

Cynthia Vodopivec Illinois Power Generating Company Luminant 6555 Sierra Dr. Irving, TX 75039

September 29, 2020

Sent via email

Mr. Andrew R. Wheeler, EPA Administrator Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Mail Code 5304-P Washington, DC 20460

Re: Newton Power Station Alternative Closure Demonstration

Dear Administrator Wheeler:

Illinois Power Generating Company (IPGC) hereby submits this request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(2) for the Primary Ash Pond located at the Newton Power Station near Newton, Illinois. IPGC is requesting an extension pursuant to 40 C.F.R. § 257.103(f)(2) so that the Primary Ash Pond may continue to receive CCR and non-CCR wastestreams after April 11, 2021, and complete closure no later than October 17, 2028.

Enclosed is a demonstration prepared by Burns & McDonnell that addresses all of the criteria in 40 C.F.R. § 257.103(f)(2)(i)-(iv) and contains the documentation required by 40 C.F.R. § 257.103(f)(2)(v). As allowed by the agency, in lieu of hard copies of these documents, electronic files were submitted to Kirsten Hillyer, Frank Behan, and Richard Huggins via email. If you have any questions regarding this submittal, please contact Phil Morris at 618-343-7794 or phil.morris@vistracorp.com.

Sincerely,

Cynthin E Ubdy

Cynthia Vodopivec VP - Environmental Health & Safety

Enclosure

cc: Kirsten Hillyer Frank Behan Richard Huggins

CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Illinois Power Generating Company

Newton Power Station Project No. 122702

> Revision 0 9/28/2020

CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

prepared for

Illinois Power Generating Company Newton Power Station Newton, Illinois

Project No. 122702

Revision 0 9/28/2020

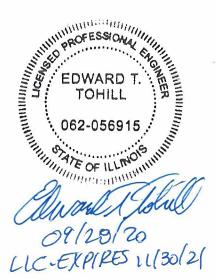
prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

INDEX AND CERTIFICATION

Illinois Power Generating Company CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline Project No. 122702

Report Index


<u>Chapter</u>		<u>Number</u>
Number	Chapter Title	of Pages
	<u>^</u>	
1.0	Executive Summary	1
2.0	Introduction	2
3.0	Documentation of No Alternative Disposal Capacity	5
6.0	Documentation of Closure Completion Timeframe	3
7.0	Conclusion	1
Appendix A	Site Plan	1

Certification

I hereby certify, as a Professional Engineer in the state of Illinois, that the information in this document as noted in the above Report Index was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Illinois Power Generating Company or others without specific verification or adaptation by the Engineer.

Edward T. Tohill, P.E., (Illinois License No. 062-056915)

09/20/20 Date:

TABLE OF CONTENTS

Page No.

1.0	EXEC	UTIVE SUMMARY1-1
2.0	INTRO	DDUCTION
3.0	DOCU 3.1 3.2 3.3	JMENTATION OF NO ALTERNATIVE DISPOSAL CAPACITY 3-1 Site-Layout and Wastewater Processes 3-1 CCR Wastestreams 3-2 Non-CCR Wastestreams 3-4
4.0	RISK	MITIGATION PLAN
5.0	DOCU 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	JMENTATION AND CERTIFICATION OF COMPLIANCE5-1Owner's Certification of Compliance - $\S 257.103(f)(2)(v)(C)(1)$ 5-1Visual representation of hydrogeologic information - $\S 257.103(f)(2)(v)(C)(2)$ 5-1Groundwater monitoring results - $\S 257.103(f)(2)(v)(C)(3)$ 5-2Description of site hydrogeology including stratigraphic cross-sections - $\S 257.103(f)(2)(v)(C)(4)$ $\S 257.103(f)(2)(v)(C)(4)$ 5-2Corrective measures assessment - $\S 257.103(f)(2)(v)(C)(5)$ 5-2Remedy selection progress report - $\S 257.103(f)(2)(v)(C)(6)$ 5-2Structural stability assessment - $\S 257.103(f)(2)(v)(C)(7)$ 5-2Safety factor assessment - $\S 257.103(f)(2)(v)(C)(8)$ 5-2
6.0	DOCL	JMENTATION OF CLOSURE COMPLETION TIMEFRAME
7.0	CONC	CLUSION
		A – SITE PLAN 3 – WATER BALANCE DIAGRAM
		NT 1 – RISK MITIGATION PLAN NT 2 – MAP OF GROUNDWATER MONITORING WELL LOCATIONS
		NT 3 – WELL CONSTRUCTION DIAGRAMS AND DRILLING LOGS
ΑΤΤΑ	СНМЕ	NT 4 – MAPS OF THE DIRECTION OF GROUNDWATER FLOW NT 5 – TABLES SUMMARIZING CONSTITUENT CONCENTRATIONS AT EACH MONITORING WELL NT 6 – SITE HYDROGEOLOGY AND STRATIGRAPHIC CROSS- SECTIONS OF THE SITE

ATTACHMENT 7 – STRUCTURAL STABILITY ASSESSMENT ATTACHMENT 8 – SAFETY FACTOR ASSESSMENT ATTACHMENT 9 – ADDENDUM TO THE CLOSURE PLAN (SEPTEMBER 2020)

LIST OF TABLES

Page No.

Table 3-1: Newton CCR Wastestreams	3-2
Table 3-2: Newton Non-CCR Wastestreams	3-4
Table 6-1: Newton Primary Ash Pond Closure Schedule	6-2

LIST OF ABBREVIATIONS

Abbreviation	Term/Phrase/Name
CCR	Coal Combustion Residual
CFR	Code of Federal Regulations
ELG Rule	Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category
EPA	Environmental Protection Agency
IPGC	Illinois Power Generating Company
Newton	Newton Power Station
RCRA	Resource Conservation and Recovery Act
SWPPP	Stormwater Pollution Prevention Plan

i

1.0 EXECUTIVE SUMMARY

Illinois Power Generating Company (IPGC) submits this request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(2) — "Permanent Cessation of a Coal-Fired Boiler(s) by a Date Certain"— for the Primary Ash Pond located at the Newton Power Station (Newton) in Illinois. The Primary Ash Pond is a 404-acre CCR surface impoundment used to manage CCR and non-CCR wastestreams at Newton. As discussed herein, the boilers at the station will retire and the impoundment will complete closure no later than October 17, 2028. Therefore, IPGC is requesting an extension pursuant to 40 C.F.R. § 257.103(f)(2) so that the Primary Ash Pond may continue to receive CCR and non-CCR waste streams after April 11, 2021, and complete closure no later than October 17, 2028.

2.0 INTRODUCTION

Newton is a 615-megawatt coal-fueled electric generating station near Newton, Illinois. Unit 1 remains in operation; however, Unit 2 has already been retired. Newton uses the 404-acre Primary Ash Pond, which was constructed in 1977, to manage sluiced bottom ash, fly ash, economizer ash, and mill rejects, as well as non-marketable dry fly ash and non-CCR wastewaters. Fly ash is typically collected dry and either hauled offsite for beneficial use or disposed of in the Primary Ash Pond; however, there are certain operating conditions, typically associated with silo maintenance activities that require use of the hydrovactor to sluice fly ash to the impoundment. The various non-CCR wastewaters received originate from the coal pile runoff pond, oil water separator, wastewater sump (including ash hopper overflows, air heater wash water, boiler blowdown, boiler wash, other non-chemical metal cleaning and miscellaneous plant drains and sumps), water treatment building sump (including microfilter backwash, reverse osmosis reject, demineralizer regeneration flows, and condensate polisher regeneration flows), polisher pre-coat sump, and miscellaneous stormwater sources (including overflow from Lake Jake which does not receive any process flows). A site plan is provided in Appendix A, and the plant water balance diagram is included in Appendix B. Note that Lake Jake is not depicted on the water balance diagram.

On April 17, 2015, the Environmental Protection Agency (EPA) issued the federal Coal Combustion Residual (CCR) Rule, 40 C.F.R. Part 257, Subpart D, to regulate the disposal of CCR materials generated at coal-fueled units. The rule is being administered under Subtitle D of the Resource Conservation and Recovery Act (RCRA, 42 U.S.C. § 6901 et seq.). On August 28, 2020, the EPA Administrator issued revisions to the CCR Rule that require all unlined surface impoundments to initiate closure by April 11, 2021, unless an alternative deadline is requested and approved. 40 C.F.R. § 257.101(a)(1) (85 Fed. Reg. 53,516 (Aug. 28, 2020)). Specifically, owners and operators of a CCR surface impoundment may continue to receive CCR and non-CCR wastestreams if the facility will cease operation of the coal-fired boiler(s) and complete closure of the impoundments within certain specified timeframes. 40 C.F.R. § 257.103(f)(2). To qualify for an alternative closure deadline under § 257.103(f)(2), a facility must meet the following four criteria:

- 1. § 257.103(f)(2)(i) No alternative disposal capacity is available on-site or off-site. An increase in costs or the inconvenience of existing capacity is not sufficient to support qualification.
- 2. § 257.103(f)(2)(ii) Potential risks to human health and the environment from the continued operation of the CCR surface impoundment have been adequately mitigated;
- 3. § 257.103(f)(2)(iii) The facility is in compliance with the CCR rule, including the requirement to conduct any necessary corrective action; and

- 4. § 257.103(f)(2)(iv) The coal-fired boilers must cease operation and closure of the impoundment must be completed within the following timeframes:
 - a. For a CCR surface impoundment that is 40 acres or smaller, the coal-fired boiler(s) must cease operation and the CCR surface impoundment must complete closure no later than October 17, 2023.
 - b. For a CCR surface impoundment that is larger than 40 acres, the coal-fired boiler(s) must cease operation, and the CCR surface impoundment must complete closure no later than October 17, 2028.

Section 257.103(f)(2)(v) sets out the documentation that must be provided to EPA to demonstrate that the four criteria set out above have been met. Therefore, this demonstration is organized based on the documentation requirements of §§ 257.103(f)(2)(v)(A) - (D).

3.0 DOCUMENTATION OF NO ALTERNATIVE DISPOSAL CAPACITY

To demonstrate that the criteria in § 257.103(f)(2)(i) has been met, the following provides documentation that no alternative disposal capacity is currently available on-site or off-site for each CCR and non-CCR wastestream that IPGC seeks to continue placing into the Primary Ash Pond after April 11, 2021. Consistent with the regulations, neither an increase in costs nor the inconvenience of existing capacity was used to support qualification under this criteria. Instead, as EPA explained in the preamble to the proposed Part A revisions, "it would be illogical to require [] facilities [ceasing power generation] to construct new capacity to manage CCR and non-CCR wastestreams." 84 Fed. Reg. 65,941, 65,956 (Dec. 2, 2019). EPA again reiterated in the preamble to the final revisions that "[i]n contrast to the provision under § 257.103(f)(1), the owner or operator does not need to develop alternative capacity because of the impending closure of the coal fired boiler. Since the coal-fired boiler will shortly cease power generation, it would be illogical to require these facilities to construct new capacity to manage CCR and non-CCR wastestreams." 85 Fed. Reg. at 53,547. Thus, new construction or the development of new alternative disposal capacity was not considered a viable option for any wastestream discussed below.

3.1 Site-Layout and Wastewater Processes

The Primary Ash Pond receives all CCR sluice flows and a majority of the non-CCR wastewater flows onsite before discharging to the Secondary Pond and eventually to Newton Lake. The remaining plant process flows (non-contact cooling water) are routed through the Cooling Basin or Construction Runoff Pond, as shown on the water balance diagram in Appendix B. Sewage treatment flows and intake screen backwash are discharged to Newton Lake. The other onsite impoundments (Coal Pile Runoff Pond, Cooling Basin, Lake Jake, landfill ponds, the Secondary Pond, and Construction Runoff Pond) are not authorized to receive the CCR material and are not large enough to independently treat the total volume of the plant process water flows. The existing, active on-site landfill operates with one open landfill cell. The existing landfill cell is substantially filled with CCR with limited long-term available airspace (less than one year of capacity) to accept an increased volume of CCR for disposal. A separate landfill cell was constructed for the disposal of gypsum materials from the plant scrubber system, but the scrubber was ultimately not installed at Newton and the landfill cell was never placed into operation and therefore is currently inactive. Since the cell has been inactive for several years and having never been placed into service, it is currently unusable due to deterioration of the landfill cell freeze protection layer, and damage to the leachate collection system and cell separation tie-in berm. Neither landfill cell can accept sluiced materials and they are not currently permitted to receive bottom ash material (only fly ash and gypsum).

3.2 CCR Wastestreams

IPGC evaluated each CCR wastestream placed in the Primary Ash Pond at Newton. For the reasons discussed below in Table 3-1, each of the following CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site.

CCR Wastestreams	Average Flow (MGD)	Alternative Disposal Capacity Currently Available? YES/NO	Details
Bottom Ash Sluice (includes economizer ash and non-CCR mill rejects)	1.7	NO	There is no potential alternative for on or off-site disposal of this wet- generated CCR wastestream.
Dry Fly Ash	NA (Dry)	YES (Limited)	The fly ash is initially collected dry, conditioned, and either sent off-site for beneficial reuse or placed in the Primary Ash Pond or landfill. The conditioned fly ash placed in the Primary Ash Pond will facilitate pond closure in the near future. This beneficial reuse of the fly ash will be reflected in the pond closure plan. As discussed above, the active on-site landfill operates with one open landfill cell. The existing cell is nearly full, with less than one year of capacity available. The inactive landfill cell is not currently operational and would require
			extensive work before waste placement could begin. IPGC does not have a contract with an off-site landfill for this material. Development of alternate offsite capacity would raise both safety and environmental concerns associated with transporting and disposing of significant amounts of material off-site.

CCR Wastestreams	Average Flow (MGD)	Alternative Disposal Capacity Currently Available? YES/NO	Details
Fly Ash Hydrovactor Flow	0.7	NO	This flow is used to create vacuum upstream of the cyclone separators that remove the dry fly ash. This water must continue to be routed to the Primary Ash Pond as there is no other vacuum source available onsite to remove fly ash from the unit and no other ponds are large enough to treat these surges of water or receive any potential CCR carryover.
Fly Ash Sluice	Intermittent	NO	The sluicing system is used as a back- up to the dry system during maintenance of that equipment or to empty the silos for maintenance at those locations. There is no potential alternative for on or off-site disposal of this wet-generated CCR wastestream; however, IPGC will cease sluicing fly ash no later than December 31, 2023 to comply with the ELG rule.

For the bottom ash and fly ash sluice flows, there is no currently available onsite infrastructure to support dry handling of the ash or elimination of the wastestreams. As stated previously, since IPGC has elected to pursue the option to permanently cease the use of the coal fired boilers by a date certain, developing alternative disposal capacity is "illogical," to use EPA's words, and also counterproductive to the work to retire the boilers and close the impoundments. As long as IPGC continues to wet handle the ash materials, there are no other onsite CCR impoundments available to receive and treat these flows and it is not feasible to dispose of the wet-handled material offsite. The remaining impoundments onsite (Coal Pile Runoff Pond, Cooling Basin, Lake Jake, landfill ponds, the Secondary Pond, and Construction Runoff Pond) are not authorized to receive the CCR material. As EPA explained in the preamble of the 2015 rule, it is not possible for sites that sluice CCR material to an impoundment to eliminate the impoundment and dispose of the material offsite. *See* 80 Fed. Reg. 21,301, 21,423 (Apr. 17, 2015) ("[W]hile it is possible to transport dry ash off-site to [an] alternate disposal facility that is simply not feasible for wet-generated CCR. Nor can facilities immediately convert to dry handling systems."). As a result, the conditions at Newton satisfy the demonstration requirement in § 257.103(f)(2)(i).

For the site-specific reasons discussed above, the dry fly ash materials that cannot be sold must continue to be placed in either the Newton Primary Ash Pond or in the limited space available in the onsite CCR landfill

due to lack of alternative capacity both on and off-site. Consequently, in order to continue to operate and generate electricity, Newton must continue to use the Primary Ash Pond to manage the CCR wastestreams discussed above.

3.3 Non-CCR Wastestreams

IPGC evaluated each non-CCR wastestream placed in the Primary Ash Pond at Newton. For the reasons discussed below in Table 3-2, each of the following non-CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site.

Non-CCR Wastestreams	Average Flow (MGD)	Alternative Disposal Capacity Currently Available? YES/NO	Details	
Coal Pile Runoff Pond (including Rotary Car Dumper Sump, Coal handling equipment wash water, and stormwater)	Intermittent (1.4 max)	NO	Additional piping would need to be installed to a new pond with large surge capacity and then rerouted to a new or existing permitted outfall.	
Unit 1 Oil Water Separator	0.01	NO		
Wastewater Sump (including Air Heater Wash, Boiler wash, other non- chemical metal cleaning wastewaters, ash hopper overflow, boiler sumps, boiler blowdown, and miscellaneous plant drains)	3.35	NO	Additional piping would need to be installed to reroute to a new effluent tank or pond for	
Water Treatment Building Sump (including microfilter backwash, RO Reject, demineralizer regeneration flows, and condensate polisher regeneration flows)	0.09	NO	treatment prior to discharging to a new or existing permitted outfall.	
Polisher Precoat Sump	Intermittent (0.2 max)	NO		
Miscellaneous Stormwater (including Lake Jake Overflow)	Intermittent	NO	Additional piping would need to be installed to a new pond with large surge capacity and then rerouted to a new or existing permitted outfall.	

Table 3-2: Newton Non-CCR Wastestreams

As noted in Table 3-2, there is potential to discharge a portion of these flows to other locations; however, this would require permit modifications and installation of new pumps and/or piping and potentially a new treatment system including non-CCR ponds, clarifiers, and/or storage tank(s). As stated previously, since IPGC has elected to pursue the option to permanently cease the use of the coal fired boilers by a certain date, developing alternative disposal capacity is "illogical," to use EPA's words, and also counterproductive to the work to retire the boilers and close the impoundments. There is currently no available infrastructure at the plant to support reroute of these flows. For the reasons discussed above, each of the non-CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site. Consequently, in order to continue to operate and generate electricity, Newton must continue to use the Primary Ash Pond to manage the non-CCR wastestreams discussed above. a

4.0 **RISK MITIGATION PLAN**

To demonstrate that the criteria in \$ 257.103(f)(2)(ii) has been met, IPGC has prepared and attached a Risk Mitigation Plan for the Newton Primary Ash Pond (see Attachment 1).

5.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE

In the Part A rule preamble, EPA reiterates that compliance with the CCR rule is a prerequisite to qualifying for an alternative closure extension, as it "provides some guarantee that the risks at the facility are properly managed and adequately mitigated." 85 Fed. Reg. at 53,543. EPA further stated that it "must be able to affirmatively conclude that facility meets this criterion prior to any continued operation." 85 Fed. Reg. at 53,543. Accordingly, EPA "will review a facility's current compliance with the requirements governing groundwater monitoring systems." 85 Fed. Reg. at 53,543. In addition, EPA will also "require and examine a facility's corrective action documentation, structural stability documents and other pertinent compliance information." 85 Fed. Reg. at 53,543. Therefore, EPA is requiring a certification of compliance and specific compliance documentation be submitted as part of the demonstration. 40 C.F.R. § 257.103(f)(2)(v)(C).

To demonstrate that the criteria in § 257.103(f)(2)(iii) has been met, IPGC is submitting the following information as required by § 257.103(f)(2)(v)(C):

5.1 Owner's Certification of Compliance - § 257.103(f)(2)(v)(C)(1)

I hereby certify that, based on my inquiry of those persons who are immediately responsible for compliance with environmental regulations for the Primary Ash Pond at Newton, the facility is in compliance with all of the requirements contained in 40 C.F.R. Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. The Newton CCR compliance website is up-to-date and contains all the necessary documentation and notification postings.

On behalf of IPGC:

inthin E ubdy

Cynthia Vodopivec VP - Environmental Health & Safety September 28, 2020

5.2 Visual representation of hydrogeologic information - § 257.103(f)(2)(v)(C)(2)

Consistent with the requirements of § 257.103(f)(2)(v)(C)(2)(i) - (iii), IPGC has attached the following items to this demonstration:

- Map(s) of groundwater monitoring well locations in relation to the CCR unit (Attachment 2)
- Well construction diagrams and drilling logs for all groundwater monitoring wells (Attachment 3)
- Maps that characterize the direction of groundwater flow accounting for seasonal variations (Attachment 4)

5.3 Groundwater monitoring results - § 257.103(f)(2)(v)(C)(3)

Tables summarizing constituent concentrations at each groundwater monitoring well through the first 2020 semi-annual monitoring period are included as Attachment 5.

5.4 Description of site hydrogeology including stratigraphic cross-sections -

§ 257.103(f)(2)(v)(C)(4)

A description of the site hydrogeology and stratigraphic cross-sections of the site are included as Attachment 6.

5.5 Corrective measures assessment - § 257.103(f)(2)(v)(C)(5)

Background sampling began at Newton in late 2015 and continued for eight consecutive quarters. The first semiannual detection monitoring samples were collected in November 2017. These samples, and those collected since, have been analyzed and SSIs were identified for calcium, chloride, fluoride, and sulfate (all Appendix III constituents). Alternate Source Demonstrations were completed in January 2019, July 2019, October 2019, and April 2020 for the SSIs referenced. The Newton Primary Ash Pond remains in detection monitoring. Accordingly, an assessment of corrective measures is not currently required at the site. Newton will continue to conduct groundwater monitoring in accordance with all state and federal requirements.

5.6 Remedy selection progress report - § 257.103(f)(2)(v)(C)(6)

As noted above, an assessment of corrective measures and the resulting selection of remedy are not currently required for the Primary Ash Pond.

5.7 Structural stability assessment - § 257.103(f)(2)(v)(C)(7)

Pursuant to § 257.73(d), the initial structural stability assessment for the Primary Ash Pond was prepared in October 2016 and is included as Attachment 7.

5.8 Safety factor assessment - § 257.103(f)(2)(v)(C)(8)

Pursuant to § 257.73(e), the initial safety factor assessment for the Primary Ash Pond was prepared in October 2016 and is included as Attachment 8.

6.0 DOCUMENTATION OF CLOSURE COMPLETION TIMEFRAME

To demonstrate that the criteria in § 257.103(f)(2)(iv) has been met, "the owner or operator must submit the closure plan required by § 257.102(b) and a narrative that specifies and justifies the date by which they intend to cease receipt of waste into the unit in order to meet the closure deadlines An addendum to the closure plan for the Primary Ash Pond is included as Attachment 9.

In order for a CCR surface impoundment over 40 acres to continue to receive CCR and non-CCR wastestreams after the initial April 11, 2021 deadline, the coal-fired boiler(s) at the facility must cease operation and the CCR surface impoundment must complete closure no later than October 17, 2028. As discussed below, Newton will begin construction of the Primary Ash Pond closure by July 17, 2024, and cease placing wastestreams into the Primary Ash Pond by July 17, 2027 in order for closure to be completed by this deadline.

Table 6-1 is included below to summarize the major tasks and estimated durations associated with closing the Primary Ash Pond in place. These durations are consistent with the durations experienced in the closure of over 500 acres of other CCR impoundments already completed by IPGC and its affiliates to date. The design, permitting, and procurement efforts will take place while the unit is still in operation. The first major construction effort will be to modify the pond operations by relocating the influent lines, minimizing the pond water levels, and isolating flow to a smaller portion of the current 404-acre impoundment that can be closed during the last two construction seasons. IPGC expects that the impoundment operating area will be reduced to approximately 40-50 acres during this effort. This reduction in footprint may require the addition of chemical feeds to provide adequate treatment with the reduction in residence time; however, it will simultaneously allow for continued operation of the plant to maintain generating capacity for the MISO markets and minimize the risk to the environment both by minimizing the potential for any impacts to groundwater and by opening up a significant portion of the remaining impoundment to allow for dewatering, grading, and closure.

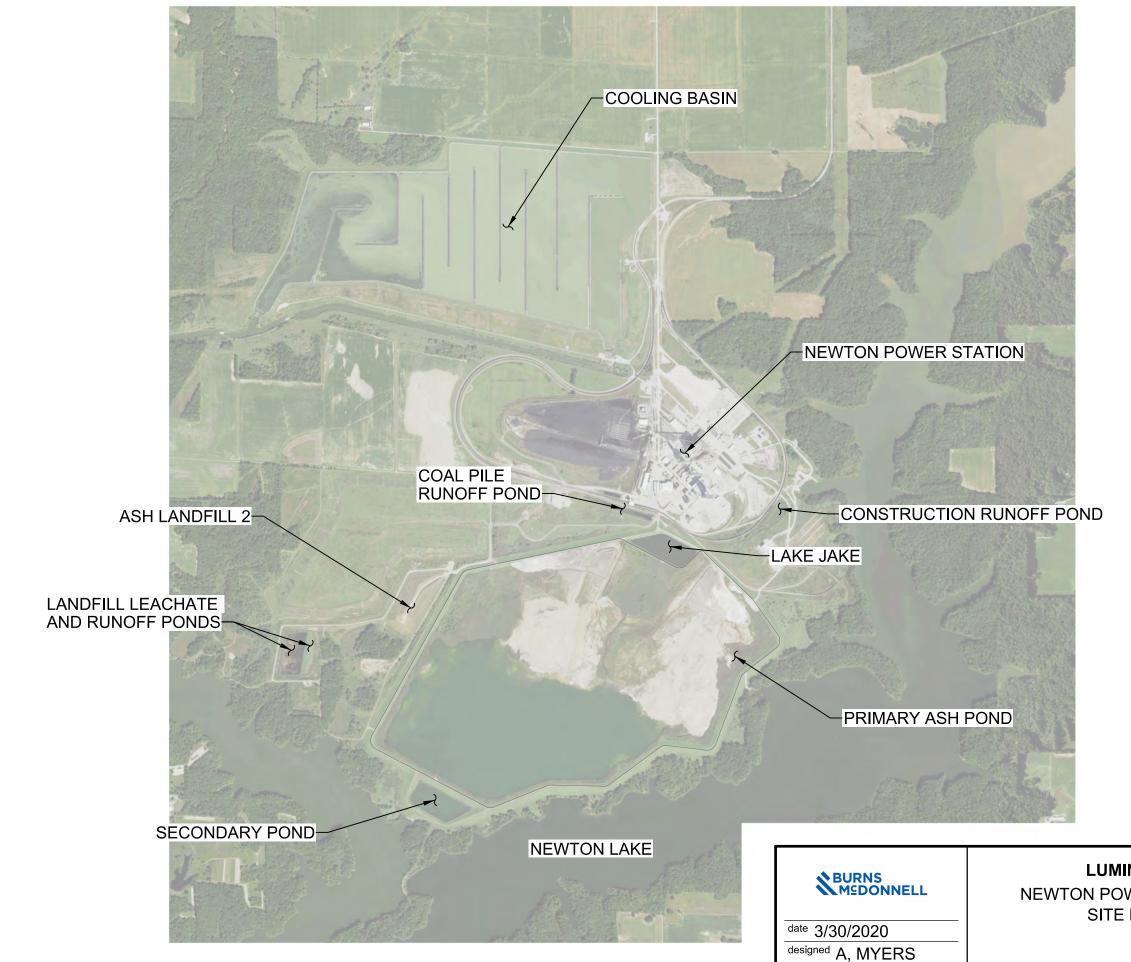
Table 6-1 provides estimates for the durations required to close a portion of the pond footprint after the date noted to begin construction of closure (Phase 1), as well as the current estimates for the closure of the active area (Phase 2, remaining 40-50 acres). In order to dewater the impoundment, IPGC will likely release pond water through the existing Outfall 001 and employ pumps as necessary, and potentially an engineered dewatering system such as wellpoints to aid in stabilizing the material. As the water level is lowered and the material is stabilized, the contractor will work across the pond re-grading the existing CCR material to achieve positive drainage. As grading is completed in certain areas, the contractor may begin placing the final cover system which will consist of an 18-inch infiltration layer and 6-inch erosion layer in accordance with the requirements of the CCR Rule (or an alternative cover system that meets these minimum standards). The Phase 1 cover installation schedule will overlap with the Phase 1 grading schedule and is expected to finish approximately two months after the grading effort is completed. Once cover is placed, the area will be seeded and stabilized. The schedule for this activity will overlap with the cover installation schedule and finish one month after the cover system is placed. Closure is essentially completed once the erosion control layer is placed, so the final month of this activity will provide additional float to the schedule.

Action	Estimated Timeline (Months)
Spec, bid, and Award Engineering Services for CCR Impoundment Closure	3
Finalize CCR unit closure plan and seek IEPA approval for CCR unit closure	12
Obtain environmental permits (based on IEPA approval of closure plan):	21
 State Waste Pollution Control Construction/Operating Permit NPDES Industrial Wastewater Permit Modification General NPDES Permit for Storm Water Discharges from Construction Site Activities and Storm Water Pollution Prevention Plan (SWPPP) Proposed 35 III. Admin Code 845 operating permit application is due NLT September 2021. 	
Construction permit application is anticipated to be due NLT July 2022.	
Spec, bid, and Award Construction Services for CCR Impoundment Closure	3
Begin Construction of Closure Date	July 17, 2024
Minimize Active Area of Impoundment / Dewater Phase 1 Area	9
Regrade CCR Material in Phase 1 Area	24
Install Cover System – Phase 1 Area*	18
Establish Vegetation – Phase 1 Area**	2

Table 6-1: Newton Primary Ash Pond Closure Schedule

Action	Estimated Timeline (Months)
Cease Placement of Waste	July 17, 2027
Dewater Impoundment – Phase 2 Area	3
Regrade CCR Material – Phase 2 Area	6
Install Cover System – Phase 2 Area	5
Establish Vegetation, Perform Site Restoration Activities, Complete Closure, and Initiate Post-Closure Care**	2
Total Estimated Time to Complete Closure	90 months
Date by Which Closure Must be Complete	October 17, 2028

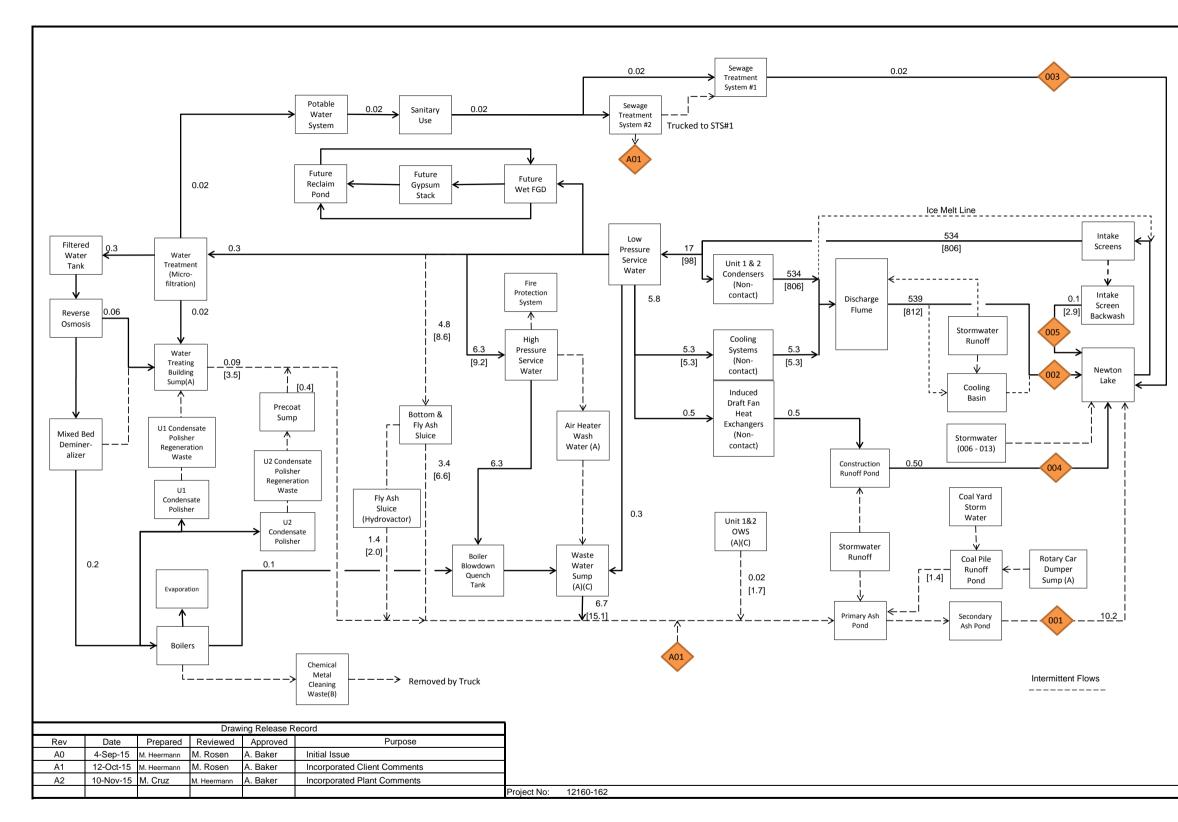
* Activity expected to overlap with grading operations, finishing 2 months after grading is completed.


** Activity expected to overlap with cover system installation, finishing 1 month after cover installation is completed.

7.0 CONCLUSION

Based upon the information included in and attached to this demonstration, IPGC has demonstrated that the requirements of 40 C.F.R. § 257.103(f)(2) are satisfied for the 404-acre Primary Ash Pond at Newton. This CCR surface impoundment is needed to continue to manage the CCR and non-CCR wastestreams identified in Section 3.2 and 3.3 above, is larger than 40 acres, and the boilers at the station will cease coal-fired operation and the Primary Ash Pond will be closed by the October 17, 2028 deadline. Therefore, this CCR unit qualifies for the site-specific alternative deadline for the initiation of closure authorized by 40 C.F.R. § 257.103(f)(2).

Therefore, it is requested that EPA approve IPGC's demonstration and authorize the Primary Ash Pond at Newton to continue to receive CCR and non-CCR wastestreams notwithstanding the deadline in § 257.101(a)(1) and to grant the alternative deadline of October 17, 2028, by which to complete closure of the impoundment.


APPENDIX A – SITE PLAN

PRELIMINAR FOR CONSTR			
0 1500' 3000'			
SCALE IN F	EET		
NANT	project 122702		
VER STATION PLAN	contract		
	FIGURE 1		

\\bmcd\dfs\Clients\ENR\VistraEnergy\122702_ALTuseDisposal\Design\Civil\Dwgs\Sketches\Newton_Figure1.dgn

APPENDIX B – WATER BALANCE DIAGRAM

	MSK-NEW-WB-001
E	ffluent Limitation Guidelines Compliance Planning Study Preliminary Water Balance - Newton
D	Dynegy
Owner:	Sargent & Lundy
U1 U2	Unit 1 Unit 2
SCR	Selective Catalytic Reduction
ows	Oil/Water Separator
	Soot Blower Thermal Drains Ash Hopper Overflow Ash Pit Sumps Boiler House Floor Drains Strainer Backwash Misc. Contributory Flows
(C)	Misc. Chemical Metal Cleaning
(B)	Chemical Metal Cleaning Wastewater Includes: Boiler Tube Cleaning Condenser Tube Cleaning
	Economizer Cleaning Air Heater Cleaning Boiler Water Side Rinse Water Condenser Tube Cleaning Misc. Non-Chemical Cleaning
(A)	Non-Chemical Metal Cleaning Includes: Precipitator Cleaning Boiler Fireside Cleaning
9	Components representing the Water Treatment Plant Sump, Precoat Sump, Waste Water Sump, and Rotary Car Dumper Sump have been added to clarify how waste water streams are collected before discharge to the Ash Pond.
8	Average Outfall 001 & 002 flow from DMR data 4/30/2012 through 6/30/2015.
7	Source of average flows not otherwise indicated is the Newton ICR Water Balance, effective January 1, 2015.
6	CCW HX service water flow, Screen Wash Pumps, LP Service Water Pumps, HP Service Water Pumps, Vertical Coal Yard Pumps, Oil Separator Sump Pumps, Waste Water Sump Pumps, Water Treatment Building Sump Pumps, Precoat Sump Pumps, from Engineering Data Book.
5	Contributors to Maximum Circulating Water Flow from Engineering Data Book. Flow assumes that the 8 x 70,000 gpm pumps are shared.
4	Average Ash Sluicing Pump Flow from Ash Sluicing Pump Capacity and Hours o Operation data, 1/1/14 through 8/6/15
2 3	Flow units = Million Gallons per Day Maximum Ash Sluicing Flow from 2 x 3000 gpm Ash Sluicing Pump Capacity.

ATTACHMENT 1 – RISK MITIGATION PLAN

RISK MITIGATION PLAN - 40 C.F.R. § 257.103(f)(2)(v)(B)

INTRODUCTION

To demonstrate that the criteria in 40 C.F.R. § 257.103(f)(2)(ii) has been met, Illinois Power Generating Company (IPGC) has prepared this Risk Mitigation Plan for the Newton Primary Ash Pond located in Newton, Illinois.

• EPA is requiring a risk mitigation plan to "address the potential risk of continued operation of the CCR surface impoundment while the facility moves towards closure of their coal-fired boiler(s), to be consistent with the court's holding in *USWAG* that RCRA requires EPA to set minimum criteria for sanitary landfills that prevent harm to either human health or the environment." 85 Fed. Reg. at 53,516, 53,548 (Aug. 28, 2020).

As required by § 257.103(f)(2)(v)(B), the Risk Mitigation Plan must describe the "measures that will be taken to expedite any required corrective action," and contain the three following elements:

- First, "a discussion of any physical or chemical measures a facility can take to limit any future releases to groundwater during operation." § 257.103(f)(2)(v)(B)(1). In promulgating this requirement, EPA explained that this "might include stabilization of waste prior to disposition in the impoundment or adjusting the pH of the impoundment waters to minimize solubility of contaminants [and that] [t]his discussion should take into account the potential impacts of these measures on Appendix IV constituents." 85 Fed. Reg. at 53,548.
- Second, "a discussion of the surface impoundment's groundwater monitoring data and any found exceedances; the delineation of the plume (if necessary based on the groundwater monitoring data); identification of any nearby receptors that might be exposed to current or future groundwater contamination; and how such exposures could be promptly mitigated." § 257.103(f)(2)(v)(B)(2).
- Third, "a plan to expedite and maintain the containment of any contaminant plume that is either present or identified during continued operation of the unit." § 257.103(f)(2)(v)(B)(3). In promulgating this final requirement, EPA explained that "the purpose of this plan is to demonstrate that a plume can be fully contained and to define how this could be accomplished in the most accelerated timeframe feasible to prevent further spread and eliminate any potential for exposures." 85 Fed. Reg. at 53,549. In addition, EPA stated that "this plan will be based on relevant site data, which may include groundwater chemistry, the variability of local hydrogeology, groundwater elevation and flow rates, and the presence of any surface water features that would influence rate and direction of contamination movement. For example, based on the rate and direction of groundwater flow and potential for diffusion of the plume, this plan could identify the design and spacing of extraction wells necessary to prevent further downgradient migration of contaminated groundwater." 85 Fed. Reg. at 53,549.

Consistent with these requirements and guidance, IPGC plans to continue to mitigate the risks to human health and the environment from the Newton Primary Ash Pond as detailed in this Risk Mitigation Plan.

1 OPERATIONAL MEASURES TO LIMIT FUTURE RELEASES TO GROUNDWATER- 40 C.F.R. § 257.101(F)(2)(V)(B)(1)

The Newton Primary Ash Pond is a 404-acre CCR surface impoundment. Consistent with the requirements of the CCR rule, compliance documents on Newton's CCR public website reflect the characterization of the Primary Ash Pond as a single unit for purposes of groundwater monitoring and closure activities.

The Newton CCR surface impoundment receives CCR transport waters from bottom ash and economizer ash plus non-CCR process waters onsite before discharging to the Newton Cooling Pond via Outfall 001 in accordance with NPDES Permit No. IL0049191.

At the Newton Primary Ash Pond, none of the Appendix IV parameter have reported SSLs, or SSLs above their respective Ground Water Protection Standards (GWPSs) as sampled and analyzed per the CCR surface impoundment's groundwater monitoring program. Therefore, Newton's current physical treatment operation adequately limits potential risks to human health and the environment during operation. Newton will continue this treatment process for the CCR surface impoundment until such time as closure is required per 40 CFR 257. The facility's current physical treatment process is discussed below.

1.1 CURRENT OPERATION OF PHYSICAL TREATMENT

Fly ash and economizer ash are normally captured dry and either hauled offsite for beneficial use or disposed of in the CCR surface impoundment. Therefore, during normal operations, fly ash transport waters are not conveyed to the CCR surface impoundment.

Also, as part of normal operations, bottom ash and economizer ash are transported through the sluice lines into the CCR surface impoundment where some of the bottom ash goes offsite for beneficial reuse. The CCR surface impoundment is also a wastewater treatment settling system which allows the solids to settle.

Therefore, since fly ash transport water is not normally conveyed to the CCR surface impoundment and some of the bottom ash solids are removed from the CCR surface impoundment, the current operation of Newton's CCR surface impoundment limits future releases to groundwater during operation, and consequently no potential safety impacts or exposure to human health or environmental receptors are expected to result.

If Appendix IV releases are discovered per the facility's groundwater monitoring program, IPGC will test, evaluate, and implement a chemical treatment method (i.e. pH adjustment, coagulation, precipitation, or other method as determined) for the Newton CCR Impoundment to limit potential risks to human health and the environment during operation.

2 GROUNDWATER IMPACTS, RECEPTORS, AND POTENTIAL EXPOSURE MITIGATION - 40 C.F.R. § 257.101(F)(2)(V)(B)(2)

The Newton Primary Ash Pond, with a footprint of approximately 404 acres (Figure 1), currently remains in detection monitoring. Any statistically significant increases (SSIs) of Appendix III parameter concentrations have previously been addressed through alternate source demonstrations (ASDs) (see Attachment 1, 2019 Annual Groundwater Monitoring and Corrective Action Report, Newton Primary Ash Pond, Newton Power Station [Ramboll,2020]). A summary of the detection monitoring program, including constituents with reported SSIs and ASD completions, are provided in Table 1. Since there have been no SSLs or GWPS exceedances to date, no plume delineation maps have been necessary.

Receptors

Should a release to groundwater for one or more Appendix IV constituents occur in the future, the two primary risks to human health and environmental receptors are via impacted groundwater and surface water. Groundwater potentially impacted by CCR constituents from the Newton Primary Ash Pond that is used for residential purposes, including for drinking water, is likely an incomplete pathway. There are no industrial, commercial or domestic use water wells located in a downgradient or cross-gradient groundwater flow direction relative to the Primary Ash Pond that are at risk of impacts from a release.

Impacted groundwater potentially migrating to nearby surface water bodies - specifically Newton Lake located east, south and southwest – could be an exposure pathway, but does not pose a risk to human health as there are no surface water intakes within 2,500 feet of the Newton property line.

