2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT
MIAMI FORT BASIN A, MIAMI FORT POWER STATION
2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT
MIAMI FORT BASIN A, MIAMI FORT POWER STATION

Project name: Miami Fort Power Station
Project no.: 72759
Recipient: Dynegy Miami Fort, LLC
Document type: Annual Groundwater Monitoring and Corrective Action Report
Version: FINAL
Date: January 31, 2020
Prepared by: Kristen L. Theesfeld
Checked by: Nicole M. Pagano
Approved by: Eric J. Tlachac
Description: Annual Report in Support of the CCR Rule Groundwater Monitoring Program

Kristen L. Theesfeld
Hydrogeologist
Nicole M. Pagano
Senior Managing Engineer
CONTENTS

EXECUTIVE SUMMARY 3
1. Introduction 4
2. Monitoring and Corrective Action Program Status 5
3. Key Actions Completed in 2019 6
4. Problems Encountered and Actions to Resolve the Problems 8
5. Key Activities Planned for 2020 9
6. References 10

TABLES
Table A 2018-2019 Assessment Monitoring Program Summary (in text)
Table 1 2019 Analytical Results - Groundwater Elevation and Appendix III Parameters
Table 2 2019 Analytical Results - Appendix IV Parameters
Table 3 Statistical Background Values
Table 4 Groundwater Protection Standards

FIGURES
Figure 1 Monitoring Well Location Map

APPENDICES
Appendix A Corrective Measures Assessment Extension Demonstration
ACRONYMS AND ABBREVIATIONS
CCR Coal Combustion Residuals
CMA Corrective Measures Assessment
GWPS Groundwater Protection Standard
SAP Sampling and Analysis Plan
SSL Statistically Significant Level
EXECUTIVE SUMMARY

This report has been prepared to provide the information required by Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.90(e) for the Miami Fort Basin A located at Miami Fort Power Station near North Bend, Ohio.

Groundwater is being monitored at Miami Fort Basin A in accordance with the Assessment Monitoring Program requirements specified in 40 C.F.R. § 257.95.

No changes were made to the monitoring system in 2019 (no wells were installed or decommissioned). Delineation monitoring wells MW-14, MW-15, and MW-16 were installed in May 2019 to delineate the extent of impacts for the Corrective Measures Assessment (CMA).

The following Statistically Significant Levels (SSLs) of 40 C.F.R. Part 257 Appendix IV parameters were determined during one or more sampling events in 2019:

- Cobalt at well MW-4; Molybdenum at well MW-6

As required by 40 C.F.R. § 257.95(g)(3)(i), a CMA (OBG, 2019) in accordance with 40 C.F.R. § 257.96 was initiated on May 8, 2019 and completed on September 5, 2019, and remedy selection is in progress.

A public meeting to discuss the results of the CMA was held in December 2019.
1. **INTRODUCTION**

This report has been prepared by Ramboll on behalf of Dynegy Miami Fort, LLC, to provide the information required by 40 C.F.R. § 257.90(e) for the Miami Fort Basin A located at Miami Fort Power Station near North Bend, Ohio.

In accordance with 40 C.F.R. § 257.90(e), the owner or operator of a Coal Combustion Residuals (CCR) unit must prepare an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year that documents the status of the Groundwater Monitoring and Corrective Action Program for the CCR unit, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and projects key activities for the upcoming year. At a minimum, the Annual Report must contain the following information, to the extent available:

1. A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit.
2. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.
3. In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the Detection Monitoring or Assessment Monitoring Programs.
4. A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from Detection Monitoring to Assessment Monitoring in addition to identifying the constituent(s) detected at a Statistically Significant Increase relative to background levels).
5. Other information required to be included in the Annual Report as specified in §§ 257.90 through 257.98.

This report provides the required information for the Miami Fort Basin A for calendar year 2019.
2. **MONITORING AND CORRECTIVE ACTION PROGRAM STATUS**

SSLs were determined for Miami Fort Basin A and alternate source evaluations were inconclusive. In accordance with 40 C.F.R. § 257.95(g)(5), a CMA meeting the requirements of 40 C.F.R. § 257.96 was initiated on May 8, 2019 and completed on September 5, 2019. Remedy selection is in progress. Miami Fort Basin A remains in the Assessment Monitoring Program in accordance with 40 C.F.R. § 257.96(b).
3. **KEY ACTIONS COMPLETED IN 2019**

