

Cynthia Vodopivec
Illinois Power Generating Company
Luminant
6555 Sierra Dr.
Irving, TX 75039

November 25, 2020

Sent via email

Mr. Andrew R. Wheeler, EPA Administrator Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Mail Code 5304-P Washington, DC 20460

Re: Newton Power Station Revised Alternative Closure Demonstration

Dear Administrator Wheeler:

Illinois Power Generating Company (IPGC) submits this revised request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(2) for the Primary Ash Pond located at the Newton Power Station near Newton, Illinois. IPGC is requesting an extension pursuant to 40 C.F.R. § 257.103(f)(2) so that the Primary Ash Pond may continue to receive CCR and non-CCR wastestreams after April 11, 2021, and complete closure no later than October 17, 2028.

The enclosed demonstration prepared by Burns & McDonnell replaces the demonstration that was previously submitted by IPGC to EPA on September 29, 2020. This demonstration addresses all of the criteria in 40 C.F.R. § 257.103(f)(2)(i)-(iv) and contains the documentation required by 40 C.F.R. § 257.103(f)(2)(v). As allowed by the agency, in lieu of hard copies of these documents, electronic files were submitted to Kirsten Hillyer, Frank Behan, and Richard Huggins via email. The demonstration is also available on IPGC's publicly available website: https://www.luminant.com/ccr/

Sincerely,

Cynthia Vodopivec

Cynthin E Wody

VP - Environmental Health & Safety

Enclosure

cc: Kirsten Hillyer Frank Behan

Richard Huggins



## CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline



#### **Illinois Power Generating Company**

Newton Power Station Project No. 122702

Revision 1 11/25/2020

# CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

prepared for

Illinois Power Generating Company Newton Power Station Newton, Illinois

Project No. 122702

**Revision 1** 11/25/2020

prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

#### INDEX AND CERTIFICATION

## Illinois Power Generating Company CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline Project No. 122702

#### Report Index

| <u>Chapter</u><br><u>Number</u> | Chapter Title                                     | Number of Pages |
|---------------------------------|---------------------------------------------------|-----------------|
| 1.0                             | Executive Summary                                 | 1               |
| 2.0                             | Introduction                                      | 2               |
| 3.0                             | Documentation of No Alternative Disposal Capacity | 8               |
| 6.0                             | Documentation of Closure Completion Timeframe     | 4               |
| 7.0                             | Conclusion                                        | 1               |
| Appendix A                      | Site Plan                                         | 1               |

#### Certification

I hereby certify, as a Professional Engineer in the state of Illinois, that the information in this document as noted in the above Report Index was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Illinois Power Generating Company or others without specific verification or adaptation by the Engineer.

EDWARD T. TOHILL

O62-056915

Mary Tohill

Mary Tohill

11/25/20

LIC. EXPIRES

Edward T. Tohill, P.E. (Illinois License No. 062-056915)

Date: 11/25/20

#### **TABLE OF CONTENTS**

|     |      | <u>.</u>                                                                  | <u>Page No.</u> |
|-----|------|---------------------------------------------------------------------------|-----------------|
| 1.0 | EXE  | CUTIVE SUMMARY                                                            | 1-1             |
| 2.0 | INTE | RODUCTION                                                                 | 2-1             |
| 3.0 | DOC  | CUMENTATION OF NO ALTERNATIVE DISPOSAL CAPACITY                           | 3-1             |
|     | 3.1  | Site-Layout and Wastewater Processes                                      |                 |
|     | 3.2  | CCR Wastestreams                                                          |                 |
|     | 3.3  | Non-CCR Wastestreams                                                      | 3-6             |
| 4.0 | RISI | K MITIGATION PLAN                                                         | 4-1             |
| 5.0 | DOC  | CUMENTATION AND CERTIFICATION OF COMPLIANCE                               | 5-1             |
|     | 5.1  | Owner's Certification of Compliance - $\S 257.103(f)(2)(v)(C)(1)$         |                 |
|     | 5.2  | Visual representation of hydrogeologic information - § 257.103(f)(2)(v)   |                 |
|     | 5.3  | Groundwater monitoring results - $\S 257.103(f)(2)(v)(C)(3)$              | 5-2             |
|     | 5.4  | Description of site hydrogeology including stratigraphic cross-sections - |                 |
|     |      | § 257.103(f)(2)(v)(C)(4)                                                  |                 |
|     | 5.5  | Corrective measures assessment - § 257.103(f)(2)(v)(C)(5)                 | 5-2             |
|     | 5.6  | Remedy selection progress report - § 257.103(f)(2)(v)(C)(6)               |                 |
|     | 5.7  | Structural stability assessment - § 257.103(f)(2)(v)(C)(7)                |                 |
|     | 5.8  | Safety factor assessment - § 257.103(f)(2)(v)(C)(8)                       | 5-3             |
| 6.0 | DOC  | CUMENTATION OF CLOSURE COMPLETION TIMEFRAME                               | 6-1             |
| 7.0 | CON  | ICLUSION                                                                  | 7-1             |
|     |      | ( A – SITE PLAN AND NEARBY LANDFILLS<br>( B – WATER BALANCE DIAGRAM       |                 |
|     | . •  | ENT 1 – RISK MITIGATION PLAN                                              |                 |
| AII | ACHM | ENT 2 – MAP OF GROUNDWATER MONITORING WELL LOCATIONS                      |                 |
| ATT | ACHM | ENT 3 – WELL CONSTRUCTION DIAGRAMS AND DRILLING LOGS                      |                 |
| ATT | ACHM | ENT 4 – MAPS OF THE DIRECTION OF GROUNDWATER FLOW                         |                 |
| ATT | ACHM | ENT 5 – TABLES SUMMARIZING CONSTITUENT                                    |                 |
|     |      | CONCENTRATIONS AT EACH MONITORING WELL                                    |                 |
| ATT | ACHM | ENT 6 – SITE HYDROGEOLOGY AND STRATIGRAPHIC CROSS SECTIONS OF THE SITE    | -               |

ATTACHMENT 7 – STRUCTURAL STABILITY ASSESSMENT ATTACHMENT 8 – SAFETY FACTOR ASSESSMENT ATTACHMENT 9 – CLOSURE PLAN

#### **LIST OF TABLES**

|                                                     | <u>Page No.</u> |
|-----------------------------------------------------|-----------------|
| Table 3-1: Newton CCR Wastestreams                  | 3-2             |
| Table 3-2: Newton Non-CCR Wastestreams              | 3-6             |
| Table 3-3: Non-CCR Wastestream Offsite Disposal     | 3-8             |
| Table 6-1: Newton Primary Ash Pond Closure Schedule | 6-2             |

#### LIST OF ABBREVIATIONS

Abbreviation Term/Phrase/Name

CCR Coal Combustion Residual

CFR Code of Federal Regulations

ELG Rule Effluent Limitations Guidelines and Standards for the Steam Electric

Power Generating Point Source Category

EPA Environmental Protection Agency

IPGC Illinois Power Generating Company

POTW Publicly Owned Treatment Works

PSD Prevention of Significant Deterioration

Newton Newton Power Station

RCRA Resource Conservation and Recovery Act

SWPPP Stormwater Pollution Prevention Plan

#### 1.0 EXECUTIVE SUMMARY

Illinois Power Generating Company (IPGC) submits this request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(2) —"Permanent Cessation of a Coal-Fired Boiler(s) by a Date Certain"— for the Primary Ash Pond located at the Newton Power Station (Newton) in Illinois. The Primary Ash Pond is a 404-acre CCR surface impoundment used to manage CCR and non-CCR wastestreams at Newton. As discussed herein, the remaining boiler at the station will cease coal-fired operation no later than July 17, 2027, and the impoundment will complete closure no later than October 17, 2028. Therefore, IPGC is requesting an extension pursuant to 40 C.F.R. § 257.103(f)(2) so that the Primary Ash Pond may continue to receive CCR and non-CCR waste streams after April 11, 2021, and complete closure no later than October 17, 2028.

#### 2.0 INTRODUCTION

Newton is a 615-megawatt coal-fueled electric generating station near Newton, Illinois. Unit 1 remains in operation; however, Unit 2 was retired in 2016. Unit 1 is scheduled to cease coal-fired operation no later than July 17, 2027. The Newton facility includes two CCR units: the Primary Ash Pond that is the subject of this demonstration, and CCR Landfill 2. Newton uses the 404-acre Primary Ash Pond, which was constructed in 1977, to manage sluiced bottom ash, fly ash, economizer ash, and mill rejects, as well as non-marketable dry fly ash and non-CCR wastewaters. Fly ash is typically collected dry and either hauled offsite for beneficial use or disposed of in the Primary Ash Pond; however, there are certain operating conditions, typically associated with silo maintenance activities that require use of the hydrovactor to sluice fly ash to the impoundment. The various non-CCR wastewaters received originate from the coal pile runoff pond, oil water separator, wastewater sump (including ash hopper overflows, air heater wash water, boiler blowdown, boiler wash, other non-chemical metal cleaning and miscellaneous plant drains and sumps), water treatment building sump (including microfilter backwash, reverse osmosis reject, demineralizer regeneration flows, and condensate polisher regeneration flows), polisher pre-coat sump, and miscellaneous stormwater sources (including overflow from Lake Jake which does not receive any process flows). A site plan is provided in Appendix A, and the plant water balance diagram is included in Appendix B. Note that Lake Jake is not depicted on the water balance diagram.

On April 17, 2015, the Environmental Protection Agency (EPA) issued the federal Coal Combustion Residual (CCR) Rule, 40 C.F.R. Part 257, Subpart D, to regulate the disposal of CCR materials generated at coal-fueled units. The rule is being administered under Subtitle D of the Resource Conservation and Recovery Act (RCRA, 42 U.S.C. § 6901 et seq.). On August 28, 2020, the EPA Administrator issued revisions to the CCR Rule that require all unlined surface impoundments to initiate closure by April 11, 2021, unless an alternative deadline is requested and approved. 40 C.F.R. § 257.101(a)(1) (85 Fed. Reg. 53,516 (Aug. 28, 2020)). Specifically, owners and operators of a CCR surface impoundment may continue to receive CCR and non-CCR wastestreams if the facility will cease operation of the coal-fired boiler(s) and complete closure of the impoundments within certain specified timeframes. 40 C.F.R. § 257.103(f)(2). To qualify for an alternative closure deadline under § 257.103(f)(2), a facility must meet the following four criteria:

- 1. § 257.103(f)(2)(i) No alternative disposal capacity is available on-site or off-site. An increase in costs or the inconvenience of existing capacity is not sufficient to support qualification.
- 2. § 257.103(f)(2)(ii) Potential risks to human health and the environment from the continued operation of the CCR surface impoundment have been adequately mitigated;

- 3. § 257.103(f)(2)(iii) The facility is in compliance with the CCR rule, including the requirement to conduct any necessary corrective action; and
- 4. § 257.103(f)(2)(iv) The coal-fired boilers must cease operation and closure of the impoundment must be completed within the following timeframes:
  - a. For a CCR surface impoundment that is 40 acres or smaller, the coal-fired boiler(s) must cease operation and the CCR surface impoundment must complete closure no later than October 17, 2023.
  - b. For a CCR surface impoundment that is larger than 40 acres, the coal-fired boiler(s) must cease operation, and the CCR surface impoundment must complete closure no later than October 17, 2028.

Section 257.103(f)(2)(v) sets out the documentation that must be provided to EPA to demonstrate that the four criteria set out above have been met. Therefore, this demonstration is organized based on the documentation requirements of §§ 257.103(f)(2)(v)(A) - (D).

#### 3.0 DOCUMENTATION OF NO ALTERNATIVE DISPOSAL CAPACITY

To demonstrate that the criteria in § 257.103(f)(2)(i) has been met, the following provides documentation that no alternative disposal capacity is currently available on-site or off-site for each CCR and non-CCR wastestream that IPGC seeks to continue placing into the Primary Ash Pond after April 11, 2021. Consistent with the regulations, neither an increase in costs nor the inconvenience of existing capacity was used to support qualification under this criteria. Instead, as EPA explained in the preamble to the proposed Part A revisions, "it would be illogical to require [] facilities [ceasing power generation] to construct new capacity to manage CCR and non-CCR wastestreams." 84 Fed. Reg. 65,941, 65,956 (Dec. 2, 2019). EPA again reiterated in the preamble to the final revisions that "[i]n contrast to the provision under § 257.103(f)(1), the owner or operator does not need to develop alternative capacity because of the impending closure of the coal fired boiler. Since the coal-fired boiler will shortly cease power generation, it would be illogical to require these facilities to construct new capacity to manage CCR and non-CCR wastestreams." 85 Fed. Reg. at 53,547. Thus, new construction or the development of new alternative disposal capacity was not considered a viable option for any wastestream discussed below.

#### 3.1 Site-Layout and Wastewater Processes

The Primary Ash Pond receives all CCR sluice flows and a majority of the non-CCR wastewater flows onsite before discharging to the Secondary Pond and eventually to Newton Lake. The remaining plant process flows (non-contact cooling water) are routed through the Cooling Basin or Construction Runoff Pond, as shown on the water balance diagram in Appendix B. Sewage treatment flows and intake screen backwash are discharged to Newton Lake. The other onsite impoundments (Coal Pile Runoff Pond, Cooling Basin, Lake Jake, landfill ponds, the Secondary Pond, and Construction Runoff Pond) are not authorized to receive the CCR material and are not large enough to independently treat the total volume of the plant process water flows. The existing, active on-site landfill operates with one open landfill cell (Ash Landfill 2 on Figure 1). The existing landfill cell is substantially filled with CCR with limited long-term available airspace (less than one year of capacity) to accept an increased volume of CCR for disposal. A separate landfill cell (Ash Landfill 3) was constructed for the disposal of gypsum materials from the plant scrubber system, but the scrubber was ultimately not installed at Newton and the landfill cell was never placed into operation and therefore is currently inactive. Since the cell has been inactive for several years and having never been placed into service, it is currently unusable due to deterioration of the landfill cell freeze protection layer, and damage to the leachate collection system and cell separation tie-in berm. Neither landfill cell can accept sluiced materials and they are not currently permitted to receive bottom ash material (only fly ash and gypsum).

#### 3.2 CCR Wastestreams

IPGC evaluated each CCR wastestream placed in the Primary Ash Pond at Newton. For the reasons discussed below in Table 3-1, each of the following CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site.

**Table 3-1: Newton CCR Wastestreams** 

| CCR<br>Wastestreams                                                              | Estimated<br>Average<br>Flow<br>(MGD)          | Alternative Disposal Capacity Currently Available? YES/NO | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bottom Ash<br>Sluice (includes<br>economizer ash<br>and non-CCR<br>mill rejects) | 2.3                                            | NO                                                        | Alternative capacity is not currently available on or off-site and would have to be developed. Alternative capacity would need to be designed, permitted, and installed. Off-site alternative capacity would include development of on-site temporary tanks to support transport of sluice material offsite for disposal. Refer to the discussion below for a more detailed evaluation on the development of alternative capacity.                                                                                                                                                                                                                                                                                   |
| Dry Fly Ash                                                                      | NA (Dry) ~27,500 tons/year based on 2019 rates | Limited                                                   | The fly ash is initially collected dry, conditioned, and either sent off-site for beneficial reuse or placed in the Primary Ash Pond or landfill.  The conditioned fly ash placed in the Primary Ash Pond will facilitate pond closure in the near future. This beneficial reuse of the fly ash will be reflected in the final pond closure plan.  As discussed above, the active on-site landfill operates with one open landfill cell. The existing cell is nearly full, with less than one year of capacity available. The inactive landfill cell is not currently operational and would require extensive work before waste placement could begin.  Currently, off-site alternative capacity is not available as |
| Fly Ash Vacuum<br>(Hydrovactor)                                                  | 1.4                                            | NO                                                        | This flow is used to create a vacuum through the cyclone separators that remove the dry fly ash. This water must continue to be routed to the Primary Ash Pond as there is no other vacuum source available onsite to remove fly ash from the unit and no other ponds are large enough to treat these surges of water or receive any potential CCR carryover.  Alternative capacity would need to be designed, permitted, and installed. Off-site alternative capacity would include development of on-site temporary tanks to support transport of sluice material offsite for disposal. Refer to the discussion below for a more detailed evaluation on the development of alternative capacity.                   |

| CCR<br>Wastestreams | Estimated<br>Average<br>Flow<br>(MGD) | Alternative Disposal Capacity Currently Available? YES/NO | Details                                                                                                                                                                                                                               |
|---------------------|---------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fly Ash Sluice      | Intermittent                          | NA                                                        | The sluicing system is used as a back-up to the dry system during maintenance of that equipment or to empty the silos for maintenance at those locations. IPGC will cease sluicing fly ash to the Primary Ash Pond by April 11, 2021. |

IPGC evaluated the following on-site and off-site alternative capacity options for these CCR wastestreams:

- Bottom ash sluice (2.3 MGD):
  - On-site alternative capacity is currently not available and would need to be developed. The Coal Pile Runoff Pond, Cooling Basin, Lake Jake, landfill ponds, Secondary Pond, and Construction Runoff Pond are not CCR surface impoundments and cannot receive CCR material.
  - o Development of on-site alternative capacity would require the design, permitting, and installation of a new treatment system including CCR ponds, clarifiers, and/or storage tank(s), to provide the necessary retention time to meet the NPDES permit limits. The environmental permitting would include a modification to the current individual NPDES permit (to allow for the rerouting of this wastestream to another outfall), a general NPDES stormwater construction permit (includes threatened and endangered species and historic preservation assessments), a construction & operating permit under the Illinois CCR rule (35 IAC 845), and a Stormwater Pollution Prevention Plan (SWPPP) at a minimum which would require a minimum of three years to implement.
  - Off-site alternative capacity is currently not available and would need to be developed.

    Developed off-site alternative capacity would consist of both temporary on-site wet storage (frac tanks) and off-site transportation via tanker trucks. With an average daily flow of 2.3 MGD of sluice water, approximately 110 frac tanks and 307 daily tanker trucks (~7,500 gallons per truck to maintain DOT weight restrictions) would be required, if a local publicly owned treatment works (POTW) could be identified to receive it. The daily tanker truck traffic would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a Prevention of Significant Deterioration (PSD) permit and modification under the Clean Air Act Permit Program if the calculated increases in emissions are over the PSD limits. Setting up

arrangements for a local POTW to accept the wastewater would prove to be difficult since this amount of wastewater would most likely upset their treatment systems causing them to exceed their NPDES discharge limits. The potential for leaks/spills from the tank system or transportation of the wastewater offsite does exist. Furthermore, the temporary wet storage needed to accommodate off-site disposal would require reconfiguration, design, installation, and associated environmental permitting which would require a minimum of two years to implement. For all of these reasons, IPGC has determined that offsite disposal is not feasible for these flows at Newton.

- Dry fly ash (Approx. 27,500 tons/year handled dry in 2019):
  - Limited on-site alternative capacity is currently available, therefore additional on-site capacity would need to be developed.
  - On-site alternative capacity would require the design, permitting, and installation of a new CCR unit or improvements to the existing inactive landfill cell (Ash Landfill 3, which must meet the criteria for a new CCR landfill and collect the necessary groundwater data before being placed into service). The environmental permitting would include a general NPDES stormwater construction permit (includes threatened and endangered species and historic preservation assessments), a construction & operating permit under the Illinois CCR rule (35 IAC 845), and a SWPPP at a minimum. Based on our experience with environmental permitting, this effort could require three to four years.
  - Off-site alternative capacity is currently not available and would need to be developed.

    Developed off-site alternative capacity for fly ash would consist of off-site transportation to a contracted landfill. The fly ash is normally conditioned (@ 10% moisture) in an on-site pug mill due to fugitive dusting concerns. This low-sulfur Powder River Basin Class C fly ash develops cementitious characteristics when conditioned with water rather quickly. Because of this, off-site transportation must be limited to less than a one-hour haul time, or within 40 miles of the station, to prevent the fly ash from setting up and hardening and causing adverse disposal / unloading issues at the offsite landfill. There is one offsite landfill within approximately 40 miles of the station (see Figure 2 in Appendix A) who has confirmed they cannot accept Newton's fly ash. Off-site alternative capacity would consist of off-site transportation utilizing approximately 6 trucks daily. The daily truck traffic would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a PSD permit and modification under the Clean Air Act Permit Program if the calculated increases in emissions are over the PSD limits.

- Fly Ash Vacuum (Hydrovactor) (1.4 MGD):
  - Similar to the Bottom Ash Sluice flows, development of on-site alternative capacity would require the design, permitting, and installation of a new treatment system including CCR ponds, clarifiers, and/or storage tank(s), to provide the necessary retention time to meet the NPDES permit limits as well as necessary volume to allow operation of the cyclone separators. The environmental permitting would require a minimum of three years to implement.
  - Developed off-site alternative capacity would consist of both temporary on-site wet storage (frac tanks) and off-site transportation via tanker trucks. With an average daily flow of 1.4 MGD of sluice water, approximately 67 frac tanks and 187 daily tanker trucks (~7,500 gallons per truck to maintain DOT weight restrictions) would be required, if a local POTW could be identified to receive it. The daily truck traffic would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a PSD permit and modification under the Clean Air Act Permit Program if the calculated increases in emissions are over the PSD limits. Setting up arrangements for a local POTW to accept the wastewater would still prove to be difficult since this amount of wastewater would most likely upset their treatment systems causing them to exceed their NPDES discharge limits. The potential for leaks/spills from the tank system or transportation of the wastewater offsite does exist. Furthermore, the temporary wet storage needed to accommodate off-site disposal would require reconfiguration, design, installation, and associated environmental permitting which would require a minimum of two years to implement. For all of these reasons, IPGC has determined that offsite disposal is not feasible for these flows at Newton.

As stated previously, because IPGC has elected to pursue the option to permanently cease coal-fired operation of the remaining boiler at the station by no later than July 17, 2027, developing alternative disposal capacity is "illogical," to use EPA's words, and also counterproductive to the work to cease coal-fired operation of the boiler and close the impoundment. As long as IPGC continues to wet handle the ash materials, there are no other onsite CCR impoundments available to receive and treat these flows and it is not feasible to dispose of the wet-handled material offsite. As EPA explained in the preamble of the 2015 rule, it is not possible for sites that sluice CCR material to an impoundment to eliminate the impoundment and dispose of the material offsite. See 80 Fed. Reg. 21,301, 21,423 (Apr. 17, 2015) ("[W]hile it is possible to transport dry ash off-site to [an] alternate disposal facility that is simply not feasible for wet-generated

CCR. Nor can facilities immediately convert to dry handling systems."). As a result, the conditions at Newton satisfy the demonstration requirement in § 257.103(f)(2)(i).

Consequently, in order to continue to operate and generate electricity, Newton must continue to use the Primary Ash Pond to manage the CCR wastestreams discussed above. Accordingly, the dry fly ash materials that cannot be sold must continue to be placed in either the Newton Primary Ash Pond or in the limited space available in the onsite CCR landfill due to lack of alternative capacity both on and off-site.

#### 3.3 Non-CCR Wastestreams

IPGC evaluated each non-CCR wastestream placed in the Primary Ash Pond at Newton. For the reasons discussed below in Table 3-2, each of the following non-CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site.

**Alternative** Disposal **Estimated** Capacity Currently Average Flow Available? **Non-CCR Wastestreams** YES/NO **Details** (MGD) Unit 1 Oil Water Separator 0.01 NO Wastewater Sump (including Air Heater Wash, Boiler wash, other non-chemical Currently, alternative capacity is not metal cleaning wastewaters, ash hopper NO 3.35 available nor is there a feasible option overflow, boiler sumps, boiler blowdown. for all these wastestreams as and miscellaneous plant drains) discussed below. On-site alternative capacity would Water Treatment Building Sump need to be designed, permitted, and (including microfilter backwash, RO installed. Reject, demineralizer regeneration flows, 0.09 NO condensate polisher regeneration flows, Off-site alternative capacity would and precoat sump) include development of on-site temporary tanks and transporting of Intermittent this sluice material offsite for disposal. Stormwater (including Lake Jake and Coal Pile Runoff Pond [including Rotary (7.43 for NO Car Dumper Sump and Coal handling 10-year, 24equipment wash water] Overflow) hour storm)

**Table 3-2: Newton Non-CCR Wastestreams** 

IPGC evaluated on-site and off-site alternative capacity options for these non-CCR wastestreams. The existing non-CCR impoundments onsite include:

• The Coal Pile Runoff Pond, which is undersized to provide full treatment of the flows currently routed to it and does not have a permitted outfall but only forwards flow to the Primary Ash Pond

- The Cooling Basin, Lake Jake, and the Construction Runoff Pond, which are only permitted to receive and discharge non-contact cooling water or site stormwater
- The landfill ponds, which receive stormwater runoff from the site landfills, are located approximately 1 mile away from the end of the current piping routed to the Primary Ash Pond
- The Secondary Pond, which currently only receives overflow from the Primary Ash Pond and is located approximately 1.25 miles away from the end of the current piping routed to the Primary Ash Pond

Development of on-site alternative capacity would require the design, permitting, and installation of a new treatment system including the addition of sumps, pumps, power supplies, and permit modifications to reroute the flows to new or existing non-CCR ponds, clarifiers, and/or storage tank(s) to provide the necessary retention time for TSS removal to meet the NPDES permit limits. The environmental permitting would include a modification to the current individual NPDES permit (to allow for the rerouting of these wastestreams to another outfall), general NPDES stormwater construction permit (includes threatened and endangered species and historic preservation assessments), a construction & operating permit, and a SWPPP at a minimum which would require a minimum of three years to implement.

Development of off-site alternative capacity would consist of both temporary on-site wet storage (frac tanks) and off-site transportation via tanker trucks assuming a local POTW could be identified to receive these streams. The required daily frac tanks and tanker trucks (~7,500 gallons per truck to maintain DOT weight restrictions) for each wastestream during each sluicing event is provided in Table 3-3. The daily tanker truck traffic would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a PSD permit and modification under the Clean Air Act Permit Program if the calculated increases in emissions are over the PSD limits. Setting up arrangements for a local POTW to accept this wastewater could prove to be difficult if this amount of wastewater would upset their treatment systems, causing them to exceed their NPDES discharge limits. IPGC is continuing to have discussions with local POTW's to determine if they have the capacity and the infrastructure to handle these daily volumes of wastewater. This will also include efforts to characterize the wastestreams. IPGC will update EPA in forthcoming progress reports if offsite disposal capacity becomes available. The potential for leaks/spills from the tank system or transportation of the wastewater offsite does also exist. Furthermore, the temporary wet storage needed to accommodate off-site disposal would require reconfiguration, design, installation, and associated environmental permitting which would require a minimum of two years to implement. For all of these reasons, IPGC has determined that offsite disposal is not feasible for these flows at Newton at this time.

Table 3-3: Non-CCR Wastestream Offsite Disposal

| Non-CCR Wastestreams             | Estimated Flow (MGD) | No. of Frac Tanks<br>required<br>(21,000 gallons each) | No. of Trucks<br>required per day<br>(7,500 gallons each) |
|----------------------------------|----------------------|--------------------------------------------------------|-----------------------------------------------------------|
| Unit 1 Oil Water Separator       | 0.01                 | 1                                                      | 2                                                         |
| Wastewater Sump                  | 3.35                 | 160                                                    | 447                                                       |
| Water Treatment Building<br>Sump | 0.09                 | 5                                                      | 12                                                        |
| Stormwater                       | 0 – 7.43             | NA                                                     | 0 - 997                                                   |
| Total                            |                      | 166                                                    | 461 – 1,458                                               |

As stated previously, because IPGC has elected to pursue the option to permanently cease the use of the remaining coal fired boiler at the station by no later than July 17, 2027, developing alternative disposal capacity is "illogical," to use EPA's words, and also counterproductive to the work to cease coal-fired operation of the boiler and close the impoundment. There is currently no available infrastructure at the plant to support reroute of these flows. For the reasons discussed above, each of the non-CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site. Consequently, in order to continue to operate and generate electricity, Newton must continue to use the Primary Ash Pond to manage the non-CCR wastestreams discussed above.

#### 4.0 RISK MITIGATION PLAN

To demonstrate that the criteria in § 257.103(f)(2)(ii) has been met, IPGC has prepared and attached a Risk Mitigation Plan for the Newton Primary Ash Pond (see Attachment 1). Per § 257.103(f)(2)(v)(B), this Risk Mitigation Plan is only required for the specific CCR Unit(s) that are the subject of this demonstration.

#### 5.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE

In the Part A rule preamble, EPA reiterates that compliance with the CCR rule is a prerequisite to qualifying for an alternative closure extension, as it "provides some guarantee that the risks at the facility are properly managed and adequately mitigated." 85 Fed. Reg. at 53,543. EPA further stated that it "must be able to affirmatively conclude that facility meets this criterion prior to any continued operation." 85 Fed. Reg. at 53,543. Accordingly, EPA "will review a facility's current compliance with the requirements governing groundwater monitoring systems." 85 Fed. Reg. at 53,543. In addition, EPA will also "require and examine a facility's corrective action documentation, structural stability documents and other pertinent compliance information." 85 Fed. Reg. at 53,543. Therefore, EPA is requiring a certification of compliance and specific compliance documentation be submitted as part of the demonstration. 40 C.F.R. § 257.103(f)(2)(v)(C).

The Newton facility includes two CCR units: the Primary Ash Pond that is the subject of this demonstration, and CCR Landfill 2. To demonstrate that the criteria in  $\S 257.103(f)(2)(iii)$  has been met, IPGC is submitting the following information as required by  $\S 257.103(f)(2)(v)(C)$ :

#### 5.1 Owner's Certification of Compliance - § 257.103(f)(2)(v)(C)(1)

I hereby certify that, based on my inquiry of those persons who are immediately responsible for compliance with environmental regulations for Newton, the facility is in compliance with all of the requirements contained in 40 C.F.R. Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. The Newton CCR compliance website is up-to-date and contains all the necessary documentation and notification postings.

On behalf of IPGC:

Cynthia Vodopivec

VP - Environmental Health & Safety

inthin E Udg

November 25, 2020

#### 5.2 Visual representation of hydrogeologic information - § 257.103(f)(2)(v)(C)(2)

Consistent with the requirements of  $\S 257.103(f)(2)(v)(C)(2)(i) - (iii)$ , IPGC has attached the following items to this demonstration:

- Map(s) of groundwater monitoring well locations in relation to the CCR units (see Attachment 2 for the Primary Ash Pond and Figure 2 of Attachment 6 for CCR Landfill 2)
- Well construction diagrams and drilling logs for all groundwater monitoring wells (see Attachment 3 for the Primary Ash Pond and CCR Landfill 2)
- Maps that characterize the direction of groundwater flow accounting for seasonal variations (see Attachment 4 for the Primary Ash Pond and Appendix D of Attachment 6 for CCR Landfill 2)

#### 5.3 Groundwater monitoring results - § 257.103(f)(2)(v)(C)(3)

Tables summarizing constituent concentrations at each groundwater monitoring well through the first 2020 semi-annual monitoring period are included as Attachment 5. Samples were taken for the second 2020 semi-annual monitoring period, but results are still under review.

#### 5.4 Description of site hydrogeology including stratigraphic cross-sections - § 257.103(f)(2)(v)(C)(4)

A description of the site hydrogeology for the Primary Ash Pond, stratigraphic cross-sections of the site, and the Newton Hydrogeologic Monitoring Plan are included as Attachment 6. See Section 2 of the Hydrogeologic Monitoring Plan for a comprehensive discussion of site hydrogeology and Appendix A for geologic cross sections.

#### 5.5 Corrective measures assessment - § 257.103(f)(2)(v)(C)(5)

For the Primary Ash Pond, background sampling began in late 2015 and continued for eight consecutive quarters. The first semiannual detection monitoring samples were collected in November 2017. These samples, and those collected since, have been analyzed and potential SSIs were identified for calcium, chloride, fluoride, and sulfate (all Appendix III constituents). However, successful Alternate Source Demonstrations were completed in January 2019, July 2019, October 2019, April 2020, and October 2020 and are included as part of Attachment 1 (Risk Mitigation Plan). The Newton Primary Ash Pond remains in detection monitoring, with no exceedances of Appendix III parameters. Accordingly, an assessment of corrective measures is not currently required at the site. Newton will continue to conduct groundwater monitoring in accordance with all state and federal requirements.

For CCR Landfill 2, background sampling began in late 2015 and continued for eight consecutive quarters. The first semiannual detection monitoring samples were collected in November 2017. These samples, and those collected since, have been analyzed and potential SSIs were identified for boron, calcium, chloride, fluoride, sulfate, and total dissolved solids (all Appendix III constituents). However, successful Alternate Source Demonstrations were prepared for the CCR Landfill 2 in April 2018, January 2019, July 2019,

October 2019, April 2020, and October 2020 and are included as part of Attachment 5. CCR Landfill 2 remains in detection monitoring, with no exceedances of Appendix III parameters. Accordingly, an assessment of corrective measures is not currently required at the site. Newton will continue to conduct groundwater monitoring in accordance with all state and federal requirements.

#### 5.6 Remedy selection progress report - § 257.103(f)(2)(v)(C)(6)

As noted above, an assessment of corrective measures and the resulting selection of remedy are not currently required for the Primary Ash Pond or CCR Landfill 2.

#### 5.7 Structural stability assessment - § 257.103(f)(2)(v)(C)(7)

Pursuant to § 257.73(d), the initial structural stability assessment for the Primary Ash Pond was prepared in October 2016 and is included as Attachment 7. Periodic structural stability assessments are not required for landfills.

#### 5.8 Safety factor assessment - $\S$ 257.103(f)(2)(v)(C)(8)

Pursuant to § 257.73(e), the initial safety factor assessment for the Primary Ash Pond was prepared in October 2016 and is included as Attachment 8. Periodic safety factor assessments are not required for landfills.

#### 6.0 DOCUMENTATION OF CLOSURE COMPLETION TIMEFRAME

To demonstrate that the criteria in § 257.103(f)(2)(iv) has been met, "the owner or operator must submit the closure plan required by § 257.102(b) and a narrative that specifies and justifies the date by which they intend to cease receipt of waste into the unit in order to meet the closure deadlines. The closure plan for the Primary Ash Pond, along with an addendum, is included as Attachment 9.

In order for a CCR surface impoundment over 40 acres to continue to receive CCR and non-CCR wastestreams after the initial April 11, 2021 deadline, the coal-fired boiler(s) at the facility must cease operation and the CCR surface impoundment must complete closure no later than October 17, 2028. As discussed below, Newton will begin construction of the Primary Ash Pond closure by July 17, 2024, the remaining boiler will cease coal-fired operation no later than July 17, 2027, and Newton will cease placing wastestreams into the Primary Ash Pond by September 17, 2027, in order for closure to be completed by this deadline.

Table 6-1 is included below to summarize the major tasks and estimated durations associated with closing the Primary Ash Pond in place. These durations are consistent with the durations experienced with the closure of approximately 500 acres of other CCR impoundments already completed by IPGC and its affiliates to date as noted below:

- Baldwin Fly Ash Pond System 230 acres closed in-place with an approximate 30-month construction schedule
- Hennepin West Ash Ponds System 35 acres closed in-place with an approximate 24-month
  construction schedule (includes closure by removal of an adjacent 6-acre settling pond and
  installing a sheet pile wall)
- Hennepin East Ash Ponds 2 and 4 25 acres closed in-place with an approximate 6-month construction schedule
- Coffeen Ash Pond 2 60 acres closed in-place with an approximate 24-month construction schedule
- Duck Creek Ash Ponds 1 and 2 130 acres closed in-place with an approximate 24-month construction schedule

Each CCR impoundment closure indicated above utilized a closely coordinated passive or gravity dewatering method, which consisted of the use of trenches excavated to lower the phreatic surface in portions of the impoundment to obtain a stable ash surface to permit the safe construction of the final cover system. The phreatic water in the trenches flows by gravity to sumps constructed within the impoundment.

The major benefit associated with this passive or gravity dewatering method is that the sumps are designed to provide holding time to allow the TSS to settle within the impoundment prior to discharge (an active dewatering method with wells would result in potential discharges of unsettled TSS). After solids settling, the water is discharged through the NPDES outfall in compliance with permitted limits.

Construction progressed sequentially as the dewatering of an area stabilized the ash surface. The CCR was graded to subgrade level, then overlain with the compacted clay layers and/or geomembrane liners. Vegetative soil cover was then placed on top of the infiltration layer. As each section of the impoundment was closed, this sequencing progressed to the completion of the pond closure. A similar process will be utilized to close the Newton Primary Ash Pond in order to allow the final open section of the impoundment to be large enough for the impoundment to remain in operation until the pond ceases the receipt of waste. This would provide sufficient time for closure to be completed by October 17, 2028.

The first construction effort will involve modifying the pond operations by relocating the influent lines, minimizing the pond water levels, and isolating flow to a smaller portion of the current 404-acre impoundment that can be closed during the last two construction seasons. The smaller active portion of the pond will remain in operation while IPGC begins dewatering and closing the impoundment as described above. This reduction in footprint may require the addition of chemical feeds to provide adequate treatment but that has not been the case at our other sequenced closures. This approach simultaneously allows for continued operation of the plant to maintain generating capacity for the MISO markets and minimizes the risk to the environment both by minimizing the pond size and the potential for any impacts to groundwater and by opening up a significant portion of the remaining impoundment to allow for dewatering, grading, and closure (in Phase 1).

Table 6-1 provides estimates for the durations required to close a portion of the pond footprint after the date noted to begin construction of closure (Phase 1), as well as the current estimates for the closure of the active area (Phase 2, remaining 40-50 acres). In order to dewater the impoundment, IPGC will likely release pond water through the existing Outfall 001.

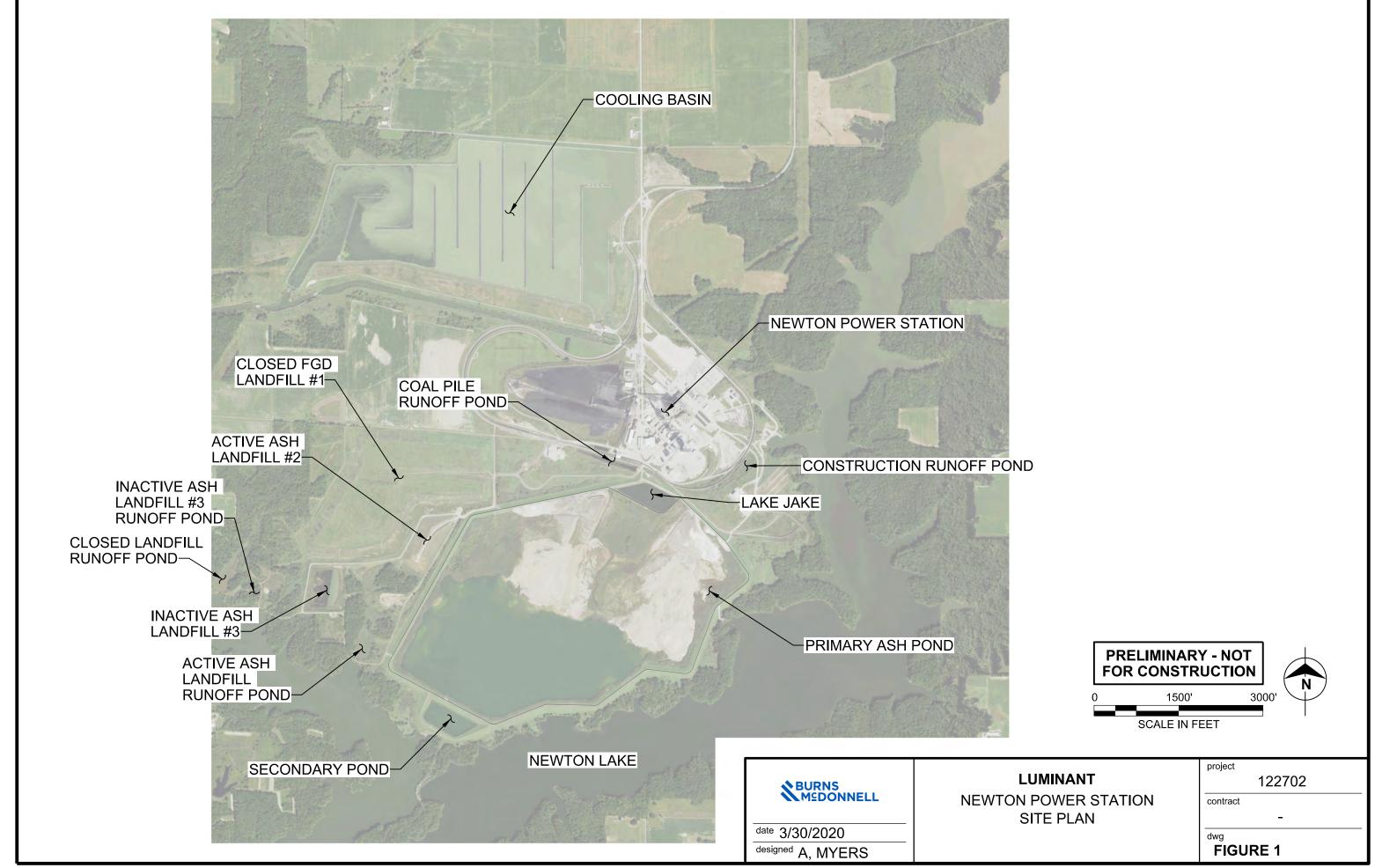
**Table 6-1: Newton Primary Ash Pond Closure Schedule** 

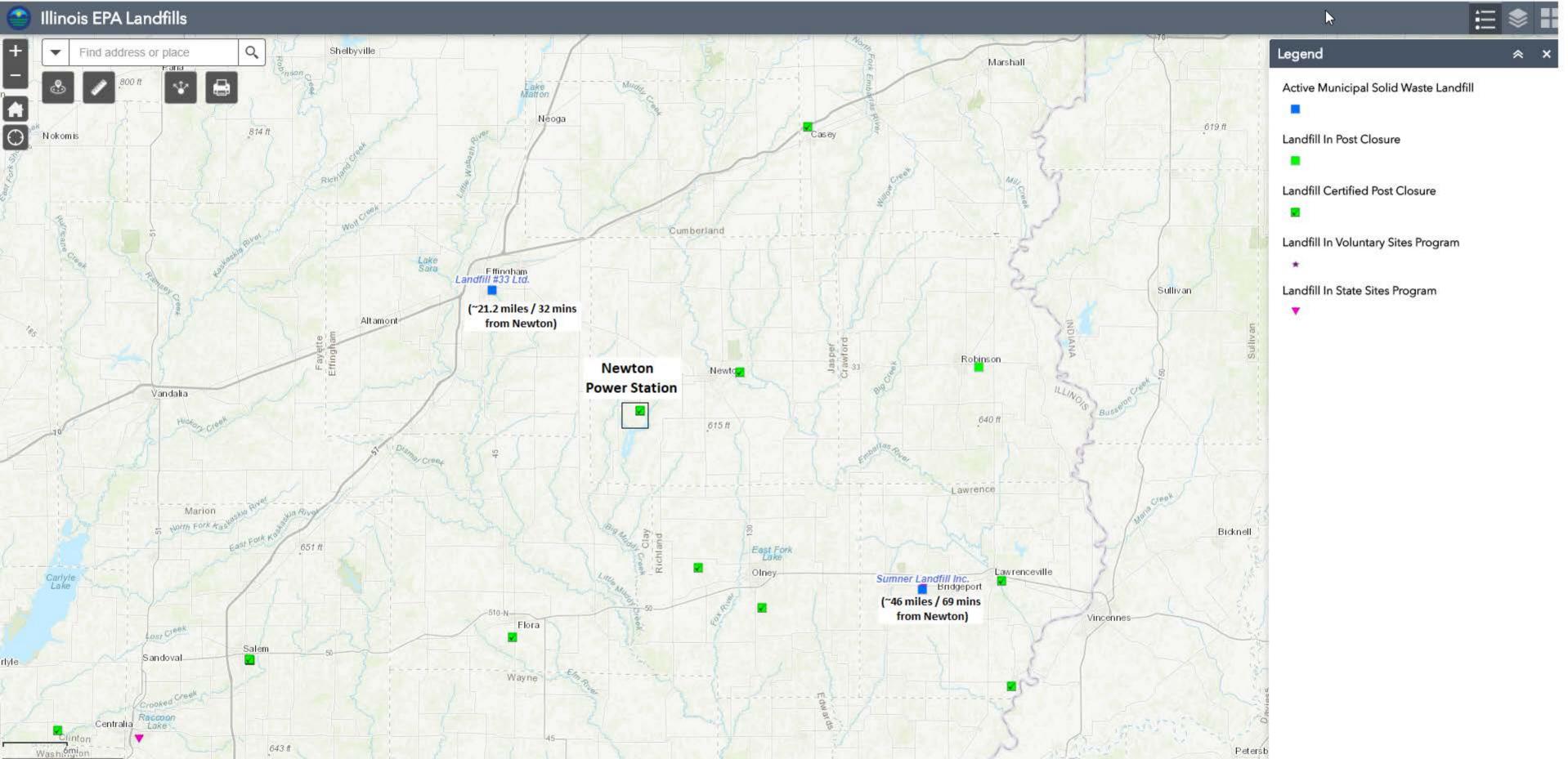
| Action                                                                     | Estimated Timeline<br>(Months) |
|----------------------------------------------------------------------------|--------------------------------|
| Spec, bid, and Award Engineering Services for CCR Impoundment Closure      | 3                              |
| Finalize CCR unit closure plan and seek IEPA approval for CCR unit closure | 12                             |

| Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Estimated Timeline<br>(Months) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Obtain environmental permits (based on IEPA approval of closure plan):  • State Waste Pollution Control Construction/Operating Permit  • NPDES Industrial Wastewater Permit Modification (modification would be required to allow the associated ponded and subsurface free liquids generated before the pond closure to be discharged to Waters of the US and to                                                                                                                   |                                |
| <ul> <li>allow reconfiguration of the various wastestreams to either other NPDES-permitted outfalls or newly-constructed NPDES-permitted outfalls)</li> <li>General NPDES Permit for Storm Water Discharges from Construction Site Activities and Storm Water Pollution Prevention Plan (SWPPP)</li> <li>Proposed 35 III. Admin Code 845 operating permit application is due NLT September 2021. Construction permit application is anticipated to be due NLT July 2022.</li> </ul> | 21                             |
| Spec, bid, and Award Construction Services for CCR Impoundment Closure                                                                                                                                                                                                                                                                                                                                                                                                              | 3                              |
| Begin Construction of Closure                                                                                                                                                                                                                                                                                                                                                                                                                                                       | July 17, 2024                  |
| Minimize Active Area of Impoundment / Dewater Phase 1 Area                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                              |
| Regrade CCR Material in Phase 1 Area                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                             |
| Install Cover System – Phase 1 Area*                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                             |
| Establish Vegetation – Phase 1 Area**                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                              |
| Cease Coal-Fired Operations of the Six Boilers onsite (No Later Than)                                                                                                                                                                                                                                                                                                                                                                                                               | July 17, 2027                  |
| Begin Dewatering Impoundment – Phase 2 Area                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                              |
| Cease Placement of Waste (No Later Than, allowing for plant cleanup and dredging of impoundments following coal pile and plant closure)                                                                                                                                                                                                                                                                                                                                             | September 17, 2027             |
| Continue Dewatering Impoundment – Phase 2 Area                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                              |
| Regrade CCR Material – Phase 2 Area                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                              |
| Install Cover System – Phase 2 Area                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                              |

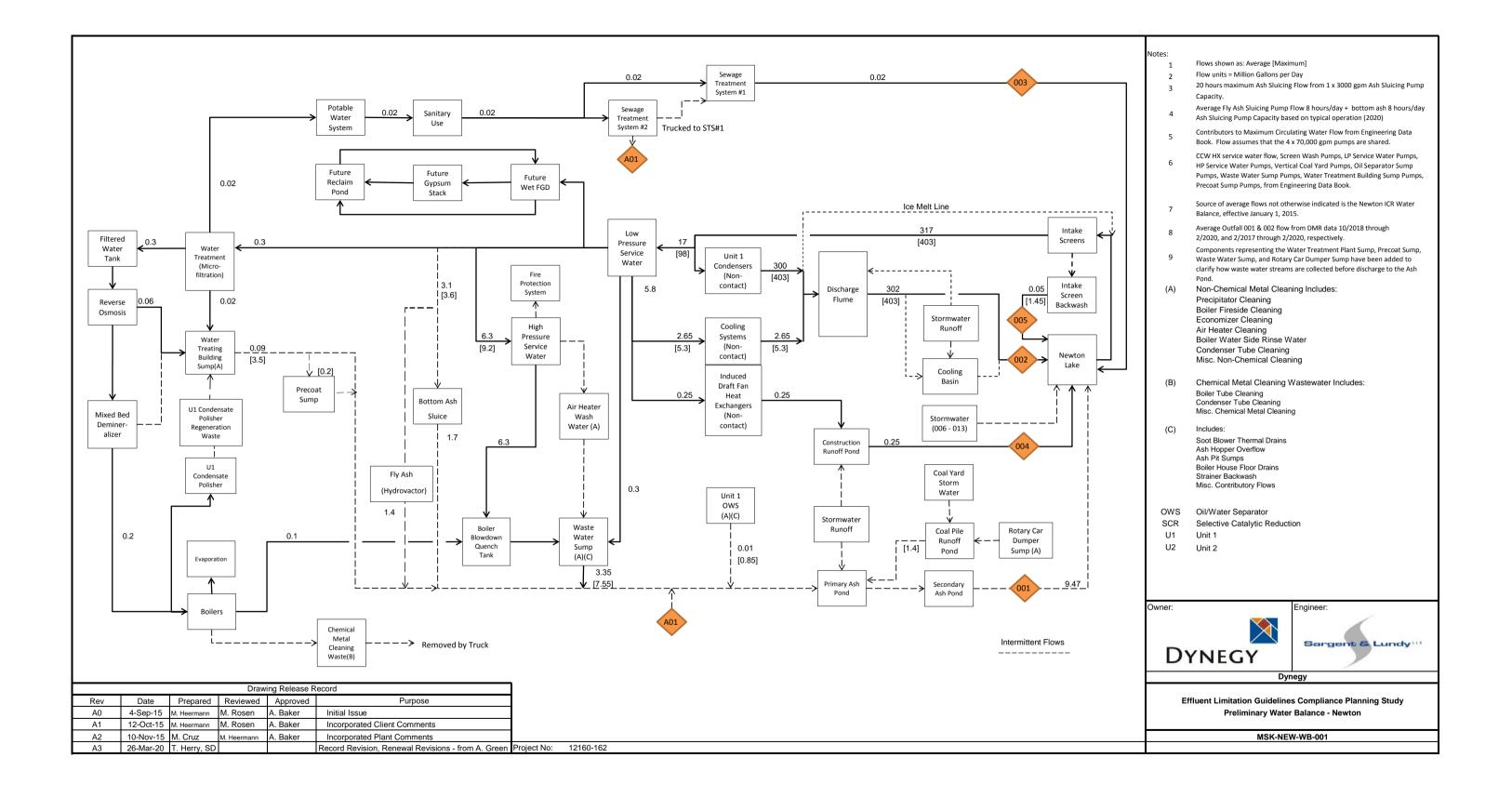
| Action                                                                                                              | Estimated Timeline<br>(Months) |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Establish Vegetation, Perform Site Restoration<br>Activities, Complete Closure, and Initiate Post-Closure<br>Care** | 2                              |
| Total Estimated Time to Complete Closure                                                                            | 90 months                      |
| Date by Which Closure Must be Complete                                                                              | October 17, 2028               |

<sup>\*</sup> Activity expected to overlap with grading operations, finishing 2 months after grading is completed.


<sup>\*\*</sup> Activity expected to overlap with cover system installation, finishing 1 month after cover installation is completed.


#### 7.0 CONCLUSION

Based upon the information included in and attached to this demonstration, IPGC has demonstrated that the requirements of 40 C.F.R. § 257.103(f)(2) are satisfied for the 404-acre Primary Ash Pond at Newton. This CCR surface impoundment is needed to continue to manage the CCR and non-CCR wastestreams identified in Section 3.2 and 3.3 above, is larger than 40 acres, the remaining boiler at the station will cease coal-fired operation no later than July 17, 2027, and the Primary Ash Pond will be closed by the October 17, 2028, deadline. Therefore, this CCR unit qualifies for the site-specific alternative deadline for the initiation of closure authorized by 40 C.F.R. § 257.103(f)(2).


Therefore, it is requested that EPA approve IPGC's demonstration and authorize the Primary Ash Pond at Newton to continue to receive CCR and non-CCR wastestreams notwithstanding the deadline in § 257.101(a)(1) and to grant the alternative deadline of October 17, 2028, by which to complete closure of the impoundment.













#### RISK MITIGATION PLAN - 40 C.F.R. § 257.103(f)(2)(v)(B)

#### Introduction

To demonstrate that the criteria in 40 C.F.R. § 257.103(f)(2)(ii) has been met, Illinois Power Generating Company (IPGC) has prepared this Risk Mitigation Plan for the Newton Primary Ash Pond located in Newton, Illinois.

• EPA is requiring a risk mitigation plan to "address the potential risk of continued operation of the CCR surface impoundment while the facility moves towards closure of their coal-fired boiler(s), to be consistent with the court's holding in *USWAG* that RCRA requires EPA to set minimum criteria for sanitary landfills that prevent harm to either human health or the environment." 85 Fed. Reg. at 53,516, 53,548 (Aug. 28, 2020).

As required by § 257.103(f)(2)(v)(B), the Risk Mitigation Plan must describe the "measures that will be taken to expedite any required corrective action," and contain the three following elements:

- First, "a discussion of any physical or chemical measures a facility can take to limit any future releases to groundwater during operation." § 257.103(f)(2)(v)(B)(1). In promulgating this requirement, EPA explained that this "might include stabilization of waste prior to disposition in the impoundment or adjusting the pH of the impoundment waters to minimize solubility of contaminants and that this discussion should take into account the potential impacts of these measures on Appendix IV constituents." 85 Fed. Reg. at 53,548.
- Second, "a discussion of the surface impoundment's groundwater monitoring data and any found exceedances; the delineation of the plume (if necessary based on the groundwater monitoring data); identification of any nearby receptors that might be exposed to current or future groundwater contamination; and how such exposures could be promptly mitigated." § 257.103(f)(2)(v)(B)(2).
- Third, "a plan to expedite and maintain the containment of any contaminant plume that is either present or identified during continued operation of the unit." § 257.103(f)(2)(v)(B)(3). In promulgating this final requirement, EPA explained that "the purpose of this plan is to demonstrate that a plume can be fully contained and to define how this could be accomplished in the most accelerated timeframe feasible to prevent further spread and eliminate any potential for exposures." 85 Fed. Reg. at 53,549. In addition, EPA stated that "this plan will be based on relevant site data, which may include groundwater chemistry, the variability of local hydrogeology, groundwater elevation and flow rates, and the presence of any surface water features that would influence rate and direction of contamination movement. For example, based on the rate and direction of groundwater flow and potential for diffusion of the plume, this plan could identify the design and spacing of extraction wells necessary to prevent further downgradient migration of contaminated groundwater." 85 Fed. Reg. at 53,549.

Consistent with these requirements and guidance, IPGC plans to continue to mitigate the risks to human health and the environment from the Newton Primary Ash Pond as detailed in this Risk Mitigation Plan.

### 1 OPERATIONAL MEASURES TO LIMIT FUTURE RELEASES TO GROUNDWATER- 40 C.F.R. § 257.101(f)(2)(v)(B)(1)

The Newton Primary Ash Pond is a 404-acre CCR surface impoundment. Consistent with the requirements of the CCR rule, compliance documents on Newton's CCR public website reflect the characterization of the Primary Ash Pond as a single unit for purposes of groundwater monitoring and closure activities.

The Newton CCR surface impoundment receives CCR transport waters from bottom ash and economizer ash plus non-CCR process waters onsite before discharging to the Newton Cooling Pond via Outfall 001 in accordance with NPDES Permit No. IL0049191.

At the Newton Primary Ash Pond, none of the Appendix IV parameter have reported statistically significant levels (SSLs) above their respective Ground Water Protection Standards (GWPSs), as sampled and analyzed per the CCR surface impoundment's groundwater monitoring program. Therefore, Newton's current physical treatment operation adequately limits potential risks to human health and the environment during operation. Newton will continue this treatment process for the CCR surface impoundment until such time as closure is required per 40 CFR 257. The facility's current physical treatment process is discussed below, followed by a discussion of other treatment processes that could be implemented, as required per § 257.103(f)(2)(v)(B)(1).

#### 1.1 CURRENT OPERATION OF PHYSICAL TREATMENT

Fly ash and economizer ash are normally captured dry and either hauled offsite for beneficial use or disposed of in the CCR surface impoundment. Therefore, during normal operations, fly ash transport waters are not conveyed to the CCR surface impoundment.

Also, as part of normal operations, bottom ash and economizer ash are transported through the sluice lines into the CCR surface impoundment where some of the bottom ash goes offsite for beneficial reuse. The CCR surface impoundment is also a wastewater treatment settling system which allows the solids to settle.

Therefore, since fly ash transport water is not normally conveyed to the CCR surface impoundment and some of the bottom ash solids are removed from the CCR surface impoundment, the current operation of Newton's CCR surface impoundment limits future releases to groundwater during operation, and consequently no potential safety impacts or exposure to human health or environmental receptors are expected to result.

If Appendix IV releases are discovered per the facility's groundwater monitoring program, IPGC will test, evaluate, and implement a chemical treatment method (i.e. pH adjustment, coagulation, precipitation, or other method as determined) for the Newton CCR Impoundment to limit potential risks to human health and the environment during operation.

# 2 GROUNDWATER IMPACTS, RECEPTORS, AND POTENTIAL EXPOSURE MITIGATION - 40 C.F.R. § 257.101(F)(2)(V)(B)(2)

The Newton Primary Ash Pond, with a footprint of approximately 404 acres (Figure 1), currently remains in detection monitoring. Any SSIs of Appendix III parameter concentrations have previously been addressed through alternate source demonstrations (ASDs) (see Attachment 1, 2019 Annual Groundwater Monitoring and Corrective Action Report, Newton Primary Ash Pond, Newton Power Station [Ramboll, 2020]. The latest ASD was completed in October 13, 2020, is attached to this risk mitigation plan; and, will be included in the 2020 Annual Groundwater Monitoring and Corrective Action Report, due in January 2021 (see Attachment 2). A summary of the detection monitoring program, including constituents with reported SSIs and ASD completions, are provided in Table 1.

Since there have been no SSL exceedances of GWPS(s) for any Appendix IV constituents attributable to the Primary Ash Pond to date, plume delineation has not been required. However, if one or more Appendix IV constituents are detected at SSLs above the GWPS(s), the nature and extent of the release would be characterized to delineate the contaminant plume. The existing conceptual site model and description of site hydrogeology provides site characterization data that will be used as the basis for executing supplemental plume delineation activities. A demonstration may also be made that a source other than the CCR unit caused the contamination, or that the SSL resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (§257.95(g)(3)(ii)).

#### **Receptors**

For constituents of potential concern (COPCs) found in groundwater to pose a risk to human health or the environment, a complete exposure pathway must be present to a receptor with elevated concentrations of COPCs via that pathway.

Should a release of one or more Appendix IV parameters from the Newton Primary Ash Pond to groundwater occur in the future, the two primary risks to human health and environmental receptors are via impacted groundwater and surface water. Groundwater exposure would be via ingestion or dermal contact, both of which are likely an incomplete exposure pathway for the reasons discussed below. Impacted groundwater potentially migrating to nearby surface water bodies — specifically Newton Lake located east, south and southwest — is another potential exposure pathway; however, this is also likely incomplete for the reasons discussed below.

Ambient groundwater flow beneath the Primary Ash Pond is generally south to southwest towards Newton Lake. Although there are localized variations in groundwater flow directions beneath different areas of the ash pond — west, east and south - the overall flow direction is towards Newton Lake. The Uppermost Aquifer is confined within thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation. The geometric mean of the hydraulic conductivity for tested monitoring wells in the Uppermost Aquifer, excluding one outlier, is 2.5 x 10-4 cm/s. The horizontal hydraulic gradient beneath the impoundment is typically 0.007 ft/ft. Groundwater flow velocity beneath the Primary Ash Pond was 0.12 ft/day based on January and June 2017 groundwater contours (refer to the description of hydrogeology attached to the alternative closure demonstration letter).

There are no industrial, commercial or domestic use water wells located in a downgradient or cross-gradient groundwater flow direction relative to the Primary Ash Pond that are at risk of impacts from a release. Impacted groundwater potentially migrating to nearby surface water bodies - specifically Newton Lake located east, south

and southwest – could be an exposure pathway, but does not pose a risk to human health as there are no surface water intakes within 2,500 feet of the Newton property line.

Since there have been no SSLs above the GWPS, there is no risk to ecological receptors located near the Newton Primary Ash Pond. If a release to groundwater were to occur, ecological receptors could potentially be exposed to COPCs through ingestion or direct contact with impacted groundwater; however, should any surface water or sediment come into contact with impacted groundwater, the risk of exposure is likely low due to expected attenuation and dilution.

Although current conditions do not pose a risk concern to human health or the environment, measures presented in the Contaminant Plume Containment Plan (Section 3.1 of this RMP) would address any future potential exposures and risks by containing potential groundwater impacts and mitigating impacts to potential receptors.

If one or more Appendix IV parameters are detected and confirmed in groundwater at a SSL above GWPS(s), and the SSL is not attributed to an alternate source, via an alternate source demonstration (ASD), the first steps to mitigating risk will involve the immediate implementation of source control, which, if necessary, could include installation and operation of a groundwater extraction well or recovery trench system. This immediate source control would allow for capture of impacted groundwater and prevention of further plume migration towards the principal potential receptors. Furthermore, to characterize the nature and extent of the release, plume delineation wells will be installed as necessary to define the magnitude and limits of the groundwater impacts.

#### **Exposure Mitigation**

Mitigation of future potential exposures to groundwater contamination from continued operation of the Primary Ash Pond is discussed in detail in the following section.

# 3 CONTAMINANT PLUME CONTAINMENT: OPTIONS EVALUATION AND PLAN - 40 C.F.R. § 257.101(f)(2)(v)(B)(3)

Appropriate corrective measure(s) to address future potential impacted groundwater associated with the Newton Primary Ash Pond are based on impacts to the Uppermost Aquifer. The Uppermost Aquifer is the Mulberry Grove Member, which typically consists of fine to coarse sand with varying amounts of clay, silt, and fine to coarse gravel. The portion of the Mulberry Grove Member at the site that is defined as a sand layer ranges in thickness from 3 to 17 ft with an average thickness of 8 ft and with only a few exceptions occurs between depths of 55 to 88 ft below ground surface. Overlying units consist predominantly of low permeability clays and silts with occasional and discontinuous lenses of silt, sand, and gravel (refer to the description of hydrogeology attached to the alternative closure demonstration letter).

If one or more Appendix IV parameters are detected and confirmed in groundwater at a SSL above GWPS(s), and the SSL is not attributed to an alternate source, via an alternate source demonstration (ASD), the first steps to mitigating risk will involve the immediate implementation of source control, which, if necessary, could include installation and operation of a groundwater extraction well or recovery trench system. This immediate source control would allow for capture of impacted groundwater and prevention of further plume migration towards the principal potential receptors. Furthermore, to characterize the nature and extent of the release, plume delineation wells will be installed as necessary to define the magnitude and limits of the groundwater impacts. If applicable, notifications will be made to all persons who own the land or reside on the land that directly overlies any part of the groundwater plume. Additional soil and groundwater data will be collected as necessary to support a Corrective Measures Assessment (CMA), which will be initiated within 90 days of detecting the SSL. Further discussion of short-term and long-term corrective measures is further discussed in Section 3.1.

Since there has been no release of Appendix IV parameters to groundwater above GWPS(s), which would trigger a CMA under 40 C.F.R. § 257.96 based on specific parameter concentrations and contaminant plume dimensions, several options are evaluated to address potential future plume containments. The evaluation criteria for assessing remedial options are the following: performance; reliability; ease of implementation; potential impacts of the remedies (safety, cross-media, and control of exposure to residual contamination); time required to begin and complete the remedy; and, institutional requirements that may substantially affect implementation of the remedy(s), such as permitting, environmental or public health requirements.

Although future potential source control measures (e.g. closure in place, closure by removal to on-site or off-site landfill, in-situ solidification/stabilization) to mitigate groundwater impacts are typically considered as part of a CMA process upon closure of the Newton Primary Ash Pond, the shorter-term options considered for mitigating groundwater impacts relative to a potential future release of one or more Appendix IV parameters at Newton are as follows:

- Groundwater Extraction
- Groundwater Cutoff Wall
- Permeable Reactive Barrier
- In-Situ Chemical Treatment
- Monitored Natural Attenuation (MNA)

These same groundwater remedial corrective measures will be evaluated for all Appendix IV constituents that present a future risk to human health or the environment.

#### Groundwater Extraction

This corrective measure includes installation of one or more groundwater pumping wells or trenches to control and extract impacted groundwater. Groundwater extraction captures and contains impacted groundwater and can limit plume expansion and/or off-site migration. Construction of a groundwater extraction system typically includes, but is not limited to, the following primary project components:

- Designing and constructing a groundwater extraction system consisting of a series of extraction wells or trenches located around the perimeter of the contaminant plume and operating at a rate to allow capture of CCR impacted groundwater.
- Designing a system to manage extracted groundwater, which may include modification to the existing NPDES permit, including treatment prior to discharge, if necessary.
- Ongoing inspection and maintenance of the groundwater extraction system.

Installation of a groundwater extraction system, whether wells or trenches, can be expedited with the assumption that there is a good conceptual site model (CSM) of the hydrogeological system around the CCR unit, groundwater flow and transport model, and aquifer testing. Upon notification of an SSL exceedance of a GWPS for one or more Appendix IV constituents, an aquifer test will be conducted, and groundwater model developed for designing a groundwater extraction system for optimization of contaminant plume capture.

A schematic of a typical groundwater extraction well is shown on Figure 2. Based on site specific hydrogeology and future potential plume width and depth, a groundwater extraction system would likely consist of one to three extraction wells with pitless adapter's manifolded together with HDPE conveyance pipe to a common tank or lined collection vault prior to treatment at the on-site wastewater treatment plant and discharge via the NPDES permitted outfall.

#### **Groundwater Cutoff Wall**

Vertical cutoff walls are used to control and/or isolate impacted groundwater. Low permeability cutoff walls can be used to prevent horizontal off-site migration of potentially impacted groundwater. Cutoff walls act as barriers to migration of impacted groundwater and can isolate soils that have been impacted by CCR to prevent contact with unimpacted groundwater. Cutoff walls are often used in conjunction with an interior pumping system to establish a reverse gradient within the cutoff wall. The reverse gradient imparted by the pumping system maintains an inward flow through the wall, keeping it from acting as a groundwater dam and controlling potential end-around or breakout flow of contaminated groundwater.

A commonly used cutoff wall construction technology is the slurry trench method, which consists of excavating a trench and backfilling it with a soil-bentonite mixture, often created with the soils excavated from the trench. The trench is temporarily supported with bentonite slurry that is pumped into the trench as it is excavated. Excavation for cutoff walls is conducted with conventional hydraulic excavators, hydraulic excavators equipped with specialized booms to extend their reach (*i.e.*, long-stick excavators), or chisels and clamshells, depending upon the depth of the trench and the material to be excavated.

#### Permeable Reactive Barrier

Chemical treatment via a Permeable Reactive Barrier (PRB) is defined as an emplacement of reactive materials in the subsurface designed to intercept a contaminant plume, provide a flow path through the reactive media, and transform or otherwise render the contaminant(s) into environmentally acceptable forms to attain remediation concentration goals downgradient of the barrier (EPRI, 2006).

As groundwater passes through the PRB under natural gradients, dissolved constituents in the groundwater react with the media and are transformed or immobilized. A variety of media have been used or proposed for use in PRBs. Zero-valent iron has been shown to effectively immobilize CCR constituents, including arsenic, chromium, cobalt, molybdenum, selenium and sulfate. Zero-valent iron has not been proven effective for boron, antimony, or lithium (EPRI, 2006).

System configurations include continuous PRBs, in which the reactive media extends across the entire path of the contaminant plume; and funnel-and-gate systems, where barrier walls are installed to control groundwater flow through a permeable gate containing the reactive media. Continuous PRBs intersect the entire contaminant plume and do not materially impact the groundwater flow system. Design may or may not include keying the PRB into a low-permeability unit at depth. Funnel-and-gate systems utilize a system of barriers to groundwater flow (funnels) to direct the contaminant plume through the reactive gate. The barriers, typically some form of cutoff wall, are keyed into a low-permeability unit at depth to prevent short circuiting of the plume. Funnel-and-gate design must consider the residence time to allow chemical reactions to occur. Directing the contaminant plume through the reactive gate can significantly increase the flow velocity, thus reducing residence time.

Design of PRB systems requires rigorous site investigation to characterize the site hydrogeology and to delineate the contaminant plume. A thorough understanding of the geochemical and redox characteristics of the plume is critical to assess the feasibility of the process and select appropriate reactive media. Laboratory studies, including batch studies and column studies using samples of site groundwater, are needed to determine the effectiveness of the selected reactive media at the site (EPRI, 2006).

This is a potential viable option for groundwater corrective measures, to be evaluated further, but is not a short-term solution that can be implemented expeditiously.

#### **In-Situ Chemical Treatment**

In-situ chemical treatment for inorganics are being tested and applied with increasing frequency. In-situ chemical treatment includes the targeted injection of reactive media into the subsurface to mitigate groundwater impacts. Inorganic contaminants are typically remediated through immobilization by reduction or oxidation followed by precipitation or adsorption (EPRI, 2006). Chemical reactants that have been applied or are in development for application in treating inorganic contaminants include ferrous sulfate, nanoscale zero-valent iron, organo-phosphorus nutrient mixture (PrecipiPHOS™) and sodium dithionite (EPRI, 2006). Zero-valent iron has been shown to effectively immobilize cobalt and molybdenum. Implementation of in-situ chemical treatment requires detailed technical analysis of field hydrogeological and geochemical conditions along with laboratory studies.

This is a potential viable option for groundwater corrective measures, to be evaluated further, but is not a short-term solution that can be implemented expeditiously.

#### Monitored Natural Attenuation (MNA)

Upon notification of a release of one or more Appendix IV parameter(s) to groundwater, MNA will be evaluated with site-specific characterization data and geochemical analysis as a long term remedial option, combined with source control measures, through application of the USEPA's tiered approach to MNA (USEPA 1999, 2007 and 2015):

- 1. Demonstrate that the area of groundwater impacts is not expanding.
- 2. Determine the mechanisms and rates of attenuation.
- 3. Determine that the capacity of the aquifer is sufficient to attenuate the mass of constituents in groundwater and that the immobilized constituents are stable and will not remobilize.
- 4. Design a performance monitoring program based on the mechanisms of attenuation and establish contingency remedies (tailored to site-specific conditions) should MNA not perform adequately.

MNA is not regarded as a short-term remedial option for contaminant plume containment, but as a potential long-term option following implementation of shorter term control measures.

#### 3.1 CONTAINMENT PLAN

Based on the options evaluated for containment of a future potential groundwater contaminant plume originating from the Newton Primary Ash Pond for one or more Appendix IV constituents exceeding their GWPS(s), the most viable short-term option of those evaluated is a groundwater extraction or recovery trench system, which would allow for capture of impacted groundwater and prevention of further plume migration towards the principal receptor, which has been identified as Newton Lake to the south.

In circumstances where there is not an immediate concern of endangerment to human health or the environment, other longer-term corrective measures may be more viable and will be further evaluated at the Newton Primary Ash Pond.

Depending on the location, depth, and plume geometry of any future potential Appendix IV exceedances of GWPSs, the specific parameter(s) with exceedances, and distance from potential receptors, the other groundwater corrective measures discussed as part of the corrective options evaluation – groundwater cutoff wall, permeable reactive barrier, in-situ chemical treatment, and MNA – are all secondary remedial alternatives

available for consideration following the current primary option of groundwater extraction for short-term application.

#### 4 REFERENCES

Electric Power Research Institute (EPRI), 2006. Groundwater Remediation of Inorganic Constituents at Coal Combustion Product Management Sites, Overview of Technologies, Focusing on Permeable Reactive Barriers. Electric Power Research Institute, Palo Alto, California. Final Report 1012584, October 2006.

Ramboll, 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report, Newton Primary Ash Pond, Newton Power Station, Newton, Illinois. January 31, 2020.

USEPA, 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Directive No. 9200.U-17P. Washington, D.C.: EPA, Office of Solid Waste and Emergency Response.

USEPA, 2007. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water, Volume 1 – Technical Basis for Assessment. EPA/600/R-07/139. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio. October 2007.

USEPA, 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. Directive No. 9283.1-36. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. August 2015.

