.1	- 20-	₽14	3	4 0-3"R		67									
		15	R	QD 09	ó			Soft gray shale interbedded with hard gray limestone.							
		16						57% SHALE, 43% LIMESTONE							
	- 25- ER LE	VEL	∏ ⊽	20.:	5		0	5' SYMBOLS USED TO INDICATE TEST RES G - Gradation See H - Penetrom			rill Rod E	Cnergy I	Ratio : _	0.85	

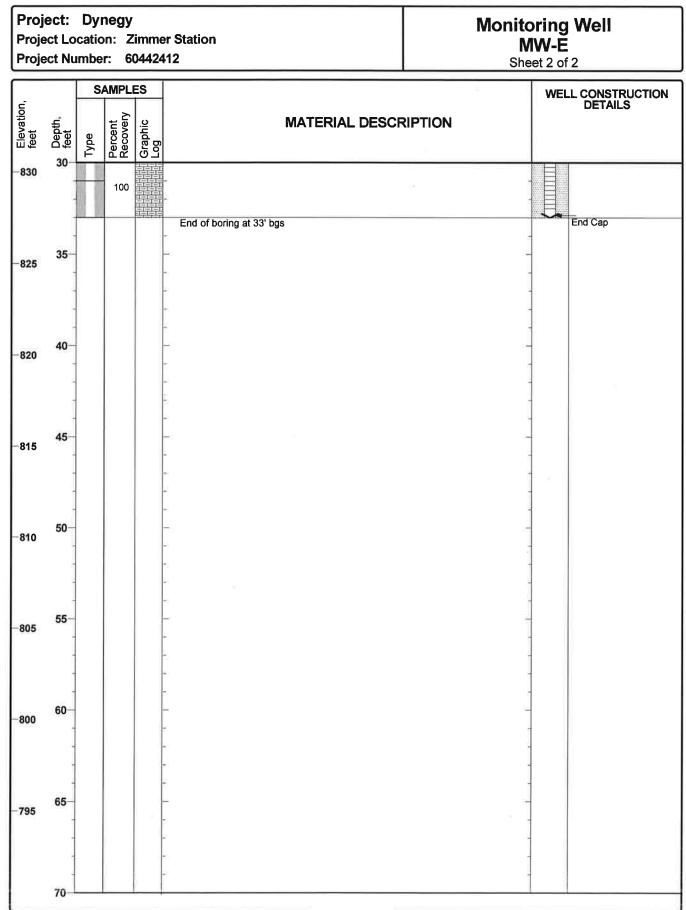



Pag DA ^r	ge 2 c TE:		/8/10 -	2/9/	10		G OF BORING NO. MW-24 IER LANDFILL EXPANSION MOSCOW, OHIO				BE	BC	R
LOC	ATIO	N: As	Staked				COORDINATES : N 1764.1; E 17056.9			EL	EVATIO	DN: 85	50.9
DRII	LING	METH	HOD:	3-1/	4" I.I). Hol	low-stem Auger	С	OMPLE	TION D	EPTH:	34	.2'
SAM	PLER	(S):		2-1/	2" O.	D. Sp	lit-barrel Sampler NQ Rock Core Barrel						
ELEV.	, HT42 DEPTH, 52 PEET	SAMPLE NUMBER	SAMPLE EFFORT	N 60	SAMPLE REC-%	uscs	DESCRIPTION	NAT			STENCY INDEX OISTURE CONTENT		TEST RESULTS
-	-25-	SA	S/S						ASTIC L		LIQUID		KESUL 15
	222250	11	RQD 09	0	100		Hard gray limestone interbedded with soft to medium-hard gray shale, nearly		0 2	20 3	0 4	0	
							horizontally bedded, many diagonal and				1111	1111	
							horizontal fractures, few fossils (limestone	1111	13153		1111	1111	
2			-				53%; Shale 47%).	1894	181 167		1111	1101	
		8						1443		53.33	1161	144	1
								1442	13 13	103.03	1111	1101	
								10111	1111	1111	1111	11111	1
	20									THE	1111		
5	- 30-							1111					
2007	<u> </u>	12	RQD 29	%	95			5/6/1 5			1.11	3 193	8
					1			1011		108.04	10101	1123	çi.
	-									13 13	10101		
											1-1-1-1		
816.8	<u> </u>										<u> 1911</u>	444	1
											1111		
202	- 35-						- Encountered seepage at 3.0'. - Encountered water at 17.6'.				1111	1.11	
							- Packer testing performed in rock stratum.						
							- Boring converted to groundwater						
		.					monitoring well-see separate well log MW-24 for well completion diagram.				1144		e.
							- Boring location and elevation surveyed by		1111		1111		
							ALS, Inc.					1111	
	L												
	-40-												
										1111	<u> 111</u>	101(1)1	
1													
1	-							1314					
	-											111	
1													
	-45-							SEE R	1101	BE SE	1114	111	
1									1223	131 57			
1									10100				
	-									101 101			
1												1111	
1								1811	1351	1111	2111	1111	
								3 4 4 8 3 5 5 5	1-1-1	13.13	112	15.83	
1								1111 1111	10101	1414	1111	53 53 53 53	
1	-								19101 F	NG 201	1111	0.1.0.0	
WATI	└ 50┘ ER LE	VEL:	⊻ "Dr				SYMBOLS USED TO INDICATE TEST RESU	the field of the second	Dri	ll Rod E	nergy R	atio : 0	.85
WAT	fer n	OTE ATE:	Prior to 2/9/	Cori	ng		Q - Uncon Comp T - Triax Comp C - Consol. Separate Curves D - Relative	Wt (pcf	E) La	ast Calib	oration I	Date : _0	

- X - II

Elevation	Depth Betow Ground										
(Feet above MSL)	Surface (Feet)										
852.71	1.79	Top of Cov	er			U		neh Diam	ates Brotastiva Steel Casing		
852.59	1.67	Top of PVC	•		·		4 -1	 Inch Diameter Protective Steel Casing 			
					\prod		2 -	nch Diam	eter Flush-Thread PVC Casing		
850.9	0.0	Ground Su	rface				Ground St	urface			
N/A	0.0	Top of Gro	ut				Concrete				
		09					Boring Dia	meter (in	inches)		
							6 1/4 "		to 21.3		
							5 5/8 "	_	to 38.5		
								3	to		
						\sim	Grout: B	enseal			
829.9	21.0	Top of Ben	tonite								
					XX XX		Bentonite	Seal:	Hole Plug		
827.9	23.0	Top of Filte	er Pack			a c					
#VALUE!	?	Top of Aqu	ifer		<u>8</u>		20 - 3	Slot Scree	n		
825.9	25.0	Top of Scre		ae	滚						
025.5	23.0		sen openin	95	28≃						
					総 三 谷						
					鐵三錢	8			Number Road		
					緣二餘		Filter Paci	(. NO. 5 C	Quartz Sand		
					二	2		-			
					※ =						
816.3	34.6	Bottom of \$	Screen Ope	nings	88 = 8	ŝ					
815.9	35.0	Bottom of V	Well		\sim	Š.					
N/A	N/A	Bottom of A	Aquifer								
815.9	35.0	Bottom of E	Boring		(NOT TO SCALE	E)					
Static Mot	er Elevation:	827.19	828.99	820.89	830.99	830.99	830.99	1			
Static Wale	Date:		4/15/10	4/15/10	4/22/10	4/30/10	7/1/10				
M-11 D											
Well Develo	6.º								WELL COMPLETION DIAGRAM		
	ed prior to ha d bailed 7 ga		ter (approx	10 well vo	olumes				Project Name:		
	(0-2 gallons								Zimmer Landfill Lateral Expansion PTI		
- Top cover	r set in 3'x3'	concrete pa	ıd.						Project Location:		
Notes:	See boring					log			Moscow, Ohio Project Number:		
	Packer testi 1st reading					1.			011-05718-005		
	3rd reading			9					Boring Number:		
Well Locatio									MW-24		
Plant Coo	rdinates: N. 1	,764.12; E. 1	17,056.91						Date Well Installed:		

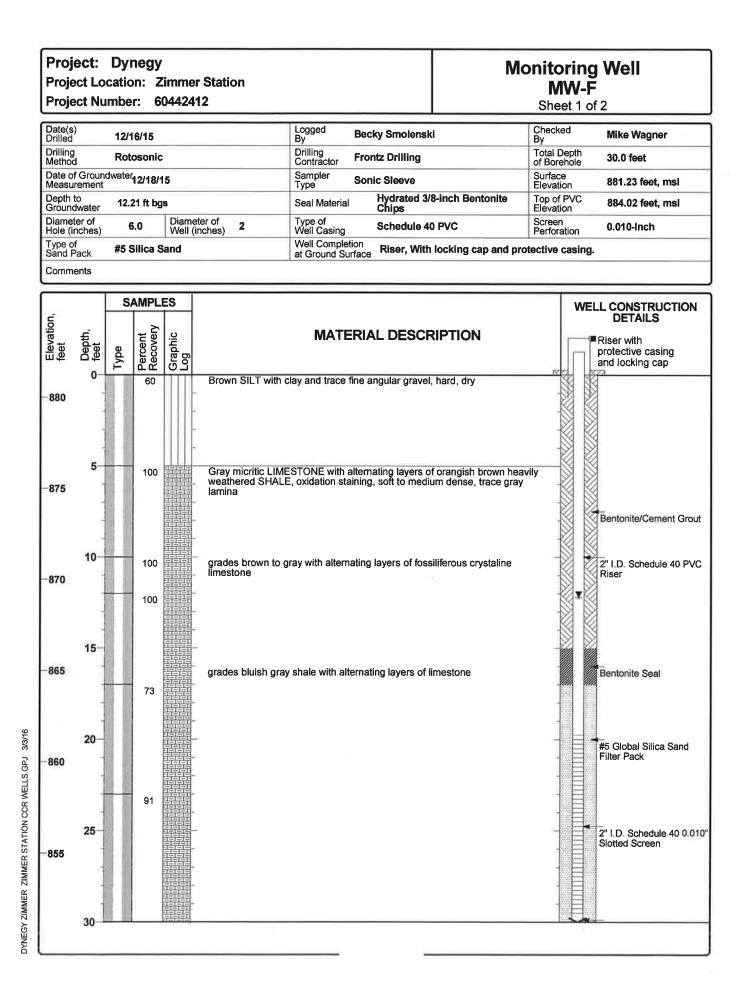

DYNEGY ZIMMER ZIMMER STATION CCR WELLS.GPJ 3/3/16



DYNEGY ZIMMER ZIMMER STATION CCR WELLS, GPJ 3/3/16

DNR 7802.05e	WELL LOG AND I Ohio Department of Division of Water, 2045 Morse R	of Natural Reso oad, Columbus	urces , Ohio 4		;	Well Log N 20570 of 1	43	
W	Voice (614) 265-674	0 Fax (014) 20:		CONSTRU	ICTION DETAIL			ecora.
	Township WASHINGTON		ROTO	SONIC Measured fror	n ground surface)	Depth		ft.
Owner/Builder	NEGY - ZIMMER	Casing Diar	neter	<u>2</u> in. I	Length <u>25</u>			
1781 SR 52 Address of Well Location		Casing Diar	neter Above G	in, I	inches Length:	_ ft. Thickn 2.5	ess	in ft
Permit No.	Zip Code +4 45153 Section; and or Lot No	Type { 2:						
Use of Well MONITOR Coordinates of Well (Use only or State Plane Coordinates	ne of the below coordinate systems)	Joints {1: 2:	eaded					
	+/- <u>4593</u> ft. 3 +/- <u>5285</u> ft.	Type PRE	PACKED	SLOTTED	0.01 in. Sci) Material ft. and	P	VC	
Latitude: 0 Elevation of Well in feet: 8	Longitude: 0	GRAVEL PACK Material/ #5 Si	K (Filter Pa ilica San	ack) d	Vol/Wt. Used 250 avity)			
Source of Coordinates: TERRES Well location written description	STRIAL SURVEY	Depth: Placed	From:	3	5 ft. To:			fi
MW-D		Method of Insta	llation _	Pumped w/	Used 4.5 Tremie pipe			
Comments on water quality/qua	antity and well construction:				LING LOG*			
		Color			S) AT WHICH WA	ATER IS EF		
		BROWN	Text	EY	Formation SILT		From 0	То 5
		DARK GRAY				AND SHAL	E 5	35
	MELL TFOT *		*********					
	WELL TEST * 4ft. Date12/14/2015 NG							
Test Rate gpr Feet of Drawdown ft. *(Attach a copy of the pumping to Is Copy Attached? Yes	m Duration of Testhrs. Sustainable Yieldgpr est record, per section 1521.05, ORC) ☑ No Flowing Well? ☐ Yes ☑ No							
P	UMP/PITLESS							
Type of pumpft. Pitte Pump set atft. Pitte Pump installed by	Capacity gpm ess Type en is accurate and correct to the best of my knowledge							
Drilling Firm FRONTZ DRILLING Address 2031 RD MILLERSBU City, State, Zip WOOSTER OH	G, INC RG							
Signed	FRONTZ Date 5/13/2016_ actronically)	Aquifer Type (Fo			nost water.) <u>LIMES</u> /2015 Total			35 ft
ODH Registration Number 0120		Date of Well Co	mpletion	12/14/	72015 Total	Depth of V	vell;	35

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling. Distribute copies of this record to Customer, and Local Health Deptartment.