The Assessment Monitoring Program is summarized in Table A. The groundwater monitoring system, including the CCR unit and all background and downgradient monitoring wells, is presented in Figure 1. In general, one groundwater sample was collected from each background and downgradient well during each monitoring event. Delineation monitoring wells MW-14, MW-15, and MW-16 were installed in May 2019. The monitoring system and the delineation wells were sampled June 2019 in accordance with the Sampling and Analysis Plan (SAP) (AECOM, 2017) to delineate the extent of impacts. Well 4A was sampled in August in accordance with the SAP to complete delineation. All samples were collected and analyzed in accordance with the SAP (AECOM, 2017). All monitoring data obtained under 40 C.F.R. §§ 257.90 through 257.98 (as applicable) in 2019 are presented in Tables 1 and 2. Analytical data were evaluated in accordance with the Statistical Analysis Plan (NRT/OBG, 2017) to determine any SSLs of Appendix IV parameters over Groundwater Protection Standards (GWPSs). Notifications were completed in accordance with 40 C.F.R. § 257.95(g).

Statistical background values are provided in Table 3 and GWPSs in Table 4.

Analytical results for the May and September 2018 sampling events were provided in the 2018 Annual Groundwater Monitoring and Corrective Action Report.

Alternate source evaluations were inconclusive for one or more of the SSLs. Consequently, and in accordance with 40 C.F.R. § 257.95(g)(5), a CMA meeting the requirements of 40 C.F.R. § 257.96 was initiated on May 8, 2019 and the required notification completed. The CMA (OBG, 2019) was completed on September 5, 2019 and posted to the publicly accessible website, as required by 40 C.F.R. § 257.107(h)(8). The demonstration justifying the need for a 60-day extension to the 90-day completion deadline for the CMA required by 40 C.F.R. § 257.96(a) is provided in Appendix A.

A public meeting was held on December 16, 2019 at the Miami Township Community Center in North Bend, Ohio to discuss the results of the of the CMA in accordance with 40 C.F.R. § 257.96(e).
Table A – 2018-2019 Assessment Monitoring Program Summary

<table>
<thead>
<tr>
<th>Sampling Dates</th>
<th>Analytical Data Receipt Date</th>
<th>Parameters Collected</th>
<th>SSL(s)</th>
<th>SSL(s) Determination Date</th>
<th>CMA Initiated</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 7, 2018</td>
<td>July 9, 2018</td>
<td>Appendix III</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Appendix IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 18-20, 2018</td>
<td>October 8, 2018</td>
<td>Appendix III</td>
<td>Cobalt (MW-4)</td>
<td>January 7, 2019</td>
<td>May 8, 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Appendix IV</td>
<td>Molybdenum (MW-6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 12-13, 2019</td>
<td>April 29, 2019</td>
<td>Appendix III</td>
<td>Cobalt (MW-4)</td>
<td>July 29, 2019</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Appendix IV</td>
<td>Molybdenum (MW-6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 9 & 19, 2019</td>
<td>October 8, 2019</td>
<td>Appendix III</td>
<td>TBD</td>
<td>TBD</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Appendix IV</td>
<td>Detected 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- NA: Not Applicable
- TBD: To Be Determined
- 1. Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 C.F.R. § 257.95(d)(1).
4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the Groundwater Monitoring Program during 2019. Groundwater samples were collected and analyzed in accordance with the SAP (AECOM, 2017), and all data were accepted.
5. **KEY ACTIVITIES PLANNED FOR 2020**

The following key activities are planned for 2020:

- Continuation of the Assessment Monitoring Program with semi-annual sampling scheduled for the first and third quarters of 2020.
- Remedy selection will continue; semiannual progress reports required by 40 C.F.R. § 257.97(a) will be completed and posted to the publicly accessible website as required by 40 C.F.R. § 257.107(h)(9).
6. REFERENCES

AECOM, 2017, Sampling and Analysis Plan, CCR Rule Groundwater Monitoring, Basin A, Unit 111, Miami Fort Power Station, Cleves, Ohio, Job Number 60442412, Revision 0, October 17, 2017.