Ambient groundwater flow beneath the Primary Ash Pond is generally south to southwest towards Newton Lake. Although there are localized variations in groundwater flow directions beneath different areas of the ash pond – west, east and south - the overall flow direction is towards Newton Lake. The hydraulic gradient beneath the impoundment under normal ambient conditions is approximately 0.007 ft/ft with a flow velocity of approximately 0.12 ft/day (refer to the description of hydrogeology attached to the alternative closure demonstration letter).

Exposure Mitigation

Mitigation of future potential exposures to groundwater contamination from continued operation of the Primary Ash Pond is discussed in detail in the following section.

3 CONTAMINANT PLUME CONTAINMENT: OPTIONS EVALUATION AND PLAN - 40 C.F.R. § 257.101(F)(2)(V)(B)(3)

Appropriate corrective measure(s) to address future potential impacted groundwater associated with the Newton Primary Ash Pond are based on impacts to the Uppermost Aquifer. The Uppermost Aquifer is the Mulberry Grove Member, which typically consists of fine to coarse sand with varying amounts of clay, silt, and fine to coarse gravel. The portion of the Mulberry Grove Member at the site that is defined as a sand layer ranges in thickness from 3 to 17 ft with an average thickness of 8 ft and with only a few exceptions occurs between depths of 55 to 88 ft below ground surface. Overlying units consist predominantly of low permeability clays and silts with occasional and discontinuous lenses of silt, sand, and gravel (refer to the description of hydrogeology attached to the alternative closure demonstration letter).

Since there has been no release of Appendix IV constituents to groundwater above GWPS(s), which would trigger a Corrective Measures Assessment (CMA) under 40 C.F.R. § 257.96 based on specific parameter concentrations and contaminant plume dimensions, several options are evaluated to address potential future plume containments. The evaluation criteria for assessing remedial options are the following: performance; reliability; ease of implementation; potential impacts of the remedies (safety, cross-media, and control of exposure to residual contamination); time required to begin and complete the remedy; and, institutional requirements that may substantially affect implementation of the remedy(s), such as permitting, environmental or public health requirements.

Although future potential source control measures (e.g. closure in place, closure by removal to on-site or off-site landfill, in-situ solidification/stabilization) to mitigate groundwater impacts are typically considered as part of a CMA process, the shorter-term options considered for mitigating groundwater impacts relative to a potential future release of one or more Appendix IV constituents at Newton are as follows:

- Monitored Natural Attenuation (MNA)
- Groundwater Cutoff Wall
- In-Situ Chemical Treatment
- Permeable Reactive Barrier
- Groundwater Extraction

These same groundwater remedial corrective measures will be evaluated for all Appendix IV constituents that present a future risk to human health or the environment.

Monitored Natural Attenuation (MNA)

Upon notification of a release of one or more Appendix IV parameter(s) to groundwater, MNA will be evaluated with site-specific characterization data and geochemical analysis as a long term remedial option, combined with source control measures, through application of the USEPA's tiered approach to MNA (USEPA 1999, 2007 and 2015):

- 1. Demonstrate that the area of groundwater impacts is not expanding.
- 2. Determine the mechanisms and rates of attenuation.
- 3. Determine that the capacity of the aquifer is sufficient to attenuate the mass of constituents in groundwater and that the immobilized constituents are stable and will not remobilize.

4. Design a performance monitoring program based on the mechanisms of attenuation and establish contingency remedies (tailored to site-specific conditions) should MNA not perform adequately.

MNA is not regarded as a short-term remedial option for contaminant plume containment, but as a potential long-term option following implementation of shorter term control measures.

Groundwater Extraction

This corrective measure includes installation of a series of groundwater pumping wells or trenches to control and extract impacted groundwater. Groundwater extraction captures and contains impacted groundwater and can limit plume expansion and/or off-site migration. Construction of a groundwater extraction system typically includes, but is not limited to, the following primary project components:

- Designing and constructing a groundwater extraction system consisting of a series of extraction wells or trenches located around the perimeter of the contaminant plume and operating at a rate to allow capture of CCR impacted groundwater.
- Designing a system to manage extracted groundwater, which may include modification to the existing NPDES permit, including treatment prior to discharge, if necessary.
- Ongoing inspection and maintenance of the groundwater extraction system.

Installation of a groundwater extraction system, whether wells or trenches, can be expedited with the assumption that there is a good conceptual site model (CSM) of the hydrogeological system around the CCR unit, groundwater flow and transport model, and aquifer test if a well system is the best option for intercepting the groundwater contaminant plume. Upon notification of an SSL exceedance of a GWPS for one or more Appendix IV constituents, an aquifer test will be conducted, and groundwater model developed for designing a groundwater extraction system for optimization of contaminant plume capture.

A schematic of a typical groundwater extraction well is shown on Figure 2. Based on site specific hydrogeology and future potential plume width and depth, a groundwater extraction system will typically consist of one to three extraction wells with pitless adapter's manifolded together with HDPE conveyance pipe to a common tank or lined collection vault prior to treatment at the on-site wastewater treatment plant and discharge via the NPDES permitted outfall.

Groundwater Cutoff Wall

Vertical cutoff walls are used to control and/or isolate impacted groundwater. Low permeability cutoff walls can be used to prevent horizontal off-site migration of potentially impacted groundwater. Cutoff walls act as barriers to migration of impacted groundwater and can isolate soils that have been impacted by CCR to prevent contact with unimpacted groundwater. Cutoff walls are often used in conjunction with an interior pumping system to establish a reverse gradient within the cutoff wall. The reverse gradient maintains an inward flow through the wall, keeping it from acting as a groundwater dam and controlling potential end-around or breakout flow of contaminated groundwater.

A commonly used cutoff wall construction technology is the slurry trench method, which consists of excavating a trench and backfilling it with a soil-bentonite mixture, often created with the soils excavated from the trench. The trench is temporarily supported with bentonite slurry that is pumped into the trench as it is excavated. Excavation for cutoff walls is conducted with conventional hydraulic excavators, hydraulic excavators equipped with specialized booms to extend their reach (*i.e.*, long-stick excavators), or chisels and clamshells, depending upon the depth of the trench and the material to be excavated. For a cutoff wall to be technically feasible, there must be a

low-permeability lower confining layer into which the barrier can be keyed, and it must be at a technically feasible depth.

Permeable Reactive Barrier

Chemical treatment via a Permeable Reactive Barrier (PRB) is defined as an emplacement of reactive materials in the subsurface designed to intercept a contaminant plume, provide a flow path through the reactive media, and transform or otherwise render the contaminant(s) into environmentally acceptable forms to attain remediation concentration goals downgradient of the barrier (EPRI, 2006).

As groundwater passes through the PRB under natural gradients, dissolved constituents in the groundwater react with the media and are transformed or immobilized. A variety of media have been used or proposed for use in PRBs. Zero-valent iron has been shown to effectively immobilize CCR constituents, including arsenic, chromium, cobalt, molybdenum, selenium and sulfate. Zero-valent iron has not been proven effective for boron, antimony, or lithium (EPRI, 2006).

System configurations include continuous PRBs, in which the reactive media extends across the entire path of the contaminant plume; and funnel-and-gate systems, where barrier walls are installed to control groundwater flow through a permeable gate containing the reactive media. Continuous PRBs intersect the entire contaminant plume and do not materially impact the groundwater flow system. Design may or may not include keying the PRB into a low-permeability unit at depth. Funnel-and-gate systems utilize a system of barriers to groundwater flow (funnels) to direct the contaminant plume through the reactive gate. The barriers, typically some form of cutoff wall, are keyed into a low-permeability unit at depth to prevent short circuiting of the plume. Funnel-and-gate design must consider the residence time to allow chemical reactions to occur. Directing the contaminant plume through the reactive gate can significantly increase the flow velocity, thus reducing residence time.

Design of PRB systems requires rigorous site investigation to characterize the site hydrogeology and to delineate the contaminant plume. A thorough understanding of the geochemical and redox characteristics of the plume is critical to assess the feasibility of the process and select appropriate reactive media. Laboratory studies, including batch studies and column studies using samples of site groundwater, are needed to determine the effectiveness of the selected reactive media at the site (EPRI, 2006).

This is a potential viable option for groundwater corrective measures, to be evaluated further, but is not a short-term solution that can be implemented expeditiously.

In-Situ Chemical Treatment

In-situ chemical treatment for inorganics are being tested and applied with increasing frequency. In-situ chemical treatment includes the targeted injection of reactive media into the subsurface to mitigate groundwater impacts. Inorganic contaminants are typically remediated through immobilization by reduction or oxidation followed by precipitation or adsorption (EPRI, 2006). Chemical reactants that have been applied or are in development for application in treating inorganic contaminants include ferrous sulfate, nanoscale zero-valent iron, organo-phosphorus nutrient mixture (PrecipiPHOS[™]) and sodium dithionite (EPRI, 2006). Zero-valent iron has been shown to effectively immobilize cobalt and molybdenum. Implementation of in-situ chemical treatment requires detailed technical analysis of field hydrogeological and geochemical conditions along with laboratory studies.

This is a potential viable option for groundwater corrective measures, to be evaluated further, but is not a short-term solution that can be implemented expeditiously.

3.1 CONTAINMENT PLAN

Based on the options evaluated for containment of a future potential groundwater contaminant plume originating from the Newton Primary Ash Pond for one or more Appendix IV constituents exceeding their GWPS(s), the most viable short-term option of those evaluated is a groundwater extraction or recovery trench system, which would allow for capture of impacted groundwater and prevention of further plume migration towards the principal receptor, which has been identified as Newton Lake to the south.

In circumstances where there is not an immediate concern of endangerment to human health or the environment, other longer-term corrective measures may be more viable. The principal method under consideration for controlling potential future Appendix IV parameter releases is MNA. MNA is a potentially viable corrective measure that will be further evaluated for use at the Newton Primary Ash Pond.

Depending on the location, depth, and plume geometry of any future potential Appendix IV exceedances of GWPSs, the specific parameter(s) with exceedances, and distance from potential receptors, the other groundwater corrective measures discussed as part of the corrective options evaluation – groundwater cutoff wall, permeable reactive barrier, and in-situ chemical treatment – are all secondary remedial alternatives available for consideration following the current primary options of groundwater extraction for short-term application and MNA for long-term application.

4 **REFERENCES**

Electric Power Research Institute (EPRI), 2006. Groundwater Remediation of Inorganic Constituents at Coal Combustion Product Management Sites, Overview of Technologies, Focusing on Permeable Reactive Barriers. Electric Power Research Institute, Palo Alto, California. Final Report 1012584, October 2006.

Ramboll, 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report, Newton Primary Ash Pond, Newton Power Station, Newton, Illinois. January 31, 2020.

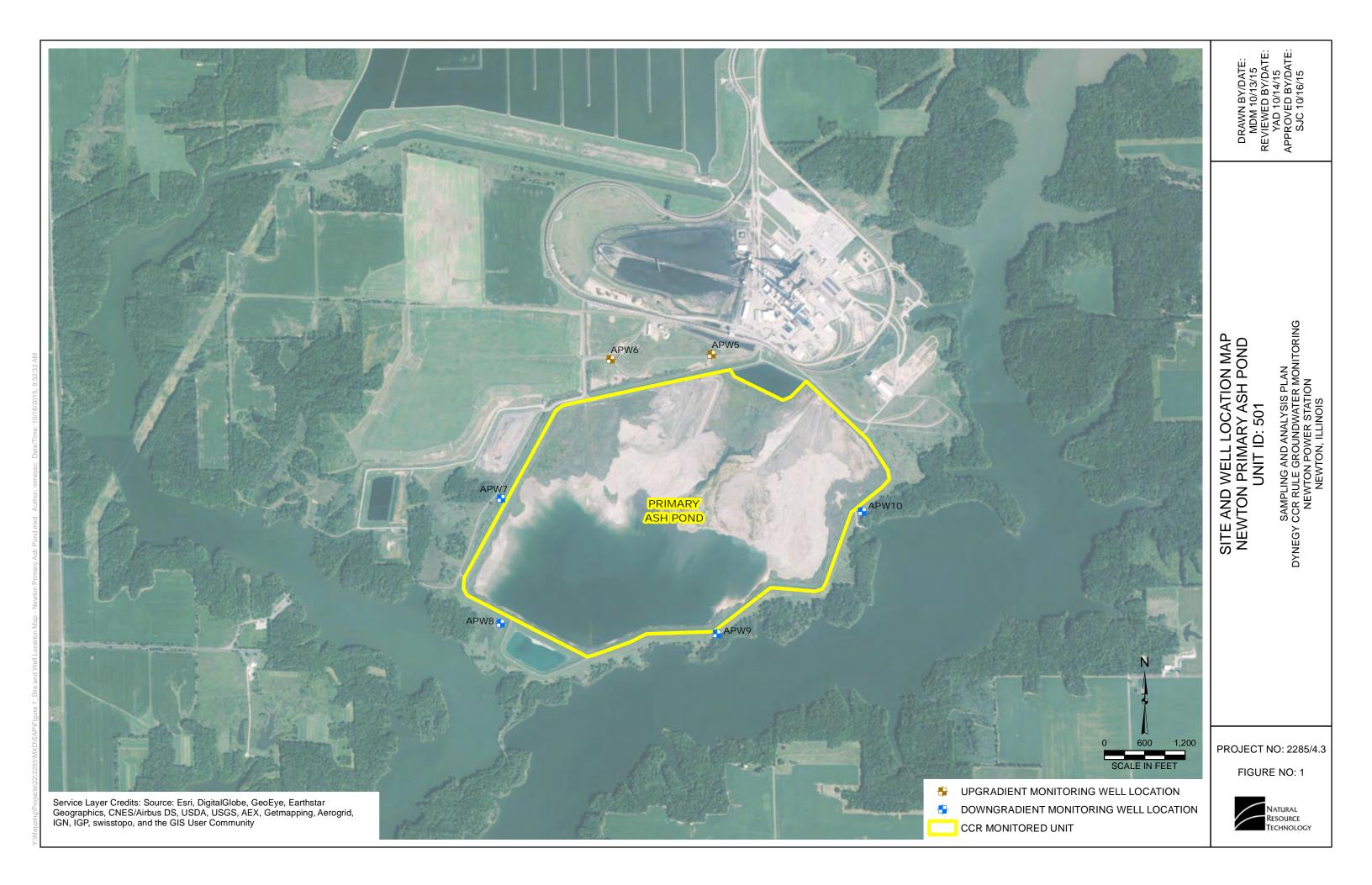
USEPA, 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Directive No. 9200.U-17P. Washington, D.C.: EPA, Office of Solid Waste and Emergency Response.

USEPA, 2007. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water, Volume 1 – Technical Basis for Assessment. EPA/600/R-07/139. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio. October 2007.

USEPA, 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. Directive No. 9283.1-36. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. August 2015.

TABLES

Sampling Dates	Analytical Data Receipt Date	Parameters Collected	SSI (s) Appendix III	SSI (s) Determination Date	ASD Completion Date	CMA Completion / Status
November 17-18, 2017	December 5, 2017	Appendix III	Calcium (APW7, APW8, APW9, APW10) Chloride (APW7, APW9) Sulfate (APW8, APW10)	January 9, 2018	April 9, 2018	NA
May 18, 2018	July 9, 2018	Appendix III	Calcium (APW7, APW8, APW9, APW10) Chloride (APW7, APW9) Sulfate (APW8, APW10)	October 7, 2018	January 7, 2019	NA
August 17-18, 2018	October 8, 2018	Appendix III Greater than Background ¹	above confirmed	NA	NA	NA
November 9, 2018	January 16, 2019	Appendix III	Calcium (APW8, APW10) Fluoride (APW9) Sulfate (APW8, APW9, APW10)	April 15, 2019	July 15, 2019	NA
February 22, 2019	April 15, 2019	Appendix III	Calcium (APW8, APW10) Fluoride (APW7, APW9) Sulfate (APW7, APW8, APW9, APW10)	July 15, 2019	October 14, 2019	NA
August 22-23, 2019	October 28, 2019	Appendix III	Calcium (APW8, APW10) Chloride (APW8) Sulfate (APW7, APW8, APW9, APW10)	January 27, 2020	April 27, 2020	NA
February 4-5, 19, 2020	April 16, 2020	Appendix III	Calcium (APW7, APW8, APW9, APW10) Chloride (APW7, APW9) Sulfate (APW8, APW10)	July 14, 2020	TBD (October 2020)	NA
June 11, 2020	June 19, 2020	Appendix III Greater than Background ¹	Chloride (APW7, APW9)	NA	NA	NA


Table 1 - Detection Monitoring Program Summary, Newton Primary Ash Ponc

Notes:

CMA = Corrective Measures Assessment

NA = Not Applicable TBD = To Be Determined 1. To confirm SSIs, as allowed by the Statistical Analysis Plan, groundwater samples were collected and analyzed for Appendix III parameters initially detected at concentrations greater than statistical background values in the preceding sampling event.

FIGURES

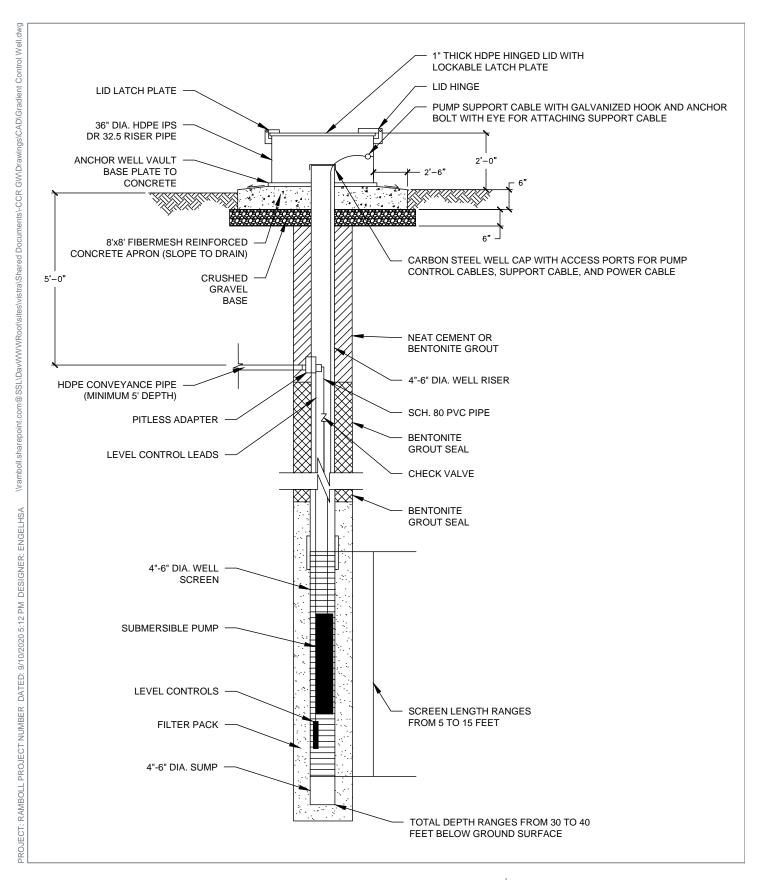


FIGURE 2

A RAMBOLL COMPANY

TYPICAL HYDRAULIC GRADIENT CONTROL WELL DETAIL

NOTES

1. NOT TO SCALE

ILLINOIS POWER GENERATING COMPANY

NEWTON PRIMARY ASH POND NEWTON, ILLINOIS RAMBOLL

RAMBOLL US CORPORATION

ATTACHMENT 1

Prepared for Illinois Power Generating Company Document type 2019 Annual Groundwater Monitoring and Corrective Action Report Date January 31, 2020

2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT NEWTON PRIMARY ASH POND, NEWTON POWER STATION

2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT NEWTON PRIMARY ASH POND, NEWTON POWER STATION

Project name	Newton Power Station
Project no.	72760
Recipient	Illinois Power Generating Company
Document type	Annual Groundwater Monitoring and Corrective Action Report
Version	FINAL
Date	January 31, 2020
Prepared by	Kristen L. Theesfeld
Checked by	Nicole M. Pagano
Approved by	Eric J. Tlachac
Description	Annual Report in Support of the CCR Rule Groundwater Monitoring Program

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Kristen L. Theesfeld Hydrogeologist

app

Nicole M. Pagano Senior Managing Engineer

CONTENTS

EXECL	JTIVE SUMMARY	3
1.	Introduction	4
2.	Monitoring and Corrective Action Program Status	5
3.	Key Actions Completed in 2019	6
4.	Problems Encountered and Actions to Resolve the Problems	8
5.	Key Activities Planned for 2020	9
6.	References	10

TABLES

Table A	2018–2019 Detection Monitoring Program Summary (in text)
Table 1 Table 2	2019 Analytical Results – Groundwater Elevation and Appendix III Parameters Statistical Background Values

FIGURES

Figure 1 Monitoring Well Location Map

APPENDICES

Appendix A Alternate Source Demonstrations

ACRONYMS AND ABBREVIATIONS

ASD	Alternate Source Demonstration
CCR	Coal Combustion Residuals
PAP	Primary Ash Pond
SAP	Sampling and Analysis Plan
SSI	Statistically Significant Increase

EXECUTIVE SUMMARY

This report has been prepared to provide the information required by Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.90(e) for the Newton Primary Ash Pond (PAP) located at Newton Power Station near Newton, Illinois.

Groundwater is being monitored at Newton PAP in accordance with the Detection Monitoring Program requirements specified in 40 C.F.R. § 257.94.

No changes were made to the monitoring system in 2019 (no wells were installed or decommissioned).

The following Statistically Significant Increases (SSIs) of 40 C.F.R. Part 257 Appendix III parameter concentrations greater than background concentrations were determined during one or more sampling events in 2019:

- Calcium at wells APW7, APW8, APW9, and APW10
- Chloride at wells APW7 and APW9
- Fluoride at wells APW7 and APW9
- Sulfate at wells APW7, APW8, APW9, and APW10

Alternate Source Demonstrations (ASDs) were completed for the SSIs referenced above and Newton PAP remains in the Detection Monitoring Program.

1. INTRODUCTION

This report has been prepared by Ramboll on behalf of Illinois Power Generating Company, to provide the information required by 40 C.F.R. § 257.90(e) for Newton PAP located at Newton Power Station near Newton, Illinois.

In accordance with 40 C.F.R. § 257.90(e), the owner or operator of a Coal Combustion Residuals (CCR) unit must prepare an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year that documents the status of the Groundwater Monitoring and Corrective Action Program for the CCR unit, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and projects key activities for the upcoming year. At a minimum, the Annual Report must contain the following information, to the extent available:

- 1. A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit.
- 2. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.
- 3. In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the Detection Monitoring or Assessment Monitoring Programs.
- 4. A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from Detection Monitoring to Assessment Monitoring in addition to identifying the constituent(s) detected at a Statistically Significant Increase relative to background levels).
- 5. Other information required to be included in the Annual Report as specified in §§ 257.90 through 257.98.

This report provides the required information for Newton PAP for calendar year 2019.

2. MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

No changes have occurred to the monitoring program status in calendar year 2019, and Newton PAP remains in the Detection Monitoring Program in accordance with 40 C.F.R. § 257.94.

3. KEY ACTIONS COMPLETED IN 2019

The Detection Monitoring Program is summarized in Table A. The groundwater monitoring system, including the CCR unit and all background and downgradient monitoring wells, is presented in Figure 1. No changes were made to the monitoring system in 2019 (no wells were installed or decommissioned). In general, one groundwater sample was collected from each background and downgradient well during each monitoring event.¹ All samples were collected and analyzed in accordance with the Sampling and Analysis Plan (SAP) (NRT/OBG, 2017a). All monitoring data obtained under 40 C.F.R. §§ 257.90 through 257.98 (as applicable) in 2019 are presented in Table 1. Analytical data were evaluated in accordance with the Statistical Analysis Plan (NRT/OBG, 2017b) to determine any SSIs of Appendix III parameters relative to background concentrations.

Statistical background values are provided in Table 2.

Analytical results for the May, August, and November 2018 sampling events were provided in the 2018 Annual Groundwater Monitoring and Corrective Action Report.

Potential alternate sources were evaluated as outlined in the 40 C.F.R. § 257.94(e)(2). ASDs were completed and certified by a qualified professional engineer. The dates the ASDs were completed are provided in Table A. The ASDs completed in 2019 are included in Appendix A.

¹ Sampling was limited to APW7, APW8, APW9, and APW10 during the August 2018 sampling event to confirm Appendix III parameters initially detected at concentrations greater than statistical background values in the preceding sampling event to confirm SSIs, as allowed by the Statistical Analysis Plan.

Sampling Date	Analytical Data Receipt Date	Parameters Collected	SSI (s)	SSI (s) Determination Date	ASD Completion Date
May 18, 2018	July 9, 2018	Appendix III	Calcium (APW7, APW8, APW9, APW10) Chloride (APW7, APW9) Sulfate (APW8, APW10)	October 7, 2018	January 7, 2019
August 17-18, 2018	July 9, 2018	Appendix III Greater than Background ¹	NA	NA	NA
November 9, 2018	January 16, 2019	Appendix III	Calcium (APW8, APW10) Fluoride (APW9) Sulfate (APW8, APW9, APW10)	April 15, 2019	July 15, 2019
February 22, 2019	April 15, 2019	Appendix III	Calcium (APW8, APW10) Fluoride (APW7, APW9) Sulfate (APW7, APW8, APW9, APW10)	July 15, 2019	October 14, 2019
August 22-23, 2019	October 28, 2019	Appendix III	TBD	TBD	TBD

Table A – 2018–2019 Detection Monitoring Program Summary

Notes:

NA: Not Applicable

TBD: To Be Determined

1. To confirm SSIs, as allowed by the Statistical Analysis Plan, groundwater samples were collected and analyzed for Appendix III parameters initially detected at concentrations greater than statistical background values in the preceding sampling event.

4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the Groundwater Monitoring Program during 2019. Groundwater samples were collected and analyzed in accordance with the SAP (NRT/OBG, 2017a), and all data were accepted.

5. KEY ACTIVITIES PLANNED FOR 2020

The following key activities are planned for 2020:

- Continuation of the Detection Monitoring Program with semi-annual sampling scheduled for the first and third quarters of 2020.
- Complete evaluation of analytical data from the downgradient wells, using background data to determine whether an SSI of Appendix III parameters detected at concentrations greater than background concentrations has occurred.
- If an SSI is identified, potential alternate sources (i.e., a source other than the CCR unit caused the SSI or that that SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated.
 - If an alternate source is demonstrated to be the cause of the SSI, a written demonstration will be completed within 90 days of SSI determination and included in the 2020 Annual Groundwater Monitoring and Corrective Action Report.
 - If an alternate source(s) is not identified to be the cause of the SSI, the applicable requirements of 40 C.F.R. §§ 257.94 through 257.98 as may apply in 2020 (e.g., Assessment Monitoring) will be met, including associated recordkeeping/notifications required by 40 C.F.R. §§ 257.105 through 257.108.

6. **REFERENCES**

Natural Resource Technology, an OBG Company (NRT/OBG), 2017a. Sampling and Analysis Plan, Newton Primary Ash Pond, Newton Power Station, Newton, Illinois, Project No. 2285, Revision 0, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017b. Statistical Analysis Plan, Coffeen Power Station, Newton Power Station, Illinois Power Generating Company, October 17, 2017.

TABLES

TABLE 1.

2019 ANALYTICAL RESULTS - GROUNDWATER ELEVATION AND APPENDIX III PARAMETERS 2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

NEWTON POWER STATION

UNIT ID 501 - NEWTON PRIMARY ASH POND

NEWTON, ILLINOIS

DETECTION MONITORING PROGRAM

						40 C.F.R. Part 257 Appendix III						
Well dentification Number	Latitude (Decimal Degrees)	Longitude (Decimal Degrees)	Date & Time Sampled	Depth to Groundwater (ft) ¹	Groundwater Elevation (ft NAVD88)	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	pH (field) (S.U.)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
						6020A ²	6020A ²	9251 ²	9214 ²	SM 4500 H+B ²	9036 ²	SM 2540C ²
Background / I	Upgradient Moi	nitoring Wells										
APW5	38.933964	-88.280989	2/22/2019 10:00	15.00	529.07	0.11	50	48	0.374	6.9	3.5	600
APVV5	36.933904	-00.200909	8/22/2019 16:46	16.04	528.03	0.12	49	50	<0.250	7.0	2.3	530
APW6	38.933753	-88.286281	2/22/2019 11:07	15.49	530.58	0.09	45	24	0.386	7.3	1.7	480
APVVO	36.933755		8/23/2019 8:14	16.39	529.68	0.11	55	26	0.314	7.3	5.8	500
Downgradient	Monitoring We	lls										
APW7	38.928239	-88.292081	2/22/2019 15:38	42.18	496.19	0.060	45	43	0.734	7.2	66	340
APVV7	30.920239	-00.292001	8/23/2019 11:30	43.00	495.37	0.075	58	46	0.632	7.1	62	350
APW8	38.923161	-88.292292	2/22/2019 13:12	35.06	493.91	0.10	80	56	0.393	7.2	46	600
AFWO	30.923101		8/23/2019 9:01	34.20	494.77	0.10	82	59	0.337	7.2	48	570
APW9	38.922325	-88.281036	2/22/2019 13:56	20.77	510.75	0.054	38	47	0.714	7.5	61	320
AF VV 9	30.722320	-88.281036	8/23/2019 9:50	22.09	509.43	0.055	41	51	0.621	7.4	51	360
APW10	38.927442	2 -88.273133	2/22/2019 14:42	14.85	509.40	0.079	110	50	0.276	6.9	420	990
APW10 38.92744	30.72/442	-00.2/3133	8/23/2019 10:42	16.08	508.17	0.10	130	50	0.359	7.0	390	1000

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

ft = foot/feet

mg/L = milligrams per liter

NAVD88 = North American Vertical Datum of 1988

S.U. = Standard Units

< = concentration is less than the concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not

utilized in statistics to determine Statistically Significant Increases (SSIs) over background.

¹All depths to groundwater were measured on the first day of the sampling event.

²4-digit numbers represent SW-846 analytical methods.

TABLE 2.STATISTICAL BACKGROUND VALUES2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORTNEWTON POWER STATIONUNIT ID 501 - NEWTON PRIMARY ASH PONDNEWTON, ILLINOISDETECTION MONITORING PROGRAM

Parameter	Statistical Background Value (UPL)				
40 C.F.R. Part 257 A	ppendix III				
Boron (mg/L)	0.14				
Calcium (mg/L)	65				
Chloride (mg/L)	58				
Fluoride (mg/L)	0.692				
pH (S.U.)	6.6 / 8.0				
Sulfate (mg/L)	15				
Total Dissolved Solids (mg/L)	1000				
[O: RAB 12/23/19, C: KLT 12/26/19]					

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

mg/L = milligrams per liter

S.U. = Standard Units

UPL = Upper Prediction Limit

FIGURES

UPGRADIENT MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

CCR MONITORED UNIT

2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT VISTRA CCR RULE GROUNDWATER MONITORING NEWTON POWER STATION NEWTON, ILLINOIS

1,000 500 ____ Feet

FIGURE 1

O'BRIEN & GERE ENGINEERS, INC. A RAMBOLL COMPANY

MONITORING WELL LOCATION MAP **NEWTON PRIMARY ASH POND UNIT ID:501**

APPENDIX A ALTERNATE SOURCE DEMONSTRATIONS

January 7, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.94(e)(2) allows the owner or operator of a coal combustion residuals (CCR) unit 90 days from the date of determination of statistically significant increases (SSIs) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (alternate source demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company by O'Brien & Gere Engineers, Inc., part of Ramboll (OBG) to provide pertinent information pursuant to 40 C.F.R. § 257.94(e)(2) for the Newton Primary Ash Pond (PAP) located near Newton, Illinois.

The second semi-annual detection monitoring samples (Detection Monitoring Round 2 [D2]) were collected on May 18, 2018 and analytical data were received on July 9, 2018. In accordance with 40 C.F.R. § 257.93(h)(2), statistical analysis of the data to identify SSIs of 40 C.F.R. Part 257 Appendix III parameters over background concentrations was completed by October 7, 2018, within 90 days of receipt of the analytical data. The statistical determination identified the following SSIs at downgradient monitoring wells:

- Calcium at wells APW7, APW8, APW9, and APW10
- Chloride at wells APW7 and APW9
- Sulfate at wells APW8 and APW10

In accordance with the Statistical Analysis Plan¹, to confirm the SSIs, wells APW7, APW8, APW9, and APW10 were resampled on August 17-18, 2018 and analyzed only for the SSI parameters at each well. Following evaluation of analytical data from the resample, the following SSIs were confirmed:

- Calcium at wells APW7, APW8, APW9, and APW10
- Chloride at wells APW7 and APW9
- Sulfate at wells APW8 and APW10

Pursuant to 40 C.F.R. § 257.94(e)(2), the following demonstrates that sources other than the Newton PAP were the cause of the SSIs listed above. This ASD was completed by January 7, 2019, within 90 days of determination of the SSIs, as required by 40 C.F.R. § 257.94(e)(2).

ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

Lines of evidence supporting these ASDs include the following:

- 1. The ionic composition of Newton PAP water is different from the ionic composition of groundwater.
- 2. Concentrations of calcium in the Newton PAP are lower than those observed in the groundwater.
- 3. Concentrations of chloride in the Newton PAP are lower than those observed in the groundwater.

¹ Natural Resource Technology, an OBG Company, 2017, *Statistical Analysis Plan, Coffeen Power Station, Newton Power Station*, Illinois Power Generating Company, October 17, 2017.

- 4. Concentrations of sulfate in the Newton PAP are lower than those observed in the groundwater.
- 5. Concentrations of boron, a common indicator for CCR impacts to groundwater, in downgradient wells are stable and at or below concentrations in the background wells.

These lines of evidence are described and supported in greater detail below. Monitoring wells and leachate sample locations are shown on Figure 1.

LINE OF EVIDENCE #1: THE IONIC COMPOSITION OF NEWTON PAP WATER IS DIFFERENT FROM THE IONIC COMPOSITION OF GROUNDWATER

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples relative to their major cation and anion content, providing the information needed to identify compositional categories or groupings. Figure 2 is a Piper diagram that displays the ionic composition of groundwater samples from the background and downgradient monitoring wells associated with the Phase I Landfill (LF1), Phase II Landfill (LF2), and Primary Ash Pond (PAP) and LF1 leachate and PAP water based on Quarter 2 2017 and Quarter 3 2018 samples. The ionic compositional groupings identified are shown in the green, blue, purple, brown, and turquoise ellipses on the diamond portion of the Piper diagram. These are discussed in more detail below.

The results show that there are three distinct groups. Groundwater samples from the PAP background and downgradient wells (enclosed within a green ellipse) and LF2 groundwater samples (enclosed within a blue ellipse) have a very high percentage of carbonate-bicarbonate cations and no dominant cation. Groundwater samples from the LF1 wells (enclosed within a turquoise ellipse) also have no dominant cation, but these waters have a high percentage of sulfate. Surface water samples from the PAP (enclosed within a purple ellipse) and the landfill leachate (enclosed within a brown ellipse) have a very high percentage of sodium-potassium and no dominant anion and a high percentage of sulfate, respectively.

The groundwater samples for both the PAP and LF2 (enclosed within the green and blue ellipses, respectively) are tightly clustered on the Piper diagram. This tight grouping indicates either an apparent lack of outside influences on the groundwater or the apparent influence of a constant, steady-state source, such as LF1, that is influencing all the wells equally and simultaneously.

The potential presence of a mixing zone between LF2 groundwater, PAP groundwater, and LF1 groundwater suggests that LF1 is an alternate source of the elevated major anion chloride.

Neither PAP groundwater nor LF2 groundwater is trending towards, or mixing with, the PAP leachate. The apparent lack of mixing between the PAP leachate and underlying groundwater in the Uppermost Aquifer demonstrates that there is no impact to groundwater from the PAP. However, the presence of a potential mixing zone between PAP groundwater and LF1 groundwater suggests that LF1 is a source of the elevated major cation calcium and elevated major anions chloride and sulfate.

The ionic characteristics of these samples are provided in Table 1 below.

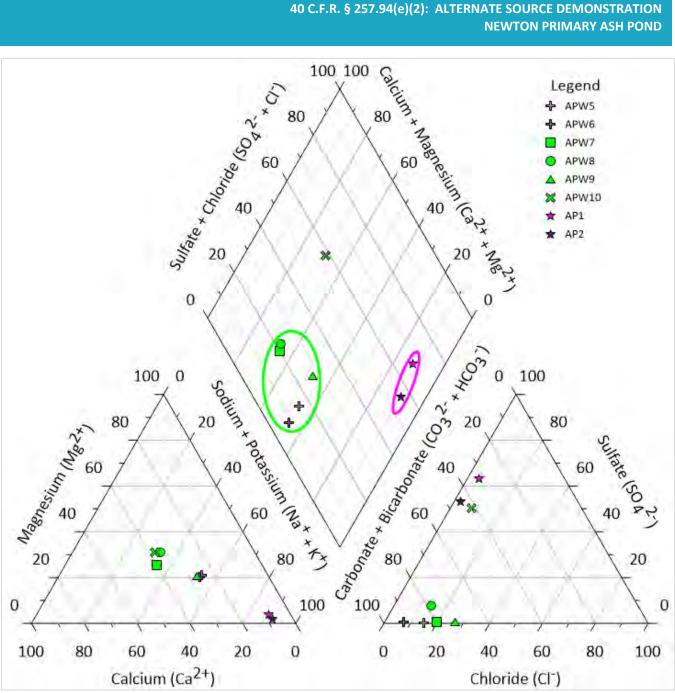


Figure 2 Piper Diagram Showing Ionic Composition of Samples of Background and Downgradient Groundwater Associated with LF1, LF2, and PAP.

Grouping	Green Blue		Purple	Brown	Turquoise
Locations	PAP Wells Groundwater	LF2 Wells Groundwater	PAP Surface Water	LF1 Leachate	LF1 Wells Groundwater
Dominant Cation	No dominant cation	No dominant cation	Very High Sodium- Potassium	Very High Sodium- Potassium	No dominant cation
Dominant Anion	Very High Carbonate- Bicarbonate	Very High Carbonate- Bicarbonate	No dominant anion	High Sulfate	High Sulfate

Table 1. Summary of Ionic Classification

LINE OF EVIDENCE #2: CONCENTRATIONS OF CALCIUM IN THE NEWTON PRIMARY ASH POND ARE LOWER THAN THOSE OBSERVED IN THE GROUNDWATER

Calcium concentrations in water sampled from the PAP are lower than calcium concentrations in all groundwater samples from downgradient ash pond wells from 2015 through 2018. A time series for calcium concentrations is provided in Figure 3 below.

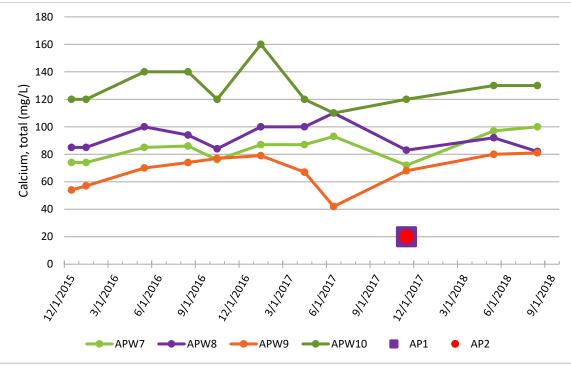


Figure 3. Calcium time series

The following observations can be made from Figure 3:

- PAP water samples AP1 and AP2 each contain 20 mg/L of calcium.
- Groundwater samples from wells APW7, APW8, APW9, and APW10 have two to eight times greater concentrations than the PAP water.

If the PAP were the source of calcium in groundwater, calcium concentrations in downgradient monitoring wells would be lower than calcium concentrations in the water in the pond; therefore, the PAP is not the source of the calcium observed in the Uppermost Aquifer. Elevated concentrations of calcium are most likely naturally occurring due to geochemical variations within the Uppermost Aquifer, although some level of impacts from upgradient anthropogenic sources (i.e. Phase I Landfill) may also be present.

LINE OF EVIDENCE #3: CONCENTRATIONS OF CHLORIDE IN THE NEWTON PRIMARY ASH POND ARE LOWER THAN THOSE OBSERVED IN THE GROUNDWATER

Chloride concentrations in water sampled from the PAP are lower than chloride concentrations in all groundwater samples from downgradient ash pond wells from 2015 through 2018, inclusive of wells APW7 and APW9. A time series for chloride concentrations is provided in Figure 4 below.

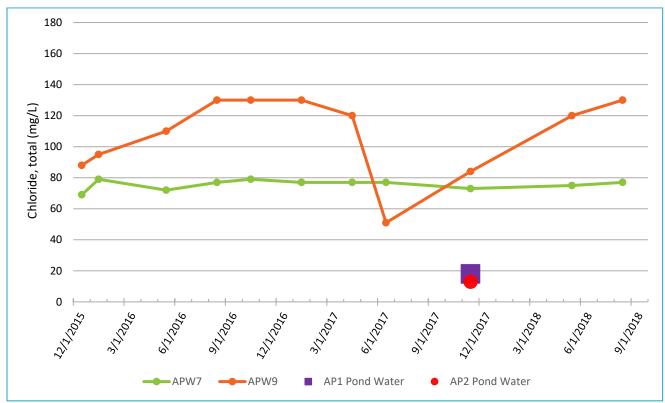


Figure 4. Chloride time series

The following observations can be made from Figure 4:

- PAP water samples AP1 and AP2 contain 18 and 13 mg/L of chloride, respectively.
- Groundwater samples from wells APW7 and APW9 have two-and-a-half to seven times greater concentrations than the PAP water.

If the PAP was the source of chloride observed in groundwater, chloride concentrations in downgradient monitoring wells APW7 and APW9 would be lower than chloride concentrations in the water in the pond; therefore, the PAP is not the source of the chloride observed in the Uppermost Aquifer. Elevated chloride concentrations are most likely naturally occurring due to geochemical variations within the Uppermost Aquifer, although some level of impacts from upgradient anthropogenic sources (i.e. Phase I Landfill) may also be present.

LINE OF EVIDENCE #4: CONCENTRATIONS OF SULFATE IN THE NEWTON PRIMARY ASH POND ARE LOWER THAN THOSE OBSERVED IN THE GROUNDWATER

Sulfate concentrations in water sampled from the PAP are lower than sulfate concentrations in all groundwater samples from downgradient ash pond well APW10 from 2015 through 2018. A time series for sulfate concentrations is provided in Figure 5 below.