DYNEGY ZIMMER ZIMMER STATION CCR WELLS, GPJ 3/3/16

í

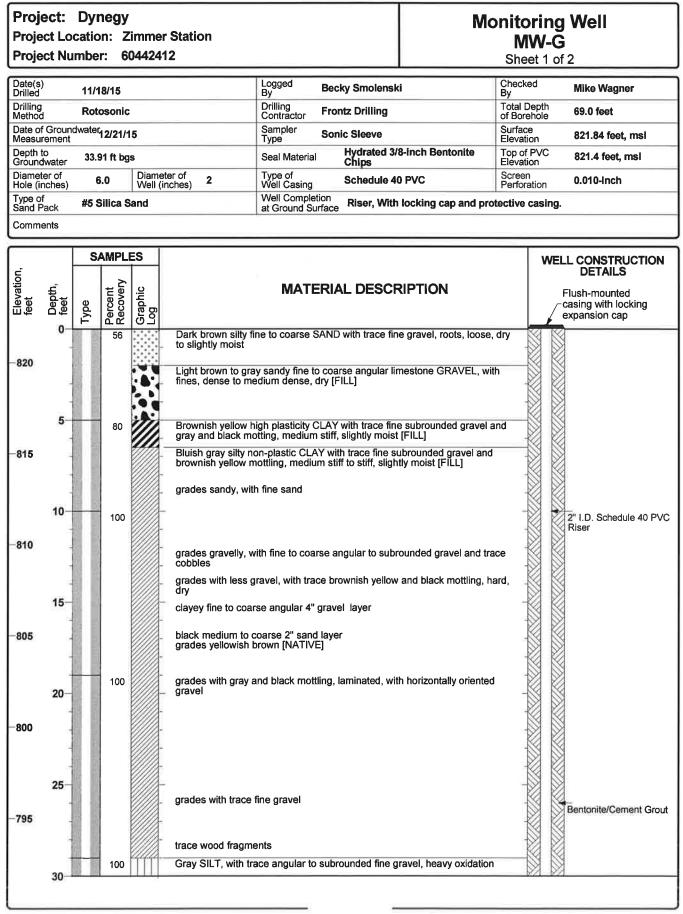
DNR 7802.05e WELL LOG AND DRILLING REPORT Ohio Department of Natural Resources Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605 Voice (614) 265-6740 Fax (614) 265-6767 Well Log Nu 205704 Mell LOCATION CONSTRUCTION DETAILS County CLERMONT Township DYNEGY - ZIMMER Drilling Method: ROTOSONIC Owner/Builder 1 Borehole Diameter 6 1781 SR 52 6 1 Casing Diameter 2 in. Length 23 ft. Thickne City MOSCOW Zip Code +4 45153 Permit No. Section; and or Lot No. 2.5 Use of Well MONITOR Section; and or Lot No. 2.5 Type { 1: Threaded State Plane Coordinates 1 Screen Screen Screen Diameter 0.01 in. Screen Length	33 33 255 _ 0.1	ft. 154 in.
Voice (614) 265-6740 Fax (614) 265-6767 Page 1 of 1 fo COUNT WELL LOCATION County CLERMONT COUNT Township WASHINGTON DYNEGY - ZIMMER DYNEGY - ZIMMER Owner/Builder 1 Borehole Diameter6	33 ess _0.1	ft. 154 in.
WELL LOCATION CONSTRUCTION DETAILS County CLERMONT Township WASHINGTON Drilling Method: ROTOSONIC BOREHOLE/CASING (Measured from ground surface) 1 Borehole Diameter	33 ess _0.1	ft. 154 in.
County CLERMONT Township WASHINGTON BOREHOLE/CASING (Measured from ground surface) DYNEGY - ZIMMER 1 Borehole Diameter 6 inches Depth Owner/Builder 1 Borehole Diameter 2 inches Depth 1781 SR 52 2 Borehole Diameter 2 inches Depth Address of Well Location Zip Code +4 45153 Permit No. Section; and or Lot No. Use of Well MONITOR It PVC Threaded Joints {1: Threaded Joints 1: Threaded SCREEN SCREEN SCREEN	ess <u>0.</u>	154 in.
DYNEGY - ZIMMER 1 Borehole Diameter6inches Depth Owner/Builder 1 Casing Diameter2 in. Length23ft. Thickne 1 1 Borehole Diameter2 in. Length23ft. Thickne 2 2 Borehole Diameter in. Length3ft. Thickne 2 2 Casing Diameter in. Length ft. Thickne 2 2 Casing Diameter in. Length ft. Thickne 2 Casing Diameter in. Length ft. Thickne Casing Height Above Ground 2.5 Type { 1: PVC 1 Permit No Section; and or Lot No Type { 1: Threaded Joints { 1: Threaded	ess <u>0.</u>	154 in.
DYNEGY - ZIMMER 1 Borehole Diameter6inches Depth Owner/Builder 1 Casing Diameter2 in. Length23ft. Thickne 1 1 Borehole Diameter2 in. Length23ft. Thickne 2 2 Borehole Diameter in. Length3ft. Thickne 2 2 Casing Diameter in. Length ft. Thickne 2 2 Casing Diameter in. Length ft. Thickne 2 Casing Diameter in. Length ft. Thickne Casing Height Above Ground 2.5 Type { 1: PVC 1 Permit No Section; and or Lot No Type { 1: Threaded Joints { 1: Threaded	ess <u>0.</u>	154 in.
DYNEGY - ZIMMER [Casing Diameter2_in. Length23_ft. Thickne Owner/Builder 2 1781 SR 52 2 Address of Well Location 2 City MOSCOW Zip Code +445153 Permit No. Section; and or Lot No. Use of Well MONITOR 2: Coordinates of Well (Use only one of the below coordinate systems) State Plane Coordinates State Plane Coordinates SCREEN	ess <u>0.</u>	154 in.
Owner/Builder 2 Borehole Diameterinches Depth 1781 SR 52 Address of Well Location 2 Casing Diameterin. Lengthft. Thickne City_MOSCOW Zip Code +445153 Casing Height Above Ground2.5 2.5 Permit No. Section;and or Lot No. 11 PVC 2 Use of Well MONITOR Joints {1: Threaded 2 State Plane Coordinates SCREEN SCREEN	ess	
1781 SR 52 Casing Diameterin. Lengthft. Thickne Address of Well Location Casing Height Above Ground2.5 City MOSCOW Zip Code +445153 Permit NoSection; and or Lot No Type { 1: PVC 2: Joints { 1: Threaded Joints { 1: Threaded Joints { 1: SCREEN	ess	ft
Address of Well Location City MOSCOW Zip Code +4 45153 Casing Height Above Ground 2.5 Permit No. Section; and or Lot No. Type 1: PVC 2: Use of Well MONITOR Joints 1: Threaded Joints 2: State Plane Coordinates SCREEN SCREEN SCREEN		in
City_MOSCOW Zip Code +445153 Type 1: PVC2 Permit No. Section; and or Lot No. 2: Use of Well_MONITOR Joints 1: Threaded Coordinates of Well (Use only one of the below coordinate systems) Joints 1: Threaded State Plane Coordinates SCREEN SCREEN		
Permit No. Section; and or Lot No. Iype 2: Use of Well MONITOR Joints 1: Threaded Coordinates of Well (Use only one of the below coordinate systems) Joints 2: State Plane Coordinates SCREEN		
Use of Well MONITOR Coordinates of Well (Use only one of the below coordinate systems) State Plane Coordinates SCREEN SCREEN		
Coordinates of Well (Use only one of the below coordinate systems) Joints 2: State Plane Coordinates SCREEN		
State Plane Coordinates		
	10) #
S Y 1495460 +/- 6258 ft. Type PREPACKED SLOTTED Material PV		
		ft
Latitude: 0 GRAVEL PACK (Filter Pack) Vol/Wt. Elevation of Well in feet: 863.4 +/- ft. Material/ Size #5 Silica Sand Used 215 lbs.		
Datum Plane: NAD27 X NAD83 Elevation Source TERRESTRIAL Method of Installation Poured (gravity)		
Source of Coordinates: TERRESTRIAL SURVEY Depth: Placed From:33ft. To:2	21	
Source of Coordinates: TERRESTRIAL SURVET Depth. Placed From. 33 11. 10. 2 Well location written description: GROUT Vol004#	<u> </u>	π
Vol/Wt. Material_Bentonite/cement slurry Used _4.5 cubic feet		
MW-E Method of Installation <u>Poured (gravity)</u>		
Wethod of installation <u>routed (gravity)</u>	0	
Depth: Placed From:ft. To:	0	π,
DRILLING LOG*		
Comments on water quality/quantity and well construction: FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS END	COUNT	FRED
	From	То
BROWN SILTY CLAY	0	3
BLUE BROKEN SHALE	3	5
GRAY LIMESTONE AND SHALE		33
GRAT LINESTONE AND STALE	= 0	33
WELL TEST *		
Pre-Pumping Static Level 21 ft. Date <u>12/17/2015</u>		
Measured from TOP OF CASING		**********
Pumping test method		
Test Rate gpm Duration of Test hrs.		
Feet of Drawdown ft. Sustainable Yieldgpm		
*(Attach a copy of the pumping test record, per section 1521.05, ORC)		
s Copy Attached? Yes No Flowing Well? Yes No		
s Copy Attached? [] Yes X No Flowing Well? [] Yes X No PUMP/PITLESS Type of pump Capacity gpm		*****
s Copy Attached? [] Yes X No Flowing Well? [] Yes X No PUMP/PITLESS Type of pump Capacity gpm		
s Copy Attached? Yes No Flowing Well? Yes No PUMP/PITLESS Type of pumpCapacitygpm Pump set atft. Pitless Type Pump installed by		
Image: Scopy Attached? Yes No Flowing Well? Yes No PUMP/PITLESS Type of pumpCapacitygpm Pump set atft. Pitless TypePump installed by Thereby certify the information given is accurate and correct to the best of my knowledge.		
Image: Scopy Attached? Yes No Flowing Well? Yes No PUMP/PITLESS Type of pumpCapacitygpm Pump set atft. Pitless TypePump installed by Thereby certify the information given is accurate and correct to the best of my knowledge.		
Is Copy Attached? Yes No Flowing Well? Yes No PUMP/PITLESS Type of pump Capacity gpm Pump set atft. Pitless Type Pump installed by Thereby certify the information given is accurate and correct to the best of my knowledge. Drilling Firm FRONTZ DRILLING, INC.		
PUMP/PITLESS		
Is Copy Attached? Yes No Flowing Well? Yes No PUMP/PITLESS No PUMP/PITLESS Type of pump Capacity gpm Pump set atft. Pitless Type Pump installed by Pump installed by Thereby certify the information given is accurate and correct to the best of my knowledge. Drilling Firm ERONTZ DRILLING, INC. Address 2031 RD MILLERSBURG City, State, Zip WOOSTER OH 44691 Signed Date 5/13/2016		
s Copy Attached? Yes No Flowing Well? Yes No PUMP/PITLESS Type of pump Capacitygpm Pump set atft. Pitless Type Pump installed by I hereby certify the information given is accurate and correct to the best of my knowledge. Drilling Firm FRONTZ DRILLING, INC. Address 2031 RD MILLERSBURG City, State, Zip WOOSTER OH 44691	HALE	

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling. Distribute copies of this record to Customer, and Local Health Deptartment.