OBG, Part of Ramboll, 2019. Corrective Measures Assessment, Miami Fort Basin A, Miami Fort Power Station, 11021 Brower Road, North Bend, Ohio, Dynegy Miami Fort, LLC, September 5, 2019.
TABLES
2019 ANALYTICAL RESULTS - GROUNDWATER ELEVATION AND APPENDIX III PARAMETERS

2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

MIAMI FORT POWER STATION

UNIT ID 111 - MIAMI FORT BASIN ANORTH BEND, OHIO

ASSESSMENT MONITORING PROGRAM

Table 1

40 C.F.R. Part 257 Appendix III

<table>
<thead>
<tr>
<th>Well Identification Number</th>
<th>Latitude (Decimal Degrees)</th>
<th>Longitude (Decimal Degrees)</th>
<th>Date & Time Sampled</th>
<th>Depth to Groundwater (ft)</th>
<th>Groundwater Elevation (ft NAVD88)</th>
<th>Boron, total (mg/L)</th>
<th>Calcium, total (mg/L)</th>
<th>Chloride, total (mg/L)</th>
<th>Fluoride, total (mg/L)</th>
<th>pH (field) (S.U.)</th>
<th>Sulfate, total (mg/L)</th>
<th>Total Dissolved Solids (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background / Upgradient Monitoring Wells</td>
<td></td>
</tr>
<tr>
<td>MW-1</td>
<td>39.114504</td>
<td>-84.810237</td>
<td>3/13/2019 11:50</td>
<td>43.28</td>
<td>461.21</td>
<td>0.797</td>
<td>182</td>
<td>37.4</td>
<td><1.00</td>
<td>7.2</td>
<td>450</td>
<td>1010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6/12/2019 12:00</td>
<td>47.92</td>
<td>456.57</td>
<td>NA</td>
<td>154</td>
<td>17.6</td>
<td>NA</td>
<td>7.2</td>
<td>284</td>
<td>779</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9/9/2019 14:05</td>
<td>50.29</td>
<td>454.20</td>
<td>0.700</td>
<td>164</td>
<td>23.3</td>
<td><1.00</td>
<td>6.8</td>
<td>407</td>
<td>895</td>
</tr>
<tr>
<td>Downgradient Monitoring Wells</td>
<td></td>
</tr>
<tr>
<td>MW-4</td>
<td>39.110470</td>
<td>-84.809339</td>
<td>3/12/2019 18:45</td>
<td>16.79</td>
<td>461.10</td>
<td>0.267</td>
<td>145</td>
<td>28.7</td>
<td><1.00</td>
<td>6.5</td>
<td>355</td>
<td>738</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6/13/2019 13:30</td>
<td>21.78</td>
<td>456.11</td>
<td>NA</td>
<td>183</td>
<td>25.9</td>
<td>NA</td>
<td>6.23</td>
<td>523</td>
<td>1010</td>
</tr>
<tr>
<td>MW-5</td>
<td>39.111590</td>
<td>-84.807411</td>
<td>3/12/2019 15:25</td>
<td>48.64</td>
<td>461.32</td>
<td>4.08</td>
<td>171</td>
<td>93.9</td>
<td><1.00</td>
<td>7.5</td>
<td>233</td>
<td>781</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6/14/2019 8:45</td>
<td>53.68</td>
<td>456.28</td>
<td>NA</td>
<td>422</td>
<td>521</td>
<td>NA</td>
<td>7.0</td>
<td>735</td>
<td>2240</td>
</tr>
<tr>
<td>MW-6</td>
<td>39.113183</td>
<td>-84.808005</td>
<td>3/12/2019 16:25</td>
<td>55.74</td>
<td>454.22</td>
<td>19.5</td>
<td>370</td>
<td>510</td>
<td><5.00</td>
<td>6.8</td>
<td>566</td>
<td>2670</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6/14/2019 7:45</td>
<td>51.73</td>
<td>456.61</td>
<td>NA</td>
<td>46.4</td>
<td>119</td>
<td>NA</td>
<td>7.3</td>
<td>14.2</td>
<td>557</td>
</tr>
<tr>
<td>MW-12</td>
<td>39.110919</td>
<td>-84.810348</td>
<td>3/13/2019 10:40</td>
<td>47.81</td>
<td>460.63</td>
<td>4.48</td>
<td>197</td>
<td>166</td>
<td><1.00</td>
<td>6.3</td>
<td>400</td>
<td>1020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6/12/2019 12:52</td>
<td>52.58</td>
<td>455.86</td>
<td>NA</td>
<td>209</td>
<td>193</td>
<td>NA</td>
<td>6.0</td>
<td>502</td>
<td>1220</td>
</tr>
<tr>
<td>Delineation Monitoring Wells</td>
<td></td>
</tr>
<tr>
<td>MW-14</td>
<td>39.110353</td>
<td>-84.809363</td>
<td>6/13/2019 14:15</td>
<td>23.66</td>
<td>456.23</td>
<td>NA</td>
<td>39.7</td>
<td>28.4</td>
<td>NA</td>
<td>8.0</td>
<td>41.9</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9/10/2019 11:55</td>
<td>25.74</td>
<td>454.75</td>
<td>0.161</td>
<td>40.7</td>
<td>29.7</td>
<td><1.00</td>
<td>7.9</td>
<td>39.8</td>
<td>195</td>
</tr>
<tr>
<td>MW-15</td>
<td>39.113058</td>
<td>-84.806674</td>
<td>6/12/2019 10:50</td>
<td>40.72</td>
<td>456.80</td>
<td>NA</td>
<td>114</td>
<td>189</td>
<td>NA</td>
<td>7.3</td>
<td>14.5</td>
<td>653</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9/10/2019 8:30</td>
<td>42.89</td>
<td>456.63</td>
<td>0.453</td>
<td>103</td>
<td>191</td>
<td><1.00</td>
<td>7.0</td>
<td>13.6</td>
<td>688</td>
</tr>
<tr>
<td>MW-16</td>
<td>39.113030</td>
<td>-84.806664</td>
<td>6/12/2019 9:42</td>
<td>40.56</td>
<td>456.73</td>
<td>NA</td>
<td>200</td>
<td>118</td>
<td>NA</td>
<td>6.8</td>
<td>270</td>
<td>1010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9/10/2019 7:50</td>
<td>42.68</td>
<td>454.61</td>
<td>0.119</td>
<td>170</td>
<td>55.8</td>
<td><1.00</td>
<td>6.7</td>
<td>118</td>
<td>1010</td>
</tr>
<tr>
<td>Prod-4A</td>
<td>39.112492</td>
<td>-84.806351</td>
<td>8/8/2019 9:35</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

