Dynegy Miami Fort, LLC

MIAMI FORT POWER STATION
NORTH BEND, HAMILTON COUNTY, OHIO

Emergency Action Plan (EAP)

40 CFR § 257.73(a)(3)
Coal Combustion Residual (CCR) Impoundments & Related Facilities

- Basin A (NID # OH01690)
- Basin B (NID # OH01691)

Revision Date: April 13, 2017
Qualified Professional Engineer Certification; Emergency Action Plan for the Miami Fort Power Station Basin A and Basin B.

In accordance with 40 CFR 257.73(a)(3)(iv), the owner or operator of a CCR unit that is required to prepare a written Emergency Action Plan under 40 CFR 257.73(a)(3) must obtain a certification from a qualified professional engineer stating that the written Emergency Action Plan meets the requirements of 40 CFR 257.73(a)(3).

I, David Hayson, being a Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that:

1. the information contained in this Emergency Action Plan was prepared in accordance with the accepted practice of engineering; and

2. this Emergency Action Plan meets the requirements of 40 CFR 257.73(a)(3).

SIGNATURE ___________________________ DATE 4/13/17

ADDRESS: Stantec Consulting Services Inc.
11687 Lebanon Road
Cincinnati OH 45241-2012

TELEPHONE: (513) 842-8200
MIAMI FORT POWER STATION
EMERGENCY ACTION PLAN
CCR IMPOUNDMENTS & RELATED FACILITIES

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 STATEMENT OF PURPOSE</td>
<td>1</td>
</tr>
<tr>
<td>2 COMMUNICATION</td>
<td>4</td>
</tr>
<tr>
<td>3 EAP ROLES AND RESPONSIBILITIES</td>
<td>8</td>
</tr>
<tr>
<td>4 EAP RESPONSE</td>
<td>9</td>
</tr>
<tr>
<td>5 PREPAREDNESS</td>
<td>14</td>
</tr>
<tr>
<td>6 FACILITY/IMPOUNDMENT DESCRIPTION</td>
<td>17</td>
</tr>
<tr>
<td>7 BREACH INUNDATION MAPS AND POTENTIAL IMPACTS</td>
<td>19</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2-1. EAP Emergency Responders</td>
<td>7</td>
</tr>
<tr>
<td>Table 3-1. Summary of EAP Roles</td>
<td>8</td>
</tr>
<tr>
<td>Table 4-1. Guidance for Determining the Response Level</td>
<td>9</td>
</tr>
<tr>
<td>Table 4-2. Impoundment Trigger Elevations</td>
<td>10</td>
</tr>
<tr>
<td>Table 4-3. Step 3: Emergency Actions</td>
<td>11</td>
</tr>
<tr>
<td>Table 5-1. Emergency Supplies and Equipment</td>
<td>15</td>
</tr>
<tr>
<td>Table 5-2. Supplier Addresses</td>
<td>16</td>
</tr>
<tr>
<td>Table 6-1. Station Impoundment Characteristics</td>
<td>18</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1. Miami Fort Power Station Location Map</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1-2. Miami Fort Power Station CCR Impoundments & Related Facilities</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2-1. Summary/Sequence of Tasks 4-Step Incident Response Process</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2-2. Notification Flowchart</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2-3. EAP Response Process Decision Tree</td>
<td>6</td>
</tr>
<tr>
<td>Figure 7-1. Basin A Inundation Map</td>
<td>20</td>
</tr>
<tr>
<td>Figure 7-2. Basin B Inundation Map</td>
<td>21</td>
</tr>
</tbody>
</table>
1 STATEMENT OF PURPOSE

The Miami Fort Power Station (Station) is located near North Bend in Hamilton County, Ohio. The location is shown in Figure 1-1. The Station is a coal-fired electricity producing power plant operated by Dynegy Miami Fort, LLC, a subsidiary of Dynegy. This Emergency Action Plan (EAP) was prepared in accordance with 40 CFR § 257.73(a)(3) and covers the following Coal Combustion Residual (CCR) surface impoundments located at the site:

- Basin A
- Basin B

The locations of these impoundments are shown in Figure 1-2. Section 6 of this EAP includes a description of each impoundment.

The purpose of this Emergency Action Plan (EAP) is to:

1. Safeguard the lives, as well as to reduce property damage, of citizens living within potential downstream flood inundation areas of CCR impoundments and related facilities at the Miami Fort Power Station.
2. Define the events or circumstances involving the CCR impoundments and related facilities at the Miami Fort Power Station that represent atypical operating conditions that pose a safety hazard or emergency and how to identify those conditions.
3. Define responsible persons, their responsibilities, and notification procedures in the event of a safety emergency.
4. Provide contact information of emergency responders.
5. Identify emergency actions in the event of a potential or imminent failure of the impoundment.
6. Identify the downstream area that would be affected by failure of the impoundments.
7. Provide for effective facility surveillance, prompt notification to local Emergency Management Agencies, citizen warning and notification responses, and preparation should an emergency occur.

Information provided by Dynegy was utilized and relied upon in preparation of this report.
2 COMMUNICATION

To facilitate understanding among everyone involved in implementing this EAP, four response levels are used to identify the condition of an impoundment. These are:

Response Levels:

- **Level 0:** Normal conditions and routine operations, including surveillance and initial investigation of unusual conditions and effects of storm events.
- **Level 1:** Potentially hazardous condition exists, requiring investigation and possible corrective action.
- **Level 2:** Potential failure situation is developing; possible mode of failure is being assessed; corrective measures are underway.
- **Level 3:** Failure is occurring or is imminent, public protective actions are required.

The 4-Step Incident Response Process is outlined in Figure 2-1. This should be used in conjunction with the Notification Flowchart (Figure 2-2) and EAP Decision Tree (Figure 2-3). Section 4 provides guidance tables for determining Response Levels and a table providing emergency actions to be taken given various situations. Table 2-1 lists contact information for the emergency responders.