#### **TABLES**

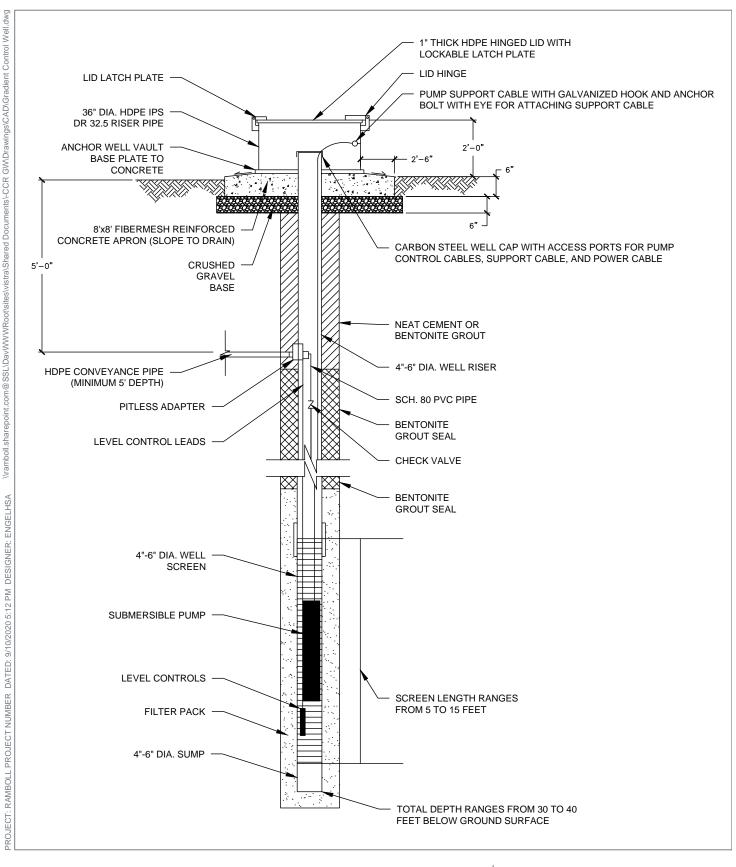
Table 1 - Detection Monitoring Program Summary, Newton Primary Ash Ponc

| Appendix III  Appendix III  Appendix III Greater than Background <sup>1</sup> | Calcium (APW7, APW8, APW9, APW10) Chloride (APW7, APW9) Sulfate (APW8, APW10) Calcium (APW7, APW8, APW9, APW10) Chloride (APW7, APW9) Sulfate (APW8, APW10) above confirmed Calcium (APW8, APW10) | January 9, 2018  October 7, 2018                                                                                                                                                                                                                                                                                                                                      | April 9, 2018  January 7, 2019                                                                                                                                                                                                                                                                                                                                                         | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Appendix III Greater<br>than Background <sup>1</sup>                          | APW9, APW10)<br>Chloride (APW7, APW9)<br>Sulfate (APW8, APW10)<br>above confirmed                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| than Background <sup>1</sup>                                                  |                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                     | NΔ                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                               | Calcium (APW8, APW10)                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                        | IVA                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Appendix III                                                                  | Fluoride (APW9)<br>Sulfate (APW8, APW9,<br>APW10)                                                                                                                                                 | April 15, 2019                                                                                                                                                                                                                                                                                                                                                        | July 15, 2019                                                                                                                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Appendix III                                                                  | Calcium (APW8, APW10)<br>Fluoride (APW7, APW9)<br>Sulfate (APW7, APW8,<br>APW9, APW10)                                                                                                            | July 15, 2019                                                                                                                                                                                                                                                                                                                                                         | October 14, 2019                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Appendix III                                                                  | Calcium (APW8, APW10)<br>Chloride (APW8)<br>Sulfate (APW7, APW8,<br>APW9, APW10)                                                                                                                  | January 27, 2020                                                                                                                                                                                                                                                                                                                                                      | April 27, 2020                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Appendix III                                                                  | Calcium (APW7, APW8,<br>APW9, APW10)<br>Chloride (APW7, APW9)<br>Sulfate (APW8, APW10)                                                                                                            | July 14, 2020                                                                                                                                                                                                                                                                                                                                                         | TBD (October 2020)                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Appendix III Greater<br>than Background <sup>1</sup>                          | Chloride (APW7, APW9)                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                               | Appendix III  Appendix III  Appendix III Greater                                                                                                                                                  | Appendix III  Appendix III  Appendix III  Calcium (APW8, APW10) Fluoride (APW7, APW9) Sulfate (APW7, APW8, APW9, APW10)  Calcium (APW8, APW10) Chloride (APW8, APW8, APW9, APW10) Calcium (APW7, APW8, APW9, APW10) Chloride (APW7, APW9) Sulfate (APW8, APW10) | Appendix III  Appendix III  Appendix III  Calcium (APW8, APW10) Fluoride (APW7, APW9) Sulfate (APW7, APW8, APW9, APW10)  Calcium (APW8, APW10) Chloride (APW8) Sulfate (APW7, APW8, APW9, APW10) Calcium (APW8, APW10) Calcium (APW7, APW8, APW9, APW10) Calcium (APW7, APW8, APW9, APW10) Chloride (APW7, APW9) Sulfate (APW8, APW10)  Appendix III Greater  Chloride (APW7, APW9) NA | Appendix III  Appendix III  Calcium (APW8, APW10) Fluoride (APW7, APW8) Sulfate (APW7, APW8, APW9, APW10)  Calcium (APW8, APW10) Chloride (APW8) Sulfate (APW7, APW8, APW9, APW10) Calcium (APW8) APW9, APW10)  Calcium (APW7, APW8, APW9, APW10) Calcium (APW7, APW8, APW9, APW10) Calcium (APW7, APW8, APW9, APW10) Calcium (APW7, APW8, APW9, APW10) Chloride (APW7, APW9) Sulfate (APW8, APW10)  Appendix III Greater  Chloride (APW7, APW9) NA |

#### Notes:

CMA = Corrective Measures Assessment

NA = Not Applicable


TBD = To Be Determined

1. To confirm SSIs, as allowed by the Statistical Analysis Plan, groundwater samples were collected and analyzed for Appendix III parameters initially detected at concentrations greater than statistical background values in the preceding sampling event.

#### **FIGURES**

PROJECT NO: 2285/4.3





NOTES

1. NOT TO SCALE

## TYPICAL HYDRAULIC GRADIENT CONTROL WELL DETAIL

FIGURE 2

RAMBOLL US CORPORATION A RAMBOLL COMPANY

ILLINOIS POWER GENERATING COMPANY
NEWTON PRIMARY ASH POND

NEWTON, ILLINOIS



ATTACHMENT 1 2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT Prepared for

Illinois Power Generating Company

Document type

2019 Annual Groundwater Monitoring and Corrective Action Report

Date

January 31, 2020

# 2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT NEWTON PRIMARY ASH POND, NEWTON POWER STATION

#### 2019 ANNUAL GROUNDWATER MONITORING AND **CORRECTIVE ACTION REPORT NEWTON PRIMARY ASH POND, NEWTON POWER STATION**

Project name **Newton Power Station** 

Project no. 72760

Recipient **Illinois Power Generating Company** 

Document type Annual Groundwater Monitoring and Corrective Action Report

FINAL Version

Date January 31, 2020 Prepared by Kristen L. Theesfeld Checked by Nicole M. Pagano

Approved by Eric J. Tlachac

Description

Ramboll

234 W. Florida Street

Fifth Floor

Milwaukee, WI 53204

USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Annual Report in Support of the CCR Rule Groundwater Monitoring Program

Kristen L. Theesfeld Hydrogeologist

Nicole M. Pagano Senior Managing Engineer

#### **CONTENTS**

| <b>EXECU</b> | ITIVE SUMMARY                                            | 3  |
|--------------|----------------------------------------------------------|----|
| 1.           | Introduction                                             | 4  |
| 2.           | Monitoring and Corrective Action Program Status          | 5  |
| 3.           | Key Actions Completed in 2019                            | 6  |
| 4.           | Problems Encountered and Actions to Resolve the Problems | 8  |
| 5.           | Key Activities Planned for 2020                          | 9  |
| 6.           | References                                               | 10 |

#### **TABLES**

Table A 2018–2019 Detection Monitoring Program Summary (in text)

Table 1 2019 Analytical Results – Groundwater Elevation and Appendix III Parameters

Table 2 Statistical Background Values

#### **FIGURES**

Figure 1 Monitoring Well Location Map

#### **APPENDICES**

Appendix A Alternate Source Demonstrations

#### **ACRONYMS AND ABBREVIATIONS**

| ASD | Alternate Source Demonstration     |
|-----|------------------------------------|
| CCR | Coal Combustion Residuals          |
| PAP | Primary Ash Pond                   |
| SAP | Sampling and Analysis Plan         |
| SSI | Statistically Significant Increase |

#### **EXECUTIVE SUMMARY**

This report has been prepared to provide the information required by Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.90(e) for the Newton Primary Ash Pond (PAP) located at Newton Power Station near Newton, Illinois.

Groundwater is being monitored at Newton PAP in accordance with the Detection Monitoring Program requirements specified in 40 C.F.R. § 257.94.

No changes were made to the monitoring system in 2019 (no wells were installed or decommissioned).

The following Statistically Significant Increases (SSIs) of 40 C.F.R. Part 257 Appendix III parameter concentrations greater than background concentrations were determined during one or more sampling events in 2019:

- Calcium at wells APW7, APW8, APW9, and APW10
- · Chloride at wells APW7 and APW9
- Fluoride at wells APW7 and APW9
- Sulfate at wells APW7, APW8, APW9, and APW10

Alternate Source Demonstrations (ASDs) were completed for the SSIs referenced above and Newton PAP remains in the Detection Monitoring Program.

#### 1. INTRODUCTION

This report has been prepared by Ramboll on behalf of Illinois Power Generating Company, to provide the information required by 40 C.F.R. § 257.90(e) for Newton PAP located at Newton Power Station near Newton, Illinois.

In accordance with 40 C.F.R. § 257.90(e), the owner or operator of a Coal Combustion Residuals (CCR) unit must prepare an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year that documents the status of the Groundwater Monitoring and Corrective Action Program for the CCR unit, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and projects key activities for the upcoming year. At a minimum, the Annual Report must contain the following information, to the extent available:

- 1. A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit.
- 2. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.
- 3. In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the Detection Monitoring or Assessment Monitoring Programs.
- 4. A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from Detection Monitoring to Assessment Monitoring in addition to identifying the constituent(s) detected at a Statistically Significant Increase relative to background levels).
- 5. Other information required to be included in the Annual Report as specified in §§ 257.90 through 257.98.

This report provides the required information for Newton PAP for calendar year 2019.

# 2. MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

No changes have occurred to the monitoring program status in calendar year 2019, and Newton PAP remains in the Detection Monitoring Program in accordance with 40 C.F.R. § 257.94.

#### 3. KEY ACTIONS COMPLETED IN 2019

The Detection Monitoring Program is summarized in Table A. The groundwater monitoring system, including the CCR unit and all background and downgradient monitoring wells, is presented in Figure 1. No changes were made to the monitoring system in 2019 (no wells were installed or decommissioned). In general, one groundwater sample was collected from each background and downgradient well during each monitoring event.. All samples were collected and analyzed in accordance with the Sampling and Analysis Plan (SAP) (NRT/OBG, 2017a). All monitoring data obtained under 40 C.F.R. §§ 257.90 through 257.98 (as applicable) in 2019 are presented in Table 1. Analytical data were evaluated in accordance with the Statistical Analysis Plan (NRT/OBG, 2017b) to determine any SSIs of Appendix III parameters relative to background concentrations.

Statistical background values are provided in Table 2.

Analytical results for the May, August, and November 2018 sampling events were provided in the 2018 Annual Groundwater Monitoring and Corrective Action Report.

Potential alternate sources were evaluated as outlined in the 40 C.F.R. § 257.94(e)(2). ASDs were completed and certified by a qualified professional engineer. The dates the ASDs were completed are provided in Table A. The ASDs completed in 2019 are included in Appendix A.

<sup>&</sup>lt;sup>1</sup> Sampling was limited to APW7, APW8, APW9, and APW10 during the August 2018 sampling event to confirm Appendix III parameters initially detected at concentrations greater than statistical background values in the preceding sampling event to confirm SSIs, as allowed by the Statistical Analysis Plan.

Table A – 2018–2019 Detection Monitoring Program Summary

| Sampling Date      | Analytical Data<br>Receipt Date | Parameters<br>Collected                              | SSI(s)                                                                        | SSI (s)<br>Determination<br>Date | ASD Completion<br>Date |
|--------------------|---------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------|------------------------|
| May 18, 2018       | July 9, 2018                    | Appendix III                                         | Calcium (APW7, APW8, APW9, APW10) Chloride (APW7, APW9) Sulfate (APW8, APW10) | October 7, 2018                  | January 7, 2019        |
| August 17-18, 2018 | July 9, 2018                    | Appendix III Greater<br>than Background <sup>1</sup> | NA                                                                            | NA                               | NA                     |
| November 9, 2018   | January 16, 2019                | Appendix III                                         | Calcium (APW8, APW10) Fluoride (APW9) Sulfate (APW8, APW9, APW10)             | April 15, 2019                   | July 15, 2019          |
| February 22, 2019  | April 15, 2019                  | Appendix III                                         | Calcium (APW8, APW10) Fluoride (APW7, APW9) Sulfate (APW7, APW8, APW9, APW10) | July 15, 2019                    | October 14, 2019       |
| August 22-23, 2019 | October 28, 2019                | Appendix III                                         | TBD                                                                           | TBD                              | TBD                    |

#### Notes:

NA: Not Applicable

TBD: To Be Determined

<sup>1.</sup> To confirm SSIs, as allowed by the Statistical Analysis Plan, groundwater samples were collected and analyzed for Appendix III parameters initially detected at concentrations greater than statistical background values in the preceding sampling event.

# 4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the Groundwater Monitoring Program during 2019. Groundwater samples were collected and analyzed in accordance with the SAP (NRT/OBG, 2017a), and all data were accepted.

#### 5. KEY ACTIVITIES PLANNED FOR 2020

The following key activities are planned for 2020:

- Continuation of the Detection Monitoring Program with semi-annual sampling scheduled for the first and third quarters of 2020.
- Complete evaluation of analytical data from the downgradient wells, using background data to determine whether an SSI of Appendix III parameters detected at concentrations greater than background concentrations has occurred.
- If an SSI is identified, potential alternate sources (i.e., a source other than the CCR unit caused the SSI or that that SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated.
  - If an alternate source is demonstrated to be the cause of the SSI, a written demonstration will be completed within 90 days of SSI determination and included in the 2020 Annual Groundwater Monitoring and Corrective Action Report.
  - If an alternate source(s) is not identified to be the cause of the SSI, the applicable requirements of 40 C.F.R. §§ 257.94 through 257.98 as may apply in 2020 (e.g., Assessment Monitoring) will be met, including associated recordkeeping/notifications required by 40 C.F.R. §§ 257.105 through 257.108.

#### 6. REFERENCES

Natural Resource Technology, an OBG Company (NRT/OBG), 2017a. Sampling and Analysis Plan, Newton Primary Ash Pond, Newton Power Station, Newton, Illinois, Project No. 2285, Revision 0, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017b. Statistical Analysis Plan, Coffeen Power Station, Newton Power Station, Illinois Power Generating Company, October 17, 2017.

#### **TABLES**

#### TABLE 1.

#### 2019 ANALYTICAL RESULTS - GROUNDWATER ELEVATION AND APPENDIX III PARAMETERS 2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

NEWTON POWER STATION

UNIT ID 501 - NEWTON PRIMARY ASH POND

NEWTON, ILLINOIS

DETECTION MONITORING PROGRAM

|                                   |                                          |                                   |                        |                                              | 40 C.F.R. Part 257 Appendix III         |                           |                             |                              |                              |                             |                          |                                        |
|-----------------------------------|------------------------------------------|-----------------------------------|------------------------|----------------------------------------------|-----------------------------------------|---------------------------|-----------------------------|------------------------------|------------------------------|-----------------------------|--------------------------|----------------------------------------|
| Well<br>I dentification<br>Number | Latitude<br>(Decimal<br>Degrees)         | Longitude<br>(Decimal<br>Degrees) | Date & Time<br>Sampled | Depth to<br>Groundwater<br>(ft) <sup>1</sup> | Groundwater<br>Elevation<br>(ft NAVD88) | Boron,<br>total<br>(mg/L) | Calcium,<br>total<br>(mg/L) | Chloride,<br>total<br>(mg/L) | Fluoride,<br>total<br>(mg/L) | pH (field)<br>(S.U.)        | Sulfate, total<br>(mg/L) | Total<br>Dissolved<br>Solids<br>(mg/L) |
|                                   |                                          |                                   |                        |                                              |                                         | 6020A <sup>2</sup>        | 6020A <sup>2</sup>          | 9251 <sup>2</sup>            | 9214 <sup>2</sup>            | SM 4500<br>H+B <sup>2</sup> | 9036 <sup>2</sup>        | SM 2540C <sup>2</sup>                  |
| Background /                      | Background / Upgradient Monitoring Wells |                                   |                        |                                              |                                         |                           |                             |                              |                              |                             |                          |                                        |
| APW5                              | 38.933964                                | -88.280989                        | 2/22/2019 10:00        | 15.00                                        | 529.07                                  | 0.11                      | 50                          | 48                           | 0.374                        | 6.9                         | 3.5                      | 600                                    |
| APWS                              | 36.933904                                | -00.200909                        | 8/22/2019 16:46        | 16.04                                        | 528.03                                  | 0.12                      | 49                          | 50                           | < 0.250                      | 7.0                         | 2.3                      | 530                                    |
| APW6                              | PW6 38.933753 -88.286281                 | -88.286281                        | 2/22/2019 11:07        | 15.49                                        | 530.58                                  | 0.09                      | 45                          | 24                           | 0.386                        | 7.3                         | 1.7                      | 480                                    |
| APVVO                             | 36.933733                                | 755 -00.200201                    | 8/23/2019 8:14         | 16.39                                        | 529.68                                  | 0.11                      | 55                          | 26                           | 0.314                        | 7.3                         | 5.8                      | 500                                    |
| Downgradient                      | Downgradient Monitoring Wells            |                                   |                        |                                              |                                         |                           |                             |                              |                              |                             |                          |                                        |
| APW7                              | 38.928239                                | 9 -88.292081                      | 2/22/2019 15:38        | 42.18                                        | 496.19                                  | 0.060                     | 45                          | 43                           | 0.734                        | 7.2                         | 66                       | 340                                    |
| APVV7                             | 30.920239                                | -00.292001                        | 8/23/2019 11:30        | 43.00                                        | 495.37                                  | 0.075                     | 58                          | 46                           | 0.632                        | 7.1                         | 62                       | 350                                    |
| V D/V/O                           | APW8 38.923161 -88.292292                | 99 202202                         | 2/22/2019 13:12        | 35.06                                        | 493.91                                  | 0.10                      | 80                          | 56                           | 0.393                        | 7.2                         | 46                       | 600                                    |
| AFWO                              |                                          | -00.272272                        | 8/23/2019 9:01         | 34.20                                        | 494.77                                  | 0.10                      | 82                          | 59                           | 0.337                        | 7.2                         | 48                       | 570                                    |
| APW9                              | APW9 38.922325 -88.281036                | -88.281036                        | 2/22/2019 13:56        | 20.77                                        | 510.75                                  | 0.054                     | 38                          | 47                           | 0.714                        | 7.5                         | 61                       | 320                                    |
| AF VV 7                           | 30.722323                                | -88.281036                        | 8/23/2019 9:50         | 22.09                                        | 509.43                                  | 0.055                     | 41                          | 51                           | 0.621                        | 7.4                         | 51                       | 360                                    |
| APW10                             | 38.927442                                | -88.273133                        | 2/22/2019 14:42        | 14.85                                        | 509.40                                  | 0.079                     | 110                         | 50                           | 0.276                        | 6.9                         | 420                      | 990                                    |
| APW 10 38.927442 -                | -00.2/3133                               | 8/23/2019 10:42                   | 16.08                  | 508.17                                       | 0.10                                    | 130                       | 50                          | 0.359                        | 7.0                          | 390                         | 1000                     |                                        |

[O: RAB 12/23/19, C: KLT 12/26/19]

#### Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

ft = foot/feet

mg/L = milligrams per liter

NAVD88 = North American Vertical Datum of 1988

S.U. = Standard Units

< = concentration is less than the concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine Statistically Significant Increases (SSIs) over background.

<sup>1</sup>All depths to groundwater were measured on the first day of the sampling event.

<sup>2</sup>4-digit numbers represent SW-846 analytical methods.

#### TABLE 2.

#### STATISTICAL BACKGROUND VALUES

#### 2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

NEWTON POWER STATION

UNIT ID 501 - NEWTON PRIMARY ASH POND

NEWTON, ILLINOIS

DETECTION MONITORING PROGRAM

| Parameter                       | Statistical<br>Background Value<br>(UPL) |  |  |  |  |  |
|---------------------------------|------------------------------------------|--|--|--|--|--|
| 40 C.F.R. Part 257 Appendix III |                                          |  |  |  |  |  |
| Boron (mg/L)                    | 0.14                                     |  |  |  |  |  |
| Calcium (mg/L)                  | 65                                       |  |  |  |  |  |
| Chloride (mg/L)                 | 58                                       |  |  |  |  |  |
| Fluoride (mg/L)                 | 0.692                                    |  |  |  |  |  |
| pH (S.U.)                       | 6.6 / 8.0                                |  |  |  |  |  |
| Sulfate (mg/L)                  | 15                                       |  |  |  |  |  |
| Total Dissolved Solids (mg/L)   | 1000                                     |  |  |  |  |  |

[O: RAB 12/23/19, C: KLT 12/26/19]

#### Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

mg/L = milligrams per liter

S.U. = Standard Units

UPL = Upper Prediction Limit



#### **FIGURES**



#### FIGURE 1

O'BRIEN & GERE ENGINEERS, INC.
A RAMBOLL COMPANY

RAMBOLL

**MONITORING WELL LOCATION MAP NEWTON PRIMARY ASH POND UNIT ID:501** 

2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT
VISTRA CCR RULE GROUNDWATER MONITORING
NEWTON POWER STATION
NEWTON, ILLINOIS

CCR MONITORED UNIT

DOWNGRADIENT MONITORING WELL LOCATION

# APPENDIX A ALTERNATE SOURCE DEMONSTRATIONS

40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PRIMARY ASH POND JANUARY 7, 2019

January 7, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.94(e)(2) allows the owner or operator of a coal combustion residuals (CCR) unit 90 days from the date of determination of statistically significant increases (SSIs) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (alternate source demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company by O'Brien & Gere Engineers, Inc., part of Ramboll (OBG) to provide pertinent information pursuant to 40 C.F.R. § 257.94(e)(2) for the Newton Primary Ash Pond (PAP) located near Newton, Illinois.

The second semi-annual detection monitoring samples (Detection Monitoring Round 2 [D2]) were collected on May 18, 2018 and analytical data were received on July 9, 2018. In accordance with 40 C.F.R. § 257.93(h)(2), statistical analysis of the data to identify SSIs of 40 C.F.R. Part 257 Appendix III parameters over background concentrations was completed by October 7, 2018, within 90 days of receipt of the analytical data. The statistical determination identified the following SSIs at downgradient monitoring wells:

- Calcium at wells APW7, APW8, APW9, and APW10
- Chloride at wells APW7 and APW9
- Sulfate at wells APW8 and APW10

In accordance with the Statistical Analysis Plan<sup>1</sup>, to confirm the SSIs, wells APW7, APW8, APW9, and APW10 were resampled on August 17-18, 2018 and analyzed only for the SSI parameters at each well. Following evaluation of analytical data from the resample, the following SSIs were confirmed:

- Calcium at wells APW7, APW8, APW9, and APW10
- Chloride at wells APW7 and APW9
- Sulfate at wells APW8 and APW10

Pursuant to 40 C.F.R. § 257.94(e)(2), the following demonstrates that sources other than the Newton PAP were the cause of the SSIs listed above. This ASD was completed by January 7, 2019, within 90 days of determination of the SSIs, as required by 40 C.F.R. § 257.94(e)(2).

#### **ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE**

Lines of evidence supporting these ASDs include the following:

- 1. The ionic composition of Newton PAP water is different from the ionic composition of groundwater.
- 2. Concentrations of calcium in the Newton PAP are lower than those observed in the groundwater.
- 3. Concentrations of chloride in the Newton PAP are lower than those observed in the groundwater.

<sup>&</sup>lt;sup>1</sup> Natural Resource Technology, an OBG Company, 2017, *Statistical Analysis Plan, Coffeen Power Station, Newton Power Station*, Illinois Power Generating Company, October 17, 2017.



### 40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PRIMARY ASH POND

- 4. Concentrations of sulfate in the Newton PAP are lower than those observed in the groundwater.
- 5. Concentrations of boron, a common indicator for CCR impacts to groundwater, in downgradient wells are stable and at or below concentrations in the background wells.

These lines of evidence are described and supported in greater detail below. Monitoring wells and leachate sample locations are shown on Figure 1.

## LINE OF EVIDENCE #1: THE IONIC COMPOSITION OF NEWTON PAP WATER IS DIFFERENT FROM THE IONIC COMPOSITION OF GROUNDWATER

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples relative to their major cation and anion content, providing the information needed to identify compositional categories or groupings. Figure 2 is a Piper diagram that displays the ionic composition of groundwater samples from the background and downgradient monitoring wells associated with the Phase I Landfill (LF1), Phase II Landfill (LF2), and Primary Ash Pond (PAP) and LF1 leachate and PAP water based on Quarter 2 2017 and Quarter 3 2018 samples. The ionic compositional groupings identified are shown in the green, blue, purple, brown, and turquoise ellipses on the diamond portion of the Piper diagram. These are discussed in more detail below.

The results show that there are three distinct groups. Groundwater samples from the PAP background and downgradient wells (enclosed within a green ellipse) and LF2 groundwater samples (enclosed within a blue ellipse) have a very high percentage of carbonate-bicarbonate cations and no dominant cation. Groundwater samples from the LF1 wells (enclosed within a turquoise ellipse) also have no dominant cation, but these waters have a high percentage of sulfate. Surface water samples from the PAP (enclosed within a purple ellipse) and the landfill leachate (enclosed within a brown ellipse) have a very high percentage of sodium-potassium and no dominant anion and a high percentage of sulfate, respectively.

The groundwater samples for both the PAP and LF2 (enclosed within the green and blue ellipses, respectively) are tightly clustered on the Piper diagram. This tight grouping indicates either an apparent lack of outside influences on the groundwater or the apparent influence of a constant, steady-state source, such as LF1, that is influencing all the wells equally and simultaneously.

The potential presence of a mixing zone between LF2 groundwater, PAP groundwater, and LF1 groundwater suggests that LF1 is an alternate source of the elevated major anion chloride.

Neither PAP groundwater nor LF2 groundwater is trending towards, or mixing with, the PAP leachate. The apparent lack of mixing between the PAP leachate and underlying groundwater in the Uppermost Aquifer demonstrates that there is no impact to groundwater from the PAP. However, the presence of a potential mixing zone between PAP groundwater and LF1 groundwater suggests that LF1 is a source of the elevated major cation calcium and elevated major anions chloride and sulfate.

The ionic characteristics of these samples are provided in Table 1 below.



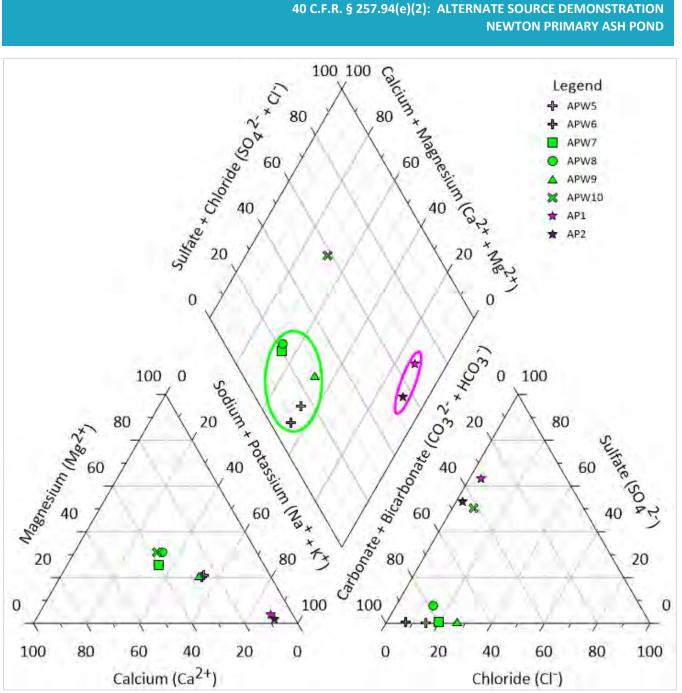



Figure 2 Piper Diagram Showing Ionic Composition of Samples of Background and Downgradient Groundwater Associated with LF1, LF2, and PAP.

| Grouping           | Green                                  | Blue                                   | Purple                         | Brown                          | Turquoise                |
|--------------------|----------------------------------------|----------------------------------------|--------------------------------|--------------------------------|--------------------------|
| Locations          | PAP Wells<br>Groundwater               | LF2 Wells<br>Groundwater               | PAP Surface Water              | LF1 Leachate                   | LF1 Wells<br>Groundwater |
| Dominant<br>Cation | No dominant cation                     | No dominant cation                     | Very High Sodium-<br>Potassium | Very High Sodium-<br>Potassium | No dominant cation       |
| Dominant<br>Anion  | Very High<br>Carbonate-<br>Bicarbonate | Very High<br>Carbonate-<br>Bicarbonate | No dominant anion              | High Sulfate                   | High Sulfate             |

**Table 1. Summary of Ionic Classification** 



## LINE OF EVIDENCE #2: CONCENTRATIONS OF CALCIUM IN THE NEWTON PRIMARY ASH POND ARE LOWER THAN THOSE OBSERVED IN THE GROUNDWATER

Calcium concentrations in water sampled from the PAP are lower than calcium concentrations in all groundwater samples from downgradient ash pond wells from 2015 through 2018. A time series for calcium concentrations is provided in Figure 3 below.

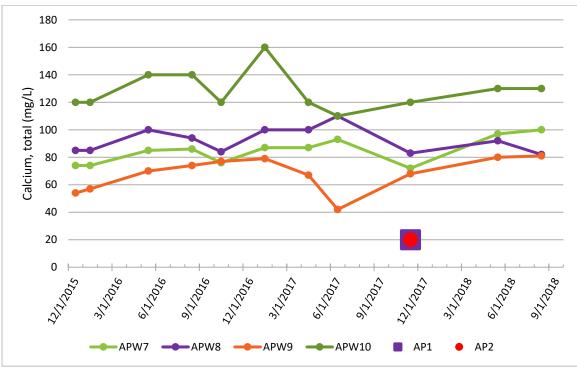



Figure 3. Calcium time series

The following observations can be made from Figure 3:

- PAP water samples AP1 and AP2 each contain 20 mg/L of calcium.
- Groundwater samples from wells APW7, APW8, APW9, and APW10 have two to eight times greater concentrations than the PAP water.

If the PAP were the source of calcium in groundwater, calcium concentrations in downgradient monitoring wells would be lower than calcium concentrations in the water in the pond; therefore, the PAP is not the source of the calcium observed in the Uppermost Aquifer. Elevated concentrations of calcium are most likely naturally occurring due to geochemical variations within the Uppermost Aquifer, although some level of impacts from upgradient anthropogenic sources (i.e. Phase I Landfill) may also be present.

## LINE OF EVIDENCE #3: CONCENTRATIONS OF CHLORIDE IN THE NEWTON PRIMARY ASH POND ARE LOWER THAN THOSE OBSERVED IN THE GROUNDWATER

Chloride concentrations in water sampled from the PAP are lower than chloride concentrations in all groundwater samples from downgradient ash pond wells from 2015 through 2018, inclusive of wells APW7 and APW9. A time series for chloride concentrations is provided in Figure 4 below.



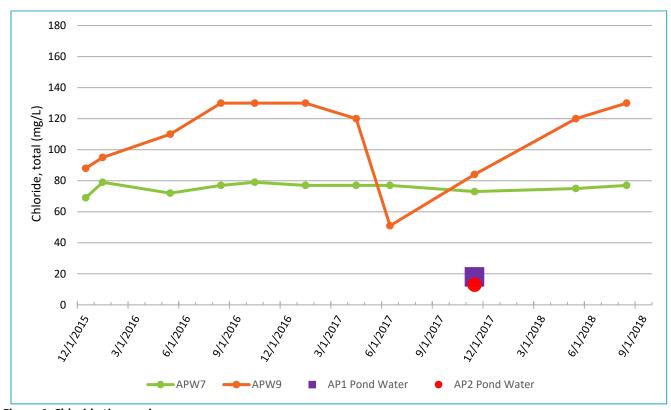



Figure 4. Chloride time series

The following observations can be made from Figure 4:

- PAP water samples AP1 and AP2 contain 18 and 13 mg/L of chloride, respectively.
- Groundwater samples from wells APW7 and APW9 have two-and-a-half to seven times greater concentrations than the PAP water.

If the PAP was the source of chloride observed in groundwater, chloride concentrations in downgradient monitoring wells APW7 and APW9 would be lower than chloride concentrations in the water in the pond; therefore, the PAP is not the source of the chloride observed in the Uppermost Aquifer. Elevated chloride concentrations are most likely naturally occurring due to geochemical variations within the Uppermost Aquifer, although some level of impacts from upgradient anthropogenic sources (i.e. Phase I Landfill) may also be present.

# LINE OF EVIDENCE #4: CONCENTRATIONS OF SULFATE IN THE NEWTON PRIMARY ASH POND ARE LOWER THAN THOSE OBSERVED IN THE GROUNDWATER

Sulfate concentrations in water sampled from the PAP are lower than sulfate concentrations in all groundwater samples from downgradient ash pond well APW10 from 2015 through 2018. A time series for sulfate concentrations is provided in Figure 5 below.



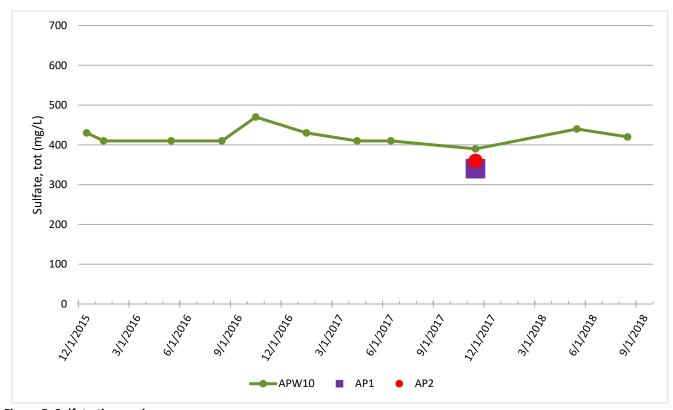



Figure 5. Sulfate time series

The following observations can be made from Figure 5:

- PAP water samples AP1 and AP2 contain 340 and 360 mg/L of sulfate, respectively.
- Groundwater samples from well APW10 have higher sulfate concentrations than the PAP water, ranging from 390 to 470 mg/L from 2015 through 2018.

If the PAP were the source of sulfate observed in groundwater samples from APW10, the sulfate concentrations in downgradient monitoring well APW10 would be lower than sulfate concentrations in the water in the pond; therefore, the PAP is not the source of the sulfate observed in the Uppermost Aquifer. Alternate sources of sulfate are most likely present from upgradient anthropogenic sources, principally the Phase I Landfill, although naturally occurring geochemical variations within the Uppermost Aquifer may also be affecting sulfate concentrations.

# LINE OF EVIDENCE #5: CONCENTRATIONS OF BORON, A COMMON INDICATOR FOR CCR IMPACTS TO GROUNDWATER, IN DOWNGRADIENT WELLS ARE STABLE AND AT OR BELOW CONCENTRATIONS IN THE BACKGROUND WELLS

Boron is a primary indicator of CCR impacts to groundwater. Concentrations of boron in all downgradient monitoring wells are below upper prediction limits established using background monitoring wells (i.e. thresholds for SSIs) and are lower than median concentrations observed in background wells APW5 and APW6 from 2015 through 2018, as shown on Figure 6.



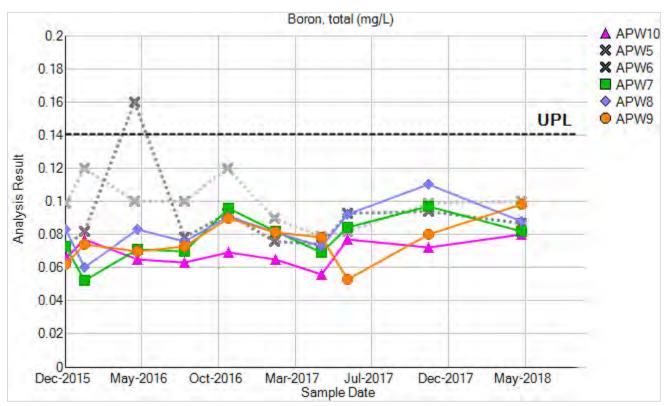



Figure 6. Boron time series showing boron concentrations in groundwater samples from background wells (gray "X"s) are higher or similar to concentrations in groundwater samples from downgradient wells.

From Figure 6 the following observations can be made:

- Boron is stable. A Mann-Kendall trend analysis (Attachment A) was performed to determine whether the concentration trend for each downgradient well is statistically significant. None were determined to be statistically significant using the Mann-Kendall test.
  - » If a Mann-Kendall test did not identify a trend, the coefficient of variation (CV) was calculated (Attachment B) to determine if the concentrations are stable (i.e., CV less than or equal to 1), or if there is too much data variability to draw a conclusion. All calculated CVs were less than 1, indicating concentrations are stable.
- Boron concentrations in groundwater samples from downgradient monitoring wells range from 0.052 to 0.11 mg/L and 0.073 to 0.16 mg/L in groundwater samples from background wells. The overall median boron concentration in groundwater samples collected from downgradient wells from 2015 through 2018 is 0.077 mg/L and 0.093 mg/L in groundwater samples collected from background wells.

Elevated boron concentrations are most likely naturally occurring due to geochemical variations within the Uppermost Aquifer, although some level of impacts from upgradient anthropogenic sources may also be present.

Based on these five lines of evidence, it has been demonstrated that the Newton Primary Ash Pond has not caused the SSIs in APW7, APW8, APW9, and APW10.

This information serves as the written alternate source demonstration prepared in accordance with 40 C.F.R. § 257.94(e)(2) that SSIs observed during the detection monitoring program were not due to the CCR unit but were from a combination of naturally occurring conditions and potential anthropogenic impacts from the closed Phase I Landfill. Therefore, an assessment monitoring program is not required and the Newton Primary Ash Pond will remain in detection monitoring.



# 40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PRIMARY ASH POND

#### Attachments:

Figure 1 Monitoring Well and Source Water Location Map Newton Primary Ash Pond

Attachment A Boron Mann-Kendall Trend Analyses Attachment B Coefficient of Variation Evaluation



# 40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PRIMARY ASH POND

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac

Qualified Professional Engineer

062-063091

Illinois

O'Brien & Gere Engineers, Inc., part of Ramboll

Date: January 7, 2019



I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicolé M. Pagano Professional Geologist

196-000750

O'Brien & Gere Engineers, Inc., part of Ramboll

Date: January 7, 2019



# **Attachments**

# **Figures**



# Attachment A Boron Mann-Kendall Trend Analyses

#### **User Supplied Information**

Location ID:APW7Parameter Code:01022Location Class:Parameter:B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 08/31/2018 Limit Name:

Averaged: No

## **Trend Analysis**

Trend of the least squares straight line
Slope (fitted to data):

0.000028 mg/L per day

R-Squared error of fit: 0.350024

Sen's Non-parametric estimate of the slope (One-Sided Test)

Non-parametric Mann-Kendall Test for Trend

S Statistic: 1.347
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): None

#### **User Supplied Information**

Location ID: APW8 Parameter Code: 01022
Location Class: Parameter: B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 08/31/2018 Limit Name:

Averaged: No

Averaged.

## **Trend Analysis**

Trend of the least squares straight line
Slope (fitted to data):

0.000027 mg/L per day

R-Squared error of fit: 0.338419

Sen's Non-parametric estimate of the slope (One-Sided Test)

Non-parametric Mann-Kendall Test for Trend

S Statistic: 1.347
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): None

#### **User Supplied Information**

Location ID:APW9Parameter Code:01022Location Class:Parameter:B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 08/31/2018 Limit Name:

Averaged: No

## **Trend Analysis**

Trend of the least squares straight line Slope (fitted to data):  $0.000021 \, \text{mg/L}$  per day

Slope (fitted to data): 0.000021 mg
R-Squared error of fit: 0.226829

Sen's Non-parametric estimate of the slope (One-Sided Test)

Median Slope:0.000022mg/L per dayLower Confidence Limit of Slope, M1:-0.000005mg/L per dayUpper Confidence Limit of Slope, M2+1:0.000044mg/L per day

Non-parametric Mann-Kendall Test for Trend

S Statistic: 1.431
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): None

#### **User Supplied Information**

Location ID: APW10 Parameter Code: 01022 Location Class: Parameter: B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 08/31/2018 Limit Name:

Averaged: No

## **Trend Analysis**

Trend of the least squares straight line
Slope (fitted to data):

0.000009 mg/L per day

R-Squared error of fit: 0.110910

Sen's Non-parametric estimate of the slope (One-Sided Test)

Median Slope:0.000009mg/L per dayLower Confidence Limit of Slope, M1:-0.000017mg/L per dayUpper Confidence Limit of Slope, M2+1:0.000023mg/L per day

Non-parametric Mann-Kendall Test for Trend

S Statistic: 0.721
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): None

# Attachment B Coefficient of Variation Evaluation

#### Newton

# Coefficient of Variation Date Range: 12/14/2015 to 8/31/2018

## Boron, total (mg/L)

| Location | Count | Mean  | Std Dev | % Non-<br>Detects | cv   |  |
|----------|-------|-------|---------|-------------------|------|--|
| APW5     | 10    | 0.099 | 0.014   | 0.00              | 0.14 |  |
| APW6     | 10    | 0.091 | 1 0.026 | 0.00              | 0.29 |  |
| APW7     | 10    | 0.078 | 0.014   | 0.00              | 0.18 |  |
| APW8     | 10    | 0.084 | 0.013   | 0.00              | 0.15 |  |
| APW9     | 10    | 0.076 | 0.013   | 0.00              | 0.17 |  |
| APW10    | 10    | 0.069 | 0.007   | 0.00              | 0.10 |  |

CV=Std Dev/ Mean



#### Newton

# Coefficient of Variation Date Range: 12/14/2015 to 8/31/2018

## Boron, total (mg/L)

| Location | Count | Mean  | Std Dev | % Non-<br>Detects | cv   |  |
|----------|-------|-------|---------|-------------------|------|--|
| APW5     | 10    | 0.099 | 0.014   | 0.00              | 0.14 |  |
| APW6     | 10    | 0.091 | 1 0.026 | 0.00              | 0.29 |  |
| APW7     | 10    | 0.078 | 0.014   | 0.00              | 0.18 |  |
| APW8     | 10    | 0.084 | 0.013   | 0.00              | 0.15 |  |
| APW9     | 10    | 0.076 | 0.013   | 0.00              | 0.17 |  |
| APW10    | 10    | 0.069 | 0.007   | 0.00              | 0.10 |  |

CV=Std Dev/ Mean



40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PRIMARY ASH POND JULY 15, 2019

July 15, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.94(e)(2) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Increases (SSIs) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company by O'Brien & Gere Engineers, Inc., part of Ramboll (OBG), to provide pertinent information pursuant to 40 C.F.R. § 257.94(e)(2) for the Newton Primary Ash Pond (PAP) located near Newton, Illinois.

The third round of semi-annual detection monitoring samples (Detection Monitoring Round 3 [D3]) were collected on November 9, 2018 and analytical data were received on January 16, 2019. In accordance with 40 C.F.R. Section 257.93(h)(2), statistical analysis of the data to identify SSIs of 40 C.F.R. Part 257 Appendix III parameters over background concentrations was completed by April 16, 2019 within 90 days of receipt of the analytical data. The statistical determination identified the following SSIs at downgradient monitoring wells:

- Calcium at wells APW7, APW8, and APW10
- Chloride at APW7
- Fluoride at well APW9
- Sulfate at wells APW8, APW9, and APW10

Because the Detection Monitoring Round 4 (D4) was completed on February 22, 2019, prior to SSIs referenced above being determined for D3, results from D4 were used to verify the D3 SSIs in accordance with the Statistical Analysis Plan<sup>1</sup>. Following evaluation of analytical data from D4, the following SSIs were confirmed:

- Calcium at wells APW8 and APW10
- Fluoride at well APW9
- Sulfate at wells APW8, APW9, and APW10

Pursuant to 40 C.F.R. § 257.94(e)(2), the following demonstrates that sources other than the PAP were the cause of the SSIs listed above. This ASD was completed by July 15, 2019, within 90 days of determination of the SSIs, as required by 40 C.F.R. § 257.94(e)(2).

#### SITE LOCATION AND DESCRIPTION

The Newton Power Station (Site) is located in Jasper County, in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The area is surrounded by Newton Lake. Beyond the lake is agricultural land.

#### **GEOLOGY AND HYDROGEOLOGY**

The site geology and hydrogeology are summarized below from the Hydrogeologic Monitoring Plan (NRT/OBG, 2017a).<sup>2</sup>.

<sup>&</sup>lt;sup>1</sup> Natural Resource Technology, an OBG Company, *Statistical Analysis Plan, Coffeen Power Station, Newton Power Station*, Illinois Power Generating Company, October 17, 2017.



#### **GEOLOGY**

Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations. The unconsolidated deposits occurring at Newton Power Station include the following units (beginning at the ground surface):

- Ash/Fill Units CCR and fill within the various CCR Units
- Upper Confining Unit Low permeability clays and silts, including: the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east; underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) and Vandalia (Till) Members of the Glasford Formation
- Uppermost Aquifer (Groundwater Monitoring Zone) Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation
- Lower Confining Unit Thick, very low permeability silty clay diamictons of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation

The bedrock beneath the unconsolidated deposits consists of Pennsylvanian-age Mattoon Formation that is mostly shale near the bedrock surface, but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones. The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the site, but is typically encountered at 90 to 120 ft below ground surface (bgs).

#### **HYDROGEOLOGY**

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation. CCR monitoring well locations are shown in Figure 1.

#### **Uppermost Aquifer**

The Uppermost Aquifer, the Mulberry Grove Member, typically consists of fine to coarse sand with varying amounts of clay, silt, and fine to coarse gravel. The portion of the Mulberry Grove Member at the site that is defined as a sand layer ranges in thickness from 3 to 17 ft with an average thickness of 8 ft. With only a few exceptions, the sand layer occurs between depths of 55 to 88 ft bgs.

#### **Lower Limit of Aquifer**

The lower hydrostratigaphic units, which comprise the lower limit of the Uppermost Aquifer, consist of the Smithboro Member and the Banner Formation, both of which are predominantly low permeability clay diamictons with varying amounts of silt, sand, and gravel. The lower hydrostratigraphic units are 30 ft to more than 50 ft thick above the underlying bedrock.

#### **Groundwater Elevation and Flow Direction**

Groundwater elevations across PAP ranged from approximately 495 to 530 ft MSL (NAVD88) during D3 (Figure 2). The groundwater elevation contours shown on Figure 2 were measured on November 8, 2018, the first day of a combined sampling event at the Site for LF2 and the Primary Ash Pond and for multiple monitoring programs required by both federal and state regulatory agencies. Overall groundwater flow within the Uppermost Aquifer in this area is southward toward Newton Lake, but with a predominantly southwesterly flow under the PAP.

<sup>&</sup>lt;sup>2</sup> Natural Resource Technology, an OBG Company (NRT), October 17, 2017. *Hydrogeologic Monitoring Plan. Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502.* Newton Power Station, Canton, Illinois. Illinois Power Generating Company.



#### **GROUNDWATER AND PAP WATER MONITORING**

The Uppermost Aquifer monitoring system for the PAP is shown on Figure 1. Monitoring wells APW5 and APW6 are used to monitor background water quality for the PAP. These wells are located north of the PAP. The downgradient monitoring wells are APW7, APW8, APW9, and APW10.

PAP water samples have been collected from locations AP1 in the southwest corner of the PAP and AP2 in the southeast corner of the PAP.

#### **ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE**

As allowed by 40 C.F.R. § 257.94(e)(2), this ASD demonstrates that sources other than the PAP caused the SSIs, or that the SSIs were a result of natural variation in groundwater quality. Lines of evidence supporting this ASD include the following:

- 1. The ionic composition of Newton PAP water is different from the ionic composition of groundwater.
- 2. The Newton PAP is not hydraulically connected to the Uppermost Aquifer.
- 3. Concentrations of calcium in the Newton PAP are lower than those observed in the groundwater.
- 4. Boron, a primary indicator parameter for CCR impacts to groundwater, has concentrations in downgradient wells that are near, or below, concentrations observed in background monitoring wells.

These lines of evidence are described and supported in greater detail below. Monitoring wells and leachate sample locations are shown on Figure 1.

# LINE OF EVIDENCE #1: THE IONIC COMPOSITION OF NEWTON PAP WATER IS DIFFERENT FROM THE IONIC COMPOSITION OF GROUNDWATER

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples relative to their major cation and anion content, providing the information needed to identify compositional categories or groupings. Figure 2, below, is a Piper diagram that displays the ionic composition of groundwater samples from the background and downgradient monitoring wells associated with the PAP and PAP water based on Quarter 2 2017 and Quarter 3 2018 samples.

Groundwater samples from the PAP downgradient wells (enclosed within a green ellipse) have a very high percentage of carbonate-bicarbonate anions and no dominant cation. Surface water samples from the PAP (enclosed within a purple ellipse) have a very high percentage of sodium-potassium cations and no dominant anion. The dissimilar ionic compositions of the PAP downgradient groundwater and the PAP surface water indicates that the PAP is not the source of CCR constituents detected in PAP groundwater.



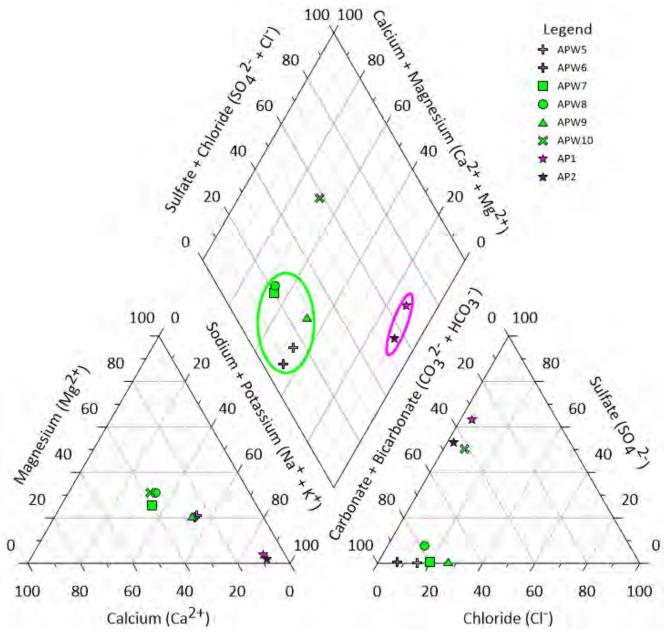



Figure 2 Piper Diagram Showing Ionic Composition of Samples of Background and Downgradient Groundwater Associated with PAP and Samples of PAP Surface Water.

# LINE OF EVIDENCE #2: THE NEWTON PRIMARY ASH POND IS NOT HYDRAULICALLY CONNECTED TO THE UPPERMOST AQUIFER

As noted above, the Uppermost Aquifer at the Site is the Mulberry Grove Member of the Glasford Formation. Based on boring logs for monitoring wells installed around the perimeter of the site, the Uppermost Aquifer is confined and the top of this unit ranges from 461.8 ft msl in APW-8 to 482.8 ft msl in APW-10 (Attachment A). The bottom elevation of the PAP is within the Hagarstown Member of the Glasford Formation at 508 ft msl, approximately 25 ft above the top of the Uppermost Aquifer (Attachment B). The Hagarstown Member functions as an aquitard, with hydraulic conductivity ranging from  $2.4 \times 10^{-6}$  to  $6.1 \times 10^{-5}$  centimeters per second (cm/s). Based upon these hydraulic conductivity values and the fact that the Uppermost Aquifer is confined, the PAP is not hydraulically connected to the Uppermost Aquifer. The lack of connection between the PAP and the



Uppermost Aquifer demonstrates that there is no complete pathway for transport of CCR constituents in groundwater beneath the PAP, thus the PAP is not the source of CCR constituents in the Uppermost Aquifer.

# LINE OF EVIDENCE #3: CONCENTRATIONS OF CALCIUM IN THE NEWTON PRIMARY ASH POND ARE LOWER THAN THOSE OBSERVED IN THE GROUNDWATER

Calcium concentrations are lower in PAP water samples than in all downgradient groundwater samples collected between 2015 and 2019. A time series for calcium concentrations is provided in Figure 3 below.

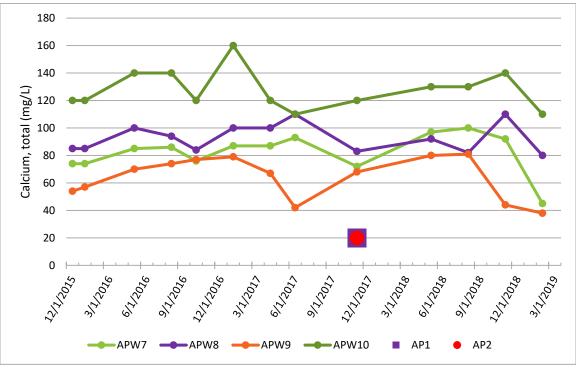



Figure 3. Calcium time series

The following observations can be made from Figure 3:

- PAP water samples AP1 and AP2 each contained 20 mg/L of calcium.
- Groundwater from downgradient wells APW7, APW8, APW9, and APW10 had higher calcium concentrations than the PAP water.

If the PAP were the source of calcium in groundwater, groundwater concentrations in PAP water would be higher than the downgradient groundwater; therefore, the PAP is not likely the source of the calcium observed in the Uppermost Aquifer.

# LINE OF EVIDENCE #4: BORON, A PRIMARY INDICATOR PARAMETER OF CCR IMPACTS TO GROUNDWATER, HAS CONCENTRATIONS IN DOWNGRADIENT WELLS THAT ARE STABLE AND NEAR, OR BELOW, CONCENTRATIONS OBSERVED IN BACKGROUND MONITORING WELLS

Boron is a primary indicator of CCR impacts to groundwater. If the source of the SSIs in the downgradient monitoring wells were the PAP, boron would be anticipated to be present at elevated concentrations, as well. Concentrations of boron in all downgradient monitoring wells are below upper prediction limits established using background monitoring wells (i.e. SSI limits) and are lower than median concentrations observed in background wells APW5 and APW6 from 2015 through 2019, as shown on Figure 4.



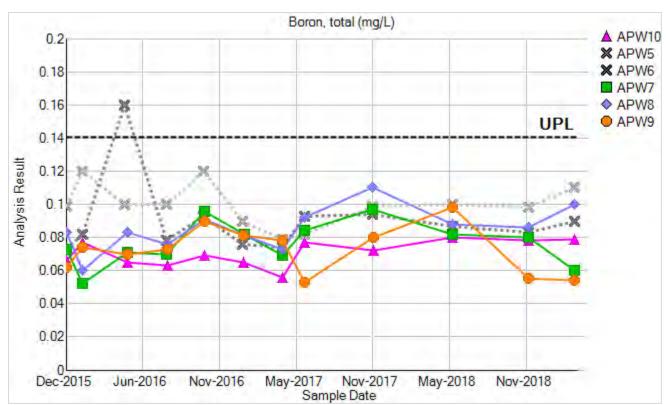



Figure 4. Boron time series showing boron concentrations in background wells (gray "X"s) are higher or similar to concentrations in downgradient wells.

From Figure 4 the following observations can be made:

- Boron concentrations in downgradient monitoring wells range from 0.052 mg/L to 0.11 mg/L, versus 0.073 mg/L to 0.16 mg/L in background wells.
- Overall median boron concentration in downgradient wells from 2015 through 2019 is 0.077 mg/L versus 0.093 mg/L in background wells.

Mann-Kendall trend analysis tests were performed (Attachment C) to determine if boron concentrations at each well were increasing, decreasing or stable (i.e., no statistically significant upward or downward trend). If the Mann-Kendall test did not identify a trend, the coefficient of variation (CV) was calculated (Attachment D) to determine if the concentrations were too variable to identify a trend (i.e. CV greater than or equal to 1). If a trend was identified, the CV was calculated to indicate whether data used to establish the trend were suggestive of a low or high magnitude trend. Data with a CV less than or equal to 1 suggest a lower magnitude trend. Boron concentrations are stable in background wells and downgradient wells APW7 and APW9. Upward trends were identified at APW8 and APW10, however, coefficient of variation evaluations identified minimal variation at all wells, suggesting a low-magnitude trend. Table 2 provides summary statistics, including variability and trend per well.

The low concentrations of boron in downgradient monitoring wells, relative to background concentrations, and the relatively stable boron concentrations in both background and downgradient monitoring wells suggests that the source of the of the SSIs in those wells is not the PAP.



# 40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PRIMARY ASH POND

| Manitarina         | Boron (mg/L) |         |        |                       |        |      |  |  |  |  |  |  |  |
|--------------------|--------------|---------|--------|-----------------------|--------|------|--|--|--|--|--|--|--|
| Monitoring<br>Well | Minimum      | Maximum | Median | Standard<br>Deviation | Trend  | CV   |  |  |  |  |  |  |  |
| APW5               | 0.079        | 0.12    | 0.100  | 0.0127                | stable | 0.13 |  |  |  |  |  |  |  |
| APW6               | 0.073        | 0.16    | 0.085  | 0.0232                | stable | 0.26 |  |  |  |  |  |  |  |
| APW7               | 0.052        | 0.097   | 0.077  | 0.0133                | stable | 0.17 |  |  |  |  |  |  |  |
| APW8               | 0.060        | 0.11    | 0.085  | 0.0129                | upward | 0.15 |  |  |  |  |  |  |  |
| APW9               | 0.053        | 0.098   | 0.074  | 0.0143                | stable | 0.20 |  |  |  |  |  |  |  |
| APW10              | 0.056        | 0.08    | 0.071  | 0.0077                | upward | 0.11 |  |  |  |  |  |  |  |

Table 2. Minimum, maximum, median, standard deviation, trend, and coefficient of variation of boron concentrations in groundwater

Based on these four lines of evidence, it has been demonstrated that the Newton Primary Ash Pond has not caused the SSIs in APW7, APW8, APW9, and APW10.

This information serves as the written alternate source demonstration prepared in accordance with 40 C.F.R. § 257.94(e)(2) that SSIs observed during the detection monitoring program were not due to the PAP. Therefore, an assessment monitoring program is not required and the PAP will remain in detection monitoring.

#### Attachments

Figure 1 Monitoring Well and Source Water Location Map Newton Primary Ash Pond

Figure 2 Groundwater Elevation Contour Map – November 8, 2018 Attachment A Boring Logs for Monitoring Wells APW8 and APW10

Attachment B Geologic Cross Section B-B'
Attachment C Mann-Kendall Trend Analysis
Attachment D Coefficient of Variation Evaluation

.



# 40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PRIMARY ASH POND

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac

Qualified Professional Engineer

062-063091

Illinois

O'Brien & Gere Engineers, Inc., a Ramboll Company

Date: July 15, 2019

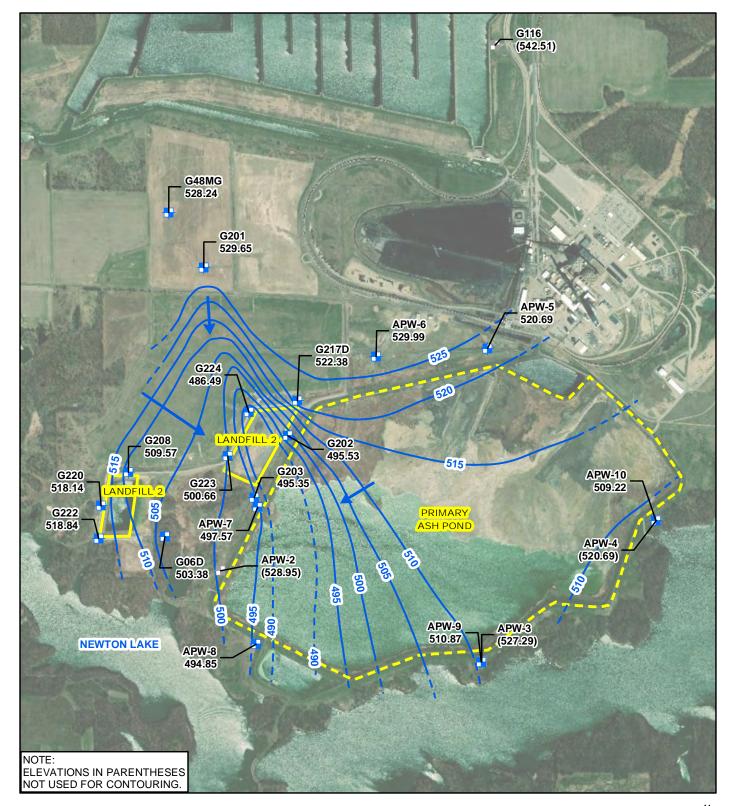


I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Professional Geologist

196-000750

O'Brien & Gere Engineers, Inc., a Ramboll Company

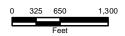

Date: July 15, 2019



# **Attachments**

# **Figures**








MONITORED UNIT

NEWTON PRIMARY ASH POND (UNIT ID: 501) GROUNDWATER ELEVATION CONTOUR MAP NOVEMBER 8, 2018

ALTERNATE SOURCE DEMONSTRATION NEWTON POWER STATION NEWTON, ILLINOIS







# Attachment A Boring Logs for Monitoring Wells APW8 and APW10

CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

**Project:** 15E0030 **DATES: Start:** 10/27/2015

Finish: 10/28/2015

WEATHER: Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 41/4" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

HANSON

BOREHOLE ID: APW8
Well ID: APW8

Surface Elev: 526.75 ft. MSL

**Completion:** 82.00 ft. BGS **Station:** 3,839.59N

|        | SAMPLE TESTING                       |                                                  |                                  |              | INC               |                                          | TOPOGRAPHIC MAP INFORMATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WATER LEVEL INFORMATION:                                                          |  |  |  |  |
|--------|--------------------------------------|--------------------------------------------------|----------------------------------|--------------|-------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
|        | Recov / Total (in)<br>% Recovery     |                                                  | 6 in<br>1e                       | e (%)        | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadrangle: Latona Township: North Muddy Section 26, Tier 6N; Range 8E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \mathbf{Y} = 33.70 $ - During Drilling $ \mathbf{Y} =  $ $ \mathbf{\nabla} =  $ |  |  |  |  |
| Number | Recov / % Recor                      | Type                                             | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Der           | Qu (tsf)<br>Failure                      | Depth Lithologic ft. BGS Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Borehole Elevation Detail ft. MSL Remarks                                         |  |  |  |  |
| 1A     | 60/60                                | DP                                               |                                  | 13           |                   | 4.50                                     | Black (10YR2/1), moist, very stiff, SILT with little and trace very fine- to medium-grained sand, root  Yellowish brown (10YR5/4) with 30% light gra (10YR7/2) mottles, dry, hard, SILT with little clay trace very fine- to medium-grained sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y and                                                                             |  |  |  |  |
| 1B     | 100%                                 | <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del> |                                  | 21           |                   | 3.00                                     | Grayish brown (10YR5/2) with 15% dark yellowish (10YR4/6) and 10% black (10YR2/1) mottles, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 524<br>                                                                           |  |  |  |  |
| 2A     | 60/60                                | DP                                               |                                  | 18           |                   | 2.50                                     | Black (10YR2/1), moist, very stiff, SILT with little and trace very fine- to medium-grained sand, root  Yellowish brown (10YR5/4) with 30% light gra (10YR7/2) mottles, dry, hard, SILT with little clay trace very fine- to medium-grained sand.  Grayish brown (10YR5/2) with 15% dark yellowish (10YR4/6) and 10% black (10YR2/1) mottles, moist stiff, silty CLAY with few very fine- to coarse-grained and trace small gravel.  Grayish brown (10YR5/2) with 15% dark yellowish mottles, moist, stiff, silty CLAY with few very fine coarse-grained sand and trace small gravel.  Brown (10YR5/3) with 20% dark yellowish brow (10YR5/6) mottles, dry, stiff, SILT with little clay and very fine- to coarse-grained sand. | di sand                                                                           |  |  |  |  |
| 2B     |                                      | <del>www.www.wwwwwwwwwww.</del>                  |                                  | 28           |                   | 2.00                                     | Grayish brown (10YR5/2) with 15% dark yellowish mottles, moist, stiff, silty CLAY with few very fine coarse-grained sand and trace small gravel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | brown<br>- to                                                                     |  |  |  |  |
| 3A     | 20/24                                | DP                                               |                                  | 8            |                   | 2.00                                     | Brown (10YR5/3) with 20% dark yellowish brow (10YR5/6) mottles, dry, stiff, SILT with little clay and years from the coarse grained sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vn d trace Rock in shoe of sampler.                                               |  |  |  |  |
| 4A     | 0/17                                 |                                                  | 514 sampler.                     |              |                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |  |  |  |  |
| 5A     | 21/24 88%                            | ss                                               | 13-20<br>24-28<br>N=44           | 10           |                   | 4.50                                     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 512                                                                               |  |  |  |  |
| 6A     | 24/24<br>100%                        | ss                                               | 7-14<br>20-48<br>N=34            | 11           |                   | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little trace very fine- to coarse-grained sand and small gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | clay, avel.                                                                       |  |  |  |  |
| 7A     | 24/24<br>100%                        | ss                                               | 14-21<br>26-32<br>N=47           | 10           |                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 508                                                                               |  |  |  |  |
| NC     | NOTE(S): APW8 installed in borehole. |                                                  |                                  |              |                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |  |  |  |  |

CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/27/2015 **Finish:** 10/28/2015

WEATHER: Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

**HANSON** 

BOREHOLE ID: APW8

Well ID: APW8
Surface Elev: 526.75 ft. MSL

**Completion:** 82.00 ft. BGS **Station:** 3,839.59N

| S          | SAMPLE TESTING                   |          |                                  |              |                   |                                          | TOPOGRAPHIC MAP INFORMATION:                                                                                                                                                                                                                                                                                                               | WATER LEVEL INFORMATION:                                                                                                                               |  |  |  |
|------------|----------------------------------|----------|----------------------------------|--------------|-------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| lber       | Recov / Total (in)<br>% Recovery | •        | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadrangle: Latona<br>Township: North Muddy<br>Section 26, Tier 6N; Range 8E                                                                                                                                                                                                                                                               | $ \mathbf{\underline{\Psi}} = 33.70 $ - During Drilling $ \mathbf{\underline{\Psi}} =  \mathbf{\underline{\nabla}} =  \mathbf{\underline{\nabla}} =  $ |  |  |  |
| Number     | Reco<br>% Re                     | Type     | Blow<br>N-1<br>RQI               | Mois         | Dry ]             | Qu (1<br>Failu                           | Depth Lithologic ft. BGS Description                                                                                                                                                                                                                                                                                                       | Borehole Elevation Detail ft. MSL Remarks                                                                                                              |  |  |  |
| 8A         | 24/24<br>100%                    | ss       | 7-13<br>19-23<br>N=32            | 11           |                   | 4.50                                     | 22 —                                                                                                                                                                                                                                                                                                                                       | 506                                                                                                                                                    |  |  |  |
| 9A         | 24/24<br>100%                    | ss       | 7-14<br>19-27<br>N=33            | 11           |                   | 4.50                                     | 24 Dork gray (10VP4/1) majet hard SH T with little                                                                                                                                                                                                                                                                                         | 504                                                                                                                                                    |  |  |  |
| 10A        | 24/24<br>100%                    | ss       | 8-15<br>30-37<br>N=45            | 11           |                   | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little trace very fine- to coarse-grained sand and small gra [Continued from previous page]                                                                                                                                                                                                    | clay,<br>avel. — 502                                                                                                                                   |  |  |  |
| 11A        | 24/24<br>100%                    | ss       | 8-16<br>24-33<br>N=40            | 11           |                   | 4.50                                     | 28 = 28                                                                                                                                                                                                                                                                                                                                    | 500                                                                                                                                                    |  |  |  |
| 12A<br>12B | 24/24<br>100%                    | ss       | 9-31<br>33-30<br>N=64            | 11<br>12     |                   | 4.50                                     | Gray (10YR5/1), moist, dense, silty, very fine-to-medium-grained SAND.                                                                                                                                                                                                                                                                     | o 498                                                                                                                                                  |  |  |  |
| 13A        | 24/24<br>100%                    | ss       | 10-23<br>40-35<br>N=63           | 11           |                   | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little trace very fine- to coarse-grained sand and small gray [Continued from previous page]  26  Gray (10YR5/1), moist, dense, silty, very fine-tomedium-grained SAND.  Dark gray (10YR4/1), moist, hard SILT with little few very fine- to coarse-grained sand, and trace small gray gravel. | clay,                                                                                                                                                  |  |  |  |
| 14A        | 21/24<br>88%                     | ss       | 16-16<br>29-50<br>N=45           | 10           |                   | 4.50                                     | ¥                                                                                                                                                                                                                                                                                                                                          | 494                                                                                                                                                    |  |  |  |
| 15A        | 20/24<br>83%                     | ss       | 9-24<br>34-41<br>N=58            | 13           |                   |                                          | Dark gray (10YR4/1), wet, very dense, silty, very fin coarse-grained SAND with trace small gravel.  36  Dark gray (10YR4/1), moist, hard, SILT with little few very fine- to coarse-grained sand, and trace sm gravel.                                                                                                                     | ne- to                                                                                                                                                 |  |  |  |
| 16A        | 22/24<br>92%                     | ss       | 16-18<br>29-35<br>N=47           | 11           |                   | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little few very fine- to coarse-grained sand, and trace sn                                                                                                                                                                                                                                     |                                                                                                                                                        |  |  |  |
| 17A        | 21/24<br>88%                     | ss       | 10-17<br>21-31<br>N=38           | 11           |                   | 4.50                                     | gravel.                                                                                                                                                                                                                                                                                                                                    | 488                                                                                                                                                    |  |  |  |
| NO         | TE(S):                           | ⊥<br>APV | V8 install                       | ed in        | bore              | ehole.                                   | 40 ⊐                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                        |  |  |  |

**CLIENT:** Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/27/2015 **Finish:** 10/28/2015

WEATHER: Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 41/4" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

**Helper:** C. Jones **Eng/Geo:** S. Keim

**HANSON** 

BOREHOLE ID: APW8 Well ID: APW8

**Surface Elev:** 526.75 ft. MSL **Completion:** 82.00 ft. BGS

ompletion: 82.00 ft. BGS Station: 3,839.59N

| SAMPLE TESTING |                    |      |                                  |              |                   |                                       |                                                                                                     | MAR INFORMATION                                                                                                                                      | WATER LEVEL INFORMATION: |                                         |                   |         |
|----------------|--------------------|------|----------------------------------|--------------|-------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|-------------------|---------|
|                | Recov / Total (in) |      | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf) Failure Type | TOPOGRAPHIC MAP INFORMATION: Quadrangle: Latona Township: North Muddy Section 26, Tier 6N; Range 8E |                                                                                                                                                      |                          |                                         | During Drilling   |         |
| Number         | Recov<br>% Re      | Type | Blow:<br>N - V<br>RQD            | Moist        | Dry I             | Qu (ts<br>Failu                       | Depth<br>ft. BGS                                                                                    | Lithologic<br>Description                                                                                                                            |                          | Borehole<br>Detail                      | Elevation ft. MSL | Remarks |
| 18A            | 24/24<br>100%      | ss   | 9-16<br>26-32<br>N=42            | 11           |                   | 4.50                                  | 42 ————————————————————————————————————                                                             |                                                                                                                                                      |                          | ,,,,,,,,                                | 486<br>           |         |
| 19A            | 24/24<br>100%      | ss   | 10-16<br>23-34<br>N=39           | 12           |                   | 4.50                                  | 44 =                                                                                                |                                                                                                                                                      |                          |                                         | 484<br><br>       |         |
| 20A            | 24/24<br>100%      | ss   | 10-15<br>26-44<br>N=41           | 13           |                   | 4.50                                  | 46                                                                                                  |                                                                                                                                                      |                          | 00000                                   | 482<br>           |         |
| 21A            | 24/24<br>100%      | ss   | 12-21<br>32-48<br>N=53           | 12           |                   | 4.50                                  | 48 =                                                                                                |                                                                                                                                                      |                          |                                         | 480<br>           |         |
| 22A            | 24/24<br>100%      | ss   | 11-17<br>22-31<br>N=39           | 13           |                   | 4.50                                  | Darl fev                                                                                            | c gray (10YR4/1), moist, hard, SILT with little cl<br>w very fine- to coarse-grained sand, and trace smal<br>gravel.  [Continued from previous page] | ay,<br>I                 | ,,,,,,,,                                | 478<br>478<br>    |         |
| 23A            | 24/24<br>100%      | ss   | 10-13<br>21-32<br>N=34           | 13           |                   | 4.50                                  | 52                                                                                                  |                                                                                                                                                      |                          | , , , , , , , , , , , , , , , , , , , , | 476<br>476<br>    |         |
| 24A            | 24/24<br>100%      | ss   | 8-13<br>50-26<br>N=63            | 13           |                   | 4.50                                  |                                                                                                     |                                                                                                                                                      |                          | ,,,,,,,,,                               | 474<br>474<br>    |         |
| 25A            | 24/24<br>100%      | ss   | 8-11<br>19-28<br>N=30            | 14           |                   | 4.25                                  | 56                                                                                                  |                                                                                                                                                      |                          | ,,,,,,,,                                | 472<br>           |         |
| 26A            | 24/24<br>100%      | ss   | 10-12<br>18-26<br>N=30           | 13           |                   | 4.50                                  | 54 = 56 = 58 = Olive                                                                                |                                                                                                                                                      |                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 470<br>           |         |
| 27A            | 22/24<br>92%       | ss   | 7-10<br>15-22<br>N=25            | 21           |                   | 4.50                                  | Olive<br>fi                                                                                         | gray (5Y4/2), moist, hard, silty CLAY with few ne- to coarse-grained sand and trace small gravel.                                                    | very                     |                                         | 468               |         |
| NO             | )TE(S):            | APV  | V8 install                       | ed in        | bore              | ehole.                                | 00                                                                                                  |                                                                                                                                                      |                          | -                                       | •                 |         |

CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/27/2015 Finish: 10/28/2015

WEATHER: Sunny, breezy, warm, lo-80s

CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill

Drilling Method: 41/4" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

**BOREHOLE ID: APW8** 

Well ID: APW8

Surface Elev: 526.75 ft. MSL

82.00 ft. BGS **Completion: Station:** 3,839.59N

6,082.37E **SAMPLE** TESTING TOPOGRAPHIC MAP INFORMATION: WATER LEVEL INFORMATION: Ē Op (tsf)Type  $\mathbf{V} = 33.70$  - During Drilling Quadrangle: Latona Dry Den. (lb/ft3) Recov / Total ( % Recovery Moisture (%) Township: North Muddy <u>A</u> = Blows / 6 in N - Value RQD  $\nabla =$ Section 26, Tier 6N; Range 8E Qu (tsf) (Failure T Number Lithologic Borehole Elevation ft. BGS Description ft. MSL Remarks 7-15 466 20/24 Dark gray (10YR4/1), moist, hard, SILT with little clay, 28A 14 4.50 19-20 83% few very fine- to coarse-grained sand and trace small gravel. N = 34464 21/24 29A 11 3.75 11-16 88% Dark gray (10YR4/1), moist, very stiff, SILT with little N=19clay, few very fine- to coarse-grained sand and trace small 6-13 462 21/24 30A 14 4.00 14-11 88% N=27 30B Gray (10YR6/1), wet, medium dense, silty, very fine- to 10 coarse-grained SAND with trace small to large gravel. 66 Dark gray (10YR4/1), moist, very stiff, SILT with little clay and few very fine- to coarse-grained sand.