ft = foot/feet

mg/L = milligrams per liter

NA = Not Analyzed

NAVDD88 = North American Vertical Datum of 1988

NS = Not Sampled

S.U. = Standard Units

< = concentration is less than the concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine Statistically Significant Increases (SSIs) over background.

1All depths to groundwater were measured on the first day of the sampling event.

24-digit numbers represent SW-846 analytical methods.

3Only SSL parameters were analyzed during this sampling event to delineate the extent of impact.

4Only the parameters detected during the previous sampling events were analyzed during this sampling event, in accordance with 40 C.F.R. § 257.95(d)(1).

5Only cobalt was analyzed during this sampling event to delineate the extent of impact.

[D: KAB 12/23/19, C: KLT 12/26/19]
TABLE 2. 2019 ANALYTICAL RESULTS - APPENDIX IV PARAMETERS

2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

MIAMI FORT POWER STATION

UNIT ID 111 - MIAMI FORT BASIN A NORTH BEND, OHIO

ASSESSMENT MONITORING PROGRAM

<table>
<thead>
<tr>
<th>Well Identification Number</th>
<th>Longitude (Decimal Degrees)</th>
<th>Latitude (Decimal Degrees)</th>
<th>Date & Time Sampled</th>
<th>Antimony, total (mg/L)</th>
<th>Arsenic, total (mg/L)</th>
<th>Barium, total (mg/L)</th>
<th>Beryllium, total (mg/L)</th>
<th>Cadmium, total (mg/L)</th>
<th>Chromium, total (mg/L)</th>
<th>Cobalt, total (mg/L)</th>
<th>Fluoride, total (mg/L)</th>
<th>Lead, total (mg/L)</th>
<th>Lithium, total (mg/L)</th>
<th>Mercury, total (mg/L)</th>
<th>Molybdenum, total (mg/L)</th>
<th>Radon, total (mg/L)</th>
<th>Selenium, total (mg/L)</th>
<th>Thallium, total (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1 39.114504 -84.810237</td>
<td>3/13/2019 11:50 0.00100 0.00200 0.0512 0.00100 0.00200 0.0340</td>
<td>9/10/2019 9:45 0.00100 0.00100 0.00100 0.00100 0.00100 0.0340</td>
<td></td>
<td></td>
<td><0.00200</td>
<td><0.00100</td>
<td></td>
</tr>
<tr>
<td>MW-7 39.115334 -84.808157</td>
<td>9/10/2019 9:45 0.00100 0.00200 0.0512 0.00100 0.00200 0.0340</td>
<td></td>
</tr>
<tr>
<td>MW-4 39.110470 -84.809339</td>
<td>3/12/2019 18:45 0.00100 0.00200 0.0512 0.00100 0.00200 0.0340</td>
<td>9/10/2019 9:45 0.00100 0.00100 0.00100 0.00100 0.00100 0.0340</td>
<td></td>
</tr>
<tr>
<td>MW-5 39.111590 -84.807411</td>
<td>3/12/2019 15:25 0.00100 0.00200 0.0512 0.00100 0.00200 0.0340</td>
<td>9/10/2019 9:45 0.00100 0.00100 0.00100 0.00100 0.00100 0.0340</td>
<td></td>
</tr>
<tr>
<td>MW-6 39.113183 -84.808005</td>
<td>3/12/2019 16:25 0.00100 0.00200 0.0512 0.00100 0.00200 0.0340</td>
<td>9/10/2019 9:45 0.00100 0.00100 0.00100 0.00100 0.00100 0.0340</td>
<td></td>
</tr>
<tr>
<td>MW-12 39.111091 -84.810348</td>
<td>3/12/2019 15:52 0.00100 0.00200 0.0512 0.00100 0.00200 0.0340</td>