Figure 2-1. Summary/Sequence of Tasks 4-Step Incident Response Process

<table>
<thead>
<tr>
<th>Step 1: Detection, Evaluation, and Response Level Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence of Tasks:</td>
</tr>
<tr>
<td>- Notify EAP Coordinator, Station Management (Director and Engineering), and Dynegy Dam Safety Manager of unusual condition detected and confer on next steps needed.</td>
</tr>
<tr>
<td>- Conduct technical evaluation of conditions as needed.</td>
</tr>
<tr>
<td>- Determine Response Level based on evaluation. (Table 4-1)</td>
</tr>
<tr>
<td>- Reset Response Level as revised evaluations warrant.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2: Notification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence of Tasks:</td>
</tr>
<tr>
<td>- Notify authorities, designated personnel, and external response partners of change in Response Level, using the Notification Flowchart. (Figure 2-2)</td>
</tr>
<tr>
<td>- Re-notify authorities, designated personnel, and external response partners as Response Level is changed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3: Emergency Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence of Tasks:</td>
</tr>
<tr>
<td>- Perform emergency actions with goal of saving the impoundment and minimizing impacts to life, property, and environment. (Table 4-3)</td>
</tr>
<tr>
<td>- Take continuous actions to include situation assessment, information sharing, remediation, and public safety advisories or warnings, as warranted.</td>
</tr>
<tr>
<td>- Revise action plan as changes in conditions warrant.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4: Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence of Tasks:</td>
</tr>
<tr>
<td>- Document conditions and decisions in the Emergency Incident Log.</td>
</tr>
<tr>
<td>- Notify authorities, designated personnel, and external response partners that condition is stabilized; limit incident termination declarations to conditions at the site.</td>
</tr>
<tr>
<td>- Conduct and document after-action review of incident and response.</td>
</tr>
</tbody>
</table>
Figure 2-2. Notification Flowchart

Level 0
- Initial Detector (Internal)
- Station Control Room
- EAP Coordinator
 - Jay Koesters
 - (Station Environmental Manager)
- Dynegy Construction Manager
 - Steve Bluemner
- Dynegy Corporate
- Dynegy Dam Safety Manager
 - Jason Campbell
- Station Managing Director
 - Chris Osterbrink
- Station Engineering Manager
 - Kyle McKenna

Level 1
- Initial Detector (External)
- 911
- Station Shift Supervisor
- Onsite Personnel
- Dynegy Corporate

Level 2
- EAP Coordinator
 - Jay Koesters
 - (Station Environmental Manager)
- Station Managing Director
 - Chris Osterbrink
- Station Engineering Manager
 - Kyle McKenna
- Hamilton County ESDA/EMA Coordinator
 - (513) 263-8200

Level 3
- Station Shift Supervisor
- Onsite Personnel
- Dynegy Corporate
- Dynegy Dam Safety Manager
 - Jason Campbell
- Station Managing Director
 - Chris Osterbrink
- Station Engineering Manager
 - Kyle McKenna

Affected Parties
- Hamilton County ESDA/EMA Coordinator
 - (513) 263-8200
- Local/County Police, Fire & Rescue
 - Hamilton County 911 Communication Center: 911 OR (513) 825-2280
 - Hamilton County Sheriff: Jim Neil (513) 946-6400
 - Cleves Police Department (513) 941-1212
 - Miami Township Fire Department (513) 941-2466

Determine Response Level
Figure 2.3. EAP Response Process Decision Tree

Note: At any given below, if failure is imminent or actively occurring CALL 911 IMMEDIATELY to notify emergency responders and then continue with process afterwards.

- **STEP 1:** Detection, Evaluation, and Response Level Determination
 - Personnel detects unusual operating event/condition
 - Notify: Station Control Room
 - Notify: EAP Coordinator
 - Assess unusual event

- **RESPONSE LEVEL 1**
 - Gather more data
 - Assess condition/event using Table 4-1 for guidance
 - Set Initial Response Level Using Condition/Event Assessment Determination
 - Initiate Response LEVEL 1 Communications: See Figure 2-2 Notification Flowchart
 - Implement Response LEVEL 1 Actions:
 - Frequent surveillance of condition/event
 - Be prepared for Level 2 and 3 Actions

- **RESPONSE LEVEL 2 OR 3**
 - Assess embankment conditions
 - Initiate Response LEVEL 2 Communications: See Figure 2-2 Notification Flowchart
 - Implement Response LEVEL 2 Actions:
 - Constant surveillance of condition/event
 - Repair and mitigate damages where possible (i.e., sandbagging boils, using pumps to lower pool, etc.)
 - Clear any obstructions/debris from impoundment spillways and downstream culverts/bridges
 - Place damage mitigation structures where applicable
 - Notify operators of upstream and downstream flow control structures (i.e. dams) to prepare or start performing gate operations
 - Be prepared for Level 3 actions

- **RESPONSE LEVEL 3**
 - Assess embankment conditions
 - Initiate Response LEVEL 3 Communications: See Figure 2-2 Notification Flowchart
 - Implement Response LEVEL 3 Actions:
 - After promptly notifying local county ESDA/EMA of Response Level 3; provide support to ESDA/EMA’s where possible
 - Perform emergency actions depicted in Table 4-3 as applicable
 - If applicable, notify operators of upstream and downstream flow control structures (i.e. dams) of the imminent or actively occurring emergency incident

STEP 2: Notification
- NO: Update Response Level?
- YES: Termination & Follow-up (see Section 4)

STEP 3: Emergency Actions
- NO: Failure Imminent or Occurring?
- YES: Initiate Response LEVEL 2 Communications: See Figure 2-2 Notification Flowchart

STEP 4: Follow-up
- NO: Termination & Follow-up (see Section 4)
- YES: Has failure occurred and breach flow concluded?

RESPONSE LEVEL 0
- Not an emergency, but may require further evaluation
- Notify: Station Managing Director Dynegy Dam Safety Manager
- Reservoir Elevation Triggers Response Level > 0 (see Table 4-1 & Table 4-2)
- Control Room is notified by Personnel responsible for monitoring reservoir elevations

RESPONSE LEVEL 1
- NO: Declare Incident (Response Level > 0)
- YES: Initiate Response LEVEL 1 Communications: See Figure 2-2 Notification Flowchart

RESPONSE LEVEL 2 OR 3
- NO: Update Response Level?
- YES: Termination & Follow-up (see Section 4)

RESPONSE LEVEL 3
- NO: Failure Imminent or Occurring?
- YES: Initiate Response LEVEL 3 Communications: See Figure 2-2 Notification Flowchart

STEP 1: Detection, Evaluation, and Response Level Determination
- PERSONNEL DETECTS UNUSUAL OPERATING EVENT/CONDITION
- NOTIFY: STATION CONTROL ROOM
- NOTIFY: EAP COORDINATOR
- ASSESS UNUSUAL EVENT