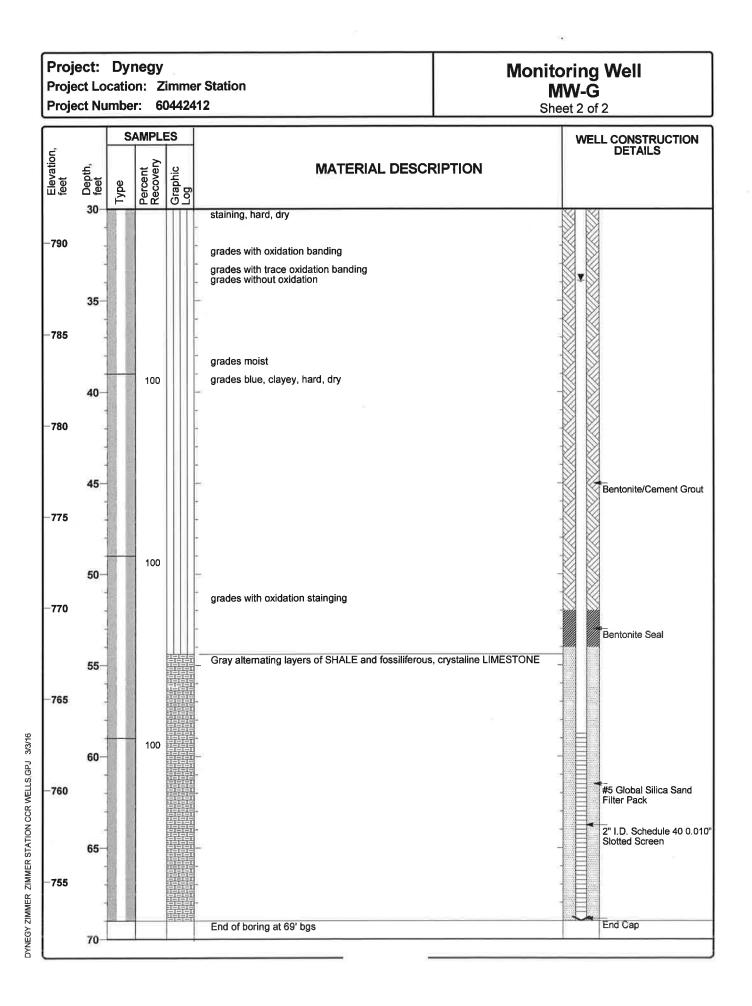
Project: Dynegy Project Location: Zimmer Station Project Number: 60442412				Monitoring Well MW-F Sheet 2 of 2			
ation,	ć.	S	AMPLI		MATERIAL DESCR		WELL CONSTRUCTION DETAILS
Elevation, feet	05 Depth, feet	Type	Percent Recovery	Graphic Log			
850				-	End of boring at 30' bgs		End Cap
845	35-						-
840	40-						
835	45						
830	- 50- -				e 53 4 2		
825	55— - -						-
820	60			-			
815	65-						
	70				5		

DYNEGY ZIMMER ZIMMER STATION CCR WELLS GPJ 3/3/16

DNR	7802.05e	
-----	----------	--

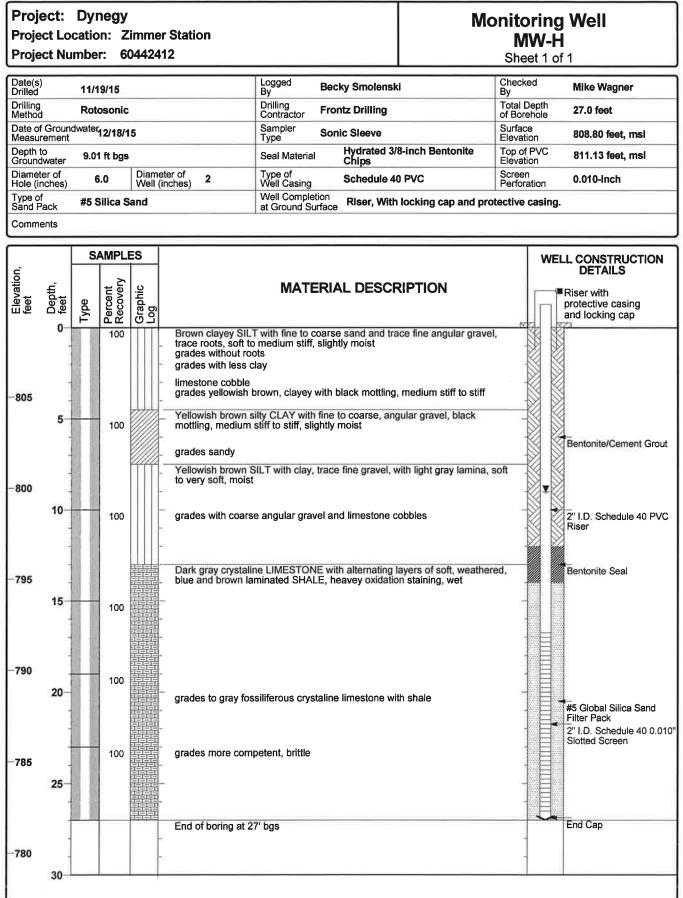

WELL LOG AND DRILLING REPORT Ohio Department of Natural Resources Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605 Voice (614) 265-6740 Fax (614) 265-6767

Well Log Number 2057046


Page 1 of 1 for this record.

	VOICE (014) 200-074	01 ax (014) 2				10100010.
w	ELL LOCATION			NSTRUCTION DET	AILS	
		Drilling Metho	d: <u>ROTOSO</u>	NIC		
County CLERMONT	Township WASHINGTON			sured from ground surface		
		Borehole	Diameter	6inches	Depth 3	
	NEGY - ZIMMER	Casing Di	ameter <u>2</u>	in. Length15	5 ft. Thickness	
Owner/Builder		Borehole	Diameter	inches	Depth	
1781 SR 52		LCasing Di	iameter	in. Length	ft. Thickness _	
Address of Well Location				nd		
	Zip Code +445153	Type {1: P	VC			
	Section; and or Lot No	2:				
Use of Well MONITOR		loints { t: ⊥	hreaded			
Coordinates of Well (Use only or	ne of the below coordinate systems)	Construction of the second sec				
State Plane Coordinates		SCREEN		0.04		40 4
N 🛛 X315312				ize 0.01 in.		
S 🗌 Y <u>149543</u>				LOTTED Material		
Latitude, Longitude Coordina				0ft_and		
Latitude: 0	Longitude:	GRAVEL PA	CK (Filter Pack)	Vol/Wt. Used	04.0 lb a	
Elevation of Well in feet:		Size #5	Silica Sand	Used	210 IDS.	
	NAD83 Elevation Source TERRESTRIAL			ured (gravity)		
Source of Coordinates: TERRE		The second second second second second	d From:	<u> </u>	To:17	ft
Well location written descriptio	n:	GROUT		Vol/Wt. t slurry Used		
1045						
MW-F				mped w/Tremie pipe		
		Depth: Place	d From:	15 ft.	To:0	ft.
				DRILLING LOG*		
Comments on water quality/qu	antity and well construction:	FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.				
			Texture	. ,	n From	1
						0 5
		GRAY	SILTY		NE AND SHALE	
		GRAT	BRUKER		NE AND SHALE	5 50
	WELL TEST *					
Pre-Pumping Static Level1						
Measured from <u>TOP OF CASI</u>	NG					1
Pumping test method	Duration of Test hrs.	1				
Test Rate gp						
Feet of Drawdown ft		1				
	test record, per section 1521.05, ORC)					
Is Copy Attached? Yes	🗵 No Flowing Well? 🗌 Yes 🗵 No					
F	PUMP/PITLESS					
Type of pump	Capacity gpm					
Pump set atft. Pitle						
Pump installed by	000 1995	-				
	ven is accurate and correct to the best of my knowledge.					
Drilling Firm FRONTZ DRILLIN						
					20000000000000000000000000000000000000	
Address 2031 RD MILLERSBU						
City, State, Zip WOOSTER OH						
0	EFRONTZ Date 5/13/2016 lectronically)	Aquifer Type	(Formation prod	ucing the most water.) LIN		F
		Date of Well				
ODH Registration Number 012(u	Louis or well		12/10/2010	otal Depth of Well	<u> </u>

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling. Distribute copies of this record to Customer, and Local Health Deptartment.



DYNEGY ZIMMER ZIMMER STATION CCR WELLS GPJ 3/3/16

WELL LOG AND D	RILLING REPORT	Well Log Number
	f Natural Resources oad, Columbus, Ohio 43229-6605	
Voice (614) 265-674	0 Fax (614) 265-6767	Page_1_ of _1_ for this record.
WELL LOCATION	CONSTRUCTION	DETAILS
	Drilling Method: <u>ROTOSONIC</u>	
County CLERMONT Township WASHINGTON	BOREHOLE/CASING (Measured from ground	,
	Borehole Diameter 6 inch	
DYNEGY - ZIMMER Owner/Builder	Casing Diameterin. Length	
1781 SR 52	2 Borehole Diameterinch Casing Diameterin. Length _	nes Depthft.
Address of Well Location	Casing Height Above Ground	
City_MOSCOWZip Code +445153	(PVC	
Permit No Section; and or Lot No	Type 2:	
Use of Well MONITOR	lointe (1: Threaded	
Coordinates of Well (Use only one of the below coordinate systems)	Joints {1: Threaded 2:	
State Plane Coordinates	SCREEN	
N x 316282 +/- 484 ft.	Diameter 2 in. Slot Size 0.01	· · · · · · · · · · · · · · · · · · ·
S Y <u>1492978</u> +/- <u>7138</u> ft. Latitude, Longitude Coordinates	Type PREPACKED SLOTTED Ma	
Latitude: 0 Longitude: 0	Set Between69 ft.	
Elevation of Well in feet: <u>821.4</u> +/ ft.	GRAVEL PACK (Filter Pack) Vol/ Material/ #5 Silica Sand Us	Wt.
Datum Plane: NAD27 X NAD83 Elevation Source TERRESTRIAL	Method of Installation Poured (gravity)	Sed_000.50
Source of Coordinates: TERRESTRIAL SURVEY	Depth: Placed From: 69	
Well location written description:	GROUT	
(m	Material Bentonite/cement slurry	sed 9.5 cubic feet
MW-G	Method of Installation Pumped w/Tremie g	
	Depth: Placed From: 53	ft, To: 0 ft,
	DRILLING L	OG*
Comments on water quality/quantity and well construction:	FORMATIONS INCLUDE DEPTH(S) AT W	
	Color Texture Form	ation From To
	DARK BROWN SILTY SAND	0 2
	BROWN-GRAY SANDY GRAY	/EL 2 5
		CLAYGRAVEL 5 29
	GRAY SILT	29 54
	GRAY SHAL	E AND LIMESTONE 54 69
а. С		
WELL TEST *		
Pre-Pumping Static Level <u>33</u> ft. Date <u>11/18/2015</u>		
Measured from TOP OF CASING		
Pumping test method		
Test Rate gpm Duration of Test hrs.		
Feet of Drawdown ft. Sustainable Yield gpm	·····	
*(Attach a copy of the pumping test record, per section 1521.05, ORC) Is Copy Attached?		
Is Copy Attached? Yes X No Flowing Well? Yes X No		
PUMP/PITLESS		
Type of pump Capacitygpm		
Pump set atft. Pitless Type		
Pump installed by		
I hereby certify the information given is accurate and correct to the best of my knowledge.		
Drilling Firm FRONTZ DRILLING, INC.		
Address 2031 RD MILLERSBURG		
City, State, Zip WOOSTER OH 44691		
Signed STEVE FRONTZ Date5/13/2016 (Filed Electronically)	Aquifer Type (Formation producing the most wate	
	Date of Well Completion 11/18/2015	
ODH Registration Number 0120	11/10/2015	Total Depth of Well69ft.

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling. Distribute copies of this record to Customer, and Local Health Deptartment.