<td>9/10/2019 9:45 0.00100 0.00100 0.00100 0.00100 0.00100 0.0340</td>
<td></td>
</tr>
<tr>
<td>MW-13 39.110920 -84.807436</td>
<td>3/12/2019 17:25 0.00100 0.00200 0.0512 0.00100 0.00200 0.0340</td>
<td>9/10/2019 9:45 0.00100 0.00100 0.00100 0.00100 0.00100 0.0340</td>
<td></td>
</tr>
<tr>
<td>MW-14 39.110935 -84.809363</td>
<td>3/12/2019 18:45 0.00100 0.00200 0.0512 0.00100 0.00200 0.0340</td>
<td>9/10/2019 9:45 0.00100 0.00100 0.00100 0.00100 0.00100 0.0340</td>
<td></td>
</tr>
<tr>
<td>MW-15 39.113058 -84.806674</td>
<td>6/12/2019 10:50 0.00100 0.00200 0.0512 0.00100 0.00200 0.0340</td>
<td>9/10/2019 9:45 0.00100 0.00100 0.00100 0.00100 0.00100 0.0340</td>
<td></td>
</tr>
<tr>
<td>MW-16 39.113932 -84.808646</td>
<td>6/12/2019 10:50 0.00100 0.00200 0.0512 0.00100 0.00200 0.0340</td>
<td>9/10/2019 9:45 0.00100 0.00100 0.00100 0.00100 0.00100 0.0340</td>
<td></td>
</tr>
<tr>
<td>Prod-A 39.112942 -84.80808</td>
<td>6/8/2019 9:35 0.00100 0.00200 0.0512 0.00100 0.00200 0.0340</td>
<td>9/10/2019 9:45 0.00100 0.00100 0.00100 0.00100 0.00100 0.0340</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- 40 C.F.R. = Title 40 of the Code of Federal Regulations
- mg/L = milligrams per liter
- NA = Not Analyzed
- NS = Not Sampled
- pCi/L = picocuries per liter
- < = concentration is less than concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine Statistically Significant Levels (SSLs) over Groundwater Protection Standards.
- 4-digit numbers represent SW-846 analytical methods and 3-digit numbers represent Clean Water Act analytical methods.
- Only SSL parameters were analyzed during this sampling event to delineate the extent of impact.
- Only the parameters detected during the previous sampling events were analyzed during this sampling event, in accordance with 40 C.F.R. § 257.95(d)(1).

Prod-A 39.112942 - 84.808081 - 6/8/2019 9:35

Background / Upgradient Monitoring Wells

- 40 C.F.R. Part 257 Appendix IV

Notes:

- **Prod-A** 39.112942 - 84.808081 - 6/8/2019 9:35

- **Prod-A** 39.112942 - 84.808081 - 6/8/2019 9:35
TABLE 3.
STATISTICAL BACKGROUND VALUES
2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT
MIAMI FORT POWER STATION
UNIT ID 111 - MIAMI FORT BASIN A
NORTH BEND, OHIO
ASSESSMENT MONITORING PROGRAM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Statistical Background Value (UPL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 C.F.R. Part 257 Appendix III</td>
<td></td>
</tr>
<tr>
<td>Boron (mg/L)</td>
<td>1.90</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>267</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>71.5</td>
</tr>
<tr>
<td>Fluoride (mg/L)</td>
<td>0.373</td>
</tr>
<tr>
<td>pH (S.U.)</td>
<td>6.5 / 7.5</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>550</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>1160</td>
</tr>
</tbody>
</table>