RESPONSE LEVEL 1
- GATHER MORE DATA
- ASSESS CONDITION/EVENT USING TABLE 4-1 FOR GUIDANCE
- SET INITIAL RESPONSE LEVEL USING CONDITION/EVENT ASSESSMENT DETERMINATION
- INITIATE RESPONSE LEVEL 1 COMMUNICATIONS: SEE FIGURE 2-2 NOTIFICATION FLOWCHART
- IMPLEMENT RESPONSE LEVEL 1 ACTIONS:
 - FREQUENT SURVEILLANCE OF CONDITION/EVENT
 - BE PREPARED FOR LEVEL 2 AND 3 ACTIONS

RESPONSE LEVEL 2 OR 3
- ASSESS EMBANKMENT CONDITIONS
- INITIATE RESPONSE LEVEL 2 COMMUNICATIONS: SEE FIGURE 2-2 NOTIFICATION FLOWCHART
- IMPLEMENT RESPONSE LEVEL 2 ACTIONS:
 - CONSTANT SURVEILLANCE OF CONDITION/EVENT
 - REPAIR AND MITIGATE DAMAGES WHERE POSSIBLE (I.E., SANDBAGGING BOILS, USING PUMPS TO LOWER POOL, ETC.)
 - CLEAR ANY OBSTRUCTIONS/DEBRIS FROM IMPOUNDMENT SPILLWAYS AND DOWNSTREAM CULVERTS/BRIDGES
 - PLACE DAMAGE MITIGATION STRUCTURES WHERE APPLICABLE
 - NOTIFY OPERATORS OF UPSTREAM AND DOWNSTREAM FLOW CONTROL STRUCTURES (I.E., DAMS) TO PREPARE OR START PERFORMING GATE OPERATIONS
 - BE PREPARED FOR LEVEL 3 ACTIONS

RESPONSE LEVEL 3
- ASSESS EMBANKMENT CONDITIONS
- INITIATE RESPONSE LEVEL 3 COMMUNICATIONS: SEE FIGURE 2-2 NOTIFICATION FLOWCHART
- IMPLEMENT RESPONSE LEVEL 3 ACTIONS:
 - AFTER PROMPTLY NOTIFYING LOCAL/COUNTY ESDA/EMA OF RESPONSE LEVEL 3; PROVIDE SUPPORT TO ESDA/EMA’S WHERE POSSIBLE
 - PERFORM EMERGENCY ACTIONS DEPICTED IN TABLE 4-3 AS APPLICABLE
 - IF APPLICABLE, NOTIFY OPERATORS OF UPSTREAM AND DOWNSTREAM FLOW CONTROL STRUCTURES (I.E., DAMS) OF THE IMMINENT OR ACTIVELY OCCURRING EMERGENCY INCIDENT

STEP 2: NOTIFICATION
- NO: UPDATE RESPONSE LEVEL?
- YES: TERMINATION & FOLLOW-UP (SEE SECTION 4)

STEP 3: EMERGENCY ACTIONS
- NO: FAILURE IMMINENT OR OCCURRING?
- YES: INITIATE RESPONSE LEVEL 2 COMMUNICATIONS: SEE FIGURE 2-2 NOTIFICATION FLOWCHART

STEP 4: FOLLOW-UP
- NO: TERMINATION & FOLLOW-UP (SEE SECTION 4)
- YES: HAS FAILURE OCCURRED AND BREACH FLOW CONCLUDED?

RESPONSE LEVEL 0
- NOT AN EMERGENCY, BUT MAY REQUIRE FURTHER EVALUATION
- NOTIFY: STATION MANAGING DIRECTOR DYNEGY DAM SAFETY MANAGER
- RESERVOIR ELEVATION TRIGGERS RESPONSE LEVEL > 0 (SEE TABLE 4-1 & TABLE 4-2)
- CONTROL ROOM IS NOTIFIED BY PERSONNEL RESPONSIBLE FOR MONITORING RESERVOIR ELEVATIONS

RESPONSE LEVEL 1
- NO: DECLARE INCIDENT (RESPONSE LEVEL > 0)
- YES: INITIATE RESPONSE LEVEL 1 COMMUNICATIONS: SEE FIGURE 2-2 NOTIFICATION FLOWCHART

RESPONSE LEVEL 2 OR 3
- NO: UPDATE RESPONSE LEVEL?
- YES: TERMINATION & FOLLOW-UP (SEE SECTION 4)

RESPONSE LEVEL 3
- NO: FAILURE IMMINENT OR OCCURRING?
- YES: INITIATE RESPONSE LEVEL 3 COMMUNICATIONS: SEE FIGURE 2-2 NOTIFICATION FLOWCHART

STEP 1: DETECTION, EVALUATION, AND RESPONSE LEVEL DETERMINATION
- PERSONNEL DETECTS UNUSUAL OPERATING EVENT/CONDITION
- NOTIFY: STATION CONTROL ROOM
- NOTIFY: EAP COORDINATOR
- ASSESS UNUSUAL EVENT

RESPONSE LEVEL 1
- GATHER MORE DATA
- ASSESS CONDITION/EVENT USING TABLE 4-1 FOR GUIDANCE
- SET INITIAL RESPONSE LEVEL USING CONDITION/EVENT ASSESSMENT DETERMINATION
- INITIATE RESPONSE LEVEL 1 COMMUNICATIONS: SEE FIGURE 2-2 NOTIFICATION FLOWCHART
- IMPLEMENT RESPONSE LEVEL 1 ACTIONS:
 - FREQUENT SURVEILLANCE OF CONDITION/EVENT
 - BE PREPARED FOR LEVEL 2 AND 3 ACTIONS

RESPONSE LEVEL 2 OR 3
- ASSESS EMBANKMENT CONDITIONS
- INITIATE RESPONSE LEVEL 2 COMMUNICATIONS: SEE FIGURE 2-2 NOTIFICATION FLOWCHART
- IMPLEMENT RESPONSE LEVEL 2 ACTIONS:
 - CONSTANT SURVEILLANCE OF CONDITION/EVENT
 - REPAIR AND MITIGATE DAMAGES WHERE POSSIBLE (I.E., SANDBAGGING BOILS, USING PUMPS TO LOWER POOL, ETC.)
 - CLEAR ANY OBSTRUCTIONS/DEBRIS FROM IMPOUNDMENT SPILLWAYS AND DOWNSTREAM CULVERTS/BRIDGES
 - PLACE DAMAGE MITIGATION STRUCTURES WHERE APPLICABLE
 - NOTIFY OPERATORS OF UPSTREAM AND DOWNSTREAM FLOW CONTROL STRUCTURES (I.E., DAMS) TO PREPARE OR START PERFORMING GATE OPERATIONS
 - BE PREPARED FOR LEVEL 3 ACTIONS

