Dynegy Zimmer, LLC

ZIMMER POWER STATION
MOSCOW, CLERMONT COUNTY, OHIO

Emergency Action Plan (EAP)

40 CFR § 257.73(a)(3)
Coal Combustion Residual (CCR) Impoundments & Related Facilities

- Coal Pile Runoff Pond (NID # OH01393)
- D Basin (NID # OH01393)

Revision Date: April 13, 2017
Qualified Professional Engineer Certification; Emergency Action Plan for the Zimmer Power Station Coal Pile Runoff Pond and D Basin.

In accordance with 40 CFR 257.73(a)(3)(iv), the owner or operator of a CCR unit that is required to prepare a written Emergency Action Plan under 40 CFR 257.73(a)(3) must obtain a certification from a qualified professional engineer stating that the written Emergency Action Plan meets the requirements of 40 CFR 257.73(a)(3).

I, David Hayson, being a Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that:

1. the information contained in this Emergency Action Plan was prepared in accordance with the accepted practice of engineering; and

2. this Emergency Action Plan meets the requirements of 40 CFR 257.73(a)(3).

SIGNATURE ___________________________ DATE __4/13/17__

ADDRESS: Stantec Consulting Services Inc.
11687 Lebanon Road
Cincinnati OH 45241-2012

TELEPHONE: (513) 842-8200
ZIMMER POWER STATION
EMERGENCY ACTION PLAN
CCR IMPOUNDMENTS & RELATED FACILITIES

TABLE OF CONTENTS

Section Page
1 STATEMENT OF PURPOSE ..1
2 COMMUNICATION ...4
3 EAP ROLES AND RESPONSIBILITIES8
4 EAP RESPONSE ...9
5 PREPAREDNESS ...14
6 FACILITY/IMPOUNDMENT DESCRIPTION17
7 BREACH INUNDATION MAPS AND POTENTIAL IMPACTS19

List of Tables

Table Page
Table 2-1. EAP Emergency Responders ..7
Table 3-1. Summary of EAP Roles ...8
Table 4-1. Guidance for Determining the Response Level9
Table 4-2. Impoundment Trigger Elevations ..10
Table 4-3. Step 3: Emergency Actions ...11
Table 5-1. Emergency Supplies and Equipment ..15
Table 5-2. Supplier Addresses ...16
Table 6-1. Station Impoundment Characteristics ..18

List of Figures

Figure Page
Figure 1-1. Zimmer Power Station Location Map ..2
Figure 1-2. Zimmer Power Station CCR Impoundments & Related Facilities 3
Figure 2-1. Summary/Sequence of Tasks 4-Step Incident Response Process4
Figure 2-2. Notification Flowchart ..5
Figure 2-3. EAP Response Process Decision Tree ..6
Figure 7-1. Coal Pile Runoff Pond Inundation Map ..20
Figure 7-2. D Basin Inundation Map ...21
ZIMMER POWER STATION
EMERGENCY ACTION PLAN
CCR IMPOUNDMENTS & RELATED FACILITIES

1 STATEMENT OF PURPOSE

The Zimmer Power Station (Station) is located near Moscow in Clermont County, Ohio. The location is shown in Figure 1-1. The Station is a coal-fired electricity producing power plant operated by Dynegy Zimmer, LLC, a subsidiary of Dynegy. This Emergency Action Plan (EAP) was prepared in accordance with 40 CFR § 257.73(a)(3) and covers the following Coal Combustion Residual (CCR) surface impoundments located at the site:

- Coal Pile Runoff Pond
- D Basin

The locations of these impoundments are shown in Figure 1-2. Section 6 of this EAP includes a description of each impoundment.

The purpose of this Emergency Action Plan (EAP) is to:

1. Safeguard the lives, as well as to reduce property damage, of citizens living within potential downstream flood inundation areas of CCR impoundments and related facilities at the Zimmer Power Station.
2. Define the events or circumstances involving the CCR impoundments and related facilities at the Zimmer Power Station that represent atypical operating conditions that pose a safety hazard or emergency and how to identify those conditions.
3. Define responsible persons, their responsibilities, and notification procedures in the event of a safety emergency.
4. Provide contact information of emergency responders.
5. Identify emergency actions in the event of a potential or imminent failure of the impoundments.
6. Identify the downstream area that would be affected by failure of the impoundments.
7. Provide for effective facility surveillance, prompt notification to local Emergency Management Agencies, citizen warning and notification responses, and preparation should an emergency occur.

Information provided by Dynegy was utilized and relied upon in preparation of this report.
2 COMMUNICATION

To facilitate understanding among everyone involved in implementing this EAP, four response levels are used to identify the condition of an impoundment. These are:

Response Levels:

- **Level 0:** Normal conditions and routine operations, including surveillance and initial investigation of unusual conditions and effects of storm events.
- **Level 1:** Potentially hazardous condition exists, requiring investigation and possible corrective action.
- **Level 2:** Potential failure situation is developing; possible mode of failure is being assessed; corrective measures are underway.
- **Level 3:** Failure is occurring or is imminent, public protective actions are required.

The 4-Step Incident Response Process is outlined in Figure 2-1. This should be used in conjunction with the Notification Flowchart (Figure 2-2) and EAP Decision Tree (Figure 2-3). Section 4 provides guidance tables for determining Response Levels and a table providing emergency actions to be taken given various situations. Table 2-1 lists contact information for the emergency responders.