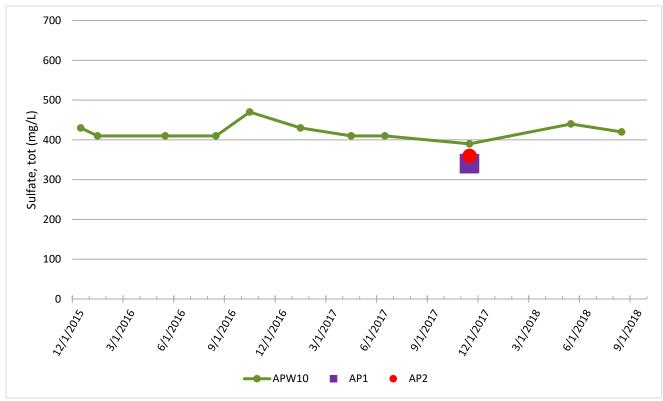


Figure 5. Sulfate time series

The following observations can be made from Figure 5:

- PAP water samples AP1 and AP2 contain 340 and 360 mg/L of sulfate, respectively.
- Groundwater samples from well APW10 have higher sulfate concentrations than the PAP water, ranging from 390 to 470 mg/L from 2015 through 2018.

If the PAP were the source of sulfate observed in groundwater samples from APW10, the sulfate concentrations in downgradient monitoring well APW10 would be lower than sulfate concentrations in the water in the pond; therefore, the PAP is not the source of the sulfate observed in the Uppermost Aquifer. Alternate sources of sulfate are most likely present from upgradient anthropogenic sources, principally the Phase I Landfill, although naturally occurring geochemical variations within the Uppermost Aquifer may also be affecting sulfate concentrations.

LINE OF EVIDENCE #5: CONCENTRATIONS OF BORON, A COMMON INDICATOR FOR CCR IMPACTS TO GROUNDWATER, IN DOWNGRADIENT WELLS ARE STABLE AND AT OR BELOW CONCENTRATIONS IN THE BACKGROUND WELLS

Boron is a primary indicator of CCR impacts to groundwater. Concentrations of boron in all downgradient monitoring wells are below upper prediction limits established using background monitoring wells (i.e. thresholds for SSIs) and are lower than median concentrations observed in background wells APW5 and APW6 from 2015 through 2018, as shown on Figure 6.

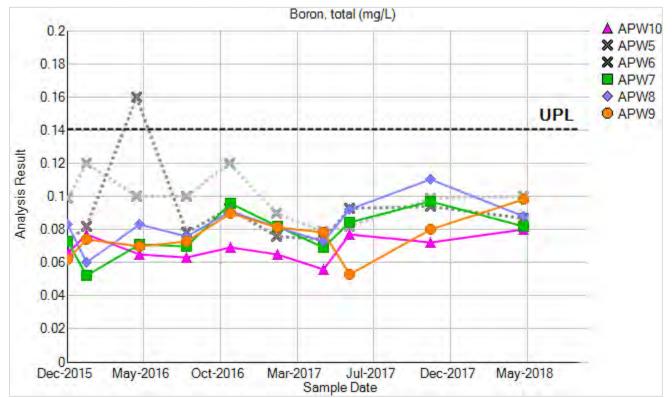


Figure 6. Boron time series showing boron concentrations in groundwater samples from background wells (gray "X"s) are higher or similar to concentrations in groundwater samples from downgradient wells.

From Figure 6 the following observations can be made:

- Boron is stable. A Mann-Kendall trend analysis (Attachment A) was performed to determine whether the concentration trend for each downgradient well is statistically significant. None were determined to be statistically significant using the Mann-Kendall test.
 - » If a Mann-Kendall test did not identify a trend, the coefficient of variation (CV) was calculated (Attachment B) to determine if the concentrations are stable (i.e., CV less than or equal to 1), or if there is too much data variability to draw a conclusion. All calculated CVs were less than 1, indicating concentrations are stable.
- Boron concentrations in groundwater samples from downgradient monitoring wells range from 0.052 to 0.11 mg/L and 0.073 to 0.16 mg/L in groundwater samples from background wells. The overall median boron concentration in groundwater samples collected from downgradient wells from 2015 through 2018 is 0.077 mg/L and 0.093 mg/L in groundwater samples collected from background wells.

Elevated boron concentrations are most likely naturally occurring due to geochemical variations within the Uppermost Aquifer, although some level of impacts from upgradient anthropogenic sources may also be present.

Based on these five lines of evidence, it has been demonstrated that the Newton Primary Ash Pond has not caused the SSIs in APW7, APW8, APW9, and APW10.

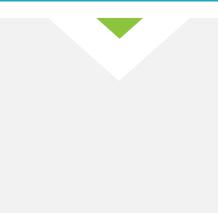
This information serves as the written alternate source demonstration prepared in accordance with 40 C.F.R. § 257.94(e)(2) that SSIs observed during the detection monitoring program were not due to the CCR unit but were from a combination of naturally occurring conditions and potential anthropogenic impacts from the closed Phase I Landfill. Therefore, an assessment monitoring program is not required and the Newton Primary Ash Pond will remain in detection monitoring.

Attachments:

- Figure 1 Monitoring Well and Source Water Location Map Newton Primary Ash Pond
- Attachment A Boron Mann-Kendall Trend Analyses
- Attachment B Coefficient of Variation Evaluation

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachåc Qualified Professional Engineer 062-063091 Illinois O'Brien & Gere Engineers, Inc., part of Ramboll Date: January 7, 2019



I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicolé M: Pagano Professional Geologist 196-000750 O'Brien & Gere Engineers, Inc., part of Ramboll Date: January 7, 2019



Attachments

Attachment A

Boron Mann-Kendall Trend Analyses

User Supplied Information

Location ID:	APW7	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 08/31/2018		Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	0.000028 0.350024	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	0.000032	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000005	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000061	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	1.347	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	None	

User Supplied Information

Location ID:	APW8	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 08/31/2018		Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	0.000027 0.338419	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	0.000025	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000005	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000055	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	1.347	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	None	

User Supplied Information

Location ID:	APW9	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 08/31/2018		Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	0.000021 0.226829	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	0.000022	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000005	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000044	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	1.431	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	None	

User Supplied Information

Location ID:	APW10	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 08/31/2018		Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	0.000009 0.110910	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	0.000009	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000017	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000023	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	0.721	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	None	

Attachment B

Coefficient of Variation Evaluation

Newton

Coefficient of Variation Date Range: 12/14/2015 to 8/31/2018

Boron, total (mg/L)

Location	Count	Mean	Std Dev	% Non- Detects	сv
APW5	10	0.099	0.014	0.00	0.14
APW6	10	0.091	0.026	0.00	0.29
APW7	10	0.078	0.014	0.00	0.18
APW8	10	0.084	0.013	0.00	0.15
APW9	10	0.076	0.013	0.00	0.17
APW10	10	0.069	0.007	0.00	0.10

CV=Std Dev/ Mean

Newton

Coefficient of Variation Date Range: 12/14/2015 to 8/31/2018

Boron, total (mg/L)

Location	Count	Mean	Std Dev	% Non- Detects	сv
APW5	10	0.099	0.014	0.00	0.14
APW6	10	0.091	0.026	0.00	0.29
APW7	10	0.078	0.014	0.00	0.18
APW8	10	0.084	0.013	0.00	0.15
APW9	10	0.076	0.013	0.00	0.17
APW10	10	0.069	0.007	0.00	0.10

CV=Std Dev/ Mean

July 15, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.94(e)(2) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Increases (SSIs) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company by O'Brien & Gere Engineers, Inc., part of Ramboll (OBG), to provide pertinent information pursuant to 40 C.F.R. § 257.94(e)(2) for the Newton Primary Ash Pond (PAP) located near Newton, Illinois.

The third round of semi-annual detection monitoring samples (Detection Monitoring Round 3 [D3]) were collected on November 9, 2018 and analytical data were received on January 16, 2019. In accordance with 40 C.F.R. Section 257.93(h)(2), statistical analysis of the data to identify SSIs of 40 C.F.R. Part 257 Appendix III parameters over background concentrations was completed by April 16, 2019 within 90 days of receipt of the analytical data. The statistical determination identified the following SSIs at downgradient monitoring wells:

- Calcium at wells APW7, APW8, and APW10
- Chloride at APW7
- Fluoride at well APW9
- Sulfate at wells APW8, APW9, and APW10

Because the Detection Monitoring Round 4 (D4) was completed on February 22, 2019, prior to SSIs referenced above being determined for D3, results from D4 were used to verify the D3 SSIs in accordance with the Statistical Analysis Plan¹. Following evaluation of analytical data from D4, the following SSIs were confirmed:

- Calcium at wells APW8 and APW10
- Fluoride at well APW9
- Sulfate at wells APW8, APW9, and APW10

Pursuant to 40 C.F.R. § 257.94(e)(2), the following demonstrates that sources other than the PAP were the cause of the SSIs listed above. This ASD was completed by July 15, 2019, within 90 days of determination of the SSIs, as required by 40 C.F.R. § 257.94(e)(2).

SITE LOCATION AND DESCRIPTION

The Newton Power Station (Site) is located in Jasper County, in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The area is surrounded by Newton Lake. Beyond the lake is agricultural land.

GEOLOGY AND HYDROGEOLOGY

The site geology and hydrogeology are summarized below from the Hydrogeologic Monitoring Plan (NRT/OBG, 2017a).².

FINAL | 1

¹ Natural Resource Technology, an OBG Company, *Statistical Analysis Plan, Coffeen Power Station, Newton Power Station*, Illinois Power Generating Company, October 17, 2017.

GEOLOGY

Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations. The unconsolidated deposits occurring at Newton Power Station include the following units (beginning at the ground surface):

- Ash/Fill Units CCR and fill within the various CCR Units
- Upper Confining Unit Low permeability clays and silts, including: the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east; underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) and Vandalia (Till) Members of the Glasford Formation
- Uppermost Aquifer (Groundwater Monitoring Zone) Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation
- Lower Confining Unit Thick, very low permeability silty clay diamictons of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation

The bedrock beneath the unconsolidated deposits consists of Pennsylvanian-age Mattoon Formation that is mostly shale near the bedrock surface, but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones. The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the site, but is typically encountered at 90 to 120 ft below ground surface (bgs).

HYDROGEOLOGY

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation. CCR monitoring well locations are shown in Figure 1.

Uppermost Aquifer

The Uppermost Aquifer, the Mulberry Grove Member, typically consists of fine to coarse sand with varying amounts of clay, silt, and fine to coarse gravel. The portion of the Mulberry Grove Member at the site that is defined as a sand layer ranges in thickness from 3 to 17 ft with an average thickness of 8 ft. With only a few exceptions, the sand layer occurs between depths of 55 to 88 ft bgs.

Lower Limit of Aquifer

The lower hydrostratigaphic units, which comprise the lower limit of the Uppermost Aquifer, consist of the Smithboro Member and the Banner Formation, both of which are predominantly low permeability clay diamictons with varying amounts of silt, sand, and gravel. The lower hydrostratigraphic units are 30 ft to more than 50 ft thick above the underlying bedrock.

Groundwater Elevation and Flow Direction

Groundwater elevations across PAP ranged from approximately 495 to 530 ft MSL (NAVD88) during D3 (Figure 2). The groundwater elevation contours shown on Figure 2 were measured on November 8, 2018, the first day of a combined sampling event at the Site for LF2 and the Primary Ash Pond and for multiple monitoring programs required by both federal and state regulatory agencies. Overall groundwater flow within the Uppermost Aquifer in this area is southward toward Newton Lake, but with a predominantly southwesterly flow under the PAP.

² Natural Resource Technology, an OBG Company (NRT), October 17, 2017. *Hydrogeologic Monitoring Plan. Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502.* Newton Power Station, Canton, Illinois. Illinois Power Generating Company.

GROUNDWATER AND PAP WATER MONITORING

The Uppermost Aquifer monitoring system for the PAP is shown on Figure 1. Monitoring wells APW5 and APW6 are used to monitor background water quality for the PAP. These wells are located north of the PAP. The downgradient monitoring wells are APW7, APW8, APW9, and APW10.

PAP water samples have been collected from locations AP1 in the southwest corner of the PAP and AP2 in the southeast corner of the PAP.

ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

As allowed by 40 C.F.R. § 257.94(e)(2), this ASD demonstrates that sources other than the PAP caused the SSIs, or that the SSIs were a result of natural variation in groundwater quality. Lines of evidence supporting this ASD include the following:

- 1. The ionic composition of Newton PAP water is different from the ionic composition of groundwater.
- 2. The Newton PAP is not hydraulically connected to the Uppermost Aquifer.
- 3. Concentrations of calcium in the Newton PAP are lower than those observed in the groundwater.
- 4. Boron, a primary indicator parameter for CCR impacts to groundwater, has concentrations in downgradient wells that are near, or below, concentrations observed in background monitoring wells.

These lines of evidence are described and supported in greater detail below. Monitoring wells and leachate sample locations are shown on Figure 1.

LINE OF EVIDENCE #1: THE IONIC COMPOSITION OF NEWTON PAP WATER IS DIFFERENT FROM THE IONIC COMPOSITION OF GROUNDWATER

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples relative to their major cation and anion content, providing the information needed to identify compositional categories or groupings. Figure 2, below, is a Piper diagram that displays the ionic composition of groundwater samples from the background and downgradient monitoring wells associated with the PAP and PAP water based on Quarter 2 2017 and Quarter 3 2018 samples.

Groundwater samples from the PAP downgradient wells (enclosed within a green ellipse) have a very high percentage of carbonate-bicarbonate anions and no dominant cation. Surface water samples from the PAP (enclosed within a purple ellipse) have a very high percentage of sodium-potassium cations and no dominant anion. The dissimilar ionic compositions of the PAP downgradient groundwater and the PAP surface water indicates that the PAP is not the source of CCR constituents detected in PAP groundwater.

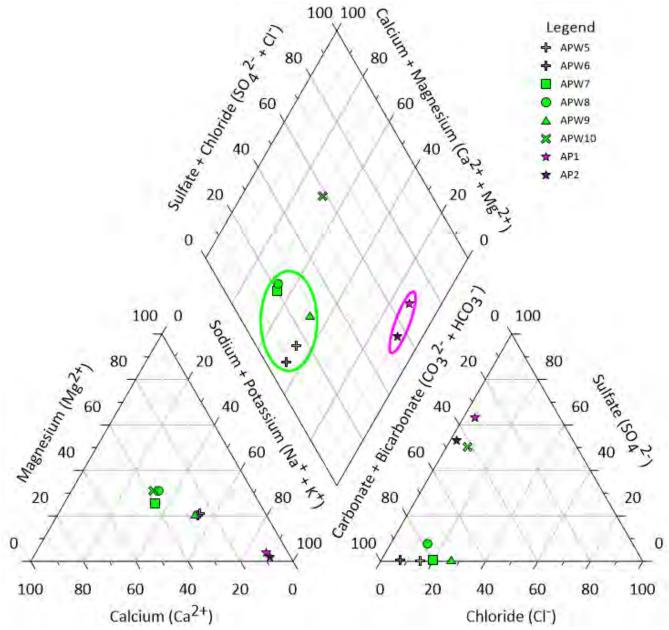


Figure 2 Piper Diagram Showing Ionic Composition of Samples of Background and Downgradient Groundwater Associated with PAP and Samples of PAP Surface Water.

LINE OF EVIDENCE #2: THE NEWTON PRIMARY ASH POND IS NOT HYDRAULICALLY CONNECTED TO THE UPPERMOST AQUIFER

As noted above, the Uppermost Aquifer at the Site is the Mulberry Grove Member of the Glasford Formation. Based on boring logs for monitoring wells installed around the perimeter of the site, the Uppermost Aquifer is confined and the top of this unit ranges from 461.8 ft msl in APW-8 to 482.8 ft msl in APW-10 (Attachment A). The bottom elevation of the PAP is within the Hagarstown Member of the Glasford Formation at 508 ft msl, approximately 25 ft above the top of the Uppermost Aquifer (Attachment B). The Hagarstown Member functions as an aquitard, with hydraulic conductivity ranging from 2.4×10^{-6} to 6.1×10^{-5} centimeters per second (cm/s). Based upon these hydraulic conductivity values and the fact that the Uppermost Aquifer is confined, the PAP is not hydraulically connected to the Uppermost Aquifer. The lack of connection between the PAP and the

Uppermost Aquifer demonstrates that there is no complete pathway for transport of CCR constituents in groundwater beneath the PAP, thus the PAP is not the source of CCR constituents in the Uppermost Aquifer.

LINE OF EVIDENCE #3: CONCENTRATIONS OF CALCIUM IN THE NEWTON PRIMARY ASH POND ARE LOWER THAN THOSE OBSERVED IN THE GROUNDWATER

Calcium concentrations are lower in PAP water samples than in all downgradient groundwater samples collected between 2015 and 2019. A time series for calcium concentrations is provided in Figure 3 below.

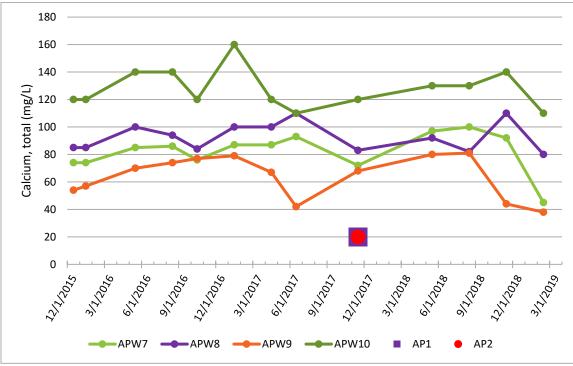


Figure 3. Calcium time series

The following observations can be made from Figure 3:

- PAP water samples AP1 and AP2 each contained 20 mg/L of calcium.
- Groundwater from downgradient wells APW7, APW8, APW9, and APW10 had higher calcium concentrations than the PAP water.

If the PAP were the source of calcium in groundwater, groundwater concentrations in PAP water would be higher than the downgradient groundwater; therefore, the PAP is not likely the source of the calcium observed in the Uppermost Aquifer.

LINE OF EVIDENCE #4: BORON, A PRIMARY INDICATOR PARAMETER OF CCR IMPACTS TO GROUNDWATER, HAS CONCENTRATIONS IN DOWNGRADIENT WELLS THAT ARE STABLE AND NEAR, OR BELOW, CONCENTRATIONS OBSERVED IN BACKGROUND MONITORING WELLS

Boron is a primary indicator of CCR impacts to groundwater. If the source of the SSIs in the downgradient monitoring wells were the PAP, boron would be anticipated to be present at elevated concentrations, as well. Concentrations of boron in all downgradient monitoring wells are below upper prediction limits established using background monitoring wells (i.e. SSI limits) and are lower than median concentrations observed in background wells APW5 and APW6 from 2015 through 2019, as shown on Figure 4.

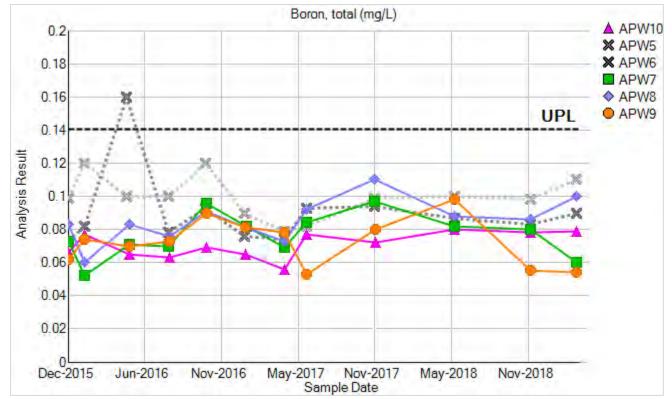


Figure 4. Boron time series showing boron concentrations in background wells (gray "X"s) are higher or similar to concentrations in downgradient wells.

From Figure 4 the following observations can be made:

- Boron concentrations in downgradient monitoring wells range from 0.052 mg/L to 0.11 mg/L, versus 0.073 mg/L to 0.16 mg/L in background wells.
- Overall median boron concentration in downgradient wells from 2015 through 2019 is 0.077 mg/L versus 0.093 mg/L in background wells.

Mann-Kendall trend analysis tests were performed (Attachment C) to determine if boron concentrations at each well were increasing, decreasing or stable (i.e., no statistically significant upward or downward trend). If the Mann-Kendall test did not identify a trend, the coefficient of variation (CV) was calculated (Attachment D) to determine if the concentrations were too variable to identify a trend (i.e. CV greater than or equal to 1). If a trend was identified, the CV was calculated to indicate whether data used to establish the trend were suggestive of a low or high magnitude trend. Data with a CV less than or equal to 1 suggest a lower magnitude trend. Boron concentrations are stable in background wells and downgradient wells APW7 and APW9. Upward trends were identified at APW8 and APW10, however, coefficient of variation evaluations identified minimal variation at all wells, suggesting a low-magnitude trend. Table 2 provides summary statistics, including variability and trend per well.

The low concentrations of boron in downgradient monitoring wells, relative to background concentrations, and the relatively stable boron concentrations in both background and downgradient monitoring wells suggests that the source of the of the SSIs in those wells is not the PAP.

Monitoring				Boron (mg/L)		
Monitoring Well	Minimum	Maximum	Median	Standard Deviation	Trend	cv
APW5	0.079	0.12	0.100	0.0127	stable	0.13
APW6	0.073	0.16	0.085	0.0232	stable	0.26
APW7	0.052	0.097	0.077	0.0133	stable	0.17
APW8	0.060	0.11	0.085	0.0129	upward	0.15
APW9	0.053	0.098	0.074	0.0143	stable	0.20
APW10	0.056	0.08	0.071	0.0077	upward	0.11

Table 2. Minimum, maximum, median, standard deviation, trend, and coefficient of variation of boron concentrations in groundwater

Based on these four lines of evidence, it has been demonstrated that the Newton Primary Ash Pond has not caused the SSIs in APW7, APW8, APW9, and APW10.

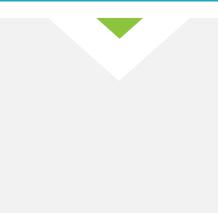
This information serves as the written alternate source demonstration prepared in accordance with 40 C.F.R. § 257.94(e)(2) that SSIs observed during the detection monitoring program were not due to the PAP. Therefore, an assessment monitoring program is not required and the PAP will remain in detection monitoring.

Attachments

Figure 1	Monitoring Well and Source Water Location Map Newton Primary Ash Pond
Figure 2	Groundwater Elevation Contour Map – November 8, 2018
Attachment A	Boring Logs for Monitoring Wells APW8 and APW10
Attachment B	Geologic Cross Section B-B'
Attachment C	Mann-Kendall Trend Analysis
Attachment D	Coefficient of Variation Evaluation

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac Qualified Professional Engineer 062-063091 Illinois O'Brien & Gere Engineers, Inc., a Ramboll Company Date: July 15, 2019



I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Professional Geologist 196-000750 O'Brien & Gere Engineers, Inc., a Ramboll Company Date: July 15, 2019



Attachments

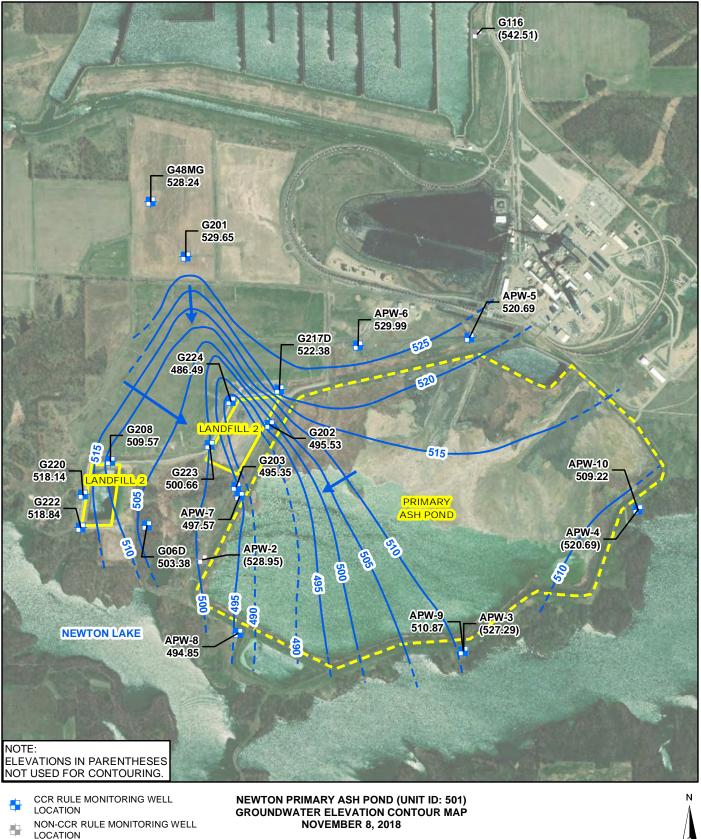


FIGURE NO. 2

ALTERNATE SOURCE DEMONSTRATION NEWTON POWER STATION NEWTON, ILLINOIS

1,300

325 650

0

MONITORED UNIT

Attachment A

Boring Logs for Monitoring Wells APW8 and APW10

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Location Projec	F: N e: N n: N et: 15 S: St Fir	atural Res ewton En ewton, Ill 5E0030 cart: 10/2 iish: 10/2	sourc ergy inois 27/2 28/2	ce Te Cent 015 015	echnolo er	gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4 ¹ /4" HSA, macro-core samp sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	bler, split s		REHOLE I Well I Surface Ele	D: APW8 ev: 526.75 ft. MSL n: 82.00 ft. BGS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPL				ING	ř	TOPOGR					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	er / Total (<i>overy</i>		/6 in llue	ure (%)	en. (lb/ft	f) <i>Qp</i> (ts e Type	Towns	hip: North Muddy	Ā	=	During Drin	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Number Recov / % Recov	Type	Blows N - V ₈ RQD	Moist	Dry D	Qu (ts Failur		Description				Remarks
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A			13		4.50	2	and trace very fine- to medium-grained sand, roots. Yellowish brown (10YR5/4) with 30% light gray (10YR7/2) mottles, dry, hard, SILT with little clay a		5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	526	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B	DP		21		3.00	4			1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	- 524	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A 60/60 100%	DP		18		2.50	6 6	(10YR4/6) and 10% black (10YR2/1) mottles, moist, stiff, silty CLAY with few very fine- to coarse-grained states and stat	verv			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	В			28		2.00		mottles, moist, stiff, silty CLAY with few very fine-	rown to		518	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A 20/24	DP		8		2.00	10	(10YR5/6) mottles, dry, stiff, SILT with little clay and	ı trace	وي وي وي وي و وي وي وي وي و	516	
20		ss	23-43 50/5"					very fine- to coarse-grained sand.		لح _ا و او و او	514	sampler.
20	A 21/24 88%	ss	24-28	10		4.50	16			ر و ر و و و ر و ر و و و	512	
20	A 24/24 100%	ss	20-48	11		4.50	18	Dark gray (10YR4/1), moist, hard, SILT with little cl trace very fine- to coarse-grained sand and small grav	ay, rel.	ے کے کے لیے کے لیے ج کے کے کے کے ک	510	
20	A 24/24 100%	ss	26-32	10			20			وي وي وي وي و وي وي وي وي و	508	
	NOTE(S):	APV	V8 install	ed in	bore	hole.	20					Page 1 of

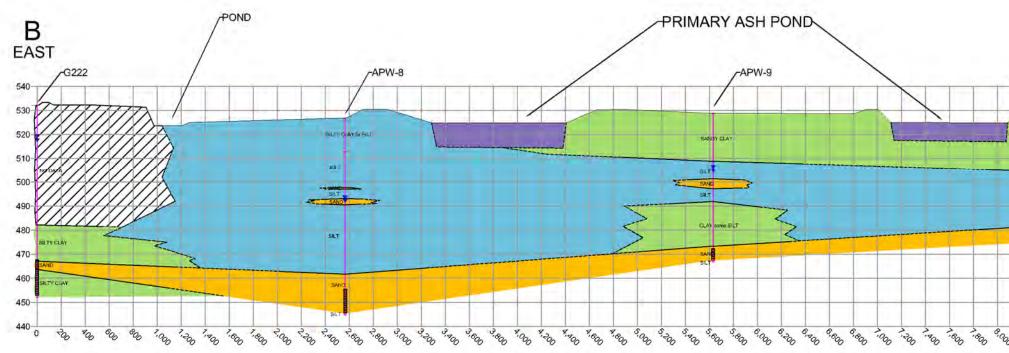
	CLIENT Sit Location Projec DATES	f: Na e: Na n: Na t: 15 5: St Fin	BOR atural Re ewton En ewton, Ill 5E0030 art: 10/2 hish: 10/2 unny, bree	sourd ergy inois 27/20 28/2	ce Te Cent s 015 015	echnolo er	r, Inc. CONI Rig Drilli	RACTOR: Bulldog Drilling, Inc. mfg/model: CME-550X ATV Drill ng Method: 4¼" HSA, macro-core samp sampler D STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	ler, split spoon		REHOLE ID: Well ID: Surface Elev:	
5	SAMPL (ii)	E	Т	EST	DAL		OPOGRAPHIC MAP	NFORMATION:	⊻ = 3		INFORMAT During Drilling	
er	Recov / Total (in) % Recovery		/ 6 in ilue	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Township: North Mud Section 26, Tier 6N; R		$\underline{\Psi} = $ $\underline{\nabla} =$			
Number	Recov % Rec	Type	Blows / 6 in N - Value RQD	Moist	Dry D	Qu (ts Failur	Depth t. BGS	Lithologic Description		rehole etail	Elevation ft. MSL	Remarks
8A	24/24 100%	ss	7-13 19-23 N=32	11		4.50	22			5,5,5,5,	506 	
9A	24/24 100%	ss	7-14 19-27 N=33	11		4.50	24			, C, C, C, C	504 	
10A	24/24 100%	ss	8-15 30-37 N=45	11		4.50		0YR4/1), moist, hard, SILT with little cla ne- to coarse-grained sand and small grave Continued from previous page]	ay, el.	۰ ۲٫۶٫۶٫۶٫۶٫۶		
11A	24/24 100%	ss	8-16 24-33 N=40	11		4.50	26			د م د م د م د م د		
12A 12B	24/24 100%	ss	9-31 33-30 N=64	11 12		4.50	Gray (10	YR5/1), moist, dense, silty, very fine- to medium-grained SAND.			498	
13A	24/24 100%	ss	10-23 40-35 N=63	11		4.50	30 – Dark gray (few very f	10YR4/1), moist, hard SILT with little cla ne- to coarse-grained sand, and trace smal	ıy, I	، د _، د _، د _، د		
14A	21/24 88%	ss	16-16 29-50 N=45	10		4.50	_	gravel.				
15A	20/24 83%	ss	9-24 34-41 N=58	13			A 34	0YR4/1), wet, very dense, silty, very fine- grained SAND with trace small gravel.	- to		492	
16A	22/24 92%	ss	16-18 29-35 N=47	11		4.50	36	0YR4/1), moist, hard, SILT with little cla	ay,		490	
17A	21/24 88%	ss	10-17 21-31 N=38	11		4.50	38 – Dark gray (few very f	ne- to coarse-grained sand, and trace smal gravel.			488	
NC))TE(S):	_ APV	 V8 install	l ed in	l bore	hole.	₄₀ .∃			+ 4		
												Page 2 of 5

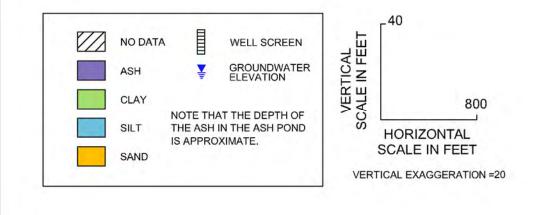
(CLIENT Site Location Projec DATES	: Na e: Na i: Na t: 15 5: St Fin	BOR atural Re- ewton En ewton, Ill 5E0030 cart: 10/2 hish: 10/2 unny, bree	sourc ergy inois 27/20 28/2	ce Tec Cente 015 015	ehnolog er		sampler, split spoon BOREHOLE ID: APW8 Well ID: APW8 Surface Elev: 526.75 ft. MSL Completion: 82.00 ft. BGS Station: 3,839.59N 6,082.37E
s	AMPLI (<u><u></u><u></u><u></u><u></u><u></u></u>	£	Т	EST	TING	sf)	TOPOGRAPHIC MAP INFORMATION: Quadrangle: Latona	WATER LEVEL INFORMATION: $\Psi = 33.70$ - During Drilling
н	/ Total		/ 6 in lue	re (%)	Dry Den. (lb/ft ³)	$\begin{array}{c} \begin{array}{c} Op \ T \end{array} \end{array}$	Township: North Muddy Section 26, Tier 6N; Range 8E	$\underline{\mathbf{Y}} = \underline{\mathbf{Y}} = \mathbf{Y}$
Number	Recov / Total (in) % Recovery	Type	Blows / 6 in N - Value RQD	Moisture (%)	Dry De	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Depth Lithologic ft. BGS Description	Borehole Elevation Detail ft. MSL Remarks
18A	24/24 100%	ss	9-16 26-32 N=42	11		4.50		
9A	24/24 100%	ss	10-16 23-34 N=39	12		4.50		
20A	24/24 100%	ss	10-15 26-44 N=41	13		4.50	42 44 46 48 48 Dark gray (10YR4/1), moist, hard, SILT with litt few very fine- to coarse-grained sand, and trace is gravel.	
21A	24/24 100%	ss	12-21 32-48 N=53	12		4.50		
2A	24/24 100%	ss	11-17 22-31 N=39	13		4.50		le clay, small
3A	24/24 100%	ss	<i>10-13</i> <i>21-32</i> N=34	13		4.50	52	
4A	24/24 100%	ss	8-13 50-26 N=63	13		4.50	54	
5A	24/24 100%	ss	8-11 19-28 N=30	14		4.25	56	
6A	24/24 100%	ss	10-12 18-26 N=30	13		4.50	50 52 54 54 56 58 Olive gray (5Y4/2), moist, hard, silty CLAY with the fine- to coarse-grained sand and trace small graves	
27A	22/24 92%	ss	7-10 15-22 N=25	21		4.50	Olive gray (5Y4/2), moist, hard, silty CLAY with fine- to coarse-grained sand and trace small gra	

(CLIEN Sit Location Projec DATE	Г: N e: N n: N et: 1: S: St Fin	BOR atural Re ewton En ewton, Ill 5E0030 tart: 10/2 nish: 10/2 unny, brea	sourd ergy inois 27/2 28/2	ce Te Cent 3 015 015	echnolo ter	gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, macro-core sam sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	pler, spli	t spoo		REHOLE ID Well ID	: APW8 : 526.75 ft. MSL : 82.00 ft. BGS
S	AMPL	E	Т	EST				RAPHIC MAP INFORMATION: rangle: Latona				INFORMAT	
er	Recov / Total (in) % Recovery		/ 6 in lue	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Town	ship: North Muddy n 26, Tier 6N; Range 8E		<u> </u>		Daning Dinin	9
Number	Recov % Reco	Type	Blows / 6 in N - Value RQD	Moistu	Dry De	Qu (tsf Failure	Depth ft. BGS	Lithologic Description	•		orehole Detail	Elevation ft. MSL	Remarks
28A	20/24 83%	ss	7-15 19-20 N=34	14		4.50	62	Dark gray (10YR4/1), moist, hard, SILT with little c few very fine- to coarse-grained sand and trace small g	lay, avel.	_	<u>، د، د، د، د، د.</u> <u>، د، د، د، د. د</u>	466	
29A	21/24 88%	ss	7-8 11-16 N=19	11		3.75	64	Dark gray (10YR4/1), moist, very stiff, SILT with li clay, few very fine- to coarse-grained sand and trace su gravel.	ttle mall		تے تے تے تے تے تے تے تے تے تے تے تے	464	
30A 30B	21/24 88%	ss	6-13 14-11 N=27	14 10		4.00	66	Gray (10YR6/1), wet, medium dense, silty, very fine coarse-grained SAND with trace small to large grav Dark gray (10YR4/1), moist, very stiff, SILT with li	el.			462	
31A 31B	18/24 75%	ss	4-3 4-3 N=7	28 15		3.25	68 minutum	Dark gray (10 FR4/1), filoist, very stiff, SILT with in clay and few very fine- to coarse-grained sand. Dark gray (10YR4/1), wet, loose, silty, very fine- t coarse-grained SAND with trace small gravel and trac wood fragments. Dark gray (10YR4/1), moist, very stiff, SILT with li clay, few very fine- to coarse-grained sand, and trace s	o ace ttle			460	
32A 32B	20/24 83%	ss	1-3 3-2 N=6	17 28				gravel, trace wood fragments. Dark gray (10YR4/1), wet, loose, SILT with little vo fine- to fine-grained sand. Dark gray (10YR4/1), wet, loose, silty, very fine- t coarse-grained SAND. Dark gray (10YR4/1), wet, loose, SILT with little vo	ery /			458	
33A	15/24 63%	ss	woh-2 6-6 N=8	17				 fine- to fine-grained sand, trace wood fragments. Dark gray (10YR4/1), wet, loose, silty, very fine- t coarse-grained SAND, trace wood fragments. 	´ 0			456	
34A	16/24 67%	ss	9-11 15-20 N=26	9			72	Dark gray (10YR4/1), wet, medium dense, silty, very to coarse-grained SAND with trace small gravel.				454	
5A	15/24 63%	ss	16-21 23-24 N=44	9			74	Dark gray (10YR4/1), wet, dense, silty, very fine-t coarse-grained SAND with few small to large grave	vel			452	
36A	14/24 58%	ss	11-20 25-24 N=45	11			/0 -	Dark gray (10YR4/1), wet, dense, silty, very fine- t				450	
37A	15/24 63%	ss	20-25 24-25 N=49	10			78	coarse-grained SAND with trace small gravel.	~			448	
NO	TE(S):	APV	 V8 install	ed in	l bore	hole.	80 ⊒			11.	<u>⊢</u>	1. L I	

F]	[EL]	D	BOR	IN	NG	L() G				ANSON
	Sit Locatio Projec	e: No n: No ct: 15 S: St	atural Res ewton End ewton, Illi 5E0030 c art: 10/2	ergy inois 27/2	Cent 5 015		gy, Inc.	 CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, macro-core samp sampler FIELD STAFF: Driller: C. Dutton 	ler, split spoon	BOREHOLE ID: 4 Well ID: 4 Surface Elev: Completion:	APW8 APW8 526.75 ft. MSL
WF	EATHEI		nish: 10/2 1111 inny, bree			1, lo-80	S	Helper: C. Jones Eng/Geo: S. Keim		Station:	3,839.59N 6,082.37E
5	SAMPL	Е	T	EST				APHIC MAP INFORMATION: ngle: Latona		VEL INFORMATIO 70 - During Drilling	DN:
ber	Recov / Total (in) % Recovery		Blows / 6 in N - Value RQD	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Townshi Section 2	ip: North Muddy 26, Tier 6N; Range 8E	$\underline{\Psi} = $ $\underline{\nabla} =$		
Number	Reco % Re	Type	Blow N - V RQI	Mois	Dry]	Qu (1 Failu	Depth ft. BGS	Lithologic Description	Bore Det		Remarks
38A 38B	18/24 75%	SS	26-26 26-31 N=52	8 11		4.50	82	Dark gray (10YR4/1), wet, dense, silty, very fine-to coarse-grained SAND with trace small gravel. <i>[Continued from previous page]</i> Dark gray (10YR4/1), moist, hard, SILT with little cla and few very fine- to coarse-grained sand. End of boring = 82.0 feet			
)TE(S):	APW	V8 installe	ed in	bore	ehole.					

FIELD BORIN	G L	OG		(S HANSON		
CLIENT: Natural Resource Site: Newton Energy C Location: Newton, Illinois Project: 15E0030 DATES: Start: 10/27/20 Finish: 10/27/20 WEATHER: Cool, rainy, lo-50	5 5	Rig mfg Drilling N	CTOR: Bulldog Drilling, Inc. (model: CME-550X ATV Drill lethod: 4¼" HSA TAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	BOREHOLE ID: APW10a Well ID: APW10 Surface Elev: 521.98 ft. M Completion: 45.94 ft. B0 Station: 5,371.32 11,541.23			
SAMPLE TESTI							
er / Total (in) <i>covery</i> alue (%)	Dry Den. (lb/tr) Qu (tsf) <i>Qp</i> (tsf) Failure Type	TOPOGRAPHIC MAP INFO Quadrangle: Latona Township: North Muddy Section 25, Tier 6N; Rango	• 8E		INFORMATION: During Drilling		
Number Recov / % Recov Type Blows / N - Valu RQD Moisture	Dry Qu (Failt		Lithologic Description	Borehole Detail	Elevation ft. MSL Remarks		
NOTE(S): APW10 installed in Lithology, sample, a	borehole.	2	W4 boring log for lithology, sample testing data	, and	520 518 516 516 512 510 510 508 506 504 502		


F	[EL]	DI	BOR	IN	JG	L C	DG			6		ANSON
	Sit Locatio Projec DATE	te: N n: N xt: 15 S: St Fir	atural Reservention En- ewton En- ewton, Ill 5E0030 tart: 10/2 nish: 10/2 ool, rainy	ergy inois 27/2 27/2	Cent 5 015 015		gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim			REHOLE ID Well ID Surface Elev	 APW10a APW10 521.98 ft. MSL 45.94 ft. BGS
5	SAMPL	E	Т	EST	INC		TOPOGR	APHIC MAP INFORMATION:	WAT	ER LEVEL	INFORMA	TION:
ler	Recov / Total (in) % Recovery		<i>Blows / 6 in</i> N - Value RQD	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Townsh	ngle: Latona nip: North Muddy 25, Tier 6N; Range 8E	Ţ	2 = 36.00 - 1 2 = 2 =	During Drillin	ng
Number	Recov % Re	Type	Blows N - V RQD	Moist	Dry I	Qu (ts Failur	Depth ft. BGS	Lithologic Description		Borehole Detail	Elevation ft. MSL	Remarks
							22	Yellowish brown (10YR5/6) with 5% gray (N6/1) mot moist, hard, SILT with little clay, few very fine-grain sand, and trace small gravel.	ttles, ied	، فی فی فی فی فی فی فی د ، فی فی فی فی فی فی فی فی	500	
							24 26 28 30 30	Yellowish brown (10YR5/4) with 5% dark yellowis brown (10YR4/6) and 5% gray (N6/1) mottles, moist, I SILT with little clay, few very fine-grained sand, and t small gravel.	sh hard, race	ہے۔ فی قہ قہ قہ قہ قہ قے قے قے قے قہ قہ قہ قہ قے قے قے قے قے قے قے قے قے قہ قہ ا	498 498 496 496 494 494 492 492 492	
							34 ¥ 36 38	Brown (10YR5/3) with 5% gray (N6/1) mottles, moi hard, SILT with little clay, few very fine-grained sand, trace small gravel.	and		488	
							40	Brown (10YR5/3), wet, very dense, silty, very fine- medium-grained SAND with trace small gravel.	to			
NC)TE(S):	APV Lith	V10 instal ology, sar	lled i nple	n bo , and	rehole. testing	data can be f	ound on APW-4 Field Boring Log.				Page 2 of 3


IOLE ID: APW10a Well ID: APW10 face Elev: 521.98 ft. MSL	Idog Drilling, Inc. ME-550X ATV Drill BOREHOLE ID: APW10a "HSA Well ID: APW10 Surface Elev: 521.98 ft. MSL iller: C. Dutton Completion: 45.94 ft. BGS Iper: C. Jones Station: 5,371.32N
	N: WATER LEVEL INFORMATION: $\mathbf{\nabla} = 36.00$ - During Drilling
	$\underline{\Psi} = \underline{\nabla}$
	logic Borehole Elevation ption Detail ft. MSL Remarks
	y dense, silty, very fine- to with trace small gravel. previous page] g = 45.94 feet
fa m	Idog Drilling, Inc. ME-550X ATV Drill BOREHO "HSA Surfa iller: C. Dutton Iper: C. Jones Geo: S. Keim N: WATER LEVEL INFO

Attachment B

Geologic Cross Section B-B'

Mann-Kendall Trend Analysis

Attachment C

OBG

User Supplied Information

Location ID:	APW5	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 0	3/31/2019	Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	-0.000004 0.016425	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	-0.000001	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000031	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000011	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	-0.417	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	None	

User Supplied Information

Location ID:	APW6	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 03	3/31/2019	Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	-0.000008 0.018309	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	0.000006	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000015	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000018	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	0.687	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	None	

User Supplied Information

Location ID:	APW7	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 0.	3/31/2019	Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	0.000006 0.033439	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	0.000008	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000011	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000034	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	0.412	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	None	

User Supplied Information

Location ID:	APW8	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 03	3/31/2019	Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	0.000019 0.342389	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	0.000017	mg/L per day
Lower Confidence Limit of Slope, M1:	0.000003	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000039	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	1.787	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	Upward	

User Supplied Information

Location ID:	APW9	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 03	6/31/2019	Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	-0.000006 0.028627	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	-0.000001	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000026	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000028	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	0.000	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	None	

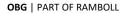
User Supplied Information

Location ID:	APW10	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 03	3/31/2019	Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	0.000011 0.304448	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	0.000011	mg/L per day
Lower Confidence Limit of Slope, M1:	0.000000	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000019	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	1.722	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	Upward	

Attachment D

Coefficient of Variation Evaluation


Newton

Coefficient of Variation Date Range: 12/14/2015 to 3/31/2019

Boron, total (mg/L)

Location	Count	Mean	Std Dev	% Non- Detects	сv
APW5	12	0.100	0.013	0.00	0.13
APW6	12	0.090	0.023	0.00	0.26
APW7	12 0.076 0.013		0.013	0.00	0.17
APW8	12	0.085	0.013	0.00	0.15
APW9	12	0.072	0.014	0.00	0.20
APW10	12	0.071	0.008	0.00	0.11

CV=Std Dev/ Mean

October 14, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.94(e)(2) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Increases (SSIs) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company by O'Brien & Gere Engineers, Inc., part of Ramboll (OBG) to provide pertinent information pursuant to 40 C.F.R. § 257.94(e)(2) for the Newton Primary Ash Pond (PAP) located near Newton, Illinois.