RESPONSE LEVEL 3
- ASSESS EMBANKMENT CONDITIONS
- INITIATE RESPONSE LEVEL 3 COMMUNICATIONS: SEE FIGURE 2-2 NOTIFICATION FLOWCHART
- IMPLEMENT RESPONSE LEVEL 3 ACTIONS:
 - AFTER PROMPTLY NOTIFYING LOCAL/COUNTY ESDA/EMA OF RESPONSE LEVEL 3; PROVIDE SUPPORT TO ESDA/EMA’S WHERE POSSIBLE
 - PERFORM EMERGENCY ACTIONS DEPICTED IN TABLE 4-3 AS APPLICABLE
 - IF APPLICABLE, NOTIFY OPERATORS OF UPSTREAM AND DOWNSTREAM FLOW CONTROL STRUCTURES (I.E., DAMS) OF THE IMMINENT OR ACTIVELY OCCURRING EMERGENCY INCIDENT

STEP 2: NOTIFICATION
- NO: UPDATE RESPONSE LEVEL?
- YES: TERMINATION & FOLLOW-UP (SEE SECTION 4)

STEP 3: EMERGENCY ACTIONS
- NO: FAILURE IMMINENT OR OCCURRING?
- YES: INITIATE RESPONSE LEVEL 2 COMMUNICATIONS: SEE FIGURE 2-2 NOTIFICATION FLOWCHART

STEP 4: FOLLOW-UP
- NO: TERMINATION & FOLLOW-UP (SEE SECTION 4)
- YES: HAS FAILURE OCCURRED AND BREACH FLOW CONCLUDED?
Table 2-1. EAP Emergency Responders

<table>
<thead>
<tr>
<th>Position / Entity</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Contacts</td>
<td></td>
</tr>
<tr>
<td>Miami Fort Power Station</td>
<td></td>
</tr>
<tr>
<td>Managing Director</td>
<td>Chris Osterbrink</td>
</tr>
<tr>
<td>Environmental Manager (EAP Coordinator)</td>
<td>Jay Koesters</td>
</tr>
<tr>
<td>Engineering Manager</td>
<td>Kyle McKenna</td>
</tr>
<tr>
<td>Control Room</td>
<td></td>
</tr>
<tr>
<td>Dynegy Corporate Operations</td>
<td>Contact</td>
</tr>
<tr>
<td>Dam Safety Manager</td>
<td>Jason Campbell</td>
</tr>
<tr>
<td>Construction Manager</td>
<td>Steve Bluemner</td>
</tr>
<tr>
<td>External Contacts</td>
<td></td>
</tr>
<tr>
<td>Local/County ESDA/EMA, Police, & Fire</td>
<td>Contact</td>
</tr>
<tr>
<td>Hamilton County 911 Emergency Communications Center</td>
<td></td>
</tr>
<tr>
<td>Hamilton County – ESDA/EMA</td>
<td>Hamilton County EMA</td>
</tr>
<tr>
<td>Cleves – Police Department</td>
<td>Chief Richard Jones, Jr.</td>
</tr>
<tr>
<td>Hamilton County – Sheriff Department</td>
<td>Sheriff Jim Neil</td>
</tr>
<tr>
<td>Miami Township – Fire Department</td>
<td>Chief Steve Ober</td>
</tr>
<tr>
<td>State Emergency Management Agencies & Organizations</td>
<td>Contact</td>
</tr>
<tr>
<td>Ohio Department of Natural Resources - Wildlife</td>
<td></td>
</tr>
</tbody>
</table>
3 EAP ROLES AND RESPONSIBILITIES

Table 3-1 provides a summary of the EAP roles during an emergency event.

Table 3-1. Summary of EAP Roles

<table>
<thead>
<tr>
<th>Entity</th>
<th>Role Description</th>
</tr>
</thead>
</table>
| **Dynegy Emergency Response Team (ERT)** | ERT: Dynegy personnel responsible for EAP implementation, distribution, updates/maintenance, and training activities. The ERT is comprised of the following roles;
1. **Dynegy Corporate**: Dynegy corporate entity, committee, team, or position with relevant responsibility for a given generating station.
2. **Station Management**: Personnel responsible for day-to-day operation and management of the Station.
3. **Dam Safety Manager**: Personnel that is most knowledgeable about the design and technical operation of facilities at a given Station.
4. **EAP Coordinator**: Personnel responsible for implementing the EAP and associated activities.
 Emergency Event – EAP Responsibilities
 1. Respond to emergencies at the Station.
 2. Verify and assess emergency conditions.
 3. Notify and coordinate as appropriate with participating emergency services disaster agencies or emergency management agencies (ESDA/EMA’s), emergency responders, regulatory agencies, and all other entities involved or affected by this EAP.
 4. Take corrective action at the Station.
 5. Declare termination of emergencies at the Station. |
| **Hamilton County ESDA/EMA** | 1. Receive Response Level reports from Dynegy Corporate through EAP Coordinator.
2. Coordinate emergency response activities with local authorities: police, fire and rescue, etc.
3. Coordinate notification of public as necessary through established channels, which may include door-to-door contact.
4. Coordinate notification activities to affected parties within inundation areas.
5. Evaluate risk to areas beyond the inundation areas, communicate needs to Dynegy Corporate and/or EAP Coordinator, and coordinate aid as appropriate.
6. Responsible for declaring termination of an emergency condition off-site upon receiving notification of an emergency status termination from Dynegy Corporate.
7. If necessary, coordinate with State ESDA/EMA. |
| **Cleves Police, Miami Township Fire, and Rescue** | 1. Receive alert status reports from the ERT or the County ESDA/EMA.
2. If necessary, notify affected parties and general public within inundation areas (see Section 7).
3. Render assistance to Hamilton County ESDA/EMA, as necessary.
4. Render assistance to Dynegy Corporate and Station Management, as necessary. |
| **Hamilton County Police, Fire and Rescue, and Emergency Services** | 1. Receive alert status reports from the ERT or the County ESDA/EMA.
2. If necessary, notify affected parties within the inundation area.
3. Provide mutual aid to other affected areas, if requested and able. |
4 EAP RESPONSE

The 4-Step Incident Response Process is shown in Figure 2-1. The Decision Tree shown in Figure 2-3 provides a flowchart for the various elements of the response process. Upon reaching Step 4 of the response process (termination and follow-up), the EAP Coordinator is responsible for notifying the ESDA/EMA’s that the condition of the dam/impoundment has been stabilized. The purpose of this section is to provide specific information that can be used during a response. This information is provided in the following tables:

- Table 4-1 provides guidance for determining the response level.
- Table 4-2 provides impoundment pool level trigger elevations.
- Table 4-3 lists emergency actions to be taken depending on the situation.