Figure 2-1. Summary/Sequence of Tasks 4-Step Incident Response Process

Step 1: Detection, Evaluation, and Response Level Determination

Sequence of Tasks:

- Notify EAP Coordinator, Station Management (Director and Engineering), and Dynegy Dam Safety Manager of unusual condition detected and confer on next steps needed.
- Conduct technical evaluation of conditions as needed.
- Determine Response Level based on evaluation. *(Table 4-1)*
- Reset Response Level as revised evaluations warrant.

Step 2: Notification

Sequence of Tasks:

- Notify authorities, designated personnel, and external response partners of change in Response Level, using the Notification Flowchart. *(Figure 2-2)*
- Re-notify authorities, designated personnel, and external response partners as Response Level is changed.

Step 3: Emergency Actions

Sequence of Tasks:

- Perform emergency actions with goal of saving the impoundment and minimizing impacts to life, property, and environment. *(Table 4-3)*
- Take continuous actions to include situation assessment, information sharing, remediation, and public safety advisories or warnings, as warranted.
- Revise action plan as changes in conditions warrant.

Step 4: Follow-up

Sequence of Tasks:

- Document conditions and decisions in the Emergency Incident Log.
- Notify authorities, designated personnel, and external response partners that condition is stabilized; limit incident termination declarations to conditions at the site.
- Conduct and document after-action review of incident and response.
Figure 2-2. Notification Flowchart

Initial Detector
- (Internal)
- Station Control Room
- 911

Initial Detector
- (External)
- Station Managing Director
 - Ben Albright
- Station Engineering Manager
 - Ben Ruggiero
- Dynegy Dam Safety Manager
 - Jason Campbell

EAP Coordinator
- Alan Bedinghaus
 - (Station Environmental Manager)

Response Level
- Level 0
- Level 1
- Level 2
- Level 3

Dynegy Construction Manager
- Steve Blueymer

Station Shift Supervisor

Onsite Personnel

Dynegy Corporate

Clermont County ESDA/EMA Coordinator
- Office: (513) 732-7661

Affected Parties
- Local/County Police, Fire & Rescue
 - Clermont County 911 Communication Center: 911 OR (513) 732-7777
 - Clermont County Sheriff: Robert S. Leachy (513) 732-2331
 - New Richmond Police Department (513) 553-3121
 - Washington Township Fire Department (513) 876-3473

Zimmer Power Station, Moscow, Clermont County, Ohio
Figure 2-3. EAP Response Process Decision Tree

Note: At any given below, if failure is imminent or actively occurring CALL 911 IMMEDIATELY to notify emergency responders and then continue with process afterwards.

- **STEP 1** Detection, Evaluation, and Response Level Determination
 - Personnel detects unusual operating event/condition
 - Notify: Station Control Room
 - Notify: EAP Coordinator
 - Notify: Station Engineering Manager
 - Assess unusual event

- **RESPONSE LEVEL 1**
 - Gather more data
 - Is there sufficient data to proceed?
 - YES
 - Set Initial Response Level Using Condition/Event Assessment Determination
 - Assess reservoir conditions using
 - Notify: Station Managing Director
 - Dynegy Dam Safety Manager
 - YES (Response Level > 0)
 - Declare Incident
 - Assess conditions using
 - Set Initial Response Level
 - Using Condition/Event Assessment Determination
 - Gather more data
 - NO

- **RESPONSE LEVEL 2 OR 3**
 - Implement Response Level 1 Actions:
 - Frequent surveillance of condition/event
 - Be prepared for Level 2 and 3 Actions
 - IMPLEMENT RESPONSE LEVEL 2 ACTIONS:
 - Communications:
 - See Figure 2-2 Notification Flowchart
 - Implement Response Level 2 Actions:
 - Constant surveillance of condition/event
 - Repair and mitigate damages where possible (i.e. sandbagging boils, using pumps to lower pool, etc.)
 - Clear any obstructions/debris from impoundment spillways and downstream culverts/bridges
 - Place damage mitigation structures where applicable
 - Notify operators of upstream and downstream flow control structures (i.e. dams) to prepare or start performing gate operations
 - Be prepared for Level 3 actions

- **RESPONSE LEVEL 3**
 - Implement Response Level 3 Actions:
 - After promptly notifying local/county ESDA/EMA of Response Level 3; provide support to ESDA/EMA’s where possible
 - Perform emergency actions depicted in Table 4-3 as applicable
 - If applicable, notify operators of upstream and downstream flow control structures (i.e. dams) of the imminent or actively occurring emergency incident

- **STEP 2** Notification
 - NO
 - YES
 - Failure Imminent or Occurring?
 - YES
 - Implement Response Level 3 Actions
 - NO

- **STEP 3** Emergency Actions
 - NO
 - YES
 - Has failure occurred and breach flow concluded?
 - YES
 - Termination & Follow-up (see Section 4)
 - NO
 - Implement Response Level 3 Actions

- **STEP 4** Follow-up
 - NO
 - YES

Legend:
- **LEVEL 0**
 - Not an emergency, but may require further evaluation
 - Response Level 0 (normal operations)
 - Reservoir Elevation Triggers Response Level 0 (see Table 4-1 &...)
 - Embankment Instrumentation Trigger... (see Table 4-1 & Table 4-2)