The fourth semi-annual detection monitoring samples (Detection Monitoring Round 4 [D4]) were collected on February 22, 2019 and analytical data were received on April 15, 2019. In accordance with 40 C.F.R. § 257.93(h)(2), statistical analysis of the data to identify SSIs of 40 C.F.R. Part 257 Appendix III parameters over background concentrations was completed by July 15, 2019, within 90 days of receipt of the analytical data. The statistical determination identified the following SSIs at downgradient monitoring wells:

- Calcium at wells APW8 and APW10
- Fluoride at wells APW7 and APW9
- Sulfate at wells APW7, APW8, APW9, and APW10

Pursuant to 40 C.F.R. § 257.94(e)(2), the following demonstrates that sources other than the Newton PAP were the cause of the SSIs listed above. This ASD was completed by October 14, 2019, within 90 days of determination of the SSIs, as required by 40 C.F.R. § 257.94(e)(2).

SITE LOCATION AND DESCRIPTION

The Newton Power Station (Site) is located in Jasper County, in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The area is surrounded by Newton Lake. Beyond the lake is agricultural land.

GEOLOGY AND HYDROGEOLOGY

The site geology and hydrogeology are summarized below from the Hydrogeologic Monitoring Plan (NRT/OBG, 2017a)¹.

GEOLOGY

Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations. The unconsolidated deposits occurring at Newton Power Station include the following units (beginning at the ground surface):

Ash/Fill Units – CCR and fill within the various CCR Units

¹ Natural Resource Technology, an OBG Company (NRT), October 17, 2017. *Hydrogeologic Monitoring Plan. Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502.* Newton Power Station, Canton, Illinois. Illinois Power Generating Company.

- Upper Confining Unit Low permeability clays and silts, including: the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east; underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) and Vandalia (Till) Members of the Glasford Formation
- Uppermost Aquifer (Groundwater Monitoring Zone) Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation
- Lower Confining Unit Thick, very low permeability silty clay diamicton of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation

The bedrock beneath the unconsolidated deposits consists of Pennsylvanian-age Mattoon Formation that is mostly shale near the bedrock surface, but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones. The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the site, but is typically encountered at 90 to 120 ft below ground surface (bgs).

HYDROGEOLOGY

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation. CCR monitoring well locations are shown in Figure 1.

Uppermost Aquifer

The Uppermost Aquifer is the Mulberry Grove Member, typically consisting of fine to coarse sand with varying amounts of clay, silt, and fine to coarse gravel. The portion of the Mulberry Grove Member at the site that is defined as a sand layer ranges in thickness from 3 to 17 ft with an average thickness of 8 ft. With only a few exceptions, the sand layer occurs between depths of 55 to 88 ft bgs.

Lower Limit of Aquifer

The lower hydrostratigraphic units, which comprise the lower limit of the Uppermost Aquifer, consist of the Smithboro Member and the Banner Formation, both of which are predominantly low permeability clay diamictons with varying amounts of silt, sand, and gravel. The lower hydrostratigraphic units are 30 to more than 50 ft thick above the underlying bedrock.

Groundwater Elevation and Flow Direction

Groundwater elevations across PAP ranged from approximately 494 to 531 ft MSL (NAVD88) during D4 (Figure 2). The groundwater elevation contours shown on Figure 2 were measured on February 18, 2019, the first day of a combined sampling event at the Site for LF2 and the Primary Ash Pond and for multiple monitoring programs required by both federal and state regulatory agencies. Overall groundwater flow within the Uppermost Aquifer in this area is southward toward Newton Lake, but with a predominantly southwesterly flow under the PAP.

GROUNDWATER AND PAP WATER MONITORING

The Uppermost Aquifer monitoring system for the PAP is shown on Figure 1. Monitoring wells APW5 and APW6 are used to monitor background water quality for the PAP. These wells are located north of the PAP. The downgradient monitoring wells are APW7, APW8, APW9, and APW10.

PAP water samples have been collected from locations AP1 in the southwest corner of the PAP and AP2 in the southeast corner of the PAP.

ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

Lines of evidence supporting these ASDs include the following:

- 1. The ionic composition of Newton PAP water is different from the ionic composition of groundwater.
- 2. The Newton PAP is not hydraulically connected to the Uppermost Aquifer.
- 3. Concentrations of calcium in the Newton PAP are lower than those observed in the groundwater.
- 4. Boron, a primary indicator parameter for CCR impacts to groundwater, has concentrations in downgradient wells that are near, or below, concentrations observed in background monitoring wells.

These lines of evidence are described and supported in greater detail below. Monitoring wells and leachate sample locations are shown on Figure 1.

LINE OF EVIDENCE #1: THE IONIC COMPOSITION OF NEWTON PAP WATER IS DIFFERENT FROM THE IONIC COMPOSITION OF GROUNDWATER

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples relative to their major cation and anion content, providing the information needed to identify compositional categories or groupings. Figure 2 is a Piper diagram that displays the ionic composition of groundwater samples from the background and downgradient monitoring wells associated with the Phase I Landfill (LF1), Phase II Landfill (LF2), and Primary Ash Pond (PAP) and LF1 leachate and PAP water based on Quarter 2 2017 and Quarter 3 2018 samples.

Groundwater samples from the PAP downgradient wells (enclosed within a green ellipse) have a very high percentage of carbonate-bicarbonate cations and no dominant cation. Surface water samples from the PAP (enclosed within a purple ellipse) have a very high percentage of sodium-potassium cations and no dominant anion. The dissimilar ionic compositions of the PAP downgradient groundwater and the PAP surface water indicates that the PAP is not the source of CCR constituents detected in PAP groundwater.

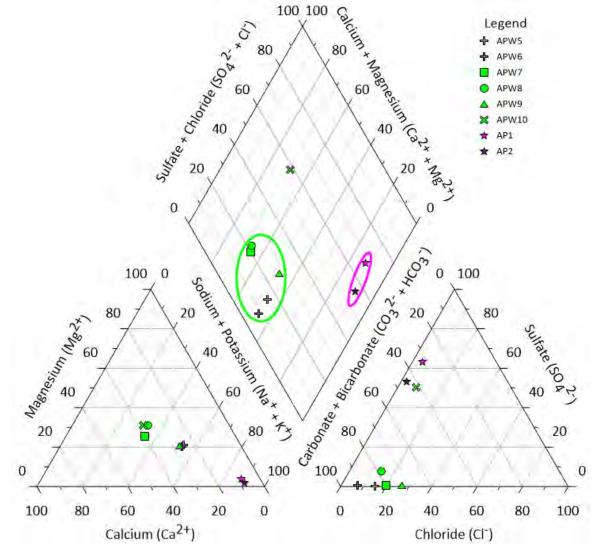


Figure 2 Piper Diagram Showing Ionic Composition of Samples of Background and Downgradient Groundwater Associated with LF1, LF2, and PAP and Samples of LF1 Leachate and PAP Surface Water.

LINE OF EVIDENCE #2: THE NEWTON PRIMARY ASH POND IS NOT HYDRAULICALLY CONNECTED TO THE UPPERMOST AQUIFER

As noted above, the Uppermost Aquifer at the Site is the Mulberry Grove Member of the Glasford Formation. Based on boring logs for monitoring wells installed around the perimeter of the site, the Uppermost Aquifer is confined and the top of this unit ranges from 461.8 ft msl in APW-8 to 482.8 ft msl in APW-10 (Attachment A). The bottom elevation of the PAP is, situated within the Hagarstown Member of the Glasford Formation at 508 ft msl, approximately 25 ft above the top of the Uppermost Aquifer (Attachment B). The Hagarstown Member functions as an aquitard with hydraulic conductivities ranging from 2.4 x 10^{-6} to 6.1×10^{-5} centimeters per

second (cm/s)². Based upon these hydraulic conductivity values and the fact that the Uppermost Aquifer is confined, the PAP is not hydraulically connected to the Uppermost Aquifer. The lack of connection between the PAP and the Uppermost Aquifer demonstrates that there is no complete pathway for transport of CCR constituents in groundwater beneath the PAP, thus the PAP is not the source of CCR constituents in the Uppermost Aquifer.

LINE OF EVIDENCE #3: CONCENTRATIONS OF CALCIUM IN THE NEWTON PRIMARY ASH POND ARE LOWER THAN THOSE OBSERVED IN THE GROUNDWATER

Calcium concentrations are lower in PAP water samples than in all downgradient groundwater samples collected between 2015 and 2019. A time series for calcium concentrations is provided in Figure 3 below.

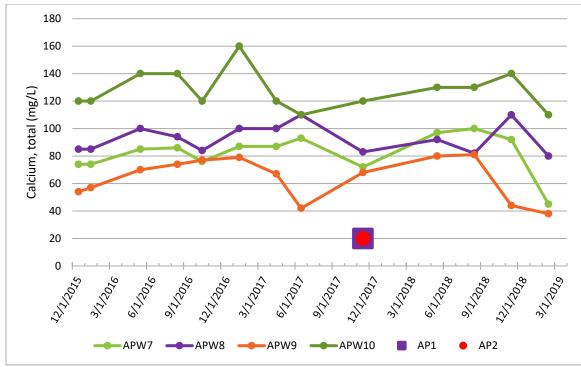


Figure 3. Calcium time series

The following observations can be made from Figure 3:

- PAP water samples AP1 and AP2 each contained 20 mg/L of calcium.
- Groundwater from downgradient wells APW7, APW8, APW9, and APW10 had higher calcium concentrations than the PAP water.

² Natural Resource Technology, an OBG Company (NRT), October 17, 2017. *Hydrogeologic Monitoring Plan. Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502*. Newton Power Station, Canton, Illinois. Illinois Power Generating Company.

If the PAP were the source of calcium in groundwater, groundwater concentrations in PAP water would be higher than the downgradient groundwater; therefore, the PAP is not likely the source of the calcium observed in the Uppermost Aquifer.

LINE OF EVIDENCE #4: BORON, A PRIMARY INDICATOR PARAMETER OF CCR IMPACTS TO GROUNDWATER, HAS CONCENTRATIONS IN DOWNGRADIENT WELLS THAT ARE STABLE AND NEAR, OR BELOW, CONCENTRATIONS OBSERVED IN BACKGROUND MONITORING WELLS

Boron is a primary indicator of CCR impacts to groundwater. If the source of the SSIs in the downgradient monitoring wells were the PAP, boron would be anticipated to be present at elevated concentrations, as well. Concentrations of boron in all downgradient monitoring wells are below upper prediction limits established using background monitoring wells (i.e. SSI limits) and are lower than median concentrations observed in background wells APW5 and APW6 from 2015 through 2019, as shown on Figure 4.

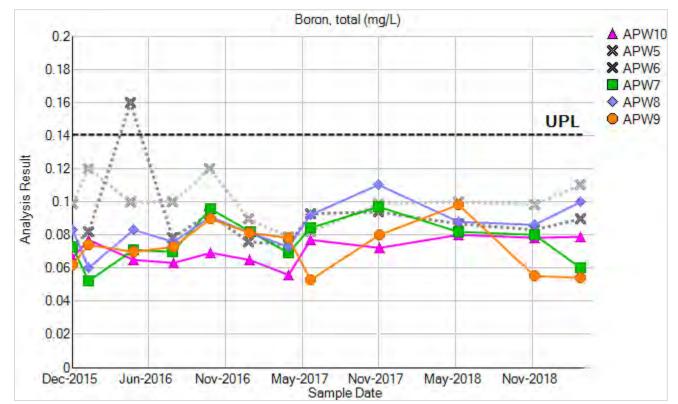


Figure 4. Boron time series showing boron concentrations in background wells (gray "X"s) are higher or similar to concentrations in downgradient wells.

From Figure 6 the following observations can be made:

- Boron concentrations in downgradient monitoring wells range from 0.052 to 0.11 mg/L versus 0.073 to 0.16 mg/L in background wells.
- Overall median boron concentration in downgradient wells from 2015 through 2019 is 0.077 mg/L versus 0.093 mg/L in background wells.

Mann-Kendall trend analysis tests were performed (Attachment D) to determine if concentrations at each well were increasing, decreasing or stable (i.e., no statistically significant upward or downward trend). If the Mann-Kendall test did not identify a trend the coefficient of variation (CV) was calculated (Attachment E) to determine if the concentrations are too variable to identify a trend (i.e. CV greater than or equal to 1). If a trend was identified, the CV was calculated to indicate whether data used to establish the trend are suggestive of a low or high magnitude trend. Data with a CV less than or equal to 1 suggest a lower magnitude trend. Boron

concentrations are stable in background wells and downgradient wells APW7 and APW9. Upward trends were identified at APW8 and APW10, however, coefficient of variation evaluations identified minimal variation at all wells, suggesting a low-magnitude trend. Table 2 provides summary statistics, including variability and trend per well.

Monitoring	Boron (mg/L)								
Well	Minimum	Maximum	Median	Standard Deviation	Trend	CV			
APW5	0.079	0.12	0.100	0.0127	stable	0.13			
APW6	0.073	0.16	0.085	0.0232	stable	0.26			
APW7	0.052	0.097	0.077	0.0133	stable	0.17			
APW8	0.060	0.11	0.085	0.0129	upward	0.15			
APW9	0.053	0.098	0.074	0.0143	stable	0.20			
APW10	0.056	0.08	0.071	0.0077	upward	0.11			

Table 2. Maximum, minimum, median, variance and trend of boron in groundwater

The low concentrations of boron in downgradient monitoring wells, relative to background concentrations, and the relatively stable boron concentrations in both background and downgradient monitoring wells suggests that the source of the of the SSIs in those wells is not the PAP.

Based on these four lines of evidence, it has been demonstrated that the Newton Primary Ash Pond has not caused the SSIs in APW7, APW8, APW9, and APW10.

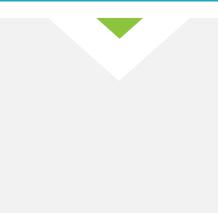
This information serves as the written alternate source demonstration prepared in accordance with 40 C.F.R. § 257.94(e)(2) that SSIs observed during the detection monitoring program were not due to the PAP. Therefore, an assessment monitoring program is not required and the Newton Primary Ash Pond will remain in detection monitoring.

Attachments

Figure 1	Monitoring Well and Source Water Location Map Newton Primary Ash Pond
Figure 2	Groundwater Elevation Contour Map – February 18, 2019
Attachment A	Boring Logs for Monitoring Wells APW8 and APW10
Attachment B	Geologic Cross Section B-B'
Attachment C	Boron Trend Analysis for APW7, APW8, APW9, and APW10
Attachment D	Coefficient of Variation Evaluation

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac Qualified Professional Engineer 062-063091 Illinois O'Brien & Gere Engineers, Inc., a Ramboll Company Date: October 14, 2019



I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Professional Geologist 196-000750 O'Brien & Gere Engineers, Inc., a Ramboll Company Date: October 14, 2019



Attachments

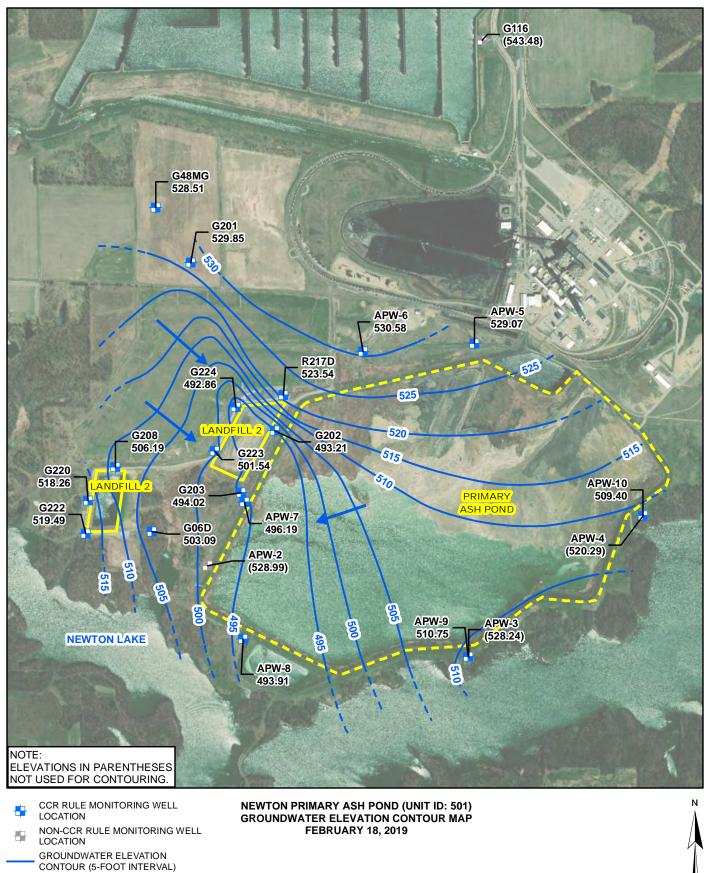


FIGURE NO. 2

1,300

325 650

Y:\Mapping\P rojects\22\2285\MXD\Alt_Source_Dem\Figure 2_D4 Newton GW Contours.mxd

INFERRED GROUNDWATER ELEVATION CONTOUR

Attachment A

Boring Logs for Monitoring Wells APW8 and APW10

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Location Projec	F: N e: N n: N et: 15 S: St Fir	atural Res ewton En ewton, Ill 5E0030 cart: 10/2 iish: 10/2	sourc ergy inois 27/2 28/2	ce Te Cent 015 015	echnolo er	gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4 ¹ /4" HSA, macro-core samp sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	bler, split s		REHOLE I Well I Surface Ele	D: APW8 ev: 526.75 ft. MSL n: 82.00 ft. BGS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPL				ING	ř	TOPOGR					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	er / Total (<i>overy</i>		/6 in llue	ure (%)	en. (lb/ft	f) <i>Qp</i> (ts e Type	Towns	hip: North Muddy	Ā	=	During Drin	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Number Recov / % Recov	Type	Blows N - V ₈ RQD	Moist	Dry D	Qu (ts Failur		Description				Remarks
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A			13		4.50	2	and trace very fine- to medium-grained sand, roots. Yellowish brown (10YR5/4) with 30% light gray (10YR7/2) mottles, dry, hard, SILT with little clay a		5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	526	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B	DP		21		3.00	4			1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	- 524	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A 60/60 100%	DP		18		2.50	6 6	(10YR4/6) and 10% black (10YR2/1) mottles, moist, stiff, silty CLAY with few very fine- to coarse-grained states and stat	verv			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	В			28		2.00		mottles, moist, stiff, silty CLAY with few very fine-	rown to		518	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A 20/24	DP		8		2.00	10	(10YR5/6) mottles, dry, stiff, SILT with little clay and	ı trace	وي وي وي وي و وي وي وي وي و	516	
20		ss	23-43 50/5"					very fine- to coarse-grained sand.		لح _ا و او و او	514	sampler.
20	A 21/24 88%	ss	24-28	10		4.50	16			ر و ر و و و ر و ر و و و	512	
20	A 24/24 100%	ss	20-48	11		4.50	18	Dark gray (10YR4/1), moist, hard, SILT with little cl trace very fine- to coarse-grained sand and small grav	ay, rel.	ے کے کے لیے کے لیے ج کے کے کے کے ک	510	
20	A 24/24 100%	ss	26-32	10			20			وي وي وي وي و وي وي وي وي و	508	
	NOTE(S):	APV	V8 install	ed in	bore	hole.	20					Page 1 of

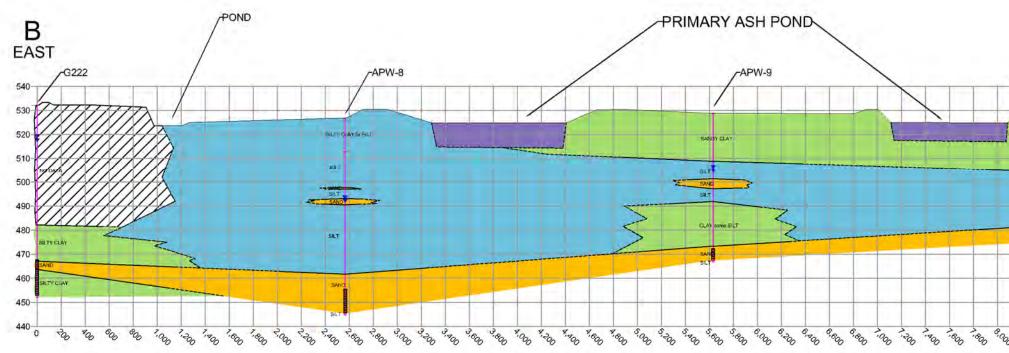
	CLIENT Sit Location Projec DATES	f: Na e: Na n: Na t: 15 5: St Fin	BOR atural Re ewton En ewton, Ill 5E0030 art: 10/2 hish: 10/2 unny, bree	sourd ergy inois 27/20 28/2	ce Te Cent s 015 015	echnolo er	r, Inc. CONI Rig Drilli	RACTOR: Bulldog Drilling, Inc. mfg/model: CME-550X ATV Drill ng Method: 4¼" HSA, macro-core samp sampler D STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	ler, split spoon		REHOLE ID: Well ID: Surface Elev:	
5	SAMPL (ii)	E	Т	EST	DAL		OPOGRAPHIC MAP	NFORMATION:			INFORMAT During Drilling	
er	Recov / Total (in) % Recovery		/ 6 in ilue	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Township: North Mud Section 26, Tier 6N; R	ownship: North Muddy ection 26, Tier 6N; Range 8E				
Number	Recov % Rec	Type	Blows / 6 in N - Value RQD	Moist	Dry D	Qu (ts Failur	Depth t. BGS	Lithologic Description		rehole etail	Elevation ft. MSL	Remarks
8A	24/24 100%	ss	7-13 19-23 N=32	11		4.50	22			5,5,5,5,	506 	
9A	24/24 100%	ss	7-14 19-27 N=33	11		4.50	24			, C, C, C, C	504 	
10A	24/24 100%	ss	8-15 30-37 N=45	11		4.50		0YR4/1), moist, hard, SILT with little cla ne- to coarse-grained sand and small grave Continued from previous page]	ay, el.	۰ ۲٫۶٫۶٫۶٫۶٫۶		
11A	24/24 100%	ss	8-16 24-33 N=40	11		4.50	26			دے کے لے لے ل		
12A 12B	24/24 100%	ss	9-31 33-30 N=64	11 12		4.50	Gray (10	YR5/1), moist, dense, silty, very fine- to medium-grained SAND.			498	
13A	24/24 100%	ss	10-23 40-35 N=63	11		4.50	30 – Dark gray (few very f	10YR4/1), moist, hard SILT with little cla ne- to coarse-grained sand, and trace smal	ıy, I	، د _، د _، د _، د		
14A	21/24 88%	ss	16-16 29-50 N=45	10		4.50	_	gravel.				
15A	20/24 83%	ss	9-24 34-41 N=58	13			A	0YR4/1), wet, very dense, silty, very fine- grained SAND with trace small gravel.	- to		492	
16A	22/24 92%	ss	16-18 29-35 N=47	11		4.50	36	0YR4/1), moist, hard, SILT with little cla	ay,		490	
17A	21/24 88%	ss	10-17 21-31 N=38	11		4.50	38 – Dark gray (few very f	ne- to coarse-grained sand, and trace smal gravel.			488	
NC))TE(S):	_] APV	 V8 install	l ed in	l bore	hole.	₄₀ .∃			+ 4		
												Page 2 of 5

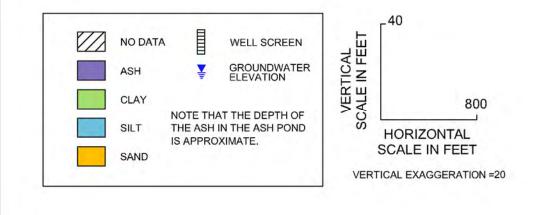
(CLIENT Site Location Projec DATES	: Na e: Na i: Na t: 15 5: St Fin	BOR atural Reserved on En ewton En ewton, Ill 5E0030 cart: 10/2 hish: 10/2 unny, bree	sourc ergy inois 27/20 28/2	ce Tec Cente 015 015	ehnolog er		sampler, split spoon BOREHOLE ID: APW8 Well ID: APW8 Surface Elev: 526.75 ft. MSL Completion: 82.00 ft. BGS Station: 3,839.59N 6,082.37E
s	AMPLI (<u>E</u>)	£	Т	EST	TING	sf)	TOPOGRAPHIC MAP INFORMATION: Quadrangle: Latona	WATER LEVEL INFORMATION: $\Psi = 33.70$ - During Drilling
ч	/ Total		/ 6 in lue	re (%)	Dry Den. (lb/ft ³)	$\begin{array}{c} \begin{array}{c} Op \ T \end{array} \end{array} $	Township: North Muddy Section 26, Tier 6N; Range 8E	$\underline{\mathbf{Y}} = \underline{\mathbf{Y}} = \mathbf{Y}$
Number	Recov / Total (in) % Recovery	Type	Blows / 6 in N - Value RQD	Moisture (%)	Dry De	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Depth Lithologic ft. BGS Description	Borehole Elevation Detail ft. MSL Remarks
18A	24/24 100%	ss	9-16 26-32 N=42	11		4.50		
9A	24/24 100%	ss	10-16 23-34 N=39	12		4.50		
20A	24/24 100%	ss	10-15 26-44 N=41	13		4.50	42 44 46 48 48 Dark gray (10YR4/1), moist, hard, SILT with litt few very fine- to coarse-grained sand, and trace is gravel.	
21A	24/24 100%	ss	12-21 32-48 N=53	12		4.50		
2A	24/24 100%	ss	11-17 22-31 N=39	13		4.50		le clay, small
3A	24/24 100%	ss	10-13 21-32 N=34	13		4.50	52	
4A	24/24 100%	ss	8-13 50-26 N=63	13		4.50	54	
5A	24/24 100%	ss	8-11 19-28 N=30	14		4.25	56	
6A	24/24 100%	ss	10-12 18-26 N=30	13		4.50	50 52 54 54 56 58 Olive gray (5Y4/2), moist, hard, silty CLAY with the fine- to coarse-grained sand and trace small graves	
27A	22/24 92%	ss	7-10 15-22 N=25	21		4.50	Olive gray (5Y4/2), moist, hard, silty CLAY with fine- to coarse-grained sand and trace small gra	

(CLIEN Sit Location Projec DATE	Г: N e: N n: N et: 1: S: St Fin	BOR atural Re ewton En ewton, Ill 5E0030 tart: 10/2 nish: 10/2 unny, brea	sourd ergy inois 27/2 28/2	ce Te Cent 3 015 015	echnolo ter	gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, macro-core sam sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	pler, spli	t spoo		REHOLE ID Well ID	: APW8 : 526.75 ft. MSL : 82.00 ft. BGS
S	AMPL	E	Т	EST				RAPHIC MAP INFORMATION: rangle: Latona				INFORMAT	
er	Recov / Total (in) % Recovery		/ 6 in lue	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Town	ship: North Muddy n 26, Tier 6N; Range 8E		<u> </u>		Daning Dinin	9
Number	Recov % Reco	Type	Blows / 6 in N - Value RQD	Moistu	Dry De	Qu (tsf Failure	Depth ft. BGS	Lithologic Description	•		orehole Detail	Elevation ft. MSL	Remarks
28A	20/24 83%	ss	7-15 19-20 N=34	14		4.50	62	Dark gray (10YR4/1), moist, hard, SILT with little c few very fine- to coarse-grained sand and trace small g	lay, avel.	_	<u>، د، د، د، د، د.</u> <u>، د، د، د، د. د</u>	466	
29A	21/24 88%	ss	7-8 11-16 N=19	11		3.75	64	Dark gray (10YR4/1), moist, very stiff, SILT with li clay, few very fine- to coarse-grained sand and trace su gravel.	ttle mall		تے تے تے تے تے تے تے تے تے تے تے تے	464	
30A 30B	21/24 88%	ss	6-13 14-11 N=27	14 10		4.00	66	Gray (10YR6/1), wet, medium dense, silty, very fine coarse-grained SAND with trace small to large grav Dark gray (10YR4/1), moist, very stiff, SILT with li	el.			462	
31A 31B	18/24 75%	ss	4-3 4-3 N=7	28 15		3.25	68 minutum	Dark gray (10 FR4/1), filoist, very stiff, SILT with in clay and few very fine- to coarse-grained sand. Dark gray (10YR4/1), wet, loose, silty, very fine- t coarse-grained SAND with trace small gravel and trac wood fragments. Dark gray (10YR4/1), moist, very stiff, SILT with li clay, few very fine- to coarse-grained sand, and trace s	o ace ttle			460	
32A 32B	20/24 83%	ss	1-3 3-2 N=6	17 28				gravel, trace wood fragments. Dark gray (10YR4/1), wet, loose, SILT with little vo fine- to fine-grained sand. Dark gray (10YR4/1), wet, loose, silty, very fine- t	ery /			458	
33A	15/24 63%	ss	woh-2 6-6 N=8	17					´ 0			456	
34A	16/24 67%	ss	9-11 15-20 N=26	9			72	Dark gray (10YR4/1), wet, medium dense, silty, very to coarse-grained SAND with trace small gravel.				454	
5A	15/24 63%	ss	16-21 23-24 N=44	9			74	Dark gray (10YR4/1), wet, dense, silty, very fine-t coarse-grained SAND with few small to large grave	vel			452	
36A	14/24 58%	ss	11-20 25-24 N=45	11			/0 -	Dark gray (10YR4/1), wet, dense, silty, very fine- t				450	
37A	15/24 63%	ss	20-25 24-25 N=49	10			78	coarse-grained SAND with trace small gravel.	~			448	
NO	TE(S):	APV	 V8 install	ed in	l bore	hole.	80 ⊒			11.	<u>⊢</u>	1. L I	

F	[EL]	D	BOR	IN	NG	L() G				ANSON
	Sit Locatio Projec	e: No n: No ct: 15 S: St	atural Res ewton End ewton, Illi 5E0030 c art: 10/2	ergy inois 27/2	Cent 5 015		gy, Inc.	 CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, macro-core samp sampler FIELD STAFF: Driller: C. Dutton 	ler, split spoon	BOREHOLE ID: 4 Well ID: 4 Surface Elev: Completion:	APW8 APW8 526.75 ft. MSL
WF	EATHEI		nish: 10/2 1111 inny, bree			1, lo-80	S	Helper: C. Jones Eng/Geo: S. Keim		Station:	3,839.59N 6,082.37E
5	SAMPL	Е	T	EST				APHIC MAP INFORMATION: ngle: Latona		VEL INFORMATIO 70 - During Drilling	DN:
ber	Recov / Total (in) % Recovery		Blows / 6 in N - Value RQD	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Townshi Section 2	ip: North Muddy 26, Tier 6N; Range 8E	$\underline{\Psi} = $ $\underline{\nabla} =$		
Number	Reco % Re	Type	Blow N - V RQI	Mois	Dry]	Qu (1 Failu	Depth ft. BGS	Lithologic Description	Bore Det		Remarks
38A 38B	18/24 75%	SS	26-26 26-31 N=52	8 11		4.50	82	Dark gray (10YR4/1), wet, dense, silty, very fine-to coarse-grained SAND with trace small gravel. <i>[Continued from previous page]</i> Dark gray (10YR4/1), moist, hard, SILT with little cla and few very fine- to coarse-grained sand. End of boring = 82.0 feet			
)TE(S):	APW	V8 installe	ed in	bore	ehole.					

FIELD BORIN	G L	OG		(S HANSON				
CLIENT: Natural Resource Site: Newton Energy C Location: Newton, Illinois Project: 15E0030 DATES: Start: 10/27/20 Finish: 10/27/20 WEATHER: Cool, rainy, lo-50	5 5	Rig mfg Drilling N	CTOR: Bulldog Drilling, Inc. (model: CME-550X ATV Drill lethod: 4¼" HSA TAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	BOREHOLE ID: APW10a Well ID: APW10 Surface Elev: 521.98 ft. MS Completion: 45.94 ft. BG Station: 5,371.32N 11,541.23E					
SAMPLE TESTI									
er / Total (in) <i>covery</i> alue (%)	Dry Den. (lb/tr) Qu (tsf) <i>Qp</i> (tsf) Failure Type	TOPOGRAPHIC MAP INFO Quadrangle: Latona Township: North Muddy Section 25, Tier 6N; Rango	• 8E		$\underline{\nabla}$ =				
Number Recov / % Recov Type Blows / N - Valu RQD Moisture	Dry Qu (Failt		Lithologic Description	Borehole Detail	Elevation ft. MSL Remarks				
NOTE(S): APW10 installed in Lithology, sample, a	borehole.	2	W4 boring log for lithology, sample testing data	, and	520 518 516 516 512 510 510 508 506 504 502				


F	[EL]	DI	BOR	IN	JG	L C	DG			6		ANSON
	Sit Locatio Projec DATE	te: N n: N xt: 15 S: St Fir	atural Reservention En- ewton En- ewton, Ill 5E0030 tart: 10/2 nish: 10/2 ool, rainy	ergy inois 27/2 27/2	Cent 5 015 015		gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim			REHOLE ID Well ID Surface Elev	 APW10a APW10 521.98 ft. MSL 45.94 ft. BGS
5	SAMPL	E	Т	EST	INC		TOPOGR	APHIC MAP INFORMATION:	WAT	ER LEVEL	INFORMA	TION:
ler	Recov / Total (in) % Recovery		<i>Blows / 6 in</i> N - Value RQD	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Townsh	ngle: Latona nip: North Muddy 25, Tier 6N; Range 8E	Ţ	2 = 36.00 - 1 2 = 2 =	During Drillin	ng
Number	Recov % Re	Type	Blows N - V RQD	Moist	Dry I	Qu (ts Failur	Depth ft. BGS	Lithologic Description		Borehole Detail	Elevation ft. MSL	Remarks
							22	Yellowish brown (10YR5/6) with 5% gray (N6/1) mot moist, hard, SILT with little clay, few very fine-grain sand, and trace small gravel.	ttles, ied	، فی فی فی فی فی فی فی د ، فی فی فی فی فی فی فی فی	500	
							24 26 28 30 30	Yellowish brown (10YR5/4) with 5% dark yellowis brown (10YR4/6) and 5% gray (N6/1) mottles, moist, I SILT with little clay, few very fine-grained sand, and t small gravel.	sh hard, race	ہے۔ فی قہ قہ قہ قہ قہ قے قے قے قے قہ قہ قہ قہ قے قے قے قے قے قے قے قے قے قہ قہ ا	498 498 496 496 494 494 492 492 492	
							34 ¥ 36 38	Brown (10YR5/3) with 5% gray (N6/1) mottles, moi hard, SILT with little clay, few very fine-grained sand, trace small gravel.	and		488	
							40	Brown (10YR5/3), wet, very dense, silty, very fine- medium-grained SAND with trace small gravel.	to			
NC)TE(S):	APV Lith	V10 instal ology, sar	lled i nple	n bo , and	rehole. testing	data can be f	ound on APW-4 Field Boring Log.				Page 2 of 3


IOLE ID: APW10a Well ID: APW10 face Elev: 521.98 ft. MSL	Idog Drilling, Inc. ME-550X ATV Drill BOREHOLE ID: APW10a "HSA Well ID: APW10 Surface Elev: 521.98 ft. MSL iller: C. Dutton Completion: 45.94 ft. BGS Iper: C. Jones Station: 5,371.32N
	N: WATER LEVEL INFORMATION: $\mathbf{\nabla} = 36.00$ - During Drilling
	$\underline{\Psi} = \underline{\nabla}$
	logic Borehole Elevation ption Detail ft. MSL Remarks
	y dense, silty, very fine- to with trace small gravel. previous page] g = 45.94 feet
fa m	Idog Drilling, Inc. ME-550X ATV Drill BOREHO "HSA Surfa iller: C. Dutton Iper: C. Jones Geo: S. Keim N: WATER LEVEL INFO

Attachment B

Geologic Cross Section B-B'

Mann-Kendall Trend Analysis

Attachment C

OBG

User Supplied Information

Location ID:	APW5	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 0	3/31/2019	Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	-0.000004 0.016425	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	-0.000001	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000031	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000011	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	-0.417	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	None	

User Supplied Information

Location ID:	APW6	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 03	3/31/2019	Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	-0.000008 0.018309	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	0.000006	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000015	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000018	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	0.687	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	None	

User Supplied Information

Location ID:	APW7	Parameter Code:	01022	
Location Class:		Parameter:	B, tot	
Location Type:		Units:	mg/L	
Confidence Level:	95.00%	Period Length:	1 month(s)	
Date Range: 12/14/2015 to 0.	3/31/2019	Limit Name:		
		Averaged:	No	

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	0.000006 0.033439	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	0.000008	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000011	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000034	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	0.412	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	None	

User Supplied Information

Location ID:	APW8	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 03	3/31/2019	Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	0.000019 0.342389	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	0.000017	mg/L per day
Lower Confidence Limit of Slope, M1:	0.000003	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000039	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	1.787	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	Upward	

User Supplied Information

Location ID:	APW9	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 03	/31/2019	Limit Name:	
		Averaged:	No

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	-0.000006 0.028627	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	-0.000001	mg/L per day
Lower Confidence Limit of Slope, M1:	-0.000026	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000028	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	0.000	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	None	

Newton Mann-Kendall Trend Analysis

User Supplied Information

Location ID:	APW10	Parameter Code:	01022
Location Class:		Parameter:	B, tot
Location Type:		Units:	mg/L
Confidence Level:	95.00%	Period Length:	1 month(s)
Date Range: 12/14/2015 to 03	3/31/2019	Limit Name:	
		Averaged:	No

Trend Analysis

Trend of the least squares straight line Slope (fitted to data): R-Squared error of fit:	0.000011 0.304448	mg/L per day
Sen's Non-parametric estimate of the slope (One-Sided Test)		
Median Slope:	0.000011	mg/L per day
Lower Confidence Limit of Slope, M1:	0.000000	mg/L per day
Upper Confidence Limit of Slope, M2+1:	0.000019	mg/L per day
Non-parametric Mann-Kendall Test for Trend		
S Statistic:	1.722	
Z test:	1.645	
At the 95.0 % Confidence Level (One-Sided Test):	Upward	