<table>
<thead>
<tr>
<th>Event</th>
<th>Situation</th>
<th>Response Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spillway flow (see Table 4-2 for relevant elevations)</td>
<td>Primary spillway flow is not causing active erosion and impoundment water surface elevation is below auxiliary spillway crest elevation (if equipped).</td>
<td>Level 0</td>
</tr>
<tr>
<td></td>
<td>Impoundment water surface elevation is at or above auxiliary spillway crest elevation (if equipped). No active erosion caused by spillway flow.</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>Spillway flow actively causing minor erosion that is not threatening the control section or dam/impoundment stability.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Spillway flow that could result in flooding of people downstream if the reservoir level continues to rise.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Abnormal operation of the spillway system due to blockage or damage that could lead to flooding.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Spillway flow actively eroding the soil around the spillway that is threatening the control section (e.g. undermining) or dam/impoundment stability.</td>
<td>Level 3</td>
</tr>
<tr>
<td></td>
<td>Spillway flow that is flooding people downstream.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Embankment overtopping (see Table 4-2 for relevant elevations)</td>
<td>Impoundment water surface elevation at or below typical normal pool fluctuation elevation.</td>
<td>Level 0</td>
</tr>
<tr>
<td></td>
<td>Impoundment water surface elevation above typical high pool fluctuation elevation.</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>Impoundment water surface elevation within 2 feet of the embankment crest elevation</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Impoundment water surface elevation at or above embankment crest elevation.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Seepage</td>
<td>New seepage areas in or near the dam/impoundment with clear flow.</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>New seepage areas with cloudy discharge or increasing flow rate.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Heavy seepage with active erosion, muddy flow, and/or sand boils.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Sinkholes</td>
<td>Observation of new sinkhole in impoundment area or on embankment.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Rapidly enlarging sinkhole and/or whirlpool in the impoundment.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Embankment cracking</td>
<td>New cracks in the embankment greater than ⅛ inch wide without seepage.</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>Any crack in the embankment with seepage.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Enlarging cracks with muddy seepage.</td>
<td>Level 3</td>
</tr>
</tbody>
</table>
Table 4-1. Guidance for Determining the Response Level

<table>
<thead>
<tr>
<th>Event</th>
<th>Situation</th>
<th>Response Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embankment movement</td>
<td>Visual signs of movement/slippage of the embankment slope.</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>Detectable active movement/slippage of the embankment slope or other related effects (tension cracking, bulges/heaves, etc.) that could threaten the integrity of the embankment.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Sudden or rapidly proceeding slides of the embankment slopes.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Embankment Monitoring Equipment</td>
<td>Instrumentation readings beyond historic normal.</td>
<td>Level 1</td>
</tr>
<tr>
<td>(piezometers, inclinometers, surface displacement mounts, etc.)</td>
<td>Instrumentation readings indicate the embankment is susceptible to failure.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Instrumentation readings indicate embankment is at threshold of failure or is currently failing.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Earthquake or other event</td>
<td>Measurable earthquake felt or reported on or within 100 miles of the impoundment.</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>Earthquake or other event resulting in visible damage to the impoundment or appurtenances.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Earthquake or other event resulting in uncontrolled release of water or materials from the impoundment.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Security threat</td>
<td>Verified bomb threat or other physical threat that, if carried out, could result in damage to the impoundment.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Detonated bomb or other physical damage that has resulted in damage to the impoundment or appurtenances.</td>
<td>Level 3</td>
</tr>
<tr>
<td>Sabotage/vandalism</td>
<td>Damage to impoundment or appurtenance with no impact to the functioning of the impoundment.</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>Modification to the impoundment or appurtenances that could adversely impact the functioning of the impoundment. This would include unauthorized operation of spillway facilities.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Damage to impoundment or appurtenances that has resulted in seepage flow.</td>
<td>Level 2</td>
</tr>
<tr>
<td></td>
<td>Damage to impoundment or appurtenances that has resulted in uncontrolled water release.</td>
<td>Level 3</td>
</tr>
</tbody>
</table>

Table 4-2. Impoundment Trigger Elevations

<table>
<thead>
<tr>
<th>Impoundment</th>
<th>Embankment Crest Elevation</th>
<th>Auxiliary Spillway Crest Elevation</th>
<th>Normal Pool Fluctuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typical</td>
</tr>
<tr>
<td>Basin A</td>
<td>507.5 ft.</td>
<td>Not Applicable</td>
<td>501.4 ft.</td>
</tr>
<tr>
<td>Basin B</td>
<td>507.7 ft.</td>
<td>Not Applicable</td>
<td>499.4 ft.</td>
</tr>
</tbody>
</table>