Dark gray (10YR4/1), wet, loose, silty, very fine- to 460 18/24 28 31A coarse-grained SAND with trace small gravel and trace 4-3 75% 31B 15 3.25 wood fragments. Dark gray (10YR4/1), moist, very stiff, SILT with little clay, few very fine- to coarse-grained sand, and trace small gravel, trace wood fragments. Dark gray (10YR4/1), wet, loose, SILT with little very 458 20/24 32A 17 fine- to fine-grained sand. 3-2 83% N=6Dark gray (10YR4/1), wet, loose, silty, very fine- to 32B 28 coarse-grained SAND. Dark gray (10YR4/1), wet, loose, SILT with little very fine- to fine-grained sand, trace wood fragments. woh-2 456 15/24 Dark gray (10YR4/1), wet, loose, silty, very fine-to 17 33A 6-6 63% coarse-grained SAND, trace wood fragments. N=8Dark gray (10YR4/1), wet, medium dense, silty, very fineto coarse-grained SAND with trace small gravel. 454 16/24 34A 9 15-20 67% Dark gray (10YR4/1), wet, medium dense, silty, very fine-to coarse-grained SAND with few small to large gravel. 16-21 452 15/24 9 Dark gray (10YR4/1), wet, dense, silty, very fine-to 35A 23-24 N=44 63% coarse-grained SAND with few small to large gravel. 11-20 450 14/24 36A 11 25-24 58% N=45 Dark gray (10YR4/1), wet, dense, silty, very fine-to coarse-grained SAND with trace small gravel. 20-25 448 37A 15/2410 24-25 63% N=49 NOTE(S): APW8 installed in borehole.

CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

**Project:** 15E0030 **DATES: Start:** 10/27/2015

Finish: 10/28/2015

**WEATHER:** Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

**BOREHOLE ID:** APW8

Well ID: APW8

Surface Elev: 526.75 ft. MSL

HANSON

. 520.75 it. MSL

**Completion:** 82.00 ft. BGS **Station:** 3,839.59N

|        | SAMPLE TEST    |      |                        |          |               | j                       | TOPOGRA                         | PHIC MAP INFORMATION:                                                                                                            | WATER LEVEL INFORMATION:                                                                 |  |  |
|--------|----------------|------|------------------------|----------|---------------|-------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| ie     | / Total (in)   |      | / 6 in<br>Ilue         | ure (%)  | Den. (lb/ft³) | f) <i>Qp</i> (tsf) Type | Quadrar<br>Townshi<br>Section 2 | ngle: Latona<br>p: North Muddy<br>26, Tier 6N; Range 8E                                                                          | $\underline{\Psi}$ = 33.70 - During Drilling $\underline{\Psi}$ = $\underline{\nabla}$ = |  |  |
| Number | Recov<br>% Rec | Type | Blows<br>N - Va<br>RQD | Moisture | Dry D         | Qu (tsf)<br>Failure     | Depth<br>ft. BGS                | Lithologic<br>Description                                                                                                        | Borehole Elevation<br>Detail ft. MSL Remarks                                             |  |  |
| 38A    | 75%            | ss   | 26-26<br>26-31<br>N=52 | 8        |               |                         |                                 | Dark gray (10YR4/1), wet, dense, silty, very fine-to coarse-grained SAND with trace small gravel. [Continued from previous page] | 446                                                                                      |  |  |
| 38B    | BB N N         |      | IN-32                  | 11       |               | 4.50                    | 82                              | Dark gray (10YR4/1), moist, hard, SILT with little cl<br>and few very fine- to coarse-grained sand.<br>End of boring = 82.0 feet | ay                                                                                       |  |  |

Finish: 10/27/2015

Project: 15E0030

WEATHER: Cool, rainy, lo-50s

**DATES: Start:** 10/27/2015

CLIENT: Natural Resource Technology, Inc. CONTRACTOR: Bulldog Drilling, Inc. Site: Newton Energy Center Rig mfg/model: CME-550X ATV Drill Location: Newton, Illinois

Lithology, sample, and testing data can be found on APW-4 Field Boring Log.

**Drilling Method:** 41/4" HSA

FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim



**BOREHOLE ID:** APW10a Well ID: APW10

> Surface Elev: 521.98 ft. MSL **Completion:** 45.94 ft. BGS Station: 5,371.32N 11,541.23E

| WEATHER: Cool, rainy, 10-30s |                    |      |                                  |              |                   |                                  |                  | Eng/Geo: S. Keim                                                          | 11,341.23E |                                        |                                                             |         |
|------------------------------|--------------------|------|----------------------------------|--------------|-------------------|----------------------------------|------------------|---------------------------------------------------------------------------|------------|----------------------------------------|-------------------------------------------------------------|---------|
|                              | Recov / Total (in) |      |                                  |              | . (lb/ft³)        | Qu (tsf) $Qp$ (tsf) Failure Type | Quadra<br>Townsh | APHIC MAP INFORMATION: ngle: Latona ip: North Muddy 25, Tier 6N; Range 8E | Ā<br>Ā     |                                        | INFORMA'<br>During Drillin                                  |         |
| Number                       | Recov / 7% Recov   | Type | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf)<br>Failure T            | Depth<br>ft. BGS | Lithologic Description                                                    | <u> </u>   | Borehole<br>Detail                     | Elevation ft. MSL                                           | Remarks |
| NC                           | OTE(S):            | APW  | V10 instal                       | lled i       | in bo             | rehole.                          | 2   4            | Blind drill - see APW4 boring log for lithology, sample testing data      | e, and     | //\\\/\\\/\\\/\\\\/\\\\\\\\\\\\\\\\\\\ | 520<br>518<br>518<br>516<br>514<br>512<br>510<br>508<br>508 |         |

Finish: 10/27/2015

Project: 15E0030

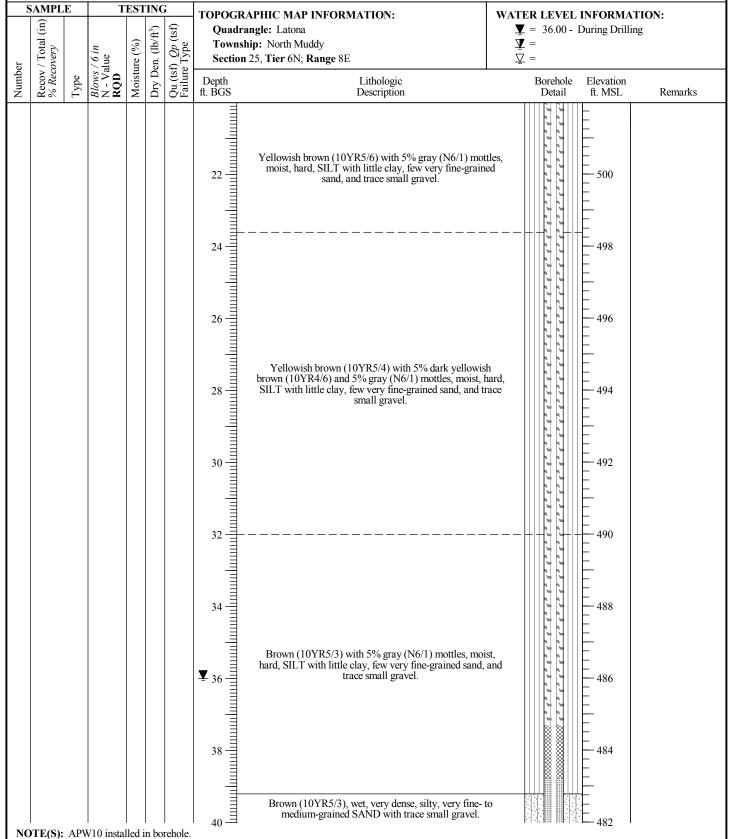
WEATHER: Cool, rainy, lo-50s

**DATES: Start:** 10/27/2015

CLIENT: Natural Resource Technology, Inc. CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Site: Newton Energy Center Location: Newton, Illinois

Lithology, sample, and testing data can be found on APW-4 Field Boring Log.

Drilling Method: 41/4" HSA


FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim

**HANSON** 

**BOREHOLE ID:** APW10a Well ID: APW10 Surface Elev: 521.98 ft. MSL

**Completion:** 45.94 ft. BGS **Station:** 5,371.32N 11,541.23E



Page 2 of 3

Finish: 10/27/2015

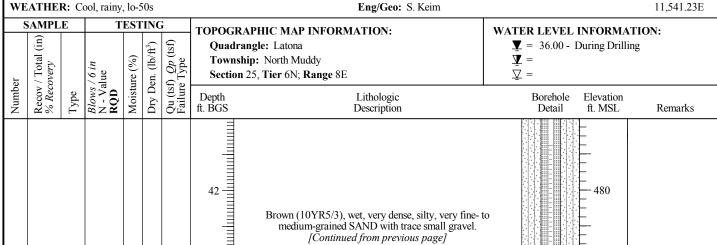
Project: 15E0030

**DATES: Start:** 10/27/2015

CONTRACTOR: Bulldog Drilling, Inc. CLIENT: Natural Resource Technology, Inc. Rig mfg/model: CME-550X ATV Drill Site: Newton Energy Center Location: Newton, Illinois

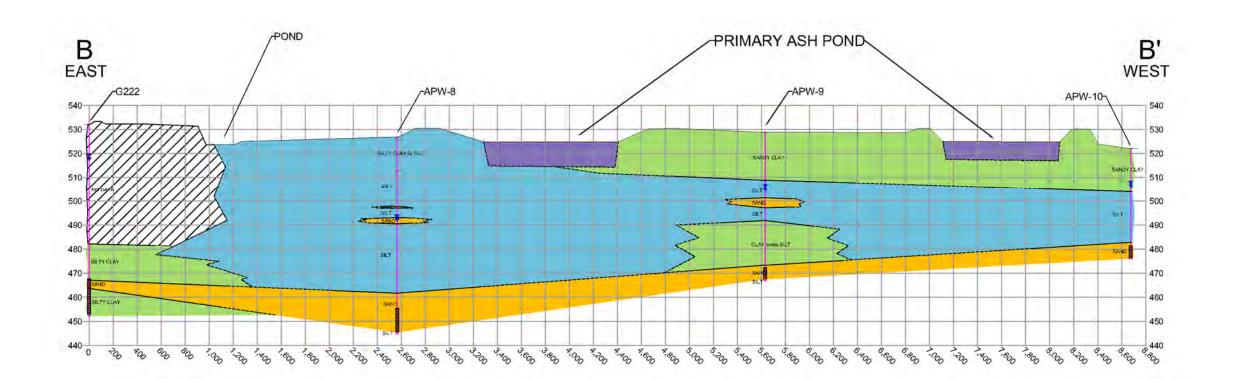
Drilling Method: 41/4" HSA

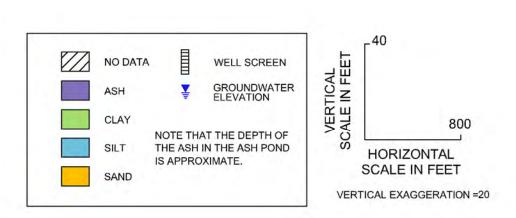
FIELD STAFF: Driller: C. Dutton Helper: C. Jones

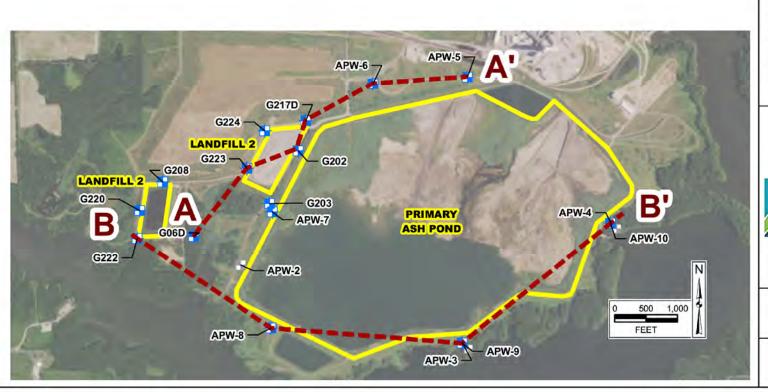

Well ID: APW10 Surface Elev: 521.98 ft. MSL **Completion:** 45.94 ft. BGS **Station:** 5,371.32N

**BOREHOLE ID:** APW10a

478


**HANSON** 


11,541.23E




End of boring = 45.94 feet









# GEOLOGIC CROSS-SECTION B-B' CHECKED BY: APPROVED BY: APPROVED BY:

08/29/2017

JMO DATE: TBN DATE:

DATE

SJC

DRAWING NO:

REFERENCE

NEWTON POWER STATION NEWTON, ILLINOIS

HYDROGEOLOGIC MONITORING PLAN

Natural Resource Technology AN OBG COMPANY

> PROJECT NO. 2285

FIGURE NO.
APPENDIX A-2

# Attachment C Mann-Kendall Trend Analysis

### **User Supplied Information**

Location ID:APW5Parameter Code:01022Location Class:Parameter:B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 03/31/2019

Limit Name:

Averaged:

No

### **Trend Analysis**

Trend of the least squares straight line
Slope (fitted to data):
-0.000004 mg/L per day

R-Squared error of fit: 0.016425

Sen's Non-parametric estimate of the slope (One-Sided Test)

Median Slope:-0.000001mg/L per dayLower Confidence Limit of Slope, M1:-0.000031mg/L per dayUpper Confidence Limit of Slope, M2+1:0.000011mg/L per day

Non-parametric Mann-Kendall Test for Trend

S Statistic: -0.417
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): None

### **User Supplied Information**

Location ID:APW6Parameter Code:01022Location Class:Parameter:B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 03/31/2019

Limit Name:

Averaged:

No

### **Trend Analysis**

Trend of the least squares straight line
Slope (fitted to data):
-0.000008 mg/L per day

R-Squared error of fit: 0.018309

Sen's Non-parametric estimate of the slope (One-Sided Test)

Non-parametric Mann-Kendall Test for Trend

S Statistic: 0.687
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): None

### **User Supplied Information**

Location ID: APW7 Parameter Code: 01022 Location Class: Parameter: B, tot

Location Type: Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 03/31/2019

Limit Name:
Averaged:

### **Trend Analysis**

No

Trend of the least squares straight line Slope (fitted to data):  $0.000006 \, \text{mg/L}$  per day

R-Squared error of fit: 0.033439

Sen's Non-parametric estimate of the slope (One-Sided Test)

Non-parametric Mann-Kendall Test for Trend

S Statistic: 0.412
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): None

### **User Supplied Information**

Location ID: APW8 Parameter Code: 01022
Location Class: Parameter: B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 03/31/2019

Limit Name:

Averaged:

No

### **Trend Analysis**

Trend of the least squares straight line
Slope (fitted to data):

0.000019 mg/L per day

R-Squared error of fit: 0.342389

Sen's Non-parametric estimate of the slope (One-Sided Test)

Non-parametric Mann-Kendall Test for Trend

S Statistic: 1.787
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): Upward

### **User Supplied Information**

Location ID:APW9Parameter Code:01022Location Class:Parameter:B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 03/31/2019

Limit Name:

Averaged:

No

### **Trend Analysis**

Trend of the least squares straight line
Slope (fitted to data):
-0.000006 mg/L per day

R-Squared error of fit: 0.028627

Sen's Non-parametric estimate of the slope (One-Sided Test)

Non-parametric Mann-Kendall Test for Trend

S Statistic: 0.000
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): None

### **User Supplied Information**

Location ID: APW10 Parameter Code: 01022 Location Class: Parameter: B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 03/31/2019

Limit Name:

Averaged:

No

### **Trend Analysis**

Trend of the least squares straight line
Slope (fitted to data):

0.000011 mg/L per day

R-Squared error of fit: 0.304448

Sen's Non-parametric estimate of the slope (One-Sided Test)

Non-parametric Mann-Kendall Test for Trend

S Statistic: 1.722
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): Upward

# Attachment D Coefficient of Variation Evaluation

### Newton

# Coefficient of Variation Date Range: 12/14/2015 to 3/31/2019

### Boron, total (mg/L)

| Location | Count | Mean  | Std Dev | % Non-<br>Detects | cv   |
|----------|-------|-------|---------|-------------------|------|
| APW5     | 12    | 0.100 | 0.013   | 0.00              | 0.13 |
| APW6     | 12    | 0.090 | 0.023   | 0.00              | 0.26 |
| APW7     | 12    | 0.076 | 0.013   | 0.00              | 0.17 |
| APW8     | 12    | 0.085 | 0.013   | 0.00              | 0.15 |
| APW9     | 12    | 0.072 | 0.014   | 0.00              | 0.20 |
| APW10    | 12    | 0.071 | 0.008   | 0.00              | 0.11 |

CV=Std Dev/ Mean



40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PRIMARY ASH POND OCTOBER 14, 2019

October 14, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.94(e)(2) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Increases (SSIs) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company by O'Brien & Gere Engineers, Inc., part of Ramboll (OBG) to provide pertinent information pursuant to 40 C.F.R. § 257.94(e)(2) for the Newton Primary Ash Pond (PAP) located near Newton, Illinois.

The fourth semi-annual detection monitoring samples (Detection Monitoring Round 4 [D4]) were collected on February 22, 2019 and analytical data were received on April 15, 2019. In accordance with 40 C.F.R. § 257.93(h)(2), statistical analysis of the data to identify SSIs of 40 C.F.R. Part 257 Appendix III parameters over background concentrations was completed by July 15, 2019, within 90 days of receipt of the analytical data. The statistical determination identified the following SSIs at downgradient monitoring wells:

- Calcium at wells APW8 and APW10
- Fluoride at wells APW7 and APW9
- Sulfate at wells APW7, APW8, APW9, and APW10

Pursuant to 40 C.F.R. § 257.94(e)(2), the following demonstrates that sources other than the Newton PAP were the cause of the SSIs listed above. This ASD was completed by October 14, 2019, within 90 days of determination of the SSIs, as required by 40 C.F.R. § 257.94(e)(2).

### SITE LOCATION AND DESCRIPTION

The Newton Power Station (Site) is located in Jasper County, in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The area is surrounded by Newton Lake. Beyond the lake is agricultural land.

### **GEOLOGY AND HYDROGEOLOGY**

The site geology and hydrogeology are summarized below from the Hydrogeologic Monitoring Plan (NRT/OBG, 2017a).¹.

### **GEOLOGY**

Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations. The unconsolidated deposits occurring at Newton Power Station include the following units (beginning at the ground surface):

Ash/Fill Units – CCR and fill within the various CCR Units

<sup>&</sup>lt;sup>1</sup> Natural Resource Technology, an OBG Company (NRT), October 17, 2017. *Hydrogeologic Monitoring Plan. Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502.* Newton Power Station, Canton, Illinois. Illinois Power Generating Company.



- Upper Confining Unit Low permeability clays and silts, including: the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east; underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) and Vandalia (Till) Members of the Glasford Formation
- Uppermost Aquifer (Groundwater Monitoring Zone) Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation
- Lower Confining Unit Thick, very low permeability silty clay diamicton of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation

The bedrock beneath the unconsolidated deposits consists of Pennsylvanian-age Mattoon Formation that is mostly shale near the bedrock surface, but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones. The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the site, but is typically encountered at 90 to 120 ft below ground surface (bgs).

### **HYDROGEOLOGY**

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation. CCR monitoring well locations are shown in Figure 1.

### **Uppermost Aquifer**

The Uppermost Aquifer is the Mulberry Grove Member, typically consisting of fine to coarse sand with varying amounts of clay, silt, and fine to coarse gravel. The portion of the Mulberry Grove Member at the site that is defined as a sand layer ranges in thickness from 3 to 17 ft with an average thickness of 8 ft. With only a few exceptions, the sand layer occurs between depths of 55 to 88 ft bgs.

### **Lower Limit of Aquifer**

The lower hydrostratigraphic units, which comprise the lower limit of the Uppermost Aquifer, consist of the Smithboro Member and the Banner Formation, both of which are predominantly low permeability clay diamictons with varying amounts of silt, sand, and gravel. The lower hydrostratigraphic units are 30 to more than 50 ft thick above the underlying bedrock.

### **Groundwater Elevation and Flow Direction**

Groundwater elevations across PAP ranged from approximately 494 to 531 ft MSL (NAVD88) during D4 (Figure 2). The groundwater elevation contours shown on Figure 2 were measured on February 18, 2019, the first day of a combined sampling event at the Site for LF2 and the Primary Ash Pond and for multiple monitoring programs required by both federal and state regulatory agencies. Overall groundwater flow within the Uppermost Aquifer in this area is southward toward Newton Lake, but with a predominantly southwesterly flow under the PAP.

### **GROUNDWATER AND PAP WATER MONITORING**

The Uppermost Aquifer monitoring system for the PAP is shown on Figure 1. Monitoring wells APW5 and APW6 are used to monitor background water quality for the PAP. These wells are located north of the PAP. The downgradient monitoring wells are APW7, APW8, APW9, and APW10.

PAP water samples have been collected from locations AP1 in the southwest corner of the PAP and AP2 in the southeast corner of the PAP.



### **ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE**

Lines of evidence supporting these ASDs include the following:

- 1. The ionic composition of Newton PAP water is different from the ionic composition of groundwater.
- 2. The Newton PAP is not hydraulically connected to the Uppermost Aquifer.
- 3. Concentrations of calcium in the Newton PAP are lower than those observed in the groundwater.
- 4. Boron, a primary indicator parameter for CCR impacts to groundwater, has concentrations in downgradient wells that are near, or below, concentrations observed in background monitoring wells.

These lines of evidence are described and supported in greater detail below. Monitoring wells and leachate sample locations are shown on Figure 1.

# LINE OF EVIDENCE #1: THE IONIC COMPOSITION OF NEWTON PAP WATER IS DIFFERENT FROM THE IONIC COMPOSITION OF GROUNDWATER

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples relative to their major cation and anion content, providing the information needed to identify compositional categories or groupings. Figure 2 is a Piper diagram that displays the ionic composition of groundwater samples from the background and downgradient monitoring wells associated with the Phase I Landfill (LF1), Phase II Landfill (LF2), and Primary Ash Pond (PAP) and LF1 leachate and PAP water based on Quarter 2 2017 and Quarter 3 2018 samples.

Groundwater samples from the PAP downgradient wells (enclosed within a green ellipse) have a very high percentage of carbonate-bicarbonate cations and no dominant cation. Surface water samples from the PAP (enclosed within a purple ellipse) have a very high percentage of sodium-potassium cations and no dominant anion. The dissimilar ionic compositions of the PAP downgradient groundwater and the PAP surface water indicates that the PAP is not the source of CCR constituents detected in PAP groundwater.



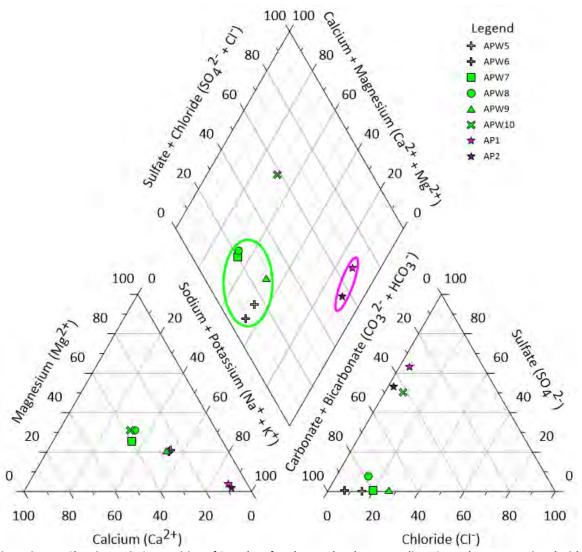



Figure 2 Piper Diagram Showing Ionic Composition of Samples of Background and Downgradient Groundwater Associated with LF1, LF2, and PAP and Samples of LF1 Leachate and PAP Surface Water.

# LINE OF EVIDENCE #2: THE NEWTON PRIMARY ASH POND IS NOT HYDRAULICALLY CONNECTED TO THE UPPERMOST AQUIFER

As noted above, the Uppermost Aquifer at the Site is the Mulberry Grove Member of the Glasford Formation. Based on boring logs for monitoring wells installed around the perimeter of the site, the Uppermost Aquifer is confined and the top of this unit ranges from 461.8 ft msl in APW-8 to 482.8 ft msl in APW-10 (Attachment A). The bottom elevation of the PAP is, situated within the Hagarstown Member of the Glasford Formation at 508 ft msl, approximately 25 ft above the top of the Uppermost Aquifer (Attachment B). The Hagarstown Member functions as an aquitard with hydraulic conductivities ranging from  $2.4 \times 10^{-6}$  to  $6.1 \times 10^{-5}$  centimeters per



second (cm/s)<sup>2</sup>. Based upon these hydraulic conductivity values and the fact that the Uppermost Aquifer is confined, the PAP is not hydraulically connected to the Uppermost Aquifer. The lack of connection between the PAP and the Uppermost Aquifer demonstrates that there is no complete pathway for transport of CCR constituents in groundwater beneath the PAP, thus the PAP is not the source of CCR constituents in the Uppermost Aquifer.

# LINE OF EVIDENCE #3: CONCENTRATIONS OF CALCIUM IN THE NEWTON PRIMARY ASH POND ARE LOWER THAN THOSE OBSERVED IN THE GROUNDWATER

Calcium concentrations are lower in PAP water samples than in all downgradient groundwater samples collected between 2015 and 2019. A time series for calcium concentrations is provided in Figure 3 below.

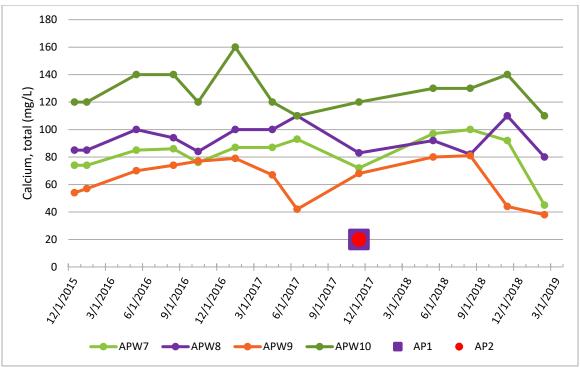



Figure 3. Calcium time series

The following observations can be made from Figure 3:

- PAP water samples AP1 and AP2 each contained 20 mg/L of calcium.
- Groundwater from downgradient wells APW7, APW8, APW9, and APW10 had higher calcium concentrations than the PAP water.

<sup>&</sup>lt;sup>2</sup> Natural Resource Technology, an OBG Company (NRT), October 17, 2017. *Hydrogeologic Monitoring Plan. Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502*. Newton Power Station, Canton, Illinois. Illinois Power Generating Company.



If the PAP were the source of calcium in groundwater, groundwater concentrations in PAP water would be higher than the downgradient groundwater; therefore, the PAP is not likely the source of the calcium observed in the Uppermost Aquifer.

# LINE OF EVIDENCE #4: BORON, A PRIMARY INDICATOR PARAMETER OF CCR IMPACTS TO GROUNDWATER, HAS CONCENTRATIONS IN DOWNGRADIENT WELLS THAT ARE STABLE AND NEAR, OR BELOW, CONCENTRATIONS OBSERVED IN BACKGROUND MONITORING WELLS

Boron is a primary indicator of CCR impacts to groundwater. If the source of the SSIs in the downgradient monitoring wells were the PAP, boron would be anticipated to be present at elevated concentrations, as well. Concentrations of boron in all downgradient monitoring wells are below upper prediction limits established using background monitoring wells (i.e. SSI limits) and are lower than median concentrations observed in background wells APW5 and APW6 from 2015 through 2019, as shown on Figure 4.

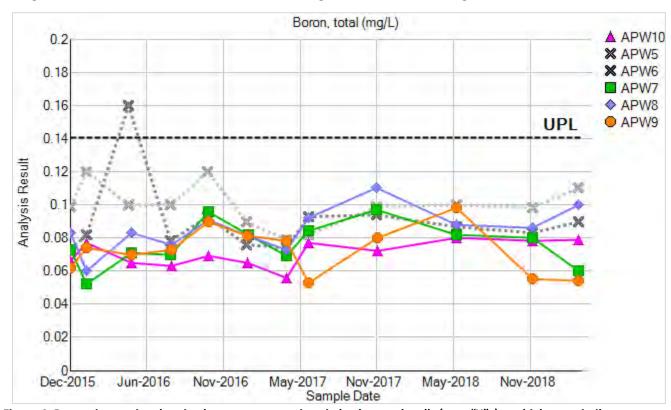



Figure 4. Boron time series showing boron concentrations in background wells (gray "X"s) are higher or similar to concentrations in downgradient wells.

From Figure 6 the following observations can be made:

- Boron concentrations in downgradient monitoring wells range from 0.052 to 0.11 mg/L versus 0.073 to 0.16 mg/L in background wells.
- Overall median boron concentration in downgradient wells from 2015 through 2019 is 0.077 mg/L versus 0.093 mg/L in background wells.

Mann-Kendall trend analysis tests were performed (Attachment D) to determine if concentrations at each well were increasing, decreasing or stable (i.e., no statistically significant upward or downward trend). If the Mann-Kendall test did not identify a trend the coefficient of variation (CV) was calculated (Attachment E) to determine if the concentrations are too variable to identify a trend (i.e. CV greater than or equal to 1). If a trend was identified, the CV was calculated to indicate whether data used to establish the trend are suggestive of a low or high magnitude trend. Data with a CV less than or equal to 1 suggest a lower magnitude trend. Boron



concentrations are stable in background wells and downgradient wells APW7 and APW9. Upward trends were identified at APW8 and APW10, however, coefficient of variation evaluations identified minimal variation at all wells, suggesting a low-magnitude trend. Table 2 provides summary statistics, including variability and trend per well.

| Monitoring         |         |         |        | Boron (mg/L)          |        |      |
|--------------------|---------|---------|--------|-----------------------|--------|------|
| Monitoring<br>Well | Minimum | Maximum | Median | Standard<br>Deviation | Trend  | CV   |
| APW5               | 0.079   | 0.12    | 0.100  | 0.0127                | stable | 0.13 |
| APW6               | 0.073   | 0.16    | 0.085  | 0.0232                | stable | 0.26 |
| APW7               | 0.052   | 0.097   | 0.077  | 0.0133                | stable | 0.17 |
| APW8               | 0.060   | 0.11    | 0.085  | 0.0129                | upward | 0.15 |
| APW9               | 0.053   | 0.098   | 0.074  | 0.0143                | stable | 0.20 |
| APW10              | 0.056   | 0.08    | 0.071  | 0.0077                | upward | 0.11 |

Table 2. Maximum, minimum, median, variance and trend of boron in groundwater

The low concentrations of boron in downgradient monitoring wells, relative to background concentrations, and the relatively stable boron concentrations in both background and downgradient monitoring wells suggests that the source of the of the SSIs in those wells is not the PAP.

Based on these four lines of evidence, it has been demonstrated that the Newton Primary Ash Pond has not caused the SSIs in APW7, APW8, APW9, and APW10.

This information serves as the written alternate source demonstration prepared in accordance with 40 C.F.R. § 257.94(e)(2) that SSIs observed during the detection monitoring program were not due to the PAP. Therefore, an assessment monitoring program is not required and the Newton Primary Ash Pond will remain in detection monitoring.

### Attachments

| Figure 1 | N/ '+ ' YA7 -  | 111 C XA7-4 `        | Location Map Newton  | D                |
|----------|----------------|----------------------|----------------------|------------------|
| HIGHTAI  | Wightering W/A | II and Solirce Water | i acatian wan wawtan | Primary ach Pond |
|          |                |                      |                      |                  |

Figure 2 Groundwater Elevation Contour Map – February 18, 2019

Attachment A Boring Logs for Monitoring Wells APW8 and APW10

Attachment B Geologic Cross Section B-B'

Attachment C Boron Trend Analysis for APW7, APW8, APW9, and APW10

Attachment D Coefficient of Variation Evaluation



# 40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PRIMARY ASH POND

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac

Oualified Professional Engineer

062-063091

Illinois

O'Brien & Gere Engineers, Inc., a Ramboll Company

Date: October 14, 2019

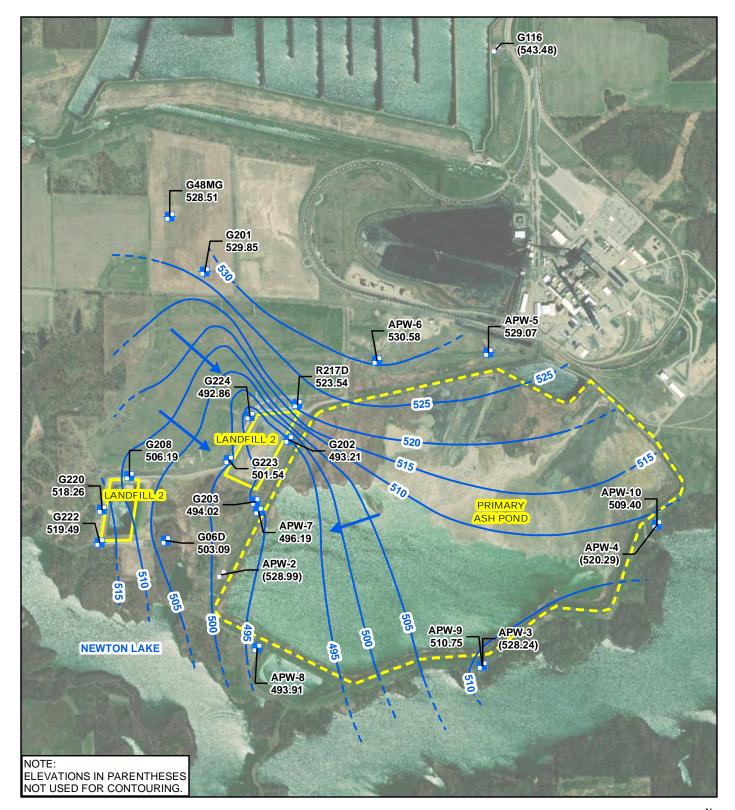


I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Professional Geologist

196-000750

O'Brien & Gere Engineers, Inc., a Ramboll Company


Date: October 14, 2019



### **Attachments**

## **Figures**







MONITORED UNIT

NEWTON PRIMARY ASH POND (UNIT ID: 501) GROUNDWATER ELEVATION CONTOUR MAP FEBRUARY 18, 2019

ALTERNATE SOURCE DEMONSTRATION NEWTON POWER STATION NEWTON, ILLINOIS







# Attachment A Boring Logs for Monitoring Wells APW8 and APW10

CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

**Project:** 15E0030 **DATES: Start:** 10/27/2015

Finish: 10/28/2015

WEATHER: Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 41/4" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

HANSON

BOREHOLE ID: APW8 Well ID: APW8

Surface Elev: 526.75 ft. MSL

**Completion:** 82.00 ft. BGS **Station:** 3,839.59N

|        | SAMPLI                           | E                                                | T                                | EST          | INC               |                                          | TOPOGRAPHIC MAP INFORMATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WATER LEVEL INFORMATION:                                                          |
|--------|----------------------------------|--------------------------------------------------|----------------------------------|--------------|-------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|        | Recov / Total (in)<br>% Recovery |                                                  | 6 in<br>1e                       | e (%)        | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadrangle: Latona Township: North Muddy Section 26, Tier 6N; Range 8E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \mathbf{Y} = 33.70 $ - During Drilling $ \mathbf{Y} =  $ $ \mathbf{\nabla} =  $ |
| Number | Recov / % Recor                  | Type                                             | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Der           | Qu (tsf)<br>Failure                      | Depth Lithologic ft. BGS Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Borehole Elevation Detail ft. MSL Remarks                                         |
| 1A     | 60/60                            | DP                                               |                                  | 13           |                   | 4.50                                     | Black (10YR2/1), moist, very stiff, SILT with little and trace very fine- to medium-grained sand, root  Yellowish brown (10YR5/4) with 30% light gra (10YR7/2) mottles, dry, hard, SILT with little clay trace very fine- to medium-grained sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y and                                                                             |
| 1B     | 100%                             | <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del> |                                  | 21           |                   | 3.00                                     | Grayish brown (10YR5/2) with 15% dark yellowish (10YR4/6) and 10% black (10YR2/1) mottles, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 524<br>                                                                           |
| 2A     | 60/60                            | DP                                               |                                  | 18           |                   | 2.50                                     | Black (10YR2/1), moist, very stiff, SILT with little and trace very fine- to medium-grained sand, root  Yellowish brown (10YR5/4) with 30% light gra (10YR7/2) mottles, dry, hard, SILT with little clay trace very fine- to medium-grained sand.  Grayish brown (10YR5/2) with 15% dark yellowish (10YR4/6) and 10% black (10YR2/1) mottles, moist stiff, silty CLAY with few very fine- to coarse-grained and trace small gravel.  Grayish brown (10YR5/2) with 15% dark yellowish mottles, moist, stiff, silty CLAY with few very fine coarse-grained sand and trace small gravel.  Brown (10YR5/3) with 20% dark yellowish brow (10YR5/6) mottles, dry, stiff, SILT with little clay and very fine- to coarse-grained sand. | di sand                                                                           |
| 2B     |                                  | <del>www.www.wwwwwwwwwww.</del>                  |                                  | 28           |                   | 2.00                                     | Grayish brown (10YR5/2) with 15% dark yellowish mottles, moist, stiff, silty CLAY with few very fine coarse-grained sand and trace small gravel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | brown<br>- to                                                                     |
| 3A     | 20/24                            | DP                                               |                                  | 8            |                   | 2.00                                     | Brown (10YR5/3) with 20% dark yellowish brow (10YR5/6) mottles, dry, stiff, SILT with little clay and very fine- to coarse-grained sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vn d trace Rock in shoe of sampler.                                               |
| 4A     | 0/17                             | ss                                               | 23-43<br>50/5"                   |              |                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 514 sampler.                                                                      |
| 5A     | 21/24 88%                        | ss                                               | 13-20<br>24-28<br>N=44           | 10           |                   | 4.50                                     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 512                                                                               |
| 6A     | 24/24<br>100%                    | ss                                               | 7-14<br>20-48<br>N=34            | 11           |                   | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little trace very fine- to coarse-grained sand and small gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | clay, avel.                                                                       |
| 7A     | 24/24<br>100%                    | ss                                               | 14-21<br>26-32<br>N=47           | 10           |                   |                                          | Dark gray (10YR4/1), moist, hard, SILT with little trace very fine- to coarse-grained sand and small gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508                                                                               |
| NC     | OTE(S):                          | APV                                              | V8 installe                      | ed in        | bore              | ehole.                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D 1 . 65                                                                          |

CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/27/2015 **Finish:** 10/28/2015

WEATHER: Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

**HANSON** 

BOREHOLE ID: APW8

Well ID: APW8
Surface Elev: 526.75 ft. MSL

**Completion:** 82.00 ft. BGS **Station:** 3,839.59N

| S          | SAMPL                            | E        | Т                                | EST          | INC               |                                          | TOPOGRAPHIC MAP INFORMATION:                                                                                                                                                                                                                                                                                                               | WATER LEVEL INFORMATION:                                                                                                                               |
|------------|----------------------------------|----------|----------------------------------|--------------|-------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| lber       | Recov / Total (in)<br>% Recovery | •        | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadrangle: Latona<br>Township: North Muddy<br>Section 26, Tier 6N; Range 8E                                                                                                                                                                                                                                                               | $ \mathbf{\underline{\Psi}} = 33.70 $ - During Drilling $ \mathbf{\underline{\Psi}} =  \mathbf{\underline{\nabla}} =  \mathbf{\underline{\nabla}} =  $ |
| Number     | Reco<br>% Re                     | Type     | Blow<br>N-1<br>RQI               | Mois         | Dry ]             | Qu (1<br>Failu                           | Depth Lithologic ft. BGS Description                                                                                                                                                                                                                                                                                                       | Borehole Elevation Detail ft. MSL Remarks                                                                                                              |
| 8A         | 24/24<br>100%                    | ss       | 7-13<br>19-23<br>N=32            | 11           |                   | 4.50                                     | 22 —                                                                                                                                                                                                                                                                                                                                       | 506                                                                                                                                                    |
| 9A         | 24/24<br>100%                    | ss       | 7-14<br>19-27<br>N=33            | 11           |                   | 4.50                                     | 24 Dork gray (10VP4/1) majet hard SH T with little                                                                                                                                                                                                                                                                                         | 504                                                                                                                                                    |
| 10A        | 24/24<br>100%                    | ss       | 8-15<br>30-37<br>N=45            | 11           |                   | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little trace very fine- to coarse-grained sand and small gra [Continued from previous page]                                                                                                                                                                                                    | clay,<br>avel. — 502                                                                                                                                   |
| 11A        | 24/24<br>100%                    | ss       | 8-16<br>24-33<br>N=40            | 11           |                   | 4.50                                     | 28 = 28                                                                                                                                                                                                                                                                                                                                    | 500                                                                                                                                                    |
| 12A<br>12B | 24/24<br>100%                    | ss       | 9-31<br>33-30<br>N=64            | 11<br>12     |                   | 4.50                                     | Gray (10YR5/1), moist, dense, silty, very fine-to-medium-grained SAND.                                                                                                                                                                                                                                                                     | o 498                                                                                                                                                  |
| 13A        | 24/24<br>100%                    | ss       | 10-23<br>40-35<br>N=63           | 11           |                   | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little trace very fine- to coarse-grained sand and small gray [Continued from previous page]  26  Gray (10YR5/1), moist, dense, silty, very fine-tomedium-grained SAND.  Dark gray (10YR4/1), moist, hard SILT with little few very fine- to coarse-grained sand, and trace small gray gravel. | clay,                                                                                                                                                  |
| 14A        | 21/24<br>88%                     | ss       | 16-16<br>29-50<br>N=45           | 10           |                   | 4.50                                     | ¥                                                                                                                                                                                                                                                                                                                                          | 494                                                                                                                                                    |
| 15A        | 20/24<br>83%                     | ss       | 9-24<br>34-41<br>N=58            | 13           |                   |                                          | Dark gray (10YR4/1), wet, very dense, silty, very fin coarse-grained SAND with trace small gravel.  36  Dark gray (10YR4/1), moist, hard, SILT with little few very fine- to coarse-grained sand, and trace sm gravel.                                                                                                                     | ne- to                                                                                                                                                 |
| 16A        | 22/24<br>92%                     | ss       | 16-18<br>29-35<br>N=47           | 11           |                   | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little few very fine- to coarse-grained sand, and trace sn                                                                                                                                                                                                                                     |                                                                                                                                                        |
| 17A        | 21/24<br>88%                     | ss       | 10-17<br>21-31<br>N=38           | 11           |                   | 4.50                                     | gravel.                                                                                                                                                                                                                                                                                                                                    | 488                                                                                                                                                    |
| NO         | TE(S):                           | ⊥<br>APV | V8 install                       | ed in        | bore              | ehole.                                   | 40 ⊐                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                        |

**CLIENT:** Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/27/2015 **Finish:** 10/28/2015

WEATHER: Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 41/4" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

**HANSON** 

BOREHOLE ID: APW8 Well ID: APW8

**Surface Elev:** 526.75 ft. MSL **Completion:** 82.00 ft. BGS

ompletion: 82.00 ft. BGS Station: 3,839.59N

|        | SAMPL              |      | T                                | -            | INC               |                                       |                                                   | MAR INFORMATION                                                                                                                                      | ****     | D I EVE                                 | DIEGES                    | 0,062.57E |
|--------|--------------------|------|----------------------------------|--------------|-------------------|---------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|---------------------------|-----------|
|        | Recov / Total (in) |      | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf) Failure Type | Quadrangle: I<br>Township: Not<br>Section 26, Tie | rth Muddy<br>r 6N; <b>Range</b> 8E                                                                                                                   |          | = 33.70 - 1<br>=                        | INFORMATE During Drilling |           |
| Number | Recov<br>% Re      | Type | Blow:<br>N - V<br>RQD            | Moist        | Dry I             | Qu (ts<br>Failu                       | Depth<br>ft. BGS                                  | Lithologic<br>Description                                                                                                                            |          | Borehole<br>Detail                      | Elevation ft. MSL         | Remarks   |
| 18A    | 24/24<br>100%      | ss   | 9-16<br>26-32<br>N=42            | 11           |                   | 4.50                                  | 42 ————————————————————————————————————           |                                                                                                                                                      |          | ,,,,,,,,                                | 486<br>                   |           |
| 19A    | 24/24<br>100%      | ss   | 10-16<br>23-34<br>N=39           | 12           |                   | 4.50                                  | 44 =                                              |                                                                                                                                                      |          |                                         | 484<br><br>               |           |
| 20A    | 24/24<br>100%      | ss   | 10-15<br>26-44<br>N=41           | 13           |                   | 4.50                                  | 46                                                |                                                                                                                                                      |          | 00000                                   | 482<br>                   |           |
| 21A    | 24/24<br>100%      | SS   | 12-21<br>32-48<br>N=53           | 12           |                   | 4.50                                  | 48 =                                              |                                                                                                                                                      |          |                                         | 480<br>                   |           |
| 22A    | 24/24<br>100%      | ss   | 11-17<br>22-31<br>N=39           | 13           |                   | 4.50                                  | Darl fev                                          | c gray (10YR4/1), moist, hard, SILT with little cl<br>w very fine- to coarse-grained sand, and trace smal<br>gravel.  [Continued from previous page] | ay,<br>I | ,,,,,,,,                                | 478<br>478<br>            |           |
| 23A    | 24/24<br>100%      | ss   | 10-13<br>21-32<br>N=34           | 13           |                   | 4.50                                  | 52                                                |                                                                                                                                                      |          | , , , , , , , , , , , , , , , , , , , , | 476<br>476<br>            |           |
| 24A    | 24/24<br>100%      | ss   | 8-13<br>50-26<br>N=63            | 13           |                   | 4.50                                  |                                                   |                                                                                                                                                      |          | ,,,,,,,,,                               | 474<br>474<br>            |           |
| 25A    | 24/24<br>100%      | ss   | 8-11<br>19-28<br>N=30            | 14           |                   | 4.25                                  | 56                                                |                                                                                                                                                      |          | ,,,,,,,,                                | 472<br>                   |           |
| 26A    | 24/24<br>100%      | ss   | 10-12<br>18-26<br>N=30           | 13           |                   | 4.50                                  | 54 = 56 = 58 = Olive                              |                                                                                                                                                      |          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 470<br>                   |           |
| 27A    | 22/24<br>92%       | ss   | 7-10<br>15-22<br>N=25            | 21           |                   | 4.50                                  | Olive<br>fi                                       | gray (5Y4/2), moist, hard, silty CLAY with few ne- to coarse-grained sand and trace small gravel.                                                    | very     |                                         | 468                       |           |
| NO     | )TE(S):            | APV  | V8 install                       | ed in        | bore              | ehole.                                | 00                                                |                                                                                                                                                      |          | -                                       | •                         |           |

CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/27/2015 Finish: 10/28/2015

WEATHER: Sunny, breezy, warm, lo-80s

CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill

Drilling Method: 41/4" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

**BOREHOLE ID:** APW8

Well ID: APW8

Surface Elev: 526.75 ft. MSL

82.00 ft. BGS **Completion: Station:** 3,839.59N

6,082.37E **SAMPLE** TESTING TOPOGRAPHIC MAP INFORMATION: WATER LEVEL INFORMATION: Ē Op (tsf)Type  $\mathbf{V} = 33.70$  - During Drilling Quadrangle: Latona Dry Den. (lb/ft3) Recov / Total ( % Recovery Moisture (%) Township: North Muddy <u>A</u> = Blows / 6 in N - Value RQD  $\nabla =$ Section 26, Tier 6N; Range 8E Qu (tsf) (Failure T Number Lithologic Borehole Elevation ft. BGS Description ft. MSL Remarks 7-15 466 20/24 Dark gray (10YR4/1), moist, hard, SILT with little clay, 28A 14 4.50 19-20 83% few very fine- to coarse-grained sand and trace small gravel. N = 34464 21/24 29A 11 3.75 11-16 88% Dark gray (10YR4/1), moist, very stiff, SILT with little N=19clay, few very fine- to coarse-grained sand and trace small 6-13 462 21/24 30A 14 4.00 14-11 88% N=27 30B Gray (10YR6/1), wet, medium dense, silty, very fine- to 10 coarse-grained SAND with trace small to large gravel. 66 Dark gray (10YR4/1), moist, very stiff, SILT with little clay and few very fine- to coarse-grained sand.

Dark gray (10YR4/1), wet, loose, silty, very fine- to 460 18/24 28 31A coarse-grained SAND with trace small gravel and trace 4-3 75% 31B 15 3.25 wood fragments. Dark gray (10YR4/1), moist, very stiff, SILT with little clay, few very fine- to coarse-grained sand, and trace small gravel, trace wood fragments. Dark gray (10YR4/1), wet, loose, SILT with little very 458 20/24 32A 17 fine- to fine-grained sand. 3-2 83% N=6 Dark gray (10YR4/1), wet, loose, silty, very fine- to 32B 28 coarse-grained SAND. Dark gray (10YR4/1), wet, loose, SILT with little very fine- to fine-grained sand, trace wood fragments. woh-2 456 15/24 Dark gray (10YR4/1), wet, loose, silty, very fine-to 17 33A 6-6 63% coarse-grained SAND, trace wood fragments. N=8Dark gray (10YR4/1), wet, medium dense, silty, very fineto coarse-grained SAND with trace small gravel. 454 16/24 34A 9 15-20 67% Dark gray (10YR4/1), wet, medium dense, silty, very fine-to coarse-grained SAND with few small to large gravel. 16-21 452 15/24 9 Dark gray (10YR4/1), wet, dense, silty, very fine-to 35A 23-24 N=44 63% coarse-grained SAND with few small to large gravel. 11-20 450 14/24 36A 11 25-24 58% N=45 Dark gray (10YR4/1), wet, dense, silty, very fine-to coarse-grained SAND with trace small gravel. 20-25 448 37A 15/2410 24-25 63% N=49 NOTE(S): APW8 installed in borehole.

CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

**Project:** 15E0030 **DATES: Start:** 10/27/2015

Finish: 10/28/2015

**WEATHER:** Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

**BOREHOLE ID:** APW8

Well ID: APW8

Surface Elev: 526.75 ft. MSL

HANSON

. 320.73 it. MSL

**Completion:** 82.00 ft. BGS **Station:** 3,839.59N

|        | SAMPL          | E    | T                      | EST      | INC           | j                       | TOPOGRA                         | PHIC MAP INFORMATION:                                                                                                            | WATER LEVEL INFORMATION:                                                                 |
|--------|----------------|------|------------------------|----------|---------------|-------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| ie     | / Total (in)   |      | / 6 in<br>Ilue         | ure (%)  | Den. (lb/ft³) | f) <i>Qp</i> (tsf) Type | Quadrar<br>Townshi<br>Section 2 | ngle: Latona<br>p: North Muddy<br>26, Tier 6N; Range 8E                                                                          | $\underline{\Psi}$ = 33.70 - During Drilling $\underline{\Psi}$ = $\underline{\nabla}$ = |
| Number | Recov<br>% Rec | Type | Blows<br>N - Va<br>RQD | Moisture | Dry D         | Qu (tsf)<br>Failure     | Depth<br>ft. BGS                | Lithologic<br>Description                                                                                                        | Borehole Elevation<br>Detail ft. MSL Remarks                                             |
| 38A    | 75%            | ss   | 26-26<br>26-31<br>N=52 | 8        |               |                         |                                 | Dark gray (10YR4/1), wet, dense, silty, very fine-to coarse-grained SAND with trace small gravel. [Continued from previous page] | 446                                                                                      |
| 38B    |                |      | IN-32                  | 11       |               | 4.50                    | 82                              | Dark gray (10YR4/1), moist, hard, SILT with little cl<br>and few very fine- to coarse-grained sand.<br>End of boring = 82.0 feet | ay                                                                                       |

Finish: 10/27/2015

Project: 15E0030

WEATHER: Cool, rainy, lo-50s

**DATES: Start:** 10/27/2015

CLIENT: Natural Resource Technology, Inc. CONTRACTOR: Bulldog Drilling, Inc. Site: Newton Energy Center Rig mfg/model: CME-550X ATV Drill Location: Newton, Illinois

Lithology, sample, and testing data can be found on APW-4 Field Boring Log.

**Drilling Method:** 41/4" HSA

FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim



**BOREHOLE ID:** APW10a Well ID: APW10

Surface Elev: 521.98 ft. MSL **Completion:** 45.94 ft. BGS Station: 5,371.32N 11,541.23E

| SAMPLE TESTING |                                  |      |                                  |              |                   | ٠                                        | 1                 | Eng/Geo: S. Keim                                                         |                                        | 11,341.23E                             |                                                                            |         |  |
|----------------|----------------------------------|------|----------------------------------|--------------|-------------------|------------------------------------------|-------------------|--------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------------------------|---------|--|
|                |                                  |      |                                  |              |                   |                                          | TOPOGRA<br>Quadra | APHIC MAP INFORMATION: ngle: Latona ip: North Muddy                      |                                        | = 36.00 -                              | INFORMAT During Drilling                                                   |         |  |
|                | Toti                             |      | 6 in                             | (%           | n. (Ib            | Type                                     | Section           | p: North Muddy<br>25, Tier 6N; Range 8E                                  | \( \bar{\bar{\bar{\bar{\bar{\bar{\bar{ | =                                      |                                                                            |         |  |
| Number         | Recov / Total (in)<br>% Recovery | Type | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Depth<br>ft. BGS  | Lithologic<br>Description                                                |                                        | Borehole<br>Detail                     | Elevation ft. MSL                                                          | Remarks |  |
| NOI            | ΓΕ(S):                           | APW  | √10 insta                        | lled i       | n bo              | rehole.                                  | 2                 | Blind drill - see APW4 boring log for lithology, sample, at testing data | nd                                     | 3///\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 510<br>5110<br>512<br>512<br>513<br>514<br>514<br>514<br>510<br>510<br>508 |         |  |

Finish: 10/27/2015

Location: Newton, Illinois

**DATES: Start:** 10/27/2015

NOTE(S): APW10 installed in borehole.

Lithology, sample, and testing data can be found on APW-4 Field Boring Log.

Project: 15E0030

CLIENT: Natural Resource Technology, Inc.
Site: Newton Energy Center

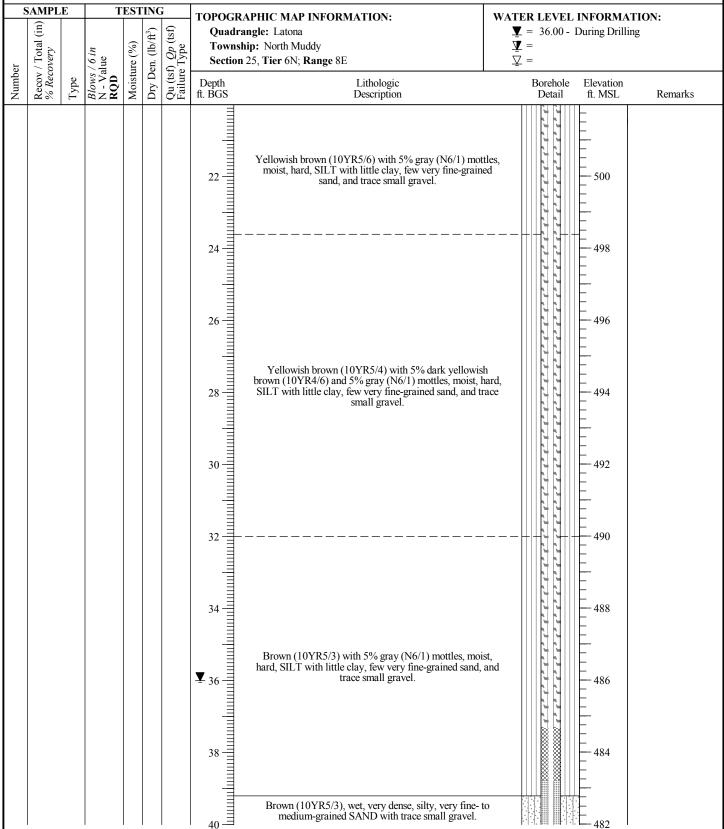
CONTRACTOR: Bulldog Drilling, Inc.
Rig mfg/model: CME-550X ATV Drill

Drilling Method: 41/4" HSA

FIELD STAFF: Driller: C. Dutton Helper: C. Jones

WEATHER: Cool, rainy, lo-50s Eng/Geo: S. Keim

HANSON PORTHOLE ID: ADVIO


**BOREHOLE ID:** APW10a **Well ID:** APW10

 Surface Elev:
 521.98 ft. MSL

 Completion:
 45.94 ft. BGS

 Station:
 5,371.32N

 11,541.23E



CONTRACTOR: Bulldog Drilling, Inc. CLIENT: Natural Resource Technology, Inc. Rig mfg/model: CME-550X ATV Drill Site: Newton Energy Center

Drilling Method: 41/4" HSA

**BOREHOLE ID:** APW10a Well ID: APW10

WATER LEVEL INFORMATION:

Surface Elev: 521.98 ft. MSL **Completion:** 45.94 ft. BGS **Station:** 5,371.32N

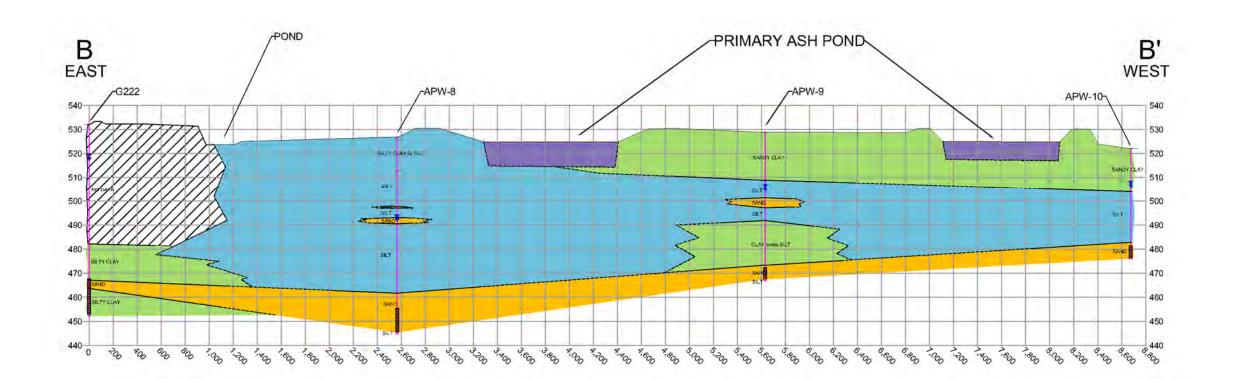
11,541.23E

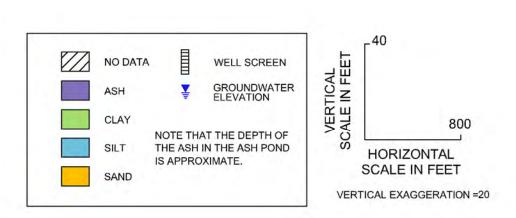
**HANSON** 

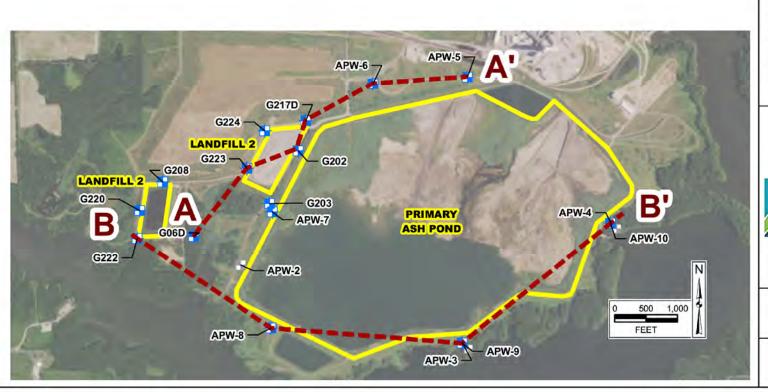
Location: Newton, Illinois Project: 15E0030 **DATES: Start:** 10/27/2015

TESTING

SAMPLE


FIELD STAFF: Driller: C. Dutton Finish: 10/27/2015 Helper: C. Jones WEATHER: Cool, rainy, lo-50s Eng/Geo: S. Keim


> TOPOGRAPHIC MAP INFORMATION: Quadrangle: Latona


 $\mathbf{Y}$  = 36.00 - During Drilling

Qu (tsf) *Qp* (tsf) Failure Type Recov / Total (in) % Recovery Dry Den. (lb/ft³) Moisture (%) Township: North Muddy  $\bar{\mathbf{\Lambda}} =$ Blows / 6 in N - Value RQD Section 25, Tier 6N; Range 8E  $\nabla =$ Depth ft. BGS Lithologic Borehole Elevation Description ft. MSL Remarks 480 Brown (10YR5/3), wet, very dense, silty, very fine- to medium-grained SAND with trace small gravel. [Continued from previous page] 478 End of boring = 45.94 feet









# GEOLOGIC CROSS-SECTION B-B' CHECKED BY: APPROVED BY: APPROVED BY:

08/29/2017

JMO DATE: TBN DATE:

DATE

SJC

DRAWING NO:

REFERENCE

NEWTON POWER STATION NEWTON, ILLINOIS

HYDROGEOLOGIC MONITORING PLAN

Natural Resource Technology AN OBG COMPANY

> PROJECT NO. 2285

FIGURE NO.
APPENDIX A-2

# Attachment C Mann-Kendall Trend Analysis

OBG

#### **User Supplied Information**

Location ID:APW5Parameter Code:01022Location Class:Parameter:B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 03/31/2019

Limit Name:

Averaged:

No

#### **Trend Analysis**

Trend of the least squares straight line
Slope (fitted to data):
-0.000004 mg/L per day

R-Squared error of fit: 0.016425

Sen's Non-parametric estimate of the slope (One-Sided Test)

Median Slope:-0.000001mg/L per dayLower Confidence Limit of Slope, M1:-0.000031mg/L per dayUpper Confidence Limit of Slope, M2+1:0.000011mg/L per day

Non-parametric Mann-Kendall Test for Trend

S Statistic: -0.417
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): None

#### **User Supplied Information**

Location ID:APW6Parameter Code:01022Location Class:Parameter:B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 03/31/2019

Limit Name:

Averaged:

No

#### **Trend Analysis**

Trend of the least squares straight line
Slope (fitted to data):
-0.000008 mg/L per day

R-Squared error of fit: 0.018309

Sen's Non-parametric estimate of the slope (One-Sided Test)

Non-parametric Mann-Kendall Test for Trend

S Statistic: 0.687
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): None

#### **User Supplied Information**

Location ID: APW7 Parameter Code: 01022 Location Class: Parameter: B, tot

Location Type: Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 03/31/2019

Limit Name:
Averaged:

#### **Trend Analysis**

No

Trend of the least squares straight line Slope (fitted to data):  $0.000006 \, \text{mg/L}$  per day

R-Squared error of fit: 0.033439

Sen's Non-parametric estimate of the slope (One-Sided Test)

Non-parametric Mann-Kendall Test for Trend

S Statistic: 0.412
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): None

#### **User Supplied Information**

Location ID: APW8 Parameter Code: 01022
Location Class: Parameter: B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 03/31/2019

Limit Name:

Averaged:

No

#### **Trend Analysis**

Trend of the least squares straight line
Slope (fitted to data):

0.000019 mg/L per day

R-Squared error of fit: 0.342389

Sen's Non-parametric estimate of the slope (One-Sided Test)

Non-parametric Mann-Kendall Test for Trend

S Statistic: 1.787
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): Upward

#### **User Supplied Information**

Location ID:APW9Parameter Code:01022Location Class:Parameter:B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 03/31/2019

Limit Name:

Averaged:

No

#### **Trend Analysis**

Trend of the least squares straight line
Slope (fitted to data):
-0.000006 mg/L per day

R-Squared error of fit: 0.028627

Sen's Non-parametric estimate of the slope (One-Sided Test)

Non-parametric Mann-Kendall Test for Trend

S Statistic: 0.000
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): None

#### **User Supplied Information**

Location ID: APW10 Parameter Code: 01022 Location Class: Parameter: B, tot

Location Type:

Units: mg/L

Confidence Level: 95.00% Period Length: 1 month(s)

Date Range: 12/14/2015 to 03/31/2019

Limit Name:

Averaged:

No

#### **Trend Analysis**

Trend of the least squares straight line Slope (fitted to data):  $0.000011 \, \text{mg/L}$  per day

R-Squared error of fit: 0.304448

Sen's Non-parametric estimate of the slope (One-Sided Test)

Non-parametric Mann-Kendall Test for Trend

S Statistic: 1.722
Z test: 1.645
At the 95.0 % Confidence Level (One-Sided Test): Upward

# Attachment D Coefficient of Variation Evaluation

OBG

#### Newton

## Coefficient of Variation Date Range: 12/14/2015 to 3/31/2019

#### Boron, total (mg/L)

| Location | Count | Mean  | Std Dev | % Non-<br>Detects | cv   |
|----------|-------|-------|---------|-------------------|------|
| APW5     | 12    | 0.100 | 0.013   | 0.00              | 0.13 |
| APW6     | 12    | 0.090 | 0.023   | 0.00              | 0.26 |
| APW7     | 12    | 0.076 | 0.013   | 0.00              | 0.17 |
| APW8     | 12    | 0.085 | 0.013   | 0.00              | 0.15 |
| APW9     | 12    | 0.072 | 0.014   | 0.00              | 0.20 |
| APW10    | 12    | 0.071 | 0.008   | 0.00              | 0.11 |

CV=Std Dev/ Mean



ATTACHMENT 2
APRIL 27, 2020 AND OCT 13, 2020 ALTERNATE SOURCE
DEMONSTRATIONS

Intended for

**Illinois Power Generating Company** 

Date

April 27, 2020

Project No.

74923

# 40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PRIMARY ASH POND

#### **CERTIFICATIONS**

I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Professional Geologist

196-000750 Illinois

O'Brien & Gere Engineers, Inc., a Ramboll Company

Date: April 27, 2020



I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac

Qualified Professional Engineer

062-063091

Illinois

O'Brien & Gere Engineers, Inc., a Ramboll Company

Date: April 27, 2020



#### **CONTENTS**

| 1.  | Introduction                                                    | 3  |
|-----|-----------------------------------------------------------------|----|
| 2.  | Background                                                      | 4  |
| 2.1 | Site Location and Description                                   | 4  |
| 2.2 | Description of Primary Ash Pond CCR Unit                        | 4  |
| 2.3 | Geology and Hydrogeology                                        | 4  |
| 2.4 | Groundwater and PAP Monitoring                                  | 5  |
| 3.  | Alternate Source Demonstration: Lines of Evidence               | 6  |
| 3.1 | LOE #1: The PAP Is Separated from the Uppermost Aquifer by a    |    |
|     | Thick, Low-Permeability Glacial Till                            | 6  |
| 3.2 | LOE #2: Concentrations of Calcium and Chloride in the PAP Are   |    |
|     | Lower Than Those Observed in the Groundwater                    | 6  |
| 3.3 | LOE #3: Boron, a Primary Indicator Parameter for CCR Impacts to |    |
|     | Groundwater, Has Concentrations in Downgradient Wells That Are  |    |
|     | Near or Below Concentrations Observed in Background Monitoring  |    |
|     | Wells                                                           | 8  |
| 4.  | Conclusions                                                     | 10 |
| 5.  | References                                                      | 11 |

#### **TABLES (IN TEXT)**

Table A Summary Statistics and Trend Analysis of Boron in Groundwater

#### FIGURES (IN TEXT)

Figure A Calcium Box Plot Figure B Chloride Box Plot Figure C Boron Time Series

#### FIGURES (ATTACHED)

Figure 1 Monitoring Well and Source Water Location Map

Figure 2 Geologic Cross Section

#### **ACRONYMS AND ABBREVIATIONS**

40 C.F.R. Title 40 of the Code of Federal Regulations

ASD Alternate Source Demonstration

bgs below ground surface
CCR Coal Combustion Residuals

ft foot/feet

LF2 Phase II Landfill 2 msl mean sea level

NRT/OBG Natural Resource Technology, an OBG Company

PAP Primary Ash Pond
Site Newton Power Station

SSIs Statistically Significant Increases

UPL Upper Prediction Limit

#### 1. INTRODUCTION

Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.94(e)(2) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of a Statistically Significant Increase (SSI) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company, by O'Brien & Gere Engineers, Inc., a Ramboll Company (Ramboll), to provide pertinent information pursuant to 40 C.F.R. § 257.94(e)(2) for the Newton Primary Ash Pond (PAP) located near Newton, Illinois.

The most recent Detection Monitoring sampling event (Detection Monitoring Round 5 [D5]) was completed on August 22 and 23, 2019, and analytical data were received on October 28, 2019. Analytical data from D5 were evaluated in accordance with the Statistical Analysis Plan (NRT/OBG 2017a) to determine any SSIs of Appendix III parameters over background concentrations. That evaluation identified SSIs at downgradient monitoring wells as follows:

- Calcium at wells APW8 and APW10
- Sulfate at wells APW7, APW8, APW9, and APW10
- Chloride at APW8

Pursuant to 40 C.F.R. § 257.94(e)(2), the following lines of evidence (LOE) demonstrate that sources other than the Newton PAP were the cause of the calcium, sulfate, and chloride SSIs listed above. This ASD was completed by April 27, 2020, within 90 days of determination of the SSIs (January 27, 2020), as required by 40 C.F.R. § 257.94(e)(2).

#### 2. BACKGROUND

#### 2.1 Site Location and Description

The Newton Power Station (Site) is located in Jasper County in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The plant is located on the north side of Newton Lake. The area is bounded by Newton Lake and agricultural land to the west, south, and east, and agricultural land to the north. Beyond the lake is additional agricultural land.

#### 2.2 Description of Primary Ash Pond CCR Unit

The Newton Power Station's sole CCR surface impoundment, the Primary Ash Pond (PAP), was constructed in 1977 and has a design capacity of approximately 9,715 acre-feet. The PAP has a surface area of 400 acres and a height of approximately 71 feet above grade. The PAP currently receives bottom ash, fly ash, and low-volume wastewater from the plant's two coal-fired boilers, and is operated per NPDES Permit IL0049191, Outfall 001. The PAP was not excavated during construction, except for native materials used to build the containment berms.

#### 2.3 Geology and Hydrogeology

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation.

Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations (Lineback, 1979; Willman et al., 1975). The unconsolidated deposits occurring at Newton Power Station include the following units (beginning at the ground surface):

- Ash/Fill Units CCR and fill within the various CCR Units.
- Upper Confining Unit Low permeability clays and silts, including the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east, underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) and Vandalia (Till) Members of the Glasford Formation.
- Uppermost Aquifer Thin to moderately thick (3 to 17 feet [ft]), moderate to high
  permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the
  Glasford Formation.
- Lower Confining Unit Thick, very low permeability silty clay diamictons of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation.

The bedrock beneath the unconsolidated deposits consists of Pennsylvanian-age Mattoon Formation (Willman et al., 1967) that is mostly shale near the bedrock surface but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones (Willman et al., 1975). The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the Site but is typically encountered at 90 to 120 ft below ground surface (bgs).

Groundwater elevations across the PAP ranged from approximately 495 to 525 ft msl (mean sea level) during D5 (Figure 1). Depths to groundwater used to generate the groundwater elevation contours shown on Figure 1 were measured on August 21, 2019. Groundwater flow in the Uppermost Aquifer beneath the eastern portion of PAP is generally to the south toward Newton Lake. The flow direction diverges to the southwest beneath the western portion of the PAP, toward LF2, where groundwater flow in the area is converging along the major axis of LF2 Cells 1 and 2.

#### 2.4 Groundwater and PAP Monitoring

The Uppermost Aquifer monitoring system for the PAP is shown on Figure 1. Monitoring wells APW5 and APW6 are used to monitor background water quality for the PAP. These wells are located north of the PAP. The downgradient monitoring wells are APW7, APW8, APW9, and APW10. PAP surface water samples were collected from locations AP1 in the southwest corner of the PAP and AP2 in the southeast corner of the PAP.

# 3. ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

As allowed by 40 C.F.R. § 257.94(e)(2), this ASD demonstrates that sources other than Newton PAP (the CCR unit) caused the SSIs. Lines of evidence supporting this ASD include the following:

- 1. The PAP is separated from the uppermost aquifer by a thick, low-permeability glacial till.
- 2. Concentrations of calcium and chloride in the PAP are lower than those observed in the groundwater.
- 3. Boron, a primary indicator parameter for CCR impacts to groundwater, has concentrations in downgradient wells that are near or below concentrations observed in background monitoring wells.

## 3.1 LOE #1: The PAP Is Separated from the Uppermost Aquifer by a Thick, Low-Permeability Glacial Till

As noted above, the Uppermost Aquifer at the Site is the Mulberry Grove Member of the Glasford Formation. Based on boring logs for monitoring wells installed around the perimeter of the Site, the Uppermost Aquifer is confined and the top of the Mulberry Grove Member ranges from 461.8 ft msl in APW-8 to 482.8 ft msl in APW-10 (Figure 2). The bottom elevation of the PAP is situated within the Hagarstown Member of the Glasford Formation at 508 ft msl, approximately 25 ft above the top of the Uppermost Aquifer (Figure 2). The Hagarstown Member, a thick, low-permeability glacial till, with hydraulic conductivities ranging from  $2.4 \times 10^{-6}$  to  $6.1 \times 10^{-5}$  centimeters per second (cm/s), separates the PAP from the uppermost aquifer. The lack of connection between the PAP and the Uppermost Aquifer demonstrates that there is no complete pathway for transport of CCR constituents in groundwater beneath the PAP, thus the PAP is not the source of CCR constituents in the Uppermost Aquifer.

## 3.2 LOE #2: Concentrations of Calcium and Chloride in the PAP Are Lower Than Those Observed in the Groundwater

Box plots graphically represent the first quartile, median, and third quartile of a given dataset using lines to construct a box where the lower line, midline and upper line of the box represent the values of the first quartile, median, and third quartile, respectively. The minimum and maximum values of the dataset (excluding outliers) are illustrated by whisker lines extending beyond the first and third quartiles of the box plot.

A box plot of calcium concentrations in downgradient monitoring wells and surface water samples is provided in Figure A. Calcium concentrations are lower in PAP surface water samples (collected in November 2017 and November 2019) than in all downgradient groundwater samples collected between 2015 and 2019. The maximum concentration of calcium detected in PAP surface water (36 milligrams per liter [mg/L]) is lower than the minimum concentration of calcium in a downgradient well (38 mg/L at APW10).

If the PAP were the source of calcium detected in groundwater, calcium concentrations in PAP surface water would be higher than the calcium concentrations detected in downgradient monitoring wells. Because the reverse is true (i.e., PAP calcium concentrations are lower than in the groundwater), the PAP is not likely the source of the calcium observed in downgradient wells.