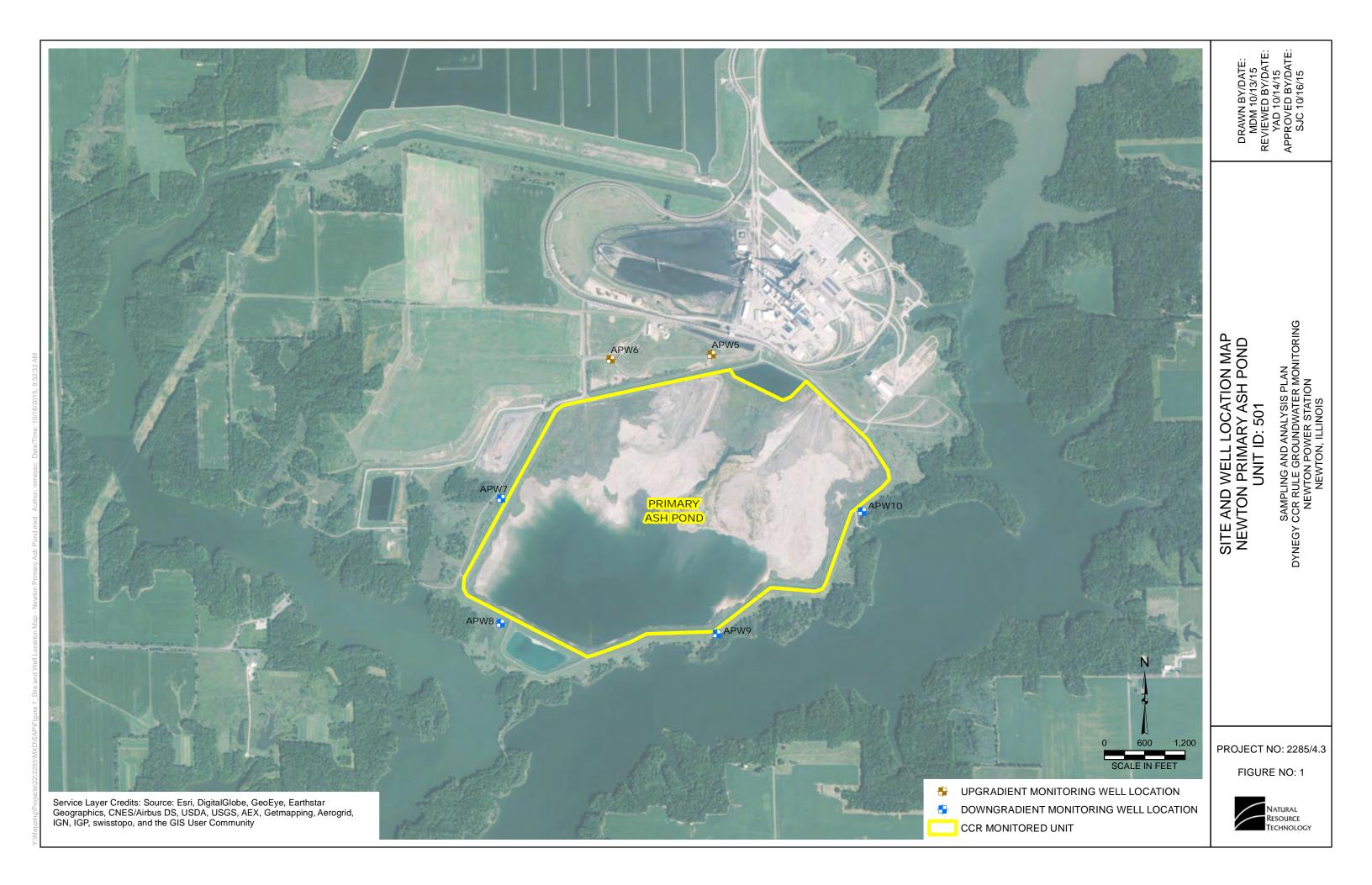
40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PRIMARY ASH POND

Attachment D

Coefficient of Variation Evaluation

Newton

Coefficient of Variation Date Range: 12/14/2015 to 3/31/2019


Boron, total (mg/L)

Location	Count	Mean	Std Dev	% Non- Detects	сv
APW5	12	0.100	0.013	0.00	0.13
APW6	12	0.090	0.023	0.00	0.26
APW7	12	0.076	0.013	0.00	0.17
APW8	12	0.085	0.013	0.00	0.15
APW9	12	0.072	0.014	0.00	0.20
APW10	12	0.071	0.008	0.00	0.11

CV=Std Dev/ Mean

ATTACHMENT 2 – MAP OF GROUNDWATER MONITORING WELL LOCATIONS

ATTACHMENT 3 – WELL CONSTRUCTION DIAGRAMS AND DRILLING LOGS

]	CLIENT Site Location Project DATES	C: Na e: Ne i: Ne t: 15 S: St Fin	BOR atural Res ewton En- ewton, Ill E0030 art: 10/2 iish: 10/2 inny, bree	sourc ergy inois 22/20 22/20	ce Tec Cente 015 015	chnolog er	gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, macro-core samp sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	əler, split spoon	BOR	EHOLE ID: Well ID: Surface Elev:	APW5 541.57 ft. MSL 68.00 ft. BGS
S	SAMPLI T	2	Т	EST	ING			APHIC MAP INFORMATION:	WATER LE			
er	Recov / Total (in) % Recovery		Blows / 6 in N - Value RQD	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Townsh	ngle: Latona i p: North Muddy 26, Tier 6N; Range 8E		.00 - I	During Drillinş	3
Number	Recov % Rec	Type	Blows N - V RQD	Moist	Dry D	Qu (ts Failur	Depth ft. BGS	Lithologic Description	Bore De	hole tail	Elevation ft. MSL	Remarks
1A	60/60 100%	DP		7		3.00	2	Very dark grayish brown (10YR3/2), dry, very stiff, Sl with little clay and trace very fine- to medium-grained s roots. Yellowish brown (10YR5/6), dry, very stiff, SILT wi little clay and few very fine- to medium-grained sanc	and,		540	
1B		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		13		2.50	4	Yellowish brown (10YR5/6) with 10% gray (10YR6/ mottles, moist, very stiff, silty CLAY with few very find medium-grained sand and trace small gravel.	(1) >- to		538	
2A	60/60 100%	DP		25		3.25	6	Gray (10YR5/1) with 20% dark yellowish brown (10YR4/6) mottles, moist, very stiff, CLAY with some trace very fine- to fine-grained sand.	silt,		534	
2B		www.www		22		2.25	10	Dark grayish brown (10YR4/2), moist, stiff, CLAY w little silt and trace very fine- to fine-grained sand.	ith — —			
3A	60/60	DP		19		1.50	12	Gray (10YR6/1), moist, medium dense, very fine- to fine-grained SAND and SILT with little clay.			530	
3B	100%			19		3.00	12	Gray (10YR5/1) with 5% yellowish brown (10YR5/ mottles, moist, very stiff, silty CLAY with few fine- coarse-grained sand and trace small gravel.	5) o		528	
4A	36/36 100%	DP		9		2.00		Yellowish brown (10YR5/6) with 15% grayish brow (10YR5/2) mottles, moist, stiff, SILT with little clay a trace fine- to coarse-grained sand and small gravel.	n nd		526	
5A	23/24 96%	ss	14-28 40-50 N=68	9		4.50	18	Brown (10YR5/3), moist, hard, SILT with little clay, 1 very fine- to coarse-grained sand, and trace small grav	èw el.		524	

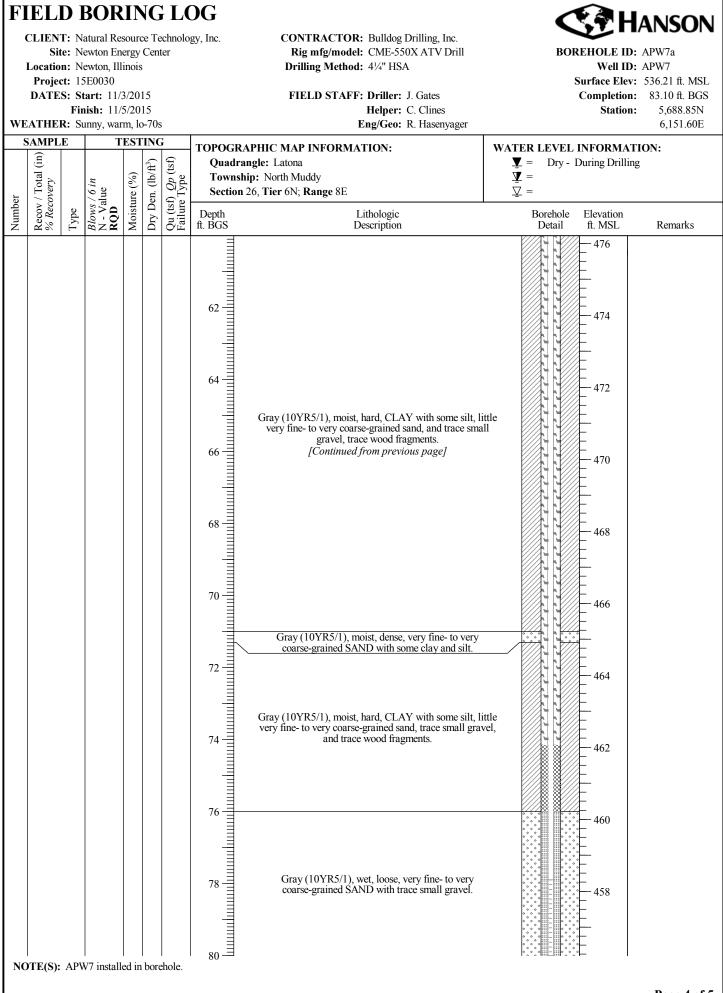
1	CLIENT Site Location Projec DATES	f: Na e: Na n: Na t: 15 5: St Fin	BOR atural Re ewton En ewton, Ill 5E0030 cart: 10/2 nish: 10/2 unny, brea	sourd ergy inois 22/2 22/2	ce Tec Cente 5 015 015	chnolo; er	gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4 ¹ / ₄ " HSA, macro-core sample sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	ler, split sj	poon	REHOLE ID: Well ID:	APW5 541.57 ft. MSL 68.00 ft. BGS
s	AMPL	E	T	EST	TING	()		APHIC MAP INFORMATION: angle: Latona			INFORMAT During Drilling	
r	Recov / Total (in) % Recovery		/ 6 in lue	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Towns	hip: North Muddy 1 26, Tier 6N; Range 8E	Σ Σ	=	During Drinin	5
Number	Recov % Reco	Type	Blows / 6 in N - Value RQD	Moistu	Dry De	Qu (tsf Failure	Depth ft. BGS	Lithologic Description		Borehole Detail	Elevation ft. MSL	Remarks
6A	21/24 88%	ss	11-26 21-14 N=47	9		4.50	22	Brown (10YR5/3), moist, hard, SILT with little clay, for very fine- to coarse-grained sand, and trace small grave [Continued from previous page]		و و و و و و و و و و و و و و	520	
7A	24/24 100%	ss	5-5 8-13 N=13	16		4.25		Brown (10YR5/3) with 5% gray (10YR6/1) and 5% yellowish brown (10YR5/6) mottles, moist, hard, SIL with some clay and trace very fine- to fine-grained sand small gravel.	T	ر د و و و و و و د ا	518	
8A	22/24 92%	ss	18-31 43-27 N=74	9		4.50	24 26	Brown (10YR5/3), moist, hard, SILT with little clay, for very fine- to coarse-grained sand, and trace small grave	ew el.	, , , , , , , , , , , , , , , , , , ,	516	
9A	21/24 88%	ss	4-5 11-11 N=16	14		2.75	28	Brown (10YR5/3) with 5% gray (10YR6/1) and 5% yellowish brown (10YR5/6) mottles, moist, hard, SIL			514	
0A	22/24 92%	ss	3-6 9-12 N=15	15		3.75		with some clay and trace very fine- to fine-grained sand signal gravel.	and	، د، د، د، د، د ، د، د، د، د،	512	
1A	24/24 100%	ss	4-7 13-16 N=20	14		4.50	32	Dark gray (10YR4/1), moist, hard, SILT with some cla	ay,	بے قرم قرم قرم ق	510	
2A	24/24 100%	ss	4-7 11-17 N=18	16		4.50	34	few very fine- to coarse-grained sand and trace small gra	vel.	- - قري قري قري ق - بي قري قري ق	508	
3A	24/24 100%	ss	5-9 12-15 N=21	18		4.50	30 32 34 34 36	Light olive brown (2.5Y5/3) with 5% gray (10YR5/1 mottles, moist, hard, SILT with little clay and trace ver fine- to medium-grained sand.) ry	و و و و و و و و و و و و و و	506	
4A	24/24 100%	ss	4-8 11-14 N=19	16		4.50	38	Olive brown (2.5Y4/3) with 10% gray (N6/1) mottlee			504	
5A	24/24 100%	ss	5-13 16-23 N=29	12		4.50	38 40	moist, hard, silty CLAY with little fine- to coarse-grain sand and trace small gravel.	ed		502	

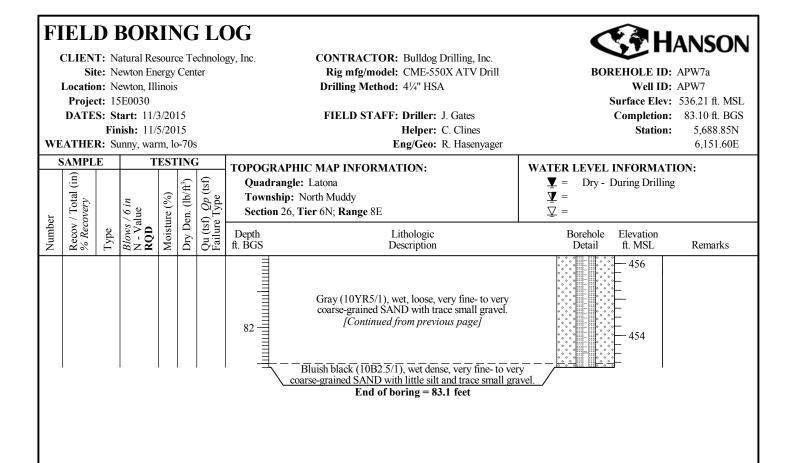
C I WE.	CLIENT Site Location Projec DATES ATHEF	f: Na e: Na n: Na t: 15 S: St Fin R: Su	BOR atural Re- ewton En ewton, Ill 5E0030 art: 10/2 hish: 10/2 unny, bree	sourc ergy inois 22/20 22/20	ce Tec Cente 015 015	chnolo; er	gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, macro-core sample sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	er, split spoo	n	REHOLE ID: Well ID:	APW5 541.57 ft. MSL 68.00 ft. BGS
S	AMPLI (II)	E	Т	EST		sf)		APHIC MAP INFORMATION: angle: Latona			INFORMAT During Drilling	
er	Recov / Total (in) % Recovery Type Blows / 6 in N - Value RQD Moisture (%) Dry Den. (lb/ft ³) Ou (tsf) <i>Op</i> (tsf)					Qu (tsf) <i>Qp</i> (tsf) Failure Type		nip: North Muddy 26, Tier 6N; Range 8E	= =		-	-
Number	Recov % Rec	Type	Blows / 6 ii N - Value RQD	Moistu	Dry D	Qu (ts Failure	Depth ft. BGS	Lithologic Description		orehole Detail	Elevation ft. MSL	Remarks
6A	24/24 100%	ss	6-13 16-30 N=29	12		4.50	42	Olive brown (2.5Y4/3) with 10% gray (N6/1) mottles moist, hard, silty CLAY with little fine- to coarse-graine sand and trace small gravel. [Continued from previous page]			500	
7A	24/24 100%	ss	5-10 13-22 N=23	15		4.50	44				498	
8A	24/24 100%	ss	7-13 17-25 N=30	13		4.50	46				496	
9A	24/24 100%	ss	6-13 20-28 N=33	13		4.50	48				494	
A	24/24 100%	ss	5-10 16-21 N=26	13		4.50	48				492	
A	24/24 100%	ss	6-10 18-21 N=28	13		4.50	50	Olive brown (2.5Y4/3) with 10% gray (N6/1) mottles moist, hard, SILT with little clay, few very fine- to coarse-grained sand and trace small gravel.	,	د در در در در در د در در در در د	490	
A	24/24 100%	ss	7-14 19-26 N=33	13		4.50	54 –			, נ, נ, נ, נ, נ ,	488	
A	24/24 100%	ss	6-10 17-24 N=27	13		4.50	56				 486	
A	24/24 100%	ss	12-16 28-36 N=44	11		4.50		Olive gray (5Y5/2) with 40% olive brown (2.5Y4/4) mottles, moist, hard, SILT with little clay, few very fine- coarse-grained sand and trace small gravel.	to		484	
A	24/24 100%	ss	2-6 12-15 N=18	23			¥ 58	Greenish gray (10G5/1) with 40% olive gray (5Y4/2) mottles, moist, medium dense, SILT with few clay and tra- very fine- to fine-grained sand.	ace			
5B			V5 install	15		1	60 <u> </u>	to coarse-grained SAND with few silt.		881	482	

WE	Sit Location Projec DATES	e: N n: N t: 15 S: St Fir R: St	tart: 10/2 nish: 10/2 nny, bree	ergy inois 22/2 22/2 22/2	Cent 5 015 015	ter 1, 10-80		CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, macro-core samp sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim		BOREHOLE ID Well ID Surface Elev	: APW5 : 541.57 ft. MSL : 68.00 ft. BGS
	Recov / Total (in) %		6 in ue	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Quadraı Townshi	PHIC MAP INFORMATION: ngle: Latona p: North Muddy 26, Tier 6N; Range 8E		/EL INFORMA' 00 - During Drillin	
Number	Reco % Re	Type	Blows / N - Val RQD	Moist	Dry I	Qu (t Failu	Depth ft. BGS	Lithologic Description	Boreh Deta		Remarks
26A	19/24 79%	ss	3-19 34-48 N=53	13			62				
27A	20/24 83%	ss	22-38 33-34 N=71	16			64	Very dark gray (10YR3/1), wet, very dense, very fine- coarse-grained SAND with few silt.	- to		
28A	22/24 92%	ss	18-28 31-33 N=59	14			66				
29A	24/24 100%	ss	21-27 24-23 N=51	16				Dark gray (10YR4/1), moist, hard, SILT with little cl			
		11								474	

WE	Location Project DATES ATHER	C: Na e: Na i: Na t: 15 S: St S: St Fin a: Su	atural Reservention En- ewton, Ill E0030 art: 10/2 ish: 10/2	sourc ergy inois 20/2(21/2(ezy, v	ce Te Cent 015 015 warm	er 1, 10-80	gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, macro-core samp sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim		BOREHOLE ID: Well ID: Surface Elev:	APW6 543.38 ft. MSL 74.00 ft. BGS
Ś	SAMPLI =	£	Т	EST	TING			APHIC MAP INFORMATION:		EL INFORMAT	
I	Recov / Total (in) % Recovery		/ 6 in lue	re (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Townsh	ngle: Latona nip: North Muddy 26, Tier 6N; Range 8E	$\underline{\Psi} = 14.0$ $\underline{\Psi} =$ $\underline{\nabla} =$	0 - During Drilling	5
Number	Recov % Reco	Type	Blows / 6 in N - Value RQD	Moisture (%)	Dry De	Qu (tsf Failure	Depth ft. BGS	Lithologic Description	Boreh Deta		Remarks
IA	60/60 100%	DP		15		4.00	2	Gray (10YR6/1), dry, very stiff, SILT with few clay a trace very fine- to coarse- grained sand, trace roots. Brown (10YR5/3) with 5% dark yellowish brown (10YR4/6) and 5% gray (10YR6/1) mottles, dry, very s SILT with few clay and very fine- to coarse-grained sa trace small gravel, trace roots.	stiff,	542	
В		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		26		3.00	4	Gray (10YR5/1) with 35% dark yellowish brown (10YR4/6) mottles, moist, very stiff, CLAY with little and trace very fine- to fine-grained sand.	silt	- 540	
2A	60/60 100%	ANN DP		18		2.50	6	Gray (10YR5/1) with 40% dark yellowish brown (10YR3/6) mottles, moist, very stiff, SILT with little c and trace very fine- to medium-grained sand.	lay		
В		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		18		1.00	8	Gray (10YR5/1) with 30% dark yellowish brown (10YR4/6) mottles, moist, stiff, SILT with some clay a few very fine- to medium-grained sand.			
A	60/60 100%	DP		27		1.50	12 12	Dark yellowish brown (10YR4/6) with 25% gray (10YR5/1) mottles, moist, stiff, CLAY with some silt a few very fine- to medium-sand.	und	- 532	
в		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		21		1.50		Dark yellowish brown (10YR3/4), wet, soft, fine- to co- grained sandy CLAY with little silt.	arse		
A	12/12 100%	DP		10			16-	Brown (10YR4/3), moist, stiff, SILT with little clay a few very fine- to coarse-grained sand.	nd	528	
A	22/24 92%	ss	15-29 41-50 N=70	8		4.50		Grayish brown (10YR5/2) with 15% dark gray (10YR-	4/1)	- 526	
A	21/24 88%	ss	14-30 40-50 N=70	8		4.50		mottles, dry, hard, SILT with little clay, few very fine- coarse-grained sand and trace small gravel.		524	

1	CLIEN Sit Locatio Projec DATE	Γ: Να e: Να n: Να et: 15 S: St Fin	BOR atural Re ewton En ewton, Ill 5E0030 tart: 10/2 hish: 10/2 unny, brea	soure ergy inois 20/2 21/2	ce Te Cent s 015 015	echnolo ter	gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, macro-core sample sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	ler, split	spoon	REHOLE ID: Well ID:	APW6 543.38 ft. MSL 74.00 ft. BGS
S	SAMPL	E	Т	EST	TING			APHIC MAP INFORMATION:				
L	Recov / Total (in) % Recovery		6 in ue	e (%)	Dry Den. (lb/ft ³)	$\frac{Qp}{Type}$ (ts1	Towns	angle: Latona hip: North Muddy 1 26, Tier 6N; Range 8E	Ţ	_ = 14.00 - _ = _ =	During Drilling	5
Number	Recov / % Reco	Type	Blows / 6 in N - Value RQD	Moisture (%)	Dry Dei	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Depth ft. BGS	Lithologic Description		Borehole Detail	Elevation ft. MSL	Remarks
7A	15/17 88%	ss	16-46 50/5"	9		4.50		Brown (10YR5/3), moist, very dense, silty, very fine- medium-grained SAND with trace small gravel.	to		- 522	
8A	12/24 50%	ss	14-37 45-50 N=82	7		4.50	22	Brown (10YR5/3), dry, hard, SILT with little clay and t very fine- to coarse-grained sand.	few	د ، د ، د ، د ، د ، د ، د , د ، د , د , د ، د , د	522	
9A	24/24 100%	ss	8-17 23-32 N=40	10		4.50					518	
10A	24/24 100%	ss	10-22 26-36 N=48	11		4.50	26			لے لے لے لے لے بے لے لے لے لے	516	
11A	24/24 100%	ss	10-18 23-26 N=41	10		4.50		Dark gray (10YR4/1), moist, hard, SILT with little cla few very fine- to coarse-grained sand and trace small gra	iy, ivel.	، لا ، لا ، لا ، لا ، رلا ، لا ، لا ، لا ،	514	
12A	24/24 100%	ss	6-13 17-23 N=30	13		4.50	30			ے لے لے لے لے لے یے لے لے لے لے لے	512	
13A	24/24 100%	ss	5-7 12-19 N=19	17		4.50	34	Dark gray (10YR4/1) with 30% dark greenish gray (10Y4/1) mottles, moist, hard, SILT with some clay, fe very fine- to coarse-grained sand and trace small grave	ew	- د د و د و و د د و د و د و و و د و د و د	510	
14A	24/24 100%	ss	5-9 13-19 N=22	16		4.50				در در در ا در در در ا در در در ا	508	
15A	24/24 100%	ss	5-10 15-22 N=25	15		4.50	36	Dark gray (10YR4/1), moist, hard, SILT with little cla few very fine- to coarse-grained sand and trace small t large gravel.		، در در در در ر در در در در	506	
16A	24/24 100%	ss	5-9 15-22 N=24	15		4.50	40			تے تے تے تے تے تے تے تے تے تے	 504	
NC	TE(S):	APV	V6 install	ed in	n bore	chole.	40				·	Page 2 of 4


]	CLIENT Site Location Projec DATES	f: Na e: Na n: Na t: 15 5: St Fin	BOR atural Reserved on En ewton En ewton, Ill 5E0030 cart: 10/2 nish: 10/2 unny, bree	sourc ergy inois 20/20 21/20	ce Teo Cente 015 015	chnolog er	gy, Inc.	 CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, macro-core sample sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim 	er, split spo	on	REHOLE ID: Well ID:	APW6 543.38 ft. MSL 74.00 ft. BGS
S	AMPLI (<u>ii</u>)	E	Т	EST	TING			PHIC MAP INFORMATION: gle: Latona			INFORMAT	
r	% Recov / Total (in) % Recovery		<i>6 in</i> ue	re (%)	Dry Den. (lb/ft ³)	$\frac{1}{Type}$ (t	Townshi	p: North Muddy 6, Tier 6N; Range 8E	= =		0 0	-
Number	Recov	Type	Blows / 6 in N - Value RQD	Moisture (%)	Dry De	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Depth ft. BGS	Lithologic Description		Borehole Detail	Elevation ft. MSL	Remarks
17A	21/24 88%	ss	4-14 18-25 N=32	12		4.25	42			تے تے تے تے تے تے تے تے تے تے تے ت	502	
8A	24/24 100%	ss	8-12 16-22 N=28	15		4.50	44	Dark gray (10YR4/1), moist, hard, SILT with little clay few very fine- to coarse-grained sand and trace small to large gravel. [Continued from previous page]		تے تے تے تے تے تے تے تے تے تے	500	
19A	22/24 92%	ss	7-11 15-18 N=26	16		4.25	46			لے لے لے لے لے لے لے لے لے لے	498	
20A	22/24 92%	ss	7-16 26-45 N=42	13		4.50	48			د و و و و و و رو و و و و و و و رو و و و و	496	
21A	21/24 88%	ss	11-19 30-37 N=49	13		4.50	50	Olive gray (5Y4/2) with 20% dark gray (10YR4/1)		تے تے تے تے تے تے تے تے تے تے	494	
2A	19/24 79%	ss	5-13 26-38 N=39	14			52	mottles, moist, hard, SILT with little clay and trace ver fine- to coarse- grained sand and small gravel.	у	لے لے لے لے لے لے لے لے لے لے	492	
23A	24/24 100%	ss	12-18 29-40 N=47	13		4.50	50			لاے لاے لاے لاے لاے لاے لاے لاے	490	
24A	24/24 100%	ss	7-18 30-37 N=48	13				Dark gray brown (2.5Y4/2) with 15% dark gray (10YR4/1) mottles, moist, hard, SILT with little clay as trace very fine- to coarse-grained sand.		نے وہے وہے وہے وہے دے وہے وہے وہے وہے	488	
25A	24/24 100%	ss	11-18 27-38 N=45	14		4.50	56	Olive brown (2.5Y4/3) with 5% gray (N6/1) mottles, mothard, SILT with little clay and trace very fine- to medium grained sand.		- بر و م و م و م و م م و م و م و م م و م و م	486	
26A	24/24 100%	ss	10-15 23-33 N=38	17		4.50	60	Olive brown (2.5Y4/3) with 5% gray (N6/1) mottles, mothard, SILT with little clay and trace very fine- to coarse grained sand and small gravel.	vist, >-	تے تے تے تے تے تے تے تے تے ت	484	


(] WE	ELI CLIENT Sit Location Projec DATES	REHOLE ID: Well ID: Surface Elev:	APW6 543.38 ft. MSL 74.00 ft. BGS										
Number	Recov / Total (in)		Blows / 6 in N - Value RQD	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Quadr: Towns	APHIC MAP INFORMATION: angle: Latona hip: North Muddy 26, Tier 6N; Range 8E Lithologic	<u>▼</u> = <u>▼</u> = <u>▼</u> =	14.0	0 - 1	INFORMAT During Drilling Elevation	
Nur	Rec % h	Type	Blo N - RQ	Moï	Dry	Qu Fail	ft. BGS	Description		Detai		ft. MSL	Remarks
27A	24/24 100%	ss	5-4 21-32 N=25	13		4.50	62	Olive brown (2.5Y4/3) with 5% gray (N6/1) mottles, n hard, SILT with little clay and trace very fine- to coar grained sand and small gravel. [Continued from previous page]	noist, rse-	م م م م م م م م م م م م م م م م			
28A	24/24 100%	ss	7-18 23-31 N=41	12		4.50	64	Dark gray (10YR4/1) with 5% dark olive brown (2.5Y mottles, moist, hard, SILT with little clay and trace verse fine- to coarse grained sand and small gravel.	(3/3) ery	د ، د ، د ، د ، د ، د , د , د , د , د , د , د , د , د , د ,		480	
29A	24/24 100%	ss	7-14 18-30 N=32	13		4.25	66 68	Dark gray (10YR4/1), moist, hard, SILT with little c and trace very fine- to coarse-grained sand and small gr				478	
30A	24/24 100%	ss	<i>13-21</i> <i>33-33</i> N=54	14			68					476	
31A	16/23 70%	ss	3-27 49-50/5' N=76	13			70	Dark gray (10YR4/1), wet, very dense, silty, very fine coarse-grained SAND with trace small gravel.	e- to			474	
32A	20/23 87%	ss	6-29 38-50/5' N=67	22				Gray (10YR5/1), wet, very dense, SILT with few very to fine-grained sand.	fine-			472	
,,,	20/24	\bigvee	26-28	12		150	72	Dark gray (10YR4/1), wet, very dense, silty, very fine medium-grained SAND with trace small gravel.	>- to				
33A	83%	ss	<i>34-37</i> N=62	12		4.50		Dark gray (10YR4/1), moist, hard, SILT with little c and few very fine- to coarse-grained sand.	lay			470	

F	[EL]	DI	BOR	IN	IG	6 L(DG		HANSON
	Sit Locatio	te: N n: N	atural Res ewton Ene ewton, Illi 5E0030	ergy	Cen		gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4 ¹ / ₄ " HSA	BOREHOLE ID: APW7a Well ID: APW7 Surface Elev: 536.21 ft. MSL
WF	DATE	S: St Fir	art: 11/3 lish: 11/5 linny, wari	5/20	15	1		FIELD STAFF: Driller: J. Gates Helper: C. Clines Eng/Geo: R. Hasenyager	Completion: 83.10 ft. BGS Station: 5,688.85N 6,151.60E
	SAMPL		-				TOPOGI		
	(in)				(_)	sf)		CAPHIC MAP INFORMATION: rangle: Latona	WATER LEVEL INFORMATION: $\mathbf{Y} = $ Dry - During Drilling
	otal (in	(%)	(lb/fl	Dp (t: pe	Towns	hip: North Muddy	$\underline{\bar{\mathbf{\Lambda}}}$ =
ber	v / T		s/6 alue	ture (Jen.	sf) (re Ty	Section	n 26, Tier 6N; Range 8E	<u> </u>
Number	Recov / Total (in) % Recovery	Type	Blows / 6 in N - Value RQD	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Depth ft. BGS	Lithologic Description	Borehole Elevation Detail ft. MSL Remarks
							2	Yellowish brown (10YR5/6), moist, medium, CLAY wi some silt and trace very fine- to fine-grained sand, roots	5534
							4	Light gray (10YR7/2), moist, medium, SILT with few ve fine-grained sand and trace roots.	- 532
							4	Gray (10YR5/1) with 30% yellowish brown (10YR5/8 mottles, moist, medium, CLAY with some silt, trace ver fine-grained sand, and trace roots.) y 530
							8 10 12 14 16 18 20	Gray (10YR5/1) with 30% yellowish brown (10YR5/8 mottles, moist, medium, CLAY with some silt and trace very fine- to medium-grained sand, trace small gravel, ar trace roots.	
								Yellowish brown (10YR5/4), moist, hard, SILT with fee clay, little very fine- to coarse-grained sand, and trace sm to medium gravel.	
								Yellowish brown (10YR5/6), wet, dense, fine- to coarse-grained SAND with little silt.	520
								Gray (10YR5/1), moist, hard, SILT with few clay, little very fine- to very coarse-grained sand, and trace small to medium gravel.	
							18 	Yellowish brown (10YR5/6) with 20% gray (10YR5/1 mottles, dry, hard, SILT with few clay, little very fine- t very coarse-grained sand, and trace small to medium grav	
NC	DTE(S):	APV	V7 installe	ed in	bore	ehole.	20		

]	FIELD BORRING LOG CLIENT: Natural Resource Technology, Inc. Site: Newton Energy Center Location: Newton, Illinois Project: 15E0030 DATES: Start: 11/3/2015 Finish: 11/5/2015 Kitelper: C. Clines WEATHER: Sunny, warm, lo-70s Enception CONTRACTOR: Buildog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA FIELD STAFF: Driller: J. Gates Eng/Geo: R. Hasenyager										REHOLE ID: Well ID: Surface Elev:	APW7 536.21 ft. MSL 83.10 ft. BGS
S	SAMPL	E	Т	EST				APHIC MAP INFORMATION:	WATEF T =			
er	Recov / Total (in) % Recovery		/ 6 in lue	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Towns	angle: Latona hip: North Muddy n 26, Tier 6N; Range 8E	Ţ = ∑ =	:	During Drillin	g
Number	Recov % Reco	Type	Blows / 6 in N - Value RQD	Moistu	Dry De	Qu (tsf Failure	Depth ft. BGS	Lithologic Description		Borehole Detail	Elevation ft. MSL	Remarks
							22	Yellowish brown (10YR5/6) with 20% gray (10YR5/ mottles, dry, hard, SILT with few clay, little very fine- very coarse-grained sand, and trace small to medium gra [Continued from previous page]	to avel.	د و و و ر و و و و. د و و ر و و و و .	516	
							24	Yellowish brown (10YR5/6) with 20% gray (10YR5/ mottles, dry, hard, SILT with few clay, little very fine- very coarse-grained sand, and trace small to medium gra horizontal and vertical fractures with dark brown (10YR3/3) oxidized faces.	to	، م ل م ل م ل م م ل م ل م ل م	- 514 	
							26 28 30	Gray (10YR5/1), moist, hard, SILT with few clay, litt very fine- to very coarse-grained sand, and trace small medium gravel, horizontal and vertical fractures with d brown (10YR3/3) oxidized faces.	to	צי ג'י ג'י ג'י ג'י ג'י ג'י ג'י ג'י ג'י ג'	512	
							32	Gray (10YR5/1), moist, hard, SILT with few clay, litt very fine- to very coarse-grained sand, and trace small medium gravel.	ile to	بر در در بر در	504	
							38	Gray (10YR5/1), moist, dense, very fine- to fine-grain SAND with trace silt.			498	
							40	<u>coarse-grained SAND with trace silt and small grave</u> Gray (10YR5/1), moist, dense, very fine- to fine-grain SAND with trace silt.	· . ·			

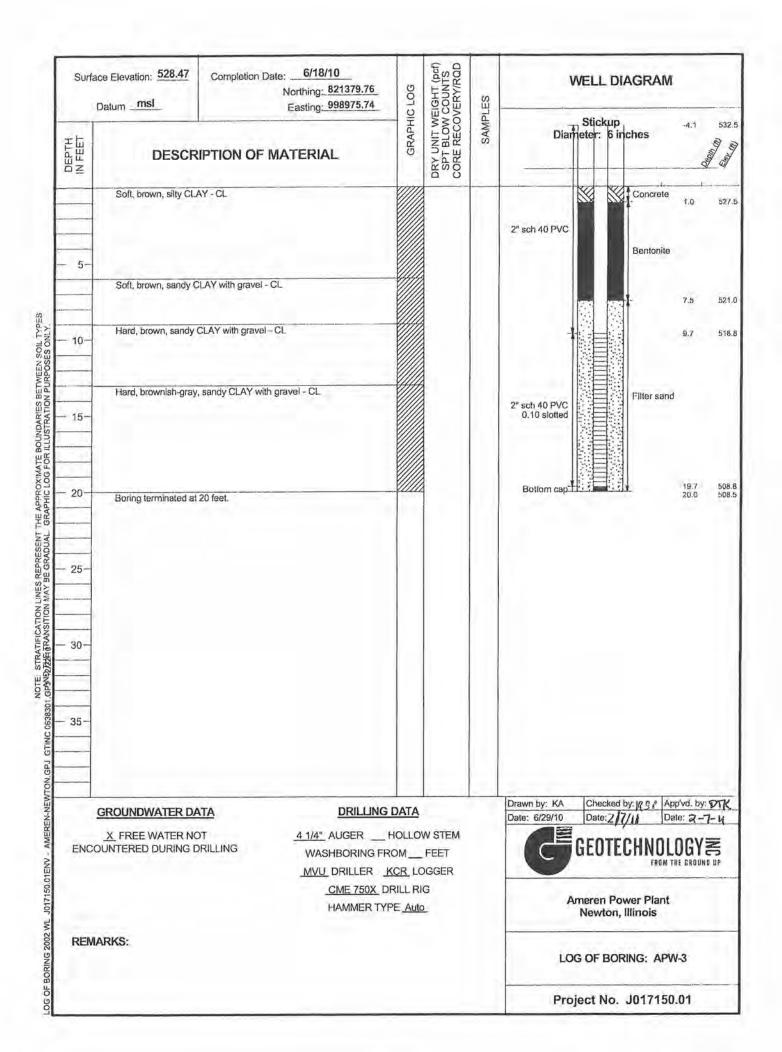
	CLIEN	T: N	BOR atural Res ewton En	sour	ce Te	echnolo		CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill	BOREHOLE ID: APW7a
	Projec DATE	et: 15 S: St Fin	ewton, Ill 5E0030 tart: 11/2 nish: 11/2 nny, war	3/20 5/20	15 15	5		Drilling Method: 4¼" HSA FIELD STAFF: Driller: J. Gates Helper: C. Clines Eng/Geo: R. Hasenyager	Well ID: APW7 Surface Elev: 536.21 ft. MSL Completion: 83.10 ft. BGS Station: 5,688.85N 6,151.60E
	Recov / Total (in) 74 % Recovery			EST (%) a	WATER LEVEL INFORMATION: $\Psi = $ Dry - During Drilling $\Psi = $ $\overline{\Psi} = $				
Number	Recov / % Reco	Type	Blows / 6 in N - Value RQD	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Depth ft. BGS	26, Tier 6N; Range 8E Lithologic Description	Borehole Elevation Detail ft. MSL Remarks
							42 44 46 48 48	Gray (10YR5/1), moist, hard, CLAY with some silt, lit very fine- to very coarse-grained sand, trace small grav and trace wood fragments.	ittle vel,
			V7 install				48 50 51 54 54 56 58 58 58 50 50 50 50 50 50 50 50 50 50 50 50 50	Gray (10YR5/1), moist, hard, CLAY with some silt, li very fine- to very coarse-grained sand, and trace smal gravel, trace wood fragments.	ittle ittle
									Page 3 of 5

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Location Projec	F: N e: N n: N et: 15 S: St Fir	atural Res ewton En ewton, Ill 5E0030 cart: 10/2 iish: 10/2	sourc ergy inois 27/2 28/2	ce Te Cent 015 015	echnolo er	gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4 ¹ /4" HSA, macro-core samp sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	bler, split s		REHOLE I Well I Surface Ele	D: APW8 ev: 526.75 ft. MSL n: 82.00 ft. BGS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPL				ING	ř	TOPOGR					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	er / Total (<i>overy</i>		/6 in llue	ure (%)	en. (lb/ft	f) <i>Qp</i> (ts e Type	Towns	hip: North Muddy	Ā	=	During Drin	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Number Recov / % Recov	Type	Blows N - V ₈ RQD	Moist	Dry D	Qu (ts Failur		Description				Remarks
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A			13		4.50	2	and trace very fine- to medium-grained sand, roots. Yellowish brown (10YR5/4) with 30% light gray (10YR7/2) mottles, dry, hard, SILT with little clay a		5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	526	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B	DP		21		3.00	4			1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	- 524	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A 60/60 100%	DP		18		2.50	6 6	(10YR4/6) and 10% black (10YR2/1) mottles, moist, stiff, silty CLAY with few very fine- to coarse-grained states and stat	verv			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	В			28		2.00		mottles, moist, stiff, silty CLAY with few very fine-	rown to		518	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A 20/24	DP		8		2.00	10	(10YR5/6) mottles, dry, stiff, SILT with little clay and	ı trace	وي وي وي وي و وي وي وي وي و	516	
20		ss	23-43 50/5"					very fine- to coarse-grained sand.		لح _ا و او و او	514	sampler.
20	A 21/24 88%	ss	24-28	10		4.50	16			ر و ر و و و ر و ر و و و	512	
20	A 24/24 100%	ss	20-48	11		4.50	18	Dark gray (10YR4/1), moist, hard, SILT with little cl trace very fine- to coarse-grained sand and small grav	ay, rel.	ے کے کے لیے کے لیے ج کے کے کے کے ک	510	
20	A 24/24 100%	ss	26-32	10			20			وي وي وي وي و وي وي وي وي و	508	
	NOTE(S):	APV	V8 install	ed in	bore	hole.	20					Page 1 of

	CLIENT Sit Location Projec DATES	f: Na e: Na n: Na t: 15 5: St Fin	BOR atural Re ewton En ewton, Ill 5E0030 art: 10/2 hish: 10/2 unny, bree	sourd ergy inois 27/20 28/2	ce Te Cent s 015 015	echnolo er	r, Inc. CONI Rig Drilli	RACTOR: Bulldog Drilling, Inc. mfg/model: CME-550X ATV Drill ng Method: 4¼" HSA, macro-core samp sampler D STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	ler, split spoon		REHOLE ID: Well ID: Surface Elev:	
5	SAMPL (ii)	E	Т	EST	DAL		OPOGRAPHIC MAP	NFORMATION:	T = 3		INFORMAT During Drilling	
er	Recov / Total (in) % Recovery		/ 6 in ilue	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Township: North Mud Section 26, Tier 6N; R		$\underline{\Psi} = $ $\underline{\nabla} =$			
Number	Recov % Rec	Type	Blows / 6 in N - Value RQD	Moist	Dry D	Qu (ts Failur	Depth t. BGS	Lithologic Description		rehole etail	Elevation ft. MSL	Remarks
8A	24/24 100%	ss	7-13 19-23 N=32	11		4.50	22			5,5,5,5,	506 	
9A	24/24 100%	ss	7-14 19-27 N=33	11		4.50	24			, C, C, C, C	504 	
10A	24/24 100%	ss	8-15 30-37 N=45	11		4.50		0YR4/1), moist, hard, SILT with little cla ne- to coarse-grained sand and small grave Continued from previous page]	ay, el.	۰ ۲٫۶٫۶٫۶٫۶٫۶		
11A	24/24 100%	ss	8-16 24-33 N=40	11		4.50	26			د م د م د م د م د		
12A 12B	24/24 100%	ss	9-31 33-30 N=64	11 12		4.50	Gray (10	YR5/1), moist, dense, silty, very fine- to medium-grained SAND.			498	
13A	24/24 100%	ss	10-23 40-35 N=63	11		4.50	30 – Dark gray (few very f	10YR4/1), moist, hard SILT with little cla ne- to coarse-grained sand, and trace smal	ıy, I	، د _و د _و د و		
14A	21/24 88%	ss	16-16 29-50 N=45	10		4.50	_	gravel.				
15A	20/24 83%	ss	9-24 34-41 N=58	13			A 34	0YR4/1), wet, very dense, silty, very fine- grained SAND with trace small gravel.	- to		492	
16A	22/24 92%	ss	16-18 29-35 N=47	11		4.50	36	0YR4/1), moist, hard, SILT with little cla	tle clay,			
17A	21/24 88%	ss	10-17 21-31 N=38	11		4.50	38 – Dark gray (few very f	ne- to coarse-grained sand, and trace smal gravel.			488	
NC))TE(S):	_ APV	 V8 install	l ed in	l bore	hole.	₄₀ .∃			+ 4		
												Page 2 of 5