Notes:
Table 4-3. Step 3: Emergency Actions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description of Condition</th>
<th>Action to be Taken</th>
</tr>
</thead>
</table>
| High Water Level/ Large Spillway Release | See Table 4-1 and Table 4-2 for elevations and triggering water levels associated with the impoundments and spillways covered by this EAP. | 1. Assess cause of increased reservoir stage, especially during fair weather conditions.
2. Determine Response Level.
3. Make proper notifications as outlined in the Figure 2-2 Notification Flowchart.
4. Perform additional tasks as determined through consultation with the ERT.
5. Make notifications if condition worsens such that downstream flooding is imminent.
Response Level 0: require enhanced surveillance 3 times per day
Response Level 1: contact internal chain of command and external response partners as necessary; inspect impoundment minimum 1 time per hour
Response Level 2: contact internal chain of command; notify ESDA/EMA’s and notify external response partners. ESDA/EMA’s notify affected parties.
Response Level 3: contact internal chain of command; notify ESDA/EMA’s and notify external response partners. ESDA/EMA’s notify affected parties of emergency incident. |
| Seepage | Localized new seepage or boil(s) observed along downstream face / toe of earthen embankment with muddy discharge and increasing but controllable discharge of water. | 1. Measure and record feature dimensions, approximate flow rate, and relative location to existing surface features. Take photos. Document location on a site plan and in inspection notes.
2. Determine Response Level.
3. Make proper notifications as outlined in the Figure 2-2 Notification Flowchart.
4. ERT (with Dam Safety Manager as lead) to determine mitigation actions. The following actions may apply:
a) Place a ring of sand bags with a weir at the top towards the natural drainage path to monitor flow rate. If boil becomes too large to sand bag, place a blanket filter over the area using non-woven filter fabric and pea gravel. Attempt to contain flow in such a manner (without performing any excavations) that flow rates can be measured. Stockpile gravel and sand fill for later use, if necessary.
b) Inspect the embankment and collect piezometer, water level and seepage flow data daily unless otherwise instructed by the Dam Safety Manager. Record any changes of conditions. Carefully observe embankment for signs of depressions, seepage, sinkholes, cracking or movement.
c) Maintain continuous monitoring of feature. Record measured flow rate and any changes of condition, including presence or absence of muddy discharge.
5. Make notifications as outlined in the lower portion of the Notification Flowchart (Figure 2-2) if condition worsens such that failure is imminent. |
Table 4-3. Step 3: Emergency Actions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description of Condition</th>
<th>Action to be Taken</th>
</tr>
</thead>
</table>
| Sabotage and Miscellaneous Other Issues | Criminal action with significant damage to embankment or structures where significant repairs are required and the integrity of the facility is compromised—condition appears stable with time. | 1. Contact law enforcement authorities and restrict all access (except emergency responders) to impoundment. Restrict traffic on embankment crest to essential emergency operations only.
2. Determine Response Level.
3. Make internal notifications as outlined in the upper portion of the Notification Flowchart (Figure 2-2).
4. In conjunction with the Dam Safety Manager, assess extent of damage and visually inspect entire embankment and ancillary structures for additional less obvious damage. Based on inspection results, confirm if extent of damage to various components of the impoundment warrants a revised Response Level and additional notifications.
5. Perform additional tasks as directed by the ERT.
6. Make notifications if conditions worsen. |
| Embankment Deformation | Cracks: New longitudinal (along the embankment) or transverse (across the embankment) cracks more than 6 inches deep or more than 3 inches wide or increasing with time. New concave cracks on or near the embankment crest associated with slope movement. | 1. Measure and record feature dimensions, approximate flow rate, and relative location to existing surface features. Take photos. Document location on a site plan and in inspection notes.
2. Restrict traffic on embankment crest to essential emergency operations only.
3. Determine Response Level.
4. Make notifications as outlined in the Figure 2-2 Notification Flowchart.
5. ERT (with Dam Safety Manager as lead) to determine mitigation actions. The following actions may apply:
a) Place buttress fill against base of slope immediately below surface feature. Stock pile additional fill.
b) Place sand bags as necessary around crack area to divert any storm water runoff from flowing into crack(s).
6. As directed by the Dam Safety Manager, additional inspection and monitoring of the dam may be required. Items may include: inspect the dam on a schedule determined by the engineers; collect piezometer and water level data; and record any changes of condition. Carefully observe dam for signs of depressions, seepage, sinkholes, cracking or movement.
7. Make notifications as outlined in the Figure 2-2 Notification Flowchart if conditions worsen such that failure is imminent. |
| | Slides / Erosion: Deep slide / erosion (greater than 2 feet deep) on the embankment that may also extend beyond the embankment toe but does not encroach on the embankment crest and appears stable with time. | 1. Measure and record feature dimensions, approximate flow rate, and relative location to existing surface features. Take photos. Document location on a site plan and in inspection report.
2. Restrict traffic on embankment crest to essential emergency operations only.
3. Determine the Response Level.
4. Make notifications as outlined in the Figure 2-2 Notification Flowchart.
5. ERT (with Dam Safety Manager as lead) to determine mitigation actions. Additional actions may include the following items.
a) Place sand bags as necessary around slide area to divert any storm water runoff from flowing into slide(s).
b) Increase inspections of the dam; collect piezometer and water level data; and record any changes of condition. During inspections, carefully observe dam for signs of depressions, seepage, sinkholes, cracking or movement.
6. Make notifications as outlined in the Figure 2-2 Notification Flowchart if conditions worsen such that failure is imminent. |
Table 4-3. Step 3: Emergency Actions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description of Condition</th>
<th>Action to be Taken</th>
</tr>
</thead>
</table>
| Embankment Deformation | **Sinkholes:** Small depression observed on the embankment or within 50 feet of the embankment toe that is less than 5 feet deep and 30 feet wide or which is increasing with time. | 1. Slowly open drain gates to lower pool elevation.
2. Measure and record feature dimensions, approximate flow rate, and relative location to existing surface features. Take photos. Document location on a site plan and in inspection notes.
3. Restrict traffic on embankment crest to essential emergency operations only.
4. Determine Response Level.
5. Make notifications as outlined in the Figure 2-2 Notification Flowchart.
6. ERT (with Dam Safety Manager as lead) to determine mitigation actions. Additional actions may include the following items:
a) Backfill the depression with relatively clean earth fill (free of organic materials) generally even with surrounding grade and slightly mounded (6 to 12 inches higher) in the center in order to shed storm water away from the depression. Stock pile additional fill.
b) Increase inspections of the dam; collect piezometer and water level data daily unless otherwise instructed by Dam Safety Manager; and record any changes of condition. Carefully observe dam for signs of depressions, seepage, sinkholes, cracking or movement.
7. Make notifications as outlined in the Figure 2-2 Notification Flowchart if conditions worsen such that failure is imminent. |
| Gate Malfunction or Failure| Sluice gate damaged structurally (sabotage, debris, etc.) with uncontrolled release of water at a constant volume. Condition appears stable. | 1. Close any other gates, if open.
2. Determine Response Level.
3. Make notifications as outlined in the Figure 2-2 Notification Flowchart.
4. Obtain instructions from the Dam Safety Manager to determine if there are other methods to stop or slow down the flow of water.
5. If conditions worsen such that failure is imminent, make notifications as outlined in the lower portion of the Figure 2-2 Notification Flowchart. |
5 PREPAREDNESS

The intent of this section is to provide information that will be utilized during a response. Established emergency supplies and locations, suppliers, and equipment are provided in Table 5-1. Supplier contact information is listed in Table 5-2.