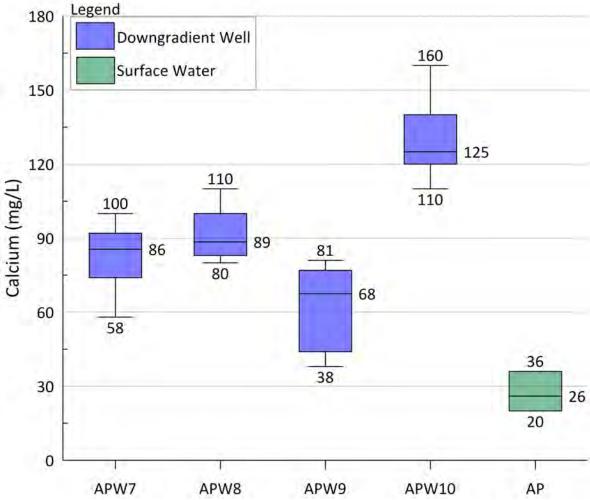



Figure A. Calcium Box Plot. The maximum, minimum, and median values are noted.

Similarly, chloride concentrations are lower in PAP water samples (collected in November 2017 and November 2019) than in all downgradient groundwater samples collected between 2015 and 2019. A box plot of chloride concentrations is provided in Figure B. The maximum concentration of chloride detected in PAP surface water (18 mg/L) is lower than the minimum concentration of calcium in a downgradient well (44 mg/L at APW9 and APW10).

If the PAP were the source of chloride detected in groundwater, chloride concentrations in PAP water would be higher than the chloride concentrations detected in downgradient groundwater. Because the reverse is true, the PAP is not likely the source of the chloride observed in downgradient wells.

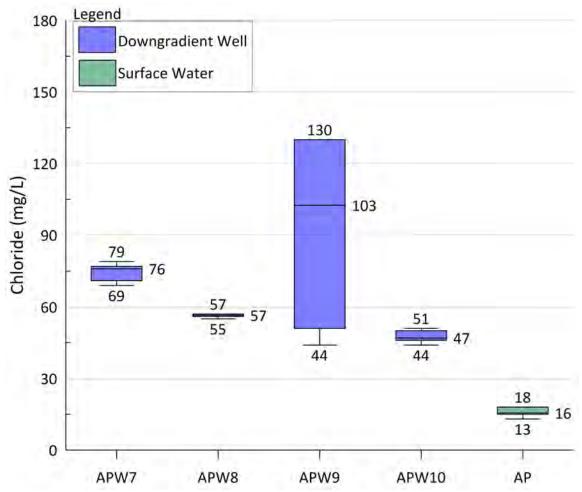



Figure B. Chloride Box Plot. The maximum, minimum, and median values are noted.

# 3.3 LOE #3: Boron, a Primary Indicator Parameter for CCR Impacts to Groundwater, Has Concentrations in Downgradient Wells That Are Near or Below Concentrations Observed in Background Monitoring Wells

Boron is a primary indicator of CCR impacts to groundwater. If the source of the SSIs in the downgradient monitoring wells were the PAP, boron would be anticipated to be elevated above background concentrations. Concentrations of boron in all downgradient monitoring wells are below the boron Upper Prediction Limit (UPL) (0.141 milligrams per liter [mg/L]) established using background monitoring wells (i.e. SSI limits) (Figure C).

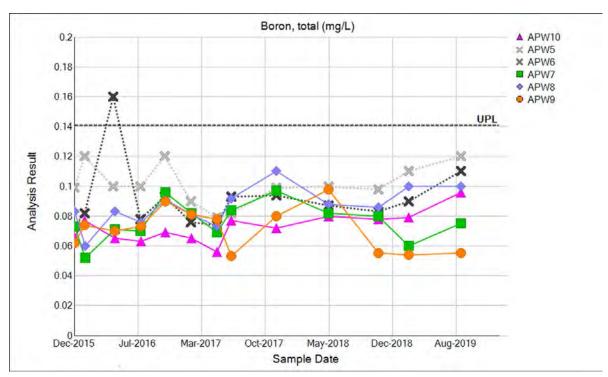



Figure C. Boron Time Series. The time series shows boron concentrations in background wells (represented by gray "X"s) are greater or similar to concentrations in downgradient wells.

Mann-Kendall (M-K) trend analysis tests were performed to determine the boron concentration trend in each well, if there was a trend. If the Mann-Kendall test identified a trend, the coefficient of variation (CV) was used to determine if the trend was of high or low magnitude. The CV is a measure of data spread calculated by dividing the standard deviation by the mean. CV values less than 1 indicate that the data is grouped closely around the mean and that is there is little variation in the data. Thus, a M-K analysis result of a trend with a CV less than 1 indicates that the data varies only slightly, and that the magnitude of the slope is low. No trends in boron concentrations were identified in background wells APW5 and APW6 and downgradient wells APW7 and APW9; and upward trends were identified at APW8 and APW10. However, the CV values for upward trends in APW8 and APW10 are well below 1, indicating that there is little variation in the data and that the trends are low magnitude. Table A provides summary statistics, including the CV and trend per well.

Table A – Summary Statistics and Trend Analysis of Boron in Groundwater.

| Monitoring         | Boron (mg/L) |         |        |                       |        |      |  |  |
|--------------------|--------------|---------|--------|-----------------------|--------|------|--|--|
| Monitoring<br>Well | Minimum      | Maximum | Median | Standard<br>Deviation | Trend  | cv   |  |  |
| APW5               | 0.079        | 0.12    | 0.10   | 0.013                 | None   | 0.13 |  |  |
| APW6               | 0.073        | 0.16    | 0.087  | 0.023                 | None   | 0.25 |  |  |
| APW7               | 0.052        | 0.097   | 0.075  | 0.013                 | None   | 0.17 |  |  |
| APW8               | 0.060        | 0.11    | 0.086  | 0.013                 | Upward | 0.15 |  |  |
| APW9               | 0.053        | 0.098   | 0.073  | 0.015                 | None   | 0.20 |  |  |
| APW10              | 0.056        | 0.096   | 0.072  | 0.010                 | Upward | 0.14 |  |  |

The low concentrations of boron in downgradient monitoring wells relative to the UPL suggests that the source of the of the SSIs is not the PAP.

#### 4. CONCLUSIONS

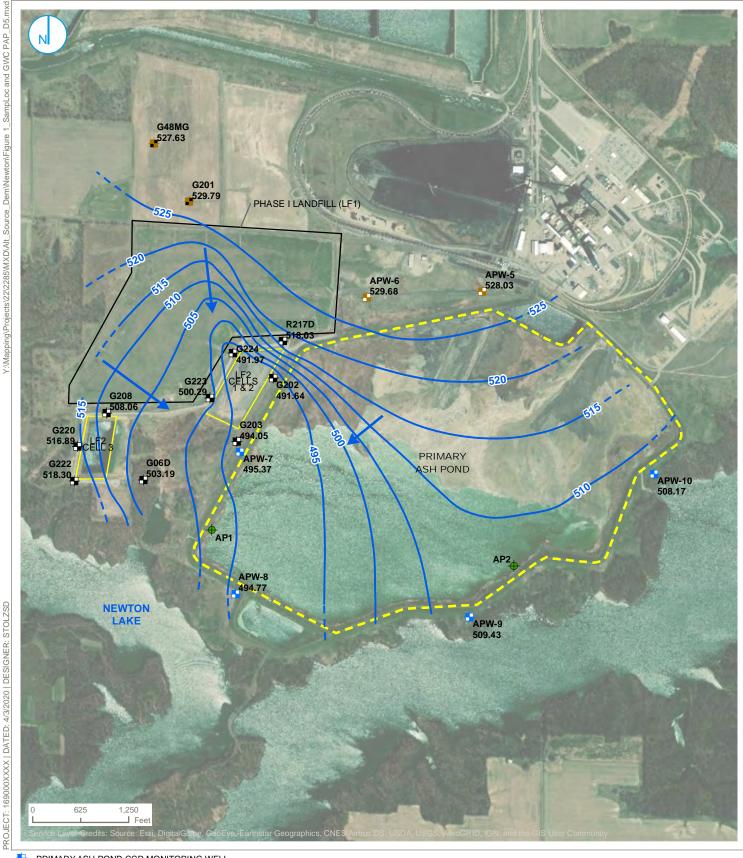
Based on the three lines of evidence below, it has been demonstrated that the Newton PAP is not the source of SSIs of calcium at APW8 and APW10; chloride at APW8; and sulfate at APW7, APW8, APW9, and APW10.

- 1. The PAP is separated from the uppermost aquifer by a thick, low-permeability glacial till.
- 2. Concentrations of calcium and chloride in the PAP are lower than those observed in the groundwater.
- 3. Boron, a primary indicator parameter for CCR impacts to groundwater, has concentrations in downgradient wells that are near or below concentrations observed in background monitoring wells.

This information serves as the written ASD prepared in accordance with 40 CFR § 257.94(e)(2) that the SSIs observed during the D5 sampling event were not due to the Newton PAP. Therefore, an assessment monitoring program is not required, and the Newton PAP will remain in detection monitoring.

#### 5. REFERENCES

Lineback, J., 1979, Quaternary Deposits of Illinois: Illinois State Geological Survey map, scale 1:500,000.


Natural Resource Technology, an OBG Company (NRT/OBG), 2017a, Statistical Analysis Plan, Coffeen Power Station, Newton Power Station, Illinois Power Generating Company, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017b, Hydrogeologic Monitoring Plan, Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502, Newton Power Station, Canton, Illinois, Illinois Power Generating Company, October 17, 2017.

Willman, H.B., J.C. Frye, J.A. Simon, K.E. Clegg, D.H. Swann, E. Atherton, C. Collinson, J.A. Lineback, T.C. Buschbach, and H.B. Willman, 1967, Geologic Map of Illinois: Illinois State Geological Survey map, scale 1:500,000.

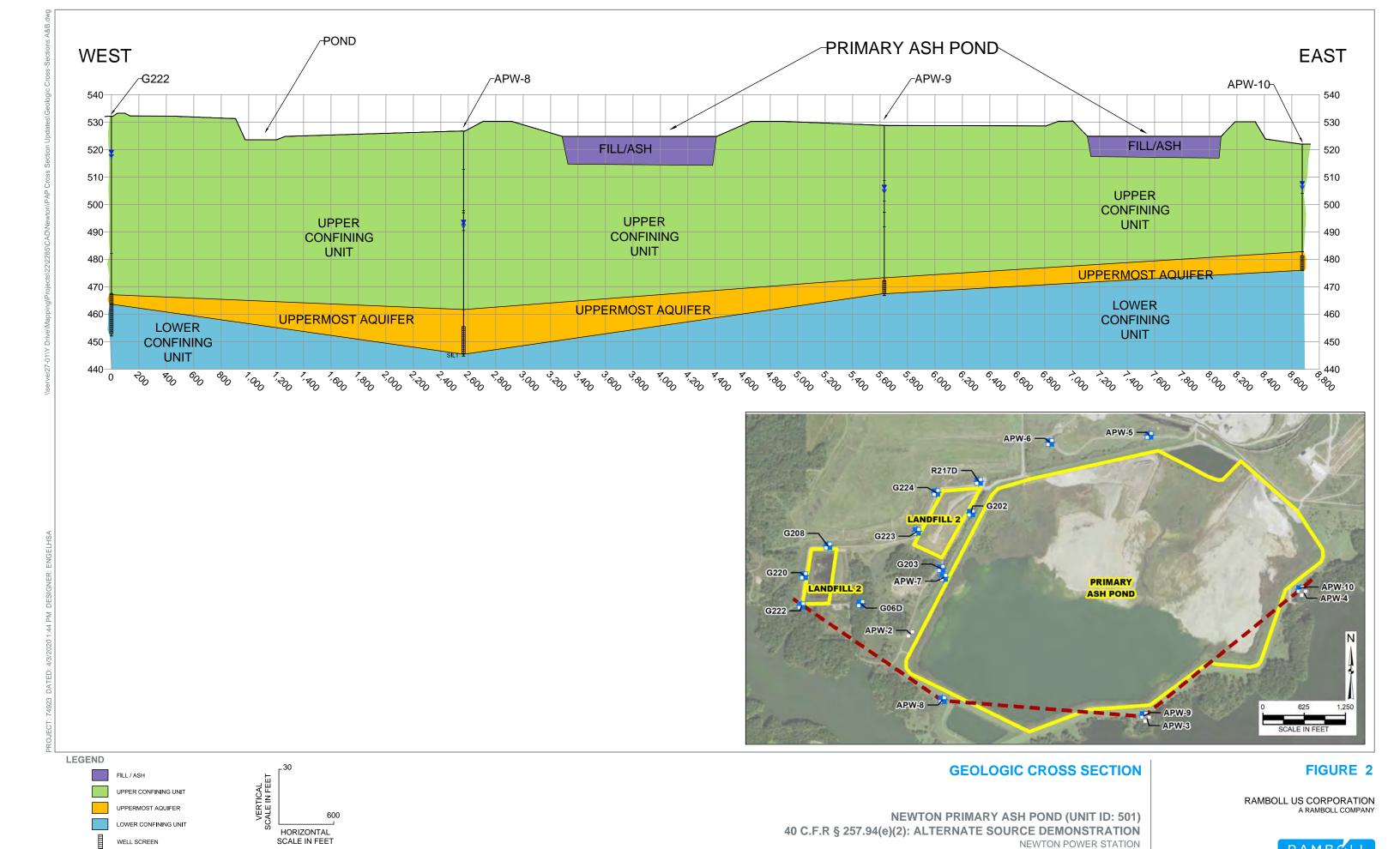
Willman, H.B., E. Atherton, T.C. Buschbach, C. Collinson, J.C. Frye, M.E. Hopkins, J.A. Lineback, and J.A. Simon, 1975, Handbook of Illinois Stratigraphy: Illinois State Geological Survey, Bulletin 95, 261 p.

#### **FIGURES**



- PRIMARY ASH POND CCR MONITORING WELL
- PRIMARY ASH POND BACKGROUND CCR MONITORING WELL
- LF2 CCR MONITORING WELL
- LF2 BACKGROUND CCR MONITORING WELL
- SOURCE WATER LOCATION
  - GROUNDWATER ELEVATION CONTOUR (5-FOOT INTERVAL)
- INFERRED GROUNDWATER ELEVATION CONTOUR PRIMARY ASH POND CCR UNIT BOUNDARY
- GROUNDWATER FLOW DIRECTION
- LF2 CCR UNIT BOUNDARY LF1 UNIT BOUNDARY

**SAMPLING LOCATION AND GROUNDWATER ELEVATION CONTOUR MAP AUGUST 21, 2019** 


**NEWTON PRIMARY ASH POND (UNIT ID: 501)** ALTERNATE SOURCE DEMONSTRATION

VISTRA ENERGY NEWTON POWER STATION NEWTON, ILLINOIS

#### FIGURE 1

RAMBOLL US CORPORATION A RAMBOLL COMPANY





VERTICAL EXAGGERATION =20

GROUNDWATER ELEVATION

RAMBOLL

NEWTON, ILLINOIS

Intended for

**Illinois Power Generating Company** 

Date

October 13, 2020

Project No.

1940074923

# 40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PRIMARY ASH POND

#### **CERTIFICATIONS**

I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

OFESSIONA

NICOLE M. PAGANO

196-000750

TINO

ACKERMAN 062.060586

OF ILLINOIS

Nicole M. Pagano Professional Geologist

196-000750 Illinois

Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc.

Date: October 13, 2020

I, Anne Frances Ackerman, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Anne Frances Ackerman

Qualified Professional Engineer

062-060586

Illinois

Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc.

Date: October 13, 2020

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA T 414-837-3607 F 414-837-3608

https://ramboll.com

#### **CONTENTS**

| 4     |
|-------|
| 4     |
| 4     |
| 4     |
| 5     |
| 6     |
| / a   |
| 6     |
| e     |
| 6     |
| ts to |
| Are   |
| s 8   |
| 10    |
| 11    |
|       |

#### **TABLES (IN TEXT)**

Table A Summary Statistics and Trend Analysis of Boron in Groundwater

#### FIGURES (IN TEXT)

Figure A Calcium Box Plot
Figure B Chloride Box Plot
Figure C Boron Time Series

#### FIGURES (ATTACHED)

Figure 1 Sampling Location and Groundwater Elevation Contour Map

Figure 2 Geologic Cross Section

#### **ACRONYMS AND ABBREVIATIONS**

40 C.F.R. Title 40 of the Code of Federal Regulations

ASD Alternate Source Demonstration

bgs below ground surface

CCR Coal Combustion Residuals

f/k/a formerly known as

ft foot/feet

LF2 Phase II Landfill 2
M-K Mann-Kendall
msl mean sea level

NRT/OBG Natural Resource Technology, an OBG Company

PAP Newton Primary Ash Pond Site Newton Power Station

SSIs Statistically Significant Increases

UPL Upper Prediction Limit

#### 1. INTRODUCTION

Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.94(e)(2) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of a Statistically Significant Increase (SSI) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company, by Ramboll Americas Engineering Solutions, Inc., formerly known as (f/k/a) O'Brien & Gere Engineers, Inc., to provide pertinent information pursuant to 40 C.F.R. § 257.94(e)(2) for the Newton Primary Ash Pond (PAP) located near Newton, Illinois.

The most recent Detection Monitoring sampling event (Detection Monitoring Round 6 [D6]) was completed on February 5, 6, and 19, 2020, and analytical data were received on April 15, 2020. Analytical data from D6 were evaluated in accordance with the Statistical Analysis Plan (Natural Resource Technology, an OBG Company [NRT/OBG] 2017a) to determine any SSIs of Appendix III parameters over background concentrations. That evaluation identified SSIs at downgradient monitoring wells as follows:

- Calcium at wells APW7, APW8, APW9, and APW10
- Chloride at APW7 and APW9
- Sulfate at wells APW8 and APW10
- TDS at APW10

In accordance with the Statistical Analysis Plan, APW7, APW9, and APW10 were resampled on June 11, 2020 and analyzed only for chloride (APW7 and APW9) and TDS (APW10) to confirm the SSIs. Following evaluation of analytical data from the resample event, the following SSIs remained:

- Calcium at wells APW7, APW8, APW9, and APW10
- Chloride at APW7 and APW9
- Sulfate at wells APW8 and APW10

Pursuant to 40 C.F.R. § 257.94(e)(2), the following lines of evidence (LOE) demonstrate that sources other than the PAP were the cause of the calcium, chloride, and sulfate SSIs listed above. This ASD was completed by October 13, 2020, within 90 days of determination of the SSIs (July 15, 2020), as required by 40 C.F.R. § 257.94(e)(2).

#### 2. BACKGROUND

#### 2.1 Site Location and Description

The Newton Power Station (Site) is located in Jasper County in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The plant is located on the north side of Newton Lake. The area is bounded by Newton Lake and agricultural land to the west, south, and east, and agricultural land to the north. Beyond the lake is additional agricultural land.

#### 2.2 Description of Primary Ash Pond CCR Unit

The Newton Power Station's sole CCR surface impoundment, the PAP, was constructed in 1977 and has a design capacity of approximately 9,715 acre-feet. The PAP has a surface area of 400 acres and a height of approximately 71 feet (ft) above grade. The PAP currently receives bottom ash, fly ash, and low-volume wastewater from the plant's two coal-fired boilers, and is operated per NPDES Permit IL0049191, Outfall 001. The PAP was not excavated during construction, except for native materials used to build the containment berms.

#### 2.3 Geology and Hydrogeology

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation.

Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations (Lineback, 1979; Willman et al., 1975). The unconsolidated deposits occurring at Newton Power Station include the following units (beginning at the ground surface):

- Upper Confining Unit Low permeability clays and silts, including the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east, underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) and Vandalia (Till) Members of the Glasford Formation. The Hagarstown Member till have low hydraulic conductivities, ranging from 2.4 x 10<sup>-6</sup> to 6.1 x 10<sup>-5</sup> centimeters per second (cm/s) (OBG/NRT 2017b).
- Uppermost Aquifer Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation.
- Lower Confining Unit Thick, very low permeability silty clay diamictons of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation.

The bedrock beneath the unconsolidated deposits consists of Pennsylvanian-age Mattoon Formation (Willman et al., 1967) that is mostly shale near the bedrock surface but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones (Willman et al., 1975). The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the Site but is typically encountered at 90 to 120 ft below ground surface (bgs).

Groundwater elevations across the PAP ranged from approximately 492 to 530 ft mean sea level (msl) during D6 (Figure 1). Depth to groundwater measurements used to generate the groundwater elevation contours shown on Figure 1 were collected on February 3, 2020. Groundwater flow in the Uppermost Aquifer beneath the eastern portion of PAP is generally to the south toward Newton Lake. The flow direction diverges to the southwest beneath the western portion of the PAP, toward Phase II Landfill 2 (LF2), where groundwater flow in the area is converging along the major axis of LF2 Cells 1 and 2.

#### 2.4 Groundwater and PAP Monitoring

The Uppermost Aquifer monitoring system for the PAP is shown on Figure 1. Monitoring wells APW5 and APW6 are used to monitor background water quality for the PAP. These wells are located north of the PAP. The downgradient monitoring wells are APW7, APW8, APW9, and APW10. PAP surface water samples were collected from locations AP1 in the southwest corner of the PAP and AP2 in the southeast corner of the PAP.

# 3. ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

As allowed by 40 C.F.R. § 257.94(e)(2), this ASD demonstrates that sources other than the PAP (the CCR unit) caused the SSIs. LOE supporting this ASD include the following:

- 1. The PAP is separated from the uppermost aquifer by a thick, low-permeability glacial till.
- 2. Concentrations of calcium and chloride in the PAP are lower than those observed in the groundwater.
- 3. Boron, a primary indicator parameter for CCR impacts to groundwater, has concentrations in downgradient wells that are below concentrations observed in background monitoring wells.

These LOEs are described and supported in greater detail below.

## 3.1 LOE #1: The PAP Is Separated from the Uppermost Aquifer by a Thick, Low-Permeability Glacial Till

Based on groundwater elevations and information on the boring logs for monitoring wells installed around the perimeter of the Site, the Uppermost Aquifer ranges from 461.8 ft msl in APW-8 to 482.8 ft msl in APW-10 and is overlain by a low-permeability unit (Figure 2). The bottom elevation of the PAP is situated within the Upper Confining Unit at 508 ft msl, approximately 25 ft above the top of the Uppermost Aquifer (Figure 2). Thus, a low-permeability glacial till layer separates the PAP from the uppermost aquifer. The lack of connection between the PAP and the Uppermost Aquifer demonstrates that there is no complete pathway for transport of CCR constituents in groundwater beneath the PAP, thus the PAP is not the source of CCR constituents in the Uppermost Aquifer.

## 3.2 LOE #2: Concentrations of Calcium and Chloride in the PAP Are Lower Than Those Observed in the Groundwater

A box plot of calcium concentrations in downgradient monitoring wells and surface water samples is provided in Figure A. Box plots graphically represent the range of a given dataset using lines to construct a box where the lower line, midline, and upper line of the box represent the values of the first quartile, median, and third quartile values, respectively. The minimum and maximum values of the dataset (excluding outliers) are illustrated by whisker lines extending beyond the first and third quartiles of (*i.e.*, below and above) the box plot. The interquartile range (IQR) is the distance between the first and third quartiles. Outliers (values that are at least 1.5 times the IQR away from the edges of the box) are represented by single points plotted outside of the range of the whiskers.

Calcium concentrations are lower in all PAP surface water samples (collected in November 2017, November 2019, and February 2020) than in all downgradient groundwater samples collected between 2015 and 2020. The maximum concentration of calcium detected in PAP surface water (36 milligrams per liter [mg/L]) is lower than the minimum concentration of calcium in any downgradient well (38 mg/L at APW10).

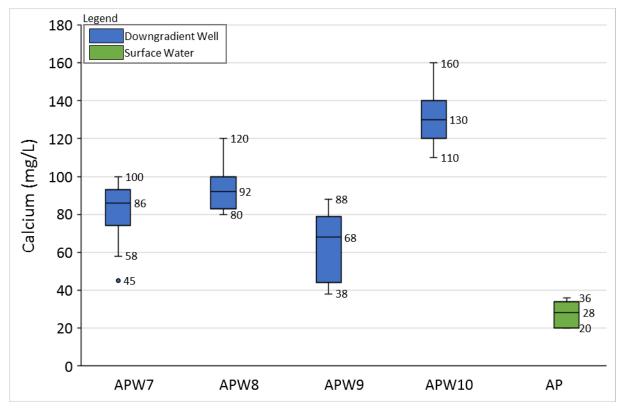



Figure A. Calcium Box Plot. The maximum, minimum, and median values are noted. AP includes data from both AP1 and AP2.

Similarly, chloride concentrations are lower in all PAP surface water samples (collected in November 2017, November 2019, and February 2020) than in all downgradient groundwater samples collected between 2015 and 2020. A box plot of chloride concentrations is provided in Figure B. The maximum concentration of chloride detected in PAP surface water (18 mg/L) is lower than the minimum concentration of calcium in any downgradient well (43 mg/L at APW9).

The concentrations of calcium and chloride in the PAP surface water are lower than those observed in the groundwater, indicating that the PAP is not the source of calcium and chloride to groundwater in the vicinity of the PAP. If the PAP were the source of calcium and chloride detected in groundwater, concentrations in PAP water would be higher than concentrations detected in groundwater.

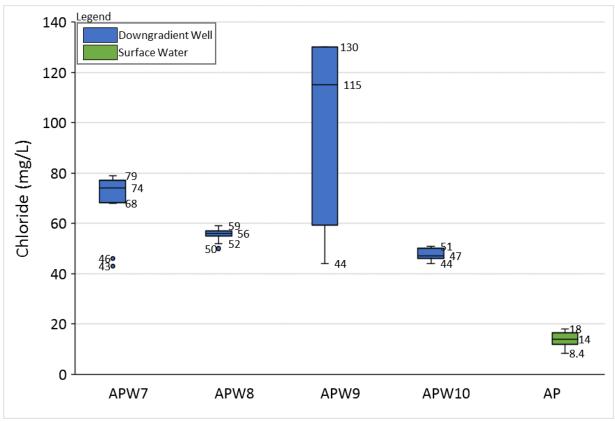



Figure B. Chloride Box Plot. The maximum, minimum, and median values are noted. AP includes data from both AP1 and AP2.

# 3.3 LOE #3: Boron, a Primary Indicator Parameter for CCR Impacts to Groundwater, Has Concentrations in Downgradient Wells That Are Below Concentrations Observed in Background Monitoring Wells

Boron is a primary indicator of CCR impacts to groundwater. If the groundwater downgradient of the PAP had been impacted by discharge of CCR from the PAP, boron would be expected to be elevated above background concentrations. Concentrations of boron in all downgradient monitoring wells are below the boron Upper Prediction Limit (UPL) (0.141 mg/L) established using background monitoring wells (i.e. SSI limits) (Figure C). Therefore, the PAP is not the source of the SSIs detected in groundwater.

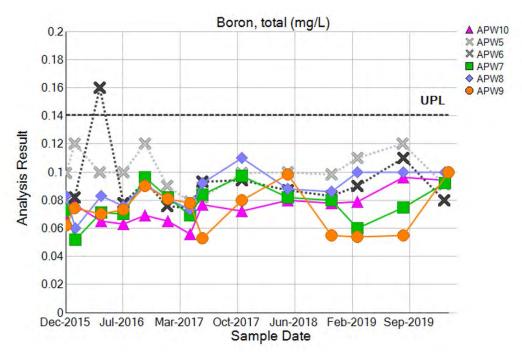



Figure C. Boron Time Series. The time series shows boron concentrations in downgradient wells are less than concentrations in background wells (represented by gray "X"s).

Mann-Kendall (M-K) trend analysis tests were performed to determine the boron concentration trend in each well, if there was a trend. If the M-K test identified a trend, the coefficient of variation (CV) was used to determine if the trend was of high or low magnitude. The CV is a measure of data spread calculated by dividing the standard deviation by the mean. CV values less than 1 indicate that the data is grouped closely around the mean and that is there is little variation in the data. Thus, a M-K analysis result of a trend with a CV less than 1 indicates that the data varies only slightly, and that the magnitude of the slope is low. No trends in boron concentrations were identified in background wells APW5 and APW6 and downgradient wells APW7 and APW9; and upward trends were identified at APW8 and APW10. However, the CV values for upward trends in APW8 and APW10 are well below 1, indicating that there is little variation in the data and that the trends are low magnitude. Table A provides summary statistics, including the CV and trend per well.

Table A – Summary Statistics and Trend Analysis of Boron in Groundwater.

| Monitoring | Boron (mg/L) |         |        |                       |        |      |  |  |  |  |  |  |  |  |
|------------|--------------|---------|--------|-----------------------|--------|------|--|--|--|--|--|--|--|--|
| Well       | Minimum      | Maximum | Median | Standard<br>Deviation | Trend  | cv   |  |  |  |  |  |  |  |  |
| APW5       | 0.079        | 0.12    | 0.10   | 0.013                 | None   | 0.13 |  |  |  |  |  |  |  |  |
| APW6       | 0.073        | 0.16    | 0.085  | 0.022                 | None   | 0.24 |  |  |  |  |  |  |  |  |
| APW7       | 0.052        | 0.097   | 0.078  | 0.013                 | None   | 0.17 |  |  |  |  |  |  |  |  |
| APW8       | 0.060        | 0.11    | 0.087  | 0.013                 | Upward | 0.15 |  |  |  |  |  |  |  |  |
| APW9       | 0.053        | 0.10    | 0.074  | 0.016                 | None   | 0.22 |  |  |  |  |  |  |  |  |
| APW10      | 0.056        | 0.096   | 0.074  | 0.011                 | Upward | 0.15 |  |  |  |  |  |  |  |  |

The low concentrations of boron in downgradient monitoring wells relative to the UPL suggests that the source of the of the SSIs is not the PAP.

#### 4. CONCLUSIONS

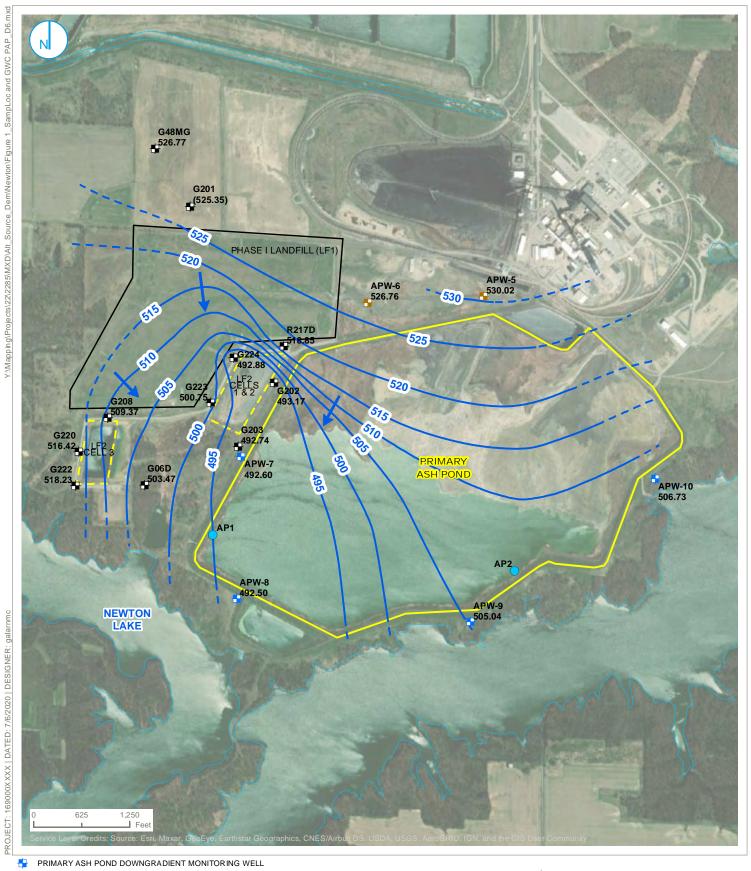
Based on these three LOEs, it has been demonstrated that the SSLs at APW7, APW8, APW9, and APW10 are not due to the PAP but are from a source other than the CCR unit being monitored.

- 1. The PAP is separated from the uppermost aquifer by a thick, low-permeability glacial till.
- 2. Concentrations of calcium and chloride in the PAP are lower than those observed in the groundwater.
- 3. Boron, a primary indicator parameter for CCR impacts to groundwater, has concentrations in downgradient wells that are below concentrations observed in background monitoring wells.

This information serves as the written ASD prepared in accordance with 40 CFR § 257.94(e)(2) that the SSIs observed during the D6 sampling event were not due to the PAP. Therefore, an assessment monitoring program is not required, and the PAP will remain in detection monitoring.

#### 5. REFERENCES

Lineback, J., 1979, Quaternary Deposits of Illinois: Illinois State Geological Survey map, scale 1:500,000.


Natural Resource Technology, an OBG Company (NRT/OBG), 2017a, Statistical Analysis Plan, Coffeen Power Station, Newton Power Station, Illinois Power Generating Company, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017b, Hydrogeologic Monitoring Plan, Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502, Newton Power Station, Canton, Illinois, Illinois Power Generating Company, October 17, 2017.

Willman, H.B., J.C. Frye, J.A. Simon, K.E. Clegg, D.H. Swann, E. Atherton, C. Collinson, J.A. Lineback, T.C. Buschbach, and H.B. Willman, 1967, Geologic Map of Illinois: Illinois State Geological Survey map, scale 1:500,000.

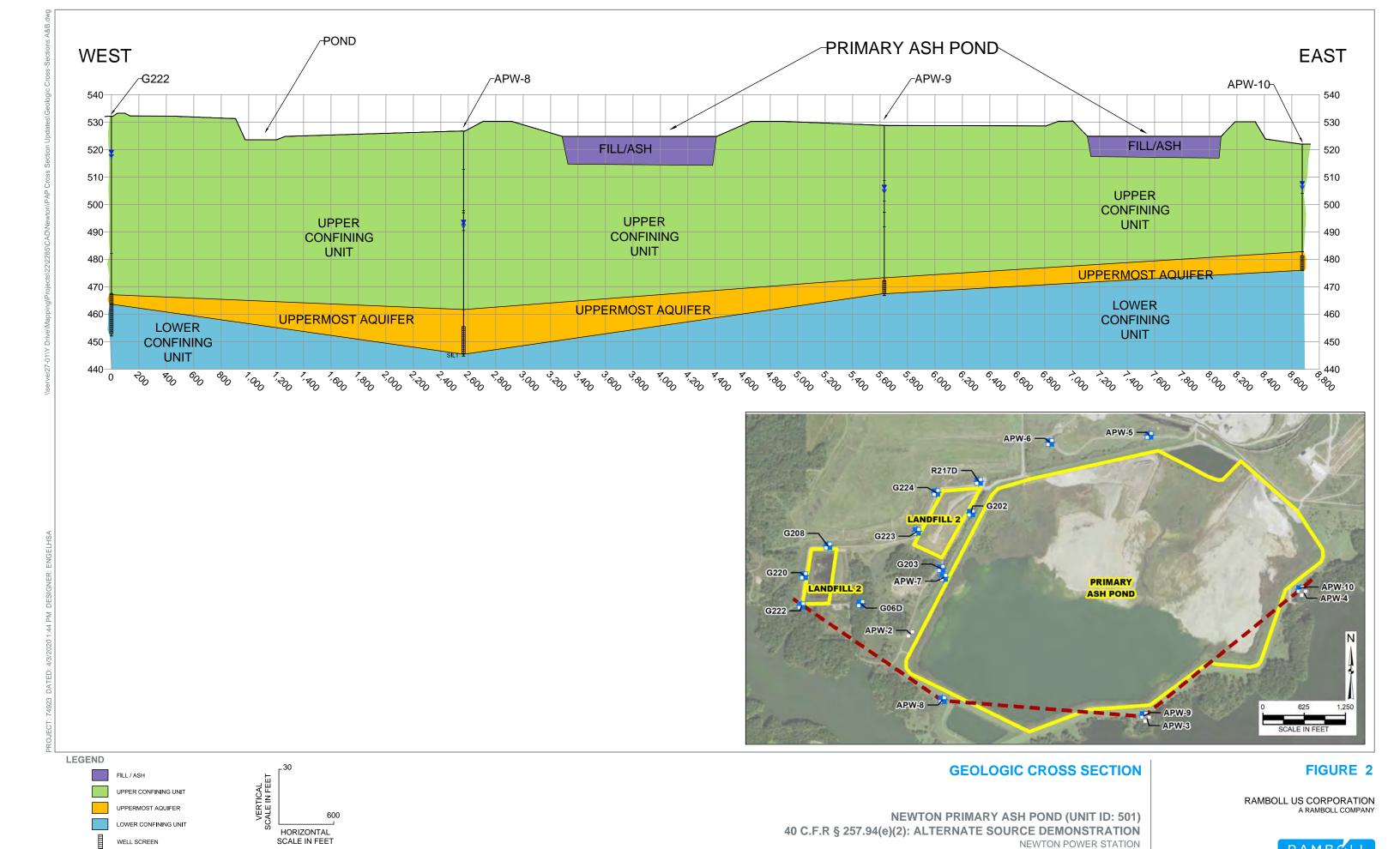
Willman, H.B., E. Atherton, T.C. Buschbach, C. Collinson, J.C. Frye, M.E. Hopkins, J.A. Lineback, and J.A. Simon, 1975, Handbook of Illinois Stratigraphy: Illinois State Geological Survey, Bulletin 95, 261 p.

# **FIGURES**



- PRIMARY ASH POND UPGRADIENT MONITORING WELL
- LF2 CCR RULE MONITORING WELL
- SOURCE WATER LOCATION
- GROUNDWATER ELEVATION CONTOUR (5-FT CONTOUR INTERVAL, NAVD 88)
- INFERRED GROUNDWATER ELEVATION CONTOUR
- GROUNDWATER FLOW DIRECTION
  SURFACE WATER FEATURE
- PRIMARY ASH POND CCR UNIT BOUNDARY
  LF2 CCR UNIT BOUNDARY

LF1 UNIT BOUNDARY


SAMPLING LOCATION AND GROUNDWATER ELEVATION CONTOUR MAP FEBRUARY 3, 2020

NEWTON PRIMARY ASH POND (UNIT ID: 501)
ALTERNATE SOURCE DEMONSTRATION
VISTRA ENERGY
NEWTON POWER STATION
NEWTON, ILLINOIS

#### FIGURE 1

RAMBOLL US CORPORATION
A RAMBOLL COMPANY





VERTICAL EXAGGERATION =20

GROUNDWATER ELEVATION

RAMBOLL

NEWTON, ILLINOIS



PROJECT NO: 2285/4.3





CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/22/2015

WEATHER: Sunny, breezy, warm, lo-80s

Finish: 10/22/2015

CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill

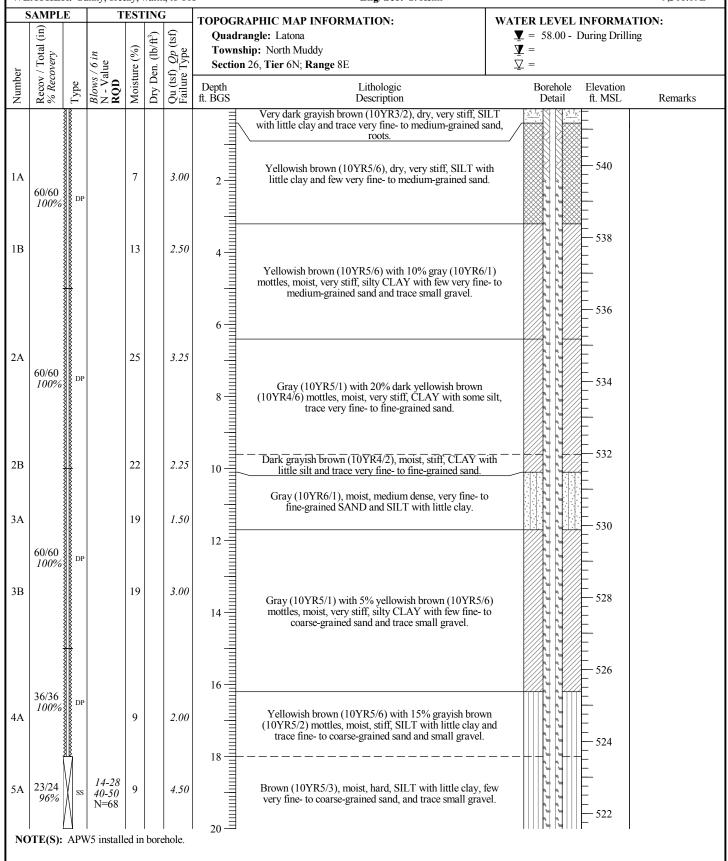
**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim




BOREHOLE ID: APW5

Well ID: APW5

**Surface Elev:** 541.57 ft. MSL **Completion:** 68.00 ft. BGS

**Station:** 7,758.02N 9,318.19E

Page 1 of 4



CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

**Project:** 15E0030 **DATES: Start:** 10/22/2015

**Finish:** 10/22/2015 **WEATHER:** Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim



BOREHOLE ID: APW5

Well ID: APW5 Surface Elev: 541.57 ft. MSL

**Completion:** 68.00 ft. BGS **Station:** 7,758.02N

9,318.19E

| 5      | SAMPL                            | £    | Т                                | EST          | INC               |                                          | TOPOGR                      | APHIC MAP INFORMATION:                                                                                                                                                   | WATER LEVEL INFORMATION:                                                               |         |  |  |
|--------|----------------------------------|------|----------------------------------|--------------|-------------------|------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------|--|--|
| ıber   | Recov / Total (in)<br>% Recovery | 40   | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadra<br>Townsh<br>Section | ingle: Latona<br>nip: North Muddy<br>26, Tier 6N; Range 8E                                                                                                               | $\underline{\Psi}$ = 58.00 - During Dri<br>$\underline{\Psi}$ = $\underline{\nabla}$ = | lling   |  |  |
| Number | Recc<br>% Ra                     | Type | Blow<br>N-N                      | Mois         | Dry               | Qu (<br>Failt                            | Depth<br>ft. BGS            | Lithologic<br>Description                                                                                                                                                | Borehole Elevation<br>Detail ft. MSL                                                   | Remarks |  |  |
| 6A     | 21/24<br>88%                     | SS   | 11-26<br>21-14<br>N=47           | 9            |                   | 4.50                                     | 22                          | Brown (10YR5/3), moist, hard, SILT with little clay, to very fine- to coarse-grained sand, and trace small grav [Continued from previous page]                           |                                                                                        |         |  |  |
| 7A     | 24/24<br>100%                    | ss   | 5-5<br>8-13<br>N=13              | 16           |                   | 4.25                                     |                             | Brown (10YR5/3) with 5% gray (10YR6/1) and 5% yellowish brown (10YR5/6) mottles, moist, hard, SIL with some clay and trace very fine- to fine-grained sand small gravel. | T                                                                                      |         |  |  |
| 8A     | 22/24<br>92%                     | ss   | 18-31<br>43-27<br>N=74           | 9            |                   | 4.50                                     | 24                          | Brown (10YR5/3), moist, hard, SILT with little clay, to very fine- to coarse-grained sand, and trace small graves.                                                       | few rel516                                                                             |         |  |  |
| 9A     | 21/24<br>88%                     | ss   | 4-5<br>11-11<br>N=16             | 14           |                   | 2.75                                     |                             | Brown (10YR5/3) with 5% gray (10YR6/1) and 5%                                                                                                                            | 514                                                                                    |         |  |  |
| 0A     | 22/24<br>92%                     | ss   | 3-6<br>9-12<br>N=15              | 15           |                   | 3.75                                     | 30 = 32 = 32                | yellowish brown (10YR5/6) mottles, moist, hard, SIL with some clay and trace very fine- to fine-grained sand small gravel.                                               | and = 512                                                                              |         |  |  |
| 1A     | 24/24<br>100%                    | ss   | 4-7<br>13-16<br>N=20             | 14           |                   | 4.50                                     | 32                          | Dark gray (10YR4/1), moist, hard, SILT with some cl                                                                                                                      |                                                                                        |         |  |  |
| 2A     | 24/24<br>100%                    | ss   | 4-7<br>11-17<br>N=18             | 16           |                   | 4.50                                     | 34 —                        | few very fine- to coarse-grained sand and trace small gra                                                                                                                | ay, avel                                                                               |         |  |  |
| 3A     | 24/24<br>100%                    | ss   | 5-9<br>12-15<br>N=21             | 18           |                   | 4.50                                     | 36                          | Light olive brown (2.5Y5/3) with 5% gray (10YR5/mottles, moist, hard, SILT with little clay and trace ve fine- to medium-grained sand.                                   | 1) = 506                                                                               |         |  |  |
| 14A    | 24/24<br>100%                    | ss   | 4-8<br>11-14<br>N=19             | 16           |                   | 4.50                                     | =                           | Olive brown (2.5Y4/3) with 10% gray (N6/1) mottle                                                                                                                        | 504                                                                                    |         |  |  |
| 15A    | 24/24<br>100%                    | ss   | 5-13<br>16-23<br>N=29            | 12           |                   | 4.50                                     | 38                          | moist, hard, silty CLAY with little fine- to coarse-grain sand and trace small gravel.                                                                                   | ned 502                                                                                |         |  |  |

CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/22/2015

**Finish:** 10/22/2015 **WEATHER:** Sunny, breezy, warm, lo-80s

CONTRACTOR: Bulldog Drilling, Inc.
Rig mfg/model: CME-550X ATV Drill

**Drilling Method:** 41/4" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

HANSON

BOREHOLE ID: APW5

Well ID: APW5

**Surface Elev:** 541.57 ft. MSL **Completion:** 68.00 ft. BGS

Station: 7,758.02N

9,318.19E

| L.         | AMPL                             | £    | T                                | EST          | ING               |                                          | TOPOGRAPHIC MAP INFORMATIO                                                                                                  | N: W                                                                        | WATER LEVEL INFORMATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |  |  |
|------------|----------------------------------|------|----------------------------------|--------------|-------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| er         | Recov / Total (in)<br>% Recovery |      | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadrangle: Latona Township: North Muddy Section 26, Tier 6N; Range 8E                                                      |                                                                             | $\underline{\underline{\mathbf{Y}}} = 58.00 - \mathbf{I}$ $\underline{\underline{\mathbf{Y}}} = \underline{\underline{\mathbf{Y}}} = \underline$ |                                                                                             |  |  |
| Number     | Recov<br>% Rea                   | Type | Blows<br>N - V<br>RQD            | Moist        | Dry D             | Qu (ts<br>Failur                         | Depth Litho<br>th. BGS Descri                                                                                               | logic<br>ption                                                              | Borehole<br>Detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Elevation<br>ft. MSL Remai                                                                  |  |  |
| 16A        | 24/24<br>100%                    | SS   | 6-13<br>16-30<br>N=29            | 12           |                   | 4.50                                     | Olive brown (2.5Y4/3) with moist, hard, silty CLAY with sand and trace [Continued from                                      | 10% gray (N6/1) mottles,<br>little fine- to coarse-grained<br>small gravel. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500                                                                                         |  |  |
| 7 <b>A</b> | 24/24<br>100%                    | ss   | 5-10<br>13-22<br>N=23            | 15           |                   | 4.50                                     | [Continued from                                                                                                             | previous page]<br>                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 498                                                                                         |  |  |
| 18A        | 24/24<br>100%                    | ss   | 7-13<br>17-25<br>N=30            | 13           |                   | 4.50                                     | 46                                                                                                                          |                                                                             | (, (, (, (, (,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |  |  |
| 19A        | 24/24<br>100%                    | ss   | 6-13<br>20-28<br>N=33            | 13           |                   | 4.50                                     | 46 ————————————————————————————————————                                                                                     |                                                                             | 7,6,6,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |  |  |
| 20A        | 24/24<br>100%                    | ss   | 5-10<br>16-21<br>N=26            | 13           |                   | 4.50                                     | 50 — Olive brown (2.5Y4/3) with                                                                                             | a 10% gray (N6/1) mottles,                                                  | (,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 492                                                                                         |  |  |
| 21A        | 24/24<br>100%                    | ss   | 6-10<br>18-21<br>N=28            | 13           |                   | 4.50                                     | moist, hard, SILT with lit coarse-grained sand a                                                                            | tle clay, few very fine- to<br>ad trace small gravel.                       | , t, t, t, t, t,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 490                                                                                         |  |  |
| 22A        | 24/24<br>100%                    | ss   | 7-14<br>19-26<br>N=33            | 13           |                   | 4.50                                     |                                                                                                                             |                                                                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |  |  |
| 23A        | 24/24<br>100%                    | ss   | 6-10<br>17-24<br>N=27            | 13           |                   | 4.50                                     | 54                                                                                                                          |                                                                             | 7,7,7,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |  |  |
| 24A        | 24/24<br>100%                    | ss   | 12-16<br>28-36<br>N=44           | 11           |                   | 4.50                                     | Olive gray (5Y5/2) with 4 mottles, moist, hard, SILT with coarse-grained sand a                                             | h little clay, few very fine- to                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 484                                                                                         |  |  |
| 25A        | 24/24<br>100%                    | ss   | 2-6<br>12-15<br>N=18             | 23           |                   |                                          | Greenish gray (10G5/1) wi mottles, moist, medium dense, very fine- to fin  Very dark gray (10YR3/1), we to coarse-grained S | SILT with few clay and trace e-grained sand.  vet, medium dense, very fine- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |  |  |

CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois

**Project:** 15E0030 **DATES: Start:** 10/22/2015

**Finish:** 10/22/2015 **WEATHER:** Sunny, breezy, warm, lo-80s

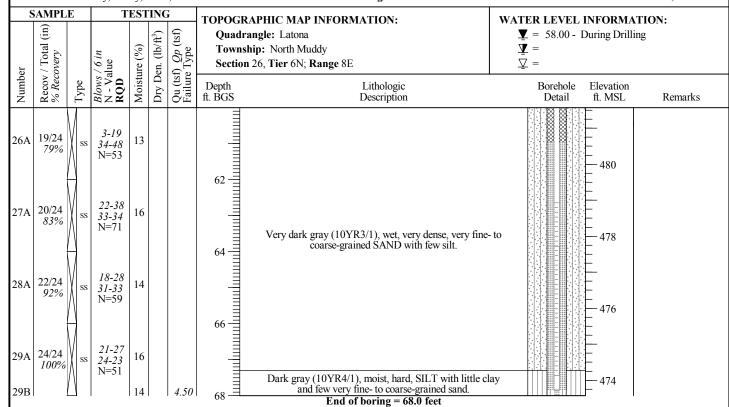
**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim


**BOREHOLE ID:** APW5

Well ID: APW5

Surface Elev: 541.57 ft. MSL

**Completion:** 68.00 ft. BGS **Station:** 7,758.02N

9,318.19E



CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois

Project: 15E0030 **DATES: Start:** 10/20/2015

Finish: 10/21/2015

CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill

**Drilling Method:** 41/4" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

HANSON

**BOREHOLE ID:** APW6

Well ID: APW6

Surface Elev: 543.38 ft. MSL **Completion:** 74.00 ft. BGS

Station: 7,688.54N

| WE     | ATHEF                                   |                                                  | nsn: 10/2<br>nny, bree           |              |                   | 1, lo-80                                 |                                                                      | Eng/Geo: S. Keim                                                                                                                                                                                                                                  |                                                                                                                                                                                      | Station:                   | 7,888.54N<br>7,811.93E |
|--------|-----------------------------------------|--------------------------------------------------|----------------------------------|--------------|-------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|
| 5      | SAMPLI                                  | E                                                | Т                                | EST          | ING               |                                          | TOPOGRAPHIC MAP I                                                    | NFORMATION:                                                                                                                                                                                                                                       | WATER LEVEL                                                                                                                                                                          | INFORMATIO                 | N:                     |
| Number | Recov / Total (in) % Recovery           | Type                                             | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadrangle: Latona<br>Township: North Mud-<br>Section 26, Tier 6N; R | dy<br>ange 8E<br>Lithologic                                                                                                                                                                                                                       | $\underline{\underline{\mathbf{Y}}} = 14.00 - 1$ $\underline{\underline{\mathbf{Y}}} = 1$ $\underline{\underline{\mathbf{Y}}} = 1$ $\underline{\underline{\mathbf{Y}}} = 1$ Borehole | During Drilling  Elevation |                        |
| Ñ      | % Re                                    | Ty                                               | Ble<br>N.                        | Ĭ            | Dr                | Far                                      | ft. BGS                                                              | Description                                                                                                                                                                                                                                       | Detail                                                                                                                                                                               | ft. MSL                    | Remarks                |
| 1A     | 60/60                                   | DP                                               |                                  | 15           |                   | 4.00                                     | Brown (10YR4/6) ar SILT with fe                                      | 6/1), dry, very stiff, SILT with few clay as fine-to coarse-grained sand, trace roots.  0YR5/3) with 5% dark yellowish brown d 5% gray (10YR6/1) mottles, dry, very sw clay and very fine- to coarse-grained sat trace small gravel, trace roots. | stiff.                                                                                                                                                                               | 542                        |                        |
| 1B     | *************************************** | ***************************************          |                                  | 26           |                   | 3.00                                     | Gray (10<br>4 — (10YR4/6) n<br>and                                   | YR5/1) with 35% dark yellowish brown nottles, moist, very stiff, CLAY with little trace very fine- to fine-grained sand.                                                                                                                          | silt                                                                                                                                                                                 | 540                        |                        |
| 2A     | 60/60<br>100%                           | DP                                               |                                  | 18           |                   | 2.50                                     | (10YR3/6) n                                                          | YR5/1) with 40% dark yellowish brown nottles, moist, very stiff, SILT with little clace very fine- to medium-grained sand.                                                                                                                        | lay                                                                                                                                                                                  | 538                        |                        |
| 2B     |                                         | <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del> |                                  | 18           |                   | 1.00                                     | Gray (10<br>(10YR4/6) n                                              | YR5/1) with 30% dark yellowish brown nottles, moist, stiff, SILT with some clay a very fine- to medium-grained sand.                                                                                                                              | and (1)                                                                                                                                                                              | 534                        |                        |
| 3A     | 60/60                                   | DP                                               |                                  | 27           |                   | 1.50                                     | 12 — Dark yel (10YR5/1) n                                            | lowish brown (10YR4/6) with 25% gray<br>nottles, moist, stiff, CLAY with some silt a<br>few very fine- to medium-sand.                                                                                                                            | and                                                                                                                                                                                  | 532                        |                        |
| 3B     |                                         | <del>www.ww</del>                                |                                  | 21           |                   | 1.50                                     | Dark yellowis                                                        | sh brown (10YR3/4), wet, soft, fine- to coa<br>ained sandy CLAY with little silt.                                                                                                                                                                 | arse                                                                                                                                                                                 |                            |                        |
| 4A     | 12/12<br>100%                           | DP                                               |                                  | 10           |                   |                                          | Brown (10Y few                                                       | (R4/3), moist, stiff, SILT with little clay as very fine- to coarse-grained sand.                                                                                                                                                                 | nd                                                                                                                                                                                   | 528                        |                        |
| 5A     | 22/24<br>92%                            | ss                                               | 15-29<br>41-50<br>N=70           | 8            |                   | 4.50                                     | mottles, dry,                                                        | n (10YR5/2) with 15% dark gray (10YR4<br>hard, SILT with little clay, few very fine-                                                                                                                                                              |                                                                                                                                                                                      | 526<br>                    |                        |
| 6A     | 21/24<br>88%                            | SS                                               | 14-30<br>40-50<br>N=70           | 8            | . 1               | 4.50                                     | coarse                                                               | e-grained sand and trace small gravel.                                                                                                                                                                                                            | 5555                                                                                                                                                                                 | 524                        |                        |
| NC     | JTE(S):                                 | APW                                              | /6 install                       | ed in        | bore              | enole.                                   |                                                                      |                                                                                                                                                                                                                                                   |                                                                                                                                                                                      |                            | D 4 04                 |

CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/20/2015 **Finish:** 10/21/2015

WEATHER: Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

**CF** Hanson

BOREHOLE ID: APW6 Well ID: APW6

Surface Elev: 543.38 ft. MSL

7,811.93E

**Completion:** 74.00 ft. BGS **Station:** 7,688.54N

SAMPLE TESTING TOPOGRAPHIC MAP INFORMATION: WATER LEVEL INFORMATION: Œ Qu (tsf) Qp (tsf) Failure Type  $\mathbf{V} = 14.00$  - During Drilling Quadrangle: Latona Dry Den. (lb/ft3) Recov / Total ( % Recovery Moisture (%) Township: North Muddy Blows / 6 in N - Value RQD  $\nabla =$ Section 26, Tier 6N; Range 8E Number Lithologic Borehole Elevation ft. BGS Description Detail ft. MSL Remarks Brown (10YR5/3), moist, very dense, silty, very fine- to 15/17 medium-grained SAND with trace small gravel. 88% 50/5" 9 4.50 7A Brown (10YR5/3), dry, hard, SILT with little clay and few 14-37 7 8A 4.50 45-50 very fine- to coarse-grained sand. 50% N=82520 8-17 24/24 23-32 100% N=40 10 4.50 518 10-22 24/24 26-36 100% N=4810A 11 516 4.50 Dark gray (10YR4/1), moist, hard, SILT with little clay, 10-18 24/24 few very fine- to coarse-grained sand and trace small gravel. 23-26 100%N=4110 11A 4.50 6-13 24/24 17-23 100% N = 3012A 13 4.50 512 24/24 12-19 100% Dark gray (10YR4/1) with 30% dark greenish gray (10Y4/1) mottles, moist, hard, SILT with some clay, few 13A 17 4.50 510 very fine- to coarse-grained sand and trace small gravel. 5-9 24/24 4.50 14A 16 13-19 100% N = 22508 24/24 15 15A 4.50 15-22 N=25 Dark gray (10YR4/1), moist, hard, SILT with little clay, 100% few very fine- to coarse-grained sand and trace small to 506 large gravel. 16A 24/24 15 4.50 15-22 100% N = 24NOTE(S): APW6 installed in borehole.

CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

**Project:** 15E0030 **DATES: Start:** 10/20/2015

Finish: 10/21/2015

WEATHER: Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

HANSON

**BOREHOLE ID:** APW6 **Well ID:** APW6

Surface Elev: 543.38 ft. MSL

**Completion:** 74.00 ft. BGS **Station:** 7,688.54N

7,811.93E

Page 3 of 4

| S      | SAMPL                         |      |                                  |              |                   |                                          | TOPOGRAPHIC MAP INFORMATION:                                                                                                                                                                                                                                                                                         | WATER LEVEL INFORMATION:  ▼ = 14.00 - During Drilling                                                                                        |  |  |  |
|--------|-------------------------------|------|----------------------------------|--------------|-------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ıber   | Recov / Total (in) % Recovery | 0    | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadrangle: Latona<br>Township: North Muddy<br>Section 26, Tier 6N; Range 8E                                                                                                                                                                                                                                         | $\underline{\underline{\mathbf{Y}}}$ = 14.00 - During Drilling $\underline{\underline{\mathbf{Y}}}$ = $\underline{\underline{\mathbf{Y}}}$ = |  |  |  |
| Number | Recc<br>% R                   | Type | Blov<br>N                        | Moi          | Dry               | Qu (<br>Failı                            | Depth Lithologic<br>fl. BGS Description                                                                                                                                                                                                                                                                              | Borehole Elevation<br>Detail ft. MSL Remarks                                                                                                 |  |  |  |
| 17A    | 21/24<br>88%                  | ss   | 4-14<br>18-25<br>N=32            | 12           |                   | 4.25                                     | Dark gray (10YR4/1), moist, hard, SILT with little c few very fine- to coarse-grained sand and trace small large gravel.  [Continued from previous page]  44  Olive gray (5Y4/2) with 20% dark gray (10YR4/1 mottles, moist, hard, SILT with little clay and trace v fine- to coarse- grained sand and small gravel. | 502                                                                                                                                          |  |  |  |
| 18A    | 24/24<br>100%                 | ss   | 8-12<br>16-22<br>N=28            | 15           |                   | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little c few very fine- to coarse-grained sand and trace small large gravel.  [Continued from previous page]                                                                                                                                                             | lay, to 500                                                                                                                                  |  |  |  |
| 19A    | 22/24<br>92%                  | SS   | 7-11<br>15-18<br>N=26            | 16           |                   | 4.25                                     | 46-=                                                                                                                                                                                                                                                                                                                 | 498                                                                                                                                          |  |  |  |
| 20A    | 22/24<br>92%                  | ss   | 7-16<br>26-45<br>N=42            | 13           |                   | 4.50                                     | 48                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              |  |  |  |
| 21A    | 21/24<br>88%                  | ss   | 11-19<br>30-37<br>N=49           | 13           |                   | 4.50                                     | 50 — Olive gray (5Y4/2) with 20% dark gray (10YR4/1                                                                                                                                                                                                                                                                  | 494                                                                                                                                          |  |  |  |
| 22A    | 19/24<br>79%                  | SS   | 5-13<br>26-38<br>N=39            | 14           |                   |                                          | mottles, moist, hard, SILT with little clay and trace v fine- to coarse- grained sand and small gravel.                                                                                                                                                                                                              | ery                                                                                                                                          |  |  |  |
| 23A    | 24/24<br>100%                 | ss   | 12-18<br>29-40<br>N=47           | 13           |                   | 4.50                                     | 54 —                                                                                                                                                                                                                                                                                                                 | 490                                                                                                                                          |  |  |  |
| 24A    | 24/24<br>100%                 | ss   | 7-18<br>30-37<br>N=48            | 13           |                   |                                          | Dark gray brown (2.5Y4/2) with 15% dark gray (10YR4/1) mottles, moist, hard, SILT with little clay trace very fine- to coarse-grained sand.                                                                                                                                                                          | and 488                                                                                                                                      |  |  |  |
| 25A    | 24/24<br>100%                 | ss   | 11-18<br>27-38<br>N=45           | 14           |                   | 4.50                                     | Olive brown (2.5Y4/3) with 5% gray (N6/1) mottles, r hard, SILT with little clay and trace very fine- to medi grained sand.                                                                                                                                                                                          | moist, ium-                                                                                                                                  |  |  |  |
| 26A    | 24/24<br>100%                 | SS   | 10-15<br>23-33<br>N=38           | 17           |                   | 4.50                                     | Olive brown (2.5Y4/3) with 5% gray (N6/1) mottles, r hard, SILT with little clay and trace very fine- to coar grained sand and small gravel.                                                                                                                                                                         | noist, rse-                                                                                                                                  |  |  |  |
| NO     | OTE(S):                       | APV  | V6 install                       | ed in        | bore              | ehole.                                   |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              |  |  |  |

CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois

**Project:** 15E0030 **DATES: Start:** 10/20/2015

**Finish:** 10/21/2015 **WEATHER:** Sunny, breezy, warm, lo-80s

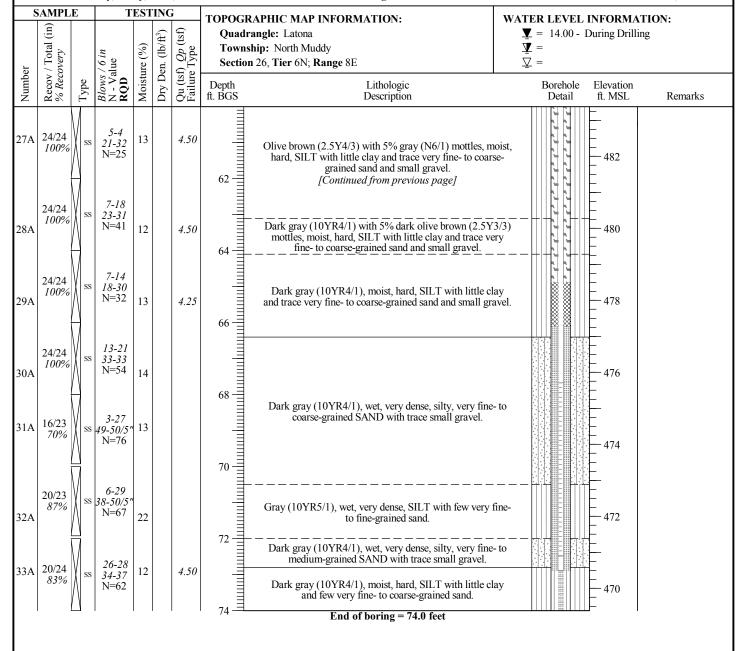
**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 4½" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim


BOREHOLE ID: APW6

Well ID: APW6

Surface Elev: 543.38 ft. MSL

**Completion:** 74.00 ft. BGS **Station:** 7,688.54N

7,811.93E



CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois

**Project:** 15E0030 **DATES: Start:** 11/3/2015

Finish: 11/5/2015

WEATHER: Sunny, warm, lo-70s

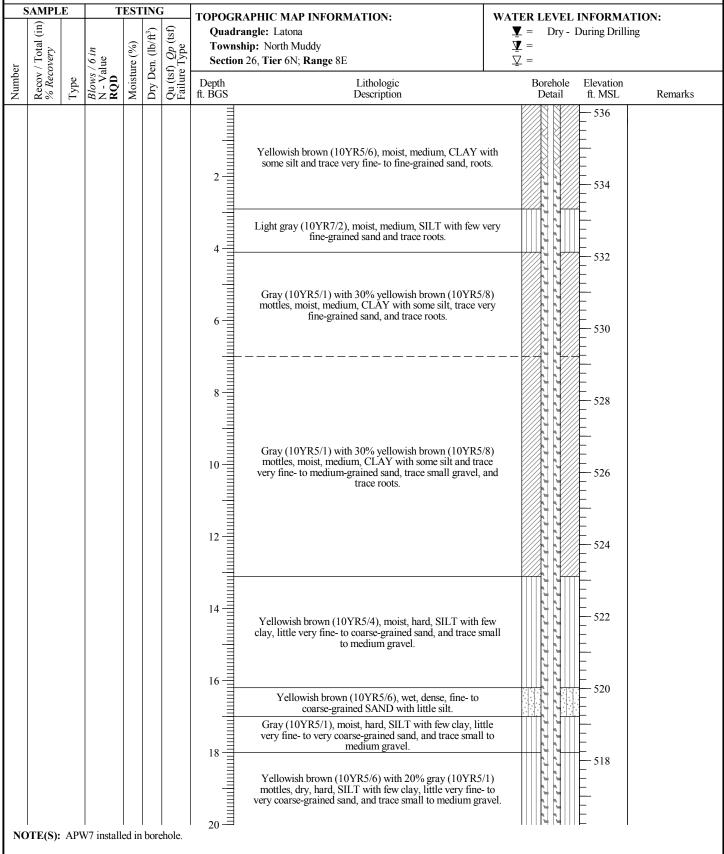
**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 41/4" HSA

FIELD STAFF: Driller: J. Gates Helper: C. Clines

Eng/Geo: R. Hasenyager




BOREHOLE ID: APW7a Well ID: APW7

 Surface Elev:
 536.21 ft. MSL

 Completion:
 83.10 ft. BGS

 Station:
 5,688.85N

 6,151.60E



CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois Project: 15E0030

**DATES: Start:** 11/3/2015

**Finish:** 11/5/2015 **WEATHER:** Sunny, warm, lo-70s

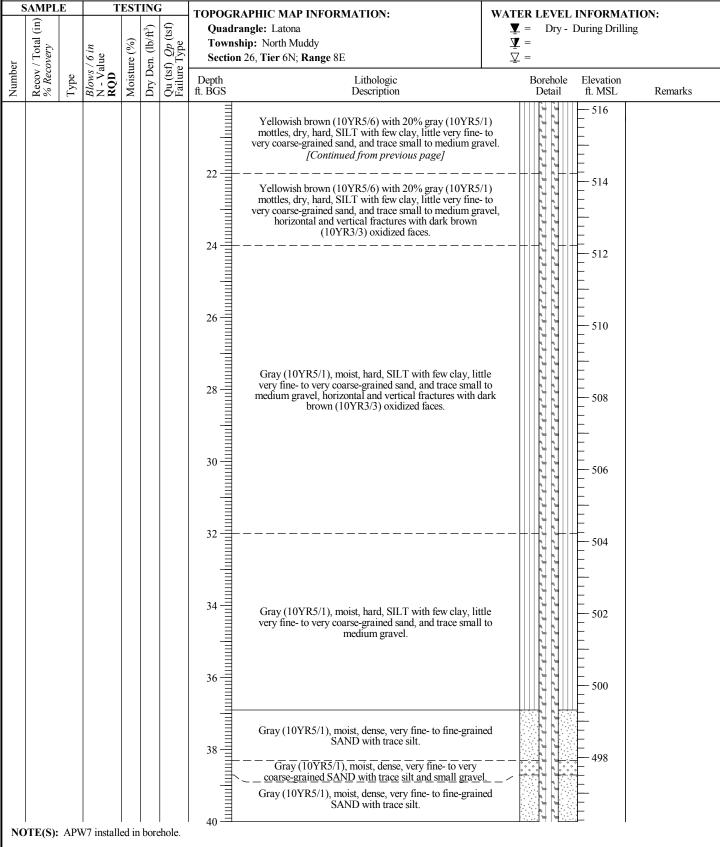
CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill

**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA

FIELD STAFF: Driller: J. Gates Helper: C. Clines

Eng/Geo: R. Hasenyager




**BOREHOLE ID:** APW7a **Well ID:** APW7

 Surface Elev:
 536.21 ft. MSL

 Completion:
 83.10 ft. BGS

 Station:
 5,688.85N

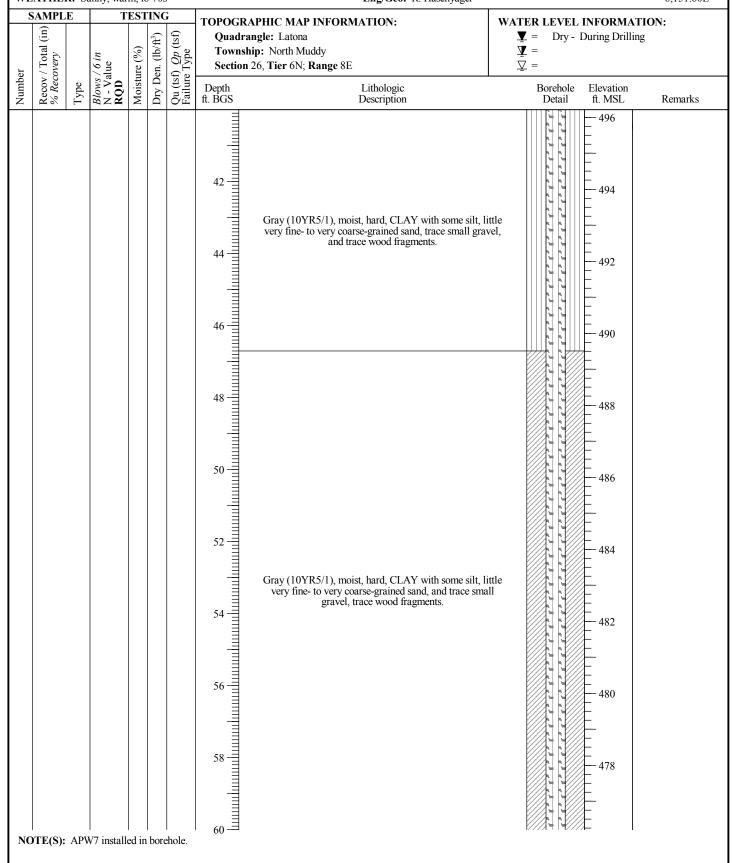
 6,151.60E



CLIENT: Natural Resource Technology, Inc. CONTRACTOR: Bulldog Drilling, Inc. Site: Newton Energy Center

Location: Newton, Illinois **Drilling Method:** 41/4" HSA

Project: 15E0030 **DATES: Start:** 11/3/2015


FIELD STAFF: Driller: J. Gates Finish: 11/5/2015 Helper: C. Clines WEATHER: Sunny, warm, lo-70s Eng/Geo: R. Hasenyager

Rig mfg/model: CME-550X ATV Drill

**BOREHOLE ID:** APW7a Well ID: APW7

Surface Elev: 536.21 ft. MSL **Completion:** 83.10 ft. BGS **Station:** 5,688.85N 6,151.60E

**HANSON** 



 $\begin{cal}CLIENT:\ Natural\ Resource\ Technology,\ Inc.\end{cal}$ 

Site: Newton Energy Center Location: Newton, Illinois Project: 15E0030

**DATES: Start:** 11/3/2015 **Finish:** 11/5/2015

WEATHER: Sunny, warm, lo-70s

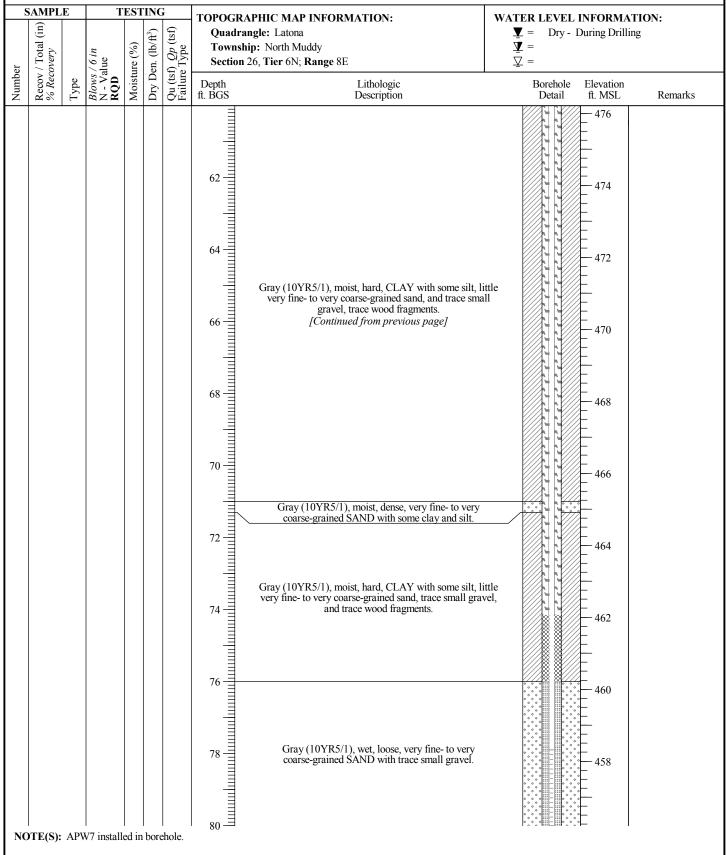
**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA

FIELD STAFF: Driller: J. Gates Helper: C. Clines

Eng/Geo: R. Hasenyager




**BOREHOLE ID:** APW7a **Well ID:** APW7

 Surface Elev:
 536.21 ft. MSL

 Completion:
 83.10 ft. BGS

 Station:
 5,688.85N

 6,151.60E



CLIENT: Natural Resource Technology, Inc.