DYNEGY ZIMMER ZIMMER STATION CCR WELLS.GPJ 3/3/16

÷

WELL LOG AND D		Well Log Number			
DNR 7802.05e Ohio Department of	f Natural Resources	2057048			
Division of Water, 2045 Morse Ro Voice (614) 265-6740	oad, Columbus, Ohio 43229-6605	Page 1 of 1 for this record.			
WELL LOCATION	CONSTRUCTION				
	Drilling Method: ROTOSONIC				
County CLERMONT Township WASHINGTON	BOREHOLE/CASING (Measured from ground	surface)			
	Borehole Diameter 6 incl	hes Depth <u>27</u> ft.			
DYNEGY - ZIMMER	Casing Diameter2in. Length _				
Owner/Builder	2 {Borehole Diameterincl Casing Diameterin, Length _	hes Depthft.			
1781 SR 52 Address of Well Location	Casing Diameterin, Length _	ft Thicknessin.			
	Casing Height Above Ground				
City_MOSCOW Zip Code +445153 Permit No Section;	Type { 1: PVC				
	(4) Threaded				
Coordinates of Well (Use only one of the below coordinate systems)	Joints {1: Threaded 2:				
State Plane Coordinates	SCREEN				
N ⊠ X <u>315757</u> +/- <u>4048</u> ft.	Diameter 2 in Slot Size 0.01	in. Screen Length 10 ft.			
S V 1492534 +/- 264 ft.	Type PREPACKED SLOTTED M	aterial PVC			
Latitude, Longitude Coordinates	Set Between 27 ft.				
Latitude: 0 Longitude: 0	GRAVEL PACK (Filter Pack)	ΛΛ#			
Elevation of Well in feet:811.1 +/ ft.	GRAVEL PACK (Filter Pack) Vol/ Material/ #5 Silica Sand U	sed 210 lbs.			
Datum Plane: NAD27 🗵 NAD83 Elevation Source <u>TERRESTRIAL</u>	Method of Installation Poured (gravity)				
Source of Coordinates: TERRESTRIAL SURVEY	Depth: Placed From: 27	ft. To:ft			
Well location written description:	GROUT Vol/	Wt.			
MW-H	Material Bentonite/cement slurry Used 4.5 cubic feet				
	Method of Installation <u>Pumped w/Tremie</u> Depth: Placed From: <u>13</u>				
	Depth: Placed From: 13	π. Ιο:π.			
	DRILLING L	.0G*			
Comments on water quality/quantity and well construction:	FORMATIONS INCLUDE DEPTH(S) AT W	HICH WATER IS ENCOUNTERED.			
		nation From To			
	BROWN CLAYEY SILT	0 4			
	BROWN SILTY CLAY	(4 13			
	DARK GRAY LIME	STONE AND SHALE 13 27			
÷.					
WELL TEST *					
Pre-Pumping Static Level 9 ft. Date 11/19/2015					
Measured from TOP OF CASING					
Pumping test method					
Test Rate gpm Duration of Test hrs.					
Feet of Drawdown ft. Sustainable Yieldgpm					
*(Attach a copy of the pumping test record, per section 1521.05, ORC)					
s Copy Attached? 🗋 Yes 🛛 No Flowing Well? 🗋 Yes 🖾 No					
PUMP/PITLESS					
Type of pump Capacitygpm Pump set atft. Pitless Type					
Pump installed by					
I hereby certify the information given is accurate and correct to the best of my knowledge.					
Drilling Firm FRONTZ DRILLING, INC.					
Address 2031 RD MILLERSBURG]				
City, State, Zip WOOSTER OH 44691					
Signed STEVE FRONTZ Date 5/13/2016					
(Filed Electronically)	Aquifer Type (Formation producing the most wate	r.) CLAY			
ODH Registration Number <u>0120</u>	Date of Well Completion 11/19/2015	Total Depth of Well27ft.			

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling. Distribute copies of this record to Customer, and Local Health Deptartment. Attachment B

Well Wizard Sampling Pumps, Equipment Specifications

PLEASE GIVE THIS INFORMATION PACKET TO THE PERSON(S) COMPLETING THE INSTALLATION

The Information provided within this packet is designed to assist in the installation of **WELL WIZARD**[®] Pump equipment.

This information has been produced specifically for the site at which this equipment is to be installed.

Every effort is made at the factory to include all of the down-well components for a single pump assembly or system in one package. On the outside of these packages, the well ID's and components are clearly labeled. However, there are times when components are too large to be included with the complete system. When this occurs, they are inside another package and that package is clearly marked with the item number and well ID.

When heading out to the well, please make sure to take along all of the components for that specific well. Include any tools or other supplies that will make installation easier.

QED Environmental Systems Phone: 1-800-624-2026 After Hours Phone: 1-800-272-9559

WELL WIZARD

SYSTEM "A" Bladder Pump Only

System Components Checklist:

B Pump Tubing

C Pump

Options: Pump Inlet Screen

System Components Instructions:

- 1. Attach pump inlet screen to pump inlet (if applicable).
- 2. Attach bladder pump tubing to pump.
- 3. Lower pump to desired depth.
- 4. Pass discharge tube through cap and attach air line under cap.

Table of Contents

Торіс	Page
Contacting QED/ Introducing Well Wizard	1
Sampling Pump	2-3
How Bladder Pump Works	4-5
Pump Tubing/Inlet Screen/Well Cap	
Well Cap	
Portable Components	
Installing the Components	
Installing the Inlet Screen	10
Installing the Sample Pump	11
Installing the Sample Pump With Bulk Tubing	12-13
Bladder Pump Operation In Low Submergence	14
Install Or Replace Pump Connectors	15-17
Well Wizard System Type A (Basic System)	18
Well Wizard System Type L (Inlet Extension)	19
Sample Pump Troubleshooting Guide	20
QED Well Wizard Warranty	21-22

Introducing Well Wizard

Contacting QED

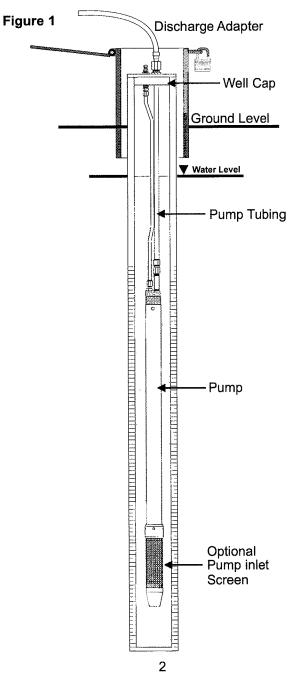
Please call our Customer Service Department at one of the following numbers for assistance

- Monday through Friday, 8:30 a.m. to 5:00 p.m. EST: (734) 995-2547
- After Hours and weekends: 1-800-272-9559 (or 1-734-746-8045 if you are outside the U.S.)

Introduction

To monitor the quality of ground water, you need an efficient way to collect unbiased samples. Well Wizard[®] is a total system for meeting all your ground water monitoring needs - with the flexibility to meet your special requirements. This section describes the components of the Well Wizard System.

The Well Wizard system includes both dedicated and portable components. The water contacting components are dedicated; you permanently install them in each well. The control elements are portable; you transport them from well to well.


BASIC DEDICATED COMPONENTS

- A sampling pump
- Pump Tubing
- An optional inlet screen
- A well cap
- Discharge Adapter
- Freeze Protection

The following sections describe these components.

Sampling Pump

A Well Wizard $^{\textcircled{R}}$ sampling pump is an air-actuated bladder pump that you permanently position in the well.

Sampling Pump

As figure 1 shows, you normally position the pump inlet midway in the screened section of the well, suspending it by two tubes that supply air to the pump and convey the water sample to the well cap. Whenever possible, pumps are shipped already preassembled to the tubing and the well cap assembly.

Several types of Well Wizard® bladder pumps are available.

1100 Series Pumps

The 1100 series pumps include 4 major components:

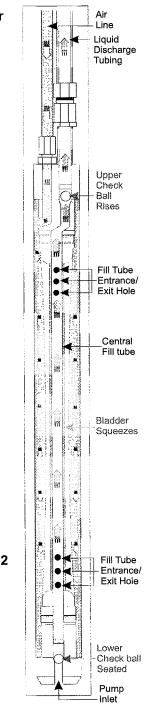
- Upper-end check valve assembly (polyvinyl chloride (PVC or Teflon $^{\ensuremath{\mathbb{R}}}$)
- Lower-end check valve assembly (PVC or Teflon)
- Bladder Cartridge (Teflon)
- Pump Body (PVC or Teflon)

You can totally disassemble the pump without tools by unscrewing each end cap and pushing the bladder cartridge out of the pump body (for more information refer to the instructions included with the field-replaceable bladder kit).

1200 Series Pumps

The 1200 series pumps include 2 major components

- Bladder Cartridge assembly (either Teflon and stainless steel or PVC and stainless steel)
- Pump Body (Stainless Steel)


You can partially disassemble the pump (for more information refer to the instructions included with the field-replaceable bladder kit).

How Bladder Pump Works

The bladder pump has two alternating cycles (refer to figures 2 & 3).

Discharge Cycle

During the discharge cycle, air forced into the space between the pump body and the pump bladder squeezes the water inside the bladder into the exit/entrance holes of the fill rod. As air pressure increases, liquid-having no place else to go - is forced up the discharge line and to the surface. At the same time, the top check ball rises with the discharging liquid while the bottom check ball is forced down by the air pressure; this seals the pump inlet so that no water can enter the bladder chamber.

Figure 2

How Bladder Pump Works

Refill Cycle

During the refill cycle, with no air pressure holding it down, the water pressure pushes the bottom check ball up, allowing the water to reenter the bladder chamber. The bladder expands as it refills with water. Simultaneously, the top check ball is forced down and seals because of the force of the water pressure above it from the water in the discharge tubing, this prevents the water in the discharge tube from reentering the bladder chamber.

Caution: A Well Wizard[®] pump bladder can be punctured if you pump sand. So be sure to use an inlet screen in wells with high sand and sediment content, or when the inlet of the pump is placed within 2 feet of the bottom of the well. Remember, the Well Wizard 10-year warranty is void if you do not use an inlet screen.

Figure 3

Pump Tubing/ Inlet Screen/ Well Cap

Pump Tubing

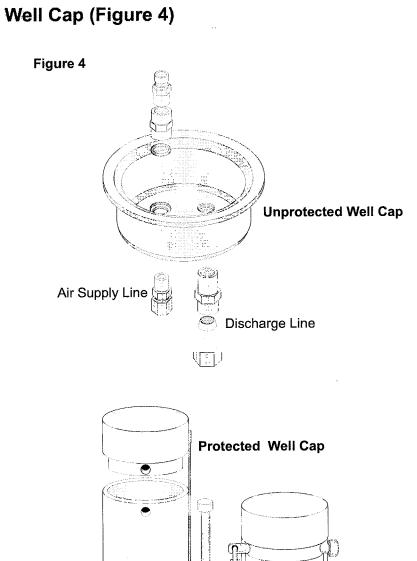
A ground water sample is only as good as the tubing it runs through. Your Well Wizard[®] was shipped with one of the following types of superior-quality tubing:

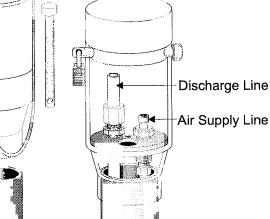
- Polyethylene
- Teflon[®] -lined polyethylene
- Teflon

Most tubing is supplied as a bonded pair (air supply and discharge), to save time and avoid tube entanglement.

Unless your order specified that you wanted *bulk* tubing, the tubing for your Well Wizard bladder pump is pre-cut to the correct length for your well.

Inlet Screen


An inlet screen can protect the bladder in your Well Wizard pump by preventing sand from contacting the bladder. If you install a screen on your dedicated Well Wizard bladder pump, QED warranties the pump for a full 10 years.


Well Cap

You fit a well cap to the top of the well casing to suspend the pump and tubing. There are two terminal fittings inside the basic well cap (see figure 4).

- A compression through fitting for the discharge line
- A short brass *quick-connect nipple* for the pump air-supply line

The *protected* well cap has a lid with a lock pin. You can record well identification and reference date information on the cap label. The *unprotected* well cap is meant for wells located within a user-supplied protected standpipe.

Portable Components

Portable Well Wizard[®] components include a cycle controller, waterlevel meter, disposable sample filters, and a flow-through cell.

Controller

A controller controls operation of the Well Wizard pump by regulating the air flow from a compressed-gas source to the pump.When connected to an appropriate compressed-gas source, the controller alternately pressurizes then vents the air supply line to the pump, allowing the pump to discharge and then fill with water. For more information, please refer to the operation and installationmanuals for the individual controllers.