- **LEVEL 1**
 - Response Level 1 (normal up to downstream flow control structures)

- **LEVEL 2 OR 3**
 - Response Level 2 or 3

- **LEVEL 3**
 - Response Level 3

Flowchart Notes:*
- **STEP 1** Detection, Evaluation, and Response Level Determination
 - Control Room is notified by Personnel responsible for monitoring reservoir elevations
 - Notify: EAP Coordinator
 - Notify: Station Managing Director
 - Dynegy Dam Safety Manager

- **RESPONSE LEVEL 1**
 - Assess embankment conditions
 - Notify: EAP Coordinator
 - Notify: Station Managing Director
 - Dynegy Dam Safety Manager
 - Implement Response Level 1 Actions:
 - Communications:
 - See Figure 2-2 Notification Flowchart

- **RESPONSE LEVEL 2 OR 3**
 - Implement Response Level 2 Actions:
 - Communications:
 - See Figure 2-2 Notification Flowchart
 - Implement Response Level 2 Actions:
 - Constant surveillance of condition/event
 - Repair and mitigate damages where possible (i.e. sandbagging boils, using pumps to lower pool, etc.)
 - Clear any obstructions/debris from impoundment spillways and downstream culverts/bridges
 - Place damage mitigation structures where applicable
 - Notify operators of upstream and downstream flow control structures (i.e. dams) to prepare or start performing gate operations
 - Be prepared for Level 3 actions

- **RESPONSE LEVEL 3**
 - Implement Response Level 3 Actions:
 - After promptly notifying local/county ESDA/EMA of Response Level 3; provide support to ESDA/EMA’s where possible
 - Perform emergency actions depicted in Table 4-3 as applicable
 - If applicable, notify operators of upstream and downstream flow control structures (i.e. dams) of the imminent or actively occurring emergency incident

Diagram Details:
- Flowchart contains decision points and actions for response levels 0, 1, 2, and 3, with specific criteria for initiating and assessing emergency responses.
- Diagram includes a decision tree for evaluating conditions and determining response levels.
- Color coding and symbols indicate different stages and decision points within the response process.

Key Points:
- Unusual operating event/condition leads to notification and evaluation.
- Response levels range from 0 (normal operations) to 3 (imminent or actively occurring emergency).
- Notifications are directed to various personnel and departments, including EAP Coordinator, Station Managing Director, Dynegy Dam Safety Manager, and others as applicable.
- Emergency actions are carried out based on the response level, with a focus on surveillance, monitoring, and mitigation.
- Decision points allow for assessment and adjustment of response levels based on ongoing evaluations.

Notes for Review:
- Ensure all stakeholders are informed of response procedures.
- Regular training and drills are essential for preparedness.
- Maintain clear communication channels during emergencies.
- Evaluate and update response plans periodically based on feedback and new information.

Table References:
- Table 4-1: Reservoir Elevation Triggers Response Level 0
- Table 4-2: Embankment Instrumentation Triggers Response Level 0
- Table 4-3: Emergency Actions and Response Levels
Table 2-1. EAP Emergency Responders

<table>
<thead>
<tr>
<th>Position / Entity</th>
<th>Contact</th>
<th>Phone #</th>
<th>Alternate Phone #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Contacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zimmer Power Station</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing Director</td>
<td>Ben Albright</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Manager (EAP Coordinator)</td>
<td>Alan Bedinghaus</td>
<td>(513) 305-4814</td>
<td></td>
</tr>
<tr>
<td>Engineering Manager</td>
<td>Ben Ruggiero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Room</td>
<td></td>
<td>(513) 467-5205</td>
<td></td>
</tr>
<tr>
<td>Dynegy Corporate Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dam Safety Manager</td>
<td>Jason Campbell</td>
<td>(618) 792-8488</td>
<td></td>
</tr>
<tr>
<td>Construction Manager</td>
<td>Steve Bluemner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Contacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local/County ESDA/EMA, Police, & Fire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clermont County 911 Emergency Communication Center</td>
<td></td>
<td>911</td>
<td>(513) 732-7777</td>
</tr>
<tr>
<td>Clermont County – ESDA/EMA</td>
<td>Clermont County EMA</td>
<td>(513) 732-7661</td>
<td></td>
</tr>
<tr>
<td>New Richmond – Police Department</td>
<td>Chief Randy Harvey</td>
<td>(513) 553-3121</td>
<td></td>
</tr>
<tr>
<td>Clermont County – Sheriff Department</td>
<td>Sheriff Robert S. Leahy</td>
<td>(513) 732-2331</td>
<td>(513) 732-7500</td>
</tr>
<tr>
<td>Washington Township – Fire Department</td>
<td>Chief Dana Kellenberger</td>
<td>(513) 876-3473</td>
<td>(513) 876-3740</td>
</tr>
<tr>
<td>State Emergency Management Agencies & Organizations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio Department of Natural Resources - Wildlife</td>
<td></td>
<td>1(800) 945-3543</td>
<td>(614) 265-6314</td>
</tr>
</tbody>
</table>
3 EAP ROLES AND RESPONSIBILITIES

Table 3-1 provides a summary of the EAP roles during an emergency event.