TESTING

Moisture (%)

Blows / 6 in N - Value RQD

Dry Den. (lb/ft³)

Site: Newton Energy Center Location: Newton, Illinois Project: 15E0030

**DATES: Start:** 11/3/2015

Finish: 11/5/2015 WEATHER: Sunny, warm, lo-70s

SAMPLE

Recov / Total (in) % Recovery

CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill

**Drilling Method:** 41/4" HSA

FIELD STAFF: Driller: J. Gates Helper: C. Clines

Eng/Geo: R. Hasenyager TOPOGRAPHIC MAP INFORMATION:

End of boring = 83.1 feet

Quadrangle: Latona Township: North Muddy Section 26, Tier 6N; Range 8E WATER LEVEL INFORMATION:

HANSON

83.10 ft. BGS 5,688.85N

6,151.60E

Remarks

**BOREHOLE ID:** APW7a

**Completion:** 

**Station:** 

Well ID: APW7

Surface Elev: 536.21 ft. MSL

Dry - During Drilling  $\bar{\mathbf{\Lambda}} =$ 

 $\nabla =$ 

Qu (tsf) *Qp* (tsf) Failure Type Depth ft. BGS Borehole Elevation Lithologic Description ft. MSL 456 Gray (10YR5/1), wet, loose, very fine- to very coarse-grained SAND with trace small gravel. [Continued from previous page] 454 Bluish black (10B2.5/1), wet dense, very fine- to very coarse-grained SAND with little silt and trace small gravel

NOTE(S): APW7 installed in borehole.

CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

**Project:** 15E0030 **DATES: Start:** 10/27/2015

Finish: 10/28/2015

WEATHER: Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 41/4" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

HANSON

BOREHOLE ID: APW8
Well ID: APW8

Surface Elev: 526.75 ft. MSL

**Completion:** 82.00 ft. BGS **Station:** 3,839.59N

| 5      | SAMPLI                           | E                                                | T                                | EST          | INC                            |                                          | TOPOGRAPHIC MAP INFORMATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WATER LEVEL INFORMATION:                                                                                                                                                                                       |
|--------|----------------------------------|--------------------------------------------------|----------------------------------|--------------|--------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Recov / Total (in)<br>% Recovery | _                                                | 6 in<br>1e                       | (%) e        | 1. (lb/ft³)                    | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadrangle: Latona Township: North Muddy Section 26, Tier 6N; Range 8E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \mathbf{\underline{V}} = 33.70 - \text{During Drilling} $ $ \mathbf{\underline{V}} = \mathbf{\underline{\nabla}} = \mathbf{\underline{\nabla}} = \mathbf{\underline{\nabla}} = \mathbf{\underline{\nabla}} $ |
| Number | Recov /<br>% Recor               | Type                                             | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft <sup>3</sup> ) | Qu (tsf)<br>Failure                      | Depth Lithologic ft. BGS Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Borehole Elevation Detail ft. MSL Remarks                                                                                                                                                                      |
| 1A     | 60/60                            | DP                                               |                                  | 13           |                                | 4.50                                     | Black (10YR2/1), moist, very stiff, SILT with little and trace very fine- to medium-grained sand, root  Yellowish brown (10YR5/4) with 30% light gra (10YR7/2) mottles, dry, hard, SILT with little clay trace very fine- to medium-grained sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v                                                                                                                                                                                                              |
| 1B     | 100%                             | <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del> |                                  | 21           |                                | 3.00                                     | Grayish brown (10YR5/2) with 15% dark yellowish (10YR4/6) and 10% black (10YR2/1) mottles, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 524<br>                                                                                                                                                                                                        |
| 2A     | 60/60<br>100%                    | DP                                               |                                  | 18           |                                | 2.50                                     | Black (10YR2/1), moist, very stiff, SILT with little and trace very fine- to medium-grained sand, root  Yellowish brown (10YR5/4) with 30% light gra (10YR7/2) mottles, dry, hard, SILT with little clay trace very fine- to medium-grained sand.  Grayish brown (10YR5/2) with 15% dark yellowish (10YR4/6) and 10% black (10YR2/1) mottles, moist stiff, silty CLAY with few very fine- to coarse-grained and trace small gravel.  Grayish brown (10YR5/2) with 15% dark yellowish mottles, moist, stiff, silty CLAY with few very fine coarse-grained sand and trace small gravel.  Brown (10YR5/3) with 20% dark yellowish brow (10YR5/6) mottles, dry, stiff, SILT with little clay and very fine- to coarse-grained sand. | is and 520                                                                                                                                                                                                     |
| 2B     |                                  | <del>advaramanda</del>                           |                                  | 28           |                                | 2.00                                     | Grayish brown (10YR5/2) with 15% dark yellowish mottles, moist, stiff, silty CLAY with few very fine coarse-grained sand and trace small gravel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | brown<br>- to                                                                                                                                                                                                  |
| 3A     | 20/24                            | DP                                               |                                  | 8            |                                | 2.00                                     | Brown (10YR5/3) with 20% dark yellowish brow (10YR5/6) mottles, dry, stiff, SILT with little clay and very fine- to coarse-grained sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vn d trace Rock in shoe of sampler.                                                                                                                                                                            |
| 4A     | 0/17                             | ss                                               | 23-43<br>50/5"                   |              |                                |                                          | l — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 514 sampler.                                                                                                                                                                                                   |
| 5A     | 21/24<br>88%                     | ss                                               | 13-20<br>24-28<br>N=44           | 10           |                                | 4.50                                     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 512                                                                                                                                                                                                            |
| 6A     | 24/24<br>100%                    | ss                                               | 7-14<br>20-48<br>N=34            | 11           |                                | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little trace very fine- to coarse-grained sand and small gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | clay, avel.                                                                                                                                                                                                    |
| 7A     | 24/24<br>100%                    | ss                                               | 14-21<br>26-32<br>N=47           | 10           |                                |                                          | Dark gray (10YR4/1), moist, hard, SILT with little trace very fine- to coarse-grained sand and small gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508                                                                                                                                                                                                            |
| NC     | OTE(S):                          | APV                                              | V8 installe                      | ed in        | bore                           | ehole.                                   | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D 1 . 6 %                                                                                                                                                                                                      |

CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/27/2015 **Finish:** 10/28/2015

WEATHER: Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

**HANSON** 

BOREHOLE ID: APW8

Well ID: APW8
Surface Elev: 526.75 ft. MSL

**Completion:** 82.00 ft. BGS **Station:** 3,839.59N

| S          | SAMPL                            | E        | Т                                | EST          | INC               |                                          | TOPOGRAPHIC MAP INFORMATION:                                                                                                                                                                                                                                                                                                                 | WATER LEVEL INFORMATION:<br>▼ = 33.70 - During Drilling                                                                                                |  |  |  |
|------------|----------------------------------|----------|----------------------------------|--------------|-------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| lber       | Recov / Total (in)<br>% Recovery | •        | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadrangle: Latona<br>Township: North Muddy<br>Section 26, Tier 6N; Range 8E                                                                                                                                                                                                                                                                 | $ \mathbf{\underline{\Psi}} = 33.70 $ - During Drilling $ \mathbf{\underline{\Psi}} =  \mathbf{\underline{\nabla}} =  \mathbf{\underline{\nabla}} =  $ |  |  |  |
| Number     | Reco<br>% Re                     | Type     | Blow<br>N-1<br>RQI               | Mois         | Dry ]             | Qu (1<br>Failu                           | Depth Lithologic ft. BGS Description                                                                                                                                                                                                                                                                                                         | Borehole Elevation Detail ft. MSL Remarks                                                                                                              |  |  |  |
| 8A         | 24/24<br>100%                    | ss       | 7-13<br>19-23<br>N=32            | 11           |                   | 4.50                                     | 22 —                                                                                                                                                                                                                                                                                                                                         | 506                                                                                                                                                    |  |  |  |
| 9A         | 24/24<br>100%                    | ss       | 7-14<br>19-27<br>N=33            | 11           |                   | 4.50                                     | 24 Dork gray (10VP4/1) majet hard SH T with little                                                                                                                                                                                                                                                                                           | 504                                                                                                                                                    |  |  |  |
| 10A        | 24/24<br>100%                    | ss       | 8-15<br>30-37<br>N=45            | 11           |                   | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little trace very fine- to coarse-grained sand and small gra [Continued from previous page]                                                                                                                                                                                                      | clay,<br>avel. — 502                                                                                                                                   |  |  |  |
| 11A        | 24/24<br>100%                    | ss       | 8-16<br>24-33<br>N=40            | 11           |                   | 4.50                                     | 28 = 28                                                                                                                                                                                                                                                                                                                                      | 500                                                                                                                                                    |  |  |  |
| 12A<br>12B | 24/24<br>100%                    | ss       | 9-31<br>33-30<br>N=64            | 11<br>12     |                   | 4.50                                     | Gray (10YR5/1), moist, dense, silty, very fine-to-medium-grained SAND.                                                                                                                                                                                                                                                                       | o 498                                                                                                                                                  |  |  |  |
| 13A        | 24/24<br>100%                    | ss       | 10-23<br>40-35<br>N=63           | 11           |                   | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little trace very fine- to coarse-grained sand and small gray [Continued from previous page]  26  Gray (10YR5/1), moist, dense, silty, very fine- to medium-grained SAND.  Dark gray (10YR4/1), moist, hard SILT with little few very fine- to coarse-grained sand, and trace small gray gravel. | clay,                                                                                                                                                  |  |  |  |
| 14A        | 21/24<br>88%                     | ss       | 16-16<br>29-50<br>N=45           | 10           |                   | 4.50                                     | ¥                                                                                                                                                                                                                                                                                                                                            | 494                                                                                                                                                    |  |  |  |
| 15A        | 20/24<br>83%                     | ss       | 9-24<br>34-41<br>N=58            | 13           |                   |                                          | Dark gray (10YR4/1), wet, very dense, silty, very fin coarse-grained SAND with trace small gravel.  36  Dark gray (10YR4/1), moist, hard, SILT with little few very fine- to coarse-grained sand, and trace sm gravel.                                                                                                                       | ne- to 492                                                                                                                                             |  |  |  |
| 16A        | 22/24<br>92%                     | ss       | 16-18<br>29-35<br>N=47           | 11           |                   | 4.50                                     | Dark gray (10YR4/1), moist, hard, SILT with little few very fine- to coarse-grained sand, and trace sn                                                                                                                                                                                                                                       |                                                                                                                                                        |  |  |  |
| 17A        | 21/24<br>88%                     | ss       | 10-17<br>21-31<br>N=38           | 11           |                   | 4.50                                     | gravel.                                                                                                                                                                                                                                                                                                                                      | 488                                                                                                                                                    |  |  |  |
| NO         | TE(S):                           | ⊥<br>APV | V8 install                       | ed in        | bore              | ehole.                                   | 40 ⊐                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |  |  |  |

**CLIENT:** Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/27/2015 **Finish:** 10/28/2015

WEATHER: Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 41/4" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

**HANSON** 

BOREHOLE ID: APW8 Well ID: APW8

**Surface Elev:** 526.75 ft. MSL **Completion:** 82.00 ft. BGS

ompletion: 82.00 ft. BGS Station: 3,839.59N

|        | SAMPL              |      | T                                | -            | INC               |                                       | ***                                                | I DYZZ                                                                                                                                             | DIEGES: - | 0,062.57E                                |                          |         |
|--------|--------------------|------|----------------------------------|--------------|-------------------|---------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------|--------------------------|---------|
|        | Recov / Total (in) |      | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf) Failure Type | Quadrangle: L<br>Township: Nor<br>Section 26, Tier | th Muddy<br>· 6N; <b>Range</b> 8E                                                                                                                  |           |                                          | INFORMAT During Drilling |         |
| Number | Recor<br>% Re      | Type | Blow:<br>N - V<br>RQD            | Mois         | Dry I             | Qu (ts<br>Failu                       | Depth<br>ft. BGS                                   | Lithologic<br>Description                                                                                                                          |           | Borehole<br>Detail                       | Elevation ft. MSL        | Remarks |
| 18A    | 24/24<br>100%      | ss   | 9-16<br>26-32<br>N=42            | 11           |                   | 4.50                                  | 42 ————————————————————————————————————            |                                                                                                                                                    |           | ,,,,,,,,,                                |                          |         |
| 19A    | 24/24<br>100%      | ss   | 10-16<br>23-34<br>N=39           | 12           |                   | 4.50                                  | 44 -                                               |                                                                                                                                                    |           | (, (, (, (, (, (, (, (, (, (, (, (, (, ( | 484<br>                  |         |
| 20A    | 24/24<br>100%      | ss   | 10-15<br>26-44<br>N=41           | 13           |                   | 4.50                                  | 46                                                 |                                                                                                                                                    |           | (, (, (, (, (, (, (, (, (, (, (, (, (, ( | 482<br>                  |         |
| 21A    | 24/24<br>100%      | ss   | 12-21<br>32-48<br>N=53           | 12           |                   | 4.50                                  | 48 =                                               |                                                                                                                                                    |           | (, (, (, (, (,                           |                          |         |
| 22A    | 24/24<br>100%      | SS   | 11-17<br>22-31<br>N=39           | 13           |                   | 4.50                                  | Dark<br>fev                                        | gray (10YR4/1), moist, hard, SILT with little cl<br>v very fine- to coarse-grained sand, and trace smal<br>gravel.  [Continued from previous page] | ay,       | ,,,,,,,,                                 | 478                      |         |
| 23A    | 24/24<br>100%      | ss   | 10-13<br>21-32<br>N=34           | 13           |                   | 4.50                                  | 52                                                 |                                                                                                                                                    |           | ,,,,,,,,,                                | 476<br>176<br>           |         |
| 24A    | 24/24<br>100%      | ss   | 8-13<br>50-26<br>N=63            | 13           |                   | 4.50                                  |                                                    |                                                                                                                                                    |           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  | 474<br>                  |         |
| 25A    | 24/24<br>100%      | ss   | 8-11<br>19-28<br>N=30            | 14           |                   | 4.25                                  | 56                                                 |                                                                                                                                                    |           | ,,,,,,,,,,                               |                          |         |
| 26A    | 24/24<br>100%      | ss   | 10-12<br>18-26<br>N=30           | 13           |                   | 4.50                                  | 54 ————————————————————————————————————            |                                                                                                                                                    |           | (, (, (, (, (, (,                        |                          |         |
| 27A    | 22/24<br>92%       | SS   | 7-10<br>15-22<br>N=25            | 21           |                   | 4.50                                  | Olive fi                                           | gray (5Y4/2), moist, hard, silty CLAY with few ne- to coarse-grained sand and trace small gravel.                                                  | very      |                                          | 468                      |         |
| NO     | OTE(S):            | APV  | V8 install                       | ed in        | bore              | ehole.                                | 00                                                 |                                                                                                                                                    |           |                                          | ,                        |         |

CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/27/2015 Finish: 10/28/2015

WEATHER: Sunny, breezy, warm, lo-80s

CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill

Drilling Method: 41/4" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

**BOREHOLE ID: APW8** 

Well ID: APW8

Surface Elev: 526.75 ft. MSL

82.00 ft. BGS **Completion: Station:** 3,839.59N

6,082.37E **SAMPLE** TESTING TOPOGRAPHIC MAP INFORMATION: WATER LEVEL INFORMATION: Ē Op (tsf)Type  $\mathbf{V} = 33.70$  - During Drilling Quadrangle: Latona Dry Den. (lb/ft3) Recov / Total ( % Recovery Moisture (%) Township: North Muddy <u>A</u> = Blows / 6 in N - Value RQD  $\nabla =$ Section 26, Tier 6N; Range 8E Qu (tsf) (Failure T Number Lithologic Borehole Elevation ft. BGS Description ft. MSL Remarks 7-15 466 20/24 Dark gray (10YR4/1), moist, hard, SILT with little clay, 28A 14 4.50 19-20 83% few very fine- to coarse-grained sand and trace small gravel. N = 34464 21/24 29A 11 3.75 11-16 88% Dark gray (10YR4/1), moist, very stiff, SILT with little N=19clay, few very fine- to coarse-grained sand and trace small 6-13 462 21/24 30A 14 4.00 14-11 88% N=27 30B Gray (10YR6/1), wet, medium dense, silty, very fine- to 10 coarse-grained SAND with trace small to large gravel. 66 Dark gray (10YR4/1), moist, very stiff, SILT with little clay and few very fine- to coarse-grained sand.

Dark gray (10YR4/1), wet, loose, silty, very fine- to 460 18/24 28 31A coarse-grained SAND with trace small gravel and trace 4-3 75% 31B 15 3.25 wood fragments. Dark gray (10YR4/1), moist, very stiff, SILT with little clay, few very fine- to coarse-grained sand, and trace small gravel, trace wood fragments. Dark gray (10YR4/1), wet, loose, SILT with little very 458 20/24 32A 17 fine- to fine-grained sand. 3-2 83% N=6Dark gray (10YR4/1), wet, loose, silty, very fine- to 32B 28 coarse-grained SAND. Dark gray (10YR4/1), wet, loose, SILT with little very fine- to fine-grained sand, trace wood fragments. woh-2 456 15/24 Dark gray (10YR4/1), wet, loose, silty, very fine-to 17 33A 6-6 63% coarse-grained SAND, trace wood fragments. N=8Dark gray (10YR4/1), wet, medium dense, silty, very fineto coarse-grained SAND with trace small gravel. 454 16/24 34A 9 15-20 67% Dark gray (10YR4/1), wet, medium dense, silty, very fine-to coarse-grained SAND with few small to large gravel. 16-21 452 15/24 9 Dark gray (10YR4/1), wet, dense, silty, very fine-to 35A 23-24 N=44 63% coarse-grained SAND with few small to large gravel. 11-20 450 14/24 36A 11 25-24 58% N=45 Dark gray (10YR4/1), wet, dense, silty, very fine-to coarse-grained SAND with trace small gravel. 20-25 448 37A 15/2410 24-25 63% N=49 NOTE(S): APW8 installed in borehole.

CLIENT: Natural Resource Technology, Inc.

**Site:** Newton Energy Center **Location:** Newton, Illinois

**Project:** 15E0030 **DATES: Start:** 10/27/2015

Finish: 10/28/2015

**WEATHER:** Sunny, breezy, warm, lo-80s

**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 4<sup>1</sup>/<sub>4</sub>" HSA, macro-core sampler, split spoon

sampler

FIELD STAFF: Driller: C. Dutton

Helper: C. Jones Eng/Geo: S. Keim

**BOREHOLE ID:** APW8

Well ID: APW8

Surface Elev: 526.75 ft. MSL

HANSON

. 520.75 it. MSL

**Completion:** 82.00 ft. BGS **Station:** 3,839.59N

|        | SAMPL          | E    | T                      | EST      | INC           | j                       | TOPOGRA                         | PHIC MAP INFORMATION:                                                                                                            | WATER LEVEL INFORMATION:                                                                 |
|--------|----------------|------|------------------------|----------|---------------|-------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| ie     | / Total (in)   |      | / 6 in<br>Ilue         | ıre (%)  | Den. (lb/ft³) | f) <i>Qp</i> (tsf) Type | Quadrar<br>Townshi<br>Section 2 | ngle: Latona<br>p: North Muddy<br>26, Tier 6N; Range 8E                                                                          | $\underline{\Psi}$ = 33.70 - During Drilling $\underline{\Psi}$ = $\underline{\nabla}$ = |
| Number | Recov<br>% Rec | Type | Blows<br>N - Va<br>RQD | Moisture | Dry D         | Qu (tsf)<br>Failure     | Depth<br>ft. BGS                | Lithologic<br>Description                                                                                                        | Borehole Elevation<br>Detail ft. MSL Remarks                                             |
| 38A    | 75%            | ss   | 26-26<br>26-31<br>N=52 | 8        |               |                         |                                 | Dark gray (10YR4/1), wet, dense, silty, very fine-to coarse-grained SAND with trace small gravel. [Continued from previous page] | 446                                                                                      |
| 38B    |                |      | IN-32                  | 11       |               | 4.50                    | 82                              | Dark gray (10YR4/1), moist, hard, SILT with little cl<br>and few very fine- to coarse-grained sand.<br>End of boring = 82.0 feet | ay                                                                                       |

CLIENT: Natural Resource Technology, Inc. Rig mfg/model: CME-550X ATV Drill Site: Newton Energy Center Location: Newton, Illinois Drilling Method: 41/4" HSA, split spoon sampler

Project: 15E0030

**DATES: Start:** 11/2/2015 Finish: 11/3/2015

WEATHER: Foggy, mild, lo-50s

CONTRACTOR: Bulldog Drilling, Inc.

Helper: C. Clines

FIELD STAFF: Driller: J. Gates

**BOREHOLE ID:** APW9 Well ID: APW9

Surface Elev: 528.82 ft. MSL **Completion:** 62.00 ft. BGS **Station:** 3,519.59N 9,125.33E

**HANSON** 

Eng/Geo: R. Hasenyager SAMPLE TESTING TOPOGRAPHIC MAP INFORMATION: WATER LEVEL INFORMATION: Recov / Total (in) % Recovery Qu (tsf) *Qp* (tsf) Failure Type Dry Den. (lb/ft³) Quadrangle: Latona  $\mathbf{V} = 27.00$  - During Drilling Moisture (%) Township: North Muddy  $\Psi$  = 26.10 - 11/3/15 Blows / 6 in N - Value RQD  $\nabla =$ Section 26, Tier 6N; Range 8E Depth ft. BGS Borehole Elevation Lithologic Description Detail ft. MSL Remarks 528 0/60 BD 526 524 522 0/60 BD 520 Blind drill - see APW3 boring log for lithology, sample, and 518 0/60 BD 514 4 0/60 BD 510 **NOTE(S):** APW9 installed in borehole.

Lithology, sample, and testing data can be found on APW-3 Field Boring Log.

CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois Project: 15E0030

**DATES: Start:** 11/2/2015

Finish: 11/3/2015 WEATHER: Foggy, mild, lo-50s CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill **Drilling Method:** 41/4" HSA, split spoon sampler

FIELD STAFF: Driller: J. Gates Helper: C. Clines

Eng/Geo: R. Hasenyager

**HANSON** 

**BOREHOLE ID:** APW9 Well ID: APW9

> Surface Elev: 528.82 ft. MSL **Completion:** 62.00 ft. BGS Station: 3,519.59N 9,125.33E

> > Page 2 of 4

|            | SAMPL                         | E                                            | Т                                | EST          | ING               |                                   | TOPOCR           | APHIC MAP INFORMATION:                                                                                                                                                                   | WATE | R LEVEI                                 | INFORMA           | TION:                    |
|------------|-------------------------------|----------------------------------------------|----------------------------------|--------------|-------------------|-----------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------|-------------------|--------------------------|
| oer        | Recov / Total (in) % Recovery |                                              | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) Qp (tsf)<br>Failure Type | Quadra<br>Townsh | ningle: Latona hip: North Muddy 26, Tier 6N; Range 8E                                                                                                                                    | ₹    | = 27.00 -<br>= 26.10 -                  | During Drill      |                          |
| Number     | Recov<br>% Rea                | Type                                         | Blows<br>N - V<br>RQD            | Moist        | Dry D             | Qu (ts<br>Failur                  | Depth<br>ft. BGS | Lithologic<br>Description                                                                                                                                                                |      | Borehole<br>Detail                      | Elevation ft. MSL | Remarks                  |
| 5A         | 24/24<br>100%                 | ss                                           | 10-13<br>21-28<br>N=34           | 10           |                   | 4.25                              | 22               | Gray (10YR5/1), moist, hard, SILT with some very fine-grained sand, little clay, and trace small to mediu gravel. Vertical and horizontal fractures with yellowis brown (10YR5/8) faces. | m l  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 508               |                          |
| 6A         | 24/24<br>100%                 | ss                                           | 13-15<br>21-29<br>N=36           | 10           |                   | 4.50                              |                  |                                                                                                                                                                                          |      | ,,,,,                                   | 506               |                          |
| 7A         | 2/24<br>8%                    | ss                                           | 15-28<br>33-39<br>N=61           | 11           |                   | 4.50                              | 24 -             | Gray (10YR5/1), moist, hard, SILT with some very fine-grained sand, little clay, and trace small to mediu gravel.                                                                        | m    | , , , , , , , , , , , , , , , , , , , , |                   | Rock in shoe of sampler. |
| 8 <b>A</b> | 23/23<br>100%                 | ss                                           | 9-15<br>39-50/5'<br>N=54         | 11           |                   |                                   | ¥                |                                                                                                                                                                                          |      | ,,,,,,,                                 | 502               |                          |
| 8B         |                               |                                              |                                  | 11           |                   |                                   | 28               | Gray (10YR5/1), wet, dense, very fine- to very                                                                                                                                           |      |                                         |                   |                          |
| 9A         | 24/24<br>100%                 | ss                                           | 12-22<br>28-27<br>N=50           | 11           |                   |                                   |                  | coarse-grained SAND with some silt, few clay and tra-<br>small to medium gravel.                                                                                                         | ce [ |                                         | 500               |                          |
| 9B         |                               | <u>/                                    </u> |                                  | 12           |                   | 4.50                              | 30               |                                                                                                                                                                                          |      |                                         |                   |                          |
| 10A        | 24/24<br>100%                 | ss                                           | 14-22<br>32-44<br>N=54           | 11           |                   | 4.50                              | 30               |                                                                                                                                                                                          |      | ,,,,,,,                                 | 498               |                          |
| 11A        | 23/24<br>96%                  | ss                                           | 8-16<br>24-35<br>N=40            | 11           |                   | 4.50                              |                  | Gray (10YR5/1), moist, hard, SILT with little clay and fine-grained sand and trace small gravel.                                                                                         | very | ,,,,,,,                                 | 496<br>           |                          |
| 12A        | 16/24<br>67%                  | ss                                           | 12-25<br>35-32<br>N=60           | 12           |                   | 4.50                              | 34 = 36 = 36     |                                                                                                                                                                                          |      | , , , , , , , , , , , , , , , , , , , , | 494               |                          |
| 13A        | 24/24<br>100%                 | ss                                           | 6-12<br>24-25<br>N=36            | 11           |                   | 4.50                              | 36               |                                                                                                                                                                                          |      |                                         | 492               |                          |
| 4A         | 24/24<br>100%                 | ss                                           | 4-7<br>16-32<br>N=23             | 14           |                   | 4.50                              | 38               | Gray (10YR5/1) moist, stiff, CLAY with some silt, litt very fine-grained sand and trace small gravel.                                                                                    | ile  |                                         | 490               |                          |

Lithology, sample, and testing data can be found on APW-3 Field Boring Log.

CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois Project: 15E0030

**DATES: Start:** 11/2/2015 **Finish:** 11/3/2015

**WEATHER:** Foggy, mild, lo-50s

CONTRACTOR: Bulldog Drilling, Inc.
Rig mfg/model: CME-550X ATV Drill
Drilling Method: 41/4" HSA, split spoon sampler

FIELD STAFF: Driller: J. Gates Helper: C. Clines

Eng/Geo: R. Hasenyager

**HANSON** 

**BOREHOLE ID:** APW9 **Well ID:** APW9

 Surface Elev:
 528.82 ft. MSL

 Completion:
 62.00 ft. BGS

 Station:
 3,519.59N

 9,125.33E

Page 3 of 4

|        | SAMPL                            | E    | T                                | EST          | INC               |                                          | TOPOGRAPHIC MAP INFORMATION: |                                                                                                                                                                         |                                                                                                                                                    | WATER LEVEL INFORMATION:<br>▼ = 27.00 - During Drilling |         |  |  |
|--------|----------------------------------|------|----------------------------------|--------------|-------------------|------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------|--|--|
| er     | Recov / Total (in)<br>% Recovery |      | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Towns                        | angle: Latona<br>hip: North Muddy<br>n 26, Tier 6N; Range 8E                                                                                                            | $\underline{\underline{\mathbf{Y}}} = 27.00 - 1$ $\underline{\underline{\mathbf{Y}}} = 26.10 - 1$ $\underline{\underline{\mathbf{Y}}} = 26.10 - 1$ |                                                         | g       |  |  |
| Number | Recov<br>% Re                    | Type | Blows<br>N - V<br>RQD            | Moist        | Dry I             | Qu (ts<br>Failu                          | Depth<br>ft. BGS             | Lithologic<br>Description                                                                                                                                               | Borehole<br>Detail                                                                                                                                 | Elevation ft. MSL                                       | Remarks |  |  |
| 5A     | 24/24<br>100%                    | SS   | 5-11<br>19-23<br>N=30            | 14           |                   | 4.50                                     | 42 -                         | Gray (10YR5/1) moist, stiff, CLAY with some silt, lit very fine-grained sand and trace small gravel, trace we fragments.                                                | ttle                                                                                                                                               | 488                                                     |         |  |  |
| 6A     | 24/24<br>100%                    | ss   | 4-8<br>14-29<br>N=22             | 15           |                   | 4.50                                     | #                            |                                                                                                                                                                         |                                                                                                                                                    | 486                                                     |         |  |  |
| 6B     |                                  |      |                                  | 12           |                   |                                          | 44                           | Light olive brown (2.5Y5/3), moist, stiff, CLAY with s silt, few very fine- to very coarse-grained sand, and tra small gravel.                                          | ome                                                                                                                                                |                                                         |         |  |  |
| .7A    | 24/24<br>100%                    | ss   | 8-17<br>24-34<br>N=41            | 11           |                   | 4.50                                     | 4                            |                                                                                                                                                                         |                                                                                                                                                    | 484                                                     |         |  |  |
| 8A     | 24/24<br>100%                    | SS   | 7-13<br>20-29<br>N=33            | 12           |                   | 4.50                                     | 46                           | Light olive brown (2.5Y5/3) with 30% yellowish brow (10YR5/8) mottles, moist, stiff, CLAY with some silt, very fine- to very coarse-grained sand, and trace sma gravel. | few /// 1                                                                                                                                          | 482                                                     |         |  |  |
| .9A    | 24/24<br>100%                    | ss   | 6-12<br>18-24<br>N=30            | 12           |                   | 4.50                                     | 50                           | Grayish brown (2.5Y5/2) with 10% gray (2.5Y5/3) mottles, moist, hard, SILT with little very fine- to ver coarse-grained sand, few clay and trace small to larg gravel.  | v                                                                                                                                                  | 480                                                     |         |  |  |
| 20A    | 24/24<br>100%                    | ss   | 7-12<br>17-22<br>N=29            | 15           |                   | 4.50                                     |                              |                                                                                                                                                                         |                                                                                                                                                    | 478                                                     |         |  |  |
| 21A    | 24/24<br>100%                    | ss   | 5-11<br>12-18<br>N=23            | 14           |                   | 4.25                                     | 52                           | Yellowish brown (10YR5/6) with 25% gray (10YR6/mottles, moist, stiff, CLAY with some silt, little very fi medium-grained sand, and trace small gravel.                  | /1)<br>ne-                                                                                                                                         | 476                                                     |         |  |  |
| 22A    | 23/23<br>100%                    | ss   | 6-14<br>24-50/5"<br>N=38         | 13           |                   | 4.50                                     | 54                           |                                                                                                                                                                         |                                                                                                                                                    | 474                                                     |         |  |  |
| 22B    | ;                                |      |                                  | 13           |                   |                                          | 56                           | Dark gray (10YR4/1), moist, dense, very fine-to fine-grained SAND with few silt.                                                                                        |                                                                                                                                                    |                                                         |         |  |  |
| 23A    | 24/24<br>100%                    | ss   | 7-15<br>21-30<br>N=36            | 13           |                   |                                          | 58                           | Gray (10YR5/1), wet, loose, very fine- to very coarse-grained SAND with trace small gravel.                                                                             |                                                                                                                                                    | 472                                                     |         |  |  |
| 24A    | 18/24<br>75%                     | ss   | 13-38<br>43-40<br>N=81           | 15           |                   |                                          | 60                           | Gray (10YR5/1), wet, loose, very fine- to coarse-grain SAND.                                                                                                            | ned                                                                                                                                                | 470                                                     |         |  |  |

Lithology, sample, and testing data can be found on APW-3 Field Boring Log.

CLIENT: Natural Resource Technology, Inc.
Site: Newton Energy Center

Location: Newton, Illinois

Project: 15E0030

**DATES: Start:** 11/2/2015 **Finish:** 11/3/2015

**WEATHER:** Foggy, mild, lo-50s

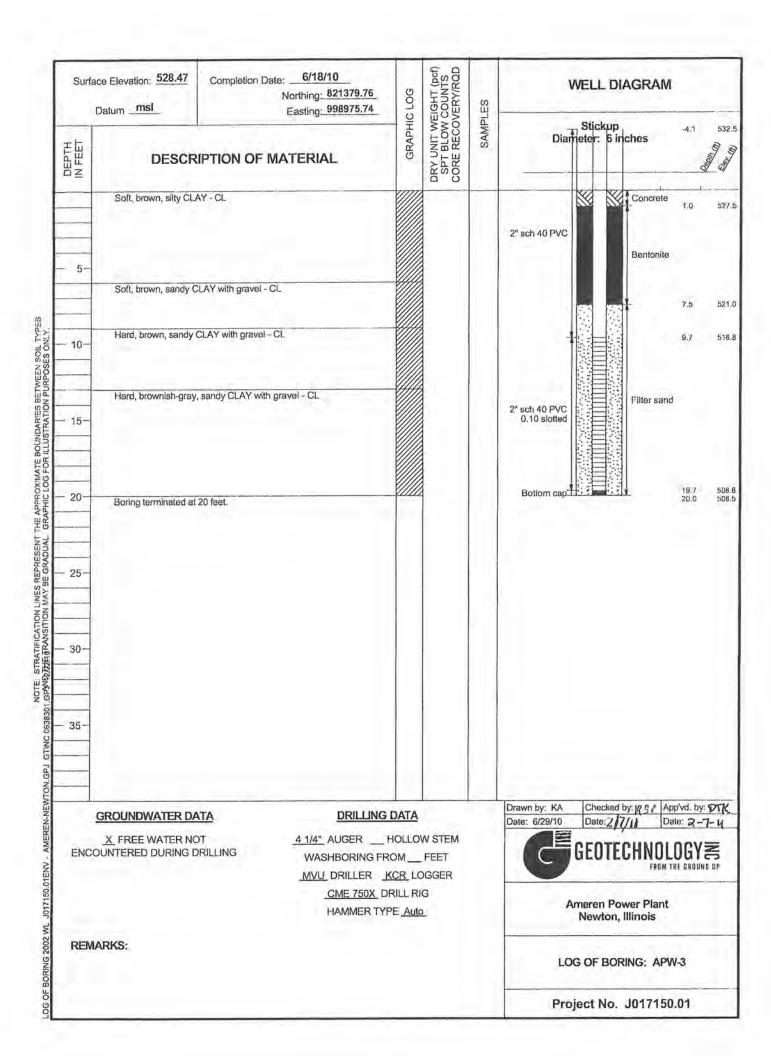
CONTRACTOR: Bulldog Drilling, Inc.
Rig mfg/model: CME-550X ATV Drill
Drilling Method: 41/4" HSA, split spoon sampler

FIELD STAFF: Driller: J. Gates Helper: C. Clines

Eng/Geo: R. Hasenyager

**HANSON** 

**BOREHOLE ID:** APW9 **Well ID:** APW9


 Surface Elev:
 528.82 ft. MSL

 Completion:
 62.00 ft. BGS

 Station:
 3,519.59N

 9,125.33E

|            | / Total (in) PAP | E    | / 6 in<br>Ilue         | Moisture (%) | en. (lb/ft³) <b>SZ</b> | $Qp \text{ (tsf)}$ $\Gamma$ | Quadran<br>Township | PHIC MAP INFORMATION: gle: Latona 1: North Muddy 6, Tier 6N; Range 8E                                                                                                                                                                                                     | WATER LEVEL INFORMATION:<br>$\underline{\Psi} = 27.00$ - During Drilling<br>$\underline{\Psi} = 26.10 - 11/3/15$<br>$\underline{\nabla} =$ |  |
|------------|------------------|------|------------------------|--------------|------------------------|-----------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| Number     | Recov<br>% Rec   | Type | Blows<br>N - Va<br>RQD | Moist        | Dry Den.               | Qu (tsf)<br>Failure         | Depth<br>ft. BGS    | Lithologic<br>Description                                                                                                                                                                                                                                                 | Borehole Elevation<br>Detail ft. MSL Remarks                                                                                               |  |
| 25A<br>25B | 24/24<br>100%    | SS   | 4-18<br>25-30<br>N=43  | 21           |                        |                             | 62                  | Gray (10YR5/1), wet, loose, very fine- to coarse-grains SAND.  [Continued from previous page]  Gray (10YR5/1), moist, stiff, CLAY with some silt an trace very fine-grained sand.  Gray (10YR5/1), wet, dense, SILT and very fine-grains SAND.  End of boring = 62.0 feet | nd468                                                                                                                                      |  |



Finish: 10/27/2015

Project: 15E0030

WEATHER: Cool, rainy, lo-50s

**DATES: Start:** 10/27/2015

CLIENT: Natural Resource Technology, Inc. CONTRACTOR: Bulldog Drilling, Inc. Site: Newton Energy Center Rig mfg/model: CME-550X ATV Drill Location: Newton, Illinois

Lithology, sample, and testing data can be found on APW-4 Field Boring Log.

**Drilling Method:** 41/4" HSA

FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim



**BOREHOLE ID:** APW10a Well ID: APW10

Surface Elev: 521.98 ft. MSL **Completion:** 45.94 ft. BGS Station: 5,371.32N 11,541.23E

| SAMPLE TESTING |                               |      |                                  |              |                   | ,                                        | Eng/Geo: S. Keim                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | 11,541.23                                                          |         |  |
|----------------|-------------------------------|------|----------------------------------|--------------|-------------------|------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------|--|
|                |                               |      |                                  |              |                   |                                          | TOPOGRAPHIC MAP INFORMATION:  Quadrangle: Latona  Township: North Muddy |                                                                          | ▼ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VATER LEVEL INFORMATION:<br>$\underline{\mathbf{Y}} = 36.00$ - During Drilling<br>$\underline{\mathbf{Y}} =$ |                                                                    |         |  |
|                | Toti                          |      | 6 in                             | (%) e.i      | n. (Ib            | Type                                     | Section                                                                 | p: North Muddy<br>25, Tier 6N; Range 8E                                  | \( \tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\ | =                                                                                                            |                                                                    |         |  |
| Number         | Recov / Total (in) % Recovery | Type | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Depth<br>ft. BGS                                                        | Lithologic<br>Description                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Borehole<br>Detail                                                                                           | Elevation ft. MSL                                                  | Remarks |  |
| NOI            | ΓΕ(S):                        | APV  | √10 insta                        | lled i       | n bo              | rehole.                                  | 2                                                                       | Blind drill - see APW4 boring log for lithology, sample, an testing data | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3///\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                       | 520<br>518<br>518<br>516<br>516<br>517<br>510<br>508<br>508<br>508 |         |  |

Finish: 10/27/2015

Location: Newton, Illinois

**DATES: Start:** 10/27/2015

NOTE(S): APW10 installed in borehole.

Lithology, sample, and testing data can be found on APW-4 Field Boring Log.

Project: 15E0030

CLIENT: Natural Resource Technology, Inc.
Site: Newton Energy Center

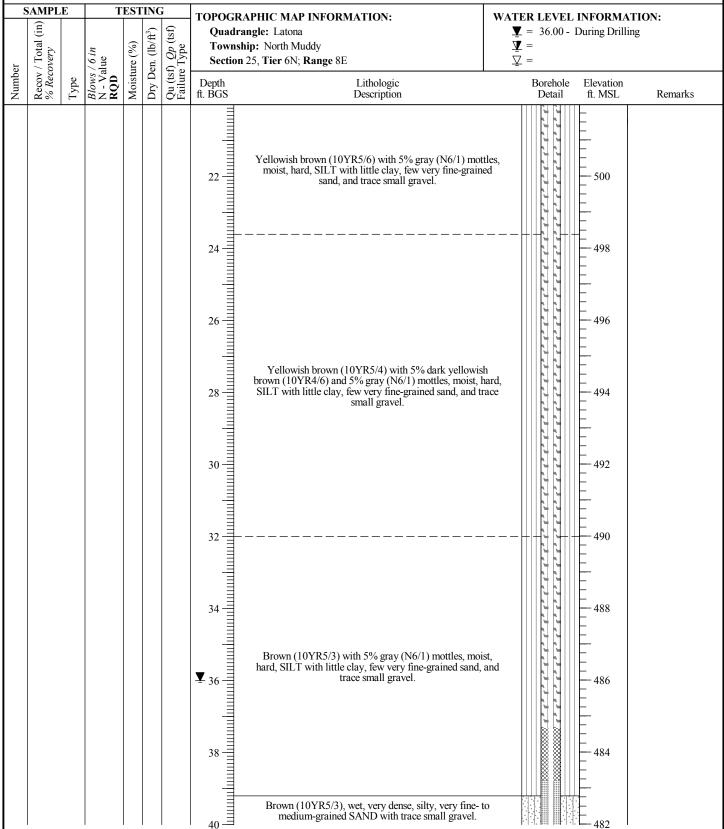
CONTRACTOR: Bulldog Drilling, Inc.
Rig mfg/model: CME-550X ATV Drill

Drilling Method: 41/4" HSA

FIELD STAFF: Driller: C. Dutton Helper: C. Jones

WEATHER: Cool, rainy, lo-50s Eng/Geo: S. Keim

HANSON PORTHOLE ID: ADVIO


**BOREHOLE ID:** APW10a **Well ID:** APW10

 Surface Elev:
 521.98 ft. MSL

 Completion:
 45.94 ft. BGS

 Station:
 5,371.32N

 11,541.23E



CONTRACTOR: Bulldog Drilling, Inc. CLIENT: Natural Resource Technology, Inc. Rig mfg/model: CME-550X ATV Drill Site: Newton Energy Center

**Drilling Method:** 41/4" HSA

**BOREHOLE ID:** APW10a Well ID: APW10

WATER LEVEL INFORMATION:

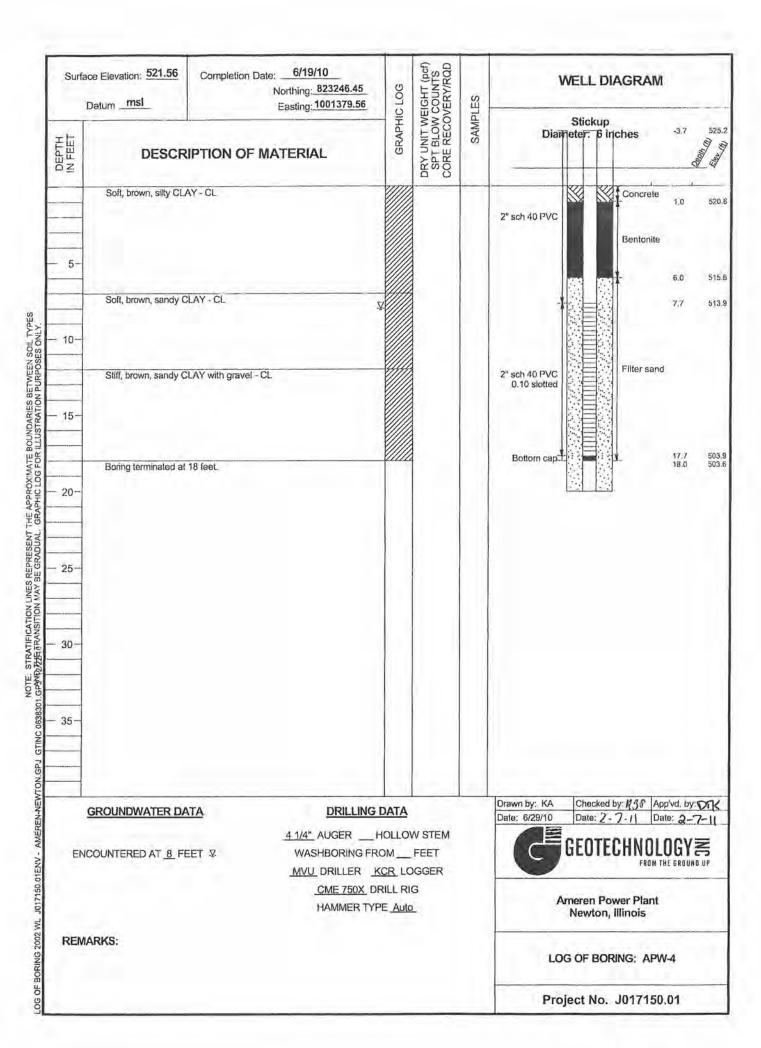
Surface Elev: 521.98 ft. MSL **Completion:** 45.94 ft. BGS **Station:** 5,371.32N

11,541.23E

**HANSON** 

Location: Newton, Illinois Project: 15E0030 **DATES: Start:** 10/27/2015

TESTING


SAMPLE

FIELD STAFF: Driller: C. Dutton Finish: 10/27/2015 Helper: C. Jones WEATHER: Cool, rainy, lo-50s Eng/Geo: S. Keim

> TOPOGRAPHIC MAP INFORMATION: Quadrangle: Latona

 $\mathbf{Y}$  = 36.00 - During Drilling

Qu (tsf) *Qp* (tsf) Failure Type Recov / Total (in) % Recovery Dry Den. (lb/ft³) Moisture (%) Township: North Muddy  $\bar{\mathbf{\Lambda}} =$ Blows / 6 in N - Value RQD Section 25, Tier 6N; Range 8E  $\nabla =$ Depth ft. BGS Lithologic Borehole Elevation Description ft. MSL Remarks 480 Brown (10YR5/3), wet, very dense, silty, very fine- to medium-grained SAND with trace small gravel. [Continued from previous page] 478 End of boring = 45.94 feet



| Illinois Environ                       | mental Pro                  | tection  | Agency            |                        |             |                                    | Well            | Completi                           | on Report                 |
|----------------------------------------|-----------------------------|----------|-------------------|------------------------|-------------|------------------------------------|-----------------|------------------------------------|---------------------------|
| Site #:                                |                             | C        | ounty: <u>Jas</u> | per Coun               | ıty         |                                    | W               | /ell #:                            | APW5                      |
| Site Name: Newton Energy Co            | enter                       |          |                   |                        |             |                                    | В               | orehole #:                         | APW5                      |
| State- Plant Plane Coordinate: X 9,318 | 3.2 Y 7,                    | 758.0 (o | r) Latitude       | e: <u>38°</u>          |             | <u>56'</u> <u>2.270"</u>           | Longitud        | e: <del>-88°</del>                 | <u>16'</u> <u>51.560"</u> |
| Surveyed By: Michael J. Gram           | ninski                      |          |                   | IL Reg                 | gistrat     | ion #: <u>035-0</u>                | 02901           |                                    |                           |
| Drilling Contractor: Bulldog D         | rilling, Inc.               |          |                   | Driller                | : <u>C</u>  | . Dutton                           |                 |                                    |                           |
| Consulting Firm: Hanson Profe          | essional Services           | Inc.     |                   | Geolog                 | gist: _     | Rhonald W.                         | Hasenyager      | r, LPG #196-0                      | 00246                     |
| Drilling Method: Hollow Stem           | Auger                       |          |                   | Drillin                | g Flui      | d (Type): W                        | ater            |                                    |                           |
| Logged By: Suzanna L. Keim             |                             |          |                   | Date S                 | tarted      | I: <u>10/22/20</u>                 | 015 Dat         | e Finished:                        | 10/22/2015                |
| Report Form Completed By: Su           | zanna L. Keim               |          |                   | Date:                  |             | 11/6/2015                          |                 |                                    |                           |
| ANNULAR SPA                            | CE DETAILS                  |          |                   |                        |             | Elevations<br>(MSL)*               | Depths<br>(BGS) | (0.01 1                            | t.)                       |
|                                        |                             |          |                   |                        |             | 545.00                             | -3.43           | Top of Protect                     | ive Casing                |
|                                        |                             |          |                   |                        |             | 544.56                             | 2.99            | Top of Riser F                     | ipe                       |
| Type of Surface Seal: Concrete         |                             |          |                   |                        | -<br>-<br>> | 541.57                             | 0.00            | Ground Surfac                      | ce                        |
|                                        |                             |          |                   |                        |             | 539.57                             | 2.00            | Top of Annula                      | r Sealant                 |
| Type of Annular Sealant: <u>High-s</u> |                             |          | - 🎵               |                        |             |                                    |                 |                                    |                           |
| Installation Method:Tremie             |                             |          | -                 |                        |             |                                    |                 |                                    |                           |
| Setting Time: >48 hours                |                             |          | -                 | $\overline{\triangle}$ |             | 527.06                             | 14.51           | Static Water L<br>(After Completic |                           |
| Type of Bentonite Seal Grand           | ular Pellet (choose one)    | Slurry   | +                 |                        | -           |                                    |                 |                                    |                           |
| Installation Method: Gravity           | У                           |          | _                 | $\boxtimes$            |             | 484.39                             | _57.18_         | Top of Seal                        |                           |
| Setting Time: 45 minutes               |                             |          | - 🐰               |                        |             | 480.62                             | 60.95           | Top of Sand P                      | ack                       |
| Type of Sand Pack: Quartz Sand         | 1                           |          |                   |                        |             |                                    |                 |                                    |                           |
| Grain Size: 10-20 (sie                 |                             |          | -                 |                        |             | 478.93                             | 62.64           | Top of Screen                      |                           |
| Installation Method: Gravity           |                             |          |                   |                        |             |                                    |                 |                                    |                           |
|                                        | ,                           |          | _                 |                        |             | 474.13                             | 67.44           |                                    |                           |
| Type of Backfill Material: <u>n/a</u>  | (if applicabl               | e)       | _   L             |                        |             | 473.73                             | _67.84_         | Bottom of We                       | 11                        |
| Installation Method:                   |                             |          |                   |                        |             | 473.57                             | 68.00           | Bottom of Bor                      | ehole                     |
|                                        |                             |          |                   |                        |             | * Referenced to a                  | National Geodet | ic Datum                           |                           |
|                                        |                             |          |                   |                        |             | CAS                                | SING MEAS       | SUREMENTS                          |                           |
| WELL CONS                              | TRUCTION MA                 | ATERIAL  | S                 |                        |             | meter of Boreho                    | ole             | (inch                              |                           |
|                                        | e type of material for each |          |                   |                        |             | of Riser Pipe                      |                 | (inch                              |                           |
|                                        |                             |          |                   |                        |             | tective Casing L                   | ength           | (fe                                |                           |
| Protective Casing                      | SS304 SS316                 | PTFE P   | VC OTHER:         | Steel                  |             | er Pipe Length<br>tom of Screen to | n End Can       | (fe                                | 0.40                      |
| Riser Pipe Above W.T.                  | SS304 SS316                 | PTFE P   | VC OTHER:         | =                      |             | een Length (1s                     |                 | •                                  | 4.00                      |
| Riser Pipe Below W.T.                  | SS304 SS316                 | PTFE P   | VC OTHER:         |                        |             | al Length of Cas                   |                 | (fe                                |                           |

SS304

Well Completion Form (revised 02/06/02)

SS316

Total Length of Casing

\*\*Hand-Slotted Well Screens Are Unacceptable

Screen Slot Size \*\*

| Illinois Environ                       | mental Protection Agency          | 7            |                                       | Well              | Completion                              | Report  |
|----------------------------------------|-----------------------------------|--------------|---------------------------------------|-------------------|-----------------------------------------|---------|
| Site #:                                | County:                           | asper County |                                       | We                | ell #: <u>AP</u>                        | W6      |
| Site Name: Newton Energy Co            | enter                             |              |                                       | Bor               | rehole #:A                              | PW6     |
| State Plant                            | .9 Y 7,688.5 (or) Latitud         | de:38°       | 56' 1.510"                            |                   | 88°17                                   |         |
| Surveyed By: Michael J. Gram           | ninski                            | IL Registr   | ration #: <u>035-00</u>               | 02901             |                                         |         |
| Drilling Contractor: Bulldog D         | rilling, Inc.                     | Driller:     | C. Dutton                             |                   |                                         |         |
| Consulting Firm: Hanson Profe          | essional Services Inc.            | Geologist:   | Rhonald W. 1                          | Hasenyager,       | LPG #196-0002                           | 246     |
| Drilling Method: Hollow Stem           | Auger                             | Drilling F   | luid (Type): Wa                       | ater              |                                         |         |
| Logged By: Suzanna L. Keim             |                                   | Date Start   | ted: 10/20/20                         | 015 Date          | Finished:10/                            | 21/2015 |
| Report Form Completed By:Su            | zanna L. Keim                     | Date:        | 11/6/2015                             |                   |                                         |         |
| ANNULAR SPA                            | CE DETAILS                        |              | Elevations<br>(MSL)*                  | Depths<br>(BGS)   | (0.01 ft.)                              |         |
|                                        |                                   |              | _546.88_                              | ` /               | Top of Protective                       | Casing  |
|                                        | T                                 |              | 546.56                                |                   | Top of Riser Pipe                       | S       |
| Type of Surface Seal: Concrete         |                                   |              | _543.38                               | 0.00              | Ground Surface                          |         |
|                                        |                                   |              | 541.38                                | 2.00              | Top of Annular S                        | ealant  |
| Type of Annular Sealant: <u>High-s</u> | solids bentonite                  |              |                                       |                   | · r                                     |         |
| Installation Method:Tremie             |                                   |              |                                       |                   |                                         |         |
| Setting Time:>48 hours                 |                                   |              | 523.45                                | 19.93             | Static Water Leve<br>(After Completion) |         |
| Type of Bentonite Seal Grand           | ular Pellet Slurry Choose one)    |              |                                       |                   |                                         |         |
| Installation Method: Gravity           | y                                 |              | 478.48                                | _64.90_           | Top of Seal                             |         |
| Setting Time:30 minutes                |                                   | 1 (7)        | 477.28                                | 66.10             | Top of Sand Pack                        |         |
|                                        |                                   |              |                                       |                   | - op                                    |         |
| Type of Sand Pack: Quartz Sand         |                                   |              | 475.71                                | 67.67             | Top of Screen                           |         |
|                                        | ve size)                          |              |                                       |                   |                                         |         |
| Installation Method: <u>Gravity</u>    | <u>y</u>                          |              | 470.90                                | 72.48             | Bottom of Screen                        |         |
| Type of Backfill Material: Quart       | tz Sand (if applicable)           |              | 470.50                                | 72.88             | Bottom of Well                          |         |
| Installation Method:gravity            |                                   |              | 469.38                                | 74.00             | Bottom of Boreho                        | le      |
|                                        |                                   |              | * Referenced to a                     | National Geodetic | Datum                                   |         |
|                                        |                                   |              | CAS                                   | ING MEAS          | UREMENTS                                |         |
| WELL CONS                              | TRUCTION MATERIALS                | D            | Diameter of Boreho                    | le                | (inches)                                | 8.0     |
|                                        | e type of material for each area) |              | O of Riser Pipe                       |                   | (inches)                                | 2.0     |
|                                        |                                   |              | rotective Casing L                    | ength             | (feet)                                  | 5.0     |
| Protective Casing                      | SS304 SS316 PTFE PVC OTHE         | - ( )        | tiser Pipe Length Sottom of Screen to | End Con           | (feet)                                  | 70.85   |
| Riser Pipe Above W.T.                  | SS304 SS316 PTFE PVC OTHE         |              | creen Length (1st                     |                   | ` ` `                                   | 4.81    |
| Riser Pipe Below W.T.                  | SS304 SS316 PTFE PVC OTHE         | _            | otal Length of Cas                    |                   | (feet)                                  | 76.06   |

Screen Slot Size \*\*

\*\*Hand-Slotted Well Screens Are Unacceptable

0.010

SS304

Well Completion Form (revised 02/06/02)

SS316

| Illinois Environ                       | mental Protection                                    | Agency              |          |                           | Well                      | Completio                            | n Report    |
|----------------------------------------|------------------------------------------------------|---------------------|----------|---------------------------|---------------------------|--------------------------------------|-------------|
| Site #:                                | (                                                    | County: <u>Jasp</u> | er Count | ty                        | W                         | ell #:A                              | APW7        |
| Site Name: Newton Energy C             | enter                                                |                     |          |                           | Во                        | orehole #:                           | APW7a       |
| State- Plant Plane Coordinate: X 6,151 |                                                      |                     |          |                           |                           |                                      |             |
| Surveyed By: Michael J. Gran           | ninski                                               |                     | IL Regi  | stration #: <u>035-</u>   | 002901                    |                                      |             |
| Drilling Contractor: Bulldog D         | rilling, Inc.                                        |                     | Driller: | J. Gates                  |                           |                                      |             |
| Consulting Firm: Hanson Profe          | essional Services Inc.                               |                     | Geolog   | ist: Rhonald W            | . Hasenyager              | , LPG #196-00                        | 0246        |
| Drilling Method: Hollow Stem           | Auger                                                |                     | Drilling | g Fluid (Type):V          | Vater                     |                                      |             |
| Logged By: Rhonald W. Hase             | nyager                                               |                     | Date St  | arted: 11/3/2             | 015 Date                  | Finished:1                           | 1/5/2015    |
| Report Form Completed By:Su            | zanna L. Keim                                        |                     | Date: _  | 11/9/2015                 |                           |                                      |             |
| ANNULAR SPA                            | CE DETAILS                                           |                     |          | Elevations<br>(MSL)*      | Depths<br>(BGS)           | (0.01 ft                             | <i>i.</i> ) |
|                                        |                                                      |                     |          | 539.24                    | 3.03                      | Top of Protection                    | ve Casing   |
|                                        |                                                      |                     |          | _538.86_                  | 2.65                      | Top of Riser Pi                      | pe          |
| Type of Surface Seal: Concrete         |                                                      | -                   | Y D      | 536.21                    | 0.00                      | Ground Surface                       | 2           |
| Type of Annular Sealant: High-s        | calids bentanite                                     |                     |          | 534.21                    | 2.00                      | Top of Annular                       | Sealant     |
| Installation Method: Tremie            |                                                      | _                   |          |                           |                           |                                      |             |
| Setting Time: _ >48 hours              |                                                      |                     | <u>z</u> | 490.68                    | 45.53                     | Static Water Le<br>(After Completion |             |
| Type of Bentonite Seal Gran            | ular Pellet Slurry (choose one)                      | +                   |          |                           |                           |                                      |             |
| Installation Method: Gravit            | ` ′                                                  | _                   |          | 462.06                    | 74.15                     | Top of Seal                          |             |
| Setting Time: 120 minutes              |                                                      |                     |          | 460.21                    | 76.00                     | Top of Sand Pa                       | ck          |
| Type of Sand Pack: Quartz Sand         | d                                                    |                     |          |                           |                           |                                      |             |
|                                        | ve size)                                             |                     |          | 458.32                    | 77.89                     | Top of Screen                        |             |
| Installation Method: Gravit            | у                                                    | _                   |          |                           |                           |                                      |             |
| Type of Backfill Material: _ Quar      | tz Sand                                              |                     |          | 453.51<br>453.11          | 82.70<br>83.10            | Bottom of Scree<br>Bottom of Well    |             |
|                                        | (if applicable)                                      |                     |          | 452 11                    | 02.10                     | D. " CD                              |             |
| Installation Method:gravity            | T.                                                   |                     |          | 453.11<br>* Referenced to | 83.10 a National Geodetic | Bottom of Bore<br>Datum              | hole        |
|                                        |                                                      |                     |          | CA                        | SING MEAS                 | SUREMENTS                            |             |
|                                        |                                                      |                     |          | Diameter of Borel         |                           | (inches                              | 8.0         |
|                                        | STRUCTION MATERIAL e type of material for each area) | LS                  |          | ID of Riser Pipe          |                           | (inches                              | 2.0         |
| (= 1,000 000                           |                                                      |                     |          | Protective Casing         | Length                    | (fee                                 | 5.0         |
|                                        | Γ                                                    |                     |          | Riser Pipe Length         | l .                       | (fee                                 | 80.54       |
| Protective Casing                      |                                                      | PVC OTHER:          | Steel    | Bottom of Screen          | to End Cap                | (fee                                 | 0.40        |
| Riser Pipe Above W.T.                  |                                                      | PVC OTHER:          |          | Screen Length (           | 1st slot to last slot     | ) (fee                               |             |
| Riser Pipe Below W.T.                  | SS304 SS316 PTFE                                     | PVC OTHER:          |          | Total Length of C         | asing                     | (fee                                 | 85.75       |

Screen Slot Size \*\*

\*\*Hand-Slotted Well Screens Are Unacceptable

0.010

SS304

Well Completion Form (revised 02/06/02)

SS316

| Illinois Environ                       | mental Pro                  | tection | Well Completion Rep |                         |             |                                    | ion Report      |                             |                                                 |
|----------------------------------------|-----------------------------|---------|---------------------|-------------------------|-------------|------------------------------------|-----------------|-----------------------------|-------------------------------------------------|
| Site #:                                |                             | (       | County: <u>Jas</u>  | sper Coun               | ty          |                                    | W               | /ell #:                     | APW8                                            |
| Site Name: Newton Energy Co            | enter                       |         |                     |                         |             |                                    | В               | orehole #:                  | APW8                                            |
| State- Plant Plane Coordinate: X 6,082 | 2.4 Y3,                     | 839.6 ( | or) Latitude        | e: <u>38°</u>           | :           | <u>55'</u> <u>23.380"</u>          | Longitud        | e: <del>-88°</del>          | <u>17'</u> <u>32.250"</u>                       |
| Surveyed By: Michael J. Gram           | ninski                      |         |                     | IL Reg                  | istrat      | ion #: <u>035-0</u> 0              | 02901           |                             |                                                 |
| Drilling Contractor: Bulldog D         | rilling, Inc.               |         |                     | _ Driller               | : <u> </u>  | 2. Dutton                          |                 |                             |                                                 |
| Consulting Firm: Hanson Profe          | essional Services           | s Inc.  |                     | Geolog                  | gist: _     | Rhonald W.                         | Hasenyager      | r, LPG #196-0               | 000246                                          |
| Drilling Method: Hollow Stem           | Auger                       |         |                     | _ Drillin               | g Flui      | d (Type): Wa                       | ater            |                             |                                                 |
| Logged By: Suzanna L. Keim             |                             |         |                     | _ Date S                | tarted      | I: <u>10/27/20</u>                 | 015 Date        | e Finished:                 | 10/28/2015                                      |
| Report Form Completed By: Su           | zanna L. Keim               |         |                     | _ Date:                 |             | 11/6/2015                          |                 |                             |                                                 |
| ANNULAR SPA                            | CE DETAILS                  | }       |                     |                         |             | Elevations<br>(MSL)*               | Depths<br>(BGS) | (0.01                       | ft.)                                            |
|                                        |                             |         |                     |                         |             | 529.86                             | 3.11            | Top of Protec               | tive Casing                                     |
|                                        |                             |         |                     |                         |             | 529.46                             | 2.71            | Top of Riser                | Pipe                                            |
| Type of Surface Seal: Concrete         |                             |         |                     |                         | -<br>-<br>> | 526.75                             | 0.00            | Ground Surfa                | ice                                             |
|                                        |                             |         |                     |                         |             | 524.75                             | 2.00            | Top of Annul                | ar Sealant                                      |
| Type of Annular Sealant: <u>High-s</u> |                             |         | - 🎵                 |                         |             |                                    |                 | •                           |                                                 |
| Installation Method:Tremie             | )                           |         | -                   |                         |             |                                    |                 |                             |                                                 |
| Setting Time:>48 hours                 |                             |         | _                   | $\overline{\Delta}$     |             | 490.50                             | 36.25           | Static Water (After Complet | Level<br>ion) 12/15/2015                        |
| Type of Bentonite Seal Grand           | ılar Pellet (choose one)    | Slurry  |                     |                         | -           |                                    |                 |                             |                                                 |
| Installation Method: Gravity           | <b>V</b>                    |         | _ 😾                 | $\overline{\mathbf{x}}$ |             | 462.45                             | 64.30           | Top of Seal                 |                                                 |
| Setting Time:55 minutes                |                             |         | _ 🐰                 |                         |             | 458.70                             | 68.05           | Top of Sand                 | Pack                                            |
| Type of Sand Pack: Quartz Sand         | 1                           |         |                     |                         |             |                                    |                 |                             |                                                 |
| Grain Size: 10-20 (sie                 |                             |         | _                   |                         |             | 455.35                             | _71.40_         | Top of Screen               | 1                                               |
| Installation Method: Gravity           |                             |         |                     |                         |             |                                    |                 |                             |                                                 |
| installation Method. Oravity           | <u>/</u>                    |         | _                   |                         |             | 445.69                             | 81.06           | Bottom of Sc                | reen                                            |
| Type of Backfill Material:n/a          | (if applicab                | le)     | _   [               |                         |             | 445.22                             | 81.53           | Bottom of W                 | ell                                             |
| Installation Method:                   |                             |         |                     |                         |             | 444.75                             | 82.00           | Bottom of Bo                | rehole                                          |
|                                        |                             |         |                     |                         |             | * Referenced to a                  | National Geodet | ic Datum                    |                                                 |
|                                        |                             |         |                     |                         |             | CAS                                | ING MEAS        | SUREMENT                    | S                                               |
| WELL CONS                              | TRUCTION MA                 | ATEDIAI | S                   |                         | Dia         | meter of Boreho                    | ole             | (inc                        | hes) 8.0                                        |
|                                        | e type of material for each |         | 20                  |                         |             | of Riser Pipe                      |                 | (inc                        |                                                 |
|                                        |                             |         |                     |                         |             | tective Casing L                   | ength           |                             | Seet)         5.0           Peet)         74.11 |
| Protective Casing                      | SS304 SS316                 | PTFE    | PVC OTHER           | : (Steel                |             | er Pipe Length<br>tom of Screen to | End Can         |                             | (eet) 74.11<br>(eet) 0.47                       |
| Riser Pipe Above W.T.                  | SS304 SS316                 | PTFE    | PVC OTHER           | :                       |             | een Length (1s                     | -               |                             | (eet) 0.47<br>(eet) 9.66                        |
| Riser Pipe Below W.T.                  | SS304 SS316                 | PTFE    | PVC OTHER           | :                       |             | al Length of Cas                   |                 |                             | Peet) 84.24                                     |

SS304

Well Completion Form (revised 02/06/02)

SS316

Total Length of Casing

\*\*Hand-Slotted Well Screens Are Unacceptable

Screen Slot Size \*\*

| Illinois Environ                       | mental Protect                   | Well Completion Rep  |            |                                          |                 | <b>Report</b>                          |              |
|----------------------------------------|----------------------------------|----------------------|------------|------------------------------------------|-----------------|----------------------------------------|--------------|
| Site #:                                |                                  | County: <u>Jas</u> r | er County  | 7                                        | W               | /ell #: AF                             | W9           |
| Site Name: Newton Energy Co            | enter                            |                      |            |                                          | B               | orehole #:                             | APW9         |
| State Plant Plane Coordinate: X 9,125  | 5.3 Y 3,519.                     | 6 (or) Latitude:     | 38°        | 55' 20.370"                              | Longitud        | e: <u>-88°</u> <u>16</u>               | 5' 53.730"   |
| Surveyed By: Michael J. Gram           | ninski                           |                      | IL Regis   | tration #: <u>035-0</u>                  | 02901           |                                        |              |
| Drilling Contractor: Bulldog D         | rilling, Inc.                    |                      | Driller:   | J. Gates                                 |                 |                                        |              |
| Consulting Firm: Hanson Profe          | essional Services Inc.           |                      | Geologis   | t: Rhonald W.                            | Hasenyager      | <u>-, LPG #196-000</u>                 | 246          |
| Drilling Method: Hollow Stem           | Auger                            |                      | Drilling 1 | Fluid (Type): W                          | ater            |                                        |              |
| Logged By: Rhonald W. Hase             | nyager                           |                      | Date Sta   | rted: 11/2/20                            | 015 Date        | e Finished:11                          | /3/2015      |
| Report Form Completed By: Su           | zanna L. Keim                    |                      | Date:      | 11/9/2015                                |                 |                                        |              |
| ANNULAR SPA                            | CE DETAILS                       |                      |            | Elevations<br>(MSL)*                     | Depths<br>(BGS) | (0.01 ft.)                             |              |
|                                        |                                  |                      |            | 532.43                                   | -3.61           | Top of Protective                      | Casing       |
|                                        |                                  |                      |            | 532.01                                   | 3.19            | Top of Riser Pipe                      | <b>:</b>     |
| Type of Surface Seal: Concrete         |                                  |                      |            | 528.82                                   | 0.00            | Ground Surface                         |              |
|                                        |                                  |                      |            | 526.82                                   | 2.00            | Top of Annular S                       | Sealant      |
| Type of Annular Sealant: <u>High-s</u> |                                  |                      |            |                                          |                 | - op                                   |              |
| Installation Method:Tremie             |                                  |                      |            |                                          |                 |                                        |              |
| Setting Time:>48 hours                 |                                  |                      | abla       | _502.18_                                 | _26.64_         | Static Water Lev<br>(After Completion) |              |
| Type of Bentonite Seal Grant           | ular Pellet Slu<br>(choose one)  | шту                  |            |                                          |                 |                                        |              |
| Installation Method: Gravity           | y                                |                      |            | 475.91                                   | _52.91_         | Top of Seal                            |              |
| Setting Time: 65 minutes               |                                  |                      |            | 474.20                                   | _54.62_         | Top of Sand Pack                       | ζ.           |
| Type of Sand Pack: Quartz Sand         | 1                                |                      |            |                                          |                 |                                        |              |
| Grain Size: 10-20 (sie                 |                                  |                      | . 📗        | 472.16                                   | _56.66          | Top of Screen                          |              |
| Installation Method: Gravity           |                                  |                      |            |                                          |                 |                                        |              |
|                                        |                                  |                      |            | 467.36                                   | 61.46           | Bottom of Screen                       | ı            |
| Type of Backfill Material: <u>n/a</u>  | (if applicable)                  |                      |            | 466.97                                   | 61.85           | Bottom of Well                         |              |
| Installation Method:                   |                                  |                      |            | 466.82                                   | 62.00           | Bottom of Boreh                        | ole          |
|                                        |                                  |                      |            | * Referenced to a                        | National Geodet | ic Datum                               |              |
|                                        |                                  |                      | Г          | CAS                                      | SING MEAS       | SUREMENTS                              |              |
| WELL CONS                              | TRUCTION MATE                    | RIALS                |            | Diameter of Boreho                       | ole             | (inches)                               | 8.0          |
|                                        | e type of material for each area |                      |            | ID of Riser Pipe                         | on atl-         | (inches)                               | 2.0          |
|                                        |                                  |                      |            | Protective Casing I<br>Riser Pipe Length | Lengtn          | (feet)                                 | 5.0<br>59.85 |
| Protective Casing                      | SS304 SS316 PTF                  | E PVC OTHER:         |            | Bottom of Screen to                      | o End Can       | (feet)                                 | 0.39         |
| Riser Pipe Above W.T.                  | SS304 SS316 PTF                  | E PVC OTHER:         |            | Screen Length (1s                        | -               |                                        | 4.80         |
| Riser Pipe Below W.T.                  | SS304 SS316 PTF                  | E PVC OTHER:         |            | Total Length of Ca                       |                 | (feet)                                 | 65.04        |

SS304

Well Completion Form (revised 02/06/02)

SS316

Total Length of Casing

\*\*Hand-Slotted Well Screens Are Unacceptable

Screen Slot Size \*\*

| Illinois Environ                       | mental Pro                                 | tection . | Well Completion Rep |                         |             |                                    | Report          |                               |           |               |
|----------------------------------------|--------------------------------------------|-----------|---------------------|-------------------------|-------------|------------------------------------|-----------------|-------------------------------|-----------|---------------|
| Site #:                                |                                            | Co        | ounty: <u>Jas</u> r | er Coun                 | ıty         |                                    | W               | Vell #:                       | APW1      | 0             |
| Site Name: Newton Energy Co            | enter                                      |           |                     |                         |             |                                    | В               | orehole #:                    | APW       | 10a           |
| State Plant Plane Coordinate: X 11,541 | 2 Y 5,                                     | 371.3 (or | r) Latitude:        | 38°                     |             | <u>55'</u> <u>38.790"</u>          | Longitud        | e: <u>-88°</u> _              | 16'       | 23.280"       |
| Surveyed By: Michael J. Gram           | ninski                                     |           |                     | IL Reg                  | istrat      | ion #: <u>035-0</u>                | 02901           |                               |           |               |
| Drilling Contractor: Bulldog D         | rilling, Inc.                              |           |                     | Driller                 | : <u> </u>  | C. Dutton                          |                 |                               |           |               |
| Consulting Firm: Hanson Profe          | essional Services                          | s Inc.    |                     | Geolog                  | gist: _     | Rhonald W.                         | Hasenyager      | r, LPG #196                   | -000246   | 5             |
| Drilling Method: Hollow Stem           | Auger                                      |           |                     | Drillin                 | g Flui      | id (Type): W                       | ater            |                               |           |               |
| Logged By: Suzanna L. Keim             |                                            |           |                     | Date S                  | tartec      | 1: <u>10/27/20</u>                 | 015 Dat         | e Finished: _                 | 10/27/    | 2015          |
| Report Form Completed By: Su           | zanna L. Keim                              |           |                     | Date:                   |             | 11/6/2015                          |                 |                               |           |               |
| ANNULAR SPA                            | CE DETAILS                                 |           |                     |                         |             | Elevations<br>(MSL)*               | Depths<br>(BGS) | (0.01                         | 1 ft.)    |               |
|                                        |                                            |           |                     |                         |             | 525.12                             | 3.14            | Top of Prote                  | ective Ca | sing          |
|                                        |                                            |           |                     |                         |             | 524.74                             | 2.76_           | Top of Riser                  | Pipe      |               |
| Type of Surface Seal: Concrete         |                                            |           |                     |                         | -<br>-<br>> | 521.98                             | 0.00            | Ground Sur                    | face      |               |
|                                        |                                            |           |                     |                         |             | 519.98                             | 2.00            | Top of Annu                   | ılar Seal | ant           |
| Type of Annular Sealant: <u>High-s</u> | olids bentonite                            |           | - 🎵                 |                         |             |                                    |                 | - op                          |           |               |
| Installation Method:Tremie             | 2                                          |           | -                   |                         |             |                                    |                 |                               |           |               |
| Setting Time: >48 hours                |                                            |           | _     -             | $ abla \mid $           |             | 504.12                             | _17.86_         | Static Water<br>(After Comple |           | 5/2015        |
| Type of Bentonite Seal Grand           | ular Pellet (choose one)                   | Slurry    |                     |                         | -           |                                    |                 |                               |           |               |
| Installation Method: Gravity           | у                                          |           | _                   | $\overline{\mathbf{x}}$ |             | 484.66                             | 37.32           | Top of Seal                   |           |               |
| Setting Time: 50 minutes               |                                            |           | -                   |                         |             | 483.22                             | 38.76           | Top of Sand                   | l Pack    |               |
| T CC ID I o o                          |                                            |           |                     |                         |             |                                    |                 | •                             |           |               |
| Type of Sand Pack: Quartz Sand         |                                            |           | -                   |                         |             | 481.24                             | 40.74           | Top of Scree                  | en        |               |
| Grain Size: 10-20 (sie                 |                                            |           |                     |                         |             |                                    |                 | •                             |           |               |
| Installation Method: Gravity           | ý                                          |           | -                   |                         |             | 476.44                             | 45.54           | Bottom of S                   | creen     |               |
| Type of Backfill Material: <u>n/a</u>  | (if applicabl                              | le)       | _   🗆               |                         |             | 476.04                             | 45.94           | Bottom of W                   | Vell      |               |
| Installation Method:                   |                                            | ,         |                     |                         |             | 476.04                             | 45.94           | Bottom of B                   | orehole   |               |
|                                        |                                            |           |                     |                         |             | * Referenced to a                  | National Geodet | tic Datum                     |           |               |
|                                        |                                            |           |                     |                         |             | CAS                                | SING MEAS       | SUREMENT                      | ΓS        |               |
| WELL COM                               | TRUCTION                                   | A TEDIA I | 3                   |                         | Dia         | meter of Boreho                    | ole             | (in                           | iches)    | 8.0           |
|                                        | TRUCTION MA<br>e type of material for each |           | 5                   |                         |             | of Riser Pipe                      |                 | (in                           | iches)    | 2.0           |
|                                        |                                            |           |                     |                         |             | tective Casing L                   | ength           |                               | (feet)    | 5.0           |
| Protective Casing                      | SS304 SS316                                | PTFE P    | VC OTHER:           | Steel                   |             | er Pipe Length<br>tom of Screen to | End Con         |                               |           | 43.50<br>0.40 |
| Riser Pipe Above W.T.                  | SS304 SS316                                |           | VC OTHER:           |                         |             | een Length (1s                     |                 |                               | (feet)    | 4.80          |
| Riser Pipe Below W.T.                  | SS304 SS316                                | PTFE P    | VC OTHER:           |                         |             | al Length of Cas                   |                 |                               | `         | 48.70         |

SS304

Well Completion Form (revised 02/06/02)

SS316

Total Length of Casing

\*\*Hand-Slotted Well Screens Are Unacceptable

Screen Slot Size \*\*

# Monitoring Well Boring Logs – Landfill 2

CLIENT: Natural Resource Technology, Inc. CONTRACTOR: Bulldog Drilling, Inc. Site: Newton Energy Center Rig mfg/model: CME-550 ATV Drill Location: Newton, Illinois

**Drilling Method:** 41/4" HSA, split spoon sampler Project: 15E0030

**DATES: Start:** 11/9/2015 FIELD STAFF: Driller: J. Gates Finish: 11/10/2015 Helper: C. Clines WEATHER: Sunny, mild, lo-60s Eng/Geo: R. Hasenyager

Lithology, sample, and testing data can be found on G106 Field Boring Log.