Water Level Meter

The model MP30 drawdown/water level meter can be connected to the QED cycle controllers to automatically control the drawdown during purging and sampling.

The series 6000 electronic water-level meters use a portable conductivity probe attached to a calibrated tape. There is a light and audio signal when the probe touches the water surface.

Flow Cell

The MP20 is QED's *optional* flow cell. The MP20 lets you know when it's okay to sample - generally saving you from spending a lot of time and from removing large volumes of purge water. The MP20 signals when stabilization has been achieved for selected water parameters.

QuickFilter®

To ensure accurate samples of dissolved metals, you can use an optional QED QuickFilter. It removes solids larger than 0.45 micron. Because QuickFilters are disposable - you use one for each sampling event - there's no need to try to clean or decontaminate the filter from well to well.

Installing the Components

If you've received a set of preassembled dedicated components, you'll find that unpacking them and installing them is easy when you follow the following instructions. Because not everyone needs to read this whole section, the first section helps you decide which of the other sections you need to read.

If, instead of preassembled components you've received unassembled components and bulk tubing, read the section titled "Installing a Pump Using Bulk Tubing."

Unpack the Components

Here's how to unpack the Well Wizard® dedicated components.

- If you need to install a Well Wizard system in more than one well, decide which well you want to do first. Then find the box of components with the correct well-identification number written on the outside of the box.
- 2. Carry the box to the well site, then open the box, but don't touch anything yet.
- **3.** Open the box, then, before unpacking the rest of the box, put on a pair of latex gloves.

Caution: Touching well components with your bare hands can contaminate the components and degrade the quality of the samples obtained using the Well Wizard system, and at any other time when your hands might touch a water-contacting component.

4. Taking care to *not kink the tubing*, gently remove the plasticwrapped pump and tubing from the box. A label on the package provides the well cap ID, cap, and tubing length. You may need this information later, so save the label.

Note: The plastic bag also contains the lab-clean certificate on which is recorded the pump batch serial number. Keep this tag for each pump you install. It's your proof that the pump is contaminant free - if you need to, you can call QED with the serial number to find out which lab certified the pump.

5. Open the plastic wrapping, then gently slide the pump out of the bag.

Installing the Inlet Screen

Install the Inlet Screen

Well Wizard bladder pumps have a 10 year warranty that is valid *only* if you use the appropriate inlet screen.

There are two types of inlet screens: One that you thread onto the pump inlet for 1100 series pumps, and one that you secure with *set screws* for 1200 and 1300 series pumps. The correct screen for each pump is usually included with the other components for the well - the box label tells you where to find the screen. The following sections describe how to install the two types of inlet screens.

Screens For 1100 Series Pumps

To install a screen on an 1100 series pump, follow these steps:

- 1. Still wearing the latex gloves, open the plastic wrapping, then remove the screen.
- **2.** Thread the screen onto the male-threaded pump inlet, making sure the screen is firmly tight.

Screens For 1200 and 1300 Series Pumps

To install a screen on an 1200 & 1300 series pump, follow these steps:

- 1. Still wearing the latex gloves, open the plastic wrapping, then remove from the bag both the screen and the small plastic bag that contains spare set screws and a small Allen wrench.
- 2. Find the groove around the inlet end of the stainless steel pump body (the end opposite the air and water connectors), then slide the screen onto the bottom of the pump assembly, aligning the top rim of the screen with the top groove.

Note: If you have difficulty installing the screen, use the Allen wrench to loosen the set screws a little.

- **3.** Using the Allen wrench, *lightly* tighten each of the set screws, then make sure the screws have engaged the groove.
- 4. Using the Allen wrench, *firmly* tighten each of the set screws.
- 5. Check to make sure the screen is secure.

Installing the Sampling Pump

Caution: Make sure that you don't bring the tubing or other pump components in contact with the ground or any other surface. It's often helpful to spread out a polypropylene tarp next to the well during installation.

- Still wearing the latex gloves, if you have a protected well cap, mark any necessary information - such as well ID and depth - on the label inside the well cap.
- 2. Slowly lower the pump into the well while uncoiling the tubing bundle, until the entire length of tubing is in the well.

Attaching Tubing to the Well Cap

To attach tubing to the well cap, follow the instructions included with the shipment for the appropriate well cap.

Installing a Pump with Bulk Tubing

This section is for you if you ordered your Well Wizard[®] components and tubing unassembled, The following sections tell you how to assemble the components and tubing.

Getting Ready

It's important to not contaminate pump components. Doing so can degrade the quality of the samples obtained using your Well Wizard system. Always wear latex gloves when unpacking and installing Well Wizard components, and any other time when your hands might touch a water-contacting component.

Install the Inlet Screen

Well Wizard bladder pumps have a 10 year warranty that is valid *only* if you use the appropriate inlet screen.

There are two types of inlet screen: One that you thread onto the pump inlet for 1100 series pumps, and one that you secure with *set screws* for 1200 and 1300 series pumps. The correct screen for each pump is usually included with the other components for the well - the box label tells you where to find the screen. The following sections describe how to install the two types of inlet screens.

Screens For 1100 Series Pumps

To install a screen on an 1100 series pump, follow these steps:

- 1. Still wearing the latex gloves, open the plastic wrapping, then remove the screen.
- 2. Thread the screen onto the male-threaded pump inlet, making sure the screen is firmly tight.

Screens For 1200 and 1300 Series Pumps

To install a screen on an 1200 & 1300 series pump, follow these steps:

- 1. Still wearing the latex gloves, open the plastic wrapping, then remove from the bag both the screen and the small plastic bag that contains spare set screws and a small Allen wrench.
- 2. Find the groove around the inlet end of the stainless steel pump body (the end opposite the air and water connectors), then slide the screen onto the bottom of the pump assembly, aligning the top rim of the screen with the top groove.

Installing a Pump with Bulk Tubing

Note: If you have difficulty installing the screen, use the Allen wrench to loosen the set screws a little.

- **3.** Using the Allen wrench, *lightly* tighten each of the set screws, then make sure the screws have engaged the groove.
- **4.** Using the Allen wrench, *firmly* tighten each of the set screws.
- 5. Check to make sure the screen is secure.

Connect the Pump to the Tubing

To connect the pump to the tubing, follow these steps:

- **1.** Separate the discharge (larger) tubing from the air-supply (smaller) tube for 8-12 inches from one end.
- **2.** Loosen the nut-and-ferrule assembly as much as possible without actually removing the nut.
- **3.** Push the air-supply tube into the matching fitting on the top end of the pump.
- 4. Tighten the nut.
- 5. Cut off a short length from the end of the discharge tubing to compensate for the offset height of the discharge tube fitting.

Note: This is usually 3 to 4 inches. You determine the exact length by checking both fitting nuts for full tube insertion after loose assembly.

- 6. Make sure that the tube-to-pump fit is correct before proceeding.
- 7. If the discharge tubing is 3/8" O.D. or larger, or if it has a Teflon lining, you must use a tubing insert, just push the insert into the tubing before inserting the tubing into the tubing fitting.
- **8.** Tighten both fitting nuts finger tight.
- **9.** For each fitting nut, hold the fitting base with *one* wrench and the fitting nut with *another* wrench, then tighten the fitting nut one additional turn.

Cut Tubing to Length

To cut the tubing to the correct lengths, follow these steps:

- **1.** Lower the pump into the well until the pump touches the bottom of the well.
- 2. Raise the pump up, as follows:
 - 1 foot, for low recovery wells
 - To the middle of the screen, for high recovery wells

Attaching Tubing to the Well Cap

To attach tubing to the well cap, follow the instructions included with the shipment for the appropriate well cap.

Bladder Pump Operation in Low-Submergence

Bladder Pump Operation in Low-Submergence Applications

Pump submergence is defined as the height of the static water column above the top of the pump. In wells in which this water column height is 5 feet or less, the pump is considered to be in a low-submergence application.

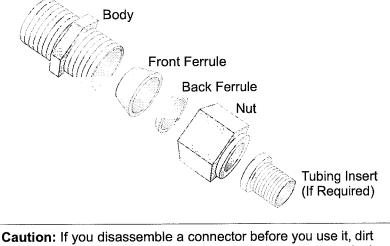
QED sampling bladder pumps fill by hydrostatic pressure. As the inside of the pump's bladder fills with water, the bladder expands. This filling and expanding of the bladder is referred to as the "refill" half of the pump cycle. When air pressure is applied to the outside of the bladder, the bladder is squeezed, forcing the water up the discharge tubing. This is referred to as the "discharge" half of the pump cycle. In low-submergence applications, there is less water pressure available to expand the bladder during the refill.

This can result in a smaller volume of water being pumped with each pump cycle because the bladder may not fully expand.

As a result of the lower volume per cycle, more time will be required to bring the water to the surface. An easy way to verify that the pump is working, prior to the water reaching the surface, is to submerge the pump's discharge tubing in a beaker of water. Each time the pump goes into discharge, air in the discharge tubing, which is displaced as the water level in the tubing rises, can be seen as air bubbles coming from the end of the tubing. To optimize the pumping rate, the refill time should be set long enough to achieve the maximum volume of air bubbles on each pump cycle, and the discharge time should be set long enough to ensure that the air has stopped bubbling out of the tube before the pump controller switches back into refill.

In low submergence wells, <u>it is critical that the air pressure driving</u> <u>the pump not be more than 10-15psi higher than the minimum re-</u> <u>quirement of 0.42psi per foot of pump depth</u>. Higher pressures than this can cause the bladder to be squeezed too tightly during discharge, a condition which can prevent the bladder from expanding during refill. To avoid this condition in deeper wells, it is suggested that the air pressure applied to the pump be gradually increased as the water level in the pump's discharge tubing rises. It is recommended that the air pressure be set at 15psi initially, and slowly increased in increments of 10psi as needed until the water reaches the surface. Submerging the end of the discharge tubing under water as described above will verify whether the air pressure is set high enough.

Install or Replace Pump Connectors


The following sections describe how to install or replace the three types of connectors that may be included in your Well Wizard system.

Stainless Steel Connectors

Swagelok[™] tube fittings, which include four pieces (see figure 5), come to you completely assembled, finger tight.

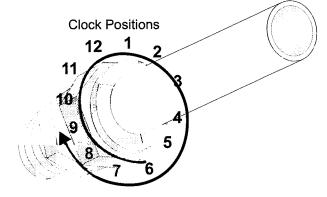
Figure 5

Parts of the Swagelok Tube Fitting

or foreign material can get into the fitting and later cause a leak.

To install a stainless steel connector, follow these steps:

- **1.** If you are working with a 1/2- or 3/4-inch connector, wrap the male threads under the nut with Teflon tape.
- 2. Insert the tubing into the Swagelok tube fitting as follows:
 - For 1/4 -inch tubing, insert it approximately 5/8 inch
 - For 3/4 -inch tubing, insert it up to 7/8 inch


Make sure that the tubing firmly contacts the shoulder of the fitting and that the nut is finger tight.

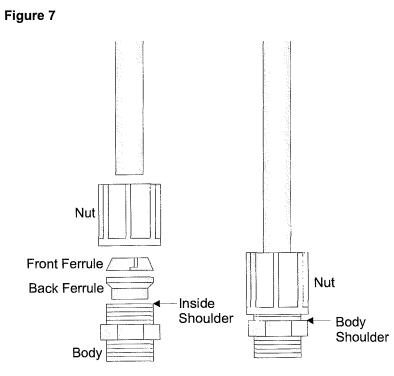
Note: If the discharge tubing is 3/8 inch or larger, you must use a tubing insert, just push the stainless steel insert into the tubing before inserting the tubing into the tube fitting.

Install or Replace Pump Connectors

3. Referring to figure 6, scribe or mark the nut at the 6 o'clock position.

Figure 6

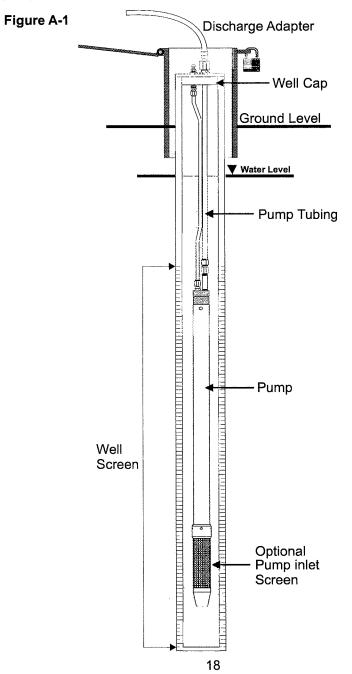
- **4.** While holding the fitting body steady with a backup wrench or vise, tighten the nut as follows, depending on the size of the tube fitting:
 - For fittings larger than 3/16 inch, turn the fitting one and one quarter turns (watch the scribe mark make one complete turn, then continue to the 3 o'clock position).
 - For fittings sizes 1/6, 1/8, and 3/16 inch, turn the fitting three quarters of a turn (watch the scribe mark turn to the 9 o'clock position).