(CLIENT Site Location Projec DATES	: Na e: Na i: Na t: 15 5: St Fin	BOR atural Re- ewton En ewton, Ill 5E0030 cart: 10/2 hish: 10/2 unny, bree	sourc ergy inois 27/20 28/2	ce Tec Cente 015 015	ehnolog er		sampler, split spoon BOREHOLE ID: APW8 Well ID: APW8 Surface Elev: 526.75 ft. MSL Completion: 82.00 ft. BGS Station: 3,839.59N 6,082.37E
s	AMPLI (<u>E</u>)	£	Т	EST	TING	sf)	TOPOGRAPHIC MAP INFORMATION: Quadrangle: Latona	WATER LEVEL INFORMATION: $\mathbf{\Psi} = 33.70$ - During Drilling
ч	/ Total		/ 6 in lue	re (%)	Dry Den. (lb/ft ³)	$\begin{array}{c} \begin{array}{c} Op \ T \end{array} \end{array} $	Township: North Muddy Section 26, Tier 6N; Range 8E	$\underline{\Psi} = \underline{\nabla} = \underline{\nabla}$
Number	Recov / Total (in) % Recovery	Type	Blows / 6 in N - Value RQD	Moisture (%)	Dry De	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Depth Lithologic ft. BGS Description	Borehole Elevation Detail ft. MSL Remarks
18A	24/24 100%	ss	9-16 26-32 N=42	11		4.50		
9A	24/24 100%	ss	10-16 23-34 N=39	12		4.50		
20A	24/24 100%	ss	10-15 26-44 N=41	13		4.50	42 44 46 48 48 Dark gray (10YR4/1), moist, hard, SILT with litt few very fine- to coarse-grained sand, and trace is gravel.	
21A	24/24 100%	ss	12-21 32-48 N=53	12		4.50		
2A	24/24 100%	ss	11-17 22-31 N=39	13		4.50		le clay, small
3A	24/24 100%	ss	10-13 21-32 N=34	13		4.50	52	
4A	24/24 100%	ss	8-13 50-26 N=63	13		4.50	54	
5A	24/24 100%	ss	8-11 19-28 N=30	14		4.25	56	
6A	24/24 100%	ss	10-12 18-26 N=30	13		4.50	50 52 54 54 56 58 Olive gray (5Y4/2), moist, hard, silty CLAY with the fine- to coarse-grained sand and trace small graves	
27A	22/24 92%	ss	7-10 15-22 N=25	21		4.50	Olive gray (5Y4/2), moist, hard, silty CLAY with fine- to coarse-grained sand and trace small gra	

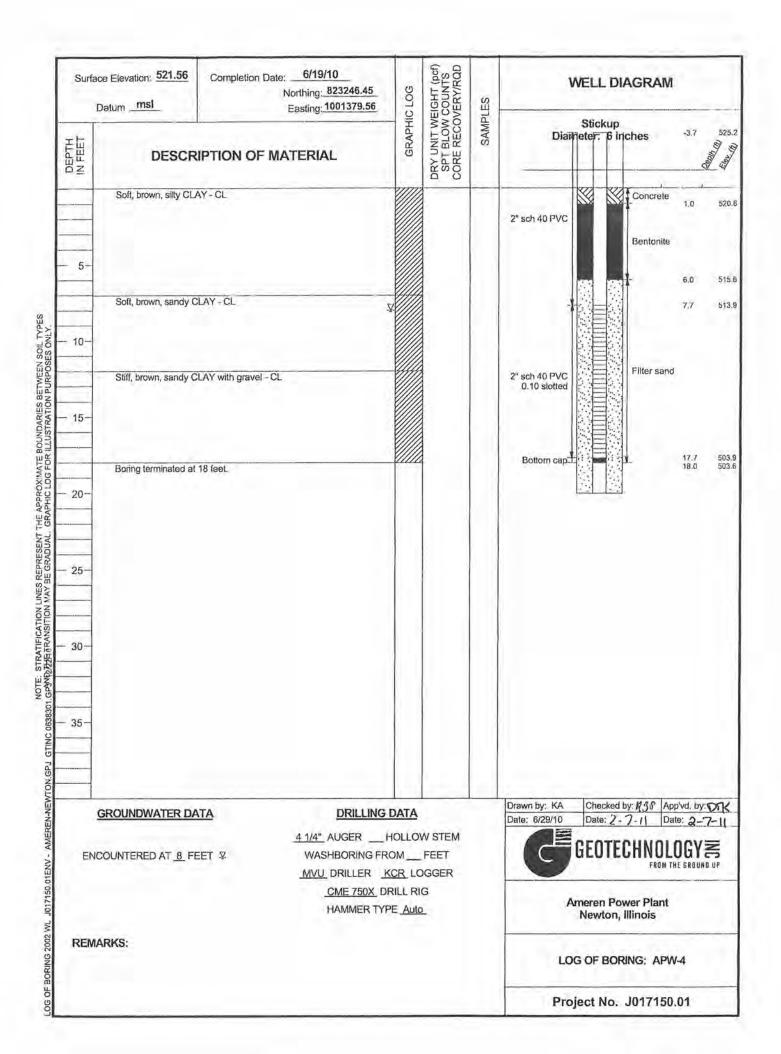
(CLIEN Sit Location Projec DATE	Г: N e: N n: N et: 1: S: St Fin	BOR atural Re ewton En ewton, Ill 5E0030 tart: 10/2 nish: 10/2 unny, brea	sourd ergy inois 27/2 28/2	ce Te Cent 3 015 015	echnolo ter	gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, macro-core sam sampler FIELD STAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim	pler, spli	t spoo		REHOLE ID Well ID	: APW8 : 526.75 ft. MSL : 82.00 ft. BGS
S	AMPL	E	Т	EST				RAPHIC MAP INFORMATION: rangle: Latona				INFORMAT	
er	Recov / Total (in) % Recovery		/ 6 in lue	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Town	ship: North Muddy n 26, Tier 6N; Range 8E		<u> </u>		Daning Dinin	9
Number	Recov % Reco	Type	Blows / 6 in N - Value RQD	Moistu	Dry De	Qu (tsf Failure	Depth ft. BGS	Lithologic Description	•		orehole Detail	Elevation ft. MSL	Remarks
28A	20/24 83%	ss	7-15 19-20 N=34	14		4.50	62	Dark gray (10YR4/1), moist, hard, SILT with little c few very fine- to coarse-grained sand and trace small g	lay, avel.	_	<u>، د، د، د، د، د.</u> <u>، د، د، د، د. د</u>	466	
29A	21/24 88%	ss	7-8 11-16 N=19	11		3.75	64	Dark gray (10YR4/1), moist, very stiff, SILT with li clay, few very fine- to coarse-grained sand and trace su gravel.	ttle mall		تے تے تے تے تے تے تے تے تے تے تے تے	464	
30A 30B	21/24 88%	ss	6-13 14-11 N=27	14 10		4.00	66	Gray (10YR6/1), wet, medium dense, silty, very fine coarse-grained SAND with trace small to large grav Dark gray (10YR4/1), moist, very stiff, SILT with li	el.			462	
31A 31B	18/24 75%	ss	4-3 4-3 N=7	28 15		3.25	68 minutum	Dark gray (10 FR4/1), filoist, very stiff, SILT with in clay and few very fine- to coarse-grained sand. Dark gray (10YR4/1), wet, loose, silty, very fine- t coarse-grained SAND with trace small gravel and trac wood fragments. Dark gray (10YR4/1), moist, very stiff, SILT with li clay, few very fine- to coarse-grained sand, and trace s	o ace ttle			460	
32A 32B	20/24 83%	ss	1-3 3-2 N=6	17 28				gravel, trace wood fragments. Dark gray (10YR4/1), wet, loose, SILT with little vo fine- to fine-grained sand. Dark gray (10YR4/1), wet, loose, silty, very fine- t	ery / / o			458	
33A	15/24 63%	ss	woh-2 6-6 N=8	17				 fine- to fine-grained sand, trace wood fragments. Dark gray (10YR4/1), wet, loose, silty, very fine- t coarse-grained SAND, trace wood fragments. 	´ 0			456	
34A	16/24 67%	ss	9-11 15-20 N=26	9			72	Dark gray (10YR4/1), wet, medium dense, silty, very to coarse-grained SAND with trace small gravel.				454	
5A	15/24 63%	ss	16-21 23-24 N=44	9			74	Dark gray (10YR4/1), wet, dense, silty, very fine-t coarse-grained SAND with few small to large grave	vel			452	
36A	14/24 58%	ss	11-20 25-24 N=45	11			/0 -	Dark gray (10YR4/1), wet, dense, silty, very fine- t				450	
37A	15/24 63%	ss	20-25 24-25 N=49	10			78	coarse-grained SAND with trace small gravel.	~			448	
NO	TE(S):	APV	 V8 install	ed in	l bore	hole.	80 ⊒			11.	<u>⊢</u>	1. L I	


F]	[EL]	D	BOR	IN	NG	L() G				ANSON
	Sit Locatio Projec	e: No n: No ct: 15 S: St	atural Res ewton End ewton, Illi 5E0030 c art: 10/2	ergy inois 27/2	Cent 5 015		gy, Inc.	 CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, macro-core samp sampler FIELD STAFF: Driller: C. Dutton 	ler, split spoon	BOREHOLE ID: 4 Well ID: 4 Surface Elev: Completion:	APW8 APW8 526.75 ft. MSL
WF	EATHEI		nish: 10/2 1111 inny, bree			1, lo-80	S	Helper: C. Jones Eng/Geo: S. Keim		Station:	3,839.59N 6,082.37E
5	SAMPL	Е	T	EST				APHIC MAP INFORMATION: ngle: Latona		VEL INFORMATIO 70 - During Drilling	DN:
ber	Recov / Total (in) % Recovery		Blows / 6 in N - Value RQD	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Townshi Section 2	ip: North Muddy 26, Tier 6N; Range 8E	$\underline{\Psi} = $ $\underline{\nabla} =$		
Number	Reco % Re	Type	Blow N - V RQI	Mois	Dry]	Qu (1 Failu	Depth ft. BGS	Lithologic Description	Bore Det		Remarks
38A 38B	18/24 75%	SS	26-26 26-31 N=52	8 11		4.50	82	Dark gray (10YR4/1), wet, dense, silty, very fine-to coarse-grained SAND with trace small gravel. <i>[Continued from previous page]</i> Dark gray (10YR4/1), moist, hard, SILT with little cla and few very fine- to coarse-grained sand. End of boring = 82.0 feet			
)TE(S):	APW	V8 installe	ed in	bore	ehole.					

F	[EL]	D]	BOR	I	NG	L(DG			6	F	ANSON
	Sit Locatio Projec	e: N n: N ct: 1:	atural Re ewton En ewton, Ill 5E0030	ergy linois	Cent		gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, split spoon sampler			REHOLE ID: Well ID: Surface Elev:	APW9 APW9 528.82 ft. MSL
WE		Fii	tart: 11/. nish: 11/ oggy, mile	3/20	15			FIELD STAFF: Driller: J. Gates Helper: C. Clines Eng/Geo: R. Hasenyager			Completion: Station:	62.00 ft. BGS 3,519.59N 9,125.33E
5	SAMPL	Е	Т	EST		-					INFORMATI	
	Recov / Total (in) % Recovery		in	(%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Townsh	ingle: Latona ip: North Muddy	<u> </u>	= 26.10 -	During Drilling 11/3/15	
Number	о / Т Р <i>есоч</i> е	je	Blows / 6 in N - Value RQD	Moisture (%)	/ Den.	(tsf) (tsf)	Depth	26, Tier 6N; Range 8E Lithologic	<u> </u>	Borehole	Elevation	
Nu	% %	Type	Blc N R	Ŭ	Ū.	Qu Fai	ft. BGS	Description		Detail	ft. MSL	Remarks
1	0/60 <i>0%</i>	BD					2			و _م /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	528 528 526 526 524	
2	0/60 <i>0%</i>	BD					6 8 8	Blind drill - see APW3 boring log for lithology, sample, and		و ر و و و و		
3	0/60 <i>0%</i>	BD					10 12 14	testing data		و ہے وہ	518	
4	0/60 <i>0%</i>	BD					2			وے وے وے وے وے وے وے وے رے وے وے رے وے وے وے وے وے وے وے وے رے وے وے وے رے رے	512	
NC)TE(S):	APV Lith	V9 install ology, sai	ed in mple	bore, and	shole. testing		ound on APW-3 Field Boring Log.				Page 1 of 4

]	CLIENT Sit Location Projec DATES	F: N e: N n: N t: 15 S: St Fir	BOR atural Re ewton En ewton, Ill 5E0030 tart: 11/ hish: 11/ oggy, mile	sourd lergy linois 2/20 3/20	ce Te Cent s 15 15	echnolo		CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, split spoon sample FIELD STAFF: Driller: J. Gates Helper: C. Clines Eng/Geo: R. Hasenyager	er			REHOLE II Well II	 D: APW9 v: 528.82 ft. MSL n: 62.00 ft. BGS
S	AMPL (ii)	E	Т	EST				APHIC MAP INFORMATION: angle: Latona				INFORMA During Drill	
r	Recov / Total (in) % Recovery		/ 6 in lue	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type		hip: North Muddy n 26, Tier 6N; Range 8E	-	= 26	.10 -	11/3/15	
Number	Recov % Rec	Type	Blows / 6 in N - Value RQD	Moistu	Dry De	Qu (tsf Failure	Depth ft. BGS	Lithologic Description		Bore Det		Elevation ft. MSL	Remarks
5A	24/24 100%	ss	<i>10-13</i> <i>21-28</i> N=34	10		4.25	22	Gray (10YR5/1), moist, hard, SILT with some very fine-grained sand, little clay, and trace small to mediur gravel. Vertical and horizontal fractures with yellowis brown (10YR5/8) faces.	n 1	لے لے لے لے لے لے	دے کے لیے لیے لیے ل		
6A	24/24 100%	ss	13-15 21-29 N=36	10		4.50				ر م م م	2.	506	
7A	2/24 8%	ss	<i>15-28</i> <i>33-39</i> N=61	11		4.50	24	Gray (10YR5/1), moist, hard, SILT with some very fine-grained sand, little clay, and trace small to mediur gravel.	n	ے لے لے لے لے ا	, ⁽ , (, (, (, (, (, (, (, (, (, (, (, (, (,	504	Rock in shoe of sampler.
3A	23/23 100%	ss	9-15 39-50/5' N=54	v 11			¥ 20			1,1,1	1, 1, 1, 1	502	
8B				11									
9A	24/24 100%	ss	12-22 28-27 N=50	11			28	Gray (10YR5/1), wet, dense, very fine- to very coarse-grained SAND with some silt, few clay and trac small to medium gravel.	e			500 	
ЭB				12		4.50	30						
0A	24/24 100%	ss	14-22 32-44 N=54	11		4.50				ر نے نے نے ا	2222	498	
1A	23/24 96%	ss	8-16 24-35 N=40	11		4.50	32	Gray (10YR5/1), moist, hard, SILT with little clay and v fine-grained sand and trace small gravel.	ery	لے کے لیے لیے ا	2555	496	
2A	16/24 67%	ss	12-25 35-32 N=60	12		4.50	34			ہے ک ے لیے لیے ا	12222		
3A	24/24 100%	ss	6-12 24-25 N=36	11		4.50	36			ر ہے تر ہے تر بر ہے تر ہے تر ہے تر		492	
4A	24/24 100%	ss	4-7 16-32 N=23	14		4.50	38	Gray (10YR5/1) moist, stiff, CLAY with some silt, litt very fine-grained sand and trace small gravel.	le			490	
NC	TE(S):	APV Lith	V9 install ology, sai	ed in mple	bore, and	chole. testing	40 =	found on APW-3 Field Boring Log.			1 1222		Page 2 of 4

F	ELI	DI	BOR	IN	NG	G L(OG		HANSON
	Sit	e: N n: N	atural Re ewton En ewton, Ill 550030	ergy	Cen		gy, Inc.	CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Drilling Method: 4¼" HSA, split spoon sampler	BOREHOLE ID: APW9
WE	DATES	S: St Fir	t art: 11/2 nish: 11/2 oggy, mile	3/20	15			FIELD STAFF: Driller: J. Gates Helper: C. Clines Eng/Geo: R. Hasenyager	Completion: 62.00 ft. BGS Station: 3,519.59N 9,125.33E
5	SAMPL	E	Т	EST	INC		TOPOGR	APHIC MAP INFORMATION:	WATER LEVEL INFORMATION:
	ıl (in)				/ft³)	(tsf)		angle: Latona	$\mathbf{Y} = 27.00$ - During Drilling
L	' Toti		<i>6 in</i> ue	re (%	n. (lb	$Q_{\rm ppc}^{\rm Dp}$		hip: North Muddy n 26, Tier 6N; Range 8E	$\underline{\Psi} = 26.10 - 11/3/15$ $\underline{\nabla} =$
Number	Recov / Total (in) % Recovery	Type	Blows / 6 in N - Value RQD	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Depth ft. BGS	Lithologic Description	Borehole Elevation Detail ft. MSL Remarks
15A	24/24 100%	ss	5-11 19-23 N=30	14		4.50	42	Gray (10YR5/1) moist, stiff, CLAY with some silt, little very fine-grained sand and trace small gravel, trace wood fragments.	488
16A	24/24 100%	ss	4-8 14-29 N=22	15		4.50			
16B				12			44 -	Light olive brown (2.5Y5/3), moist, stiff, CLAY with som silt, few very fine- to very coarse-grained sand, and trace small gravel.	le
17A	24/24 100%	ss	8-17 24-34 N=41	11		4.50			
18A	24/24 100%	ss	7-13 20-29 N=33	12		4.50	46	Light olive brown (2.5Y5/3) with 30% yellowish brown (10YR5/8) mottles, moist, stiff, CLAY with some silt, few very fine- to very coarse-grained sand, and trace small gravel.	v 482
19A	24/24 100%	ss	6-12 18-24 N=30	12		4.50	50	Grayish brown (2.5Y5/2) with 10% gray (2.5Y5/3) mottles, moist, hard, SILT with little very fine- to very coarse-grained sand, few clay and trace small to large gravel.	
20A	24/24 100%	ss	7-12 17-22 N=29	15		4.50			478
21A	24/24 100%	ss	5-11 12-18 N=23	14		4.25	52	Yellowish brown (10YR5/6) with 25% gray (10YR6/1) mottles, moist, stiff, CLAY with some silt, little very fine- medium-grained sand, and trace small gravel.	- 476
22A	23/23 100%	ss	6-14 24-50/5' N=38	13		4.50			474
22B				13			56-	Dark gray (10YR4/1), moist, dense, very fine- to fine-grained SAND with few silt.	
23A	24/24 100%	ss	7-15 21-30 N=36	13				Gray (10YR5/1), wet, loose, very fine- to very coarse-grained SAND with trace small gravel.	· 472
24A	18/24 75%	ss	13-38 43-40 N=81	15			58	Gray (10YR5/1), wet, loose, very fine- to coarse-grained SAND.	
NC	DTE(S):	APV Lith	V9 install ology, sai	ed in mple	i bore , and	ehole. testing		found on APW-3 Field Boring Log.	Page 3 of 4


	ELI CLIENT Site	: Na		ourc	e Te	chnolo		CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill		CREHOLE ID: A	
	Location Project DATES	: Ne : 151 : Sta	wton, Illi E0030 u rt: 11/2	nois 2/201	5			Drilling Method: 4 ¹ / ₄ " HSA, split spoon sample FIELD STAFF: Driller: J. Gates		Well ID: A Surface Elev: 5 Completion:	APW9 528.82 ft. MSL 62.00 ft. BGS
WE	ATHER		sh: 11/3 ggy, mild					Helper: C. Clines Eng/Geo: R. Hasenyager		Station:	3,519.59N 9,125.33E
	SAMPLE			EST		r F	TOPOGRAP	PHIC MAP INFORMATION:	WATER LEVE	L INFORMATIO	
ber	Recov / Total (in) % Recovery		Blows / 6 in N - Value RQD	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Quadrang Township Section 26	gle: Latona :: North Muddy 5, Tier 6N; Range 8E	$\underline{\Psi} = 26.10$ $\underline{\nabla} =$		
Number	Reco % Re	Type	Blow N - V RQI	Mois	Dry]	Qu (1 Failu	Depth ft. BGS	Lithologic Description	Borehole Detail	e Elevation ft. MSL	Remarks
25A 25B	100%	ss	4-18 25-30 N=43	21 16			62	Gray (10YR5/1), wet, loose, very fine- to coarse-graine SAND. [Continued from previous page] Gray (10YR5/1), moist, stiff, CLAY with some silt and trace very fine-grained sand. Gray (10YR5/1), wet, dense, SILT and very fine-grained SAND. End of boring = 62.0 feet		468	
NO	DTE(S):	APW	9 installe	ed in	bore	hole.					

FIELD BORIN	G L	OG		(S HANSON
CLIENT: Natural Resource Site: Newton Energy C Location: Newton, Illinois Project: 15E0030 DATES: Start: 10/27/20 Finish: 10/27/20 WEATHER: Cool, rainy, lo-50	5 5	Rig mfg Drilling N	CTOR: Bulldog Drilling, Inc. (model: CME-550X ATV Drill lethod: 4¼" HSA TAFF: Driller: C. Dutton Helper: C. Jones Eng/Geo: S. Keim		REHOLE ID: APW10a Well ID: APW10 Surface Elev: 521.98 ft. MSL Completion: 45.94 ft. BGS Station: 5,371.32N 11,541.23E
SAMPLE TESTI					
er / Total (in) <i>covery</i> alue (%)	Dry Den. (lb/tr) Qu (tsf) <i>Qp</i> (tsf) Failure Type	TOPOGRAPHIC MAP INFO Quadrangle: Latona Township: North Muddy Section 25, Tier 6N; Rango	• 8E		INFORMATION: During Drilling
Number Recov / % Recov Type Blows / N - Valu RQD Moisture	Dry Qu (Failt		Lithologic Description	Borehole Detail	Elevation ft. MSL Remarks
NOTE(S): APW10 installed in Lithology, sample, a	borehole.	2	W4 boring log for lithology, sample testing data	, and	520 518 516 516 512 510 510 508 506 504 502

FIELD BORING LOG													
CLIENT: Natural Resource Technolo Site: Newton Energy Center Location: Newton, Illinois Project: 15E0030 DATES: Start: 10/27/2015 Finish: 10/27/2015 WEATHER: Cool, rainy, 10-50s											Some Hanson BOREHOLE ID: APW10a Well ID: APW10 Surface Elev: 521.98 ft. MSL Completion: 45.94 ft. BGS Station: 5,371.32N 11,541.23E		
SAMPLE TESTING					INC		TOPOGR	APHIC MAP INFORMATION:	WAT	WATER LEVEL INFORMATION:			
ler	Recov / Total (in) % Recovery		Blows / 6 in N - Value RQD	Moisture (%)	Dry Den. (lb/ft ³)	Qu (tsf) <i>Qp</i> (tsf) Failure Type	Townsh	ngle: Latona nip: North Muddy 25, Tier 6N; Range 8E	Ţ	$\mathbf{\Psi} = 36.00$ - During Drilling $\mathbf{\Psi} = \mathbf{\nabla} = \mathbf{\nabla} = \mathbf{\nabla}$			
Number	Recov % Re	Type	Blows N - V RQD	Moist	Dry D	Qu (ts Failur	Depth ft. BGS	Lithologic Description		Borehole Detail	Elevation ft. MSL	Remarks	
							22	Yellowish brown (10YR5/6) with 5% gray (N6/1) mot moist, hard, SILT with little clay, few very fine-grain sand, and trace small gravel.	ttles, ied	ہ کے لیے کے لیے کے لیے کے لیے ک	500		
							24 26 28 30	Yellowish brown (10YR5/4) with 5% dark yellowis brown (10YR4/6) and 5% gray (N6/1) mottles, moist, J SILT with little clay, few very fine-grained sand, and t small gravel.	sh hard, race	، قہ	- 498 - 496 - 496 - 494 - 494 - 494 - 492 - 492 - 492		
							32 34 34 36 38 38 38	Brown (10YR5/3) with 5% gray (N6/1) mottles, moi hard, SILT with little clay, few very fine-grained sand, trace small gravel.	and	ان المحمد التي في	488		
							40	Brown (10YR5/3), wet, very dense, silty, very fine- medium-grained SAND with trace small gravel.	to		482		
	NOTE(S): APW10 installed in borehole. Lithology, sample, and testing data can be found on APW-4 Field Boring Log. Page 2 of 3												

FIELD BORING LOG									
CLIENT: Natural Resource Technology, Inc.CONTRACTOR: Bulldog Drilling, Inc.Site: Newton Energy CenterRig mfg/model: CME-550X ATV DrillLocation: Newton, IllinoisDrilling Method: 4/4" HSAProject: 15E0030FIELD STAFF: Driller: C. DuttonFinish: 10/27/2015FIELD STAFF: Driller: C. JonesWEATHER: Cool, rainy, Io-50sEng/Geo: S. Keim	BOREHOLE ID: APW10a Well ID: APW10 Surface Elev: 521.98 ft. MSL Completion: 45.94 ft. BGS Station: 5,371.32N 11,541.23E								
SAMPLE TESTING TOPOGRAPHIC MAP INFORMATION: WA ① ① ① ② Quadrangle: Latona WA	WATER LEVEL INFORMATION: $\mathbf{\nabla} = 36.00$ - During Drilling								
	$\mathbf{Y} = \mathbf{Y}$								
Number Number Image: Section 12 product of the produc	Borehole Elevation Detail ft. MSL Remarks								
42 42 Brown (10YR5/3), wet, very dense, silty, very fine- to medium-grained SAND with trace small gravel. [Continued from previous page] 44 44 Find of boring = 45.94 feet									

Illinois Environ	Well Completion Report									
Site #:	(County: <u>Jasp</u>	er Count	y		W	/ell #:AI	PW5		
Site Name: Newton Energy Ce						В	orehole #:	APW5		
State Plant Plane Coordinate: X9,318										
Surveyed By: <u>Michael J. Gram</u>	inski	IL Regi	IL Registration #: 035-002901							
Drilling Contractor: <u>Bulldog D</u>			Driller:	_C.	Dutton					
Consulting Firm: <u>Hanson Profe</u>	essional Services Inc.	Geologi	Geologist: <u>Rhonald W. Hasenyager, LPG #196-000246</u>							
Drilling Method: <u>Hollow Stem</u>	Auger	Drilling	Drilling Fluid (Type): Water							
Logged By: <u>Suzanna L. Keim</u>			Date St	ate Started: <u>10/22/2015</u> Date Finished: <u>10/22/2015</u>						
Report Form Completed By:	zanna L. Keim		Date: _	11/6/2015						
ANNULAR SPAC	CE DETAILS			F	Elevations (MSL)*	Depths (BGS)	(0.01 ft.))		
					545.00	-3.43	Top of Protective	Casing		
					544.56	-2.99	Top of Riser Pip	2		
Type of Surface Seal: <u>Concrete</u>				~	541.57	0.00	Ground Surface			
Type of Annular Sealant: <u>High-s</u> o	olida bantonita			/	539.57	2.00	Top of Annular S	Sealant		
Installation Method:		- 9								
Setting Time:		_ _	Z		527.06	14.51	Static Water Lev	el		
							(After Completion)	12/15/2015		
Type of Bentonite Seal Granu	llar Pellet Slurry (choose one)	\mp	YT.							
Installation Method: <u>Gravity</u>	7	—	$\overline{\mathbf{x}}$		484.39	57.18	Top of Seal			
Setting Time: <u>45 minutes</u>		—	×		480.62	60.95	Top of Sand Pac	k		
Type of Sand Pack: <u>Quartz Sand</u>	l	_								
Grain Size: <u>10-20</u> (siew	æ size)				478.93	62.64	Top of Screen			
Installation Method: <u>Gravity</u>	7	- $ $			474.13	67.44	Bottom of Screer			
Type of Backfill Material: <u>n/a</u>	(if applicable)	_ Ē			473.73	67.84	Bottom of Well	1		
Installation Method:					473.57	68.00	Bottom of Boreh	ole		
					* Referenced to a	National Geodet	ic Datum			
					CAS	SING MEAS	SUREMENTS			
WELL CONS	TRUCTION MATERIAI		Diam	neter of Boreho	ole	(inches)	8.0			
	type of material for each area)	Lo			Riser Pipe		(inches)			
					ctive Casing L	ength	· · · · ·	5.0		
Protective Casing	SS304 SS316 PTFE	PVC OTHER:	iteel		Pipe Length om of Screen to	o End Can	(feet)	65.63 0.40		
Riser Pipe Above W.T.	SS304 SS316 PTFE	PVC OTHER:			en Length (1s			4.80		
Riser Pipe Below W.T.	SS304 SS316 PTFE	PVC OTHER:			Length of Cas					
Screen	SS304 SS316 PTFE	PVC OTHER:			en Slot Size **		(inches)	0.010		

Well Completion Form (revised 02/06/02)

**Hand-Slotted Well Screens Are Unacceptable

Illinois Environ	Well Completion Report				ion Report				
Site #:	Co	ounty: <u>Jasp</u>	er Coun	ty		W	/ell #:	APW6	
Site Name: Newton Energy Co	enter					В	orehole #:	APW6	
State- Plant Plane Coordinate: X7,811									
Surveyed By: <u>Michael J. Gran</u>	ninski	IL Reg	IL Registration #:035-002901						
Drilling Contractor:Bulldog D	rilling, Inc.		Driller:	<u> </u>	. Dutton				
Consulting Firm: <u>Hanson Profe</u>	essional Services Inc.	Geolog	Geologist:Rhonald W. Hasenyager, LPG #196-000246						
Drilling Method: <u>Hollow Stem</u>	Auger	Drilling	Drilling Fluid (Type):						
Logged By: <u>Suzanna L. Keim</u>			Date St	tarted	:10/20/2	015 Date	e Finished:	10/21/2015	
Report Form Completed By: <u>Su</u>	zanna L. Keim		Date:		11/6/2015				
ANNULAR SPA	CE DETAILS				Elevations (MSL)*	Depths (BGS)	(0.01	ft.)	
					546.88	-3.50	Top of Protec	tive Casing	
					546.56	-3.18	-	-	
Type of Surface Seal: <u>Concrete</u>				: >	_543.38_	0.00	Ground Surfa	ce	
					541.38	2.00	Top of Annul	ar Sealant	
Type of Annular Sealant: <u>High-s</u>		- 🏹							
Installation Method: <u>Tremie</u>	7		523.45	19.93	Static Water 1	aval			
Setting Time: <u>>48 hours</u>		-						on) 12/15/2015	
Type of Bentonite Seal Gram	ular Pellet Slurry (choose one)								
Installation Method:Gravity			KX		478.48	64.90	Top of Seal		
Setting Time: <u>30 minutes</u>		-	X		477.28	66.10	Top of Sand I	Pack	
Type of Sand Pack:Quartz Sand	a								
Grain Size: 10-20 (sie		- _			475.71	67.67	Top of Screen	I	
Installation Method: Gravit									
			≣		470.90	72.48	Bottom of Sci		
Type of Backfill Material:Quart	(if applicable)	_ L			470.50	72.88	Bottom of We		
Installation Method: gravity			<u>469.38</u> * Referenced to a	74.00	Bottom of Bo	rehole			
					Referenced to t	i Hudohar Geoder			
							SUREMENT		
	STRUCTION MATERIALS	S			meter of Boreh	ole	(incl	•	
(Choose on	e type of material for each area)				of Riser Pipe tective Casing I	ength	(incl	eet) 5.0	
					er Pipe Length			(eet) <u>5.0</u>	
Protective Casing	SS304 SS316 PTFE P	VC OTHER:	steel		tom of Screen t	o End Cap	•	eet) 0.40	
Riser Pipe Above W.T.	SS304 SS316 PTFE P	VC OTHER:		Scre	een Length (1	st slot to last slo	t) (f	eet) 4.81	
Riser Pipe Below W.T.	SS304 SS316 PTFE P	VC OTHER:		Tota	al Length of Ca	sing	(f	eet) 76.06	

PTFE PVC OTHER:

Well Completion Form (revised 02/06/02)

Screen

SS304

SS316

 Total Length of Casing
 (feet)

 Screen Slot Size **
 (inches)

 **Hand-Slotted Well Screens Are Unacceptable

0.010

Illinois Environm	ental Protec	Well Completion Report								
Site #:		County:Jasp	er Count	V		Well #: A	PW7			
Site Name: Newton Energy Cent						Borehole #:	APW7a			
State Plant Plane Coordinate: X6,151.6										
					ue. <u>-00 1</u>	<u> </u>				
Surveyed By: <u>Michael J. Gramins</u>		-	IL Registration #:035-002901							
Drilling Contractor: <u>Bulldog Drill</u>	ling, Inc.	Driller:	Driller: J. Gates							
Consulting Firm: <u>Hanson Profession</u>	ional Services Ind	Geologi	Geologist:Rhonald W. Hasenyager, LPG #196-000246							
Drilling Method: <u>Hollow Stem Au</u>	uger		Drilling	Drilling Fluid (Type):Water						
Logged By: <u>Rhonald W. Hasenya</u>	ager		Date St	Started: <u>11/3/2015</u> Date Finished: <u>11/5/2015</u>						
Report Form Completed By: <u>Suzar</u>	nna L. Keim		Date: _	11/9/2015						
ANNULAR SPACE	E DETAILS			Elevatio (MSL)		(0.01 ft.)			
				539.24	· · /	_ Top of Protectiv	e Casing			
				538.80	<u> </u>	_ Top of Riser Pip	be			
Type of Surface Seal: <u>Concrete</u>				<u> </u>	0.00	_ Ground Surface				
Type of Annular Sealant: <u>High-solid</u>	ds bentonite			534.22	2.00	_ Top of Annular	Sealant			
Installation Method: <u>Tremie</u>		¥								
Setting Time:			<u>z</u>	490.68	3 45.53	Static Water Le	vel			
						(After Completion)	12/15/2015			
Type of Bentonite Seal Granular	r Pellet S (choose one)		YT.							
Installation Method: <u>Gravity</u>	()			_462.00	574.15	Top of Seal				
Setting Time: <u>120 minutes</u>			X	460.2	76.00	Top of Sand Pa	v			
				_400.2	<u> </u>					
Type of Sand Pack: <u>Quartz Sand</u>				_458.32	2 77.89	_ Top of Screen				
Grain Size: <u>10-20</u> (sieve si	ize)			_436.52						
Installation Method: <u>Gravity</u>		IE		453.5	82.70	Bottom of Scree	n			
Type of Backfill Material:Quartz S		[Ē		453.1		Bottom of Well	11			
Installation Method: gravity	(if applicable)			453.1	83.10	Bottom of Borel	ole			
instantation wethod. <u>gravity</u>]		ed to a National Geod	-	loic			
					CASING MEA	SUREMENTS				
				Diameter of B		(inches)	8.0			
	RUCTION MATH pe of material for each are			ID of Riser Pi	ре	(inches)				
Protective Casing St	S304 SS316 PT	FE PVC OTHER: (S	teel	Riser Pipe Le	-	(feet				
	S304 SS316 PT				een to End Cap	(feet				
	S304 SS316 PT			Total Length	1 (1st slot to last slot for a	lot) (feet	0			

Well Completion Form (revised 02/06/02)

Screen

SS304 SS316 PTFE PVC OTHER:

 Total Length of Casing
 (feet)

 Screen Slot Size **
 (inches)

 **Hand-Slotted Well Screens Are Unacceptable

0.010

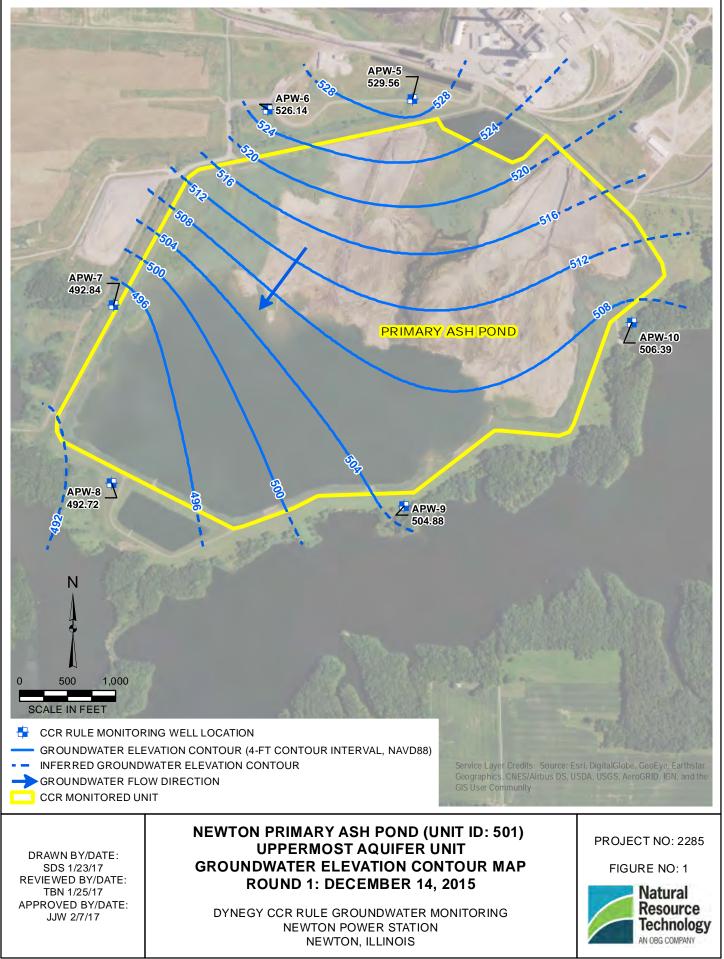
Illinois Environmental Protection Ag		Well Completion Report				
Site #: County	y: <u>Jasper County</u>		W	/ell #:AP	W8	
Site Name: Newton Energy Center			В	orehole #: A	PW8	
State Plant Plane Coordinate: X6,082.4 Y3,839.6 (or)						
Surveyed By: <u>Michael J. Graminski</u>		ration #: <u>035-00</u>				
Drilling Contractor:Bulldog Drilling, Inc.		C. Dutton				
Consulting Firm: <u>Hanson Professional Services Inc.</u>	Geologist	t: <u>Rhonald W.</u>	Hasenyager	r, LPG #196-0002	246	
Drilling Method: <u>Hollow Stem Auger</u>	Drilling I	Fluid (Type): <u>Wa</u>	ater			
Logged By:Suzanna L. Keim	Date Star	rted: <u>10/27/20</u>)15 Date	e Finished: <u>10/</u>	28/2015	
Report Form Completed By:Suzanna L. Keim	Date:	11/6/2015				
ANNULAR SPACE DETAILS		Elevations (MSL)*	Depths (BGS)	(0.01 ft.)		
		529.86	-3.11	Top of Protective	Casing	
		529.46	-2.71	Top of Riser Pipe		
Type of Surface Seal: <u>Concrete</u>		526.75	0.00	Ground Surface		
Type of Annular Sealant: <u>High-solids bentonite</u>		524.75	2.00	Top of Annular S	ealant	
Installation Method:Tremie						
Setting Time:	⊻	490.50	36.25	Static Water Leve (After Completion)		
Type of Bentonite Seal Granular Pellet Slurry (choose one)						
Installation Method:Gravity		462.45	64.30	Top of Seal		
Setting Time:55 minutes		458.70	68.05	Top of Sand Pack		
Type of Sand Pack: <u>Quartz Sand</u> Grain Size: <u>10-20</u> (sieve size)		455.35	71.40	Top of Screen		
Installation Method: <u>Gravity</u> Type of Backfill Material: <u>n/a</u>		445.69	<u>81.06</u> 81.53	Bottom of Screen Bottom of Well		
(if applicable) Installation Method:		444.75 * Referenced to a	82.00 National Geodet	Bottom of Boreho	le	
		CAS	ING MEAS	SUREMENTS		
	Į	Diameter of Boreho		(inches)	8.0	
WELL CONSTRUCTION MATERIALS (Choose one type of material for each area)		D of Riser Pipe		(inches)	2.0	
		Protective Casing L	ength		5.0	
Protective Casing SS304 SS316 PTFE PVC		Riser Pipe Length	End C	(feet)	74.11	
Riser Pipe Above W.T. SS304 SS316 PTFE PVC		Bottom of Screen to Screen Length (1s		t) (feet)	0.47 9.66	
Riser Pipe Below W.T. SS304 SS316 PTFE PVC	>	Fotal Length of Cas			84.24	
Screen SS304 SS316 PTFE PVC	<u>`</u>	Screen Slot Size **		(inches)	0.010	

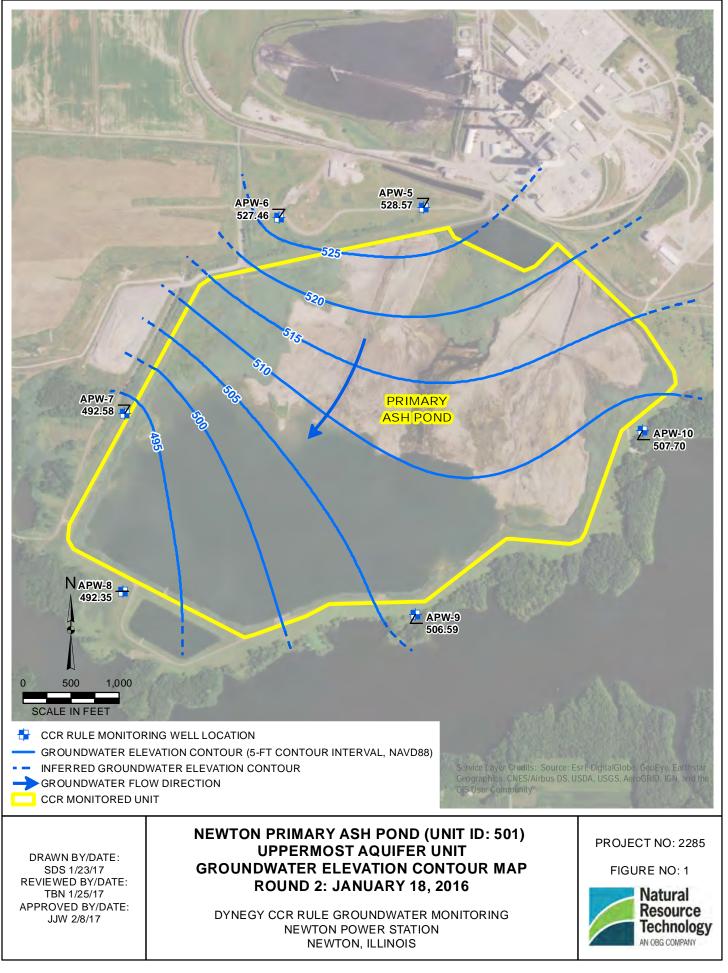
Well Completion Form (revised 02/06/02)