**BOREHOLE ID:** G06D Well ID: G06D

Surface Elev: 529.69 ft. MSL Completion: 96.00 ft. BGS Station: 5,328.80N 4,925.99E

Page 1 of 5

| Section 26, Tier 6N; Range 8E   Section 26, Tier 6N; Range 8   | TION:   | INFORMATI         | R LEVEL I                                 | WATE   | IIC MAP INFORMATION:                                                    | TOPOGRA                        |                           | ING          | EST     | T                      | E    | AMPL           | S    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|-------------------------------------------|--------|-------------------------------------------------------------------------|--------------------------------|---------------------------|--------------|---------|------------------------|------|----------------|------|
| 0/60 0% BD 2 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                   | = Dry - D                                 | Ā<br>Ā | e: Latona<br>North Muddy                                                | Quadrat<br>Townsh<br>Section 2 | f) <i>Qp</i> (tsf) e Type | en. (lb/ft³) | ure (%) | . / 6 in<br>alue       |      | / Total (in)   | 15   |
| 0/60 0% BD 2 Blind drill - see G106 boring log for lithology, sample, and testing data 12 Blind drill - see G106 boring log for lithology, sample, and 12 Blind drill - see G106 boring log for lithology, sample, and 12 Blind drill - see G106 boring log for lithology, sample, and 12 Blind drill - see G106 boring log for lithology, sample, and 12 Blind drill - see G106 boring log for lithology, sample, and 13 July 14 July 15 July | Remarks | Elevation ft. MSL | Borehole<br>Detail                        |        | Lithologic<br>Description                                               | Depth<br>ft. BGS               | Qu (ts<br>Failur          | Dry D        | Moist   | Blows<br>N - Va<br>RQD | Type | Recov<br>% Rec | Jimi |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   |                                           |        |                                                                         | 2                              |                           |              |         |                        | BD   | 0/60           | l    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   | 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6  |        |                                                                         | 8                              |                           |              |         |                        | BD   | 0/60           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   |                                           | ad     | lind drill - see G106 boring log for lithology, sample, an testing data | 10                             |                           |              |         |                        | BD   | 0/60<br>0%     | 2    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   | , 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,  |        |                                                                         |                                |                           |              |         |                        |      |                | 3    |
| 0/60<br>0% BD 18 - 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   | 1, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |        |                                                                         | 16                             |                           |              |         |                        | BD   |                |      |

CLIENT: Natural Resource Technology, Inc.
Site: Newton Energy Center

**Location:** Newton, Illinois **Project:** 15E0030

DATES: Start: 11/9/2015 Finish: 11/10/2015

WEATHER: Sunny, mild, lo-60s

CONTRACTOR: Bulldog Drilling, Inc.
Rig mfg/model: CME-550 ATV Drill
Drilling Method: 4<sup>1</sup>/<sub>4</sub>" HSA, split spoon sampler

FIELD STAFF: Driller: J. Gates Helper: C. Clines

Helper: C. Clines Eng/Geo: R. Hasenyager **HANSON** 

**BOREHOLE ID:** G06D **Well ID:** G06D

 Surface Elev:
 529.69 ft. MSL

 Completion:
 96.00 ft. BGS

 Station:
 5,328.80N

 4,925.99E

Page 2 of 5

|      | MPLI                          | C    | T                                | EST          | INC               |                                          | TOPOGRAF                                        | PHIC MAP INFORMATION:                                                                                                                                                         | WATE   | R LEVEL                               | INFORMAT          | ION:    |
|------|-------------------------------|------|----------------------------------|--------------|-------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|-------------------|---------|
|      | Recov / Total (in) % Recovery |      | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadranş<br>Township                            | gle: Latona<br>: North Muddy<br>5, Tier 6N; Range 8E                                                                                                                          | Ā<br>Ā | = Dry - 1                             | During Drilling   |         |
|      | Recov<br>% Rec                | Type | Blows<br>N - V                   | Moist        | Dry D             | Qu (ts<br>Failur                         | Depth<br>ft. BGS                                | Lithologic<br>Description                                                                                                                                                     |        | Borehole<br>Detail                    | Elevation ft. MSL | Remarks |
| 5    | 0/60                          | BD   |                                  |              |                   |                                          | 22                                              |                                                                                                                                                                               |        | ,,,,,,,,,,,,,,,,,,                    | 508               |         |
|      | 0/60                          | BD   |                                  |              |                   |                                          | 26                                              | Blind drill - see G106 boring log for lithology, sample<br>testing data<br>[Continued from previous page]                                                                     | , and  | , 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, | 504               |         |
| 5    | 0/60                          | BD   |                                  |              |                   |                                          | 30 - 31 - 32 - 34 - 34 - 34 - 34 - 34 - 34 - 34 |                                                                                                                                                                               |        |                                       |                   |         |
| 7 8  | 0/12                          | BD   |                                  |              |                   |                                          | 36                                              |                                                                                                                                                                               |        |                                       | 494               |         |
| A 2  | 24/24<br>100%                 | SS   | 3-8<br>12-15<br>N=20             | 13           |                   | 3.75                                     |                                                 | Gray (10YR5/1), moist, stiff, CLAY with some silt, I very fine- to very coarse-grained sand, and trace smagravel.  Gray (10YR5/1), wet, loose, very fine- to medium-gra SAND. | all    |                                       | 492               |         |
| )A 1 | 14/24<br>58%                  | ss   | 6-11<br>19-22<br>N=30            | 14           |                   | 4.00                                     | 38                                              | Gray (10YR5/1), moist, stiff, CLAY with some silt, leavery fine- to very coarse-grained sand, and trace smagravel.                                                            | ittle  |                                       | 490               |         |

CLIENT: Natural Resource Technology, Inc.
Site: Newton Energy Center

**Location:** Newton, Illinois **Project:** 15E0030

**DATES: Start:** 11/9/2015 **Finish:** 11/10/2015

WEATHER: Sunny, mild, lo-60s

CONTRACTOR: Bulldog Drilling, Inc.
Rig mfg/model: CME-550 ATV Drill
Drilling Method: 4<sup>1</sup>/<sub>4</sub>" HSA, split spoon sampler

FIELD STAFF: Driller: J. Gates Helper: C. Clines

Helper: C. Clines Eng/Geo: R. Hasenyager **HANSON** 

**BOREHOLE ID:** G06D **Well ID:** G06D

 Surface Elev:
 529.69 ft. MSL

 Completion:
 96.00 ft. BGS

 Station:
 5,328.80N

 4,925.99E

| S      | SAMPLE TESTING                   |      |                                  | j            | TOPOGR            | APHIC MAP INFORMATION:                   | WATE                                                                 | R LEVEL                                                                                                                                                                                 | INFORMAT    | LION.                                    |                   |         |
|--------|----------------------------------|------|----------------------------------|--------------|-------------------|------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------|-------------------|---------|
| ber    | Recov / Total (in)<br>% Recovery |      | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadr<br>Towns                                                       | gle: Latona $\underline{\mathbf{Y}} = \mathbf{Dry}$ $\mathbf{Dry} - \mathbf{V} = \mathbf{V} = \mathbf{V}$ $\mathbf{V} = \mathbf{V} = \mathbf{V}$ $\mathbf{V} = \mathbf{V} = \mathbf{V}$ |             | During Drillin                           |                   |         |
| Number | Reco<br>% Re                     | Type | Blow<br>N - V<br>RQD             | Mois         | Dry I             | Qu (t<br>Failu                           | Depth<br>ft. BGS                                                     | Lithologic<br>Description                                                                                                                                                               |             | Borehole<br>Detail                       | Elevation ft. MSL | Remarks |
| 11A    | 24/24<br>100%                    | ss   | 3-7<br>13-16<br>N=20             | 12           |                   | 4.50                                     | 42   44   46   48   48   50   52   1   1   1   1   1   1   1   1   1 | Gray (10YR5/1), moist, hard, CLAY with some silt, for very fine- to medium-grained sand, and trace small grained sand.                                                                  | èw<br>vel.  |                                          | 488               |         |
| 12A    | 24/24<br>100%                    | ss   | 3-7<br>11-12<br>N=18             | 13           |                   | 4.50                                     | 44                                                                   |                                                                                                                                                                                         |             |                                          | 486               |         |
| 13A    | 24/24<br>100%                    | ss   | 6-8<br>12-14<br>N=20             | 14           |                   | 4.50                                     | 46                                                                   |                                                                                                                                                                                         |             | (, (, (, (, (,                           |                   |         |
| 14A    | 3/24<br>13%                      | ss   | 13-14<br>16-20<br>N=30           | 13           |                   |                                          | 48                                                                   | Gray (10YR5/1), moist, hard, SILT with some clay, li very fine- to very coarse-grained sand, and trace sma gravel, trace wood fragments.                                                | ttle<br>.ll | 7,5,5,5                                  | 482               |         |
| 15A    | 23/24<br>96%                     | ss   | 3-7<br>11-14<br>N=18             | 13           |                   | 4.50                                     | 50                                                                   | graver, trace wood fragments.                                                                                                                                                           |             | () () () () ()                           | 480               |         |
| 16A    | 24/24<br>100%                    | ss   | 5-9<br>11-15<br>N=20             | 15           |                   | 4.00                                     | 52                                                                   |                                                                                                                                                                                         |             | (, (, (, (, (, (, (, (, (, (, (, (, (, ( |                   |         |
| 17A    | 21/24<br>88%                     | ss   | 10-14<br>12-15<br>N=26           | 13           |                   | 3.75                                     |                                                                      |                                                                                                                                                                                         |             | 7777                                     |                   |         |
| 18A    | 23/24<br>96%                     | ss   | 4-7<br>10-14<br>N=17             | 14           |                   | 3.25                                     | 56                                                                   | Gray (10YR5/1), moist, hard, SILT with some clay, livery fine- to very coarse-grained sand, and trace small                                                                             | ttle        | , , , , , , , ,                          | 474               |         |
| 19A    | 24/24<br>100%                    | ss   | 2-4<br>9-12<br>N=13              | 15           |                   | 3.25                                     | 56   58   58   60                                                    | medium gravel, trace wood fragments.                                                                                                                                                    |             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  |                   |         |
| 20A    | 24/24<br>100%                    | ss   | 3-7<br>10-14<br>N=17             | 13           |                   | 3.50                                     | 60                                                                   |                                                                                                                                                                                         |             | 1,1,1,1,1                                | 470               |         |

**NOTE(S):** G06D installed in borehole.

Lithology, sample, and testing data can be found on G106 Field Boring Log.

CLIENT: Natural Resource Technology, Inc. Site: Newton Energy Center

Location: Newton, Illinois Project: 15E0030

**DATES: Start:** 11/9/2015

Finish: 11/10/2015 WEATHER: Sunny, mild, lo-60s CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550 ATV Drill **Drilling Method:** 41/4" HSA, split spoon sampler

FIELD STAFF: Driller: J. Gates Helper: C. Clines

Eng/Geo: R. Hasenyager

**HANSON** 

**BOREHOLE ID:** G06D Well ID: G06D

Surface Elev: 529.69 ft. MSL Completion: 96.00 ft. BGS Station: 5,328.80N 4,925.99E

| SAMPLE TESTING TOPOGRAPHIC MAP INFORMAT |                               |      |                                         | RAPHIC MAP INFORMATION: | MATION: WATER LEVEL INFORMATION: |                                          |                        |                                                                                                                                                                                  |                                                                                 |                |                            |         |
|-----------------------------------------|-------------------------------|------|-----------------------------------------|-------------------------|----------------------------------|------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------|----------------------------|---------|
| Number                                  | Recov / Total (in) % Recovery | ě    | Blows / 6 in<br>N - Value<br><b>RQD</b> | Moisture (%)            | Dry Den. (lb/ft³)                | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quad<br>Town<br>Sectio | rangle: Latona<br>ship: North Muddy<br>n 26, Tier 6N; Range 8E                                                                                                                   | $\bar{\Lambda} = \bar{\Lambda} = \bar{\Lambda} = \bar{\Lambda} = \bar{\Lambda}$ |                | During Drilling  Elevation |         |
| Nui                                     | Rec<br>% R                    | Type | Blo <sub>1</sub><br>N-<br><b>RQ</b>     | Moi                     | Dry                              | Qu<br>Fail                               | Depth<br>ft. BGS       | Lithologic<br>Description                                                                                                                                                        |                                                                                 | etail          | ft. MSL                    | Remarks |
| 21A                                     | 24/24<br>100%                 | ss   | 4-8                                     | 13                      |                                  | 4.25                                     | 62                     | Gray (10YR5/1), moist, hard, SILT with some clay, livery fine- to very coarse-grained sand, and trace small medium gravel, trace wood fragments.  [Continued from previous page] | itle<br>to                                                                      | (, (, (, (, (, | 468                        |         |
| 22A                                     | 24/24<br>100%                 | ss   | 2-6<br>10-14<br>N=16                    | 14                      |                                  | 3.75                                     | 64                     | Gray (10YR5/1), moist, hard, CLAY with some silt, li very fine- to very coarse-grained sand, and trace small medium gravel, trace wood fragments.                                | ttle<br>to                                                                      |                | 466                        |         |
| 23A                                     | 24/24<br>100%                 | ss   | 6-10<br>16-21<br>N=26                   | 13                      |                                  | 4.50                                     | 66                     | Gray (10YR5/1), moist, hard, SILT with some clay, livery fine- to very coarse-grained sand, and trace small                                                                      |                                                                                 | ,,,,,,,        | 464<br>                    |         |
| 4A                                      | 24/24<br>100%                 | ss   | 4-8<br>11-14<br>N=19                    | 13                      |                                  | 4.50                                     | 68                     | medium gravel, trace wood fragments.                                                                                                                                             | 00000                                                                           | ,,,,,,,,       | 462                        |         |
| 5A                                      | 24/24<br>100%                 | ss   | 2-6<br>8-9<br>N=14                      | 15                      |                                  | 3.60                                     | 70                     |                                                                                                                                                                                  |                                                                                 |                | 460                        |         |
| 6A                                      | 24/24<br>100%                 | ss   | 1-4<br>8-9<br>N=12                      | 17                      |                                  | 2.75                                     | 72                     | Gray (10YR5/1), moist, stiff, CLAY with some silt, lit very fine- to very coarse-grained sand, and trace sma gravel, trace wood fragments.                                       | tle<br>II                                                                       |                | 458                        |         |
| .7A                                     | 24/24<br>100%                 | ss   | woh-4<br>5-8<br>N=9                     | 18                      |                                  | 2.25                                     |                        |                                                                                                                                                                                  |                                                                                 |                | 456                        |         |
| 28A                                     | 24/24<br>100%                 | ss   | woh-3<br>5-8<br>N=8                     | 17                      |                                  | 1.50                                     | 74                     | Gray (10YR5/1), moist, medium, CLAY with some silittle very fine- to very coarse-grained sand, and trace signavel, trace wood fragments.                                         | ilt,<br>nall                                                                    |                | 454                        |         |
| 29A                                     | 24/24<br>100%                 | ss   | wor-1<br>5-7<br>N=6                     | 18                      |                                  | 1.50                                     | 78                     |                                                                                                                                                                                  |                                                                                 |                | 452                        |         |
| 30A                                     | 24/24<br>100%                 | ss   | 1-4<br>5-8<br>N=9                       | 19                      |                                  | 1.00                                     | 80                     | Gray (10YR5/1), moist, soft, CLAY with some silt, lit very fine- to very coarse-grained sand, and trace sma gravel, trace wood fragments.                                        |                                                                                 |                | 450                        |         |

Lithology, sample, and testing data can be found on G106 Field Boring Log.

CLIENT: Natural Resource Technology, Inc.
Site: Newton Energy Center

**Location:** Newton, Illinois **Project:** 15E0030

DATES: Start: 11/9/2015

Finish: 11/10/2015 WEATHER: Sunny, mild, lo-60s

CONTRACTOR: Bulldog Drilling, Inc.
Rig mfg/model: CME-550 ATV Drill
Drilling Method: 41/4" HSA, split spoon sampler

FIELD STAFF: Driller: J. Gates
Helper: C. Clines
Eng/Geo: R. Hasenyager

**CP** HANSON

**BOREHOLE ID:** G06D **Well ID:** G06D

 Surface Elev:
 529.69 ft. MSL

 Completion:
 96.00 ft. BGS

 Station:
 5,328.80N

 4,925.99E

| S          | SAMPLE TESTING                   |      |                                  |              | TOPOGRA           | PHIC MAP INFORMATION:               | WATER LEVEL INFORMATION: |                                                                                                                                                                           |         |                              |  |
|------------|----------------------------------|------|----------------------------------|--------------|-------------------|-------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------|--|
| er         | Recov / Total (in)<br>% Recovery |      | / 6 in<br>alue                   | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) $Qp$ (tsf)<br>Failure Type | Quadrai<br>Townshi       | ngle: Latona<br>ip: North Muddy<br>26, Tier 6N; Range 8E                                                                                                                  |         | ring Drilling                |  |
| Number     | Recov<br>% Rec                   | Type | Blows / 6 in<br>N - Value<br>RQD | Moist        | Dry D             | Qu (ts<br>Failur                    | Depth<br>ft. BGS         | Lithologic<br>Description                                                                                                                                                 |         | Elevation<br>ft. MSL Remarks |  |
| 31A        | 24/24<br>100%                    | ss   | woh-3<br>5-8<br>N=8              | 19           |                   | 0.75                                | 82                       |                                                                                                                                                                           |         | - 448                        |  |
| 32A        | 24/24<br>100%                    | ss   | 1-4<br>6-8<br>N=10               | 18           |                   | 1.25                                | 84 —                     | Gray (10YR5/1), moist, soft, CLAY with some silt, lit very fine- to very coarse-grained sand, and trace sma gravel, trace wood fragments.  [Continued from previous page] | tle     | - 446                        |  |
| 33A        | 24/24<br>100%                    | ss   | woh-4<br>6-8<br>N=10             | 19           |                   | 1.00                                | 86 —                     |                                                                                                                                                                           |         | - 444                        |  |
| 34A<br>34B | 24/24<br>100%                    | ss   | woh-4<br>9-10<br>N=13            | 16<br>18     |                   | 1.00                                | 88                       | Gray (10YR5/1), moist, dense, SILT and very fine-grain SAND with trace very coarse-grained sand.                                                                          |         | - 442                        |  |
| 35A        | 24/24<br>100%                    | ss   | 4-9<br>7-8<br>N=16               | 19           |                   | 1.25                                | 90                       | Gray (10YR5/1), moist, soft, CLAY with some silt, lit very fine- to coarse-grained sand, and trace small grav trace wood fragments.                                       | tle el, | - 440                        |  |
| 36A        | 24/24<br>100%                    | ss   | woh-2<br>5-6<br>N=7              | 20           |                   | 0.75                                | 82                       |                                                                                                                                                                           |         | - 438                        |  |
| 37A        | 24/24<br>100%                    | ss   | woh-2<br>5-7<br>N=7              | 19           |                   | 0.75                                | 94 —                     | Gray (10YR5/1), moist, soft, CLAY with some silt, travery fine- to coarse-grained sand, and trace small graverace wood fragments.                                         | ace el, | - 436                        |  |
| 38A        | 24/24<br>100%                    | ss   | woh-3<br>5-8<br>N=8              | 19           |                   | 0.75                                | 94                       | End of boring = 96.0 feet                                                                                                                                                 |         | - 434                        |  |

**NOTE(S):** G06D installed in borehole.

Lithology, sample, and testing data can be found on G106 Field Boring Log.

**CLIENT:** Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois Project: 15E0030

**DATES: Start:** 10/19/2015

**Finish:** 10/20/2015 **WEATHER:** Sunny, breezy, warm, lo-80s

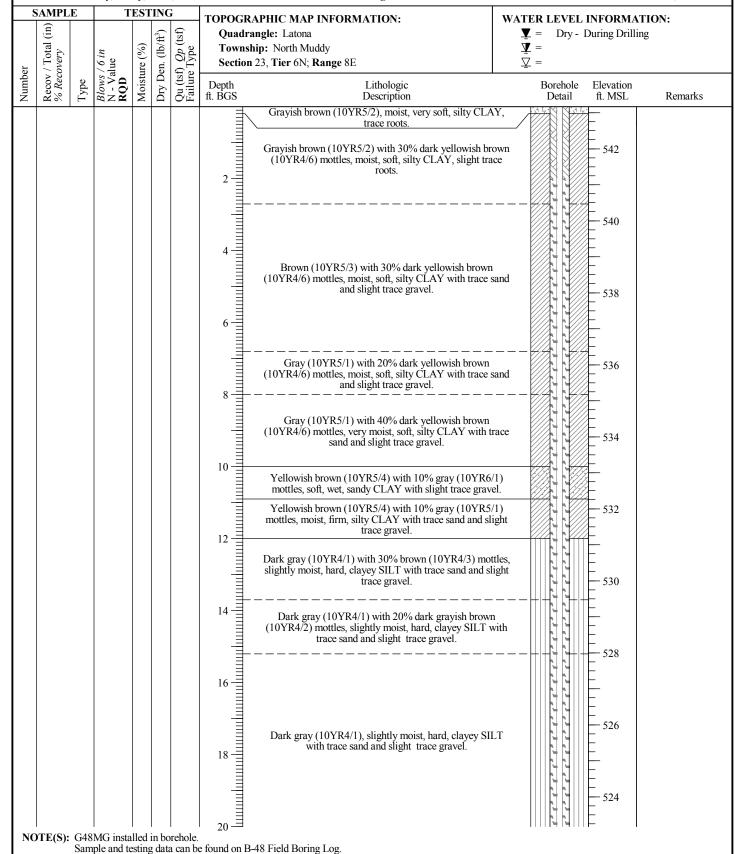
**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 41/4" HSA

FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim




BOREHOLE ID: G48MG Well ID: G48MG

 Surface Elev:
 543.17 ft. MSL

 Completion:
 77.06 ft. BGS

 Station:
 9,706.71N

 5.052.58E



CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois Project: 15E0030

**DATES: Start:** 10/19/2015

**Finish:** 10/20/2015 **WEATHER:** Sunny, breezy, warm, lo-80s

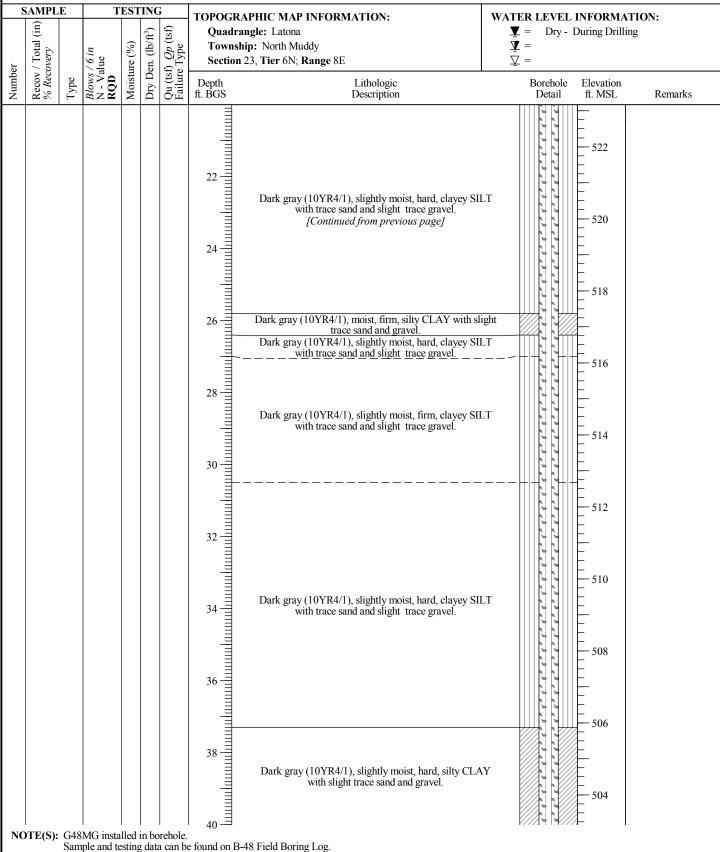
**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

**Drilling Method:** 41/4" HSA

FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim




**BOREHOLE ID:** G48MG **Well ID:** G48MG

 Surface Elev:
 543.17 ft. MSL

 Completion:
 77.06 ft. BGS

 Station:
 9,706.71N

 5.052.58E



CLIENT: Natural Resource Technology, Inc. CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Site: Newton Energy Center

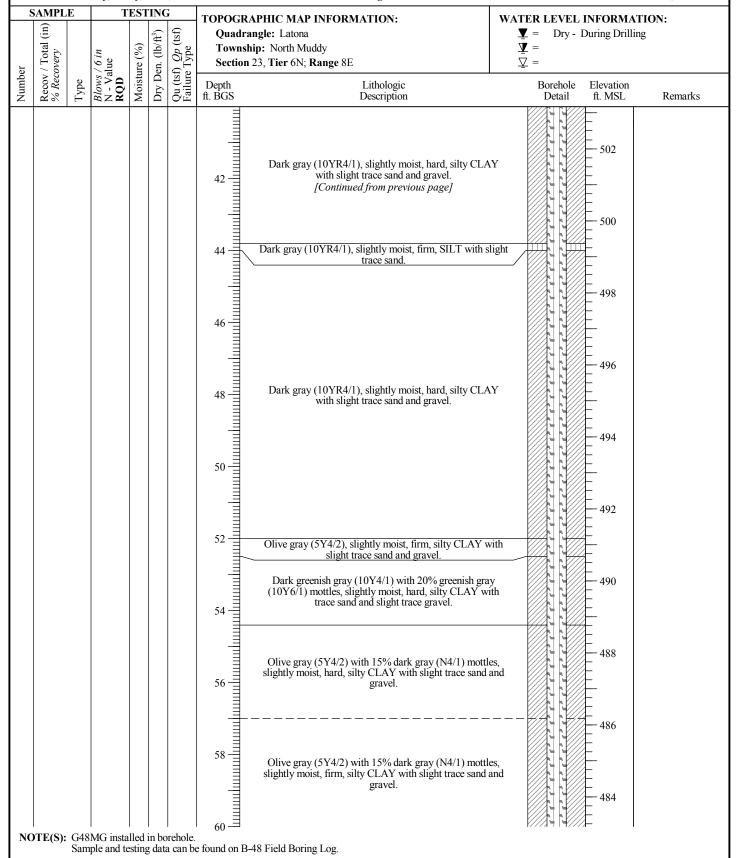
Location: Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/19/2015 Finish: 10/20/2015

WEATHER: Sunny, breezy, warm, lo-80s

Drilling Method: 41/4" HSA


FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim

**BOREHOLE ID: G48MG** 

Well ID: G48MG Surface Elev: 543.17 ft. MSL

**Completion:** 77.06 ft. BGS **Station:** 9,706.71N 5,052.58E



CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois Project: 15E0030

**DATES: Start:** 10/19/2015

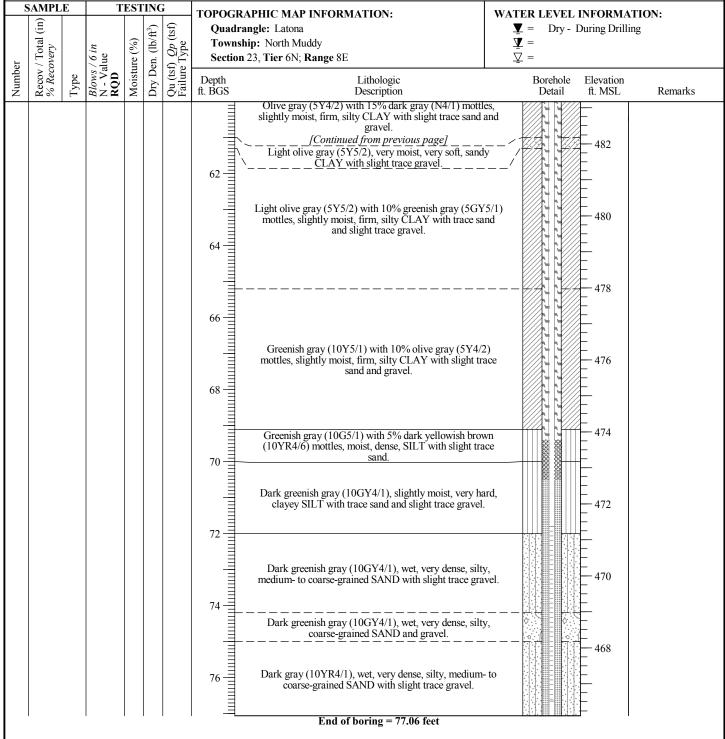
Finish: 10/20/2015 WEATHER: Sunny, breezy, warm, lo-80s CONTRACTOR: Bulldog Drilling, Inc.
Rig mfg/model: CME-550X ATV Drill

**Drilling Method:** 41/4" HSA

FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim




**BOREHOLE ID:** G48MG **Well ID:** G48MG

 Surface Elev:
 543.17 ft. MSL

 Completion:
 77.06 ft. BGS

 Station:
 9,706.71N

 5.052.58E



NOTE(S): G48MG installed in borehole.

Sample and testing data can be found on B-48 Field Boring Log.

### **BORING LOG**

| ENGINEERING and APPLIED SCIENCE |                |                 | 2387 W            | VEST MONROE - SPRINGFIELD IL 62704 - (217)787-211 |
|---------------------------------|----------------|-----------------|-------------------|---------------------------------------------------|
| Client: CIPS-NEWTON             |                | _ Project: WELL | INSTALLATION      | Boring No: G201                                   |
| Drilling Firm-PROFESSION        | IAL SERVICE IN | Drilling Method | 4-1/4 ID HSA      | Surface Elev. 542.45                              |
| Logged By: MSS                  | Checked By:    | De              | te Started 10-8-9 |                                                   |

| DEP  | Material Description                                                                                                                        | Sc          | mp               | ling | Te           | ests                                 |       |                                                       | w     |    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|------|--------------|--------------------------------------|-------|-------------------------------------------------------|-------|----|
| PTHO | Classification System UNIFIED                                                                                                               | Tubi<br>No. | Тур              | Rec. | OVM<br>(ppm) | Qu<br>t/sf<br>PEN                    | Moist | Comments                                              | e     |    |
|      | Brown, mottled gray silty CLAY (OH) w/trace pebbles 4.5                                                                                     | 1           |                  | 80   |              | 1.5<br>1.5<br>3.25<br>3.75           | V 3   | Fractured                                             | 17.00 |    |
| 5    | Gray to tan clayey SILT (MH)  Brown, w/reddish streaking silty CLAY (CH)  Gray, mottled brown silty CLAY (CH)  w/trace sand & pebbles  10.2 | 2           | sampler          | 100  |              | 1.75<br>1.25<br>1.50<br>1.50<br>1.75 | dry   |                                                       |       |    |
| 5    | Reddish brown, silty CLAY (CL) w/pebbles  13.0 Reddish brown silty SAND (SP-SM) w/pebbles  15.0                                             |             | CME continuous s | 95   |              | 1.75<br>2.25<br>2.75<br>0.75<br>0.75 | wet   | Blocky 527.5                                          |       |    |
|      | Gray silty CLAY (ML-CL) w/pebbles                                                                                                           | 4           | 5.0, 0           | 100  |              | 1.5+                                 | dry   | St. Hotters                                           |       |    |
|      |                                                                                                                                             | 5           |                  | 100  | 4            | 1.5+<br>1.5+<br>1.5+<br>1.5+<br>1.5+ |       |                                                       |       | _  |
|      | Gray SAND (SM) fine to coarse                                                                                                               | 6           |                  | 50   | 4            | .5+<br>.5+                           | +     | 515<br>Plan-ia:                                       |       | -2 |
| 1    | Gray SAND (SM) fine to coarse<br>grain w/silt & trace pebbles                                                                               |             |                  |      |              | NA                                   | wet   | Blow-in:<br>Tried to flush hole.<br>Redrilled w/plug. |       | -  |

Water Level NA of NA hra. Water Level NA of NA hra.

N 8947.43, E 5499.92

Sheet 1 of 3

### **BORING LOG**

| ENGINEERING and APPLIED SCIEN | Œ                 | 2387 WE                       | ST MONROE - SPRINGFIELD IL 62704 - (217)787-21 |
|-------------------------------|-------------------|-------------------------------|------------------------------------------------|
| Client: CIPS-NEWTON           |                   | Project WELL INSTALLATION     | Boring No: G201                                |
| Driling Firm PROFESSI         | ONAL SERVICE IND. | Drilling Method: 4-1/4 ID HSA | Surface Elev. 542.45                           |
| Logged By: MSS                | Checked By:       | Date Started: 10-8-96         | Completed: 10-8-96                             |

| DEP    | Material Description                                                                                  | So          | mp                 | ling      | Te    | ests                            |       |                    | w          | I       |
|--------|-------------------------------------------------------------------------------------------------------|-------------|--------------------|-----------|-------|---------------------------------|-------|--------------------|------------|---------|
| ST - 1 | Classification System UNIFIED                                                                         | Tube<br>No. | Тур                | %<br>Rec. | (ppm) | Qu<br>t/sf<br>PEN               | Moist | Comments           | e<br> <br> | 1 1 1 3 |
|        | Gray SAND (SM) fine to coarse grain w/silt & trace pebbles  33.0  Gray GRAVEL (GL) w/sand & silt 33.4 | 1           | er                 | 40        |       | NA<br>NA<br>NA<br>4.5+          | wet   |                    |            |         |
| 40-    | Gray silty CLAY (ML-CL) w/pebbles 40.0                                                                | 8           | continuous sampler | 60        |       | 4.5+                            | moist |                    |            |         |
|        | No recovery                                                                                           | 9           | 5.0' CME o         | 00        |       | NA                              |       | Very hard<br>Firm. |            |         |
| 5      | Gray silty CLAY (ML-CL) w/pebbles                                                                     | 10          |                    | 90        |       | 4.5+<br>4.5+<br>4.5+<br>1.5+    |       |                    |            |         |
| 8      | 54.1                                                                                                  | 11          |                    | 100       |       | 3.0<br>3.0<br>3.0               |       |                    |            | -5      |
| 5      | Gray-brown silty CLAY (ML-CL)   w/pebbles 55.0  Gray-brown silty CLAY (ML-CL)   w/pebbles             | 12          |                    | 100       |       | 3.0<br>4.0<br>4.5<br>4.0<br>4.0 |       |                    |            | -55     |

Water Level NA of NA hra. Water Level NA of NA hra.

N 8947.43, E 5499.92

Sheet 2 of 3

### **BORING LOG**

| ENGINEERING and APPLIED SCIENCE |                 |                       | 2387 WEST        | MONROE - SPRINGFIELD IL 62704 - (217)787-211 |
|---------------------------------|-----------------|-----------------------|------------------|----------------------------------------------|
| Client: CIPS-NEWTON             |                 | Project: WELL II      | NSTALLATION      | Boring No: G201                              |
| Drilling Firm PROFESSIO         | DNAL SERVICE IN | D. Drilling Method: 4 | -1/4 ID HSA      | Surface Elev. 542.45                         |
| Logged By: MSS                  | Checked By:     | Date                  | Started: 10-8-96 | Completed: 10-8-96                           |

| DE   | Material Description                                    | Sa          | mp         | ling      | Т            | ests              |       |                                                                                 | w     | Ī          |
|------|---------------------------------------------------------|-------------|------------|-----------|--------------|-------------------|-------|---------------------------------------------------------------------------------|-------|------------|
| PTH  | Classification System UNIFIED                           | Tube<br>No. | Туре       | %<br>Rec. | OVM<br>(ppm) | Qu<br>t/sf<br>PEN | Molst | Comments                                                                        | e<br> | E F 7 - 61 |
| -60- | Gray silty CLAY (ML-CL) w/pebbles 63.0                  | 13          |            | 75        |              | 4.5<br>4.5<br>4.5 | moist |                                                                                 |       | 6          |
| -65- | Gray fine grain sandy SILT (SM-ML) w/trace pebbles 65.5 |             | sampler    |           |              | 3.0               | wet   | Note:                                                                           |       | -          |
|      | Gray fine grain SAND-SILT (SM) w/trace pebbles          | 14          | continuous | 90        |              | 3.0<br>3.0<br>3.0 | wet   | Note:<br>63.5' to 65.0' split<br>spoon to open augers<br>30/120/150 blow count. |       |            |
| -70  | End Of Boring @70.0'                                    |             | 5.0° CME   |           |              |                   |       |                                                                                 |       | -7:        |
| 85-  |                                                         |             |            |           |              |                   |       | •                                                                               |       | 85         |

### **BORING LOG**

| ENGINEERING and APPLIED SCIENCE |                |                       | 2387 WES         | T MONROE - SPRINGFIELD IL 62704 - (217)787-211 |
|---------------------------------|----------------|-----------------------|------------------|------------------------------------------------|
| Client: CIPS-NEWTON             |                | Project: WELL IN      | ISTALLATION      | Boring No: G202                                |
| Driling Firm PROFESSIO          | NAL SERVICE IN | D. Drilling Method: 4 | -1/4 ID HSA      | Surface Elev. 537.24                           |
| Logged By: MSS                  | Checked By:    |                       | Started: 10-16-9 |                                                |

| DEP  | Material Description                                    |      | Sa          | mp            | ling | T     | ests              |       |                   | w           | DEP  |
|------|---------------------------------------------------------|------|-------------|---------------|------|-------|-------------------|-------|-------------------|-------------|------|
| PHI  | Classification System UNIFIED                           |      | Tube<br>No. | Туре          | Rec. | (ppm) | Qu<br>t/sf<br>PEN | Moist | Comments          | e<br>I<br>I | PHHO |
|      | Fill Material:<br>Drilled through built drilling<br>pad |      | 1           |               | 0    |       | NA                | NA.   |                   |             |      |
| -5-  |                                                         | 10.0 | 2           | sampler       | 0    |       | NA.               | NA    |                   |             | -5-  |
| -10- | Brown-gray silty SAND (SM) w/clay & trace pebbles       | 12.5 | 3           | continuous so | 30   |       |                   | moist |                   |             | -10- |
| -15  | Brown-clayey SILT (ML) w/<br>sand & pebbles             |      |             | CME cont      | 50   |       | 0.25<br>NA        | wet   |                   |             | -15- |
|      | 1                                                       | 16.5 |             |               |      |       | NA                |       |                   |             |      |
|      | Gray silty CLAY (ML-CL) w/pebbles                       | 18.0 | 4           | 5.0           | 30   |       | NA<br>NA          | moist | Very<br>weathered |             |      |
| 20-  | Brown coarse SAND (SM) w/silt                           | 20.8 |             |               |      |       |                   | mois  | woulded           |             | -20- |
|      | Gray silty CLAY (ML-CL)                                 |      | 5           |               | 60   |       | 4.5+<br>4.5+      | dry   |                   |             |      |
|      | w/pebbles                                               |      |             |               |      | ŀ     | 4.5+              |       |                   |             |      |
| 25   |                                                         |      | 6           |               | 100  |       | -                 | noisi |                   |             | -25- |
| 30   |                                                         |      |             |               |      |       | 1.5+              |       |                   |             | 30   |

Water Level NA of NA hrs.

N 6849.68, E 6587.20

Sheet 1 of 3

### **BORING LOG**

| ENGINEERING and APPLIED SCIEN | Œ.                    | 2387 WEI                    | BT MONROE - SPRINGFIELD IL 62704 - (217)787-211 |
|-------------------------------|-----------------------|-----------------------------|-------------------------------------------------|
| Client: CIPS-NEWTON           | ProPro                | Dect: WELL INSTALLATION     | Boring No: G202                                 |
| Drilling Firm-PROFESSI        | ONAL SERVICE IND. Dr. | illing Method: 4-1/4 ID HSA | Surface Elev. 537.24                            |
| Logged By: MSS                | Checked By:           | Date Started: 10-8-96       | Completed: 10-8-96                              |

| DEP  | Material Description                                                                                          | Sa          | mp                 | ling | T            | ests                         |                       |          | w | P      |
|------|---------------------------------------------------------------------------------------------------------------|-------------|--------------------|------|--------------|------------------------------|-----------------------|----------|---|--------|
| H    | Classification System UNIFIED                                                                                 | Tube<br>No. | Тур                | Rec. | DVM<br>(ppm) | Qu<br>t/sf<br>PEN            | Moist                 | Comments | e | DEPTH3 |
| -50  | Gray silty CLAY (ML-CL) w/pebbles 31.3  Brownish Gray CLAY (CH) w/silt32.3  Gray silty CLAY (ML-CL) w/pebbles | 7           |                    | 100  |              | 3.0                          | moist<br>wet<br>moist |          |   | 30     |
| -35- | Gray silty SAND (SM) 36.5                                                                                     | 8           | ler                | 100  |              | 4.5+<br>NA<br>4.5+<br>4.5+   | wet                   |          |   | -35    |
| 40-  | Gray silty CLAY (ML-CL) w/pebbles                                                                             | 9           | continuous sampler | 90   |              | 4.5+                         | noist                 |          |   | 40     |
| 45   |                                                                                                               | 10          | 5.0' CME           | 100  |              | 1.5+<br>1.5+<br>1.5+<br>1.5+ |                       |          |   | 45     |
| 50-  |                                                                                                               | 11          |                    | 100  |              | 1.5+<br>1.5+<br>1.5+<br>1.5+ |                       |          |   | -50-   |
| 55-  |                                                                                                               | 12          |                    | 100  | 4            | .5+<br>.5+<br>.5+            |                       |          |   | 55     |

Water Level NA of NA hra. Water Level NA of NA hra.

N 6649.68, E 6587.20

Sheet 2 of 3

### **BORING LOG**

| ENGINEERING and APPLIED SCIENCE | Œ               |                        | 2387 WES         | T MONROE - SPRINGFIELD IL 62704 - (217)787-211 |
|---------------------------------|-----------------|------------------------|------------------|------------------------------------------------|
| Client: CIPS-NEWTON             |                 | Project: WELL IN       | NSTALLATION      | Boring No: G202                                |
| Drilling Firm PROFESSI          | ONAL SERVICE IN | ID. Drilling Method: 4 | -1/4 ID HSA      | Surface Elev. 537.24                           |
| Logged By: MSS                  | Checked By:     |                        | Started: 10-16-9 | 6 Completed: 10-16-96                          |

| D       | Material Description                                                                                   | So          | mp         | ling      | Т            | ests                               |       |                               | We          | P      |
|---------|--------------------------------------------------------------------------------------------------------|-------------|------------|-----------|--------------|------------------------------------|-------|-------------------------------|-------------|--------|
| DEPTH60 | Classification System UNIFIED                                                                          | Tube<br>No. | Туре       | %<br>Rec. | OVM<br>(ppm) | Qu<br>t/sf<br>PEN                  | Moist | Comments                      | e<br>I<br>I | DEPTHO |
| 65      | Gray silty CLAY (ML-CL) w/pebbles 61.4 Gray GRAVEL (GM) w/silt 62.0  Gray silty CLAY (ML-CL) w/pebbles | 13          | sampler    | 100       |              | 4.5+<br>4.5+<br>4.5+<br>4.5+       | wet   |                               |             |        |
|         | Gray fine sandy SILT (SM) 69.5                                                                         | 14          | continuous | 100       |              | 4.5+<br>4.5+<br>4.5+<br>4.5+<br>NA | wet   | Blind drill:                  |             | 65     |
| 70-     | End Of Boring @70.0'                                                                                   |             | 5.0° CME   |           |              |                                    |       | Augers plugged<br>w/SILT-SAND |             | -70    |
| 75-     |                                                                                                        |             |            |           |              |                                    |       |                               |             | -75    |
| 30-     | *                                                                                                      |             |            |           |              |                                    |       |                               |             | -80    |
| 15-     |                                                                                                        |             |            |           |              |                                    |       |                               |             | 85     |
|         |                                                                                                        |             |            |           |              |                                    |       |                               |             |        |
|         |                                                                                                        |             |            |           |              |                                    |       |                               |             | 1      |

Water Level NA of NA hra. Water Level NA of NA hra.

N 6649.68, E 6587.20

Sheet 3 of 3

### **BORING LOG**

| ENGINEERING and APPLIED SCIENCE | E              |                  | 2387 WE            | ST MONROE - SPRINGFIELD IL 62704 - (217)787-2 |
|---------------------------------|----------------|------------------|--------------------|-----------------------------------------------|
| Client: CIPS-NEWTON             |                | _ Project: WELL  | INSTALLATION       | Boring No: G203                               |
| Drilling FirmPROFESSIC          | NAL SERVICE IN | Drilling Method: | 4-1/4 ID HSA       | Surface Elev. 530.97                          |
| Logged By: MSS                  | Checked By:    | De               | te Started 10-15-9 | 6 Completed 10-15-96                          |

| D     | Material Description                                                                      | So          | mp               | ling | Te           | sts               |              |           | w | [   |
|-------|-------------------------------------------------------------------------------------------|-------------|------------------|------|--------------|-------------------|--------------|-----------|---|-----|
| DHPHI | Classification System UNIFIED                                                             | Tube<br>No. | Тур              | Rec. | OVM<br>(ppm) | Qu<br>t/st<br>PEN | Moist        | Comments  | e | FTH |
|       | Tan, mottled reddish clayey SILT (MH)  3.5                                                | 1           |                  | 75   |              | 1.5+<br>4.0       | mois         | Very soft |   |     |
| 10-   | Gray, mottled brown silty CLAY<br>(MH-CH) w/trace coarse sand &<br>pebbles                | 2           | sampler          | 100  | ic<br>1      | ,75               | mois<br>mois |           |   | -   |
| 15-   | Brown silty clay (CL-ML) w/coarse sand & pebbles                                          | 3           | CME continuous s | 60   | 3            | NA<br>NA<br>2.5   | dry          |           |   | -10 |
|       |                                                                                           | 4           | 5.0, 0           | 70   | ,            | VA                | dry          |           |   | -1  |
| .0    | Brown SAND (SM) w/silt, poorly sorted 23.0  Gray, mottled brown silty CLAY (CL) w/pebbles | 5           |                  | 70   | 4            | 0.0<br>MA         | dry          |           |   | -20 |
| 5     | Gray silty CLAY (CL-ML) w/pebbles                                                         | 6           |                  | 95   | 4.           | 25                | noist        |           |   | -25 |

Water Level NA of NA hrs. Water Level NA of NA hrs.

N 5821.29, E 6113.10

Sheet 1 of 3

### **BORING LOG**

| ENGINEERING and APPLIED SCIENCE | Æ                 | 2387 WEST N                   | MONIROE - SIPPIING/FIELD IL 62704 - (217)787-2118 |
|---------------------------------|-------------------|-------------------------------|---------------------------------------------------|
| Client: CIPS-NEWTON             | l l               | Project: WELL INSTALLATION    | Boring No: G203                                   |
| Drilling FirmPROFESSI           | ONAL SERVICE IND. | Orilling Method: 4-1/4 ID HSA | Surface Elev. 530.97                              |
| Logged By: MSS                  | Checked By:       | Date Started: 10-15-96        | Completed: 10-15-96                               |

| DE                | Material Description                                                            | S   | am         | plin  | 9      | Tests                        |       |          | We | D     |
|-------------------|---------------------------------------------------------------------------------|-----|------------|-------|--------|------------------------------|-------|----------|----|-------|
| P<br>T<br>H<br>30 | Classification System UNIFIED                                                   | Tub | Туј        | Pe Re | c. (PF | VM Qu<br>t/sf<br>PEN         | Moist | Comments | e  | PT HX |
|                   | Gray silty CLAY (ML-CL) w/pebbles  33.:  Gray fine grain SAND (SM) w/silt  34.: | 7   |            | 10    | d      | 4.5+<br>4.5+<br>4.5+         | dry   |          |    | 5     |
| 35                | Brownish gray silty CLAY (CL)                                                   | 5   | Ser        | L     |        | 4.5                          |       |          |    | 35    |
| -                 | w/pebbles 36.                                                                   | 5   | sampler    |       |        | 4.0                          | dry   |          |    |       |
|                   |                                                                                 | 8   | continuous | 10    | a      | 4.5<br>4.5+<br>4.5           |       |          |    |       |
| 40-               |                                                                                 |     | CME        |       |        | 4.5+                         | dry   |          |    | 40    |
|                   | Gray silty CLAY (ML-CL) w/pebbles                                               | 9   | 5.0        |       | d      | 4.5+<br>4.5+<br>4.5+         |       |          |    |       |
| 45-               |                                                                                 | 10  |            | 10    | 0      | 4.5+<br>4.5+<br>4.5+<br>4.5+ | dry   |          |    | -45   |
| -                 |                                                                                 | 11  |            | 100   |        | 4.5+<br>4.5+<br>4.5+         |       |          |    | -50   |
| i5-               |                                                                                 |     |            |       |        | 4.5+<br>4.5+                 | noist |          |    | -55-  |
|                   | Gray fine SAND (SM) w/silt 58.0  Gray silty CLAY (ML-CL) w/pebbles              | 12  |            | 100   |        | 4.5+<br>4.5+                 |       |          |    |       |

Water Level NA of NA hra. Water Level NA of NA hra.

N 5821.29, E 6113.10

Sheet 2 of 3

### **BORING LOG**

| ENGINEERING and APPLIED SCIEN |                   | 2387 WEST M                   | ONROE - SPRINGFIELD IL 62704 - (217)787-21 |
|-------------------------------|-------------------|-------------------------------|--------------------------------------------|
| Client: CIPS-NEWTON           |                   | Project: WELL INSTALLATION    | Boring No: G203                            |
| Drilling Firm-PROFESSI        | ONAL SERVICE IND. | Drilling Method: 4-1/4 ID HSA | _Surface Bev. 530.97                       |
| Logged By: MSS                | Checked By:       | Date Started: 10-15-96        | _ Completed: 10-15-96                      |

| D      | Material Description                            | S  | a  | mpl      | ling      | T            | ests              |       |          | Tw  | [          |
|--------|-------------------------------------------------|----|----|----------|-----------|--------------|-------------------|-------|----------|-----|------------|
| ST-100 | Classification System UNIFIED                   | Tu | be | Тура     | %<br>Rec. | OVM<br>(ppm) | Qu<br>t/st<br>PEN | Moist | Comments | W e | FT         |
|        | Gray silty CLAY (ML—CL)<br>w/pebbles            | 1. | 3  | sampler  | 100       |              | 4.0               | moist |          |     | 6          |
| 65-    | Gray fine SAND (SM) w/silt 66                   | .6 |    | 100      |           |              | 3.0               |       |          |     | 6          |
|        | Gray fine SAND-SILT (SM) w/trace gravel         | 14 | 1  | cont     | 80        |              | 4.0<br>NA         | wet   |          |     |            |
| 70-    | Blind Drill: Auger plugged & redrilled to 73.0' | .0 |    | 5.0° CME |           |              |                   |       |          |     | -70        |
| 75-    | End Of Boring ⊕73.0°                            |    |    |          |           |              |                   |       |          |     | -75<br>-80 |
|        |                                                 |    |    |          |           |              |                   |       |          |     |            |

Water Level NA of NA hra.
Water Level NA of NA hra.

N 5821.29, E 6113.10

Sheet 3 of 3



### Field Boring Log

Page 1 of 2

| " T      | No. 0798085001 Federal ID No                                               |         |                  | C           | county                                          | y; <u>Jas</u>          | per          | · ·                       |                                         |                                                         |  |  |
|----------|----------------------------------------------------------------------------|---------|------------------|-------------|-------------------------------------------------|------------------------|--------------|---------------------------|-----------------------------------------|---------------------------------------------------------|--|--|
|          | ame: Newton Power Station Landfill Phase II                                | -       | _                | В           | oring                                           | No. E                  | 3208         |                           | Monit                                   | oring Well No. G208                                     |  |  |
|          | mgle: Latona Sec. 27 T. 6N R.                                              | 8E      | _                | S           | Surface Blevation: 533.06 Completion Depth: 95' |                        |              |                           |                                         |                                                         |  |  |
|          |                                                                            | OL,     | _                | A           | Auger Depth: 95' Rotary Depth: NA               |                        |              |                           |                                         |                                                         |  |  |
| Plane)   | o <del>r State</del> Plant<br>Coord, N. (X) 6208.18 E. (Y) 4417.18         | 3       |                  | D           | ate: S                                          | start: 1               | 0/11         | /11                       | Finish: 10/13/11                        |                                                         |  |  |
|          | e:                                                                         |         |                  |             |                                                 |                        |              |                           |                                         |                                                         |  |  |
| Boring   | Location: South side of Area 3                                             |         | _                |             |                                                 | SA                     | MP           | LES                       |                                         | Personnel                                               |  |  |
| Drilling | Equipment: CME 550                                                         |         |                  | Г           |                                                 |                        |              |                           |                                         | G - Ken Miller                                          |  |  |
|          |                                                                            | Graphic | th               | Sample No.  | Tone                                            | Sample<br>Recovery (X) | Penetrometer | N Values<br>(Blow Counts) | OVA or HNU<br>Readings                  | D - Todd Skinner<br>H - Justin Lance<br>H - Scott Walsh |  |  |
| lev.     | Description of Material                                                    | Gra     | Depth<br>In Feet | San         | N. S.       | San                    | Pen          | N V                       | OV.<br>Rea                              | REMARKS                                                 |  |  |
|          | Clayey fill .                                                              | _       |                  | ĥ           | -                                               | 100                    |              | - 1                       |                                         |                                                         |  |  |
| -528.06  | Brown mottled gray silty clay (ML-CL);<br>Trace sand & gravel; Moist; Firm |         | 5                | 1           | CS                                              | 100                    |              |                           | ************                            |                                                         |  |  |
|          |                                                                            | Ξ       |                  | 2           | 5'<br>CS                                        | 100                    |              |                           |                                         |                                                         |  |  |
| 523.06   |                                                                            |         | 10               | 10401111111 |                                                 | ,,,,,,,,,,             |              |                           |                                         |                                                         |  |  |
|          |                                                                            |         |                  | 3           | 5'                                              | 100                    |              |                           |                                         |                                                         |  |  |
| 518.06   | Gray silty clay (ML-CL); Trace sand & gravel<br>Dry; Very firm to hard     | E       | 15               |             | CS                                              | %                      | ,,,,,,,,,,   |                           |                                         |                                                         |  |  |
| 0.00     | Dry, very film to haid                                                     | _       | 10               |             | 5'                                              | 100                    |              |                           |                                         |                                                         |  |  |
|          |                                                                            |         |                  | 4           | CS                                              | %                      |              |                           |                                         |                                                         |  |  |
| 513.06   | Brown silty sand (SM) to sand (SW); Some gravel; Moist                     |         | 20               | *********   | 131994499441                                    |                        |              | ************              | ************                            |                                                         |  |  |
|          | Med. gray silty clay (ML-CL) w/ gravel; Trace                              | =       | 4                | 5           | 5'<br>CS                                        | 100                    |              |                           |                                         |                                                         |  |  |
| 508.06   | sand; Molst; Very firm to hard                                             | _       | 25               |             | *****                                           |                        |              |                           |                                         |                                                         |  |  |
|          |                                                                            |         |                  | 6           | 5'                                              | 100                    |              |                           |                                         |                                                         |  |  |
|          |                                                                            |         |                  |             | CS                                              | %                      |              | Y                         |                                         |                                                         |  |  |
| 503.06   |                                                                            | F       | 30               | *******     | 51                                              | 60                     |              | terilenin in              | *************************************** |                                                         |  |  |
|          |                                                                            | Εl      |                  | 7           | 5'<br>CS                                        | 60 %                   |              |                           |                                         |                                                         |  |  |
| 198.06   |                                                                            |         | 35               |             |                                                 |                        |              |                           | •                                       |                                                         |  |  |
|          |                                                                            |         |                  | В           | 5'<br>CS                                        | 80 %                   |              |                           |                                         | Fe staining                                             |  |  |
| 93.06    |                                                                            | E       | 40 -             |             |                                                 |                        |              |                           |                                         |                                                         |  |  |
|          |                                                                            |         | 10               | 9           | 2'<br>SS                                        | 100                    |              |                           |                                         | Drove split spoon to remove obstruction                 |  |  |
| -1       | Gray fine sand (SP); Wet                                                   |         |                  | 10          |                                                 | 30 %                   |              |                           |                                         | 5010 0000 000011                                        |  |  |
| 38.06    |                                                                            |         | 45               |             | 00                                              | /0                     |              | manama ma                 | *********                               |                                                         |  |  |
|          |                                                                            |         |                  | 11          |                                                 | 100                    |              |                           |                                         |                                                         |  |  |
|          | 34                                                                         | _       |                  | 1           | 00                                              | ~                      |              |                           |                                         |                                                         |  |  |



### Field Boring Log

Page 2 of 2

| Site II             | No. <u>0798085001</u> Federal ID No                                  |           |                |                  | C          | ounty        | ; Jas                  | sper         |                                         |                                         |                                               |
|---------------------|----------------------------------------------------------------------|-----------|----------------|------------------|------------|--------------|------------------------|--------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------|
|                     | ame: Newton Power Station Landfill Pha                               |           |                |                  | В          | oring        | No. E                  | 3208         |                                         | Moni                                    | toring Well No. G208                          |
|                     | angle: Latona Sec. 27 T. 6                                           |           | BE.            |                  | St         | urface       | Eleva                  | ation;       | 533.0                                   | 6 Com                                   | pletion Depth: 95'                            |
| UTM (               | or State Plant<br>Coord, N. (X) 6208,18 E. (Y)                       | 4417.18   | n              | _                |            |              |                        | 95'<br>0/11  | 70.5                                    |                                         | ary Depth: <u>NA</u><br>nish: <u>10/13/11</u> |
| Latitude<br>Boring  | e: Longitude:<br>Location: South side of Area 3                      |           | -              |                  |            | _            | 9/                     | N/ID         | LES                                     |                                         | D                                             |
|                     | Equipment: CME 550                                                   |           |                | -                |            |              | S.                     | Livir        | LES                                     |                                         | Personnel G - Ken Miller                      |
|                     |                                                                      |           | Graphic<br>Log | Depth<br>In Feet | Sample No. | mple Type    | Sample<br>Recovery (X) | Penetrometer | N Values<br>(Blow Counts)               | OVA or HNU<br>Readings                  | ~                                             |
| Elev.               | Description of Material                                              |           | S.             | De               | San        | Sa           | San                    | Per          | B N                                     | Ree O                                   | REMARKS                                       |
| <del>-4</del> 78,06 | Med. gray silty clay (ML-CL) w/ grave sand; Moist; Very firm to hard | el; Trace |                |                  | 12         | 5'<br>CS     | 100<br>%               |              |                                         |                                         | 116                                           |
|                     |                                                                      |           |                | 55               | 13         | 5'<br>CS     | 100                    |              |                                         | *************************************** |                                               |
| 473.06              |                                                                      |           |                | 60               | 14         | 5'<br>CS     | 60<br>%                |              | *************************************** | *************************************** |                                               |
| 468.06              |                                                                      |           |                | 65               | 15         | 5' 1<br>CS   | 100                    |              |                                         |                                         |                                               |
| 463.06              | *Softer                                                              |           |                | 1                | - 1        | 2' 1<br>35 5 | 00                     |              |                                         | *************                           | Drove split spoon to remove obstruction       |
| 158.06              |                                                                      |           | _   ,          | 75               | 17         | 5' 1         | %                      |              |                                         |                                         |                                               |
| 153.06              | ·                                                                    |           |                |                  | 8 6        | 5' 1'        | 00                     |              |                                         |                                         |                                               |
| .00.00              |                                                                      |           |                | 30               | 9 6        | 5' 10        | 00                     |              |                                         | defineaers4                             |                                               |
| 48.06               | Large wood pieces & plant debris                                     |           | —   в          |                  | 0 5        | 5' 10<br>S % | 00                     | ,            |                                         |                                         |                                               |
| 13.06               |                                                                      | E         | _   9          | 02               | 1 5<br>C   | ' 10<br>S %  | 0                      |              | *******                                 | **********                              |                                               |
| 38.06               | OB @ 95' BGS                                                         | <u> </u>  | - 98           |                  |            | 9/           |                        |              |                                         |                                         |                                               |

CLIENT: Illinois Power Generating Co. Site: Newton Power Station

Location: 6725 N 500th St, Newton, IL 62448

Project: 16E0044A

**DATES: Start:** 9/25/2017 Finish: 9/26/2017

WEATHER: Sunny, warm (lo-80's)

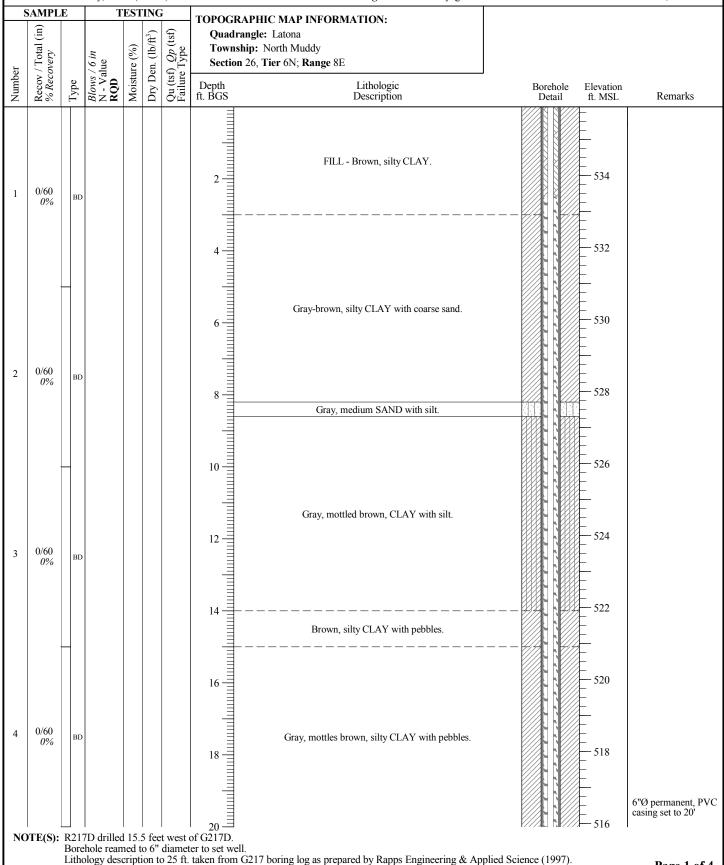
**CONTRACTOR:** Bulldog Drilling Rig mfg/model: CME-750 ATV Drill

**Drilling Method:** Mud Rotary w/split spoon

FIELD STAFF: Driller: J. Dittmaier

Eng/Geo: R. Hasenyager

Helper: M. Hill


**BOREHOLE ID: R217D** 

Well ID: R217D

Surface Elev: 535.91 ft. MSL **Completion:** 65.24 ft. BGS **Station:** 7,126.90N

6,712.16E

Page 1 of 4



CLIENT: Illinois Power Generating Co. Site: Newton Power Station

Location: 6725 N 500th St, Newton, IL 62448

Project: 16E0044A **DATES: Start:** 9/25/2017

Finish: 9/26/2017 WEATHER: Sunny, warm (lo-80's) **CONTRACTOR:** Bulldog Drilling Rig mfg/model: CME-750 ATV Drill **Drilling Method:** Mud Rotary w/split spoon

FIELD STAFF: Driller: J. Dittmaier Helper: M. Hill

Eng/Geo: R. Hasenyager



**BOREHOLE ID:** R217D Well ID: R217D

Surface Elev: 535.91 ft. MSL **Completion:** 65.24 ft. BGS Station: 7,126.90N

6,712.16E

| WEATHER: Sunny, warm (lo-80's)  SAMPLE TESTING |                                  |           |                                  |              | ING               |                                     | mono on .          |                                                                                                                                  | 6,712.16E                                |                                                |         |
|------------------------------------------------|----------------------------------|-----------|----------------------------------|--------------|-------------------|-------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|---------|
|                                                | Recov / Total (in)<br>% Recovery |           |                                  |              | Dry Den. (lb/ft³) | Qu (tsf) $Qp$ (tsf)<br>Failure Type | Quadrai<br>Townshi | PHIC MAP INFORMATION:  ngle: Latona  p: North Muddy  26, Tier 6N; Range 8E                                                       |                                          |                                                |         |
| Number                                         | Recov<br>% Reco                  | Type      | Blows / 6 in<br>N - Value<br>RQD | Moisture (%) | Dry De            | Qu (tsf<br>Failure                  | Depth<br>ft. BGS   | Lithologic<br>Description                                                                                                        | Borehole<br>Detail                       | Elevation ft. MSL                              | Remarks |
| 5                                              | 0/60                             | BD        |                                  |              |                   |                                     | 22                 | Gray, mottles brown, silty CLAY with pebbles.  [Continued from previous page]                                                    |                                          | 514                                            |         |
| δA                                             | 24/24<br>100%                    | ss        | 12-19<br>27-34<br>N=46           | 11.2         |                   |                                     | 28                 |                                                                                                                                  | 6 6 6 6 6 6                              | 510                                            |         |
| 7A                                             | 22/24<br>92%                     | ss        | 10-24<br>31-35<br>N=55           | 9.8          |                   |                                     | 28                 | Gray (10YR5/1), moist, hard, SILT with some clay, few very fine- to very coarse-grained sand, and trace small gravel.            | (, (, (, (, (, (, (, (, (, (, (, (, (, ( | 508                                            |         |
| 8A                                             | 24/24<br>100%                    | ss        | 9-16<br>24-25<br>N=40            | 11.2         |                   |                                     | 30 —               |                                                                                                                                  | 0,0,0,0,0                                | 506<br>                                        |         |
| 9A                                             | 24/24<br>100%                    | ss        | 11-16<br>28-28<br>N=44           | 11.0         |                   |                                     | 32                 |                                                                                                                                  |                                          | 504                                            |         |
| 0A                                             | 24/24<br>100%                    | ss        | 11-16<br>24-32<br>N=40           | 11.5         |                   |                                     |                    | Crow(10VP5/1) projet hard SHT with some alow four very                                                                           | 7,6,6,6,6                                |                                                |         |
| 1A                                             | 24/24<br>100%                    | ss        | 11-17<br>26-34<br>N=43           | 15.0         |                   |                                     | 36                 | Gray (10YR5/1), moist, hard, SILT with some clay, few very fine- to very coarse-grained sand, and trace small to medium gravel.  | 70000                                    | 500<br>                                        |         |
| 2A                                             | 24/24<br>100%                    | ss        | 10-17<br>27-34<br>N=44           | 11.8         |                   |                                     | 38                 |                                                                                                                                  | , c, c, c, c, c                          | — 498<br>— — — — — — — — — — — — — — — — — — — |         |
|                                                | 24/24                            | $\langle$ | 9-23                             |              |                   |                                     | of G217D.          | Gray (10YR5/1), moist, hard, CLAY, with some silt, few very fine- to very coarse-grained sand, and trace small to medium gravel. |                                          | 496                                            |         |

CLIENT: Illinois Power Generating Co.
Site: Newton Power Station

 $\textbf{Location:}\ \ 6725\ N\ 500th\ St,\ Newton,\ IL\ 62448$ 

**Project:** 16E0044A **DATES: Start:** 9/25/2017

**Finish:** 9/26/2017 **WEATHER:** Sunny, warm (lo-80's)

CONTRACTOR: Bulldog Drilling
Rig mfg/model: CME-750 ATV Drill
Drilling Method: Mud Rotary w/split spoon

FIELD STAFF: Driller: J. Dittmaier

**Helper:** M. Hill **Eng/Geo:** R. Hasenyager

**HANSON** 

**BOREHOLE ID:** R217D **Well ID:** R217D

 Surface Elev:
 535.91 ft. MSL

 Completion:
 65.24 ft. BGS

 Station:
 7,126.90N

6,712.16E

| SAMPLE TESTING |                                  |           |                                         |              |                   |                                          | TOPOGR                                     | Eng/Geo: R. Hasenyager  TOPOGRAPHIC MAP INFORMATION:                                                                                                                   |          |           |         |  |  |  |  |  |  |  |
|----------------|----------------------------------|-----------|-----------------------------------------|--------------|-------------------|------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|---------|--|--|--|--|--|--|--|
| Number         | Recov / Total (in)<br>% Recovery | Type      | Blows / 6 in<br>N - Value<br><b>RQD</b> | Moisture (%) | Dry Den. (lb/ft³) | Qu (tsf) <i>Qp</i> (tsf)<br>Failure Type | Quadra Townsl Section                      | nigle: Latona nip: North Muddy 26, Tier 6N; Range 8E  Lithologic                                                                                                       | Borehole | Elevation |         |  |  |  |  |  |  |  |
| ź              | 100%                             | √ SS      | 33-35                                   | Σ            | ā                 | Q-Fa                                     |                                            | Description                                                                                                                                                            | Detail   | ft. MSL   | Remarks |  |  |  |  |  |  |  |
| 13A<br>14A     | 24/24<br>100%                    | ss        | N=56<br>N=56<br>8-18<br>22-29<br>N=40   | 13.1         |                   |                                          | 42   44   46   48   48   48   48   48   48 |                                                                                                                                                                        |          | 494       |         |  |  |  |  |  |  |  |
| 5A             | 24/24<br>100%                    | ss        | 9-15<br>17-22<br>N=32                   | 14.1         |                   |                                          | 44                                         | Gray (10YR5/1), moist, hard, CLAY, with some silt, few very fine- to very coarse-grained sand, and trace small to medium gravel.  [Continued from previous page]       |          | 492       |         |  |  |  |  |  |  |  |
| 6A             | 24/24<br>100%                    | ss        | 6-15<br>20-30<br>N=35                   | 13.2         |                   |                                          | 46                                         |                                                                                                                                                                        |          | 490       |         |  |  |  |  |  |  |  |
| 17A            | 24/24<br>100%                    | ss        | 8-14<br>20-25<br>N=34                   | 14.8         |                   |                                          |                                            |                                                                                                                                                                        |          | 488       |         |  |  |  |  |  |  |  |
| 18A            | 24/24<br>100%                    | ss        | 5-12<br>17-20<br>N=29                   | 14.9         |                   |                                          | 50                                         | Gray (10YR5/1), moist, hard, CLAY, with some silt, few very                                                                                                            |          | 486       |         |  |  |  |  |  |  |  |
| 19A            | 6/24<br>25%                      | ss        | 9-14<br>19-24<br>N=33                   | 23.3         |                   |                                          | 50                                         | fine- to very coarse-grained sand, and trace small to medium gravel, trace wood fragments.                                                                             |          |           |         |  |  |  |  |  |  |  |
| 20A            | 24/24<br>100%                    | ss        | 5-11<br>15-20<br>N=26                   | 16.6         |                   |                                          | 54 —                                       |                                                                                                                                                                        |          | 482       |         |  |  |  |  |  |  |  |
| 21A            | 24/24<br>100%                    | ss        | 6-10<br>14-20<br>N=24                   | 19.7         |                   |                                          | 56 -                                       | Olive gray (5Y4/2) with 10% gray (10YR5/1) mottles, moist, hard, CLAY with some silt, little very fine- to very coarse-grained sand, and trace small to medium gravel. | 77.7.7.7 | 480       |         |  |  |  |  |  |  |  |
| 22A            | 24/24<br>100%                    | ss        | 7-10<br>12-14<br>N=22                   | 19.3         |                   |                                          | 58                                         |                                                                                                                                                                        |          | 478       |         |  |  |  |  |  |  |  |
| 23A            | 24/24                            | $\bigvee$ | 5-8                                     | 22.1         |                   | et west                                  | 60                                         |                                                                                                                                                                        |          | 476       |         |  |  |  |  |  |  |  |

CLIENT: Illinois Power Generating Co. Site: Newton Power Station

Location: 6725 N 500th St, Newton, IL 62448

Project: 16E0044A **DATES: Start:** 9/25/2017

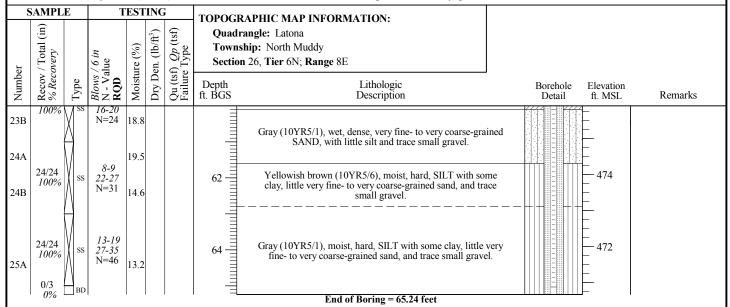
Finish: 9/26/2017

WEATHER: Sunny, warm (lo-80's)