Note: These are guidelines, you may need to further tighten the nut.

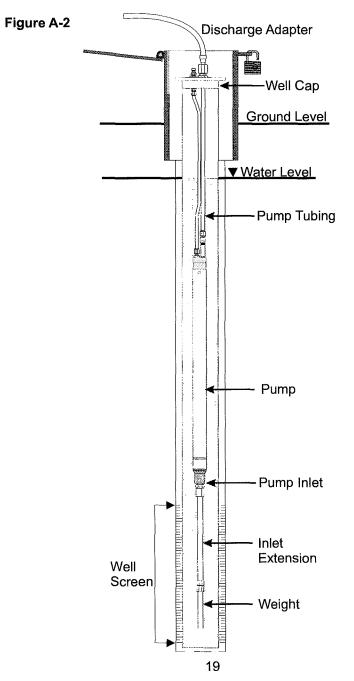
Install or Replace Pump Connectors

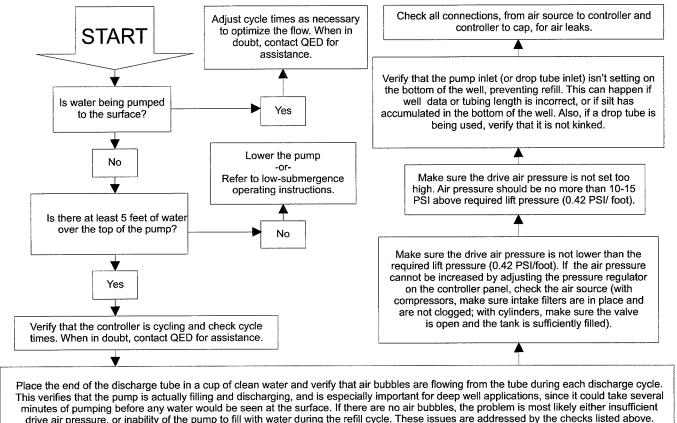
Polypropylene Connector

To install a polypropylene connector, follow these steps.


- 1. Cut the tubing cleanly and squarely to length.
- 2. If the tubing is larger than 1/2 inch, push an insert into the tube.
- **3.** Push the tubing into the completely assembled connector until it contacts the shoulder inside the fitting (see figure 7).
- **4.** Tighten the nut with a wrench, but be careful to not over tighten it; the nut should not come in contact with the shoulder of the body (see figure 7).

17


Sampling System Type A


Figure A-1 shows the Type A sampling system, the basic bladder pump

Sampling System Type L

Figure A-2 shows the Type L sampling system, a bladder pump with an inlet extension.

20

Sampling Pump Troubleshooting Guide

٥

drive air pressure, or inability of the pump to fill with water during the refill cycle. These issues are addressed by the checks listed above. While performing the "bubble test", if water is being drawn up into the tubing during the pump refill, there is a problem either with drain-back through the discharge check ball or weep-hole. If drain-back is occurring, call QED for assistance.

Well Wizard® System Warranty

QED ENVIRONMENTAL SYSTEMS, INC. ("Q.E.D.") warrants to the original purchaser of its products that, subject to the limitations and conditions provided below, the products, materials and/or workman-ship shall reasonably conform to descriptions of the products and shall be free of defects in materials and workmanship. Any failure of the products to conform to this warranty will be remedied by Q.E.D. in the manner provided herein.

This warranty shall be limited to the duration and the conditions set forth below. All warranty durations are calculated from the original date of purchase.

1. *Dedicated-Use Systems Products-* 10 year warranty on dedicated bladder pumps equipped with Q.E.D. inlet screens, and purge pumps used in periodic, non continuous groundwater sampling (up to 52 sampling events per year.) All other components, equipment and accessories are warranted for one year.

2. *Portable-Use Systems-* Controllers and water level meters are warranted for one year. Hose reels, Pumps and Caps are warranted for ninety (90) days. Tubing and Purge Mizers are covered by a ninety (90) day material and work-manship warranty. There will be no warranty for application on tubing and Purge Mizers when used as part of a Portable System.

3. Separately sold parts and Spare Parts Kits- Separately sold parts and spare parts kits are warranted for ninety (90) days. Repairs performed by Q.E.D. are warranted for ninety (90) days from date of repair or for the full term of the original warranty, whichever is longer.

Buyers' exclusive remedy for breach of said warranty shall be as follows: if. and only if, Q.E.D. is notified in writing within applicable warranty period of the existence of any such defect in the said products, and Q.E.D. upon examination of any such defects, shall find the same to be within the term of and covered by the warranty running from Q.E.D. to Buyer, Q.E.D. will, at its option, as soon as reasonably possible, replace or repair any such product, without charge to Buyer. If Q.E.D. for any reason, cannot repair a product covered hereby within four (4) weeks after receipt of the original Purchaser's/Buver's notification of a warranty claim, then Q.E.D.'s sole responsibility shall be, at its option, either to replace the defective product with a comparable new unit at no charge to the Buyer, or to refund the full purchase price. In no event shall such allegedly defective products be returned to Q.E.D. without its consent, and Q.E.D.'s obligations of repair, replacement or refund are conditioned upon the Buyer's return of the defective product to Q.E.D. IN NO EVENT SHALL QED ENVIRONMENTAL SYTEMS BE LIABLE FOR CONSEQUENTIAL DAMAGES OR INCIDENTAL DAMAGES FOR BREACH OF SAID WARRANTY.

The foregoing warranty does not apply to major sub-assemblies and other equipment, accessories and parts manufactured by others, and such other parts, accessories, and equipment are subject only to the warranties, if any, supplied by the respective manufacturers. Q.E.D. makes no warranty concerning products or accessories not manufactured by Q.E.D. In the event of failure of any such product accessory, Q.E.D. will give reasonable assistance to the Buyer in obtaining from the respective manufacturer's own warranty.

Well Wizard[®] System Warranty

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY (INCLDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-ULAR PURPOSE), WHICH OTHER WARRANTIES ARE EXPRESSLY EX-CLUDED HEREBY, and of any other obligations or liabilities on the part of Q.E.D., neither assumes nor authorizes any person to assume for it any other obligation or liability in connection with said products, materials and/or workmanship.

It is understood and agreed that Q.E.D. shall in no event be liable for incidental or consequential damages resulting from its breach of any of the terms of this agreement, nor for special damages, nor for improper selection of any product described or referred to for a particular application.

This warranty will be void in the event of unauthorized disassembly of component assemblies. Defects in any equipment that result from abuse, operation in any manner outside the recommended procedures, use and applications other than for intended use, or exposure to chemical or physical environment beyond the designated limits of materials and construction will also void this warranty. Q.E.D. shall be released from all obligations under all warranties if any product covered hereby is repaired or modified by persons other than Q.E.D.'s service personnel unless such repair by others is made with the written consent of Q.E.D.

If any product covered hereby is actually defective within the terms of this warranty, Purchaser must contact Q.E.D. for determination of warranty coverage. If the return of a component is determined to be necessary, Q.E.D. will authorize the return of the component, at owner's expense. If the product proves not to be defective within the terms of this warranty, then all costs and expenses in connection with the processing of the Purchaser's claim and all costs for repair, parts and labor as authorized by owner hereunder shall be borne by the purchaser.

RESPONSIBILITY OF THE PURCHASER

Q.E.D. to:

The original Purchaser's sole responsibility in the instance of a warranty claim shall be to notify Q.E.D. of the defect, malfunction, or other manner in which the terms of this warranty are believed to be violated. You may secure performance of obligations hereunder by contacting the Customer Service Department of Q.E.D. and:

- Identifying the product involved (by model or serial number or other sufficient description that will allow Q.E.D. to determine which product is defective).
- 2. Specifying where, when, and from whom the product was purchased.
- Describing the nature of the defect or malfunction covered by this warranty.
- 4. Sending the malfunctioning component, after authorization by

QED ENVIRONMENTAL SYSTEMS P.O. Box 3726

Ann Arbor, MI 48106-3726 USA

APPENDIX C6 – STRUCTURAL STABILITY ASSESSMENT

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Structural Stability Assessment

For

Coal Pile Runoff Pond At Zimmer Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Coal Pile Runoff Pond at the Zimmer Power Station meets the structural stability assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(d). The Coal Pile Runoff Pond is located near Moscow, Ohio in Clermont County, approximately 0.6 miles north of the Zimmer Power Station. The Coal Pile Runoff Pond receives leachate from the Zimmer Power Station's on-site landfill, discharge from the Chemical Metal Cleaning waste treatment tank, and pumped flows from the D Basin CCR surface impoundment and other non-CCR ponds at Zimmer Power Station.

The Coal Pile Runoff Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that an initial structural stability assessment for an existing CCR surface impoundment be completed by October 17, 2016. In general, the initial structural stability assessment must document that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial structural stability assessment was conducted in accordance with the requirements of 40 CFR § 257.73(d). The owner or operator must prepare a periodic structural stability assessment every five years.

2 Initial Structural Stability Assessment

40 CFR §257.73(d)(1)

The owner or operator of the CCR unit must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. The assessment must, at a minimum, document whether the CCR unit has been designed, constructed, operated, and maintained with [the standards in (d)(1)(i)-(vii)].

An initial structural stability assessment has been performed to document that the design, construction, operation and maintenance of the Coal Pile Runoff Pond is consistent with recognized and generally accepted good engineering practices and meets the standards in 257.73(d)(1)(i)-(vii). The results of the structural stability assessment are discussed in the following sections. Based on the assessment and its results, the design, construction, operation, and maintenance of the Coal Pile Runoff Pond were found to be consistent with recognized and generally accepted good engineering practices.

2.1 Foundations and Abutments (§257.73(d)(1)(i))

CCR unit designed, constructed, operated, and maintained with stable foundations and abutments.

The stability of the foundations was evaluated using soil data from field investigations and reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the foundations. The Coal Pile Runoff Pond is a ring dike structure and does not have abutments.

The foundation consists of medium stiff to hard clay soil, underlain by loose to very dense sand, which indicates stable foundations. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the foundation. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for Coal Pile Runoff Pond at Zimmer Power Station* (October 2016). A review of information about operations and maintenance as well as current and past performance of the dikes has determined appropriate processes are in place for continued operational performance.

Based on the conditions observed by AECOM, the Coal Pile Runoff Pond was designed and constructed with stable foundations. Any issues related to the stability of the foundation is addressed during operations and maintenance; therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(i).

2.2 Slope Protection (§257.73(d)(1)(ii))

CCR unit designed, constructed, operated, and maintained with adequate slope protection to protect against surface erosion, wave action and adverse effects of sudden drawdown.

The adequacy of slope protection was evaluated by reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM.

Based on this evaluation, adequate slope protection was designed and constructed at the Coal Pile Runoff Pond. No evidence of significant areas of erosion or wave action were observed and slopes were covered in vegetation. The Zimmer Power Station regularly maintains the slopes, including repairing observed surface erosion and addressing areas of poor vegetation growth, as required. Due to the characteristics of the outfall structure for the

2.3 Dike Compaction (§257.73(d)(1)(iii))

CCR unit designed, constructed, operated, and maintained with dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit.

The density of the dike materials was evaluated using soil data from field investigations and reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the dike over the range of expected loading conditions as defined within §257.73(e)(1).

Based on this evaluation, the dike consists of very stiff to hard clay material, which is indicative of mechanically compacted dikes. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the dike. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for Coal Pile Runoff Pond at Zimmer Power Station* (October 2016); therefore, the original design and construction of the Coal Pile Runoff Pond included sufficient dike compaction. Deficiencies related to compaction of the dikes are identified and mitigated as part of operations and maintenance, in order to maintain sufficient compaction and density of the dikes to withstand the range of loading conditions. Therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(iii).