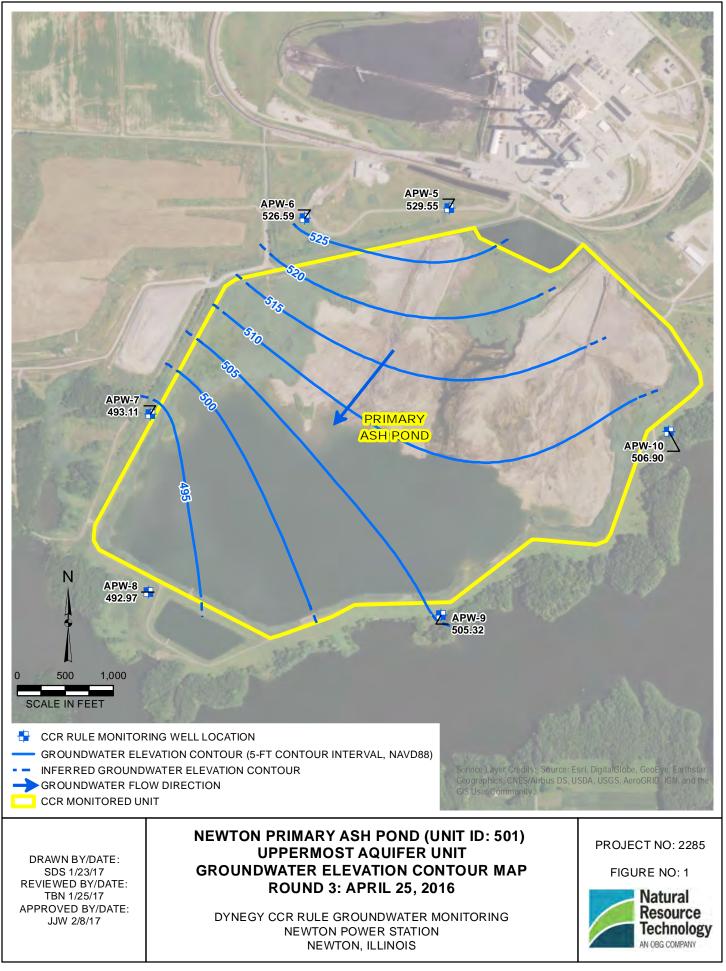
**Hand-Slotted Well Screens Are Unacceptable

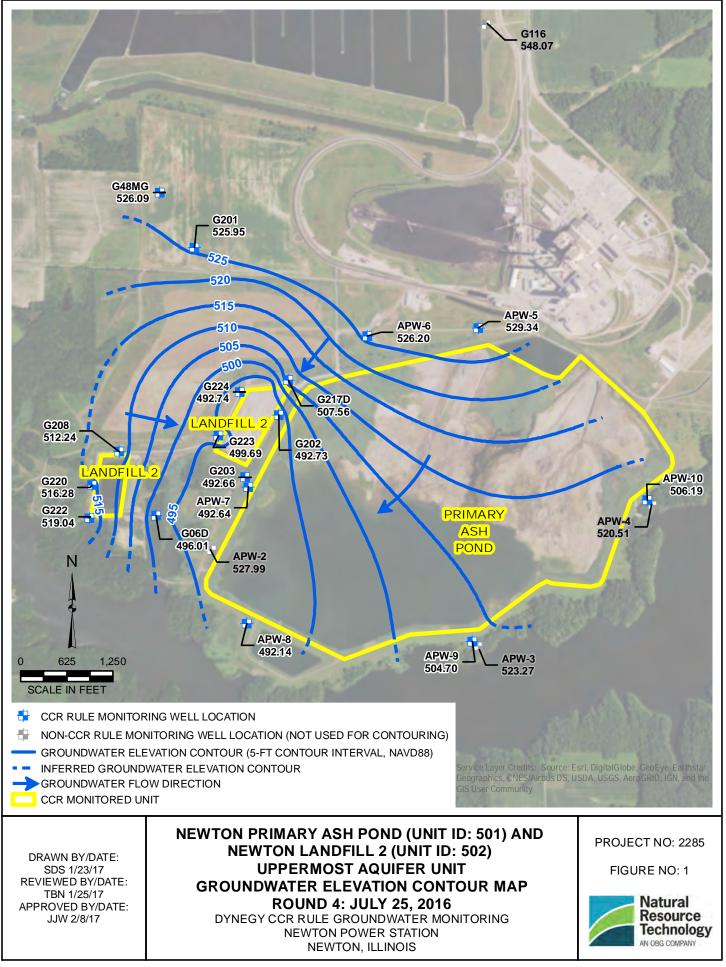
Illinois Environmental Protection Agency		Well	Completion	Report
Site #: County: _Jasp	er County	W	ell #:AP	W9
Site Name: Newton Energy Center		Bo	orehole #: A	APW9
State Plant Plane Coordinate: X 9,125.3 Y 3,519.6 (or) Latitude:				
Surveyed By: Michael J. Graminski	IL Registration #:035-00	02901		
Drilling Contractor:Bulldog Drilling, Inc.	Driller: J. Gates			
Consulting Firm: <u>Hanson Professional Services Inc.</u>	Geologist: <u>Rhonald W.</u>	Hasenyager.	, LPG #196-000	246
Drilling Method: Hollow Stem Auger	Drilling Fluid (Type):	ater		
Logged By: Rhonald W. Hasenyager	Date Started:11/2/20	<u>15</u> Date	Finished: <u>11</u>	/3/2015
Report Form Completed By:	Date: <u>11/9/2015</u>			
ANNULAR SPACE DETAILS	Elevations (MSL)*	Depths (BGS)	(0.01 ft.)	
	532.43	· /	Top of Protective	Casing
	532.01		Top of Riser Pipe	C C
Type of Surface Seal: Concrete	528.82	0.00	Ground Surface	
Ture of Annulus Contents	526.82_	2.00	Top of Annular S	ealant
Type of Annular Sealant: <u>High-solids bentonite</u>				
Installation Method:	<u>502.18</u>	26.64	Static Water Leve	2
			(After Completion)	
Type of Bentonite Seal Granular Pellet Slurry				
Installation Method: <u>Gravity</u>	475.91	52.91	Top of Seal	
Setting Time: <u>65 minutes</u>	474.20	54.62	Top of Sand Pacl	ζ.
Type of Sand Pack:Quartz Sand				
Grain Size: 10-20 (sieve size)		56.66	Top of Screen	
Installation Method: <u>Gravity</u>	467.36	61.46	Bottom of Screen	
Type of Backfill Material:	$= \frac{467.36}{466.97}$	61.85	Bottom of Well	
(if applicable) Installation Method:	466.82	62.00	Bottom of Boreh	ble
	* Referenced to a	National Geodetic		
	CAS	ING MEAS	SUREMENTS	
	Diameter of Boreho	le	(inches)	8.0
WELL CONSTRUCTION MATERIALS (Choose one type of material for each area)	ID of Riser Pipe		(inches)	2.0
	Protective Casing L	ength	(feet)	5.0
Protective Casing SS304 SS316 PTFE PVC OTHER:	Riser Pipe Length		(feet)	59.85
Protective Casing SS304 SS316 PTFE PVC OTHER: § Riser Pipe Above W.T. SS304 SS316 PTFE PVC OTHER: §			(feet)	0.39
Riser Pipe Below W.T. SS304 SS316 PTFE PVC OTHER:	Screen Length (1s Total Length of Case Total Length of Case			<u>4.80</u> 65.04
Screen SS304 SS316 PTFE PVC OTHER:	Screen Slot Size **	, <u>.</u>	(inches)	0.010

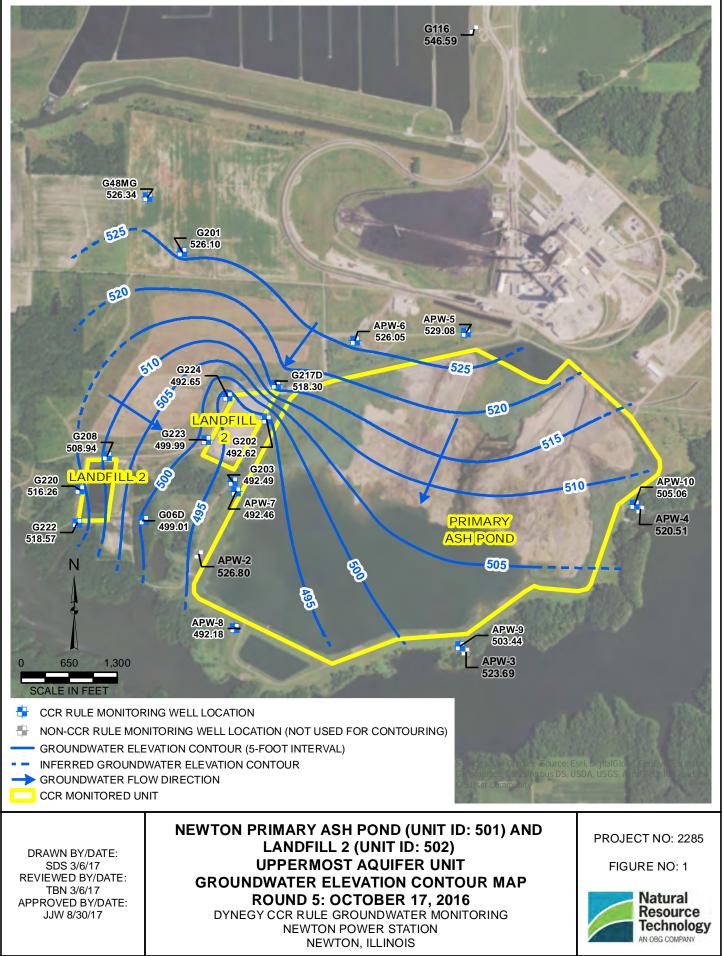
Well Completion Form (revised 02/06/02)

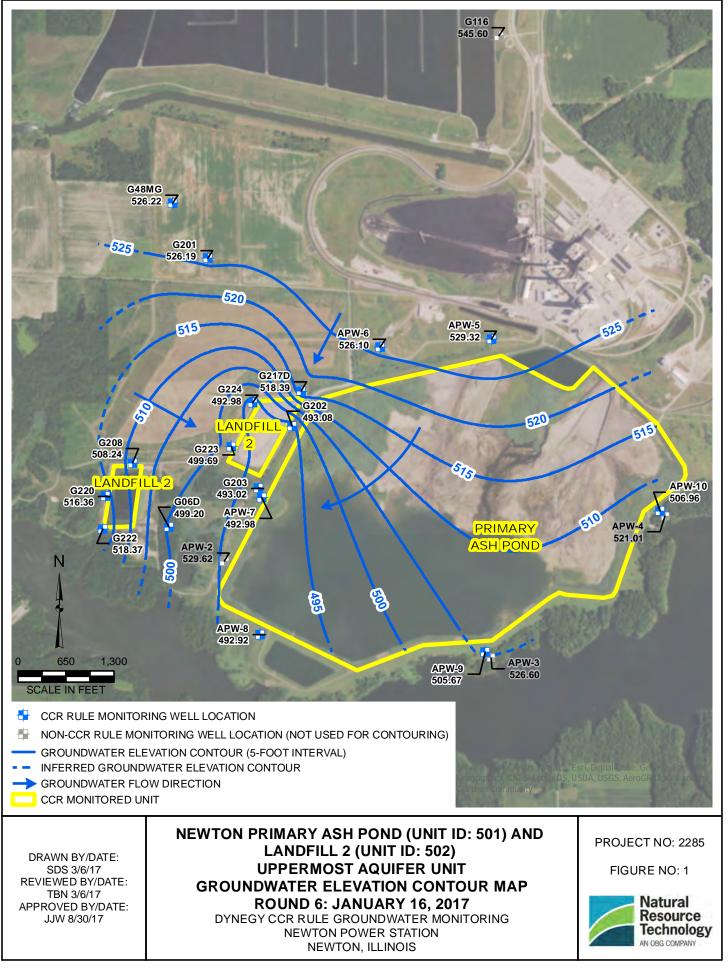

**Hand-Slotted Well Screens Are Unacceptable

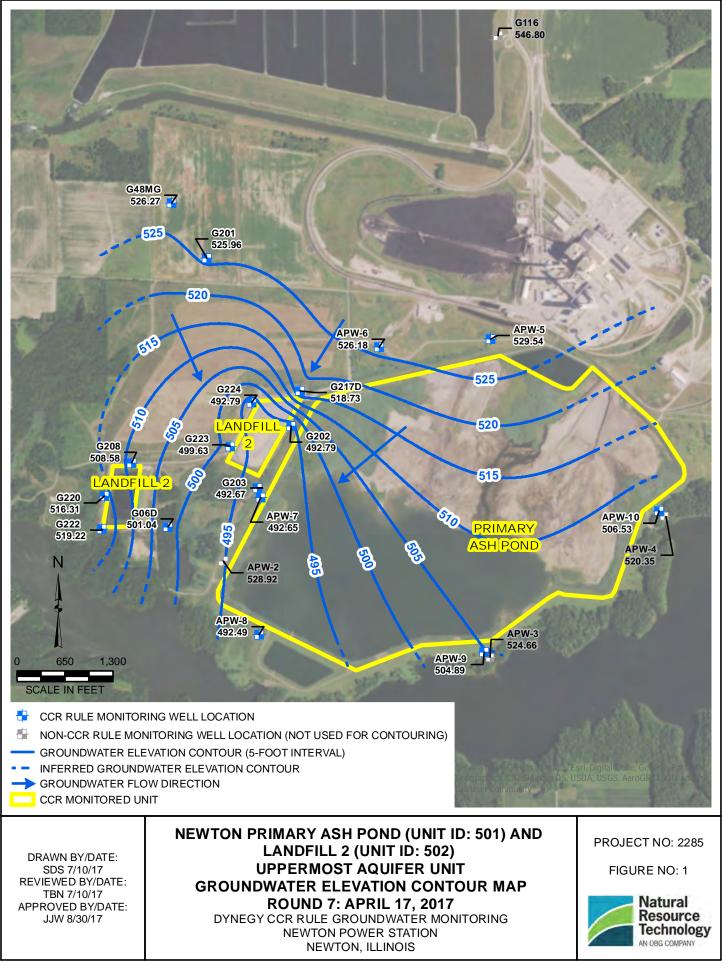

Illinois Environ		Well Completion Report						
Site #:	Count	y: <u>Jaspe</u>	er Count	ty		W	/ell #:AI	PW10
Site Name: Newton Energy Ce						В	orehole #: A	PW10a
State Plant Plane Coordinate: X11,541								
Surveyed By:Michael J. Gram				on #: <u>035-0</u>				
Drilling Contractor:Bulldog D			Driller:	_C.	Dutton			
Consulting Firm: <u>Hanson Profe</u>	essional Services Inc.		Geolog	ist:			r, LPG #196-00	
Drilling Method: <u>Hollow Stem</u>	Auger		Drilling	g Fluid	(Type): <u>W</u>	ater		
Logged By: <u>Suzanna L. Keim</u>			Date St	arted:	10/27/20	015 Date	e Finished: <u>1</u> ()/27/2015
Report Form Completed By:	zanna L. Keim		Date: _		11/6/2015			
ANNULAR SPA	CE DETAILS			ŀ	Elevations (MSL)*	Depths (BGS)	(0.01 ft.)
					525.12	-3.14	Top of Protectiv	e Casing
					524.74	-2.76	Top of Riser Pip	-
Type of Surface Seal: <u>Concrete</u>				~	521.98	0.00	Ground Surface	
Type of Annular Sealant: <u>High-s</u>	olide bantanita			/	519.98	2.00	Top of Annular	Sealant
Installation Method: <u>Tremie</u> Setting Time: <u>>48 hours</u>			7		504.12	17.86	Static Water Le	vel
			-				(After Completion)	12/15/2015
Type of Bentonite Seal Gram	ular Pellet Slurry (choose one)		YT.					
Installation Method: <u>Gravity</u>	y	KX	KX		_484.66_	37.32	Top of Seal	
Setting Time: <u>50 minutes</u>		×	×		483.22	38.76	Top of Sand Pac	ж
Type of Sand Pack: <u>Quartz Sanc</u>	1							
Grain Size: 10-20 (sie	ve size)				481.24	40.74	Top of Screen	
Installation Method: <u>Gravity</u>	У				176 11	15 51	Dettern of Correct	_
Type of Backfill Material: <u>n/a</u>					476.44	<u>45.54</u> <u>45.94</u>	Bottom of Scree Bottom of Well	11
Installation Method:	(if applicable)				476.04	45.94	Bottom of Borel	ole
					* Referenced to a			
					CAS	SING MEAS	SUREMENTS	
				Diam	neter of Boreho	ole	(inches)	8.0
	TRUCTION MATERIALS e type of material for each area)			ID of	f Riser Pipe		(inches)	2.0
					ective Casing L	ength	(feet	
Protective Casing	SS304 SS316 PTFE PVC	OTHER: (S	teel		Pipe Length	D 10	(feet	
Riser Pipe Above W.T.	SS304 SS316 PTFE PVC SS304 SS316 PTFE PVC				om of Screen to		(feet	
Riser Pipe Below W.T.	SS304 SS316 PTFE PVC	-			en Length (1s			10 -0
Screen	SS304 SS316 PTFE PVC) OTHER:			en Slot Size **		(inches)	

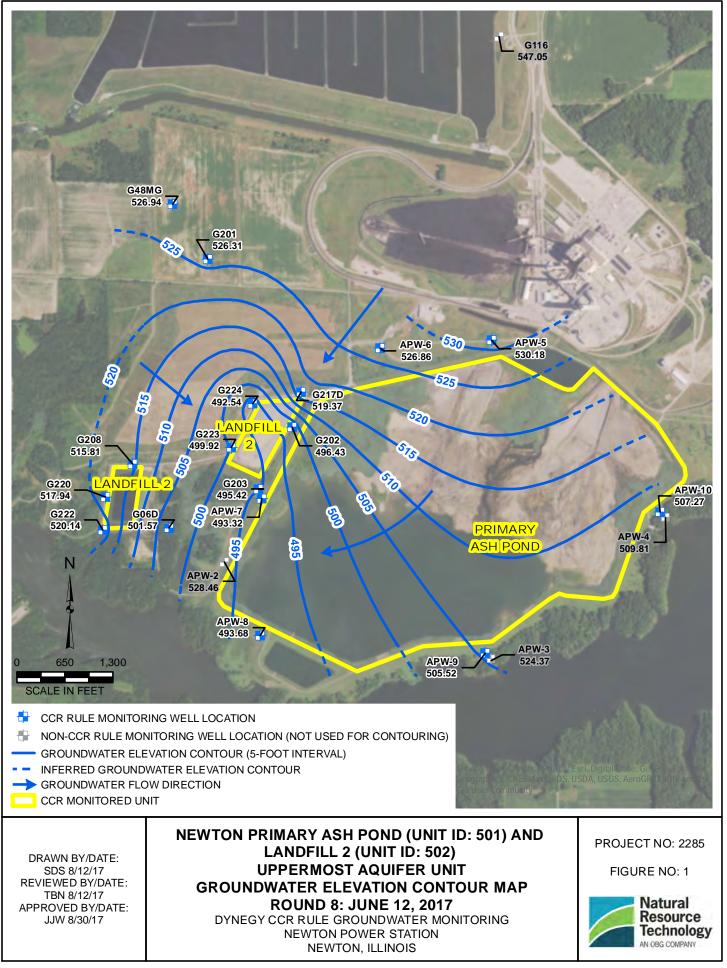

Well Completion Form (revised 02/06/02)

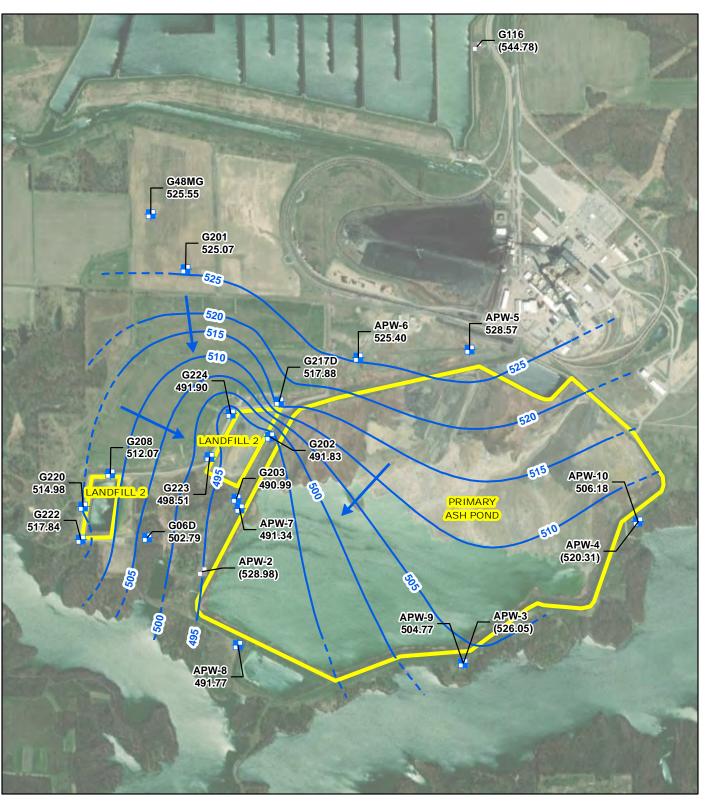

**Hand-Slotted Well Screens Are Unacceptable


ATTACHMENT 4 – MAPS OF THE DIRECTION OF GROUNDWATER FLOW

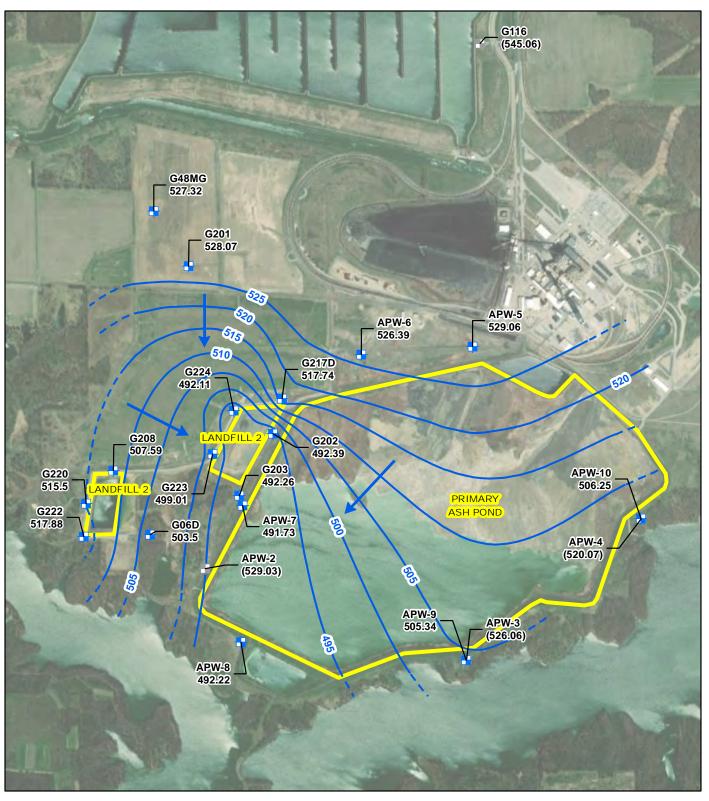








- CCR RULE MONITORING WELL LOCATION
- NON-CCR RULE MONITORING WELL LOCATION
- GROUNDWATER ELEVATION CONTOUR (5-FOOT CONTOUR INTERVAL, NAVD88)
- GROUNDWATER FLOW DIRECTION
 CCR MONITORED UNIT
- NEWTON PRIMARY ASH POND (UNIT ID: 501) AND LANDFILL 2 (UNIT ID: 502) GROUNDWATER ELEVATION CONTOUR MAP NOVEMBER 14, 2017
- CCR RULE GROUNDWATER MONITORING NEWTON POWER STATION NEWTON, ILLINOIS


0

Ν

325 650 1,300

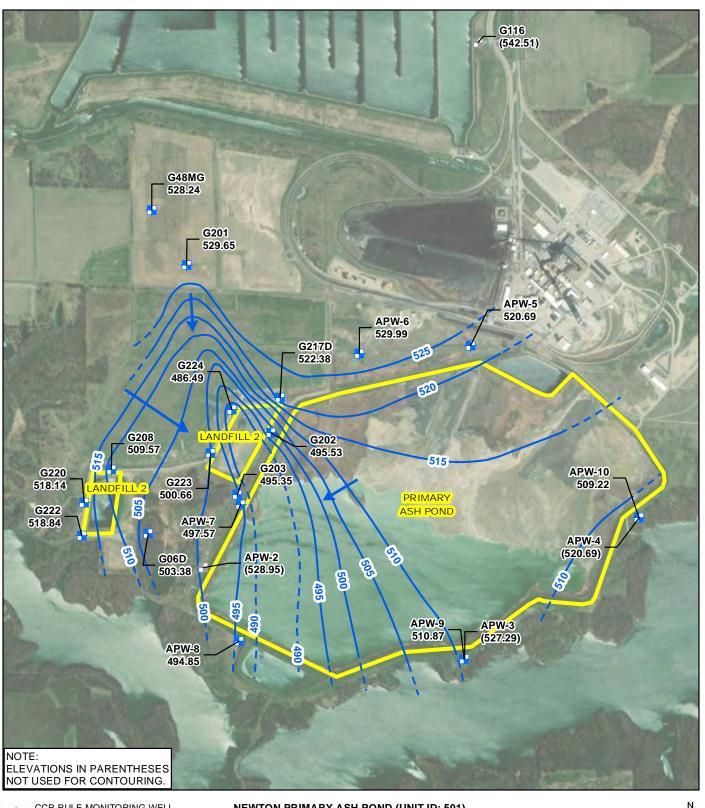
- CCR RULE MONITORING WELL LOCATION
- NON-CCR RULE MONITORING WELL LOCATION
- GROUNDWATER ELEVATION CONTOUR (5-FOOT CONTOUR INTERVAL, NAVD88) INFERRED GROUNDWATER ELEVATION CONTOUR
 - CONTOUR
 GROUNDWATER FLOW
 - CCR MONITORED UNIT

Ν

0 325 650 1,300

- CCR RULE MONITORING WELL LOCATION
- NON-CCR RULE MONITORING WELL LOCATION
- GROUNDWATER ELEVATION CONTOUR (5-FOOT CONTOUR INTERVAL, NAVD88) - - INFERRED GROUNDWATER ELEVATION CONTOUR
- ELEVATION CONTOUR
 GROUNDWATER FLOW
 - CCR MONITORED UNIT

650

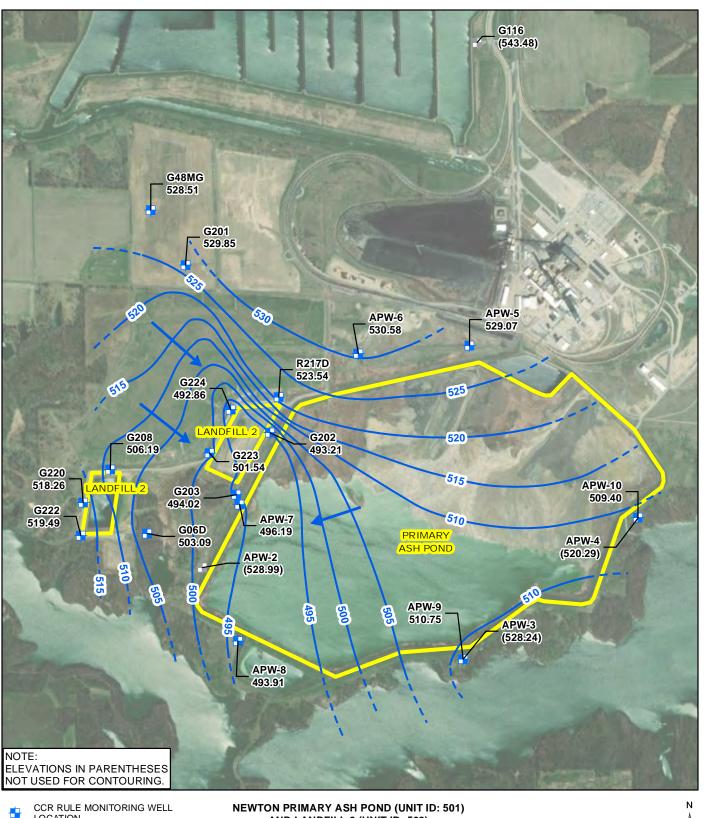

Feet

1,300

0 325

- CCR RULE MONITORING WELL LOCATION
- NON-CCR RULE MONITORING WELL 15 LOCATION
- GROUNDWATER ELEVATION CONTOUR (5-FOOT CONTOUR INTERVAL, NAVD88)
- INFERRED GROUNDWATER ELEVATION CONTOUR
- GROUNDWATER FLOW DIRECTION CCR MONITORED UNIT

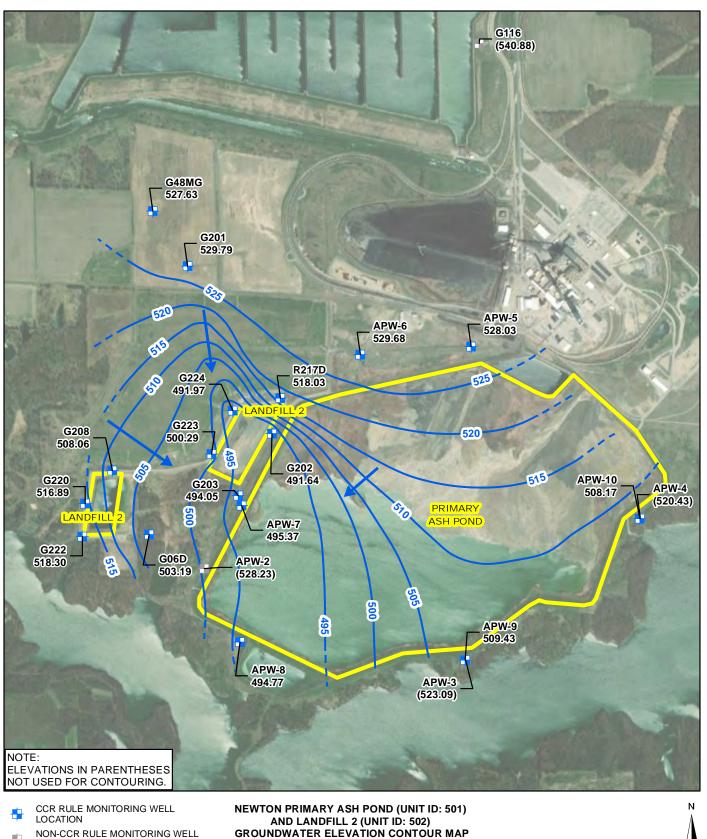
1,300


650 325

0

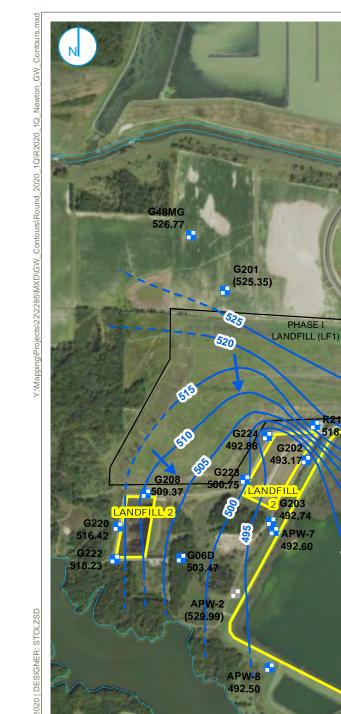
Y:\Mapping\Projects\22\2285\MXD\GW_Contours\Round_2018_4Q\R2018_4Q_Newton_GW_Contours.mxd

- LOCATION
- NON-CCR RULE MONITORING WELL đ. LOCATION
- GROUNDWATER ELEVATION CONTOUR (5-FOOT CONTOUR INTERVAL, NAVD88)
- INFERRED GROUNDWATER ELEVATION CONTOUR
- GROUNDWATER FLOW DIRECTION CCR MONITORED UNIT


1,300

325 650

0


- NON-CCR RULE MONITORING WELL LOCATION
- GROUNDWATER ELEVATION CONTOUR (5-FOOT CONTOUR INTERVAL, NAVD88) INFERRED GROUNDWATER ELEVATION CONTOUR
- GROUNDWATER FLOW DIRECTION
 - CCR MONITORED UNIT

AUGUST 21, 2019

CCR RULE GROUNDWATER MONITORING

NEWTON POWER STATION NEWTON, ILLINOIS

NOTE:

650

1,300

_ Feet

+

ASH POND 06.73 205 APW-4 (518.66) PW-9 505 NEWTON LAKE ELEVATIONS IN PARENTHESES NOT USED FOR CONTOURING. Service Layer Credits: CCR RULE MONITORING WELL **GROUNDWATER ELEVATION** NON-CCR RULE MONITORING WELL **CONTOUR MAP GROUNDWATER ELEVATION CONTOUR (5-FT** CONTOUR INTERVAL, NAVD88) **FEBRUARY 3, 2020** INFERRED GROUNDWATER ELEVATION CONTOUR GROUNDWATER FLOW DIRECTION SURFACE WATER FEATURE CCR MONITORED UNIT NEWTON PRIMARY ASH POND (UNIT ID: 501) NON-CCR UNIT AND LANDFILL 2 (UNIT ID: 502) NEWTON POWER STATION

APW-6 526.76

520

515

R217D

525

G116 (546.54)

APW-5 530.02

PRIMARY

NEWTON, ILLINOIS

530

RAMBOLL US CORPORATION A RAMBOLL COMPANY

APW-10

ATTACHMENT 5 – TABLES SUMMARIZING CONSTITUENT CONCENTRATIONS AT EACH MONITORING WELL

Analytical Results - Appendix III Newton Primary Ash Pond

Sample	Date	Boron, total	Calcium, total	Chloride, total	Fluoride, total	рН	Sulfate, total	Total Dissolved Solids	
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)	
Background		(g/=/	((<u>g</u> ,=)	(g/=/	(0101)	(<u>g</u> /=/	(
APW5	12/15/2015	0.099	51	48	0.486	7.5	15	560	
APW5 APW5	1/20/2016	0.12	52	40 50	0.400	7.5	15	510	
APW5 APW5	4/27/2016	0.12	71	58	0.409	7.7	14	520	
APW5 APW5	8/1/2016	0.10	49	52	0.494	7.5	14	500	
APW5	10/25/2016	0.10	50	50	0.660	7.6	<1	1000	
APW5	1/23/2017	0.090	45	50	0.418	7.4	<1	550	
APW5	4/24/2017	0.030	44	46	0.437	7.4	1.2	600	
APW5	6/13/2017	0.082	48	40	0.508	7.1	<1	540	
APW5	11/17/2017	0.099	51	43	0.634	6.9	<1	480	
APW5	5/18/2018	0.10	48	48	0.525	7.1	2.1	480	
APW5	8/17/2018	NA	54	56	0.323 NA	7.0	1.4	NA	
APW5	11/9/2018	0.098	50	51	0.427	7.0	5.1	500	
APW5	2/22/2019	0.030	50	48	0.374	6.9	3.5	600	
APW5	8/22/2019	0.11	49	50	<0.25	7.0	2.3	530	
APW5	2/4/2020	0.091	51	54	0.480	7.5	2.3	600	
APW5	6/11/2020	NA	NA	NA	NA	7.4	NA	NA	
APW5	7/28/2020	0.10	53	52	0.544	7.7	1.8	530	
APW6	12/15/2015	0.073	53	26	0.509	7.5	9.9	480	
APW6	1/20/2016	0.073	53	20	0.393	7.3	9.9	500	
APW6	4/27/2016	0.082	64	24	0.564	6.5	9.9 7.4	450	
APW6	8/1/2016	0.078	50	29	0.650	7.4	1.4	520	
APW6	10/25/2016	0.078	50	26	0.686	7.4	<1	560	
APW6	1/23/2017	0.093	46	20	0.000	6.9	<1	530	
APW6	4/24/2017	0.076	40	50	0.440	7.2	<1	540	
APW6	6/13/2017	0.093	51	25	0.470	7.1	2.3	460	
APW6	11/17/2017	0.093	50	23	0.617	7.1	1.9	470	
APW6	5/18/2018	0.087	51	25	0.564	7.3	1.7	420	
APW6	8/17/2018	NA	52	25	0.304 NA	7.3	1.7	A NA	
APW6	11/9/2018	0.083	51	23	0.459	7.2	2.1	440	
APW6	2/22/2019	0.090	45	24	0.386	7.3	1.7	440	
APW6	8/23/2019	0.030	55	24	0.314	7.3	5.8	500	
APW6	2/4/2020	0.080	53	20	0.483	7.5	<1	640	
APW6	6/11/2020	NA	NA	NA	NA	7.4	NA	NA	
APW6	7/28/2020	0.091	55	24	0.564	7.8	3.2	510	
		0.001	00	27	0.004	1.0	0.2	010	
Downgradien									
APW7	12/15/2015	0.073	74	69	0.467	7.4	13	520	
APW7	1/21/2016	0.052	74	79	0.380	7.4	8.6	440	
APW7	5/3/2016	0.071	85	72	0.545	7.5	7.5	500	
APW7	8/1/2016	0.070	86	77	0.462	7.3	2.8	490	
APW7	10/26/2016	0.096	76	79	0.425	7.2	<1	590	
APW7	1/26/2017	0.082	87	77	0.352	7.2	<1	520	
APW7	4/24/2017	0.069	87	77	0.367	7.3	<1	600	
APW7	6/13/2017	0.084	93	77	0.425	7.2	<1	560	
APW7	11/17/2017	0.097	72	73	0.508	7.2	3.8	530	
APW7	5/18/2018	0.082	97	75	0.435	7.1	4.9	500	
APW7	8/18/2018	NA	100	77	NA	7.1	3.2	NA	
APW7	11/9/2018	0.080	92	71	0.343	7.0	4.5	500	
APW7	2/22/2019	0.060	45	43	0.734	7.2	66	340	
APW7	8/23/2019	0.075	58	46	0.632	7.1	62	350	
APW7	2/5/2020	0.092	100	68	0.332	7.4	5.7	640	
APW7	6/11/2020	NA	NA	68	NA	7.3	NA	NA	
APW7	7/28/2020	0.086	94	77	0.412	7.3	6.7	530	

Analytical Results - Appendix III Newton Primary Ash Pond

Sample Location APW8 APW8 APW8	Date Sampled		total	total	total	рН	total	Total Dissolved Solids	
APW8 APW8		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)	
APW8	12/15/2015	0.083	85	52	0.441	7.4	35	560	
	1/21/2016	0.060	85	59	0.414	7.5	34	510	
	5/3/2016	0.083	100	55	0.566	7.4	30	560	
APW8	8/2/2016	0.076	94	56	0.504	7.2	35	520	
APW8	10/26/2016	0.091	84	59	0.463	7.4	37	600	
APW8	1/25/2017	0.081	100	57	0.404	7.2	36	600	
APW8	4/25/2017	0.073	100	57	0.418	7.5	38	590	
APW8	6/13/2017	0.092	110	57	0.449	7.3	38	600	
APW8	11/17/2017	0.11	83	50	0.474	7.1	39	490	
APW8	5/18/2018	0.088	92	56	0.448	7.2	37	520	
APW8	8/18/2018	NA	82	57	NA	7.2	43	NA	
APW8	11/9/2018	0.086	110	56	0.373	7.1	42	580	
APW8	2/22/2019	0.10	80	56	0.393	7.2	46	600	
APW8	8/23/2019	0.10	82	59	0.337	7.2	48	570	
APW8	2/5/2020	0.10	120	55	0.331	7.4	45	700	
APW8	6/11/2020	NA	NA	NA	NA	7.3	NA	NA	
APW8	7/28/2020	0.087	110	62	0.441	7.3	47	620	
APW9	12/15/2015	0.062	54	88	0.574	7.5	25	630	
APW9	1/20/2016	0.074	57	95	0.468	7.6	27	540	
APW9	5/3/2016	0.074	70	110	0.746	7.6	18	590	
APW9	8/2/2016	0.070	70	130	0.532	7.2	4.2	640	
APW9	10/26/2016	0.090	77	130	0.528	7.6	1.5	770	
APW9	1/25/2017	0.081	79	130	0.468	7.5	<1	740	
APW9	4/25/2017	0.078	67	120	0.515	7.5	1.1	840	
APW9	6/13/2017	0.053	42	51	0.755	7.5	48	300	
APW9	11/18/2017	0.080	68	84	0.655	7.4	4.5	720	
APW9	5/18/2018	0.098	80	120	0.467	7.4	1.0	710	
APW9	8/17/2018	NA	81	130	NA	7.5	2.4	NA	
APW9	11/9/2018	0.055	44	44	0.730	7.4	62	300	
APW9	2/22/2019	0.054	38	47	0.714	7.5	61	320	
APW9	8/23/2019	0.055	41	51	0.621	7.4	51	360	
APW9	2/19/2020	0.10	88	130	0.453	7.5	7.5	790	
APW9	6/11/2020	NA	NA	130	NA	7.4	NA	870	
APW9	7/28/2020	0.10	84	140	0.537	7.4	3.2	810	
APW10	12/16/2015	0.066	120	46	0.328	7.1	430	1000	
APW10	1/20/2016	0.000	120	48	<0.25	7.2	410	950	
APW10	5/3/2016	0.065	140	46	0.448	7.1	410	930	
APW10	8/2/2016	0.063	140	45	0.367	7.1	410	840	
APW10	10/26/2016	0.069	120	48	0.371	7.1	470	960	
APW10	1/25/2017	0.065	160	46	0.258	7.1	430	1000	
APW10	4/25/2017	0.056	120	44	0.289	7.0	410	1000	
APW10	6/13/2017	0.000	110	46	0.344	6.9	410	920	
APW10	11/18/2017	0.072	120	47	0.414	6.9	390	910	
APW10	5/18/2018	0.080	130	51	0.335	7.2	440	900	
APW10	8/17/2018	NA	130	51	NA	6.9	420	NA	
APW10	11/9/2018	0.078	140	47	0.281	7.0	410	900	
APW10	2/22/2019	0.079	110	50	0.276	6.9	420	990	
APW10	8/23/2019	0.096	130	50	0.359	7.0	390	1000	
APW10	2/5/2020	0.094	140	44	<0.25	7.1	400	1200	
APW10	6/11/2020	NA	NA	NA	NA	7.2	NA	1000	
APW10	7/28/2020	0.076	140	53	0.356	7.1	410	1000	

Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; s.u. - standard units.