**CONTRACTOR:** Bulldog Drilling Rig mfg/model: CME-750 ATV Drill

**Drilling Method:** Mud Rotary w/split spoon

FIELD STAFF: Driller: J. Dittmaier Helper: M. Hill


Eng/Geo: R. Hasenyager



**BOREHOLE ID: R217D** Well ID: R217D

Surface Elev: 535.91 ft. MSL **Completion:** 65.24 ft. BGS **Station:** 7,126.90N

6,712.16E



### Field Boring Log

Page 1 of 2

| Gita ID M      | o. 0798085001 Federal ID No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                  | Co         | unty:     | Jas                    | per          |                           |                        |                          |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|------------|-----------|------------------------|--------------|---------------------------|------------------------|--------------------------|
|                | Newton Power Station Landfill Phase II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                  |            |           | No. <u>B</u>           |              |                           |                        | oring Well No. G220      |
|                | le: Latona Sec. 27 T. 6N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                  |            |           |                        |              | 532.46                    |                        | eletion Depth: 87'       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                  |            |           | epth:                  |              |                           |                        | ry Depth: NA             |
|                | State Plant ord, N. (X) 5765.30 E. (Y) 4036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.52    | _                | Dat        | te: Sta   | rt: 10                 | <i>3/14</i>  | /11                       | Fin                    | ish: 10/17/11            |
| Latitude: _    | Longitude: Longitude |         |                  |            | -         | G.i.                   | N/D          | LES                       |                        |                          |
|                | quipment: CME 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | -                |            | 7         | DA                     | IVIL         | LES                       |                        | Personnel G - Ken Miller |
| Dining D       | прист.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Graphic | th<br>Teet       | Sample No. | uple Type | Sample<br>Recovery (X) | Penetrometer | N Values<br>(Blow Counts) | OVA or HNU<br>Readings |                          |
| Elev.          | Description of Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gra     | Depth<br>In Feet | San        | San       | Rec                    | Pen          | N V<br>(B)                | OV.<br>Rea             | REMARKS                  |
| 2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E       |                  |            |           |                        |              |                           |                        |                          |
| 527.46         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 5 -              |            |           |                        |              |                           |                        |                          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E       |                  | П          |           |                        |              |                           |                        |                          |
| 522.46         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E       | 10               |            |           |                        |              | *************             |                        |                          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E       |                  |            |           |                        |              |                           |                        |                          |
| 517.46         | W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FI      | 15               |            |           |                        |              |                           |                        |                          |
| - 517.46       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E       | 10               |            |           |                        |              | ***********               |                        |                          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =       |                  | 1          | 4         | 1                      |              |                           |                        |                          |
| 512.46         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 20               |            |           |                        |              |                           | ***********            |                          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E       |                  |            |           |                        | 1            |                           |                        |                          |
| -507.46        | Blind drill to 55'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E       | 25               |            |           |                        |              |                           |                        |                          |
|                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E       |                  |            |           |                        |              |                           |                        |                          |
| -502.46        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 30               |            |           |                        |              |                           | **********             |                          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E       |                  |            |           |                        |              | 1                         |                        |                          |
| <b>-497.46</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 35               |            |           |                        |              |                           |                        |                          |
| 1000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FI      |                  |            |           |                        |              |                           |                        |                          |
| -492.46        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52      | 40               |            |           |                        |              |                           |                        |                          |
| 452.40         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 10               |            |           |                        |              |                           |                        |                          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                  |            |           |                        |              | - 1                       |                        |                          |
| -487.46        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 45               | ****       |           | ******                 |              |                           |                        | *                        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                  |            |           |                        |              |                           |                        |                          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                  |            |           |                        |              |                           |                        |                          |

### Field Boring Log

Page 2 of 2

| Cite III           | No. 0798085001 Federal ID No                                                 |                |                  | C          | County    | : Jas                  | per          |                           |                                         |                                                                           |
|--------------------|------------------------------------------------------------------------------|----------------|------------------|------------|-----------|------------------------|--------------|---------------------------|-----------------------------------------|---------------------------------------------------------------------------|
|                    | me: Newton Power Station Landfill Phase II                                   |                |                  |            |           | No. E                  |              | 54.5-3                    |                                         | oring Well No. G220                                                       |
|                    | ngle; Latona Sec. 27 T. 6N R.                                                | 8E             |                  |            |           |                        |              | 532.4                     | 1                                       | letion Depth: 87'                                                         |
| UTM (c<br>Plane) C | Coord, N. (X) 5765.30 E. (Y) 4036.52  Coord D. (X) Longitude:                | 11             | =                |            |           | Depth:<br>tart: 1      |              | /11                       |                                         | ry Depth: <u>NA</u><br>sh: <u>10/17/11</u>                                |
| Boring I           | Location: South side of Area 3                                               |                |                  |            |           | SA                     | MP           | LES                       |                                         | Personnel                                                                 |
|                    | Equipment: CME 550                                                           | Graphic<br>Log | e th             | Sample No. | role Tyne | Sample<br>Recovery (X) | Penetrometer | N Values<br>(Blow Counts) | OVA or HNU<br>Readings                  | G - Ken Miller<br>D - Todd Skinner<br>H - Justin Lance<br>H - Tim Skinner |
| lev.               | Description of Material                                                      | Gra            | Depth<br>In Feet | Sam        | Sam       | Sam                    | Penc         | N V <sub>3</sub>          | OV/<br>Rear                             | REMARKS                                                                   |
|                    | Blind drill to 55'                                                           | Ē              |                  |            |           |                        |              |                           |                                         |                                                                           |
| 477.46             | Fine gray sand (SP); Moist                                                   |                | 55               | ******     | 5'        | 100                    | ***********  |                           | *************************************** |                                                                           |
| 472.46             | Med. gray silty clay (ML-CL) w/ gravel; Trace sand; Moist; Very firm to hard |                | 60               | 1          | cs        | %                      |              |                           |                                         |                                                                           |
|                    | *Siltier                                                                     |                |                  | 2          | 5'<br>CS  | 100<br>%               |              |                           |                                         |                                                                           |
| 467.46             | . 2 x 2" gray silt lenses (ML)                                               |                | 65               | 3          | 5'<br>CS  | 100<br>%               | 463994613 10 |                           | *************************************** |                                                                           |
| 462,46             | : 6" gray silt lens (ML)                                                     |                | 70               | 4          | 5'<br>CS  | 100                    | ********     |                           | 4 403                                   |                                                                           |
| 4.7                | Gray silt (ML) to silty sand (SM); Moist                                     |                | 75               | 5          |           | 100                    |              |                           | * *                                     |                                                                           |
| 52,46              | Dirty gravel (GC-GM)                                                         |                | 80               |            | CS        | %                      |              |                           |                                         |                                                                           |
|                    | *Wetter                                                                      |                |                  | 6          | 5'<br>CS  | 100                    |              |                           |                                         | ž.                                                                        |
| *                  | EOB @ 85' BGS 'Augers dropped ~2' after completion, ncreasing depth to 87'   |                | 85               |            |           |                        | 2            |                           |                                         | 3                                                                         |
| E                  |                                                                              |                |                  |            |           | ń                      | 4 7          |                           |                                         |                                                                           |



### Field Boring Log

Page 1 of 2

| Cite ID Mo             | 0798085001             | l Raday         | al ID No      | 4       |                  | Co         | unty:     | Jas                    | per          |                                         |                                         |                                                                           |    |
|------------------------|------------------------|-----------------|---------------|---------|------------------|------------|-----------|------------------------|--------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|----|
|                        | : Newton Powe          |                 |               |         |                  | Во         | ring l    | No. B                  | 222          |                                         | Monito                                  | oring Well No. G222                                                       |    |
|                        |                        | Sec. 27         |               | . 8E    |                  | Su         | rface l   | Bleva                  | tion:        | 532.12                                  | 2 Comp                                  | letion Depth: 80'                                                         |    |
| UTM (or S              | State Plant            | 4               |               |         |                  |            | ger D     |                        |              |                                         |                                         | y Depth; NA                                                               |    |
|                        | ord. N. (X) 5322.2     | 11              | E. (Y) 3989.0 | 8       | -                | Da         | te: Sta   | ert: 1                 | 0/24         | /11                                     | Fini                                    | sh: 10/25/11                                                              |    |
| Latitude: _            |                        | Longi           | tude:         | -       | 3                |            |           | -                      |              |                                         | _                                       |                                                                           | ., |
|                        | ation: South side      |                 |               |         | -                |            |           | SA                     | MP.          | LES                                     |                                         | Personnel                                                                 |    |
| Drilling Eq.           | uipment: <u>CME 55</u> | 00              |               | Graphic | Depth<br>In Feet | Sample No. | uple Type | Sample<br>Recovery (X) | Penetrometer | N Values<br>(Blow Counts)               | OVA or HNU<br>Readings                  | G - Ken Miller<br>D - Todd Skinner<br>H - Justin Lance<br>H - Tim Skinner |    |
| Elev.                  | Description            | of Material     |               | Gra     | Dep              | San        | San       | Rec                    | Pen          | N V<br>(Blo                             | OV.                                     | REMARKS                                                                   |    |
|                        |                        |                 |               | E       |                  |            |           |                        |              |                                         |                                         |                                                                           |    |
|                        |                        |                 |               |         | 5                |            |           |                        |              |                                         |                                         |                                                                           |    |
| _                      |                        |                 |               |         |                  |            |           |                        |              |                                         |                                         |                                                                           |    |
| = 1                    |                        |                 |               |         |                  |            |           |                        |              |                                         |                                         |                                                                           |    |
| <del></del>            |                        |                 |               | -       | 10               |            |           |                        |              |                                         | *************************************** |                                                                           |    |
|                        |                        |                 |               | EI      |                  | 1          |           |                        |              |                                         |                                         |                                                                           |    |
| <del>5</del> 17.12<br> |                        |                 |               | _       | 15               | 4711411-   |           |                        |              |                                         |                                         |                                                                           |    |
| =                      |                        |                 |               | =       |                  |            |           |                        |              |                                         |                                         |                                                                           |    |
| 512.12                 |                        |                 |               | =       | 20               |            |           |                        |              |                                         | Hennador                                |                                                                           |    |
|                        | ¥                      |                 |               | E       |                  |            |           |                        | ı            |                                         |                                         |                                                                           |    |
| 507.12                 | Blir                   | nd drill to 50' |               |         | 25               |            | .,,,,,,,  |                        |              |                                         |                                         |                                                                           |    |
|                        |                        | 20 300 00 00    |               | =       | 20               |            |           |                        |              |                                         |                                         |                                                                           |    |
|                        |                        |                 |               |         |                  | 1          |           |                        |              |                                         |                                         |                                                                           |    |
| 502.12                 |                        |                 |               |         | 30               |            |           |                        | *****        | *************************************** |                                         |                                                                           |    |
|                        |                        |                 |               | E       |                  | 1          |           |                        | T.           | - 1                                     |                                         |                                                                           |    |
| <b>-497.12</b>         |                        |                 |               |         | 35               |            |           |                        |              |                                         |                                         |                                                                           |    |
|                        |                        |                 |               |         |                  |            |           |                        |              |                                         |                                         |                                                                           | 1  |
| <del>-492.12</del>     |                        |                 |               |         | 40               | m1H 111111 |           |                        |              | ***********                             | *******                                 |                                                                           |    |
|                        |                        |                 |               |         |                  |            |           |                        |              |                                         |                                         |                                                                           |    |
| <b>-487.12</b>         |                        |                 |               |         | AE               |            |           |                        |              |                                         |                                         |                                                                           |    |
| 407.12                 |                        |                 |               |         | 45               |            |           |                        |              |                                         |                                         |                                                                           |    |
|                        |                        |                 |               |         |                  |            |           |                        |              |                                         |                                         |                                                                           |    |
|                        |                        |                 |               |         |                  |            |           |                        | y            |                                         |                                         |                                                                           |    |

### Field Boring Log

Page 2 of 2

| Site IĎ No. 0798085001 Federal ID No               |                                                                                                            |                |                  |            | County: Jasper                                  |                        |              |                           |                                         |                                                         |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------|------------------|------------|-------------------------------------------------|------------------------|--------------|---------------------------|-----------------------------------------|---------------------------------------------------------|--|
| Site Name; N'ewton Power Station Landfill Phase II |                                                                                                            |                |                  |            | Boring No. B222 Monitoring Well No. G222        |                        |              |                           |                                         |                                                         |  |
| Quadrangle: Latona Sec. 27 T. 6N R. 8E             |                                                                                                            |                |                  |            | Surface Elevation: 532.12 Completion Depth: 80' |                        |              |                           |                                         |                                                         |  |
| UTM (or State Plant                                |                                                                                                            |                |                  |            | Auger Depth: 80' Rotar                          |                        |              |                           |                                         | ry Depth: NA                                            |  |
| Plane) Coord. N. (X) 5322.24 E. (Y) 3989.08        |                                                                                                            |                |                  |            | Date: Start: 10/24/11 Finish: 10/25/11          |                        |              |                           |                                         |                                                         |  |
| Latitud                                            | 0                                                                                                          |                |                  |            |                                                 |                        |              |                           |                                         |                                                         |  |
| Boring                                             | Boring Location: South side of Area 3                                                                      |                |                  |            |                                                 | SA                     | MP.          | LES                       |                                         | Personnel                                               |  |
| Drilling                                           |                                                                                                            |                |                  |            |                                                 |                        |              |                           | G - Ken Miller                          |                                                         |  |
|                                                    | Description of Material                                                                                    | Graphic<br>Log | Depth<br>In Feet | Sample No. | ple Tyne                                        | Sample<br>Recovery (X) | Penetrometer | N Values<br>(Blow Counts) | OVA or HNU<br>Readings                  | D - Todd Skinner<br>H - Justin Lance<br>H - Tim Skinner |  |
| Elev.                                              |                                                                                                            |                |                  |            | San                                             |                        |              |                           |                                         | REMARKS                                                 |  |
| 2                                                  | Dk. gray to black silt (ML); Thinly laminated; Fissile; Hard Med. gray silty clay (ML-CL) w/ gravel; Trace | _              |                  | 1          | 5'<br>CS                                        | 100                    |              |                           |                                         |                                                         |  |
| 477.12                                             | and Maint Cirm to hard                                                                                     | <u>'</u>       | 55               |            |                                                 | ,,,                    |              |                           | ************                            |                                                         |  |
|                                                    |                                                                                                            |                |                  |            | 5'                                              | 100                    |              |                           |                                         |                                                         |  |
|                                                    |                                                                                                            |                |                  | 2          | CS                                              | %                      |              |                           |                                         |                                                         |  |
| <del>4</del> 72.12                                 |                                                                                                            |                | 60               | ********   |                                                 |                        |              |                           |                                         |                                                         |  |
|                                                    |                                                                                                            |                |                  | 3          | 5'<br>CS                                        | 100                    |              |                           |                                         |                                                         |  |
| <del>-4</del> 67.12                                |                                                                                                            |                | 65               |            |                                                 |                        |              |                           | *************************************** |                                                         |  |
|                                                    | Coarse sand (SP) w/ gravel; Wet                                                                            |                |                  | ,          | 5'                                              | 30                     |              |                           |                                         | Poor recovery                                           |  |
| -                                                  | Med. gray silty clay (ML-CL) w/ gravel; Trace                                                              | = 1            |                  | 4          | CS                                              | 30 %                   |              |                           |                                         | Drove split spoon to remove obstruction                 |  |
| -462.12                                            | sand; Moist; Firm to hard                                                                                  |                | 70               | 5          | 2'<br>SS                                        | 100                    |              |                           |                                         |                                                         |  |
|                                                    |                                                                                                            |                | 75               |            |                                                 | 100                    |              |                           |                                         |                                                         |  |
| -457.12                                            |                                                                                                            |                |                  | 6          | cs                                              | %                      |              |                           |                                         |                                                         |  |
|                                                    |                                                                                                            |                |                  |            | 5'                                              | 100                    |              |                           |                                         |                                                         |  |
|                                                    |                                                                                                            |                |                  | 7          | cs                                              | %                      |              |                           |                                         |                                                         |  |
| -452.12                                            | EOB @ 80' BGS                                                                                              |                | 80 -             |            | **********                                      |                        |              |                           | ***********                             |                                                         |  |
|                                                    |                                                                                                            |                |                  |            |                                                 |                        | 1            | 1                         |                                         |                                                         |  |
| -                                                  |                                                                                                            |                |                  |            |                                                 |                        |              |                           |                                         |                                                         |  |
|                                                    |                                                                                                            |                |                  |            |                                                 |                        |              |                           |                                         | <b>1</b>                                                |  |
|                                                    | -                                                                                                          |                |                  | 1          |                                                 |                        |              |                           |                                         |                                                         |  |
| -                                                  |                                                                                                            |                | -                | ******     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          |                        |              |                           |                                         |                                                         |  |
|                                                    |                                                                                                            | = //           |                  |            |                                                 | 1                      |              |                           |                                         |                                                         |  |
|                                                    |                                                                                                            | _              |                  |            | minus .                                         |                        |              |                           | 11499044494                             |                                                         |  |
|                                                    | 1                                                                                                          |                |                  |            | 1                                               |                        |              |                           |                                         | 3                                                       |  |
|                                                    |                                                                                                            | =              |                  |            |                                                 |                        |              |                           |                                         |                                                         |  |
|                                                    |                                                                                                            |                |                  | 1          |                                                 |                        |              |                           |                                         |                                                         |  |

## Field Boring Log

Page 1 of 2

| Tay                   | Site ID No. 0798085001 Federal ID No.                                          |         |                  | C          | County: Jasper  Boring No. B223 Monitoring Well No. G223 |                                                 |                     |                                         |                         |                                     |  |  |  |
|-----------------------|--------------------------------------------------------------------------------|---------|------------------|------------|----------------------------------------------------------|-------------------------------------------------|---------------------|-----------------------------------------|-------------------------|-------------------------------------|--|--|--|
|                       |                                                                                |         |                  | В          |                                                          |                                                 |                     |                                         |                         |                                     |  |  |  |
|                       | Quadrangle: Latona Sec. 26 T. 6N R. 8E                                         |         |                  |            |                                                          | Surface Elevation: 531.52 Completion Depth: 89' |                     |                                         |                         |                                     |  |  |  |
|                       |                                                                                | OL.     |                  | A          | uger :                                                   | Depth:                                          | 89'                 |                                         | Rota                    | ry Depth: NA                        |  |  |  |
| Plane)                | (or State Plant<br>Coord. N. (X) 6393.02 E. (Y) 5763.68                        | 10      | -                | D          | ate: S                                                   | tart: 1                                         | 0/10                | /11                                     | Fini                    | ish: 10/11/11                       |  |  |  |
| Latitud               | le: Longitude:                                                                 |         |                  |            |                                                          |                                                 |                     |                                         |                         |                                     |  |  |  |
| Boring                | Location: South side of Area 3                                                 |         | _                |            |                                                          | SA                                              | MP.                 | LES                                     |                         | Personnel                           |  |  |  |
| Drillin               | g Equipment: CME 550                                                           |         |                  |            |                                                          |                                                 |                     |                                         |                         | G - Ken Miller<br>D - Todd Skinner  |  |  |  |
|                       | · ·                                                                            | Graphic | th               | Sample No. | Inle Tyne                                                | Sample<br>Recovery (X)                          | Penetrometer        | N Values<br>(Blow Counts)               | OVA or HINU<br>Readings | H - Justin Lance<br>H - Scott Walsh |  |  |  |
| Elev.                 | Description of Material                                                        | Gra     | Depth<br>In Feet | Sam        | San                                                      | Sam                                             | Pen                 | N V<br>(Blo                             | OV.<br>Rea              | REMARKS                             |  |  |  |
|                       | Blind drill to 5'                                                              | E       |                  |            |                                                          |                                                 |                     |                                         |                         | Bottom ash road base                |  |  |  |
| 526,52<br>            | Brown mottled gray silty clay (ML-CL);<br>Trace sand & gravel; Moist; Firm     |         | 10               | 1          | 5'<br>CS                                                 | 40<br>%                                         |                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                         |                                     |  |  |  |
|                       | *Softer                                                                        |         | 15               | 2          | 5'<br>CS                                                 | 80<br>%                                         |                     |                                         |                         |                                     |  |  |  |
| 516.52<br><br><br>    | Gray silty clay (ML-CL); Trace sand & gravel;<br>Moist to wet; Soft to Firm    | <u></u> | 15               | 3          | 5'<br>CS                                                 | 50<br>%                                         | mi <del>ren</del> k | *                                       | ***************         |                                     |  |  |  |
| 511.52                | - Silty sand (SM)                                                              |         | 20               |            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                  | **********                                      |                     |                                         |                         | Plant debris                        |  |  |  |
|                       | Coarse sand (SP) w/ gravel; Wet  Med. gray silty clay (ML-CL) w/ gravel; Trace | 111     |                  | 4          | 5'<br>CS                                                 | 100<br>%                                        | 3                   |                                         |                         | Upper 2.5' mottled                  |  |  |  |
| 506.52<br><br><br>    | sand; Moist; Very firm to hard                                                 |         | 25               | 5          | 5'<br>CS                                                 | 100                                             |                     |                                         |                         |                                     |  |  |  |
| 501.52<br>-<br>-<br>- |                                                                                |         | 30 -             | 6          | 5'<br>CS                                                 | 100                                             |                     |                                         |                         |                                     |  |  |  |
| 496.52<br>            | *Slightly softer                                                               |         | 35 -             | 7          | 5'<br>CS                                                 | 100                                             |                     |                                         |                         |                                     |  |  |  |
| —491.52<br>-          |                                                                                |         | 40               | 8          | 5'<br>CS                                                 | 100                                             |                     |                                         | HIIIII                  |                                     |  |  |  |
| 486.52                |                                                                                |         | 45               | 9          | 5'<br>CS                                                 | 100                                             |                     |                                         |                         |                                     |  |  |  |

## Field Boring Log

Page 2 of 2

| Site Na Quadra  UTM (c Plane) ( Latitude Boring 1 | No. 0798085001 Federal ID No                                                 |                | -                | B<br>Si                                 | oring<br>urface<br>uger I<br>ate: S | Depth: 1               | 223<br>tion: 5<br>89'<br>0/10 | 531.52<br>/11<br>LES                   | 2 Comp<br>Rotai<br>Fin | oring Well No. G223  oletion Depth: 89'  ry Depth: NA  ish: 10/11/11  Personnel  G - Ken Miller D - Todd Skinner |
|---------------------------------------------------|------------------------------------------------------------------------------|----------------|------------------|-----------------------------------------|-------------------------------------|------------------------|-------------------------------|----------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------|
| Elev.                                             | Description of Material                                                      | Graphic<br>Log | Depth<br>In Feet | Sample No.                              | Sample Tvr                          | Sample<br>Recovery (X) | Penetrometer                  | N Values<br>(Blow Counts)              | OVA or HNU<br>Readings | H - Justin Lence<br>H - Scott Walsh                                                                              |
|                                                   | Med. gray silty clay (ML-CL) w/ gravel; Trace sand; Moist; Very firm to hard | E              | 55               | 10                                      | 5'<br>CS                            | 100<br>%               |                               |                                        |                        |                                                                                                                  |
| 470.52<br>-<br>-<br>-<br>-<br>471.52<br>-         | i.                                                                           |                | 60               | 11<br>12                                | 5'<br>CS<br>5'<br>CS                | 100<br>%<br>100<br>%   | .,,,,,,,,,                    |                                        |                        |                                                                                                                  |
| 466.52<br>461.52                                  |                                                                              |                | 65<br>70         | 13                                      | 5'<br>CS                            | 100                    |                               |                                        |                        |                                                                                                                  |
| <b>456.52</b>                                     |                                                                              |                | 75               | 14                                      | 5'<br>CS                            | 100 %                  |                               | ·************************************* | ************           |                                                                                                                  |
| <del>4</del> 51.52                                |                                                                              |                | 80 -             | 15                                      | cs                                  | 100 %                  | ,,,,,,,,, (e)                 |                                        |                        |                                                                                                                  |
| -446.52                                           | Gray, medium to coarse silty sand (SM) w/ gravel; Moist to wet               |                | 85 -             |                                         |                                     | 100                    |                               |                                        | ,,,,,,,,,,,            | Large wood pieces                                                                                                |
|                                                   | Med. gray silty clay (ML-CL) w/ gravel<br>EOB @ 89' BGS                      |                | 90               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 55                                  | 70                     |                               |                                        |                        |                                                                                                                  |

| Site ID                               | No. 0798085001 Federal ID No                                             |                |                  |            | County: Jasper             |                                                                                     |                                                                                         |                           |                        |                                                   |  |  |
|---------------------------------------|--------------------------------------------------------------------------|----------------|------------------|------------|----------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------|------------------------|---------------------------------------------------|--|--|
|                                       | Site Name: Newton Power Station Landfill Phase II                        |                |                  |            |                            |                                                                                     | Boring No. B224 Monitoring Well No. G224  System Playation 532 26 Completion Depths 74' |                           |                        |                                                   |  |  |
| Quadrangle: Latona Sec. 26 T. 6N R 8E |                                                                          |                |                  |            |                            | Surface Elevation: 532.26 Completion Depth: 74'  Auger Depth: 74'  Rotary Depth: NA |                                                                                         |                           |                        |                                                   |  |  |
|                                       | o <del>r State</del> Plant                                               |                |                  |            |                            |                                                                                     |                                                                                         |                           |                        | ry Depth; NA                                      |  |  |
| Plane) (                              | Coord, N. (X) 6976.66 E. (Y) 6067.30                                     | n'             | -                | Da         | ite: St                    | art; 10                                                                             | 0/04                                                                                    | /11                       | Fini                   | ish: 10/04/11                                     |  |  |
|                                       | Location: South side of Area 3                                           |                |                  |            |                            | SA                                                                                  | MP.                                                                                     | LES                       |                        | Personnel                                         |  |  |
|                                       | Equipment: Diedrich D-50                                                 |                |                  |            | T C                        |                                                                                     |                                                                                         |                           |                        | G - Ken Miller                                    |  |  |
|                                       |                                                                          | Graphic<br>Log | th               | Sample No. | ple Type                   | Sample<br>Recovery (X)                                                              | Penetrometer                                                                            | N Values<br>(Blow Counts) | OVA or HNU<br>Readings | D - Tim Fuhl H - Eric Sievers H - Clifford Ohman  |  |  |
| Elev.                                 | Description of Material                                                  | Grag           | Depth<br>In Feet | Sam        | Sam                        | Sam                                                                                 | Pen                                                                                     | N V                       | OV.                    | REMARKS                                           |  |  |
|                                       | Brown silty clay (ML-CL); Moist; Firm                                    |                | Ğ.               | 1          | 5'<br>CS                   | 10 %                                                                                |                                                                                         |                           |                        |                                                   |  |  |
| -<br>527.26<br>-                      | Reddish brown mottled gray silty clay (ML-                               | E              | 5                | <i>}</i>   | 5'                         | 90                                                                                  | ananiar i                                                                               |                           |                        |                                                   |  |  |
| 522,26                                | CL); Trace sand & gravel; Moist; Firm                                    |                | 10               | 2          | cs                         | %                                                                                   |                                                                                         |                           | *************          | -1                                                |  |  |
| -022.20                               | *Softer, less mottling                                                   |                | 10               | 3          | 5'<br>CS                   | 10 %                                                                                |                                                                                         |                           | İ                      |                                                   |  |  |
| 617.26                                |                                                                          |                | 15               |            |                            |                                                                                     |                                                                                         |                           |                        |                                                   |  |  |
|                                       | Dark gray silty clay (ML-CL) w/ sand; Moist to wet; Soft                 | E              |                  | 4          | 5'<br>CS                   | 60<br>%                                                                             |                                                                                         |                           |                        | <u> </u>                                          |  |  |
| —512.26                               | Medium to coarse sand (SP); Wet Brown mottled gray silty clay (ML-CL) w/ |                | 20               | .,         |                            |                                                                                     |                                                                                         |                           |                        | Plant debris                                      |  |  |
|                                       | sand & gravel; Dry; Hard                                                 | E              |                  | 5          | 5'<br>CS                   | 100                                                                                 |                                                                                         |                           |                        |                                                   |  |  |
| -507.26                               | Med. gray silty clay (ML-CL) w/ gravel; Trace sand; Dry to moist; Hard   | =              | 25               |            |                            |                                                                                     | seccitors (r                                                                            | ***********               |                        |                                                   |  |  |
|                                       |                                                                          |                |                  | 6          | 5'<br>CS                   | 60<br>%                                                                             |                                                                                         |                           |                        |                                                   |  |  |
| -502.26                               |                                                                          | = 5            | 30               | /3949/4944 |                            |                                                                                     | ********                                                                                | **************            |                        |                                                   |  |  |
|                                       |                                                                          | E              | Ť.               | 7          | 5'<br>CS                   | %                                                                                   | 1                                                                                       | 1                         |                        |                                                   |  |  |
| 497.26                                | *                                                                        |                | 35               |            | 5'                         | 0                                                                                   |                                                                                         |                           |                        |                                                   |  |  |
|                                       | Alto our contrain                                                        |                |                  | 8          | cs                         | %                                                                                   |                                                                                         |                           |                        | Hard drilling                                     |  |  |
| <b>-492.26</b>                        | No recovery                                                              |                | 40               | 9          | 5'                         | 0                                                                                   |                                                                                         |                           |                        |                                                   |  |  |
| orași d                               |                                                                          | =              | AE .             |            | cs                         | %                                                                                   |                                                                                         |                           |                        |                                                   |  |  |
| -487.26                               | *                                                                        |                | 1                | 10<br>11   | 2'<br>SS<br>2'<br>SS<br>2' | 0 %                                                                                 |                                                                                         |                           |                        | Drove split spoons to remove possible obstruction |  |  |
|                                       |                                                                          |                |                  | 12         | 2'<br>SS                   | %<br>1001                                                                           |                                                                                         |                           |                        | ODPHRENOIL                                        |  |  |

| ar n                | Site ID No.         0798085001         Federal ID No.           Site Name:         Newton Power Station Landfill Phase II           Quadrangle:         Latona         Sec. 26         T. 6N         R. 8E |                |                  | C                                        | ounty       | Jas                    | per          | -                         |                                         |                                        |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|------------------------------------------|-------------|------------------------|--------------|---------------------------|-----------------------------------------|----------------------------------------|
|                     |                                                                                                                                                                                                            |                |                  | Boring No. B224 Monitoring Well No. G224 |             |                        |              |                           |                                         | oring Well No. G224                    |
|                     |                                                                                                                                                                                                            |                |                  | Surface Elevation: 532.                  |             |                        |              |                           | 6 Completion Depth: 74'                 |                                        |
|                     | er State Plant                                                                                                                                                                                             |                |                  | A                                        | uger I      | Depth:                 | 74'          |                           |                                         | ry Depth: NA                           |
| Plane)              | Coord. N. (X) 6976.66 E. (Y) 6067.30                                                                                                                                                                       | 13             | _                | D                                        | ate: Si     | tart: 1                | 0/04         | /11                       | Fini                                    | ish: 10/04/11                          |
| Latitude            | e: Longitude:                                                                                                                                                                                              |                |                  |                                          |             |                        |              |                           |                                         |                                        |
| Boring !            | Location: South side of Area 3                                                                                                                                                                             | -              | -                |                                          | _           | SA                     | MP           | LES                       |                                         | Personnel                              |
| Drilling            | Equipment: CME 550                                                                                                                                                                                         | -              | _                |                                          |             | 8                      |              |                           |                                         | G - Ken Miller D - Tim Fuhl            |
|                     |                                                                                                                                                                                                            | hic            | et p             | Sample No.                               | ple Type    | Sample<br>Recovery (X) | Penetrometer | N Values<br>(Blow Counts) | OVA or HNU<br>Readings                  | H - Erlc Slevers<br>H - Clifford Ohman |
| Elev.               | Description of Material                                                                                                                                                                                    | Graphic<br>Log | Depth<br>In Feet | Sam                                      | Sam         | Sam                    | Pene         | N Va<br>(Bloy             | OVA<br>Read                             | REMARKS                                |
|                     | Med. gray silty clay (ML-CL) w/ gravel; Trace sand; Moist; Very firm to hard                                                                                                                               | 111            |                  | 13                                       | 5'<br>CS    | 100                    |              |                           |                                         |                                        |
| <del>-</del> 477.26 |                                                                                                                                                                                                            | E              | 55               |                                          |             |                        |              |                           | *************                           |                                        |
|                     |                                                                                                                                                                                                            |                |                  | 14                                       | 5'<br>CS    | 100                    |              |                           |                                         |                                        |
| -<br>472.26         |                                                                                                                                                                                                            |                | 60               |                                          |             | ,,,                    |              |                           | *************************************** |                                        |
|                     |                                                                                                                                                                                                            |                |                  |                                          | 5'          | 100                    |              |                           |                                         |                                        |
| 2                   |                                                                                                                                                                                                            |                |                  | 15                                       | 5'<br>CS    | %                      |              |                           |                                         |                                        |
| 467.26<br>-         | Gray silt (ML), silty sand (SM) and sand (SP);                                                                                                                                                             |                | 65               | *********                                | **********  |                        |              | **************            | *************                           | Large wood pieces                      |
|                     | Wet                                                                                                                                                                                                        |                |                  | 16                                       | 5'<br>CS    | 60 %                   |              | 1                         |                                         | 4                                      |
| —462.26             | *w/ gravel                                                                                                                                                                                                 |                | 70               |                                          |             |                        |              |                           | ••••••                                  | Trace sand & gravel in                 |
|                     | No recovery                                                                                                                                                                                                |                |                  | 17                                       | 5'<br>CS    | 0 %                    |              |                           |                                         | tube; Harder drilling @                |
| <b>—457 26</b>      | EOB @ 74' BGS                                                                                                                                                                                              |                | 75               |                                          | 03          | /0                     |              |                           |                                         | 72.5'                                  |
| 407.20              |                                                                                                                                                                                                            | 3 1            |                  |                                          |             |                        | 1            |                           |                                         |                                        |
|                     |                                                                                                                                                                                                            |                |                  |                                          |             |                        |              |                           |                                         |                                        |
| 7) [                |                                                                                                                                                                                                            |                | Ì                |                                          |             |                        |              | ***********               |                                         |                                        |
|                     |                                                                                                                                                                                                            | =              |                  |                                          |             |                        |              |                           |                                         |                                        |
| -                   |                                                                                                                                                                                                            |                |                  |                                          | *********** | *******                | **********   |                           | *************************************** |                                        |
|                     |                                                                                                                                                                                                            | =              |                  |                                          |             |                        |              |                           |                                         |                                        |
|                     |                                                                                                                                                                                                            |                |                  |                                          |             |                        |              | ****************          | **************                          |                                        |
|                     |                                                                                                                                                                                                            | -              |                  |                                          |             |                        |              |                           |                                         |                                        |
|                     |                                                                                                                                                                                                            |                |                  | +                                        |             |                        |              |                           |                                         |                                        |
| -                   |                                                                                                                                                                                                            | _              |                  | -                                        |             |                        |              |                           |                                         |                                        |
|                     |                                                                                                                                                                                                            | _              |                  |                                          |             |                        |              |                           |                                         |                                        |
| 100                 |                                                                                                                                                                                                            | -              |                  |                                          |             |                        |              |                           |                                         |                                        |

# Monitoring Well Construction Forms – Landfill 2

| Illinois Environ                                     | mental Protection A               | Agency            |                |                                    | Well              | Completi         | on Report               |
|------------------------------------------------------|-----------------------------------|-------------------|----------------|------------------------------------|-------------------|------------------|-------------------------|
| Site #:                                              | Cou                               | unty: <u>Jasp</u> | er Count       | y                                  | W                 | /ell #:          | G06D                    |
| Site Name: Newton Energy C                           | enter                             |                   |                |                                    | В                 | orehole #:       | G06D                    |
| State Plant Plane Coordinate: X 4,926                |                                   |                   |                |                                    |                   |                  |                         |
| Surveyed By: Michael J. Gran                         | ninski                            |                   | IL Regi        | stration #: <u>035-0</u>           | 002901            |                  |                         |
| Drilling Contractor: Bulldog D                       | rilling, Inc.                     |                   | Driller:       | J. Gates                           |                   |                  |                         |
| Consulting Firm: Hanson Profe                        | essional Services Inc.            |                   | Geolog         | ist: Rhonald W.                    | Hasenyager        | , LPG #196-0     | 00246                   |
| Drilling Method: Hollow Stem                         | Auger                             |                   | Drilling       | g Fluid (Type): W                  | Vater             |                  |                         |
| Logged By: Rhonald W. Hase                           | nyager                            |                   | Date St        | arted: 11/9/20                     | 015 Date          | e Finished:      | 11/10/2015              |
| Report Form Completed By: Su                         | zanna L. Keim                     |                   | Date: _        | 11/16/2015                         |                   |                  |                         |
| ANNULAR SPA                                          | CE DETAILS                        |                   |                | Elevations<br>(MSL)*               | Depths<br>(BGS)   | (0.01            | ft.)                    |
|                                                      |                                   |                   |                | 532.59                             | 2.90              | Top of Protect   | tive Casing             |
|                                                      |                                   |                   |                | 532.18                             | 2.49              | Top of Riser I   | Pipe                    |
| Type of Surface Seal: Concrete                       |                                   |                   | Y D            | 529.69                             | 0.00              | Ground Surfa     | ce                      |
| Type of Annular Sealant: High-s                      | valide hantanita                  |                   |                | 527.69                             | 2.00              | Top of Annula    | ar Sealant              |
|                                                      |                                   |                   |                |                                    |                   |                  |                         |
| Installation Method:Tremic Setting Time: _ >48 hours | 3                                 | .     7           | Z              | 439.57                             | 90.12             | Static Water I   | Level                   |
|                                                      |                                   |                   | -              |                                    |                   | (After Completic | on) 12/16/2016          |
| Type of Bentonite Seal Gran                          | ular Pellet Slurry (choose one)   |                   | Y              |                                    |                   |                  |                         |
| Installation Method: <u>Gravit</u>                   | y                                 |                   | $\overline{X}$ | 459.39                             | 70.30             | Top of Seal      |                         |
| Setting Time: 45 minutes                             |                                   |                   |                | 457.58                             | 72.11             | Top of Sand F    | <b>P</b> ack            |
| Type of Sand Pack: Quartz Sand                       | 1                                 |                   |                |                                    |                   |                  |                         |
|                                                      | uve size)                         | ·                 |                | 455.46                             | 74.23             | Top of Screen    |                         |
| Installation Method: Gravit                          | ,                                 |                   | ∄              |                                    |                   |                  |                         |
| instantation (viction). <u>Stavie</u>                | ,                                 |                   | ∄              | 435.80                             | 93.89             | Bottom of Scr    |                         |
| Type of Backfill Material:Quar                       | tz Sand (if applicable)           | .   L             |                | 435.36                             | _94.33_           | Bottom of We     | ·11                     |
| Installation Method:gravity                          | I .                               |                   |                | 433.69                             | 96.00             | Bottom of Bo     | rehole                  |
|                                                      |                                   |                   |                | * Referenced to                    | a National Geodet | ic Datum         |                         |
|                                                      |                                   |                   |                | CA                                 | SING MEAS         | SUREMENTS        | S                       |
| WELL CONS                                            | STRUCTION MATERIALS               |                   |                | Diameter of Boreh                  | iole              | (inch            |                         |
|                                                      | e type of material for each area) |                   |                | ID of Riser Pipe                   |                   | (inch            |                         |
|                                                      |                                   |                   |                | Protective Casing                  |                   | •                | eet) 5.0                |
| Protective Casing                                    | SS304 SS316 PTFE PV               | C OTHER: S        | Steel          | Riser Pipe Length Bottom of Screen |                   | •                | eet) 76.72<br>eet) 0.44 |
| Riser Pipe Above W.T.                                |                                   | C OTHER:          |                | Screen Length (1                   |                   | `                | eet) 0.44<br>eet) 19.66 |
| Riser Pipe Below W.T.                                | SS304 SS316 PTFE PV               | OTHER:            |                | Total Length of Ca                 |                   |                  | eet) 96.82              |

PTFE PVC OTHER:

Screen Slot Size \*\*

\*\*Hand-Slotted Well Screens Are Unacceptable

0.010

SS304

Well Completion Form (revised 02/06/02)

SS316

CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center

CONTRACTOR

Rig mfg/mode

Location: Newton, Illinois
Project: 15E0030

**DATES: Start:** 10/19/2015 **Finish:** 10/20/2015

WEATHER: Sunny, breezy, warm, lo-80s

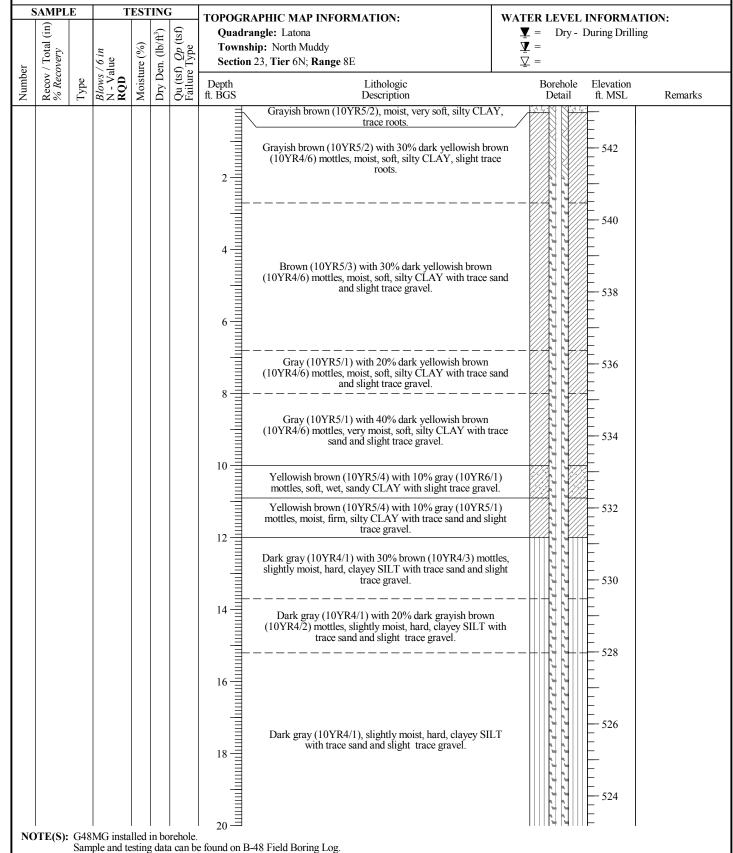
**CONTRACTOR:** Bulldog Drilling, Inc. **Rig mfg/model:** CME-550X ATV Drill

Drilling Method: 41/4" HSA

FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim




BOREHOLE ID: G48MG Well ID: G48MG

 Surface Elev:
 543.17 ft. MSL

 Completion:
 77.06 ft. BGS

 Station:
 9,706.71N

 5.052.58E

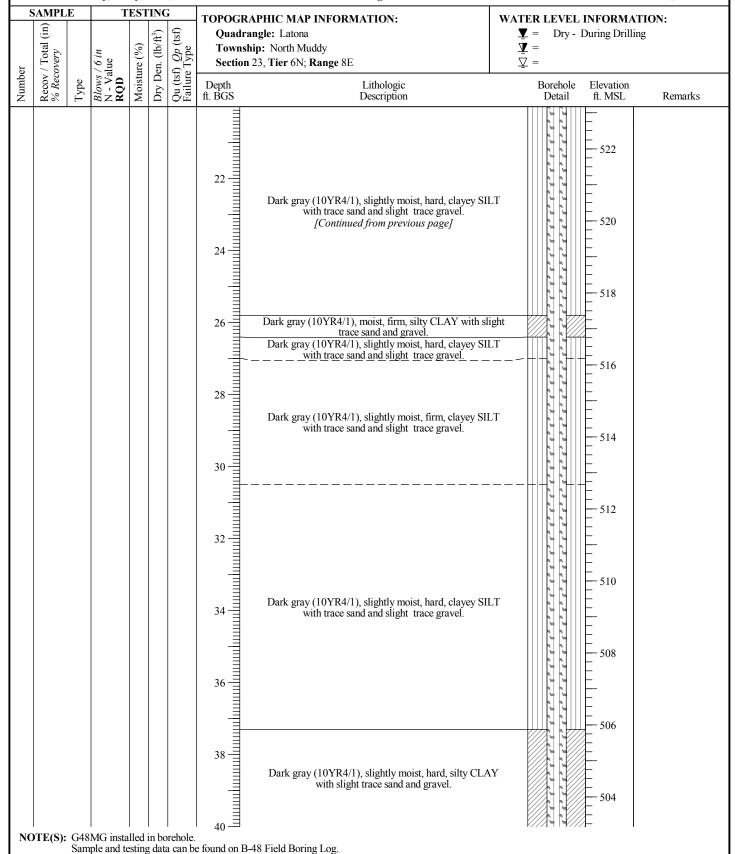


CLIENT: Natural Resource Technology, Inc. CONTRACTOR: Bulldog Drilling, Inc. Site: Newton Energy Center

Location: Newton, Illinois Drilling Method: 41/4" HSA

Project: 15E0030

**DATES: Start:** 10/19/2015


Finish: 10/20/2015 WEATHER: Sunny, breezy, warm, lo-80s Rig mfg/model: CME-550X ATV Drill

FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim

**BOREHOLE ID: G48MG** Well ID: G48MG

Surface Elev: 543.17 ft. MSL **Completion:** 77.06 ft. BGS **Station:** 9,706.71N 5,052.58E



CLIENT: Natural Resource Technology, Inc. CONTRACTOR: Bulldog Drilling, Inc. Rig mfg/model: CME-550X ATV Drill Site: Newton Energy Center

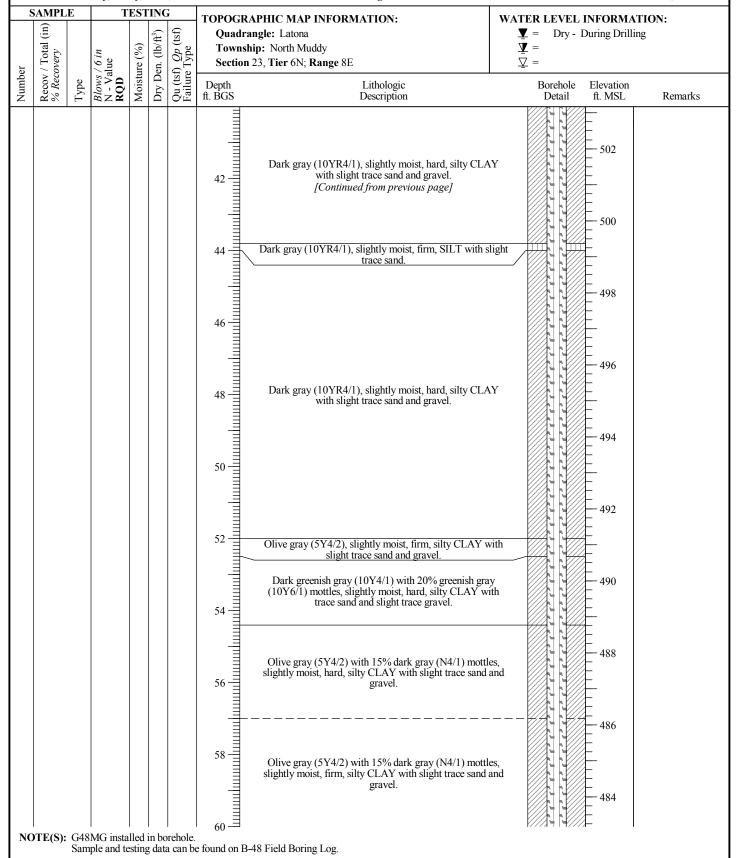
Location: Newton, Illinois

Project: 15E0030

**DATES: Start:** 10/19/2015 Finish: 10/20/2015

WEATHER: Sunny, breezy, warm, lo-80s

Drilling Method: 41/4" HSA


FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim

**BOREHOLE ID: G48MG** 

Well ID: G48MG Surface Elev: 543.17 ft. MSL

**Completion:** 77.06 ft. BGS **Station:** 9,706.71N 5,052.58E



CLIENT: Natural Resource Technology, Inc.

Site: Newton Energy Center Location: Newton, Illinois Project: 15E0030

**DATES: Start:** 10/19/2015

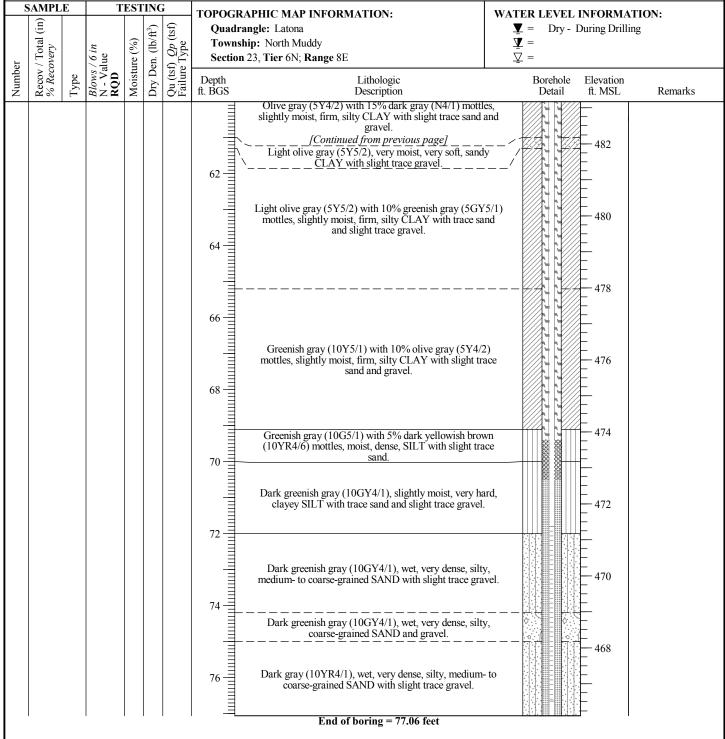
Finish: 10/20/2015 WEATHER: Sunny, breezy, warm, lo-80s CONTRACTOR: Bulldog Drilling, Inc.
Rig mfg/model: CME-550X ATV Drill

**Drilling Method:** 41/4" HSA

FIELD STAFF: Driller: C. Dutton Helper: C. Jones

Eng/Geo: S. Keim




**BOREHOLE ID:** G48MG **Well ID:** G48MG

 Surface Elev:
 543.17 ft. MSL

 Completion:
 77.06 ft. BGS


 Station:
 9,706.71N

 5.052.58E

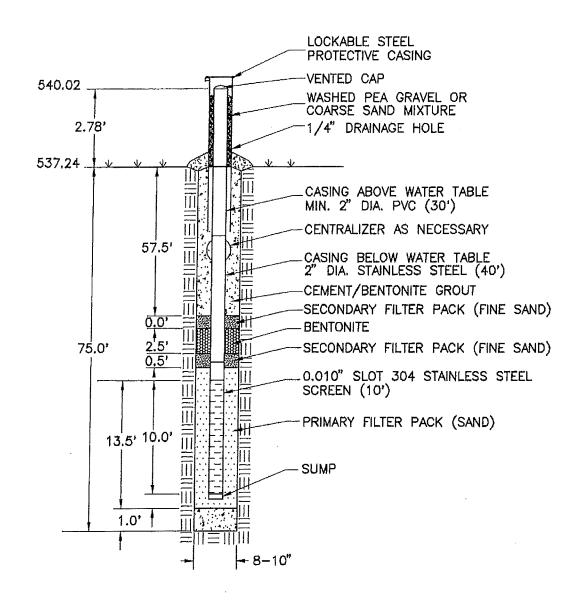


NOTE(S): G48MG installed in borehole.

Sample and testing data can be found on B-48 Field Boring Log.



N: 8947.43 / E: 5499.92


# **RAPPS**

ENGINEERING & APPLIED SCIENCE

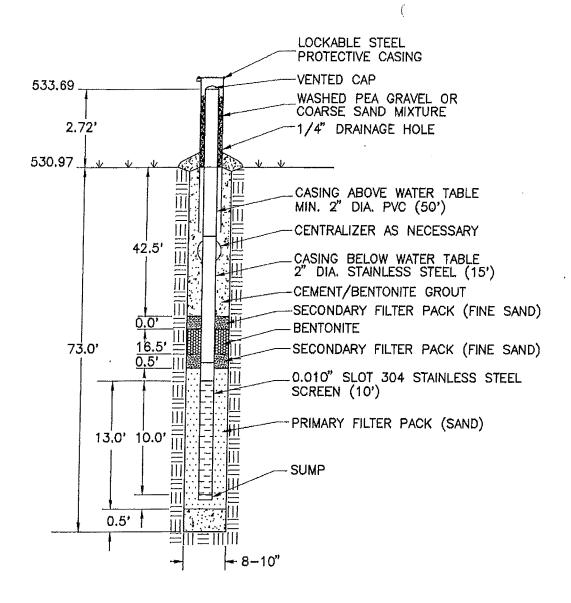
821 S. DURKIN DR. SPRINGFIELD, IL 62704 • (217) 787-2118 1601 BROADWAY • MT. VERNON, IL 62864 • (618) 244-2611

# G201 MONITORING WELL AS-BUILT DIAGRAM

CIPS-NEWTON LANDFILL JASPER COUNTY, ILLINOIS



N: 6649.68 / E: 6587.20


## **RAPPS**

ENGINEERING & APPLIED SCIENCE

821 S. DURKIN DR. SPRINGFIELD, IL 62704 (217) 787-2118 1601 BROADWAY MT. VERNON, IL 62864 (618) 244-2611

# G202 MONITORING WELL AS-BUILT DIAGRAM

CIPS-NEWTON LANDFILL JASPER COUNTY, ILLINOIS



N: 5821.29 / E: 6113.10

## **RAPPS**

ENGINEERING & APPLIED SCIENCE

821 S. DURKIN DR. SPRINGFIELD, IL 62704 • (217) 787-2118 1601 BROADWAY • MT. VERNON, IL 62864 • (618) 244-2611

# G203 MONITORING WELL AS-BUILT DIAGRAM

CIPS-NEWTON LANDFILL JASPER COUNTY, LANDFILL



## Well Completion Report

| Site Name: Newton Power Station Landfill Phase II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| and in items is a second of the second control of the second of the seco | Well #: G208                                                                                                                                 |
| State o ' Plane Coordinate: X Y (or) Latitude:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Longitude; Borehole #; B208                                                                                                                  |
| Plant Coordinates: Northing 6208.18 Easting 4417.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                              |
| Surveyed by: Ken Miller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IL Registration #; 196-001263                                                                                                                |
| Drilling Contractor: Skinner Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Driller: Todd Skinner                                                                                                                        |
| Consulting Firm: Rapps Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Geologist: Ken Miller                                                                                                                        |
| Drilling Method: HSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drilling Fluid (Type); None                                                                                                                  |
| Logged By: Ken Miller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date Started: 10/11/11 Date Finished: 10/13/11                                                                                               |
| Report Form Completed By: Ken Miller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date: 11/30/11                                                                                                                               |
| ANNULAR SPACE DETAILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Elevations Depths (.01ft.) (MSL)* (BGS)                                                                                                      |
| t <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 535.89 -2.83 Top of Protective Casing                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>535.52</u> <u>-2.46</u> Top of Riser Pipe                                                                                                 |
| Type of Surface Seal: Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 533.06 0.00 Ground Surface                                                                                                                   |
| Type of Annular Sealant: Bentonite Slurry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 530.06 3.00 Top of Annular Scalant                                                                                                           |
| Installation Method: Tremi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Static Water Level (After Completion)                                                                                                        |
| Setting Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (All Completion)                                                                                                                             |
| Type of Bentonite Seal Granular Pellet, Slurry (Choose One)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 463.13 69.93 Top of Seal                                                                                                                     |
| Installation Method: Poured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 460.13 72.93 Top of Sand Pack                                                                                                                |
| Setting Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 458.13 74.93 Top of Screen                                                                                                                   |
| Type of Sand Pack: Silica Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 438.35 94.71 Bottom of Screen                                                                                                                |
| Grain Size: 20/40 (Sieve Size)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 438.29 94.77 Bottom of Well                                                                                                                  |
| Installation Method: Poured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 438.06 95.00 Bottom of Borehole *Referenced to a National Geodetic Datum                                                                     |
| Type of Backfill Material: NA (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CASING MEASURMENTS                                                                                                                           |
| Installation Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diameter of Borehole (inches) 9                                                                                                              |
| ELL CONSTRUCTION MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ID of Riser Pine (inches) 2                                                                                                                  |
| (Choose one type of material for each area)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Protective Casing Length (feet) 5 Riser Pipe Length (feet) 77.39                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |
| rective Casing SS304 SS316 PTRR PVC as Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bottom of Screen to End Cap (feet) 0.06                                                                                                      |
| tective Casing SS304, SS316, PTFE, PVC, or Other er Pipe Above W.T. SS304, SS316, PTFE PVC, or Other er Pipe Below W.T. SS302, SS316, PTFE, PVC, or Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bottom of Screen to End Cap (feet) 0.06  Screen Length (1 <sup>st</sup> slot to last slot) (feet) 19.78  Total Length of Casing (feet) 97.23 |

| Illinois Environ                                  | imental Protect                                  | tion Agency      |               |                                       | Well               | Completion               | Report         |
|---------------------------------------------------|--------------------------------------------------|------------------|---------------|---------------------------------------|--------------------|--------------------------|----------------|
| Site #:0798085001                                 |                                                  | County: Jasp     | er            |                                       | W                  | /ell #: <u>R2</u>        | 17D            |
| Site Name: Newton Power Sta                       | ation                                            |                  |               |                                       | В                  | orehole #: R             | 217D           |
| State- Plant Plane Coordinate: X 6,712            | 2.2 Y 7,126.9                                    | _ (or) Latitude: | 38°_          | 55' 55.889                            | " Longitud         | e: <u>-88°</u> <u>17</u> | <u>24.426"</u> |
| Surveyed By: Matthew H. Sch                       | rader                                            |                  | IL Regi       | stration #:035-                       | 003487             |                          |                |
| Drilling Contractor: Bulldog D                    | rilling                                          |                  | Driller:      | J. Dittmaier                          |                    |                          |                |
| Consulting Firm: Hanson Prof                      | essional Services Inc.                           |                  | Geologi       | st: Rhonald W                         | . Hasenyage        | r, LPG #196-000          | 246            |
| Drilling Method: Mud Rotary                       |                                                  |                  | Drilling      | Fluid (Type): B                       | entonite mu        | d                        |                |
| Logged By: Rhonald W. Hase                        | nyager                                           |                  | Date St       | arted: 9/25/2                         | 017 Dat            | e Finished:9/2           | 26/2017        |
| Report Form Completed By: Su:                     | zanna L. Keim                                    |                  | Date: _       | 10/16/2017                            |                    |                          |                |
| ANNULAR SPA                                       | CE DETAILS                                       |                  |               | Elevations<br>(MSL)*                  | Depths<br>(BGS)    | (0.01 ft.)               |                |
|                                                   |                                                  |                  |               | _538.85_                              | -2.94              | Top of Protective        | Casing         |
|                                                   |                                                  | T                | $\overline{}$ | · · · · · · · · · · · · · · · · · · · |                    | -                        | _              |
|                                                   |                                                  |                  |               | 538.55                                | 2.64               | Top of Riser Pipe        | ;              |
| Type of Surface Seal: Concrete                    |                                                  |                  | Y             | 535.91                                | 0.00               | Ground Surface           |                |
| Type of Annular Sealant: high-so                  | olids bentonite                                  |                  |               | _533.41_                              | 2.50               | Top of Annular S         | ealant         |
| Installation Method: Tremie                       |                                                  |                  |               |                                       |                    |                          |                |
| Setting Time: +24 hours                           |                                                  |                  | ☑             |                                       |                    | Static Water Leve        | el             |
| seeing time. ———————————————————————————————————— |                                                  |                  | <del>-</del>  |                                       |                    | (After Completion)       |                |
| Type of Bentonite Seal Grant                      | Pellet Sluri<br>(choose one)                     | ry               | Y             |                                       |                    |                          |                |
| Installation Method: Gravity                      | `                                                |                  |               | 479.39                                | 56.52              | Top of Seal              |                |
| Setting Time: 10 minutes                          |                                                  |                  |               | 478.01                                | 57 90              | Top of Sand Pack         | r              |
|                                                   |                                                  | V                |               |                                       |                    | Top of Sund Faci         |                |
| Type of Sand Pack: Quartz sand                    |                                                  |                  |               | 475.81                                | 60.10              | Top of Screen            |                |
| Grain Size: 10/20 (sie                            |                                                  |                  |               |                                       |                    | Top of Serven            |                |
| Installation Method: <u>Gravity</u>               | r                                                | —   <b> </b>     |               | 470.88                                | 65.03              | Bottom of Screen         | ı              |
| Type of Backfill Material:none_                   | (if applicable)                                  |                  |               | 470.67                                | 65.24              | Bottom of Well           |                |
| Installation Method:                              | , ,                                              |                  |               | 470.67                                | 65.24              | Bottom of Boreho         | ole            |
|                                                   |                                                  |                  |               | * Referenced to                       | a National Geodeti |                          |                |
|                                                   |                                                  |                  |               | CA                                    | SING MEA           | SUREMENTS                |                |
| WELL CONC                                         | TRUCTION MATER                                   | IAIC             |               | Diameter of Borel                     | nole               | (inches)                 | 8.0            |
|                                                   | TRUCTION MATER e type of material for each area) | IALS             |               | ID of Riser Pipe                      |                    | (inches)                 | 2.0            |
|                                                   |                                                  |                  |               | Protective Casing                     |                    | (feet)                   | 5.0            |
| Protective Casing                                 | SS304 SS316 PTFE                                 | PVC OTHER:       | Steel         | Riser Pipe Length Bottom of Screen    |                    | (feet)                   | 0.31           |
| Riser Pipe Above W.T.                             | SS304 SS316 PTFE                                 | PVC OTHER:       |               | Screen Length (                       | •                  |                          | 4.93           |
| Riser Pipe Below W.T.                             | SS304 SS316 PTFE                                 | PVC OTHER:       |               | Total Length of C                     |                    | (feet)                   | 67.88          |

SS304

Well Completion Form (revised 02/06/02)

SS316

PTFE PVC OTHER:

Total Length of Casing

\*\*Hand-Slotted Well Screens Are Unacceptable

Screen Slot Size \*\*

0.010

(inches)



## Well Completion Report

| Site Number: 0798085001                                                                                                                            | County: Jasper                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Site Name: Newton Power Station Landfill Phase II State o Plane Coordinate: X Y (or) Latitude: Plant Coordinates: Northing 5765.30 Easting 4036.52 | Well #: G220<br>  Longitude:   Borchole #: B220                            |
| Surveyed by: Ken Miller                                                                                                                            | IL Registration #: 196-001263                                              |
| Drilling Contractor; Skinner Ltd.                                                                                                                  | _ Driller: Todd Skinner                                                    |
| Consulting Firm: Rapps Engineering                                                                                                                 | Geologist; Ken Miller                                                      |
| Drilling Method: HSA                                                                                                                               | Drilling Fluid (Type); None                                                |
| Logged By: Ken Miller                                                                                                                              | Date Started: 10/14/11 Date Finished: 10/17/11                             |
| Report Form Completed By: Ken Miller                                                                                                               | Date: 11/30/11                                                             |
| ANNULAR SPACE DETAILS                                                                                                                              | Elevations Depths (.01ft.) (MSL)* (BGS)                                    |
|                                                                                                                                                    | 535.52 -3.06 Top of Protective Casing                                      |
|                                                                                                                                                    | <u>535.16</u> <u>-2.70</u> Top of Riser Pipe                               |
| Type of Surface Seal: Concrete                                                                                                                     | 532.46 0.00 Ground Surface                                                 |
| Type of Annular Sealant: Bentonite Slurry                                                                                                          | 529.46 3.00 Top of Annular Sealant                                         |
| Installation Method: Tremi                                                                                                                         | Static Water Level (After Completion)                                      |
| Setting Time:                                                                                                                                      | (Anter Completion)                                                         |
| Type of Bentonite Seal Granular Pellet, Shurry (Choose One)                                                                                        | 461.31 71.15 Top of Seal                                                   |
| Installation Method: Poured                                                                                                                        | (X)                                    |
| Setting Time:                                                                                                                                      | 456.09 76.37 Top of Screen                                                 |
| Type of Sand Pack: Quartz Sand                                                                                                                     | 446.41 86.05 Bottom of Screen                                              |
| Grain Size: 20/40 (Sieve Size)                                                                                                                     | 446.35 86.11 Bottom of Well                                                |
| Installation Method: Poured                                                                                                                        | 445.46 87.00 Bottom of Borehole  * Referenced to a National Geodetic Datum |
| Type of Backfill Material: NA (ifapplicable)                                                                                                       | CASING MEASURMENTS                                                         |
| Installation Method:                                                                                                                               | Diameter of Borehole (inches) 9                                            |
| VELL CONSTRUCTION MATERIAL                                                                                                                         | ID of Riser Pipe (inches) 2 Protective Casing Length (feet) - 5            |
| (Choose one type of material for each area)                                                                                                        | Riser Pipe Length (feet) 79.07 Bottom of Screen to Bnd Cap (feet) 0.06     |
| rotective Casing SS304, SS316, PTFE, PVC, or Other                                                                                                 | Screen Length (1 <sup>th</sup> slot to last slot) (feet) 9.68              |
| ser Pipe Above W.T. SS304, SS316, PTFE PVC or Officer (ser Pipe Below W.T. SS304 SS316, PTFE, PVC, or Officer                                      | Total Length of Casing (feet) 88.81                                        |
| oreen \$304 \$8316, PTFB, PVC, or Other                                                                                                            | Screen Slot Size ** 0.010  **Hand-Slotted Well Screens are Unacceptable    |

## Well Completion Report

| Site Number: 0798085001                                                                          | County: J | asper                                          |                           |                                          |
|--------------------------------------------------------------------------------------------------|-----------|------------------------------------------------|---------------------------|------------------------------------------|
| Site Name: Newton Power Station Landfill Phase II                                                |           |                                                | 4                         | Well #: G222                             |
| State 0 Plane Coordinate: X Y (or) Latitude: Plant Coordinates: Northing 5322.24 Easting 3989.08 |           | gitude:                                        | j 11                      | Borehole #: B222                         |
| Surveyed by: Ken Miller                                                                          |           | IL Registratio                                 | n#: 196-001               | 263                                      |
| Drilling Contractor; Skinner Ltd.                                                                |           | Driller: Tode                                  | 4 443 441                 |                                          |
|                                                                                                  |           |                                                |                           | i.                                       |
| Consulting Firm: Rapps Engineering                                                               |           | Geologist: Ke                                  | n Miller                  |                                          |
| Drilling Method: HSA                                                                             | -         | Drilling Fluid                                 | (Type): Non               | e ·                                      |
| Logged By: Ken Miller                                                                            |           | Date Started:                                  | 10/24/11                  | Date Finished: 10/25/11                  |
| Report Form Completed By: Ken Miller                                                             | -         | Date: 11/30/1                                  | 1                         | · ·                                      |
| ANNULAR SPACE DETAILS                                                                            |           | Elevations<br>(MSL)*                           | Depths<br>(BGS)           | (,01ft,)                                 |
| T-1                                                                                              |           | 535.16                                         | 3.04                      | Top of Protective Casin                  |
|                                                                                                  |           | 534.78                                         | -2.66                     | Top of Riser Pipe                        |
| Type of Surface Seal: Concrete                                                                   |           | <u>532.12</u>                                  | 0.00                      | Ground Surface                           |
| Type of Annular Sealant: Bentonite Slurry                                                        |           | 529.12                                         | 3.00                      | Top of Annular Sealant                   |
| Installation Method: Tremi                                                                       |           |                                                |                           | Static Water Level<br>(After Completion) |
| Setting Time:                                                                                    |           |                                                |                           |                                          |
| Type of Bentonite Seal Granular Pellet, Slurry (Choose One)                                      | (X)       | 472.55                                         | 59.57                     | Top of Seal                              |
| Installation Method: Poured                                                                      |           | 469.55                                         | 62.57                     | Top of Sand Pack                         |
| Setting Time:                                                                                    |           | 467.55                                         | 64,57                     | Top of Screen                            |
| Турь of Sand Pack; Silica Sand                                                                   |           | 452.88                                         | 79.24                     | Bottom of Screen                         |
| Grain Size: 20/40 (Sieve Size)                                                                   |           | 452.81                                         | 79.31                     | Bottom of Well                           |
| Installation Method; Poured                                                                      |           | 452.12<br>* Referenced                         | 80.00<br>to a National Ge | Bottom of Borehole odetle Datum          |
| Type of Backfill Material: NA (if applicable)                                                    | CAS       | ING MBASURA                                    |                           |                                          |
| Installation Method;                                                                             |           | eter of Borehole (incl                         | nes)                      | 9                                        |
| VELL CONSTRUCTION MATERIAL                                                                       |           | Riser Pipe (inches)                            | feet).                    | 2 5                                      |
| (Choose one type of material for each area)                                                      | Riser     | Pipe Length (feet)                             |                           | 67.27                                    |
| rotective Casing SS304, SS316, PTFE, PVC, or Other                                               | Botto     | m of Screen to End C<br>Length (1st slot to le | ap (feet)                 | 0.07                                     |
| iser Pine Above W.T. SS304, SS316, PTFE(PVC)or Other                                             | Total     | Length of Casing (fee                          | ot)                       | 81.97                                    |
| iser Pipe Below W.T. SS304 SS316, PTFE, PVC, or Other                                            |           | Slot Size **                                   |                           | 0.010                                    |

## Well Completion Report

| Site Number: <u>0798085001</u>                                                                   | County: Jasper                                                           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Site Name: Newton Power Station Landfill Phase II                                                | Well #: G223                                                             |
| State 0 Plane Coordinate: X Y (or) Latitude: Plant Coordinates: Northing 6393.02 Easting 5763.68 | Longitude: Borehole #: B223                                              |
| Surveyed by: Ken Miller                                                                          | IL Registration #: 196-001263                                            |
| Drilling Contractor: Skinner Ltd.                                                                | Driller: Todd Skinner                                                    |
| Consulting Firm: Rapps Engineering                                                               | Geologist: Ken Miller                                                    |
| Drilling Method; HSA                                                                             | Drilling Fluid (Type): None                                              |
| Logged By; Ken Miller                                                                            | Date Started: 10/10/11 Date Finished: 10/11/11                           |
| Report Form Completed By: Ken Miller                                                             | Date: 11/30/11                                                           |
| ANNULAR SPACE DETAILS                                                                            | Elevations Depths (.01ft.) (MSL)* (BGS)                                  |
| -                                                                                                | 534.54 -3.02 Top of Protective Casing                                    |
|                                                                                                  | <u>534.16</u> <u>-2.64</u> Top of Riser Pipe                             |
| Type of Surface Seal: Concrete                                                                   | 531.52 0.00 Ground Surface                                               |
| Type of Annular Sealant: Bentonite Slurry                                                        | 528.52 3.00 Top of Annular Sealant                                       |
| Installation Method: Tremi                                                                       | Static Water Level (After Completion)                                    |
| Setting Time:                                                                                    |                                                                          |
| Type of Bentonite Seal Granular Pellet, Slurry (Choose One)                                      | 457.52 74.00 Top of Seal                                                 |
| Installation Method: Poured                                                                      | (A)                                  |
| Setting Time:                                                                                    | 452.43 79.09 Top of Screen                                               |
| Type of Sand Pack: Silica Sand                                                                   | 442.77 <u>88.75</u> Bottom of Screen                                     |
| Grain Size: 20/40 (Sieve Size)                                                                   | 442.43 89.09 Bottom of Well                                              |
| Installation Method: Poured                                                                      | 442.43 89.09 Bottom of Borehole *Referenced to a National Geodetic Datum |
| Type of Backfill Material: NA (If applicable)                                                    | CASING MEASURMENTS                                                       |
| Installation Method:                                                                             | Diameter of Borehole (findles) 9                                         |
| WELL CONSTRUCTION MATERIAL                                                                       | ID of Riser Pipe (inches) 2 Protective Casing Length (feet) 5            |
| (Choose one type of material for each area)                                                      | Riser Pipe Length (feet) 81.73  Bottom of Screen to End Cap (feet) 0.34  |
| Protective Casing SS304, SS316, PTFE, PVC, or Other                                              | Screen Length (1st slot to last slot) (feet) 9.66                        |
| Riser Pine Above W.T. SS304, SS316, PTFE PVC or Other                                            | Total Length of Casing (feet) 91.73                                      |
| Riser Pipe Below W.T. SS304 SS316, PTFB, PVC, or Other Soreen SS304 SS316, PTFB, PVC, or Other   | Screen Slot Size ** 0.010  **Hand-Slotted Well Screens are Unacceptable  |