2.4 Vegetated Slopes (§257.73(d)(1)(iv))¹

CCR unit designed, constructed, operated, and maintained with vegetated slopes of dikes and surrounding areas, except for slopes which have an alternate form or forms of slope protection.

The adequacy of slope vegetation was evaluated by reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM.

Based on this evaluation, the vegetation on the interior and exterior slopes is adequate as no substantial bare or overgrown areas were observed. Therefore, the original design and construction of the Coal Pile Runoff Pond included adequate vegetation of the dikes and surrounding areas. Adequate operational and maintenance practices are in place to regularly manage vegetation growth, including mowing and seeding any bare areas, as evidenced by the conditions observed by AECOM. Therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(iv).

¹ As modified by court order issued June 14, 2016, Utility Solid Waste Activities Group v. EPA, D.C. Cir. No. 15-1219 (order granting remand and vacatur of specific regulatory provisions).

2.5 Spillways (§257.73(d)(1)(v))

CCR unit designed, constructed, operated, and maintained with a single spillway or a combination of spillways configured as specified in [paragraph (A) and (B)]:

(A) All spillways must be either:

(1) of non-erodible construction and designed to carry sustained flows; or

(2) earth- or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected.

- (B) The combined capacity of all spillways must adequately manage flow during and following the peak discharge from a:
 - (1) Probable maximum flood (PMF) for a high hazard potential CCR surface impoundment; or
 - (2) 1000-year flood for a significant hazard potential CCR surface impoundment; or
 - (3) 100-year flood for a low hazard potential CCR surface impoundment.

The spillway was evaluated using design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, hydrologic and hydraulic analyses were completed to evaluate the capacity of the spillway relative to inflow estimated for the 1,000-year flood event for the significant hazard potential Coal Pile Runoff Pond. The hazard potential classification assessment was performed by Stantec in 2016 in accordance with §257.73(a)(2).

The spillway consists of two, high-density polyethylene (HDPE) pipes, which is a non-erodible material that is designed to carry sustained flows. The capacity of the spillway was evaluated using hydrologic and hydraulic analysis performed per §257.82(a). The analysis found that the spillway can adequately manage flow during peak discharge resulting from the 1,000-year storm event without overtopping of the embankments. The hydrologic and hydraulic analyses are discussed in the *CCR Rule Report: Initial Inflow Design Flood Control System Plan for Coal Pile Runoff Pond at Zimmer Power Station* (October 2016). Any issues with the spillway are repaired and debris or other obstructions are removed from the spillway during operations and maintenance, as appropriate and as evidenced by the conditions observed by AECOM. Therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(v).

2.6 Stability and Structural Integrity of Hydraulic Structures (§257.73(d)(1)(vi))

CCR unit designed, constructed, operated, and maintained with hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure.

The stability and structural integrity of the hydraulic structure penetrating the dike of the Coal Pile Runoff Pond, which includes two HDPE pipe conduits, was evaluated using design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. No other hydraulic structures are known to pass through the dike of or underlie the base of the Coal Pile Runoff Pond.

AECOM's field observations found the HDPE pipes to be free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris that may negatively affect the operation of the hydraulic structure. Operations and maintenance practices are in place to remove debris or other obstructions from the hydraulic structures, and address any deficiencies, as evidenced by conditions observed by AECOM. As a result, these procedures are appropriate for maintaining the hydraulic structures. Therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(vi).

2.7 Downstream Slope Inundation/Stability (§257.73(d)(1)(vii))

CCR unit designed, constructed, operated, and maintained with, for CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.

The structural stability of the downstream slopes of the Coal Pile Runoff Pond was evaluated by comparing the location of the Coal Pile Runoff Pond relative to adjacent water bodies using published Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM), aerial imagery, conditions observed in the field by AECOM, and sudden drawdown slope stability analyses.

Based on this evaluation, the Ohio River is adjacent to the western downstream slope of the Coal Pile Runoff Pond. No other downstream water bodies such as rivers, streams, or lakes are adjacent to the Coal Pile Runoff Pond. Several adjacent non-CCR surface impoundments are present, but they are not a river, stream, or lake.

A sudden drawdown slope stability analysis was performed for a cross section adjacent to the Ohio River considered critical for sudden drawdown slope stability analysis. The analysis considered drawdown of the pool in the Ohio River from a 100-year flood condition, as found from the FEMA FIRM map, to an empty pool condition, thereby evaluating both sudden drawdown and low pool conditions. The resulting factor of safety was found to satisfy the criteria listed in United States Army Corps of Engineers Engineer Manual 1110-2-1902 for drawdown from normal to empty pool, as factor of safety criteria for sudden drawdown slope stability analysis is not expressly stated as a requirement of §257.73(d)(1)(vii). Therefore, the Coal Pile Runoff Pond meets the requirements listed in §257.73(d)(1)(vii).

Certification Statement 3

CCR Unit: Zimmer Power Station; Coal Pile Runoff Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial structural stability assessment dated October 13, 2016 was conducted in accordance with the requirements of 40 CFR § 257.73(d).

VICTIR A MODEER SR. Printed Name 10/13/10 Date Date

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Structural Stability Assessment

For

Gypsum Recycle Pond At Zimmer Power Station

This Coal Combustion Residual (CCR) Rule Report documents that the Gypsum Recycle Pond at the Zimmer Power Station is exempt from the structural stability assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(d). The Gypsum Recycle Pond is located near Moscow, Ohio in Clermont County, approximately 0.1 miles northeast of the Zimmer Power Station. The Gypsum Recycle Pond serves as a storage pond for miscellaneous CCRs from wash-down collection systems and stormwater runoff at the Zimmer Power Station.

The Gypsum Recycle Pond is an incised CCR surface impoundment, as defined in 40 CFR 257.53. Under 40 CFR §257.73(b) structural stability assessments (§257.73(d)) must be performed for an existing CCR surface impoundment that:

- 1. Has a height of five feet or more and a storage volume of 20 acre-feet or more; or
- 2. Has a height of 20 feet or more.

The Gypsum Recycle Pond does not satisfy the criteria of §257.73(b) because the incised impoundment does not have dikes. Therefore, the Gypsum Recycle Pond is not subject to the structural stability assessment requirements under §257.73(d).

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Structural Stability Assessment

For

D Basin

At Zimmer Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the D Basin at the Zimmer Power Station meets the structural stability assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(d). The D Basin is located near Moscow, Ohio in Clermont County, approximately 0.5 miles north of the Zimmer Power Station. The D Basin serves as a dewatering basin for CCR produced by the Zimmer Power Station.

The D Basin is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that an initial structural stability assessment for an existing CCR surface impoundment be completed by October 17, 2016. In general, the initial structural stability assessment must document that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial structural stability assessment was conducted in accordance with the requirements of 40 CFR § 257.73(d). The owner or operator must prepare a periodic structural stability assessment every five years.

2 Initial Structural Stability Assessment

40 CFR §257.73(d)(1)

The owner or operator of the CCR unit must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. The assessment must, at a minimum, document whether the CCR unit has been designed, constructed, operated, and maintained with [the standards in (d)(1)(i)-(vii)].

An initial structural stability assessment has been performed to document that the design, construction, operation and maintenance of the D Basin is consistent with recognized and generally accepted good engineering practices and meets the standards in 257.73(d)(1)(i)-(vii). The results of the structural stability assessment are discussed in the following sections. Based on the assessment and its results, the design, construction, operation, and maintenance of the D Basin were found to be consistent with recognized and generally accepted good engineering practices.

2.1 Foundations and Abutments (§257.73(d)(1)(i))

CCR unit designed, constructed, operated, and maintained with stable foundations and abutments.

The stability of the foundations was evaluated using soil data from field investigations and reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the foundations. The D Basin is a ring dike structure and does not have abutments.

The foundation consists of soft to stiff alluvial soil overlying medium dense to very dense alluvial soil. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the foundation. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for D Basin at Zimmer Power Station* (October 2016). Additional slope stability analyses were performed to evaluate the effects of cyclic softening in the foundation, and were found to satisfy the criteria in §257.73(e)(1)(iv) applicable to dikes. A review of information about operations and maintenance as well as current and past performance of the dikes has determined appropriate processes are in place for continued operational performance.

Based on the conditions observed by AECOM, the D Basin was designed and constructed with stable foundations. Any issues related to the stability of the foundation is addressed during operations and maintenance; therefore, the D Basin meets the requirements in §257.73(d)(1)(i).

2.2 Slope Protection (§257.73(d)(1)(ii))

CCR unit designed, constructed, operated, and maintained with adequate slope protection to protect against surface erosion, wave action and adverse effects of sudden drawdown.

The adequacy of slope protection was evaluated by reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM.

Based on this evaluation, adequate slope protection was designed and constructed at the D Basin. No evidence of significant areas of erosion or wave action were observed. Under normal operating conditions there is no free water present within the D Basin. The interior slopes are protected vegetation and a bottom ash protection layer. The exterior slopes are protected with vegetation. The bottom ash protection layer on the interior slopes isolates

the embankment soils from surface erosion, wave action, and acts as a free-draining material that is not susceptible to the adverse effects of sudden drawdown. Therefore, the D Basin meets the requirements in §257.73(d)(1)(ii).

2.3 Dike Compaction (§257.73(d)(1)(iii))

CCR unit designed, constructed, operated, and maintained with dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit.

The density of the dike materials was evaluated using soil data from field investigations and reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the dike over the range of expected loading conditions as defined within §257.73(e)(1).

Based on this evaluation, the dike consists of medium dense to very dense material, which is indicative of mechanically compacted dikes. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the dike. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for D Basin at Zimmer Power Station* (October 2016); therefore, the original design and construction of the D Basin included sufficient dike compaction. Deficiencies related to compaction of the dikes are identified and mitigated as part of operations and maintenance, in order to maintain sufficient compaction and density of the dikes to withstand the range of loading conditions. Therefore, the D Basin meets the requirements in §257.73(d)(1)(iii).

2.4 Vegetated Slopes (§257.73(d)(1)(iv))¹

CCR unit designed, constructed, operated, and maintained with vegetated slopes of dikes and surrounding areas, except for slopes which have an alternate form or forms of slope protection.

The adequacy of slope vegetation was evaluated by reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM.

Based on this evaluation, the vegetation on the exterior slopes, and vegetation where present on the interior slopes, is adequate as no substantial bare or overgrown areas were observed. Where vegetation is not present on the interior slopes, the bottom ash protection layer is used as an alternate form of slope protection, which is adequate as significant areas of erosion or wave action were not observed. Therefore, the original design and construction of the D Basin included adequate vegetation of the dikes and surrounding areas. Adequate information about operations and maintenance are in place to regularly manage vegetation growth, including mowing and seeding any bare areas, as evidenced by the conditions observed by AECOM. Therefore, the D Basin meets the requirements in §257.73(d)(1)(iv).

¹ As modified by court order issued June 14, 2016, Utility Solid Waste Activities Group v. EPA, D.C. Cir. No. 15-1219 (order granting remand and vacatur of specific regulatory provisions).

2.5 Spillways (§257.73(d)(1)(v))

CCR unit designed, constructed, operated, and maintained with a single spillway or a combination of spillways configured as specified in [paragraph (A) and (B)]:

(A) All spillways must be either:

(1) of non-erodible construction and designed to carry sustained flows; or

(2) earth- or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected.

- (B) The combined capacity of all spillways must adequately manage flow during and following the peak discharge from a:
 - (1) Probable maximum flood (PMF) for a high hazard potential CCR surface impoundment; or
 - (2) 1000-year flood for a significant hazard potential CCR surface impoundment; or
 - (3) 100-year flood for a low hazard potential CCR surface impoundment.

The 257.73(d)(1)(v)(A) requirements are not applicable to the D Basin at the Zimmer Power Station because a spillway is not present. However, the 257.73(d)(1)(v)(B) requirement was evaluated to determine if the D Basin meets the requirements without a spillway system present, as discussed below.

The ability of the D Basin to adequately manage flow without a spillway system was evaluated using hydrologic and hydraulic analysis performed per §257.82(a). The analysis found that the D Basin can adequately manage flow during peak discharge resulting from the 1,000-year storm event without overtopping of the embankments. The hazard potential classification assessment was performed by Stantec in 2016 in accordance with §257.73(a)(2).The hydrologic and hydraulic analyses are discussed in the *CCR Rule Report: Initial Inflow Design Flood Control System Plan for D Basin at Zimmer Power Station* (October 2016). Therefore, the D Basin meets the requirements in §257.73(d)(1)(v)(B), even though a spillway system is not present.