Analytical Results - Appendix IV Newton Primary Ash Pond

		Antimony	Arsenic,	Barium,	Beryllium	Cadmium	Chromium	Cobalt,	Fluoride,	Lead,	Lithium,	Mercury,	Molybdenum	Radium- 226 +	Selenium	Thallium,
Sample	Date	, total	total	total	, total	,total	, total	total	total	total	total	total	, total	Radium	, total	total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	228, tot (pCi/L)	(mg/L)	(mg/L)
Background We	lls															
APW5	12/15/2015	< 0.003	0.018	0.19	<0.001	<0.001	<0.004	<0.002	0.486	0.0017	0.023	<0.0002	0.023	0.311	<0.001	<0.001
APW5	1/20/2016	< 0.003	0.017	0.19	< 0.001	< 0.001	< 0.004	< 0.002	0.409	0.0016	0.017	0.00020	0.023	0.235	< 0.001	< 0.001
APW5 APW5	4/27/2016 8/1/2016	<0.003 <0.003	0.021	0.24	<0.001 <0.001	<0.001 <0.001	<0.004 <0.004	<0.002	0.494 0.540	0.0012	0.020	0.002	0.032 0.027	0.281	0.001	<0.001 <0.001
APW5	10/25/2016	<0.003	0.014	0.21	<0.001	<0.001	<0.004	<0.002	0.660	<0.001	0.010	<0.0002	0.027	0.654	<0.001	< 0.001
APW5	1/23/2017	< 0.003	0.015	0.21	< 0.001	< 0.001	< 0.004	< 0.002	0.418	< 0.001	0.013	< 0.0002	0.021	0.0999	< 0.001	< 0.001
APW5	4/24/2017	< 0.003	0.014	0.20	<0.001	<0.001	0.004	<0.002	0.437	0.0014	0.015	<0.0002	0.016	1.19	<0.001	<0.001
APW5	6/13/2017	< 0.003	0.016	0.23	<0.001	< 0.001	< 0.004	<0.002	0.508	<0.001	0.014	<0.0002	0.018	1.32	< 0.001	< 0.001
APW5 APW5	11/17/2017	NA	NA	NA	NA	NA	NA	NA NA	0.634	NA	NA	NA	NA NA	NA NA	NA	NA
APW5 APW5	5/18/2018 11/9/2018	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	0.525 0.427	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA
APW5	2/22/2019	NA	NA	NA	NA	NA	NA	NA	0.427	NA	NA	NA	NA	NA	NA	NA
APW5	8/22/2019	NA	NA	NA	NA	NA	NA	NA	<0.25	NA	NA	NA	NA	NA	NA	NA
APW5	2/4/2020	NA	NA	NA	NA	NA	NA	NA	0.480	NA	NA	NA	NA	NA	NA	NA
APW5	7/28/2020	NA	NA	NA	NA	NA	NA	NA	0.544	NA	NA	NA	NA	NA	NA	NA
APW6	12/15/2015	< 0.003	0.017	0.16	< 0.001	< 0.001	< 0.004	< 0.002	0.509	< 0.001	0.019	0.00023	0.012	0.591	0.006	< 0.001
APW6 APW6	1/20/2016 4/27/2016	<0.003 <0.003	0.0091	0.17 0.21	<0.001 <0.001	<0.001 <0.001	<0.004 <0.004	<0.002	0.393 0.564	<0.001 0.0012	0.012	<0.0002 <0.0002	0.013 0.028	0.236	<0.001 <0.001	<0.001 <0.001
APW6	8/1/2016	< 0.003	0.0045	0.21	<0.001	<0.001	<0.004	<0.002	0.650	< 0.0012	0.019	<0.0002	0.0066	0.984	< 0.001	< 0.001
APW6	10/25/2016	< 0.003	0.0041	0.22	< 0.001	< 0.001	< 0.004	< 0.002	0.686	< 0.001	0.015	< 0.0002	0.0087	0.329	< 0.001	< 0.001
APW6	1/23/2017	< 0.003	0.0036	0.21	<0.001	<0.001	<0.004	<0.002	0.448	<0.001	0.014	<0.0002	0.0086	0.316	<0.001	<0.001
APW6	4/24/2017	< 0.003	0.0042	0.20	<0.001	0.0012	< 0.004	<0.002	0.470	0.0012	0.015	< 0.0002	0.011	0.859	< 0.001	0.0011
APW6 APW6	6/13/2017 11/17/2017	<0.003 NA	0.0057 NA	0.22 NA	0.0025 NA	0.0017 NA	<0.004 NA	0.002 NA	0.567 0.617	0.0025 NA	0.014 NA	<0.0002 NA	0.014 NA	0.932 NA	0.0014 NA	0.0025 NA
APW6	5/18/2018	NA	NA	NA	NA	NA	NA	NA	0.617	NA	NA	NA	NA	NA	NA	NA
APW6	11/9/2018	NA	NA	NA	NA	NA	NA	NA	0.459	NA	NA	NA	NA	NA	NA	NA
APW6	2/22/2019	NA	NA	NA	NA	NA	NA	NA	0.386	NA	NA	NA	NA	NA	NA	NA
APW6	8/23/2019	NA	NA	NA	NA	NA	NA	NA	0.314	NA	NA	NA	NA	NA	NA	NA
APW6	2/4/2020	NA	NA	NA	NA	NA	NA	NA	0.483	NA	NA	NA	NA	NA	NA	NA
APW6	7/28/2020	NA	NA	NA	NA	NA	NA	NA	0.564	NA	NA	NA	NA	NA	NA	NA
Downgradient W																
APW7 APW7	12/15/2015 1/21/2016	<0.003 <0.003	0.0039	0.35	<0.001 <0.001	<0.001 <0.001	<0.004 <0.004	<0.002 <0.002	0.467	<0.001 0.0015	<0.01 <0.01	<0.0002 <0.0002	0.014 0.0083	1.16 1.06	<0.001 <0.001	<0.001 <0.001
APW7 APW7	5/3/2016	< 0.003	0.0065	0.40	<0.001	< 0.001	<0.004	<0.002	0.38	<0.0015	< 0.01	<0.0002	0.0083	1.06	<0.001	< 0.001
APW7	8/1/2016	<0.003	0.0040	0.41	<0.001	<0.001	<0.004	<0.002	0.462	<0.001	< 0.01	<0.0002	0.0060	1.32	<0.001	<0.001
APW7	10/26/2016	< 0.003	0.0058	0.50	<0.001	<0.001	<0.004	< 0.002	0.425	<0.001	<0.01	< 0.0002	0.0054	2.02	<0.001	<0.001
APW7	1/26/2017	< 0.003	0.0062	0.45	< 0.001	< 0.001	<0.004	<0.002	0.352	<0.001	<0.01	< 0.0002	0.0072	1.82	< 0.001	< 0.001
APW7 APW7	4/24/2017	< 0.003	0.0077	0.45	<0.001	< 0.001	0.0049	<0.002	0.367	0.0022	< 0.01	<0.0002	0.0029	1.26	< 0.001	< 0.001
APW7 APW7	6/13/2017 11/17/2017	<0.003 NA	0.0087 NA	0.48 NA	<0.001 NA	<0.001 NA	<0.004 NA	<0.002 NA	0.425 0.508	0.0046 NA	<0.01 NA	<0.0002 NA	0.0039 NA	1.69 NA	<0.001 NA	<0.001 NA
APW7	5/18/2018	NA	NA	NA	NA	NA	NA	NA	0.308	NA	NA	NA	NA	NA	NA	NA
APW7	11/9/2018	NA	NA	NA	NA	NA	NA	NA	0.343	NA	NA	NA	NA	NA	NA	NA
APW7	2/22/2019	NA	NA	NA	NA	NA	NA	NA	0.734	NA	NA	NA	NA	NA	NA	NA
APW7	8/23/2019	NA	NA	NA	NA	NA	NA	NA	0.632	NA	NA	NA	NA	NA	NA	NA
APW7 APW7	2/5/2020	NA	NA	NA NA	NA	NA NA	NA NA	NA	0.332	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
APW7 APW8	7/28/2020 12/15/2015	NA <0.003	NA 0.0083	0.24	NA <0.001	NA <0.001	NA <0.004	NA <0.002	0.412	0.0016	0.013	NA <0.0002	0.0075	NA 1.95	NA <0.001	NA <0.001
APW8	12/16/2015	NA	0.0083 NA	0.24 NA	NA	NA	<0.004 NA	NA	0.44 I NA	0.0016 NA	0.013 NA	<0.0002 NA	0.0075 NA	1.95 NA	NA	NA
APW8	1/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
APW8	1/21/2016	<0.003	0.016	0.30	<0.001	<0.001	0.0049	<0.002	0.414	0.0023	0.012	<0.0002	0.0055	2.27	<0.001	<0.001
APW8	4/27/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Analytical Results - Appendix IV Newton Primary Ash Pond

	Antimony	Arsenic.	Barium.	Beryllium	Cadmium	Chromium	Cobalt.	Fluoride.	Lead.	Lithium.	Mercury,	Molvbdenum	Radium- 226 +	Selenium	Thallium	
Sample	Date	, total	total	total	, total	,total	, total	total	total	total	total	total	, total	Radium 228. tot	, total	total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
APW8	5/3/2016	<0.003	0.012	0.32	<0.001	<0.001	0.0045	<0.002	0.566	0.0021	<0.01	<0.0002	0.0063	1.88	0.0016	<0.001
APW8	8/2/2016	< 0.003	0.012	0.32	<0.001	<0.001	< 0.0040	<0.002	0.504	<0.0021	<0.01	< 0.0002	0.0054	0.857	< 0.001	< 0.001
APW8	10/26/2016	< 0.003	0.013	0.35	<0.001	<0.001	< 0.004	<0.002	0.463	< 0.001	<0.01	<0.0002	0.0055	0.812	< 0.001	< 0.001
APW8	1/25/2017	< 0.003	0.017	0.37	< 0.001	< 0.001	< 0.004	<0.002	0.404	< 0.001	< 0.01	< 0.0002	0.0057	0.499	< 0.001	< 0.001
APW8	4/25/2017	< 0.003	0.020	0.36	< 0.001	< 0.001	0.016	0.0056	0.418	0.0097	0.017	< 0.0002	0.0074	1.80	< 0.001	< 0.001
APW8	6/13/2017	< 0.003	0.017	0.39	< 0.001	< 0.001	0.010	0.0043	0.449	0.0075	0.012	< 0.0002	0.0081	2.08	< 0.001	< 0.001
APW8	11/17/2017	NA	NA	NA	NA	NA	NA	NA	0.474	NA	NA	NA	NA	NA	NA	NA
APW8	5/18/2018	NA	NA	NA	NA	NA	NA	NA	0.448	NA	NA	NA	NA	NA	NA	NA
APW8	11/9/2018	NA	NA	NA	NA	NA	NA	NA	0.373	NA	NA	NA	NA	NA	NA	NA
APW8	2/22/2019	NA	NA	NA	NA	NA	NA	NA	0.393	NA	NA	NA	NA	NA	NA	NA
APW8	8/23/2019	NA	NA	NA	NA	NA	NA	NA	0.337	NA	NA	NA	NA	NA	NA	NA
APW8	2/5/2020	NA	NA	NA	NA	NA	NA	NA	0.331	NA	NA	NA	NA	NA	NA	NA
APW8	7/28/2020	NA	NA	NA	NA	NA	NA	NA	0.441	NA	NA	NA	NA	NA	NA	NA
APW9	12/15/2015	< 0.003	0.0070	0.24	< 0.001	< 0.001	< 0.004	<0.002	0.574	0.0011	<0.01	< 0.0002	0.021	0.612	<0.001	< 0.001
APW9	1/20/2016	< 0.003	0.0067	0.24	< 0.001	< 0.001	< 0.004	<0.002	0.468	0.0044	< 0.01	< 0.0002	0.023	0.743	< 0.001	< 0.001
APW9	5/3/2016	< 0.003	0.0080	0.32	< 0.001	< 0.001	< 0.004	<0.002	0.746	0.0051	< 0.01	< 0.0002	0.021	1.54	< 0.001	< 0.001
APW9	8/2/2016	< 0.003	0.014	0.41	<0.001	<0.001	<0.004	<0.002	0.532	< 0.001	<0.01	<0.0002	0.011	1.137	< 0.001	< 0.001
APW9	10/26/2016	< 0.003	0.016	0.47	< 0.001	< 0.001	< 0.004	<0.002	0.528	< 0.001	< 0.01	< 0.0002	0.010	1.18	< 0.001	< 0.001
APW9	1/25/2017	< 0.003	0.018	0.44	< 0.001	<0.001	< 0.004	<0.002	0.468	< 0.001	<0.01	< 0.0002	0.0075	1.78	<0.001	< 0.001
APW9	4/25/2017	< 0.003	0.017	0.38	<0.001	<0.001	<0.004	<0.002	0.515	<0.001	<0.01	0.00023	0.0053	1.07	< 0.001	< 0.001
APW9	6/13/2017	< 0.003	0.0039	0.11	<0.001	< 0.001	< 0.004	<0.002	0.755	<0.001	<0.01	<0.0002	0.016	0.984	<0.001	<0.001
APW9	11/18/2017	NA	NA	NA	NA	NA	NA	NA	0.655	NA	NA	NA	NA	NA	NA	NA
APW9	5/18/2018	NA	NA	NA	NA	NA	NA	NA	0.467	NA	NA	NA	NA	NA	NA	NA
APW9	11/9/2018	NA	NA	NA	NA	NA	NA	NA	0.73	NA	NA	NA	NA	NA	NA	NA
APW9	2/22/2019	NA	NA	NA	NA	NA	NA	NA	0.714	NA	NA	NA	NA	NA	NA	NA
APW9	8/23/2019	NA	NA	NA	NA	NA	NA	NA	0.621	NA	NA	NA	NA	NA	NA	NA
APW9	2/19/2020	NA	NA	NA	NA	NA	NA	NA	0.453	NA	NA	NA	NA	NA	NA	NA
APW9	7/28/2020	NA	NA	NA	NA	NA	NA	NA	0.537	NA	NA	NA	NA	NA	NA	NA
APW10	12/16/2015	<0.003	0.0034	0.038	<0.001	<0.001	<0.004	<0.002	0.328	<0.001	0.030	<0.0002	0.0094	0.755	<0.001	<0.001
APW10	1/20/2016	< 0.003	0.0043	0.042	<0.001	<0.001	<0.004	<0.002	<0.25	<0.001	0.021	<0.0002	0.011	1.16	<0.001	<0.001
APW10	5/3/2016	<0.003	0.0083	0.040	<0.001	<0.001	<0.004	<0.002	0.448	<0.001	0.023	<0.0002	0.010	0.799	<0.001	<0.001
APW10	8/2/2016	<0.003	0.0092	0.037	<0.001	<0.001	<0.004	<0.002	0.367	<0.001	0.026	<0.0002	0.0091	0.600	<0.001	<0.001
APW10	10/26/2016	< 0.003	0.0090	0.040	< 0.001	< 0.001	< 0.004	<0.002	0.371	< 0.001	0.027	< 0.0002	0.0093	0.556	< 0.001	< 0.001
APW10	1/25/2017	< 0.003	0.010	0.035	< 0.001	< 0.001	< 0.004	<0.002	0.258	<0.001	0.023	<0.0002	0.0085	0.430	<0.001	< 0.001
APW10	4/25/2017	< 0.003	0.0084	0.031	< 0.001	< 0.001	< 0.004	<0.002	0.289	< 0.001	0.026	< 0.0002	0.0071	0.604	< 0.001	< 0.001
APW10	6/13/2017	< 0.003	0.0035	0.027	< 0.001	< 0.001	< 0.004	<0.002	0.344	< 0.001	0.026	< 0.0002	0.0091	0.897	< 0.001	< 0.001
APW10	11/18/2017	NA	NA	NA	NA	NA	NA	NA	0.414	NA	NA	NA	NA	NA	NA	NA
APW10	5/18/2018	NA	NA	NA	NA	NA	NA	NA	0.335	NA	NA	NA	NA	NA	NA	NA
APW10	11/9/2018	NA	NA	NA	NA	NA	NA	NA	0.281	NA	NA	NA	NA	NA	NA	NA
APW10	2/22/2019	NA	NA	NA	NA	NA	NA	NA	0.276	NA	NA	NA	NA	NA	NA	NA
APW10	8/23/2019	NA	NA	NA	NA	NA	NA	NA	0.359	NA	NA	NA	NA	NA	NA	NA
APW10	2/5/2020	NA	NA	NA	NA	NA	NA	NA	< 0.25	NA	NA	NA	NA	NA	NA	NA
APW10	7/28/2020	NA	NA	NA	NA	NA	NA	NA	0.356	NA	NA	NA	NA	NA	NA	NA

Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter;

ATTACHMENT 6 – SITE HYDROGEOLOGY AND STRATIGRAPHIC CROSS-SECTIONS OF THE SITE

CONCEPTUAL SITE MODEL AND DESCRIPTION OF SITE HYDROGEOLOGY (PRIMARY ASH POND)

The Newton Power Station (Power Station) conceptual site model (CSM) and Description of Site Hydrogeology for the Primary Ash Pond (PAP) located near Newton, Illinois is described in the following sections.

REGIONAL SETTING

The PAP is located in Jasper County in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The PAP lies at the southeastern portion of the Springfield Plain of the Till Plains section, the largest physiographic division in Illinois, covering approximately four-fifths of the state. It is characterized by its flatness and shallowly entrenched drainage. The unlithified geologic deposits in the region range from 100 to 120 feet (ft) thick and are derived from recent river deposition (alluvium), glacial outwash, and glacial till deposits. The unlithified deposits directly overly Pennsylvanian Mattoon Formation bedrock.

The Mattoon Formation is the youngest formation in the Pennsylvanian System in Illinois. It is underlain by the Bond Formation, while the top is mostly an erosional surface overlain by Pleistocene glacial deposits. The Mattoon Formation has a maximum thickness of more than 600 feet in the central part of the Illinois Basin in Jasper County. It is characterized by a complex sequence of thin limestones, coals, black fissile shales, underclays, thick gray shales, and several well-developed sandstones. Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations (Lineback, 1979; Willman et al., 1975). Borings advanced at the Power Station indicate that the elevation of the top of the bedrock surface at the PAP is approximately 400 to 450 ft above mean sea level (msl). The depth to bedrock varies widely in the area owing to the undulatory nature of the eroded upper bedrock surface and ranges from approximately 90 to 120 ft. Logs indicate that the lithology of the uppermost bedrock is mostly shale.

SITE GEOLOGY

The unconsolidated deposits occurring at the PAP include the following units (beginning at the ground surface):

- Upper Confining Unit Low permeability clays and silts, including the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east, underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) and Vandalia (Till) Members of the Glasford Formation.
- Uppermost Aquifer Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation.
- Lower Confining Unit Thick, very low permeability silty clay diamictons of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation.
- Bedrock Pennsylvanian-age Mattoon Formation that is mostly shale near the bedrock surface, but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones. The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the PAP, but is typically encountered at 90 to 120 ft below ground surface (bgs).

Two cross-sections showing the subsurface materials encountered at the PAP is included as an attachment to this demonstration.

SITE HYDROGEOLOGY

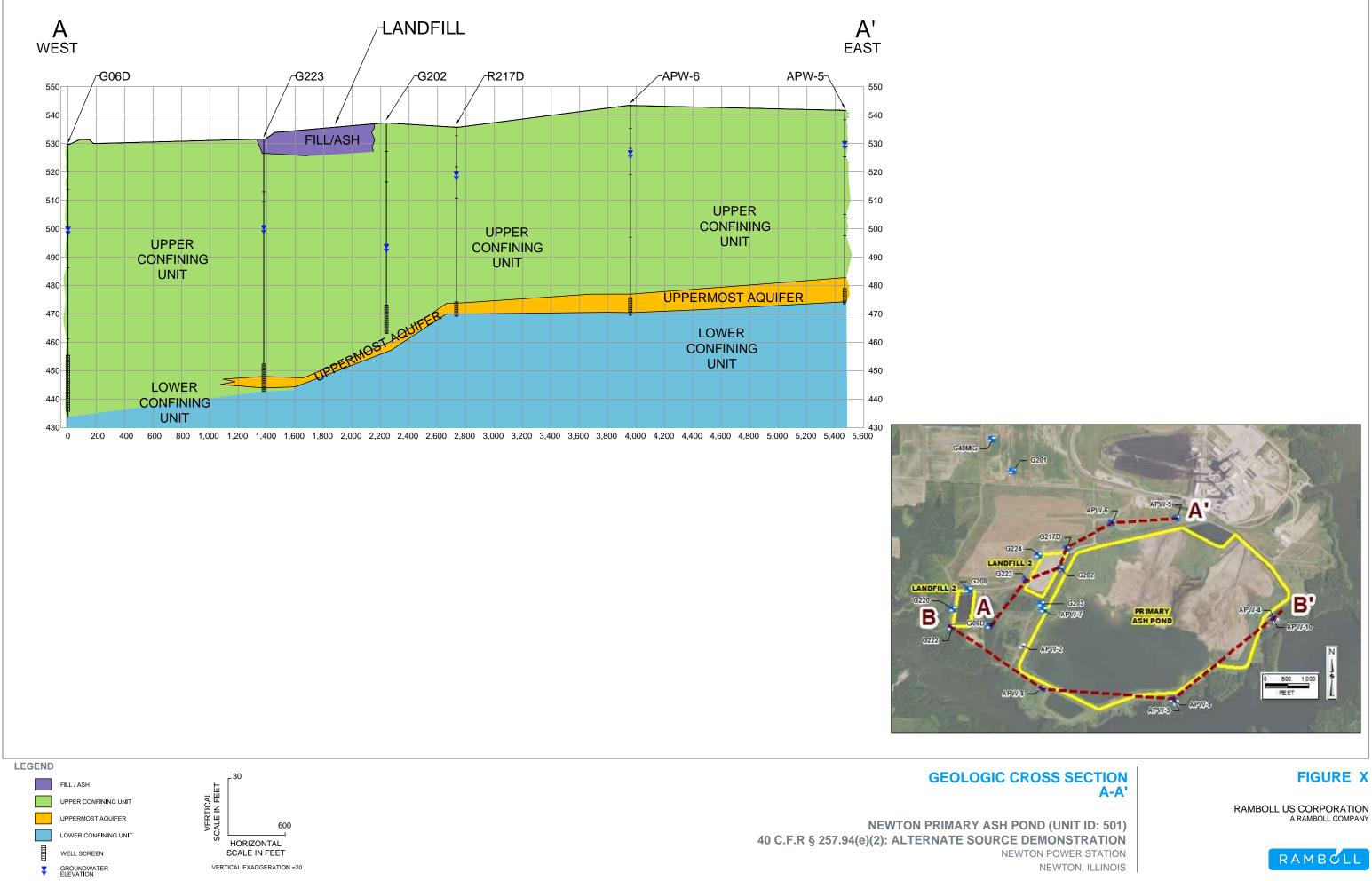
The CCR groundwater monitoring system consists of six monitoring wells installed in the uppermost aquifer and adjacent to the PAP (APW5, APW6, APW7, APW8, APW9 and APW10) (see Monitoring Well Location Map, and Well Construction Diagrams and Drilling Logs attached to this demonstration). The unit utilizes two background monitoring wells (APW5 and APW6) as part of the CCR groundwater monitoring system.

Hydraulic Conductivity

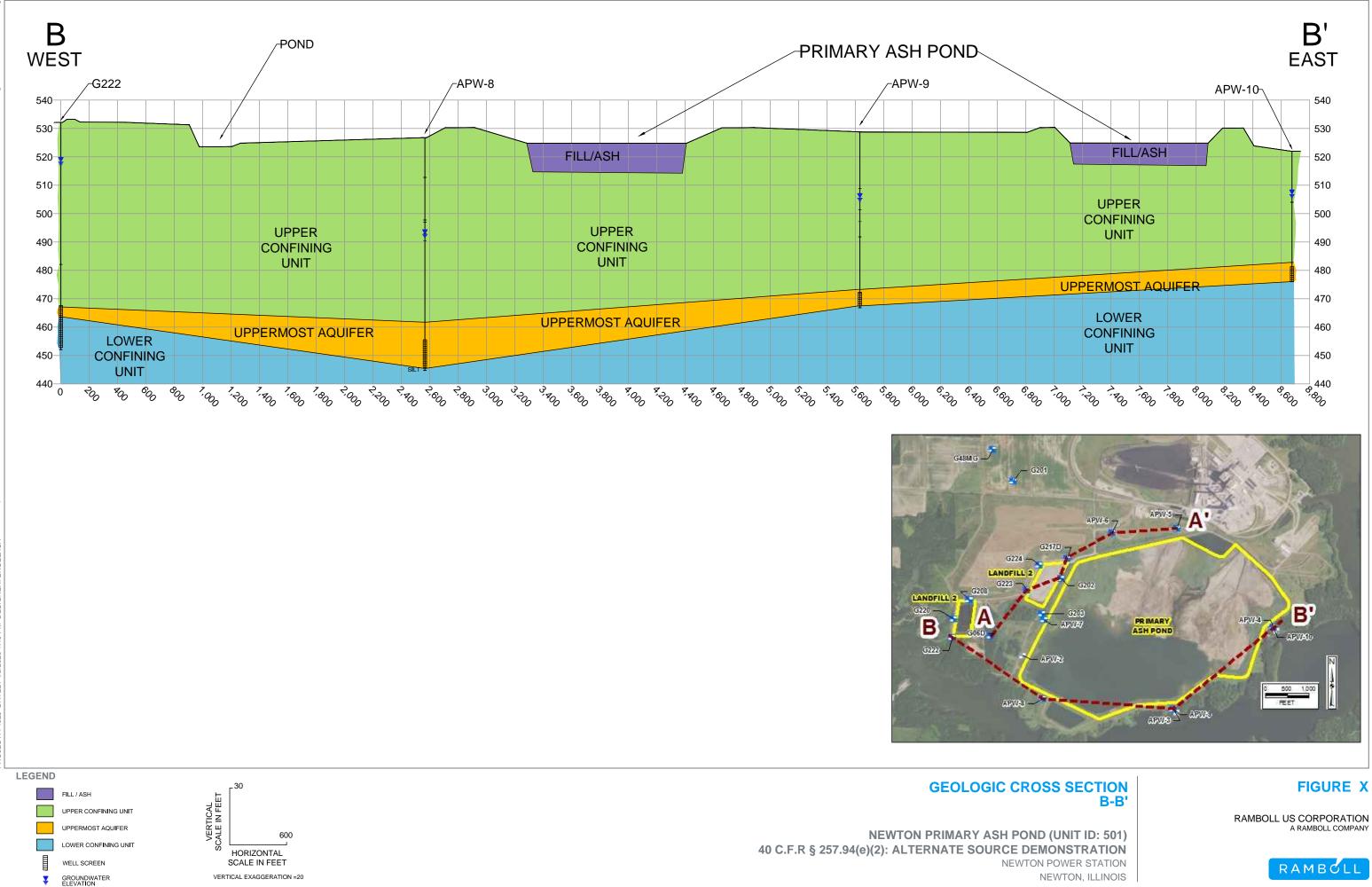
Hydraulic conductivity/slug tests were completed in wells screened in the unlithified material during prior site investigations and by NRT in April 2017. The hydraulic conductivity values determined from 15 individual monitoring wells within the uppermost aquifer ranged from 3.9×10^{-8} to 3.6×10^{-2} centimeters per second (cm/s). The geometric mean of the hydraulic conductivity for NRT tested monitoring wells in the Uppermost Aquifer, excluding one outlier, is 2.5×10^{-4} cm/s.

The uppermost unit intercepted in the area of the PAP is the silty to sandy clay of the "Upper Drift", or aquitard, as identified in the Rapps' 1997 landfill investigation and consists of Peoria Silt, Sangamon Soil, and/or Hagarstown Member. The hydraulic conductivity of this unit, as tested at monitoring wells near the landfill with screen depths between 8 and 36 ft bgs (Rapps, 1997), ranged from 2.4 x 10^{-6} to 6.1×10^{-5} cm/s with a geometric mean of 1.7×10^{-5} cm/s. Three in-situ tests conducted by NRT of the uppermost materials near the Primary Ash Pond, on wells screened between 7 and 20 ft bgs, had a geometric mean hydraulic conductivity of 1.3×10^{-5} cm/s.

Groundwater Elevations, Flow Direction and Velocity


Groundwater elevations across the PAP ranged from 491 to 530 ft msl from December 2015 to June 2020. Groundwater flow in the Uppermost Aquifer beneath the eastern portion of PAP is generally to the south toward Newton Lake. The flow direction diverges to the southwest beneath the western portion of the PAP, consistent with groundwater flow in the area converging between the PAP and the Phase 2 Landfill to the west (see Groundwater Contour Maps attached to this demonstration). Calculated groundwater flow velocity based on the January and June 2017 groundwater contours was 0.12 ft/day.

REFERENCES


Lineback, J., 1979, Quaternary Deposits of Illinois: Illinois State Geological Survey map, scale 1:500,000.

Willman, H.B., E. Atherton, T.C. Buschbach, C. Collinson, J.C. Frye, M.E. Hopkins, J.A. Lineback, and J.A. Simon, 1975, Handbook of Illinois Stratigraphy: Illinois State Geological Survey, Bulletin 95, 261 p.

Rapps Engineering and Applied Science, 1997, Hydrogeologic Investigation and Groundwater Monitoring Program, CIPS – Newton Power Station Landfill, Jasper County, Illinois, in Newton Power Station Landfill, Application for Landfill Permit.

ATTACHMENT 7 – STRUCTURAL STABILITY ASSESSMENT

Submitted to Illinois Power Generating Company 6725 North 500th Street Newton, IL 62448 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Structural Stability Assessment

For

Primary Ash Pond At Newton Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Primary Ash Pond at the Illinois Power Generating Company Newton Power Station meets the structural stability assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(d). The Primary Ash Pond is located near Newton, Illinois in Jasper County, approximately 0.2 miles southwest of the Newton Power Station. The Primary Ash Pond serves as the wet impoundment basin for CCR produced by the Newton Power Station.

The Primary Ash Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that an initial structural stability assessment for an existing CCR surface impoundment be completed by October 17, 2016. In general, the initial structural stability assessment must document that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial structural stability assessment was conducted in accordance with the requirements of 40 CFR § 257.73(d). The owner or operator must prepare a periodic structural stability assessment every five years.

2 Initial Structural Stability Assessment

40 CFR §257.73(d)(1)

The owner or operator of the CCR unit must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. The assessment must, at a minimum, document whether the CCR unit has been designed, constructed, operated, and maintained with [the standards in (d)(1)(i)-(vii)].

An initial structural stability assessment has been performed to document that the design, construction, operation and maintenance of the Primary Ash Pond is consistent with recognized and generally accepted good engineering practices and meets the standards in 257.73(d)(1)(i)-(vii). The results of the structural stability assessment are discussed in the following sections. Based on the assessment and its results, the design, construction, operation, and maintenance of the Primary Ash Pond were found to be consistent with recognized and generally accepted good engineering practices.

2.1 Foundations and Abutments (§257.73(d)(1)(i))

CCR unit designed, constructed, operated, and maintained with stable foundations and abutments.

The stability of the foundations was evaluated using soil data from field investigations and reviewing design drawings, operational and maintenance procedures, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the foundations. The Primary Ash Pond is a ring dike structure and does not have abutments.

The foundation consists of stiff to hard soil, which indicates stable foundations. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the foundation. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for Primary Ash Pond at Newton Power Station* (October 2016). A review of operational and maintenance procedures as well as current and past performance of the dikes has determined appropriate processes are in place for continued operational performance.

Based on the conditions observed by AECOM, the Primary Ash Pond was designed and constructed with stable foundations. Operational and maintenance procedures are in place to address any issues related to the stability of foundations; therefore, the Primary Ash Pond meets the requirements in §257.73(d)(1)(i).

2.2 Slope Protection (§257.73(d)(1)(ii))

CCR unit designed, constructed, operated, and maintained with adequate slope protection to protect against surface erosion, wave action and adverse effects of sudden drawdown.

The adequacy of slope protection was evaluated by reviewing design drawings, operational and maintenance procedures, and conditions observed in the field by AECOM.

Based on this evaluation, adequate slope protection was designed and constructed at the Primary Ash Pond. No evidence of significant areas of erosion or wave action were observed. The interior and exterior slopes are protected with vegetation. Where the exterior slopes are adjacent to Newton Lake, they are protected with crushed stone erosion protection. Crushed stone erosion protection is also located on the interior slopes in limited areas. Operational and maintenance procedures are in place to repair the vegetation as needed to protect against

surface erosion or wave action. Sudden drawdown of the pool in the Primary Ash Pond is not expected to occur due to operational controls associated with lowering the pool level. Therefore, slope protection to protect against the adverse effects of sudden drawdown is not required as sudden drawdown conditions are not expected to occur. Therefore, the Primary Ash Pond meets the requirements in §257.73(d)(1)(ii).

2.3 Dike Compaction (§257.73(d)(1)(iii))

CCR unit designed, constructed, operated, and maintained with dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit.

The density of the dike materials was evaluated using soil data from field investigations and reviewing design drawings, operational and maintenance procedures, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the dike over the range of expected loading conditions as defined within §257.73(e)(1).

Based on this evaluation, the dike consists of stiff material, with isolated zones of soft, medium stiff, and very stiff material, which is indicative of mechanically compacted dikes. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the dike; therefore, the original design and construction of the Primary Ash Pond included sufficient dike compaction. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for Primary Ash Pond at Newton Power Station* (October 2016); Operational and maintenance procedures are in place to identify and mitigate deficiencies in order to maintain sufficient density and compaction of the dikes to withstand the range of loading conditions. Therefore, the Primary Ash Pond meets the requirements in §257.73(d)(1)(iii).

2.4 Vegetated Slopes (§257.73(d)(1)(iv))¹

CCR unit designed, constructed, operated, and maintained with vegetated slopes of dikes and surrounding areas, except for slopes which have an alternate form or forms of slope protection.

The adequacy of slope vegetation was evaluated by reviewing design drawings, operational and maintenance procedures, and conditions observed in the field by AECOM.

Based on this evaluation, the vegetation on the interior and exterior slopes is adequate as no substantial bare or overgrown areas were observed. Crushed stone erosion protection is present on portions of the exterior slopes adjacent to Newton Lake and is used as an alternative form of slope protection, which is adequate as significant areas of erosion were not observed. Therefore, the original design and construction of the Primary Ash Pond included adequate vegetation of the dikes and surrounding areas. Adequate operational and maintenance procedures are in place to regularly manage vegetation growth, including mowing and seeding any bare areas, as evidenced by the conditions observed by AECOM. Therefore, the Primary Ash Pond meets the requirements in §257.73(d)(1)(iv).

¹ As modified by court order issued June 14, 2016, Utility Solid Waste Activities Group v. EPA, D.C. Cir. No. 15-1219 (order granting remand and vacatur of specific regulatory provisions).

2.5 Spillways (§257.73(d)(1)(v))

CCR unit designed, constructed, operated, and maintained with a single spillway or a combination of spillways configured as specified in [paragraph (A) and (B)]:

(A) All spillways must be either:

(1) of non-erodible construction and designed to carry sustained flows; or

(2) earth- or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected.

- (B) The combined capacity of all spillways must adequately manage flow during and following the peak discharge from a:
 - (1) Probable maximum flood (PMF) for a high hazard potential CCR surface impoundment; or
 - (2) 1000-year flood for a significant hazard potential CCR surface impoundment; or
 - (3) 100-year flood for a low hazard potential CCR surface impoundment.

The spillways were evaluated using design drawings, operational and maintenance procedures, and conditions observed in the field by AECOM. Additionally, hydrologic and hydraulic analyses were completed to evaluate the capacity of the spillway relative to inflow estimated for the 1,000-year flood event for the significant hazard potential Primary Ash Pond. The hazard potential classification assessment was performed by Stantec in 2016 in accordance with §257.73(a)(2).

The spillways are comprised of concrete and sliplined corrugated metal pipes, which are non-erodible materials designed to carry sustained flows. The capacity of the spillway was evaluated using hydrologic and hydraulic analysis performed per §257.82(a). The analysis found that the spillways can adequately manage flow during peak discharge resulting from the 1,000-year storm event without overtopping of the embankments. The hydrologic and hydraulic analyses are discussed in the *CCR Rule Report: Initial Inflow Design Flood Control System Plan for Primary Ash Pond at Newton Power Station* (October 2016). Operational and maintenance procedures are in place to repair any issues with the spillways and remove debris or other obstructions from the spillways, as evidenced by the conditions observed by AECOM. As a result, these procedures are appropriate for maintaining the spillways. Therefore, the Primary Ash Pond meets the requirements in §257.73(d)(1)(v).

2.6 Stability and Structural Integrity of Hydraulic Structures (§257.73(d)(1)(vi))

CCR unit designed, constructed, operated, and maintained with hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure.

The stability and structural integrity of the slip-lined corrugated metal pipe (CMP) outflow pipes passing through the dike of the Primary Ash Pond were evaluated using design drawings, operational and maintenance procedures, closed-circuit television (CCTV) pipe inspection, and conditions observed in the field by AECOM. No other hydraulic structures are known to pass through the dike of or underlie the base of the Primary Ash Pond.

The CCTV pipe inspection of the slip-lined CMP outflow pipes covered the complete length of both pipes and found the pipes to be free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris that may negatively affect the operation of the hydraulic structure. Operational and maintenance procedures are in place to repair any issues with the spillway and remove debris or other obstructions from the spillways, as evidenced by the conditions observed by AECOM. As a result, these procedures are appropriate for maintaining the spillway. Therefore, the Primary Ash Pond meets the requirements in §257.73(d)(1)(vi).

2.7 Downstream Slope Inundation/Stability (§257.73(d)(1)(vii))

CCR unit designed, constructed, operated, and maintained with, for CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.

The structural stability of the downstream slopes of the Primary Ash Pond was evaluated by comparing the location of the Primary Ash Pond relative to adjacent water bodies using published Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM), aerial imagery, conditions observed in the field by AECOM, and sudden drawdown slope stability analyses.

Based on this evaluation, Newton Lake is adjacent to the southern downstream slopes of the Primary Ash Pond. No other rivers, streams, or lakes are adjacent to the downstream slopes of the Primary Ash Pond. Sudden drawdown slope stability analyses were performed at 4 cross sections adjacent to Newton Lake, and considered a drawdown from a normal pool to empty pool condition, thereby evaluating both sudden drawdown and empty and low pool conditions. The resulting factors of safety were found to satisfy the criteria listed in United States Army Corps of Engineers Engineer Manual 1110-2-1902 for drawdown from normal to low pool, as factor of safety criteria for sudden drawdown slope stability is not expressly stated as a requirement of §257.73(d)(1)(vii). Therefore, the Primary Ash Pond meets the requirements listed in §257.73(d)(1)(vii).

Certification Statement 3

CCR Unit: Illinois Power Generating Company; Newton Power Station; Primary Ash Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial structural stability assessment dated October 13, 2016 was conducted in accordance with the requirements of 40 CFR § 257.73(d).

Jus his Printed Name

Date

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With nearly 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$19 billion.

More information on AECOM and its services can be found at <u>www.aecom.com</u>.

1001 Highlands Plaza Drive Wes Suite 300 St. Louis, MO 63110 1-314-429-0100 **ATTACHMENT 8 – SAFETY FACTOR ASSESSMENT**

Submitted to Illinois Power Generating Company 6725 North 500th Street Newton, IL 62448 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

Primary Ash Pond At Newton Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Primary Ash Pond at the Illinois Power Generating Company Newton Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The Primary Ash Pond is located near Newton, Illinois in Jasper County, approximately 0.2 miles southwest of the Newton Power Station. The Primary Ash Pond serves as the wet impoundment basin for CCR produced by the Newton Power Station.

The Primary Ash Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.

2 Initial Safety Factor Assessment

40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of the Primary Ash Pond. The exploration consisted of hollow-stem auger borings, cone penetration testing, piezometer installation and laboratory program including strength, hydraulic conductivity, consolidation, and index testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

In general, the subsurface conditions at the Primary Ash Pond consist of medium stiff to stiff embankment fill (clay) overlying stiff to hard clay, which in turn overlies very stiff to very hard glacial till. Phreatic water is above the embankment/foundation of the Primary Ash Pond.

Ten (10) representative cross sections were analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross sections were located to represent critical surface geometry, subsurface stratigraphy, and phreatic conditions across the site. Each cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

The Soils Susceptible to Liquefaction loading condition, §257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibly evaluation did not find soils susceptible to liquefaction within the Primary Ash Pond dikes. As a result, this loading condition is not applicable to the Primary Ash Pond at the Newton Power Station.

Results of the Initial Safety Factor Assessments for the critical cross-section for each loading condition (i.e., the lowest calculated factor of safety out of the 10 cross sections analyzed for each loading condition) are listed in Table 1.

Loading Conditions	§257.73(e)(1) Subsection	Minimum Factor of Safety	Calculated Factor of Safety
Maximum Storage Pool Loading	(i)	1.50	1.66
Maximum Surcharge Pool Loading	(ii)	1.40	1.66
Seismic	(iii)	1.00	1.07
Soils Susceptible to Liquefaction	(iv)	1.20	Not Applicable

 Table 1 – Summary of Initial Safety Factor Assessments

Based on this evaluation, the Primary Ash Pond meets the requirements in §257.73(e)(1).

3 **Certification Statement**

CCR Unit: Illinois Power Generating Company; Newton Power Station; Primary Ash Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 15, 2016 meets the requirements of 40 CFR §257.73(e).

Printed Name

A MODER.SC. Date

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With nearly 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$19 billion.

More information on AECOM and its services can be found at <u>www.aecom.com</u>.

1001 Highlands Plaza Drive Wes Suite 300 St. Louis, MO 63110 1-314-429-0100 ATTACHMENT 9 – ADDENDUM TO THE CLOSURE PLAN (SEPTEMBER 2020)

40 C.F.R. § 257.102(B)(3): Closure Plan Addendum Newton Primary Ash Pond September 29, 2020

ADDENDUM NO. 1 NEWTON PRIMARY ASH POND CLOSURE PLAN

This Addendum No. 1 to the Closure Plan for Existing Coal Combustion Residuals (CCR) Impoundment for the Newton Primary Ash Pond at the Newton Power Station, Revision 0 - October 17, 2016 has been prepared to meet the requirements of Title 40 of the Code of Federal Regulations (40 C.F.R.) Section 257.103(f)(2)(v)(D) as a component of the demonstration that the Newton Primary Ash Pond qualifies for a site-specific alternative deadline to initiate closure due to permanent cessation of a coal-fired boiler by a certain date.

The Newton Primary Ash Pond will begin construction of closure by July 17, 2024 and cease receipt and placement of CCR and non-CCR wastestreams no later than July 17, 2027 as indicated in the Newton Power Station Alternative Closure Demonstration dated September 29, 2020. Closure will be completed by October 17, 2028 within the 5-year timeframe included in the Closure Schedule identified in the Newton Primary Ash Pond Closure Plan in accordance with 40 C.F.R. § 257.102(f)(ii).

All other aspects of the Closure Plan remain unchanged.

CERTIFICATION

I, Eric J. Tlachac, a Qualified Professional Engineer in good standing in the State of Illinois, certify that the information in this addendum is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

04

Eric J. Tlachac Qualified Professional Engineer 062-063091 Illinois Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc. Date: September 29, 2020

CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 **O** 816-333-9400 **F** 816-333-3690 www.burnsmcd.com