Table 3-1. Summary of EAP Roles

<table>
<thead>
<tr>
<th>Entity</th>
<th>Role Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynegy Emergency Response Team (ERT)</td>
<td>ERT: Dynegy personnel responsible for EAP implementation, distribution, updates/maintenance, and training activities. The ERT is comprised of the following roles; 1. Dynegy Corporate: Dynegy corporate entity, committee, team, or position with relevant responsibility for a given generating station. 2. Station Management: Personnel responsible for day-to-day operation and management of the Station. 3. Dam Safety Manager: Personnel that is most knowledgeable about the design and technical operation of facilities at a given Station. 4. EAP Coordinator: Personnel responsible for implementing the EAP and associated activities. Emergency Event – EAP Responsibilities 1. Respond to emergencies at the Station. 2. Verify and assess emergency conditions. 3. Notify and coordinate as appropriate with participating emergency services disaster agencies or emergency management agencies (ESDA/EMA’s), emergency responders, regulatory agencies, and all other entities involved or affected by this EAP. 4. Take corrective action at the Station. 5. Declare termination of emergencies at the Station.</td>
</tr>
<tr>
<td>Clermont County ESDA/EMA</td>
<td>1. Receive Response Level reports from Dynegy Corporate through EAP Coordinator. 2. Coordinate emergency response activities with local authorities: police, fire and rescue, etc. 3. Coordinate notification of public as necessary through established channels, which may include door-to-door contact. 4. Coordinate notification activities to affected parties within inundation areas. 5. Evaluate risk to areas beyond the inundation areas, communicate needs to Dynegy Corporate and/or EAP Coordinator, and coordinate aid as appropriate. 6. Responsible for declaring termination of an emergency condition off-site upon receiving notification of an emergency status termination from Dynegy Corporate. 7. If necessary, coordinate with State ESDA/EMA.</td>
</tr>
<tr>
<td>New Richmond Police, Washington Township Fire, and Rescue</td>
<td>1. Receive alert status reports from the ERT or the County ESDA/EMA. 2. If necessary, notify affected parties and general public within inundation areas (see Section 7). 3. Render assistance to Clermont ESDA/EMA, as necessary. 4. Render assistance to Dynegy Corporate and Station Management, as necessary.</td>
</tr>
<tr>
<td>Clermont County Police, Fire and Rescue, and Emergency Services</td>
<td>1. Receive alert status reports from the ERT or the County ESDA/EMA. 2. If necessary, notify affected parties within the inundation area. 3. Provide mutual aid to other affected areas, if requested and able.</td>
</tr>
</tbody>
</table>
4 EAP RESPONSE

The 4-Step Incident Response Process is shown in Figure 2-1. The Decision Tree shown in Figure 2-3 provides a flowchart for the various elements of the response process. Upon reaching Step 4 of the response process (termination and follow-up), the EAP Coordinator is responsible for notifying the ESDA/EMA’s that the condition of the dam/impoundment has been stabilized. The purpose of this section is to provide specific information that can be used during a response. This information is provided in the following tables:

- Table 4-1 provides guidance for determining the response level.
- Table 4-2 provides impoundment pool level trigger elevations.
- Table 4-3 lists emergency actions to be taken depending on the situation.

<table>
<thead>
<tr>
<th>Event</th>
<th>Situation</th>
<th>Response Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spillway flow</td>
<td>Primary spillway flow is not causing active erosion and impoundment water</td>
<td>Level 0</td>
</tr>
<tr>
<td></td>
<td>surface elevation is below auxiliary spillway crest elevation (if equipped).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impoundment water surface elevation is at or above auxiliary spillway crest</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>elevation (if equipped). No active erosion caused by spillway flow.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spillway flow actively causing minor erosion that is not threatening the</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>control section or dam/impoundment stability.</td>
<td></td>
</tr>
<tr>
<td>Embankment overtopping</td>
<td>Spillway flow that could result in flooding of people downstream if the</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>reservoir level continues to rise.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abnormal operation of the spillway system due to blockage or damage that</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>could lead to flooding.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spillway flow actively eroding the soil around the spillway that is</td>
<td>Level 3</td>
</tr>
<tr>
<td></td>
<td>threatening the control section (e.g. undermining) or dam/impoundment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stability.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spillway flow that is flooding people downstream.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Seepage</td>
<td>Impoundment water surface elevation at or below typical normal pool</td>
<td>Level 0</td>
</tr>
<tr>
<td></td>
<td>fluctuation elevation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impoundment water surface elevation above typical normal pool fluctuation</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>elevation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impoundment water surface elevation above high normal pool fluctuation</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>elevation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impoundment water surface elevation at or above embankment crest elevation.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Sinkholes</td>
<td>New seepage areas in or near the dam/impoundment with clear flow.</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>New seepage areas with cloudy discharge or increasing flow rate.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Heavy seepage with active erosion, muddy flow, and/or sand boils.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Embankment cracking</td>
<td>Observation of new sinkhole in impoundment area or on embankment.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Rapidly enlarging sinkhole and/or whirlpool in the impoundment.</td>
<td>Level 3</td>
</tr>
<tr>
<td></td>
<td>New cracks in the embankment greater than ¼ inch wide without seepage.</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>Any crack in the embankment with seepage.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Enlarging cracks with muddy seepage.</td>
<td>Level 3</td>
</tr>
</tbody>
</table>
Table 4-1. Guidance for Determining the Response Level