Notes:

- 40 C.F.R. = Title 40 of the Code of Federal Regulations
- mg/L = milligrams per liter
- S.U. = Standard Units
- UPL = Upper Prediction Limit
TABLE 4.
GROUNDWATER PROTECTION STANDARDS
2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT
MIAMI FORT POWER STATION
UNIT ID 111 - MIAMI FORT BASIN A
NORTH BEND, OHIO
ASSESSMENT MONITORING PROGRAM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Groundwater Protection Standard¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 C.F.R. Part 257 Appendix IV</td>
<td></td>
</tr>
<tr>
<td>Antimony (mg/L)</td>
<td>0.006</td>
</tr>
<tr>
<td>Arsenic (mg/L)</td>
<td>0.010</td>
</tr>
<tr>
<td>Barium (mg/L)</td>
<td>2</td>
</tr>
<tr>
<td>Beryllium (mg/L)</td>
<td>0.004</td>
</tr>
<tr>
<td>Cadmium (mg/L)</td>
<td>0.005</td>
</tr>
<tr>
<td>Chromium (mg/L)</td>
<td>0.10</td>
</tr>
<tr>
<td>Cobalt (mg/L)</td>
<td>0.006</td>
</tr>
<tr>
<td>Fluoride (mg/L)</td>
<td>4</td>
</tr>
<tr>
<td>Lead (mg/L)</td>
<td>0.015</td>
</tr>
<tr>
<td>Lithium (mg/L)</td>
<td>0.071</td>
</tr>
<tr>
<td>Mercury (mg/L)</td>
<td>0.002</td>
</tr>
<tr>
<td>Molybdenum (mg/L)</td>
<td>0.10</td>
</tr>
<tr>
<td>Radium 226+228 (pCi/L)</td>
<td>5</td>
</tr>
<tr>
<td>Selenium (mg/L)</td>
<td>0.05</td>
</tr>
<tr>
<td>Thallium (mg/L)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

[O: RAB 12/23/19, C: KLT 12/26/19]

Notes:
40 C.F.R. = Title 40 of the Code of Federal Regulations
mg/L = milligrams per liter
pCi/L = picoCuries per liter
¹Groundwater Protection Standard is the higher of the Maximum Contaminant Level / Health-Based Level or background.
APPENDIX A
CORRECTIVE MEASURES ASSESSMENT EXTENSION DEMONSTRATION
July 8, 2019

Brian Voelker
Vistra Energy
133 South 4th Street
Suite 306
Springfield, IL 62701

RE: Justification for Extension to Complete Corrective Measures Assessment Under 40 C.F.R. § 257.96
Miami Fort Power Station Basin A – CCR Unit ID 111

Dear Brian,

O’Brien & Gere Engineers, Inc., a Ramboll Company, (OBG, Part of Ramboll) is providing Dynegy Miami Fort, LLC with this letter certifying that, based on our knowledge of the status of the groundwater monitoring and corrective measures assessment (CMA) activities at the Basin A coal combustion residuals (CCR) unit at Miami Fort Power Station, a 60-day extension to complete the CMA is justified and valid.

OBG, Part of Ramboll understands the CMA was initiated on April 8, 2019, following identification of a groundwater protection standard exceedance under 40 C.F.R. § 257.95. CMA activities are ongoing, and due to site-specific circumstances, the CMA cannot be completed within 90 days. Accordingly, 60 additional days are warranted based on the following site-specific circumstances:

- Installation of additional groundwater monitoring wells and additional groundwater sampling and analysis to characterize the contaminant plume, as required by 40 C.F.R. § 257.95(g)(1), including the following:
 - Work plan development to identify locations, depths, and screen intervals for additional monitoring wells
 - Mobilization to the site to install, develop, and sample the additional monitoring wells
 - Laboratory analysis of groundwater samples collected from the new monitoring wells
 - Comparison of laboratory results to the groundwater protection standards

As used herein, the word “certification” or “certifying” shall mean an expression of the Engineer’s professional opinion to the best of his or her information, knowledge, and belief, and does not constitute a warranty or guarantee by the Engineer.
PROFESSIONAL CERTIFICATION

I hereby certify that a 60-day extension to the 90-day completion timeframe for the corrective measures assessment is justified and valid pursuant to 40 C.F.R. § 257.96(a).

Very truly yours,
O’BRIEN & GERE ENGINEERS, INC., A RAMBOLL COMPANY

Richard H. Weber, PE
Vice President

Miami Fort Basin A CMA Extension.docx