2.6 Stability and Structural Integrity of Hydraulic Structures (§257.73(d)(1)(vi))

CCR unit designed, constructed, operated, and maintained with hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure.

Based on an evaluation of design drawings, information about operations and maintenance, and conditions observed in the field by AECOM, no hydraulic structures are present that underlie the base or pass through the dike of the D Basin. Therefore, the §257.73(d)(1)(vi) requirements are not applicable to the D Basin.

2.7 Downstream Slope Inundation/Stability (§257.73(d)(1)(vii))

CCR unit designed, constructed, operated, and maintained with, for CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.

The structural stability of the downstream slopes of the D Basin was evaluated by comparing the location of the D Basin relative to adjacent water bodies using published Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM), aerial imagery, conditions observed in the field by AECOM, and sudden drawdown slope stability analyses.

Based on this evaluation, the Ohio River is adjacent to the western downstream slope of the D Basin. No other downstream water bodies are adjacent to the D Basin. The adjacent C and B Basins do not retain a pool that inundates the downstream slope of the D Basin during normal conditions.

A sudden drawdown slope stability analysis was performed at a cross-section considered critical for sudden drawdown slope stability analysis. The analysis considered drawdown of the pool in the Ohio River from a 100-year flood condition, as found from the FEMA FIRM map, to an empty pool condition, thereby evaluating both

sudden drawdown and low pool conditions. The resulting factor of safety was found to satisfy the criteria listed in United States Army Corps of Engineers Engineer Manual 1110-2-1902 for drawdown from normal to low pool, as factor of safety criteria for sudden drawdown slope stability analysis is not expressly stated as a requirement of §257.73(d)(1)(vii). Therefore, the D Basin meets the requirements listed in §257.73(d)(1)(vii).

Certification Statement 3

CCR Unit: Zimmer Power Station; D Basin

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial structural stability assessment dated October 13, 2016 was conducted in accordance with the requirements of 40 CFR § 257.73(d).

VICTOR A MODELER SR. Printed Name

APPENDIX C7 – SAFETY FACTOR ASSESSMENT

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

Coal Pile Runoff Pond At Zimmer Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Coal Pile Runoff Pond at the Zimmer Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The Coal Pile Runoff Pond is located near Moscow, Ohio in Clermont County, approximately 0.6 miles north of the Zimmer Power Station. The Coal Pile Runoff Pond receives leachate from the Zimmer Power Station's on-site landfill, discharge from the Chemical Metal Cleaning waste treatment tank, and pumped flows from the D Basin CCR surface impoundment and other non-CCR ponds at Zimmer Power Station.

The Coal Pile Runoff Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.

2 Initial Safety Factor Assessment

40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of the Coal Pile Runoff Pond. The exploration consisted of hollow-stem auger borings and laboratory program including strength and index testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

In general, the subsurface conditions at the Coal Pile Runoff Pond consist of very stiff to hard clay embankment fill underlain by medium stiff to hard alluvial clay. The alluvial clay layer is underlain by a layer of medium dense to very dense sand and gravel extending to bedrock. Phreatic water is within the foundation soils of the Coal Pile Runoff Pond.

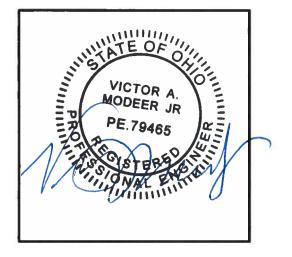
Three (3) representative cross sections were analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross sections were located to represent critical surface geometry, subsurface stratigraphy, and phreatic conditions across the site. Each cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

The Soils Susceptible to Liquefaction loading condition, §257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibility evaluation did not find soils susceptible to liquefaction within the Coal Pile Runoff Pond dikes. As a result, this loading condition is not applicable to the Coal Pile Runoff Pond.

Results of the Initial Safety Factor Assessments, for the critical cross-section for each loading condition (i.e. the lowest calculated factor of safety out of the cross sections analyzed for each condition), are listed in **Table 1**.

Loading Conditions	§257.73(e)(1) Subsection	Minimum Factor of Safety	Calculated Factor of Safety
Maximum Storage Pool Loading	(i)	1.50	2.28
Maximum Surcharge Pool Loading	(ii)	1.40	2.28
Seismic	(iii)	1.00	1.60
Soils Susceptible to Liquefaction	(iv)	1.20	Not Applicable

 Table 1 – Summary of Initial Safety Factor Assessments


Based on this evaluation, the Coal Pile Runoff Pond meets the requirements in §257.73(e)(1).

3 **Certification Statement**

CCR Unit: Zimmer Power Station: Coal Pile Runoff Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 12, 2016 meets the requirements of 40 CFR §257.73(e).

VICTOR A MODEER SR. Printed Name Date

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

Gypsum Recycle Pond At Zimmer Power Station

This Coal Combustion Residual (CCR) Rule Report documents that the Gypsum Recycle Pond at the Zimmer Power Station is exempt from the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The Gypsum Recycle Pond is located near Moscow, Ohio in Clermont County, approximately 0.1 miles northeast of the Zimmer Power Station. The Gypsum Recycle Pond serves as a storage pond for miscellaneous CCRs from wash-down collection systems and stormwater runoff at the Zimmer Power Station.

The Gypsum Recycle Pond is an incised CCR surface impoundment as defined by 40 CFR 257.53. Under 40 CFR §257.73(b), a safety factor assessment (§257.73(e)) must be performed for an existing CCR surface impoundment that:

- 1. Has a height of five feet or more and a storage volume of 20 acre-feet or more; or
- 2. Has a height of 20 feet or more.

The Gypsum Recycle Pond does not satisfy the criteria of §257.73(b) because the incised impoundment does not have dikes. Therefore, the Gypsum Recycle Pond is not subject to safety factor assessment requirements under §257.73(e).

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

D Basin

At Zimmer Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the D Basin at the Zimmer Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The D Basin is located near Moscow, Ohio in Clermont County, approximately 0.5 miles north of the Zimmer Power Station. The D Basin serves as a dewatering basin for CCR produced by the Zimmer Power Station.

The D Basin is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.

2 Initial Safety Factor Assessment

40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of the D Basin. The exploration consisted of hollow-stem auger borings and laboratory program including strength, hydraulic conductivity, and index testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

In general, the subsurface conditions at the D Basin consist of medium dense to dense sand overlying soft to stiff alluvial clay, which in turn overlies medium dense to very dense sand and gravel. Phreatic water is within the foundation of the D Basin.

A critical cross section was analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross section was located at the maximum embankment height for the D Basin. Due to the relatively short height of the D Basin embankments and uniform slope orientations, subsurface stratigraphy, and phreatic conditions, a cross section at the maximum embankment height is sufficient to represent the critical cross section. The cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

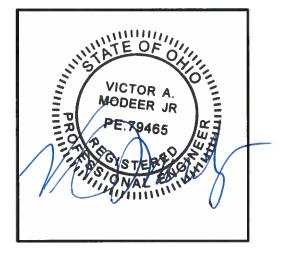
The Soils Susceptible to Liquefaction loading condition, §257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibility evaluation did not find soils susceptible to liquefaction within the D Basin dikes. As a result, this loading condition is not applicable to the D Basin.

Results of the Initial Safety Factor Assessments are listed in Table 1.

Loading Conditions	§257.73(e)(1) Subsection	Minimum Factor of Safety	Calculated Factor of Safety
Maximum Storage Pool Loading	(i)	1.50	3.88
Maximum Surcharge Pool Loading	(ii)	1.40	2.63
Seismic	(iii)	1.00	1.79
Soils Susceptible to Liquefaction	(iv)	1.20	Not Applicable

 Table 1 – Summary of Initial Safety Factor Assessments

Based on this evaluation, the D Basin meets the requirements in §257.73(e)(1).


3 **Certification Statement**

CCR Unit: Zimmer Power Station; D Basin

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 13, 2016 meets the requirements of 40 CFR §257.73(e).

VICTIR A MODEER SR. Printed Name

Date

APPENDIX C8 – CLOSURE PLANS (COAL PILE RUNOFF POND, GYPSUM RECYCLE POND, D BASIN)

40 C.F.R. § 257.102(B)(3): Closure Plan Addendum Zimmer Coal Pile Runoff Pond August 13, 2021

ADDENDUM NO. 1 ZIMMER COAL PILE RUNOFF POND CLOSURE PLAN

This Addendum No. 1 to the Closure Plan for Existing Coal Combustion Residuals (CCR) Impoundment for the Zimmer Coal Pile Runoff Pond at the Zimmer Power Plant, Revision 0 – October 17, 2016 has been prepared to meet the requirements of 40 C.F.R. § 257.103(f)(2)(v)(D) as a component of the demonstration that the Zimmer Coal Pile Runoff Pond qualifies for a site-specific alternative deadline to initiate closure due to permanent cessation of a coal-fired boiler by a certain date.

The Zimmer Coal Pile Runoff Pond will begin construction of closure and cease receipt and placement of CCR and non-CCR wastestreams no later than October 17, 2022 as indicated in the Zimmer Power Plant Alternative Closure Demonstration dated August 13, 2021. Closure will be completed by October 17, 2023.

All other aspects of the Closure Plans remain unchanged.

CERTIFICATION

I, Nicole M. Pagano, a Qualified Professional Engineer in good standing in the State of Ohio, certify that the information in this addendum is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole^VM. Pagano Qualified Professional Engineer 85428 Ohio Ramboll Americas Engineering Solutions, Inc. Date: 8/13/2021

40 C.F.R. § 257.102(B)(3): Closure Plan Addendum Zimmer Gypsum Recycle Pond August 13, 2021

ADDENDUM NO. 1 ZIMMER GYPSUM RECYCLE POND CLOSURE PLAN

This Addendum No. 1 to the Closure Plan for Existing Coal Combustion Residuals (CCR) Impoundment for the Zimmer Gypsum Recycle Pond at the Zimmer Power Plant, Revision 0 – October 17, 2016 has been prepared to meet the requirements of 40 C.F.R. § 257.103(f)(2)(v)(D) as a component of the demonstration that the Zimmer Gypsum Recycle Pond qualifies for a site-specific alternative deadline to initiate closure due to permanent cessation of a coal-fired boiler by a certain date.

The Zimmer Gypsum Recycle Pond will begin construction of closure and cease receipt and placement of CCR and non-CCR wastestreams no later than October 17, 2022 as indicated in the Zimmer Power Plant Alternative Closure Demonstration dated August 13, 2021. Closure will be completed by October 17, 2023.

All other aspects of the Closure Plans remain unchanged.

CERTIFICATION

I, Nicole M. Pagano, a Qualified Professional Engineer in good standing in the State of Ohio, certify that the information in this addendum is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole^VM. Pagano Qualified Professional Engineer 85428 Ohio Ramboll Americas Engineering Solutions, Inc. Date: 8/13/2021

40 C.F.R. § 257.102(B)(3): Closure Plan Addendum Zimmer D Basin August 13, 2021

ADDENDUM NO. 1 ZIMMER D BASIN CLOSURE PLAN

This Addendum No. 1 to the Closure Plan for Existing Coal Combustion Residuals (CCR) Impoundment for the Zimmer D Basin at the Zimmer Power Plant, Revision 0 – October 17, 2016 has been prepared to meet the requirements of 40 C.F.R. § 257.103(f)(2)(v)(D) as a component of the demonstration that the Zimmer D Basin qualifies for a site-specific alternative deadline to initiate closure due to permanent cessation of a coal-fired boiler by a certain date.

The Zimmer D Basin will begin construction of closure and cease receipt and placement of CCR and non-CCR wastestreams no later than October 17, 2022 as indicated in the Zimmer Power Plant Alternative Closure Demonstration dated August 13, 2021. Closure will be completed by October 17, 2023.

All other aspects of the Closure Plans remain unchanged.

CERTIFICATION

I, Nicole M. Pagano, a Qualified Professional Engineer in good standing in the State of Ohio, certify that the information in this addendum is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole^VM. Pagano Qualified Professional Engineer 85428 Ohio Ramboll Americas Engineering Solutions, Inc. Date: 8/13/2021

CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 **O** 816-333-9400 **F** 816-333-3690 www.burnsmcd.com