<table>
<thead>
<tr>
<th>Event</th>
<th>Situation</th>
<th>Response Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embankment movement</td>
<td>Visual signs of movement/slippage of the embankment slope.</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>Detectable active movement/slippage of the embankment slope or other related effects (tension cracking, bulges/heaves, etc.) that could threaten the integrity of the embankment.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Sudden or rapidly proceeding slides of the embankment slopes.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Embankment Monitoring Equipment</td>
<td>Instrumentation readings beyond historic normal.</td>
<td>Level 1</td>
</tr>
<tr>
<td>(piezometers, inclinometers,</td>
<td>Instrumentation readings indicate the embankment is susceptible to failure.</td>
<td>Level 2</td>
</tr>
<tr>
<td>surface displacement mounts, etc.)</td>
<td>Instrumentation readings indicate embankment is at threshold of failure or is currently failing.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Earthquake or other event</td>
<td>Measurable earthquake felt or reported on or within 100 miles of the impoundment.</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>Earthquake or other event resulting in visible damage to the impoundment or appurtenances.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Earthquake or other event resulting in uncontrolled release of water or materials from the impoundment.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Security threat</td>
<td>Verified bomb threat or other physical threat that, if carried out, could result in damage to the impoundment.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Detonated bomb or other physical damage that has resulted in damage to the impoundment or appurtenances.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Sabotage/vandalism</td>
<td>Damage to impoundment or appurtenance with no impact to the functioning of the impoundment.</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>Modification to the impoundment or appurtenances that could adversely impact the functioning of the impoundment. This would include unauthorized operation of spillway facilities.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Damage to impoundment or appurtenances that has resulted in seepage flow.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Damage to impoundment or appurtenances that has resulted in uncontrolled water release.</td>
<td>Level 3</td>
</tr>
</tbody>
</table>

Table 4-2. Impoundment Trigger Elevations

<table>
<thead>
<tr>
<th>Impoundment</th>
<th>Embankment Crest Elevation</th>
<th>Auxiliary Spillway Crest Elevation</th>
<th>Normal Pool Fluctuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Pile Runoff Pond</td>
<td>509.2 ft.</td>
<td>Not Applicable</td>
<td>507.2 ft.*</td>
</tr>
<tr>
<td>D Basin</td>
<td>510 ft.</td>
<td>Not Applicable</td>
<td>507.5 ft.</td>
</tr>
</tbody>
</table>

Notes:

Elevation estimated from 2014 Topographic survey prepared by ESP Associates, P.A. – September 2014
Table 4-3. Step 3: Emergency Actions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description of Condition</th>
<th>Action to be Taken</th>
</tr>
</thead>
</table>
| **High Water Level/ Large Spillway Release** | See Table 4-1 and Table 4-2 for elevations and triggering water levels associated with the impoundments and spillways covered by this EAP. | 1. Assess cause of increased reservoir stage, especially during fair weather conditions.
2. Determine Response Level.
3. Make proper notifications as outlined in the Figure 2-2 Notification Flowchart.
4. Perform additional tasks as determined through consultation with the ERT.
5. Make notifications if condition worsens such that downstream flooding is imminent.
 Response Level 0: require enhanced surveillance 3 times per day
 Response Level 1: contact internal chain of command and external response partners as necessary; inspect impoundment minimum 1 time per hour
 Response Level 2: contact internal chain of command; notify ESDA/EMA’s and notify external response partners. ESDA/EMA’s notify affected parties.
 Response Level 3: contact internal chain of command; notify ESDA/EMA’s and notify external response partners. ESDA/EMA’s notify affected parties of emergency incident. |
| **Seepage** | Localized new seepage or boil(s) observed along downstream face / toe of earthen embankment with muddy discharge and increasing but controllable discharge of water. | 1. Measure and record feature dimensions, approximate flow rate, and relative location to existing surface features. Take photos. Document location on a site plan and in inspection notes.
2. Determine Response Level.
3. Make proper notifications as outlined in the Figure 2-2 Notification Flowchart.
4. ERT (with Dam Safety Manager as lead) to determine mitigation actions. The following actions may apply:
a) Place a ring of sand bags with a weir at the top towards the natural drainage path to monitor flow rate. If boil becomes too large to sand bag, place a blanket filter over the area using non-woven filter fabric and pea gravel. Attempt to contain flow in such a manner (without performing any excavations) that flow rates can be measured. Stockpile gravel and sand fill for later use, if necessary.
b) Inspect the embankment and collect piezometer, water level and seepage flow data daily unless otherwise instructed by the Dam Safety Manager. Record any changes of conditions. Carefully observe embankment for signs of depressions, seepage, sinkholes, cracking or movement.
c) Maintain continuous monitoring of feature. Record measured flow rate and any changes of condition, including presence or absence of muddy discharge.
5. Make notifications as outlined in the lower portion of the Notification Flowchart (Figure 2-2) if condition worsens such that failure is imminent. |
Table 4-3. Step 3: Emergency Actions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description of Condition</th>
<th>Action to be Taken</th>
</tr>
</thead>
</table>
| **Sabotage and Miscellaneous Other Issues** | Criminal action with significant damage to embankment or structures where significant repairs are required and the integrity of the facility is compromised—condition appears stable with time. | 1. Contact law enforcement authorities and restrict all access (except emergency responders) to impoundment. Restrict traffic on embankment crest to essential emergency operations only.
2. Determine Response Level.
3. Make internal notifications as outlined in the upper portion of the Notification Flowchart (Figure 2-2).
4. In conjunction with the Dam Safety Manager, assess extent of damage and visually inspect entire embankment and ancillary structures for additional less obvious damage. Based on inspection results, confirm if extent of damage to various components of the impoundment warrants a revised Response Level and additional notifications.
5. Perform additional tasks as directed by the ERT.
6. Make notifications if conditions worsen. |
| **Embankment Deformation** | Crack(s): New longitudinal (along the embankment) or transverse (across the embankment) cracks more than 6 inches deep or more than 3 inches wide or increasing with time. New concave cracks on or near the embankment crest associated with slope movement. | 1. Measure and record feature dimensions, approximate flow rate, and relative location to existing surface features. Take photos. Document location on a site plan and in inspection notes.
2. Restrict traffic on embankment crest to essential emergency operations only.
3. Determine Response Level.
4. Make notifications as outlined in the Figure 2-2 Notification Flowchart.
5. ERT (with Dam Safety Manager as lead) to determine mitigation actions. The following actions may apply:
 a) Place buttress fill against base of slope immediately below surface feature. Stock pile additional fill.
 b) Place sand bags as necessary around crack area to divert any storm water runoff from flowing into crack(s).
6. As directed by the Dam Safety Manager, additional inspection and monitoring of the dam may be required. Items may include: inspect the dam on a schedule determined by the engineers; collect piezometer and water level data; and record any changes of condition. Carefully observe dam for signs of depressions, seepage, sinkholes, cracking or movement.
7. Make notifications as outlined in the Figure 2-2 Notification Flowchart if conditions worsen such that failure is imminent. |
Table 4-3. Step 3: Emergency Actions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description of Condition</th>
<th>Action to be Taken</th>
</tr>
</thead>
</table>
| Slides / Erosion: (cont.) | Deep slide / erosion (greater than 2 feet deep) on the embankment that may also extend beyond the embankment toe but does not encroach onto the embankment crest and appears stable with time. | 1. Measure and record feature dimensions, approximate flow rate, and relative location to existing surface features. Take photos. Document location on a site plan and in inspection report.
2. Restrict traffic on embankment crest to essential emergency operations only.
3. Determine the Response Level.
4. Make notifications as outlined in the Figure 2-2 Notification Flowchart.
5. ERT (with Dam Safety Manager as lead) to determine mitigation actions. Additional actions may include the following items:
 a) Place sand bags as necessary around slide area to divert any storm water runoff from flowing into slide(s).
 b) Increase inspections of the dam; collect piezometer and water level data; and record any changes of condition. During inspections, carefully observe dam for signs of depressions, seepage, sinkholes, cracking or movement.
6. Make notifications as outlined in the Figure 2-2 Notification Flowchart if conditions worsen such that failure is imminent. |
| Sinkholes: | Small depression observed on the embankment or within 50 feet of the embankment toe that is less than 5 feet deep and 30 feet wide or which is increasing with time. | 1. Slowly open drain gates to lower pool elevation.
2. Measure and record feature dimensions, approximate flow rate, and relative location to existing surface features. Take photos. Document location on a site plan and in inspection notes.
3. Restrict traffic on embankment crest to essential emergency operations only.
4. Determine Response Level.
5. Make notifications as outlined in the Figure 2-2 Notification Flowchart.
6. ERT (with Dam Safety Manager as lead) to determine mitigation actions. Additional actions may include the following items:
 a) Backfill the depression with relatively clean earth fill (free of organic materials) generally even with surrounding grade and slightly mounded (6 to 12 inches higher) in the center in order to shed storm water away from the depression. Stock pile additional fill.
 b) Increase inspections of the dam; collect piezometer and water level data daily unless otherwise instructed by Dam Safety Manager; and record any changes of condition. Carefully observe dam for signs of depressions, seepage, sinkholes, cracking or movement.
7. Make notifications as outlined in the Figure 2-2 Notification Flowchart if conditions worsen such that failure is imminent. |
| Gate Malfunction or Failure | Sluice gate damaged structurally (sabotage, debris, etc.) with uncontrolled release of water at a constant volume. Condition appears stable. | 1. Close any other gates, if open.
2. Determine Response Level.
3. Make notifications as outlined in the Figure 2-2 Notification Flowchart.
4. Obtain instructions from the Dam Safety Manager to determine if there are other methods to stop or slow down the flow of water.
5. If conditions worsen such that failure is imminent, make notifications as outlined in the lower portion of the Figure 2-2 Notification Flowchart. |
5 PREPAREDNESS

The intent of this section is to provide information that will be utilized during a response. Established emergency supplies and locations, suppliers, and equipment are provided in Table 5-1. Supplier contact information is listed in Table 5-2.