A coordination meeting shall be conducted annually between representatives of Dynegy Miami Fort, LLC and local emergency responders. This meeting may be in the form of a face-to-face meeting, tabletop exercise, or additional training regarding the EAP.
<table>
<thead>
<tr>
<th>Item</th>
<th>On-site (Yes/No/Occasionally)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashlights</td>
<td>Yes</td>
<td>Typically at Miami Fort Power Station Maintenance Facility, contact Shift Supervisor for location(s).</td>
</tr>
<tr>
<td>Generator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension Cords</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire extinguishers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floodlights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backhoe</td>
<td>No</td>
<td>Contact Bucher Excavating, Utter Construction (see Table 5-2) and/or other nearby large equipment rental providers for additional large equipment as necessary.</td>
</tr>
<tr>
<td>Dozer</td>
<td>Yes</td>
<td>One CAT D5 and one CAT D8. Contact Shift Supervisor for location(s).</td>
</tr>
<tr>
<td>Large Equipment (Rental – including excavating equipment, pumps, lighting)</td>
<td>Yes</td>
<td>One 300 Hyundai Short Stick Track Hoe Excavator, one 821E Case Wheel Rubber Tire Front End Louder, one GMC ½ ton site pick-up, one New Holland LS-185 Skid Steer, one Smooth Drum Roller, two Industrial Vacuum Trucks. Contact Shift Supervisor for availability and location(s). Contact Bucher Excavating, Utter Construction (see Table 5-2) and/or other nearby large equipment rental providers for additional large equipment as necessary.</td>
</tr>
<tr>
<td>Dump Truck</td>
<td>Yes</td>
<td>One Mack Quint Axle Dump Truck, one Volvo Quint Axle Dump Truck, one International Quint Axle Dump Truck. Contact Shift Supervisor for location(s).</td>
</tr>
<tr>
<td>Pump and Hoses</td>
<td>Yes</td>
<td>Three Portable Water Pumps. Contact Shift Supervisor for availability and location(s). Contact Allied Technical Services or Sunbelt Rentals for high capacity portable pumps (see Table 5-2).</td>
</tr>
<tr>
<td>Sandbags and Sand</td>
<td>Yes</td>
<td>Soil stockpiled on-site. Contact Shift Supervisor for location(s). Contact Dayton Bag & Burlap or Max Katz Bag Company, Inc for additional sandbags (see Table 5-2).</td>
</tr>
<tr>
<td>Fill (Stone, aggregate, sand)</td>
<td>Yes</td>
<td>Medium sized aggregate available on-site. Contact Shift Supervisor for location(s). Contact listed suppliers in Table 5-2 for gravel, sand, and riprap fill as necessary.</td>
</tr>
<tr>
<td>Concrete/grout</td>
<td>No</td>
<td>Contact Cannon U-Cart Concrete and/or Hilltop Ready Mix for concrete/grout (see Table 5-2).</td>
</tr>
<tr>
<td>Geotextile Filter Fabric</td>
<td>Yes</td>
<td>Contact Shift Supervisor for location(s).</td>
</tr>
<tr>
<td>Plastic Sheeting</td>
<td>Yes</td>
<td>Contact Shift Supervisor for location(s).</td>
</tr>
<tr>
<td>Rope</td>
<td>Yes</td>
<td>Contact Shift Supervisor for location(s). Should be maintained in close proximity to any features that might require immediate access.</td>
</tr>
<tr>
<td>Personal Flotation Devices</td>
<td>Yes</td>
<td>Contact Shift Supervisor for location(s).</td>
</tr>
<tr>
<td>Supply/Rental Item(s)</td>
<td>Supplier Contact Information</td>
<td>Distance from Site (miles)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>
| Backhoe, Large Equipment (Rental – including excavating equipment, pumps, lighting) | **Bucher Excavating**
(513) 353-3700 | 5.6 | 3707 Hayes McKinney Road
North Bend, OH 45052 |
| | **Utter Construction**
(513) 876-8616 | 63.7 | 1302 OH-133
Bethel, OH 45106 |
| Pump and Hoses | **Allied Technical Services**
(513) 793-0499 | 33.5 | 3460 Mustafa Drive
Cincinnati, OH 45241 |
| | **Sunbelt Rentals**
(859) 283-5544 | 26.5 | 4631 Spring Grove Avenue
Cincinnati, OH 45232 |
| Fill (Stone, aggregate, sand) | **Martin Marietta Aggregates**
(513) 492-5638 | 5.4 | 10905 US-50
North Bend, OH 45052 |
| | **Watson Gravel, Inc.**
(513) 863-0070 | 6.8 | 10569 Suspension Bridge Road
Harrison, OH 45030 |
| Sandbags and Sand | **Dayton Bag & Burlap**
(937) 253-1726 | 69.0 | 322 Davis Avenue
Dayton, OH 45403 |
| | **Max Katz Bag Company, Inc.**
(317) 635-9561 | 99.6 | 235 S La Salle Street
Indianapolis, IN 46201 |
| Concrete/grout | **Cannon U-Cart Concrete**
(513) 372-6337 | 9.5 | 6290 Dry Fork Road
Cleves, OH 45002 |
| | **Hilltop Ready Mix**
(513) 621-4995 | 19.8 | 511 W Water Street
Cincinnati, OH 45202 |
6 FACILITY/IMPOUNDMENT DESCRIPTION

The impoundments included in this EAP are described as follows and illustrated in Figure 1-2. Table 6-1 contains additional geometric details for each impoundment.

The Miami Fort Power Station is located within Miami Township of Hamilton County, Ohio. The facility is located in the southwest corner of Ohio about 3,500 feet east of the confluence of the Ohio River and the Great Miami River. The facility is bounded to the south by the Ohio River and to the west by the Great Miami River approximately 1 mile upstream of the Interstate-275 bridge over the Ohio River and 2.25 miles upstream of Lawrenceburg, Indiana, the nearest downstream city.