A coordination meeting shall be conducted annually between representatives of Dynegy Zimmer, LLC and local emergency responders. This meeting may be in the form of a face-to-face meeting, tabletop exercise, or additional training regarding the EAP.
Table 5-1. Emergency Supplies and Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>On-site (Yes/No/Occasionally)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashlights</td>
<td>Yes</td>
<td>Typically at Zimmer Power Station Maintenance Facility, contact Shift Supervisor for location(s).</td>
</tr>
<tr>
<td>Generator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension Cords</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire extinguishers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floodlights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backhoe</td>
<td>No</td>
<td>Contact The Nelson Stark Company, Utter Construction (see Table 5-2) and/or other nearby large equipment rental providers for additional large equipment as necessary.</td>
</tr>
<tr>
<td>Dozer</td>
<td>Yes</td>
<td>One CAT D8T and one CAT D6N. Contact Shift Supervisor for location(s).</td>
</tr>
<tr>
<td>Large Equipment (Rental – including excavating equipment, pumps, lighting)</td>
<td>Yes</td>
<td>One Hyundai 290 Long Reach Excavator, one CAT 980H Rubber Tire Loader and one CAT IT28G Rubber Tire Loader, two 4000 gallon capacity water trucks, two 637G Motor Scrapers, one Chevy crew cab pickup truck, one New Holland LS125 Skid Steer, one Bobcat 463 Skid Steer, one POSI TRAK RC60 Skid Steer, one 84-inch hamm smooth drum roller, one 500 gallon fuel/lube wagon, three light plants, two industrial vacuum trucks, one John Boat, and an MV Pleasant. Contact The Nelson Stark Company, Utter Construction (see Table 5-2) and/or other nearby large equipment rental providers for additional large equipment as necessary.</td>
</tr>
<tr>
<td>Dump Truck</td>
<td>Yes</td>
<td>Six 35 ton Mountain Mack dump trucks. Contact Shift Supervisor for location(s).</td>
</tr>
<tr>
<td>Pump and Hoses</td>
<td>Yes</td>
<td>Three Portable Water Pumps. Contact Shift Supervisor for availability and location(s). Contact Allied Technical Services or Sunbelt Rentals for high capacity portable pumps (see Table 5-2).</td>
</tr>
<tr>
<td>Sandbags and Sand</td>
<td>Yes</td>
<td>Soil stockpiled on-site. Contact Dayton Bag & Burlap or Max Katz Bag Company, Inc for additional sandbags (see Table 5-2).</td>
</tr>
<tr>
<td>Fill (Stone, aggregate, sand)</td>
<td>Yes</td>
<td>Medium sized aggregate available on-site. Contact Shift Supervisor for location(s). Contact listed suppliers in Table 5-2 for gravel, sand, and riprap fill as necessary.</td>
</tr>
<tr>
<td>Concrete/grout</td>
<td>No</td>
<td>Contact Ernst Concrete and/or City Wide Ready Mix for concrete/grout (see Table 5-2).</td>
</tr>
<tr>
<td>Geotextile Filter Fabric</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Plastic Sheeting</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Rope</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Personal Flotation Devices</td>
<td>Yes</td>
<td>Contact Shift Supervisor for location(s) and availability.</td>
</tr>
<tr>
<td>Supply/Rental Item(s)</td>
<td>Supplier Contact Information</td>
<td>Distance from Site (miles)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Backhoe, Large Equipment (Rental – including excavating equipment, pumps, lighting)</td>
<td>The Nelson Stark Company (513) 489-0866</td>
<td>36.3</td>
</tr>
<tr>
<td></td>
<td>Utter Construction (513) 876-8616</td>
<td>11.1</td>
</tr>
<tr>
<td>Pump and Hoses</td>
<td>Allied Technical Services (513) 793-0499</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>Sunbelt Rentals (859) 283-5544</td>
<td>37.9</td>
</tr>
<tr>
<td>Fill (Stone, aggregate, sand)</td>
<td>Kipp’s Gravel Company, Inc. (513) 732-1024</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>Arch Materials LLC (513) 724-7625</td>
<td>24.5</td>
</tr>
<tr>
<td>Sandbags and Sand</td>
<td>Dayton Bag & Burlap (937) 253-1726</td>
<td>76.4</td>
</tr>
<tr>
<td></td>
<td>Max Katz Bag Company, Inc. (317) 635-9561</td>
<td>133</td>
</tr>
<tr>
<td>Concrete/grout</td>
<td>Ernst Concrete (513) 398-9613</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td>City Wide Ready Mix (513) 533-1111</td>
<td>24.2</td>
</tr>
</tbody>
</table>
6 FACILITY/IMPOUNDMENT DESCRIPTION

The impoundments included in this EAP are described as follows and illustrated in Figure 1-2. Table 6-1 contains additional geometric details for each impoundment.

Zimmer Power Station is located to the north of the Village of Moscow in Monroe Township and Washington Township, Clermont County, Ohio. The station is bounded to the west by the Ohio River, to the east by US 52, and to the south by the village of Moscow, approximately 22 miles to the southeast of downtown Cincinnati.

The Coal Pile Runoff Pond is part of the Wastewater Pond Complex and is located about 3,000 feet north of the power house. The Coal Pile Runoff Pond is a diked impoundment constructed from native soils excavated from the site (primarily clayey soils with low permeability) and sand dredged from the Ohio River. The pond was constructed in the late 1980s when the Zimmer Power Station was converted into a coal fired operation facility. Including the embankment, the footprint of the Coal Pile Runoff Pond is approximately 4 acres. The total storage capacity of the Coal Pile Runoff Pond is approximately 17 acre-feet with an invert elevation of approximately 498 feet. A normal pool within the Coal Pile Runoff Pond is maintained around 507.2 feet per a Topographic Survey conducted in 2014 (stored water volume of approximately 12.5 acre-feet).

The main inflow to the Coal Pile Runoff Pond is precipitation which is either falls directly on the pond or runs off the embankment. Additionally, flow from D Basin (runoff from the coal pile) is pumped from a sump located at an elevation of 482 feet along the west dike through two 6-inch diameter high density polyethylene (HDPE) pipes into the Coal Pile Runoff Pond. The Wastewater Pond Complex discharge to the Ohio River is permitted as Outfall 005 under OEPA Permit #11B00011*JD and NPDES permit #OH0048836.

D Basin is a diked impoundment. Drawing files indicate that D Basin was constructed after 2002 as a dewatering basin. Including the embankment, the footprint of D Basin is approximately 9 acres. Aerial imagery does not show a normal pool within D Basin. The lowest crest elevation of the impoundment is approximately 510 feet. The crest is approximately 55 feet above the normal pool elevation of the Ohio River. Flow from D Basin is pumped from a sump along the west dike through two 6-inch diameter high density polyethylene (HDPE) pipes into the Coal Pile Runoff Pond to the north.
Table 6-1. Station Impoundment Characteristics

<table>
<thead>
<tr>
<th>Feature/Parameter</th>
<th>Coal Pile Runoff Pond</th>
<th>D Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Embankment Height</td>
<td>15 ft.</td>
<td>7 ft.</td>
</tr>
<tr>
<td>Length of Dam</td>
<td>1,500 ft.</td>
<td>2,600 ft.</td>
</tr>
<tr>
<td>Crest Width</td>
<td>40 ft.</td>
<td>20 ft.</td>
</tr>
<tr>
<td>Crest Elevation</td>
<td>509.2 ft.</td>
<td>510 ft.</td>
</tr>
<tr>
<td>Reservoir Area at Top of Dam</td>
<td>2.6 acres</td>
<td>5.2 acres</td>
</tr>
<tr>
<td>Storage Capacity at Top of Dam</td>
<td>17 acre-ft.</td>
<td>4 acre-ft.</td>
</tr>
<tr>
<td>Primary Spillway Type</td>
<td>18” Steel Pipe (submerged)*</td>
<td>Sump Pump to two 6-inch HDPE pipes</td>
</tr>
<tr>
<td>Primary Spillway Crest Elevation</td>
<td>Approximately 507.5 ft.</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Storage Capacity at Primary Spillway Elevation</td>
<td>14 acre-ft.</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Reservoir Area at Normal Water Surface Elevation</td>
<td>2.2 acres</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Auxiliary Spillway Type</td>
<td>15” Pipe</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Auxiliary Spillway Crest Elevation</td>
<td>507.9 ft.</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Notes:
- *2.5-Feet Resolution LiDAR DEM - Downloaded from http://ogrip.oit.ohio.gov/ (January, 2016)*
- *Elevations are in reference to Mean Sea Level (MSL), NAVD88.*
7 BREACH INUNDATION MAPS AND POTENTIAL IMPACTS

Inundation maps for the Coal Pile Runoff Pond and D Basin potential breach scenarios are provided in this section. It is the Clermont County ESDA/EMA’s responsibility to keep a current list of affected parties/properties to contact in the case of emergencies that result in Response Level 2 or 3. This list should encompass all properties within and adjacent to the probable inundation extents shown in the provided maps.

The methodology used to identify probable inundation extents for potential breach scenarios varied as a function of the impoundment size, location, surrounding topography, and surrounding structures/facilities/waterbodies.

A visual analysis was performed for the Coal Pile Runoff Pond and D Basin to determine possible inundation limits for each breach scenario. The inundation limits were mapped using a combination of digital elevation data from the topographic survey prepared by ESP Associates, P.A. – September, 2014 and DEM data downloaded from the Ohio OGRIP website. Stage-storage capacity was considered when the impoundment could breach into an adjacent basin.

Approximate inundation areas are illustrated in Figure 7-1 and Figure 7-2.
Project Location

- **Client/Project:**
 - Indiana
 - Ohio
 - West Virginia
 - Kentucky

Figure No.

- US 52

Title

- GRAN'T FARMS LN
- HAUL RD

Notes

- U:\1756\175605019\gis\mxd\EAP\Final_04_12_2017\010_inundation_web_fig7-2b_20170412.mxd Revised: 2017-04-12 By: dhayson

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient has full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or accuracy of the data.

Inundation Map

- **Legend**
 - **CCR Surface Impoundment Boundary**
 - **Expected Breach Inundation Area**

Figure No.

- 7-2

Title

- Inundation Map
- D Basin

Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere

Aerial Source: Clermont County. Dated 2015. 6-Inch Resolution.

Impoundment Boundaries Provided by Client (Dated 9/9/2015)

- 1.
- 2.
- 3.

Latitude: 38.877193

Longitude: -84.229495

Clermont County, Ohio

Prepared by DTH on 2017-04-12

Technical Review by NS on 2017-04-12

Independent Review by MH on 2017-04-12

Source No.

- (binnen)