Basin A is located west of the Miami Fort Power Station power plant, approximately 1,250 feet from the power house and 1,500 feet east of the confluence of the Ohio River and the Great Miami River. The Ohio River flows east to west and bounds the impoundment to the south. Basin A is situated directly to the east of Basin B, separated by a shared dike.

Basin A is a diked impoundment that was originally constructed prior to 1959 as a settling pond for CCR with an embankment elevation of 500 feet. A 1976 soil investigation showed the embankment to be primarily comprised of compacted silty clay. Basin B was added to the west between 1979 and 1982 and the embankments of the basins were raised to an approximate elevation of 510 feet. Basin A has a footprint of approximately 31 acres with approximately 5 acres being the impoundment. The water capacity of Basin A is approximately 174 acre-feet with about 68 acre-feet of stored water at normal pool elevation. The lowest crest elevation of the impoundment is at elevation 507.5 feet located on the northeast side of the perimeter. The crest is 52.5 feet above the normal pool elevation of the Ohio River (El. 455 feet). The western crest of Basin A is at an elevation of approximately 510 feet.

Basin A contains "stabilized" material deposited in designated portions of the impoundment (stabilization is achieved by filling, heavy equipment traffic and natural vegetation growth). As a result, approximately 10 acres of the 31 acres of the impoundment is open water contained by the dike. Water is able to pass between Basin A and Basin B through a 36-inch diameter high density polyethylene (HDPE) culvert with a corrugated metal pipe (CMP) extension. Basin B’s standpipe acts as the principal spillway structure as Basin B has a lower normal pool level than Basin A (according to 2014 survey drawings which show a normal pool elevation within Basin B of 499.38 feet and a normal pool elevation within Basin A of 501.36 feet). Basin B’s principal spillway is a 42-inch corrugated metal pipe discharging to a shared outlet pipe with Basin A to the Ohio River. The spillway has an elevated standpipe with an undetermined crest elevation. The crest of Basin B’s standpipe was assumed to be at normal pool elevation (499.38 feet). Basin A has a similar standpipe outfall structure to Basin B; however, flow through the outlet is controlled by a gate structure and is currently not in use.

Basin B was constructed as a settling pond for CCR. The basin has a surface area of approximately 27 acres with approximately 7 acres being the impoundment. The water capacity of Basin B is approximately 377 acre-feet. The lowest crest elevation of the impoundment is 507.7 feet located on the southwest side of the perimeter. The crest is 52.7 feet above the normal pool elevation of the Ohio River (El. 455 feet). The eastern crest of Basin B is at an elevation of approximately 510 feet. The principal spillway is a 42-inch corrugated metal pipe discharging to a shared outlet with Basin A to the Ohio River. The spillway has an elevated standpipe with an invert elevation of 499.5 feet.
<table>
<thead>
<tr>
<th>Feature/Parameter</th>
<th>Basin A</th>
<th>Basin B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Embankment Height</td>
<td>*50 ft.</td>
<td>*50 ft.</td>
</tr>
<tr>
<td>Length of Dam</td>
<td>4,600 ft.</td>
<td>3,750 ft.</td>
</tr>
<tr>
<td>Crest Width</td>
<td>*15-20 ft.</td>
<td>*15-20 ft.</td>
</tr>
<tr>
<td>Crest Elevation</td>
<td>507.5 ft.</td>
<td>507.7 ft.</td>
</tr>
<tr>
<td>Reservoir Area at Top of Dam</td>
<td>26 acres</td>
<td>20 acres</td>
</tr>
<tr>
<td>Storage Capacity at Top of Dam</td>
<td>1,050 acre-ft. (NID)</td>
<td>830 acre-ft. (NID)</td>
</tr>
<tr>
<td>Primary Spillway Type</td>
<td>36” HDPE Pipe between Basin A and Basin B</td>
<td>42” CMP Morning Glory (NID)</td>
</tr>
<tr>
<td>Primary Spillway Crest Elevation</td>
<td>499.5 ft.</td>
<td>499.4 ft. (Assumed based on Normal Pool)</td>
</tr>
<tr>
<td>Storage Capacity at Primary Spillway Elevation</td>
<td>355 acre-ft. (NID – Normal Storage)</td>
<td>Approximately 600 acre-ft.</td>
</tr>
<tr>
<td>Reservoir Area at Normal Water Surface Elevation</td>
<td>10 acres</td>
<td>16 acres</td>
</tr>
<tr>
<td>Auxiliary Spillway Type</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Auxiliary Spillway Crest Elevation</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Notes:
• Survey Data obtained from (Topographic Survey of Duke Ash Ponds at the Miami Fort Power Station, prepared by ESP Associates, P.A. – September, 2014)
• 2.5-Feet Resolution LiDAR DEM - Downloaded from http://ogrip.oit.ohio.gov/ (January, 2016)
• Elevations are in reference to Mean Sea Level (MSL), NAVD88.
7 BREACH INUNDATION MAPS AND POTENTIAL IMPACTS

Inundation maps for Basin A and Basin B potential breach scenarios are provided in this section. It is the Hamilton County ESDA/EMA’s responsibility to keep a current list of affected parties/properties to contact in the case of emergencies that result in Response Level 2 or 3. This list should encompass all properties within and adjacent to the probable inundation extents shown in the provided maps.

The methodology used to identify probable inundation extents for potential breach scenarios varied as a function of the impoundment size, location, surrounding topography, and surrounding structures/facilities/waterbodies.

A 2-dimensional (2-D) dam breach analysis was performed for Basin A to determine possible inundation limits for the “Sunny Day”, 100-Year, and Probable Maximum Flood (PMF) event scenarios. The breach analysis included stormwater runoff calculations, reservoir pool routing and breach failure, and 2-D hydraulic routing of the floodwave over land and into the Ohio River.

The inundation limits were mapped using the modeled maximum water surface elevations (WSE) and a combination of digital elevation data from the topographic survey prepared by ESP Associates, P.A. – September, 2014 and DEM data downloaded from the Ohio OGRIP website.

A visual analysis was performed for Basin B to determine possible inundation limits for a breach scenario. The inundation limits were mapped using a combination of digital elevation data from the topographic survey prepared by ESP Associates, P.A. – September, 2014 and DEM data downloaded from the Ohio OGRIP website.

Approximate inundation areas are illustrated in Figure 7-1 and Figure 7-2.