Well Completion Form (revised 02/06/02)

| Illinois Environmental Protection Agei                                                                                                            |                                                                                 | WENT COM        | bremon report                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|------------------------------------------|
|                                                                                                                                                   | County: Jasper                                                                  | _               | Well #: G224                             |
| Site Name: Newton Power Station Landfill Phase II  State Plane Coordinate: X Y (or) Latitude: Plant Coordinates: Northing 6976.66 Easting 6067.30 | Longitude;                                                                      |                 | Borehole #: B224                         |
| Surveyed by: Ken Miller                                                                                                                           | IL Registration                                                                 | #: 196-001:     | 263                                      |
| Drilling Contractor: Whitney & Associates                                                                                                         | Driller: Tim F                                                                  | uhl             |                                          |
| Consulting Firm: Rapps Engineering                                                                                                                | Geologist: Ken                                                                  | Miller          |                                          |
| Drilling Method: HSA                                                                                                                              | Drilling Fluid (                                                                | Type): None     |                                          |
| Logged By: Ken Miller                                                                                                                             | Date Started: 10                                                                | 0/4/11          | Date Finished: 10/5/11                   |
| Report Form Completed By: Ken Miller                                                                                                              | Date: <u>11/30/11</u>                                                           |                 |                                          |
| ANNULAR SPACE DETAILS                                                                                                                             | Elevations<br>(MSL)*                                                            | Depths<br>(BGS) | (.01ft.)                                 |
|                                                                                                                                                   | 535.19                                                                          | -2.93           | Top of Protective Casing                 |
|                                                                                                                                                   | 534.78                                                                          | -2.52           | Top of Riser Pipe                        |
| Type of Surface Seal: Concrete                                                                                                                    | 532.26                                                                          | 0.00            | Ground Surface                           |
| Type of Annular Sealant: Bentonite Chips                                                                                                          | 529.26                                                                          | 3.00            | Top of Annular Sealant                   |
| Installation Method; Poured                                                                                                                       |                                                                                 |                 | Static Water Level<br>(After Completion) |
| Setting Time:                                                                                                                                     |                                                                                 |                 |                                          |
| Type of Bentonite Seal Granular Pellet, Slurry (Choose One)                                                                                       | 473.75                                                                          | 58.51           | Top of Seal                              |
| Installation Method: Poured                                                                                                                       | 470.75                                                                          | 61.51           | Top of Sand Pack                         |
| Setting Time:                                                                                                                                     | 468.75                                                                          | 63.51           | Top of Screen                            |
| Type of Sand Pack: Silica Sand                                                                                                                    | 459.09                                                                          | 73.17           | Bottom of Screen                         |
| Grain Size: 50 (Sieve Size)                                                                                                                       | 458.75                                                                          | 73.51           | Bottom of Well                           |
| Installation Method: Poured                                                                                                                       | 458.26<br>* Referenced to                                                       | 74.00           | Bottom of Borehole                       |
| Type of Backfill Material: NA (if applicable)                                                                                                     | CASING MEASURME                                                                 |                 |                                          |
| Installation Method:                                                                                                                              | Diameter of Borehole (inches                                                    | )               | 9                                        |
| ELL CONSTRUCTION MATERIAL (Choose one type of material for each area)                                                                             | ID of Riser Pipe (inches) Protective Casing Length (fee Riser Pipe Length (feet |                 | 5<br>66.03                               |
|                                                                                                                                                   | Bottom of Screen to End Cap                                                     | (Teet)          | 0.34                                     |

| Protective Casing     | SS304, SS316, PTFE, PVC, or Other |
|-----------------------|-----------------------------------|
| Riser Pipe Above W.T. | SS304, SS316, PTFE PVC or Other   |
| Riser Pipe Below W.T. | SS304 SS316, PTFE, PVC, or Other  |
| Screen                | SS304 SS316, PTFE, PVC, or Other  |

| Diameter of Borehole (inches)                | 9     |
|----------------------------------------------|-------|
| ID of Riser Pipe (inches)                    | 2     |
| Protective Casing Length (feet)              | 5     |
| Riser Pipe Length (feet)                     | 66.03 |
| Bottom of Screen to End Cap (feet)           | 0.34  |
| Screen Length (1st slot to last slot) (feet) | 9.66  |
| Total Length of Casing (feet)                | 76.03 |
| Screen Slot Size **                          | 0.010 |

| Illinois Environ                                     | mental Protection A               | Agency            |                |                                    | Well              | Completi         | on Report               |
|------------------------------------------------------|-----------------------------------|-------------------|----------------|------------------------------------|-------------------|------------------|-------------------------|
| Site #:                                              | Cou                               | unty: <u>Jasp</u> | er Count       | y                                  | W                 | /ell #:          | G06D                    |
| Site Name: Newton Energy C                           | enter                             |                   |                |                                    | В                 | orehole #:       | G06D                    |
| State Plant Plane Coordinate: X 4,926                |                                   |                   |                |                                    |                   |                  |                         |
| Surveyed By: Michael J. Gran                         | ninski                            |                   | IL Regi        | stration #: <u>035-0</u>           | 002901            |                  |                         |
| Drilling Contractor: Bulldog D                       | rilling, Inc.                     |                   | Driller:       | J. Gates                           |                   |                  |                         |
| Consulting Firm: Hanson Profe                        | essional Services Inc.            |                   | Geolog         | ist: Rhonald W.                    | Hasenyager        | , LPG #196-0     | 00246                   |
| Drilling Method: Hollow Stem                         | Auger                             |                   | Drilling       | g Fluid (Type): W                  | Vater             |                  |                         |
| Logged By: Rhonald W. Hase                           | nyager                            |                   | Date St        | arted: 11/9/20                     | 015 Date          | e Finished:      | 11/10/2015              |
| Report Form Completed By: Su                         | zanna L. Keim                     |                   | Date: _        | 11/16/2015                         |                   |                  |                         |
| ANNULAR SPA                                          | CE DETAILS                        |                   |                | Elevations<br>(MSL)*               | Depths<br>(BGS)   | (0.01            | ft.)                    |
|                                                      |                                   |                   |                | 532.59                             | 2.90              | Top of Protect   | tive Casing             |
|                                                      |                                   |                   |                | 532.18                             | 2.49              | Top of Riser I   | Pipe                    |
| Type of Surface Seal: Concrete                       |                                   |                   | Y D            | 529.69                             | 0.00              | Ground Surfa     | ce                      |
| Type of Annular Sealant: High-s                      | valide hantanita                  |                   |                | 527.69                             | 2.00              | Top of Annula    | ar Sealant              |
|                                                      |                                   |                   |                |                                    |                   |                  |                         |
| Installation Method:Tremic Setting Time: _ >48 hours | 3                                 | .     7           | Z              | 439.57                             | 90.12             | Static Water I   | Level                   |
|                                                      |                                   |                   | -              |                                    |                   | (After Completic | on) 12/16/2016          |
| Type of Bentonite Seal Gran                          | ular Pellet Slurry (choose one)   |                   | Y              |                                    |                   |                  |                         |
| Installation Method: <u>Gravit</u>                   | y                                 |                   | $\overline{X}$ | 459.39                             | 70.30             | Top of Seal      |                         |
| Setting Time: 45 minutes                             |                                   |                   |                | 457.58                             | 72.11             | Top of Sand F    | <b>P</b> ack            |
| Type of Sand Pack: Quartz Sand                       | 1                                 |                   |                |                                    |                   |                  |                         |
|                                                      | uve size)                         | ·                 |                | 455.46                             | 74.23             | Top of Screen    |                         |
| Installation Method: Gravit                          | ,                                 |                   | ∄              |                                    |                   |                  |                         |
| instantation (viction). <u>Stavie</u>                | ,                                 |                   | ∄              | 435.80                             | 93.89             | Bottom of Scr    |                         |
| Type of Backfill Material:Quar                       | tz Sand (if applicable)           | .   L             |                | 435.36                             | _94.33_           | Bottom of We     | ·11                     |
| Installation Method:gravity                          | I .                               |                   |                | 433.69                             | 96.00             | Bottom of Bo     | rehole                  |
|                                                      |                                   |                   |                | * Referenced to                    | a National Geodet | ic Datum         |                         |
|                                                      |                                   |                   |                | CA                                 | SING MEAS         | SUREMENTS        | S                       |
| WELL CONS                                            | STRUCTION MATERIALS               |                   |                | Diameter of Boreh                  | iole              | (inch            |                         |
|                                                      | e type of material for each area) |                   |                | ID of Riser Pipe                   |                   | (inch            |                         |
|                                                      |                                   |                   |                | Protective Casing                  |                   | •                | eet) 5.0                |
| Protective Casing                                    | SS304 SS316 PTFE PV               | C OTHER: S        | Steel          | Riser Pipe Length Bottom of Screen |                   | •                | eet) 76.72<br>eet) 0.44 |
| Riser Pipe Above W.T.                                |                                   | C OTHER:          |                | Screen Length (1                   |                   | `                | eet) 0.44<br>eet) 19.66 |
| Riser Pipe Below W.T.                                | SS304 SS316 PTFE PV               | OTHER:            |                | Total Length of Ca                 |                   |                  | eet) 96.82              |

PTFE PVC OTHER:

Screen Slot Size \*\*

\*\*Hand-Slotted Well Screens Are Unacceptable

0.010

SS304

Well Completion Form (revised 02/06/02)

SS316

|                                                 | ironment                          |                        |                                         |                       | Jasp           | er           |                            |               | _             | letion Re    | port                                           |
|-------------------------------------------------|-----------------------------------|------------------------|-----------------------------------------|-----------------------|----------------|--------------|----------------------------|---------------|---------------|--------------|------------------------------------------------|
| Site #:Newton                                   | Power S                           | tation                 | (<br>1.endfil                           | County                | Jasp           | <u> </u>     |                            |               | Well #        | G201         |                                                |
| Site Name:                                      |                                   |                        |                                         | Grid                  | d Coordi       | inate;       | Northin                    | ng <u>894</u> | 17.43         | Easting_     | 5499.92                                        |
| Drilling Contractor:                            | Professi                          | onal Se                | ervice I                                | ndustri               | Les,           | Inc.         | _ Date                     | e Drilled S   | tart:         | 10/08/9      | 6                                              |
| Driller:                                        |                                   |                        |                                         | Mike                  | ⊋ Sum          | ners         |                            |               | Date Co       | mpleted:     | 10/10/96                                       |
| Drilling Method:                                | 4七" I.D.                          | HSA                    |                                         |                       |                | _ Dri        | lling Fl                   | luids (type   | ): <u>N</u> / | A            |                                                |
| Annular Space Det                               |                                   |                        |                                         |                       |                | •            | <del></del> -              | ·             |               | 01 ft.       |                                                |
| Type of Surface Seal:                           | ortland                           | Cement                 | ,                                       |                       |                | T            |                            | 544           |               |              | of Protective Casi<br>of Riser Pipe<br>Stickup |
| Type of Annular Sealant:                        | Cement                            | :/Bento                | nite Gro                                | out (20               | :1)            | . —          | $\sqrt{}$                  |               | 52            | ft. Casing   | Stickup                                        |
| Amount of cement: #                             |                                   |                        |                                         |                       |                | ٦            |                            | 542           | 45            | _ MSL Gro    | und Surface                                    |
| Amount of bentonite:                            |                                   |                        |                                         |                       | 4              |              |                            |               |               | ft. Top of   | f annular sealant                              |
| Type of Bentonite Seal (Gr                      |                                   |                        |                                         |                       | •              | 7            |                            | (A)           |               |              | •                                              |
| Type of Demonite Beat of                        |                                   |                        |                                         | <del>-</del> .        |                | 4            |                            | Ď             |               |              |                                                |
| Amount of bentonite: # of ]                     | Bags                              | 3.5                    | lbs. per ba                             | 50                    | <del>-</del>   | N.           |                            |               |               |              |                                                |
| Type of Sand Pack: S                            | ilica                             |                        |                                         |                       | _              |              | -   4                      |               |               |              |                                                |
| Source of Sand:                                 |                                   |                        |                                         |                       |                |              |                            |               |               |              |                                                |
|                                                 |                                   |                        |                                         |                       | _              |              |                            |               |               |              |                                                |
| Amount of Sand: # of b                          | egs                               | <del></del>            | lbs. per bag                            |                       | <del>-</del> . |              |                            |               |               | •            |                                                |
| Well Construction M                             | aterials                          |                        |                                         | •                     | •              | 1 1          |                            |               |               |              |                                                |
|                                                 | v                                 | ۵                      | 1                                       |                       | 7 .            |              |                            |               | •             |              |                                                |
|                                                 | a tr                              | Teflon<br>Specify Type | PVC<br>Specify Type                     | Other<br>Specify Type | 1.             |              |                            |               |               |              | -                                              |
|                                                 | Stainless<br>Steel<br>Specify Typ | lon<br>cify            | ify.                                    | ic,                   |                |              |                            |               |               |              |                                                |
|                                                 | Ste                               | Teff<br>Spe            | PV(                                     | Spec                  |                |              |                            |               |               |              |                                                |
| Riser coupling joint                            |                                   |                        |                                         |                       | 1              | 1 1          |                            |               | ٠             |              |                                                |
| Riser pipe above w.t.                           |                                   |                        | Sch 40                                  | -                     | 1              | 1 1          |                            |               |               |              |                                                |
| Riser pipe below w.t.                           | Type304                           |                        |                                         |                       | †              |              |                            | •             |               |              |                                                |
| Screen                                          | Type304                           | *                      |                                         |                       | 1              |              |                            |               |               |              |                                                |
| Coupling joint screen to rise                   |                                   |                        |                                         |                       | †              |              |                            |               |               |              |                                                |
| Protective casing                               |                                   |                        |                                         | Steel                 | 1              |              |                            |               | •             |              |                                                |
| Measurements                                    | to                                | .01 ft. (wh            | ere applicat                            | ile)                  |                | XX           |                            | 492           | 95            | ft. Top of S | eal                                            |
| Riser pipe length                               | FO 5                              |                        |                                         |                       | 1              |              | $\boxtimes$                | 5             | 50_           | ft. Total Se | al Interval                                    |
|                                                 | 59.5                              | 2 ft.                  |                                         | ·                     |                | $\bigotimes$ |                            | 487           | 45            | ft. Top of S | Sand                                           |
| Protective casing length                        | 30.0                              |                        |                                         |                       |                | [3]          | 1,7                        |               |               | ra rob ot s  | PHA                                            |
| Screen length                                   | 10.00                             | ) ft.                  |                                         |                       |                | 1.5          |                            | 485           | 45            | Fr T         |                                                |
| Sottom of screen to end cap                     |                                   | - W.                   |                                         | ,                     |                | l:/E         |                            | ,,            | ~ ~~          | ft. Top of S | creen                                          |
| op of screen to first joint                     | · · · · · -                       |                        | ····                                    |                       |                | I). E        | $\exists \circlearrowleft$ |               |               |              |                                                |
| otal length of casing                           |                                   |                        | *************************************** |                       |                | : [          | 二: []                      | _10_          | _00_          | ft. Total Sc | reen Interval                                  |
| creen slot size                                 | •010                              | ) in.                  |                                         |                       |                | . E          |                            |               |               |              |                                                |
| of openings in screen                           |                                   | <del></del>            |                                         |                       |                |              | 4:1                        |               |               |              |                                                |
|                                                 | 8                                 |                        |                                         |                       | ,              | 太            | <b>###</b>                 | 475           | A.E.          | ft. Bottom   |                                                |
| Diameter of borehole (in)  D of riser pipe (in) | 2                                 |                        |                                         |                       |                | <u></u> -    | ∤ ऍ, ႞                     |               |               |              | of Saras-                                      |

.....

|                               |                                       | Protection Age                                | -                     | _        |                            |              |              |             | etion Report                                     |
|-------------------------------|---------------------------------------|-----------------------------------------------|-----------------------|----------|----------------------------|--------------|--------------|-------------|--------------------------------------------------|
| Site #:                       |                                       | C                                             | ounty                 | Jaspe    | r                          |              | W            | ell #       | G202                                             |
| Site Name: Newton             | Power Sta                             | tion Landfil                                  | .1<br>Grid            | Coordina | te: Nort                   | thing.       | 6649         | 68          | Easting 6587.20                                  |
| Drilling Contractor:          | Profession                            | al Service I                                  | ndustr                | ies, I   | nc.                        | Date D       | rilled Sta   | art:        | 10/16/96                                         |
| Driller:                      |                                       | Geologist:                                    | Mik                   | e Summ   | ers                        |              |              | Date Con    | npleted: 10/16/96                                |
| Drilling Method:              | 4월" I.D. H                            | SA                                            |                       |          | Drilling                   | g Fluid      | la (type):   | N           | /A                                               |
| Annular Space Deta            | ails                                  |                                               |                       | •        |                            |              |              |             | 01 ft.                                           |
| Type of Surface Seal:         | Portland C                            | ement                                         | <del></del>           |          | I                          | 7            | 540          | 02          | MSL Top of Protective Casi MSL Top of Riser Pipe |
| Type of Annular Sealant:      | Cement/                               | Bentonite Gr                                  | out (20               | 0:1)     | $\neg \checkmark \nearrow$ |              |              | /8_         | ft. Casing Stickup                               |
| Amount of cement: #           |                                       |                                               |                       |          | 쾳                          |              | 537          | _24         | MSL Ground Surface                               |
| Amount of bentonite:          | -                                     |                                               |                       | <u> </u> |                            | 1 2          | <u>~~~~~</u> | *********** | ft. Top of annular sealant                       |
|                               | _                                     | * '                                           | <u>-</u>              | -        |                            | 3            |              |             |                                                  |
| Type of Bentonite Seal (Gr    | anular, Pellet):                      | Pellet                                        | <b>-</b>              |          | 3                          | (20)         |              |             |                                                  |
| Amount of bentonite: # of E   | Bags                                  | lbs. per bag                                  | 50                    | -        | 200  <br>200               | N. O. Y.     |              |             |                                                  |
| Type of Sand Pack:            | Silica                                |                                               |                       | -        |                            |              |              |             |                                                  |
| Source of Sand:               |                                       |                                               |                       |          |                            |              |              |             |                                                  |
| Amount of Sand: # of b        | 12.                                   | 5 the per had                                 | 100                   |          |                            |              |              |             | · ,                                              |
|                               |                                       | 1081 pc. 142                                  |                       | -        |                            | -            |              |             |                                                  |
| Well Construction M           | aterials                              |                                               |                       | ·        |                            |              |              |             |                                                  |
|                               | Stainless<br>Steel<br>Specify Type    | Tetlon<br>Specify Type<br>PVC<br>Specify Type | Other<br>Specify Type |          |                            |              |              |             |                                                  |
|                               | less<br>fy T                          | 1 7 7 Y                                       | . A                   |          |                            |              |              |             | •                                                |
|                               | Leel<br>Peci                          | VC VC                                         | ther                  | '        |                            |              |              |             |                                                  |
| Riser coupling joint          | 2000                                  | न ज व ज                                       | 0 2                   | 4        |                            |              |              |             |                                                  |
| Riser pipe above w.t.         | <del>   </del>                        |                                               | <u> </u>              | +        |                            |              |              |             |                                                  |
| Riser pipe below w.t.         |                                       |                                               |                       | 4        |                            |              |              |             |                                                  |
| Screen                        | <del> </del>                          |                                               |                       | ┥        |                            |              |              |             |                                                  |
| Coupling joint screen to rise | , , , , , , , , , , , , , , , , , , , |                                               |                       | -        |                            |              |              |             |                                                  |
| Protective casing             |                                       |                                               | ·                     | 1        |                            |              |              |             |                                                  |
| 1100000110                    | <del></del>                           |                                               | L                     | -        |                            | .            |              |             |                                                  |
| Measurements                  | to .01                                | ft. (where applicat                           | ole)                  | 5        |                            | <del>.</del> | <u>479</u>   | _24_        | ft. Top of Seal                                  |
| Riser pipe length             | 66.78                                 | ) .C.L                                        |                       | 1 8      | 8 1                        |              | 2            | <u> 50</u>  | ft. Total Seal Interval                          |
| Protective casing length      | 00.76                                 | , It.                                         |                       |          | x = 1                      | X            | <u>476</u>   |             | ft. Top of Sand                                  |
| Screen length                 | 10.0                                  | ft.                                           |                       |          |                            |              |              |             |                                                  |
| Sottom of screen to end cap   | 10.0                                  | TL                                            | <del> </del>          | <u> </u> | ;; <u> </u>                |              | <u>473</u>   | <u>24</u>   | ft. Top of Screen                                |
| Top of screen to first joint  |                                       |                                               |                       | 1        | · =                        | 32           |              |             |                                                  |
| Cotal length of casing        |                                       |                                               |                       | 1 '      |                            | 3/           | 10           | 00          | ft. Total Screen Interval                        |
| Screen slot size              | .010                                  | in.                                           |                       | •        | :::日                       | امغ          | <u></u>      | <u> </u>    | IN YOUR OCIGEN INTELNAL                          |
| of openings in screen         |                                       |                                               |                       | ;        |                            | : 1          |              |             |                                                  |
|                               | 0                                     |                                               |                       |          | (日)                        |              | 463          | 27          | ft. Bottom of Screen                             |
| Diameter of borehole (in)     | 8                                     |                                               |                       | ) )   '  |                            |              |              |             |                                                  |

.

| Site #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                        | ection Ag           |                       | .Tasnor        |                                                                    | We                                      | ll Compl         | letion R                                             | eport                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|---------------------|-----------------------|----------------|--------------------------------------------------------------------|-----------------------------------------|------------------|------------------------------------------------------|---------------------------------------------------|
| Site #:Neutor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 Power S                          | Station                | landfil             |                       |                |                                                                    |                                         |                  |                                                      | , <u>, , , , , , , , , , , , , , , , , , </u>     |
| 11211131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | ·                      |                     |                       | Coordinate:    | Northin                                                            | g <u> </u>                              | 21.29            | Easting                                              | 6113.10                                           |
| Drilling Contractor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                        |                     | naustri               | es, Inc.       | Data                                                               | Dellad 9                                | lant.            | 10/15                                                | /96                                               |
| Driller:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                        | Geologist:          | Mike                  | Summers        | 3                                                                  |                                         | Date Con         | noleted                                              | 10/15/96                                          |
| Drilling Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4½" I.D.                           | HSA                    |                     | v===                  | Dr             | illing Fl                                                          | ⊥ids (type                              | ):N/             | 'A                                                   |                                                   |
| Annular Space Det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                        |                     |                       |                |                                                                    |                                         |                  | 01 ft.                                               |                                                   |
| Type of Surface Seal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Portland                           | Cement                 |                     |                       | ī              |                                                                    | 533                                     |                  |                                                      | p of Protective Ca<br>p of Riser Pipe             |
| Type of Annular Sealant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cemen                              | t/Bento                | nite Gr             | out (20:              | 1) +           | \\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                             | = = = = = = = = = = = = = = = = = = = = | 72               | ft. Casin                                            | g Stickup                                         |
| .Amount of cement: #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                        |                     |                       | /3             |                                                                    | 530                                     |                  | MSL Gr                                               | ound Surface                                      |
| Amount of bentonite:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | # of bags                          | 1lbs                   | a. per bag          | <u>50</u>             | 4              |                                                                    | <u> </u>                                |                  | ft. Top o                                            | of annular sealant                                |
| Type of Bentonite Seal (G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                        | •                   |                       | 2              |                                                                    |                                         |                  |                                                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | =                      |                     | <del></del> ,         | à              |                                                                    |                                         |                  |                                                      |                                                   |
| Amount of bentonite: # of ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bags                               | 8                      | lbs. per ba         | g50                   | 435            | V:00:17:5:15:00:15:5:15:00:15:5:15:15:15:15:15:15:15:15:15:15:15:1 |                                         |                  |                                                      |                                                   |
| Type of Sand Pack:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Silica                             |                        |                     |                       | ľ              |                                                                    |                                         |                  |                                                      |                                                   |
| Source of Sand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                        |                     |                       |                |                                                                    |                                         | -                |                                                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                        |                     |                       |                |                                                                    |                                         |                  |                                                      | •                                                 |
| Amount of Sand: # of !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oags                               |                        | lbs. per baj        | 3                     |                |                                                                    |                                         |                  | •                                                    |                                                   |
| Well Construction M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | aterials                           |                        |                     |                       | ļ              | ]   [                                                              | •                                       |                  |                                                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                        |                     |                       | i              |                                                                    |                                         |                  |                                                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | T                      | 1                   | T                     |                |                                                                    |                                         |                  |                                                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y.<br>Pe                           | ype                    | ype                 | уре                   |                |                                                                    |                                         |                  |                                                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lleas<br>Ify Type                  | n<br>ſy Type           | fy Type             | у Туре                |                |                                                                    |                                         |                  |                                                      | •                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tainless<br>steel<br>pecify Type   | eflon<br>pecify Type   | VC<br>pecify Type   | ther<br>pecify Type   |                |                                                                    |                                         | •                |                                                      |                                                   |
| Riser coupling joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stainless<br>Steel<br>Specify Type | Teflon<br>Specify Type | PVC<br>Specify Type | Other<br>Specify Type |                |                                                                    |                                         |                  |                                                      | ,                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stainless<br>Steel<br>Specify Type | Teffon<br>Specify Type |                     | Other<br>Specify Type |                |                                                                    |                                         |                  |                                                      |                                                   |
| Riser coupling joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | Teflon<br>Specify Type | PVC Specify Type    | Other<br>Specify Type |                |                                                                    | ·                                       |                  |                                                      | •                                                 |
| Riser coupling joint<br>Riser pipe above w.t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Type304                            | Teffon<br>Specify Type |                     | Other<br>Specify Type |                |                                                                    |                                         |                  |                                                      | •                                                 |
| Riser coupling joint<br>Riser pipe above w.t.<br>Riser pipe below w.t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Type304                            | Teflon<br>Specify Type |                     | Other<br>Specify Type |                |                                                                    |                                         |                  |                                                      |                                                   |
| Riser coupling joint<br>Riser pipe above w.t.<br>Riser pipe below w.t.<br>Green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type304                            | Teffon<br>Specify Type |                     | other<br>Specify Type |                |                                                                    |                                         |                  |                                                      |                                                   |
| Riser coupling joint<br>Riser pipe above w.t.<br>Riser pipe below w.t.<br>Screen<br>Coupling joint screen to rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Type304 Type304                    |                        |                     | Stee1                 |                |                                                                    | 487                                     | <u>97</u>        | ft. Top of S                                         | Seal                                              |
| Riser coupling joint Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing  easurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Type304 Type304 to                 | .01 ft. (wh            | Sch 40              | Stee1                 |                |                                                                    |                                         |                  | ft. Top of S                                         |                                                   |
| Riser coupling joint Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing  easurements  ser pipe length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Type304 Type304                    | .01 ft. (wh            | Sch 40              | Stee1                 |                |                                                                    | 16                                      | <u>-50:</u> 1    | ft. Total Se                                         | al Interval                                       |
| Riser coupling joint Riser pipe above w.t. Riser pipe below w.t. Screen coupling joint screen to rise rotective casing easurements ser pipe length otective casing length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Type304 Type304 to 65.22           | .01 ft. (wh            | Sch 40              | Stee1                 |                |                                                                    |                                         | <u>-50:</u> 1    |                                                      | al Interval                                       |
| Riser coupling joint Riser pipe above w.t. Riser pipe below w.t. Screen coupling joint screen to rise rotective casing easurements ser pipe length otective casing length reen length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Type304 Type304 to                 | .01 ft. (wh            | Sch 40              | Stee1                 |                |                                                                    | 16<br>_471                              | _50: 1<br>_47_ 1 | ft. Total Se                                         | eal Interval<br>Sand                              |
| Riser coupling joint Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing  Casurements  Ser pipe length Otective casing length Treen length Treen length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Type304 Type304 to 65.22           | .01 ft. (wh            | Sch 40              | Stee1                 | : /:\ <u> </u> |                                                                    | 16                                      | _50: 1<br>_47_ 1 | ft. Total Se                                         | eal Interval<br>Sand                              |
| Riser coupling joint Riser pipe above w.t. Riser pipe below w.t. Screen coupling joint screen to rise Protective casing easurements ser pipe length otective casing length reen length ttom of screen to end cap p of screen to first joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Type304 Type304 to 65.22           | .01 ft. (wh            | Sch 40              | Stee1                 |                |                                                                    | 16<br>_471<br>_468                      | _50: 1<br>_47_ 1 | ft. Total Se                                         | eal Interval<br>Sand                              |
| Riser coupling joint Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing  easurements Seer pipe length otective casing length reen length ttom of screen to end cap p of screen to first joint ttal length of casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Type304 Type304 to 65.22           | .01 ft. (wh            | Sch 40              | Stee1                 | : /:\ <u> </u> |                                                                    | 16<br>_471                              |                  | ft. Total Se  ft. Top of S  ft. Top of S             | eal Interval<br>Sand                              |
| Riser coupling joint Riser pipe above w.t. Riser pipe below w.t. R | Type304 Type304 to 65.22           | .01 ft. (wh            | Sch 40              | Stee1                 |                |                                                                    | 16<br>_471<br>_468                      |                  | ft. Total Se  ft. Top of S  ft. Top of S             | al Interval<br>Sand<br>Screen                     |
| Riser coupling joint Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing  easurements  ser pipe length otective casing length reen length ttom of screen to end cap p of screen to first joint tal length of casing reen slot size of openings in screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Type304 Type304 to 65.22           | .01 ft. (wh            | Sch 40              | Stee1                 |                |                                                                    | 16<br>_471<br>_468                      |                  | ft. Total Se  ft. Top of S  ft. Top of S             | al Interval<br>Sand<br>Screen                     |
| Riser coupling joint Riser pipe above w.t. Riser pipe below w.t. R | Type304 Type304 to 65.22           | .01 ft. (wh            | Sch 40              | Stee1                 |                | \$\tag{\tag{\tag{\tag{\tag{\tag{\tag{                              | 16<br>_471<br>_468                      |                  | ft. Total Se  ft. Top of S  ft. Total Sc  ft. Bottom | eal Interval<br>Sand<br>Screen<br>Screen Interval |



## Well Completion Report

| Site Name: Newton Power Station Landfill Phase II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| and in items is a second of the second control of the second of the seco | Well #: G208                                                                                                                                 |
| State o ' Plane Coordinate: X Y (or) Latitude:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Longitude; Borehole #; B208                                                                                                                  |
| Plant Coordinates: Northing 6208.18 Easting 4417.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                              |
| Surveyed by: Ken Miller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IL Registration #; 196-001263                                                                                                                |
| Drilling Contractor: Skinner Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Driller: Todd Skinner                                                                                                                        |
| Consulting Firm: Rapps Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Geologist: Ken Miller                                                                                                                        |
| Drilling Method: HSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drilling Fluid (Type); None                                                                                                                  |
| Logged By: Ken Miller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date Started: 10/11/11 Date Finished: 10/13/11                                                                                               |
| Report Form Completed By: Ken Miller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date: 11/30/11                                                                                                                               |
| ANNULAR SPACE DETAILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Elevations Depths (.01ft.) (MSL)* (BGS)                                                                                                      |
| t <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 535.89 -2.83 Top of Protective Casing                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>535.52</u> <u>-2.46</u> Top of Riser Pipe                                                                                                 |
| Type of Surface Seal: Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 533.06 0.00 Ground Surface                                                                                                                   |
| Type of Annular Sealant: Bentonite Slurry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 530.06 3.00 Top of Annular Scalant                                                                                                           |
| Installation Method: Tremi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Static Water Level (After Completion)                                                                                                        |
| Setting Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (All Completion)                                                                                                                             |
| Type of Bentonite Seal Granular Pellet, Slurry (Choose One)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 463.13 69.93 Top of Seal                                                                                                                     |
| Installation Method: Poured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 460.13 72.93 Top of Sand Pack                                                                                                                |
| Setting Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 458.13 74.93 Top of Screen                                                                                                                   |
| Type of Sand Pack: Silica Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 438.35 94.71 Bottom of Screen                                                                                                                |
| Grain Size: 20/40 (Sieve Size)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 438.29 94.77 Bottom of Well                                                                                                                  |
| Installation Method: Poured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 438.06 95.00 Bottom of Borehole *Referenced to a National Geodetic Datum                                                                     |
| Type of Backfill Material: NA (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CASING MEASURMENTS                                                                                                                           |
| Installation Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diameter of Borehole (inches) 9                                                                                                              |
| ELL CONSTRUCTION MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ID of Riser Pine (inches) 2                                                                                                                  |
| (Choose one type of material for each area)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Protective Casing Length (feet) 5 Riser Pipe Length (feet) 77.39                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |
| rective Casing SS304 SS316 PTRR PVC as Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bottom of Screen to End Cap (feet) 0.06                                                                                                      |
| tective Casing SS304, SS316, PTFE, PVC, or Other er Pipe Above W.T. SS304, SS316, PTFE PVC, or Other er Pipe Below W.T. SS302, SS316, PTFE, PVC, or Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bottom of Screen to End Cap (feet) 0.06  Screen Length (1 <sup>st</sup> slot to last slot) (feet) 19.78  Total Length of Casing (feet) 97.23 |

| Illinois Environ                                  | imental Protect                                  | tion Agency      |               |                                       | Well               | Completion               | Report         |
|---------------------------------------------------|--------------------------------------------------|------------------|---------------|---------------------------------------|--------------------|--------------------------|----------------|
| Site #:0798085001                                 |                                                  | County: Jasp     | er            |                                       | W                  | /ell #: <u>R2</u>        | 17D            |
| Site Name: Newton Power Sta                       | ation                                            |                  |               |                                       | В                  | orehole #: R             | 217D           |
| State- Plant Plane Coordinate: X 6,712            | 2.2 Y 7,126.9                                    | _ (or) Latitude: | 38°_          | 55' 55.889                            | " Longitud         | e: <u>-88°</u> <u>17</u> | <u>24.426"</u> |
| Surveyed By: Matthew H. Sch                       | rader                                            |                  | IL Regi       | stration #:035-                       | 003487             |                          |                |
| Drilling Contractor: Bulldog D                    | rilling                                          |                  | Driller:      | J. Dittmaier                          |                    |                          |                |
| Consulting Firm: Hanson Prof                      | essional Services Inc.                           |                  | Geologi       | st: Rhonald W                         | . Hasenyage        | r, LPG #196-000          | 246            |
| Drilling Method: Mud Rotary                       |                                                  |                  | Drilling      | Fluid (Type): B                       | entonite mu        | d                        |                |
| Logged By: Rhonald W. Hase                        | nyager                                           |                  | Date St       | arted: 9/25/2                         | 017 Dat            | e Finished:9/2           | 26/2017        |
| Report Form Completed By: Su:                     | zanna L. Keim                                    |                  | Date: _       | 10/16/2017                            |                    |                          |                |
| ANNULAR SPA                                       | CE DETAILS                                       |                  |               | Elevations<br>(MSL)*                  | Depths<br>(BGS)    | (0.01 ft.)               |                |
|                                                   |                                                  |                  |               | _538.85_                              | -2.94              | Top of Protective        | Casing         |
|                                                   |                                                  | T                | $\overline{}$ | · · · · · · · · · · · · · · · · · · · |                    | -                        | _              |
|                                                   |                                                  |                  |               | 538.55                                | 2.64               | Top of Riser Pipe        | ;              |
| Type of Surface Seal: Concrete                    |                                                  |                  | Y             | 535.91                                | 0.00               | Ground Surface           |                |
| Type of Annular Sealant: high-so                  | olids bentonite                                  |                  |               | _533.41_                              | 2.50               | Top of Annular S         | ealant         |
| Installation Method: Tremie                       |                                                  |                  |               |                                       |                    |                          |                |
| Setting Time: +24 hours                           |                                                  |                  | ☑             |                                       |                    | Static Water Leve        | el             |
| seeing time. ———————————————————————————————————— |                                                  |                  | <del>-</del>  |                                       |                    | (After Completion)       |                |
| Type of Bentonite Seal Grant                      | Pellet Sluri<br>(choose one)                     | ry               | Y             |                                       |                    |                          |                |
| Installation Method: Gravity                      | `                                                |                  |               | 479.39                                | 56.52              | Top of Seal              |                |
| Setting Time: 10 minutes                          |                                                  |                  |               | 478.01                                | 57 90              | Top of Sand Pack         | r              |
|                                                   |                                                  | V                |               |                                       |                    | Top of Sund Faci         |                |
| Type of Sand Pack: Quartz sand                    |                                                  |                  |               | 475.81                                | 60.10              | Top of Screen            |                |
| Grain Size: 10/20 (sie                            |                                                  |                  |               |                                       |                    | Top of Serven            |                |
| Installation Method: <u>Gravity</u>               | r                                                | —   <b> </b>     |               | 470.88                                | 65.03              | Bottom of Screen         | ı              |
| Type of Backfill Material:none_                   | (if applicable)                                  |                  |               | 470.67                                | 65.24              | Bottom of Well           |                |
| Installation Method:                              | , ,                                              |                  |               | 470.67                                | 65.24              | Bottom of Boreho         | ole            |
|                                                   |                                                  |                  |               | * Referenced to                       | a National Geodeti |                          |                |
|                                                   |                                                  |                  |               | CA                                    | SING MEA           | SUREMENTS                |                |
| WELL CONC                                         | TRUCTION MATER                                   | IAIC             |               | Diameter of Borel                     | nole               | (inches)                 | 8.0            |
|                                                   | TRUCTION MATER e type of material for each area) | IALS             |               | ID of Riser Pipe                      |                    | (inches)                 | 2.0            |
|                                                   |                                                  |                  |               | Protective Casing                     |                    | (feet)                   | 5.0            |
| Protective Casing                                 | SS304 SS316 PTFE                                 | PVC OTHER:       | Steel         | Riser Pipe Length Bottom of Screen    |                    | (feet)                   | 0.31           |
| Riser Pipe Above W.T.                             | SS304 SS316 PTFE                                 | PVC OTHER:       |               | Screen Length (                       | •                  |                          | 4.93           |
| Riser Pipe Below W.T.                             | SS304 SS316 PTFE                                 | PVC OTHER:       |               | Total Length of C                     |                    | (feet)                   | 67.88          |

SS304

Well Completion Form (revised 02/06/02)

SS316

PTFE PVC OTHER:

Total Length of Casing

\*\*Hand-Slotted Well Screens Are Unacceptable

Screen Slot Size \*\*

0.010

(inches)



## Well Completion Report

| Site Number: 0798085001                                                                                                                            | County: Jasper                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Site Name: Newton Power Station Landfill Phase II State o Plane Coordinate: X Y (or) Latitude: Plant Coordinates: Northing 5765.30 Easting 4036.52 | Well #: G220<br>  Longitude:   Borchole #: B220                            |
| Surveyed by: Ken Miller                                                                                                                            | IL Registration #: 196-001263                                              |
| Drilling Contractor; Skinner Ltd.                                                                                                                  | _ Driller: Todd Skinner                                                    |
| Consulting Firm: Rapps Engineering                                                                                                                 | Geologist; Ken Miller                                                      |
| Drilling Method: HSA                                                                                                                               | Drilling Fluid (Type); None                                                |
| Logged By: Ken Miller                                                                                                                              | Date Started: 10/14/11 Date Finished: 10/17/11                             |
| Report Form Completed By: Ken Miller                                                                                                               | Date: 11/30/11                                                             |
| ANNULAR SPACE DETAILS                                                                                                                              | Elevations Depths (.01ft.) (MSL)* (BGS)                                    |
|                                                                                                                                                    | 535.52 -3.06 Top of Protective Casing                                      |
|                                                                                                                                                    | <u>535.16</u> <u>-2.70</u> Top of Riser Pipe                               |
| Type of Surface Seal: Concrete                                                                                                                     | 532.46 0.00 Ground Surface                                                 |
| Type of Annular Sealant: Bentonite Slurry                                                                                                          | 529.46 3.00 Top of Annular Sealant                                         |
| Installation Method: Tremi                                                                                                                         | Static Water Level (After Completion)                                      |
| Setting Time:                                                                                                                                      | (Anter Completion)                                                         |
| Type of Bentonite Seal Granular Pellet, Shurry (Choose One)                                                                                        | 461.31 71.15 Top of Seal                                                   |
| Installation Method: Poured                                                                                                                        | (X)                                    |
| Setting Time:                                                                                                                                      | 456.09 76.37 Top of Screen                                                 |
| Type of Sand Pack: Quartz Sand                                                                                                                     | 446.41 86.05 Bottom of Screen                                              |
| Grain Size: 20/40 (Sieve Size)                                                                                                                     | 446.35 86.11 Bottom of Well                                                |
| Installation Method: Poured                                                                                                                        | 445.46 87.00 Bottom of Borehole  * Referenced to a National Geodetic Datum |
| Type of Backfill Material: NA (ifapplicable)                                                                                                       | CASING MEASURMENTS                                                         |
| Installation Method:                                                                                                                               | Diameter of Borehole (inches) 9                                            |
| VELL CONSTRUCTION MATERIAL                                                                                                                         | ID of Riser Pipe (inches) 2 Protective Casing Length (feet) - 5            |
| (Choose one type of material for each area)                                                                                                        | Riser Pipe Length (feet) 79.07 Bottom of Screen to Bnd Cap (feet) 0.06     |
| rotective Casing SS304, SS316, PTFE, PVC, or Other                                                                                                 | Screen Length (1 <sup>th</sup> slot to last slot) (feet) 9.68              |
| ser Pipe Above W.T. SS304, SS316, PTFE PVC or Officer (ser Pipe Below W.T. SS304 SS316, PTFE, PVC, or Officer                                      | Total Length of Casing (feet) 88.81                                        |
| oreen \$304 \$8316, PTFB, PVC, or Other                                                                                                            | Screen Slot Size ** 0.010  **Hand-Slotted Well Screens are Unacceptable    |

## Well Completion Report

| Site Number: 0798085001                                                                          | County: J | asper                                          |                           |                                          |
|--------------------------------------------------------------------------------------------------|-----------|------------------------------------------------|---------------------------|------------------------------------------|
| Site Name: Newton Power Station Landfill Phase II                                                |           |                                                | 4                         | Well #: G222                             |
| State 0 Plane Coordinate: X Y (or) Latitude: Plant Coordinates: Northing 5322.24 Easting 3989.08 |           | gitude:                                        | j 11                      | Borehole #: B222                         |
| Surveyed by: Ken Miller                                                                          |           | IL Registratio                                 | n#: 196-001               | 263                                      |
| Drilling Contractor; Skinner Ltd.                                                                |           | Driller: Tode                                  | 4 443 441                 |                                          |
|                                                                                                  |           |                                                |                           | i.                                       |
| Consulting Firm: Rapps Engineering                                                               |           | Geologist: Ke                                  | n Miller                  |                                          |
| Drilling Method: HSA                                                                             | -         | Drilling Fluid                                 | (Type): Non               | e ·                                      |
| Logged By: Ken Miller                                                                            |           | Date Started:                                  | 10/24/11                  | Date Finished: 10/25/11                  |
| Report Form Completed By: Ken Miller                                                             | -         | Date: 11/30/1                                  | 1                         | · ·                                      |
| ANNULAR SPACE DETAILS                                                                            |           | Elevations<br>(MSL)*                           | Depths<br>(BGS)           | (,01ft,)                                 |
| T-1                                                                                              |           | 535.16                                         | 3.04                      | Top of Protective Casin                  |
|                                                                                                  |           | 534.78                                         | -2.66                     | Top of Riser Pipe                        |
| Type of Surface Seal: Concrete                                                                   |           | <u>532.12</u>                                  | 0.00                      | Ground Surface                           |
| Type of Annular Sealant: Bentonite Slurry                                                        |           | 529.12                                         | 3.00                      | Top of Annular Sealant                   |
| Installation Method: Tremi                                                                       |           |                                                |                           | Static Water Level<br>(After Completion) |
| Setting Time:                                                                                    |           |                                                |                           |                                          |
| Type of Bentonite Seal Granular Pellet, Slurry (Choose One)                                      | (X)       | 472.55                                         | 59.57                     | Top of Seal                              |
| Installation Method: Poured                                                                      |           | 469.55                                         | 62.57                     | Top of Sand Pack                         |
| Setting Time:                                                                                    |           | 467.55                                         | 64,57                     | Top of Screen                            |
| Турь of Sand Pack; Silica Sand                                                                   |           | 452.88                                         | 79.24                     | Bottom of Screen                         |
| Grain Size: 20/40 (Sieve Size)                                                                   |           | 452.81                                         | 79.31                     | Bottom of Well                           |
| Installation Method; Poured                                                                      |           | 452.12<br>* Referenced                         | 80.00<br>to a National Ge | Bottom of Borehole odetle Datum          |
| Type of Backfill Material: NA (if applicable)                                                    | CAS       | ING MBASURA                                    |                           |                                          |
| Installation Method;                                                                             |           | eter of Borehole (incl                         | nes)                      | 9                                        |
| VELL CONSTRUCTION MATERIAL                                                                       |           | Riser Pipe (inches)                            | feet).                    | 2 5                                      |
| (Choose one type of material for each area)                                                      | Riser     | Pipe Length (feet)                             |                           | 67.27                                    |
| rotective Casing SS304, SS316, PTFE, PVC, or Other                                               | Botto     | m of Screen to End C<br>Length (1st slot to le | ap (feet)                 | 0.07                                     |
| iser Pine Above W.T. SS304, SS316, PTFE(PVC)or Other                                             | Total     | Length of Casing (fee                          | ot)                       | 81.97                                    |
| iser Pipe Below W.T. SS304 SS316, PTFE, PVC, or Other                                            |           | Slot Size **                                   |                           | 0.010                                    |

## Well Completion Report

| Site Number: <u>0798085001</u>                                                                   | County: Jasper                                                           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Site Name: Newton Power Station Landfill Phase II                                                | Well #: G223                                                             |
| State 0 Plane Coordinate: X Y (or) Latitude: Plant Coordinates: Northing 6393.02 Easting 5763.68 | Longitude: Borehole #: B223                                              |
| Surveyed by: Ken Miller                                                                          | IL Registration #: 196-001263                                            |
| Drilling Contractor: Skinner Ltd.                                                                | Driller: Todd Skinner                                                    |
| Consulting Firm: Rapps Engineering                                                               | Geologist: Ken Miller                                                    |
| Drilling Method; HSA                                                                             | Drilling Fluid (Type): None                                              |
| Logged By; Ken Miller                                                                            | Date Started: 10/10/11 Date Finished: 10/11/11                           |
| Report Form Completed By: Ken Miller                                                             | Date: 11/30/11                                                           |
| ANNULAR SPACE DETAILS                                                                            | Elevations Depths (.01ft.) (MSL)* (BGS)                                  |
| -                                                                                                | 534.54 -3.02 Top of Protective Casing                                    |
|                                                                                                  | <u>534.16</u> <u>-2.64</u> Top of Riser Pipe                             |
| Type of Surface Seal: Concrete                                                                   | 531.52 0.00 Ground Surface                                               |
| Type of Annular Sealant: Bentonite Slurry                                                        | 528.52 3.00 Top of Annular Sealant                                       |
| Installation Method: Tremi                                                                       | Static Water Level (After Completion)                                    |
| Setting Time:                                                                                    |                                                                          |
| Type of Bentonite Seal Granular Pellet, Slurry (Choose One)                                      | 457.52 74.00 Top of Seal                                                 |
| Installation Method: Poured                                                                      | (A)                                  |
| Setting Time:                                                                                    | 452.43 79.09 Top of Screen                                               |
| Type of Sand Pack: Silica Sand                                                                   | 442.77 <u>88.75</u> Bottom of Screen                                     |
| Grain Size: 20/40 (Sieve Size)                                                                   | 442.43 89.09 Bottom of Well                                              |
| Installation Method: Poured                                                                      | 442.43 89.09 Bottom of Borehole *Referenced to a National Geodetic Datum |
| Type of Backfill Material: NA (If applicable)                                                    | CASING MEASURMENTS                                                       |
| Installation Method:                                                                             | Diameter of Borehole (findles) 9                                         |
| WELL CONSTRUCTION MATERIAL                                                                       | ID of Riser Pipe (inches) 2 Protective Casing Length (feet) 5            |
| (Choose one type of material for each area)                                                      | Riser Pipe Length (feet) 81.73  Bottom of Screen to End Cap (feet) 0.34  |
| Protective Casing SS304, SS316, PTFE, PVC, or Other                                              | Screen Length (1st slot to last slot) (feet) 9.66                        |
| Riser Pine Above W.T. SS304, SS316, PTFE PVC or Other                                            | Total Length of Casing (feet) 91.73                                      |
| Riser Pipe Below W.T. SS304 SS316, PTFB, PVC, or Other Soreen SS304 SS316, PTFB, PVC, or Other   | Screen Slot Size ** 0.010  **Hand-Slotted Well Screens are Unacceptable  |

Well Completion Form (revised 02/06/02)

| Illinois Environmental Protection Agei                                                                                                            |                                                                                 | WENT COM        | bremon report                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|------------------------------------------|
|                                                                                                                                                   | County: Jasper                                                                  | _               | Well #: G224                             |
| Site Name: Newton Power Station Landfill Phase II  State Plane Coordinate: X Y (or) Latitude: Plant Coordinates: Northing 6976.66 Easting 6067.30 | Longitude;                                                                      |                 | Borehole #: B224                         |
| Surveyed by: Ken Miller                                                                                                                           | IL Registration                                                                 | #: 196-001:     | 263                                      |
| Drilling Contractor: Whitney & Associates                                                                                                         | Driller: Tim F                                                                  | uhl             |                                          |
| Consulting Firm: Rapps Engineering                                                                                                                | Geologist: Ken                                                                  | Miller          |                                          |
| Drilling Method: HSA                                                                                                                              | Drilling Fluid (                                                                | Type): None     |                                          |
| Logged By: Ken Miller                                                                                                                             | Date Started: 10                                                                | 0/4/11          | Date Finished: 10/5/11                   |
| Report Form Completed By: Ken Miller                                                                                                              | Date: <u>11/30/11</u>                                                           |                 |                                          |
| ANNULAR SPACE DETAILS                                                                                                                             | Elevations<br>(MSL)*                                                            | Depths<br>(BGS) | (.01ft.)                                 |
|                                                                                                                                                   | 535.19                                                                          | -2.93           | Top of Protective Casing                 |
|                                                                                                                                                   | 534.78                                                                          | -2.52           | Top of Riser Pipe                        |
| Type of Surface Seal: Concrete                                                                                                                    | 532.26                                                                          | 0.00            | Ground Surface                           |
| Type of Annular Sealant: Bentonite Chips                                                                                                          | 529.26                                                                          | 3.00            | Top of Annular Sealant                   |
| Installation Method; Poured                                                                                                                       |                                                                                 |                 | Static Water Level<br>(After Completion) |
| Setting Time:                                                                                                                                     |                                                                                 |                 |                                          |
| Type of Bentonite Seal Granular Pellet, Slurry (Choose One)                                                                                       | 473.75                                                                          | 58.51           | Top of Seal                              |
| Installation Method: Poured                                                                                                                       | 470.75                                                                          | 61.51           | Top of Sand Pack                         |
| Setting Time:                                                                                                                                     | 468.75                                                                          | 63.51           | Top of Screen                            |
| Type of Sand Pack: Silica Sand                                                                                                                    | 459.09                                                                          | 73.17           | Bottom of Screen                         |
| Grain Size: 50 (Sieve Size)                                                                                                                       | 458.75                                                                          | 73.51           | Bottom of Well                           |
| Installation Method: Poured                                                                                                                       | 458.26<br>* Referenced to                                                       | 74.00           | Bottom of Borehole                       |
| Type of Backfill Material: NA (if applicable)                                                                                                     | CASING MEASURME                                                                 |                 |                                          |
| Installation Method:                                                                                                                              | Diameter of Borehole (inches                                                    | )               | 9                                        |
| ELL CONSTRUCTION MATERIAL (Choose one type of material for each area)                                                                             | ID of Riser Pipe (inches) Protective Casing Length (fee Riser Pipe Length (feet |                 | 5<br>66.03                               |
|                                                                                                                                                   | Bottom of Screen to End Cap                                                     | (Teet)          | 0.34                                     |

| Protective Casing     | SS304, SS316, PTFE, PVC, or Other |
|-----------------------|-----------------------------------|
| Riser Pipe Above W.T. | SS304, SS316, PTFE PVC or Other   |
| Riser Pipe Below W.T. | SS304 SS316, PTFE, PVC, or Other  |
| Screen                | SS304 SS316, PTFE, PVC, or Other  |

| Diameter of Borehole (inches)                | 9     |
|----------------------------------------------|-------|
| ID of Riser Pipe (inches)                    | 2     |
| Protective Casing Length (feet)              | 5     |
| Riser Pipe Length (feet)                     | 66.03 |
| Bottom of Screen to End Cap (feet)           | 0.34  |
| Screen Length (1st slot to last slot) (feet) | 9.66  |
| Total Length of Casing (feet)                | 76.03 |
| Screen Slot Size **                          | 0.010 |



DRAWN BY/DATE: SDS 1/23/17 REVIEWED BY/DATE: TBN 1/25/17 APPROVED BY/DATE: JJW 2/7/17 NEWTON PRIMARY ASH POND (UNIT ID: 501)
UPPERMOST AQUIFER UNIT
GROUNDWATER ELEVATION CONTOUR MAP
ROUND 1: DECEMBER 14, 2015

DYNEGY CCR RULE GROUNDWATER MONITORING NEWTON POWER STATION NEWTON, ILLINOIS PROJECT NO: 2285



DRAWN BY/DATE: SDS 1/23/17 REVIEWED BY/DATE: TBN 1/25/17 APPROVED BY/DATE: JJW 2/8/17 NEWTON PRIMARY ASH POND (UNIT ID: 501) UPPERMOST AQUIFER UNIT GROUNDWATER ELEVATION CONTOUR MAP ROUND 2: JANUARY 18, 2016

DYNEGY CCR RULE GROUNDWATER MONITORING NEWTON POWER STATION NEWTON, ILLINOIS PROJECT NO: 2285



DRAWN BY/DATE: SDS 1/23/17 REVIEWED BY/DATE: TBN 1/25/17 APPROVED BY/DATE: JJW 2/8/17 NEWTON PRIMARY ASH POND (UNIT ID: 501) UPPERMOST AQUIFER UNIT GROUNDWATER ELEVATION CONTOUR MAP ROUND 3: APRIL 25, 2016

DYNEGY CCR RULE GROUNDWATER MONITORING NEWTON POWER STATION NEWTON, ILLINOIS PROJECT NO: 2285



DRAWN BY/DATE: SDS 1/23/17 REVIEWED BY/DATE: TBN 1/25/17 APPROVED BY/DATE: JJW 2/8/17

# NEWTON PRIMARY ASH POND (UNIT ID: 501) AND NEWTON LANDFILL 2 (UNIT ID: 502) UPPERMOST AQUIFER UNIT GROUNDWATER ELEVATION CONTOUR MAP ROUND 4: JULY 25, 2016

DYNEGY CCR RULE GROUNDWATER MONITORING NEWTON POWER STATION NEWTON, ILLINOIS PROJECT NO: 2285



DRAWN BY/DATE: SDS 3/6/17 REVIEWED BY/DATE: TBN 3/6/17 APPROVED BY/DATE: JJW 8/30/17

# NEWTON PRIMARY ASH POND (UNIT ID: 501) AND LANDFILL 2 (UNIT ID: 502) UPPERMOST AQUIFER UNIT GROUNDWATER ELEVATION CONTOUR MAP ROUND 5: OCTOBER 17, 2016

DYNEGY CCR RULE GROUNDWATER MONITORING NEWTON POWER STATION NEWTON, ILLINOIS PROJECT NO: 2285



DRAWN BY/DATE: SDS 3/6/17 REVIEWED BY/DATE: TBN 3/6/17 APPROVED BY/DATE: JJW 8/30/17

# NEWTON PRIMARY ASH POND (UNIT ID: 501) AND LANDFILL 2 (UNIT ID: 502) UPPERMOST AQUIFER UNIT GROUNDWATER ELEVATION CONTOUR MAP ROUND 6: JANUARY 16, 2017

DYNEGY CCR RULE GROUNDWATER MONITORING NEWTON POWER STATION NEWTON, ILLINOIS PROJECT NO: 2285

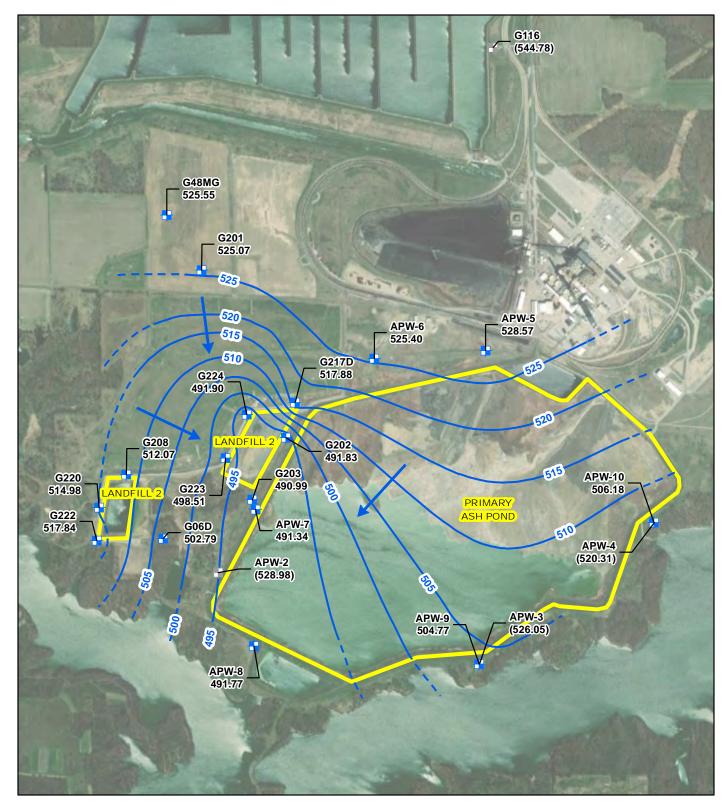


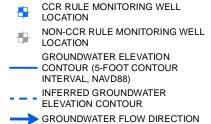
DRAWN BY/DATE: SDS 7/10/17 REVIEWED BY/DATE: TBN 7/10/17 APPROVED BY/DATE: JJW 8/30/17 NEWTON PRIMARY ASH POND (UNIT ID: 501) AND LANDFILL 2 (UNIT ID: 502)
UPPERMOST AQUIFER UNIT
GROUNDWATER ELEVATION CONTOUR MAP
ROUND 7: APRIL 17, 2017

DYNEGY CCR RULE GROUNDWATER MONITORING NEWTON POWER STATION NEWTON, ILLINOIS PROJECT NO: 2285

FIGURE NO: 1

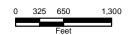



DRAWN BY/DATE: SDS 8/12/17 REVIEWED BY/DATE: TBN 8/12/17 APPROVED BY/DATE: JJW 8/30/17


# NEWTON PRIMARY ASH POND (UNIT ID: 501) AND LANDFILL 2 (UNIT ID: 502) UPPERMOST AQUIFER UNIT GROUNDWATER ELEVATION CONTOUR MAP ROUND 8: JUNE 12, 2017

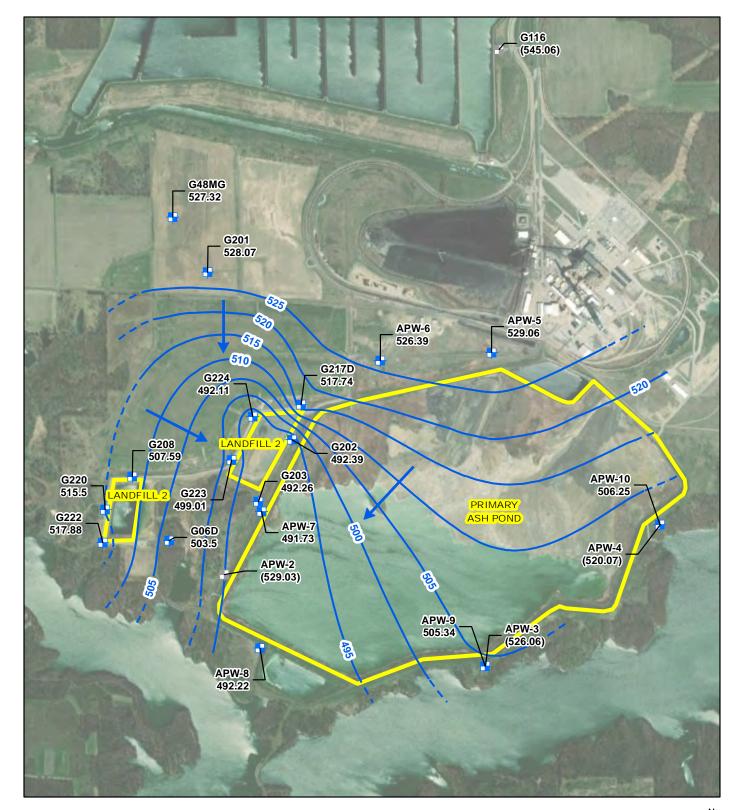
DYNEGY CCR RULE GROUNDWATER MONITORING NEWTON POWER STATION NEWTON, ILLINOIS PROJECT NO: 2285

FIGURE NO: 1









CCR MONITORED UNIT

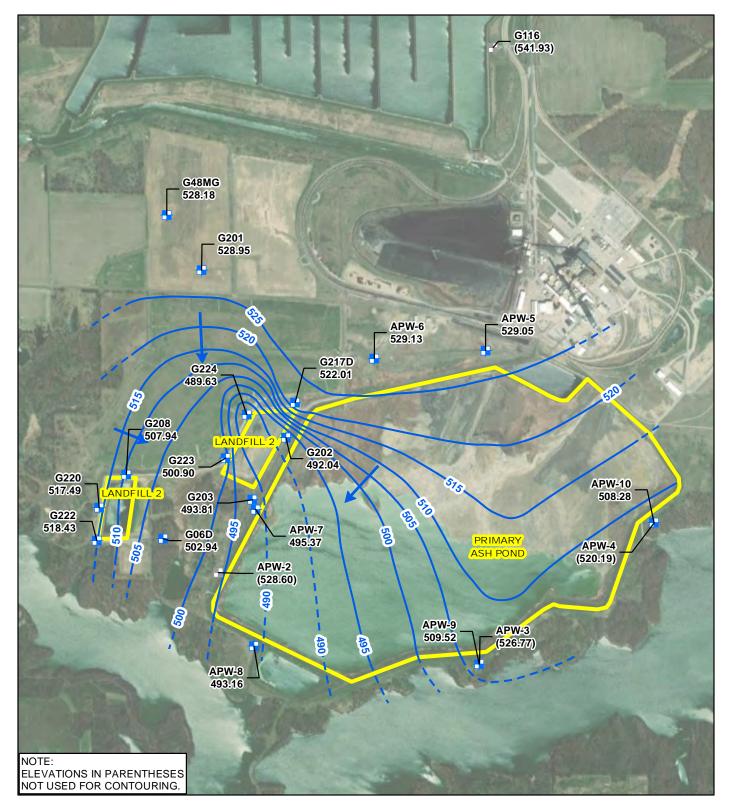
NEWTON PRIMARY ASH POND (UNIT ID: 501) AND LANDFILL 2 (UNIT ID: 502) GROUNDWATER ELEVATION CONTOUR MAP NOVEMBER 14, 2017

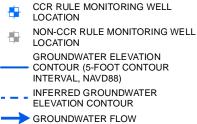












NEWTON PRIMARY ASH POND (UNIT ID: 501) AND LANDFILL 2 (UNIT ID: 502) GROUNDWATER ELEVATION CONTOUR MAP MAY 17, 2018

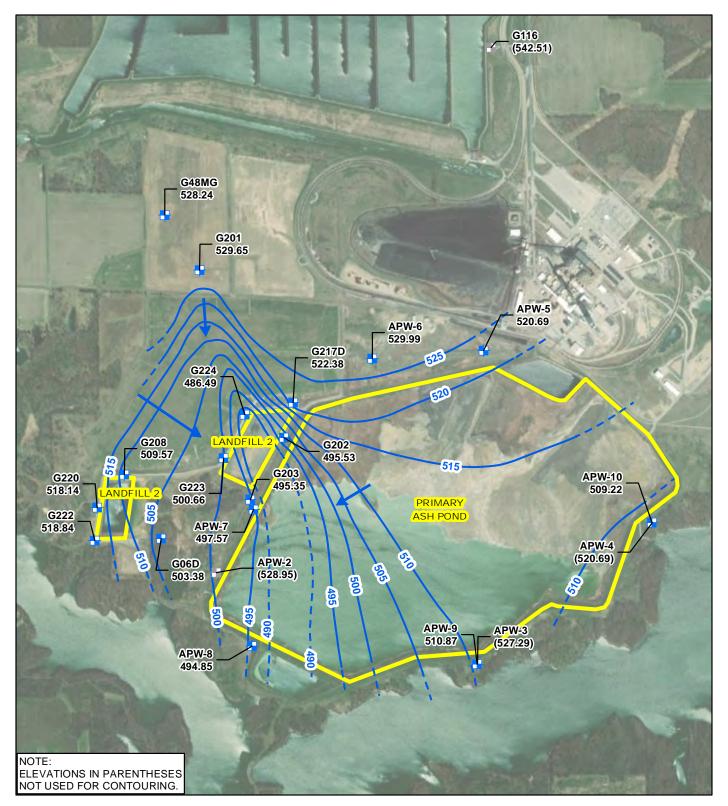


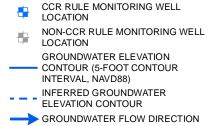









CCR MONITORED UNIT


NEWTON PRIMARY ASH POND (UNIT ID: 501) AND LANDFILL 2 (UNIT ID: 502) GROUNDWATER ELEVATION CONTOUR MAP AUGUST 14, 2018

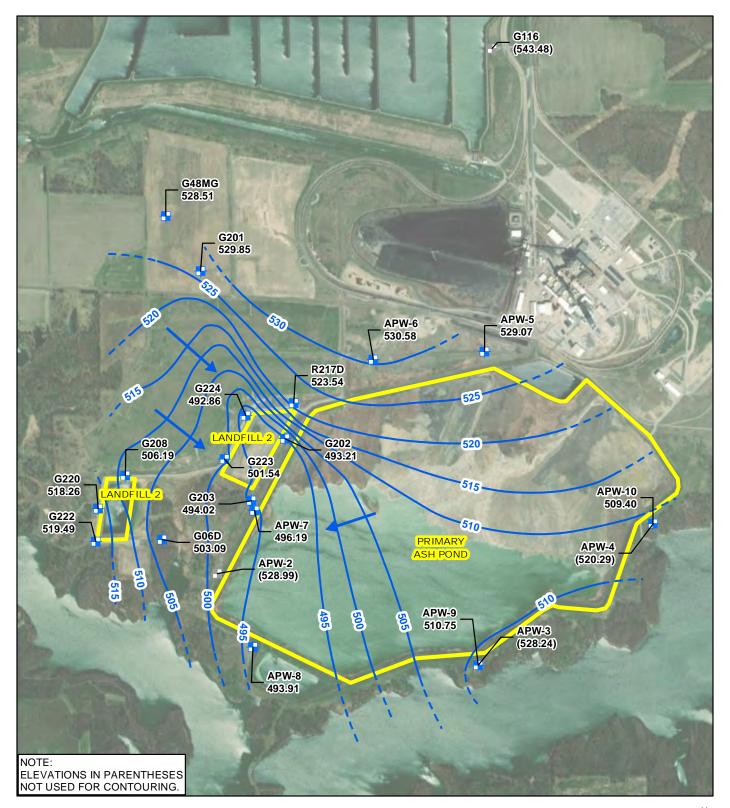











CCR MONITORED UNIT

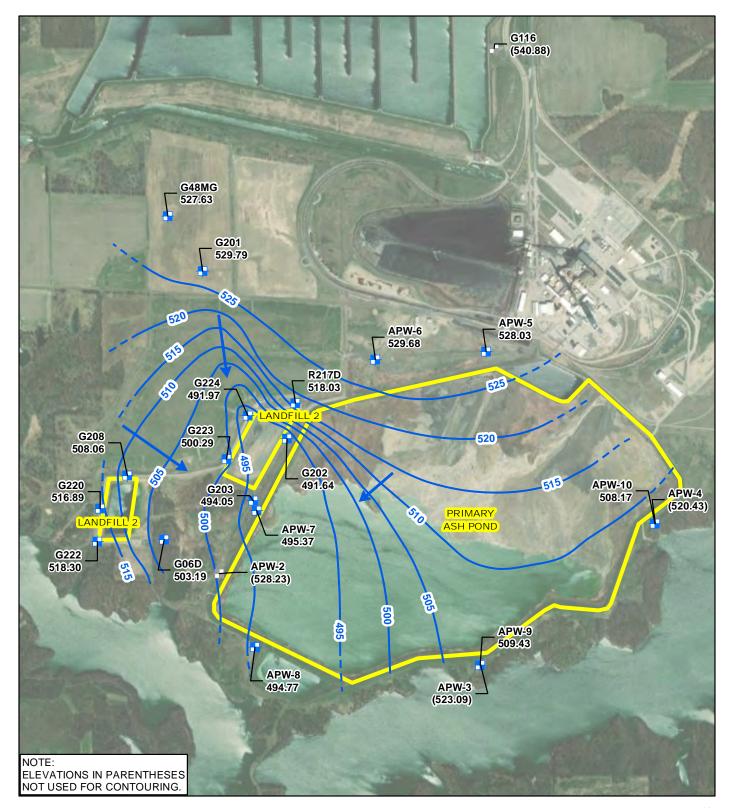

NEWTON PRIMARY ASH POND (UNIT ID: 501) AND LANDFILL 2 (UNIT ID: 502) GROUNDWATER ELEVATION CONTOUR MAP NOVEMBER 8, 2018











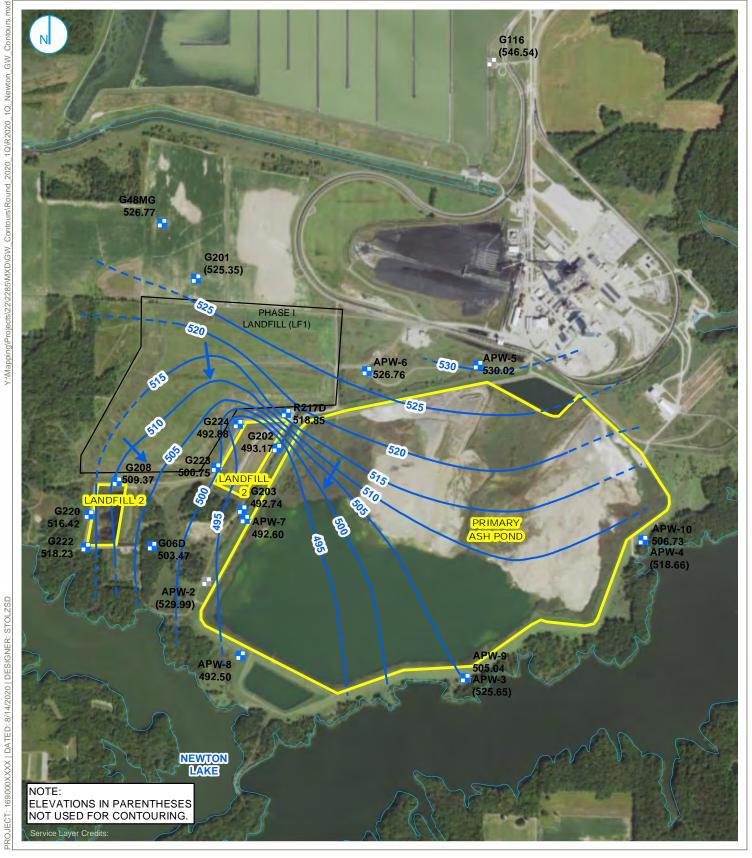

NEWTON PRIMARY ASH POND (UNIT ID: 501) AND LANDFILL 2 (UNIT ID: 502) GROUNDWATER ELEVATION CONTOUR MAP FEBRUARY 18, 2019












NEWTON PRIMARY ASH POND (UNIT ID: 501) AND LANDFILL 2 (UNIT ID: 502) GROUNDWATER ELEVATION CONTOUR MAP AUGUST 21, 2019









CCR RULE MONITORING WELL

NON-CCR RULE MONITORING WELL

GROUNDWATER ELEVATION CONTOUR (5-FT CONTOUR INTERVAL, NAVD88)

NIFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION

SURFACE WATER FEATURE

CCR MONITORED UNIT

NON-CCR UNIT

1,300

650

# GROUNDWATER ELEVATION CONTOUR MAP FEBRUARY 3, 2020

NEWTON PRIMARY ASH POND (UNIT ID: 501)

AND LANDFILL 2 (UNIT ID: 502)

NEWTON POWER STATION

NEWTON, ILLINOIS

RAMBOLL US CORPORATION
A RAMBOLL COMPANY



| ATTACHMENT 5 – TABLES SUMMARIZING C | CONSTITUENT CONCENTRATIONS<br>AT EACH MONITORING WELL |
|-------------------------------------|-------------------------------------------------------|
|                                     |                                                       |
|                                     |                                                       |
|                                     |                                                       |

## Analytical Results - Appendix III Newton Primary Ash Pond

|                    |                         |                | Calaium           | Chlorido           | Eluorido           |            | Culfoto           | Total      |
|--------------------|-------------------------|----------------|-------------------|--------------------|--------------------|------------|-------------------|------------|
|                    |                         | Boron, total   | Calcium,<br>total | Chloride,<br>total | Fluoride,<br>total | рН         | Sulfate,<br>total | Dissolved  |
| Sample<br>Location | Date<br>Sampled         | (mag m/l )     |                   |                    |                    | (5)        |                   | Solids     |
| Background         |                         | (mg/L)         | (mg/L)            | (mg/L)             | (mg/L)             | (s.u.)     | (mg/L)            | (mg/L)     |
| APW5               |                         | 0.099          | E 1               | 48                 | 0.486              | 7.5        | 15                | F60        |
| APW5               | 12/15/2015<br>1/20/2016 | 0.099          | 51<br>52          | 50                 | 0.409              | 7.5<br>7.5 | 15                | 560<br>510 |
| APW5               | 4/27/2016               | 0.12           | 71                | 58                 | 0.409              | 7.7        | 14                | 520        |
| APW5               | 8/1/2016                | 0.10           | 49                | 52                 | 0.494              | 7.5        | 1.8               | 500        |
| APW5               | 10/25/2016              | 0.12           | 50                | 50                 | 0.660              | 7.6        | <1                | 1000       |
| APW5               | 1/23/2017               | 0.090          | 45                | 50                 | 0.418              | 7.4        | <1                | 550        |
| APW5               | 4/24/2017               | 0.079          | 44                | 46                 | 0.437              | 7.0        | 1.2               | 600        |
| APW5               | 6/13/2017               | 0.082          | 48                | 47                 | 0.508              | 7.1        | <1                | 540        |
| APW5               | 11/17/2017              | 0.099          | 51                | 43                 | 0.634              | 6.9        | <1                | 480        |
| APW5               | 5/18/2018               | 0.10           | 48                | 48                 | 0.525              | 7.1        | 2.1               | 480        |
| APW5               | 8/17/2018               | NA             | 54                | 56                 | NA                 | 7.0        | 1.4               | NA         |
| APW5               | 11/9/2018               | 0.098          | 50                | 51                 | 0.427              | 7.0        | 5.1               | 500        |
| APW5               | 2/22/2019               | 0.11           | 50                | 48                 | 0.374              | 6.9        | 3.5               | 600        |
| APW5               | 8/22/2019               | 0.12           | 49                | 50                 | <0.25              | 7.0        | 2.3               | 530        |
| APW5               | 2/4/2020                | 0.091          | 51                | 54                 | 0.480              | 7.5<br>7.4 | 2.3               | 600        |
| APW5<br>APW5       | 6/11/2020<br>7/28/2020  | NA<br>0.10     | NA<br>53          | NA<br>52           | NA<br>0.544        | 7.4        | NA<br>1.8         | NA<br>530  |
| APW6               |                         | 0.10           | 53                | 26                 | 0.544              | 7.7        | 9.9               | 480        |
| APW6               | 12/15/2015<br>1/20/2016 | 0.073          | 53<br>53          | 24                 | 0.393              | 7.5        | 9.9               | 500        |
| APW6               | 4/27/2016               | 0.082          | 64                | 29                 | 0.564              | 6.5        | 7.4               | 450        |
| APW6               | 8/1/2016                | 0.078          | 50                | 27                 | 0.650              | 7.4        | 1.2               | 520        |
| APW6               | 10/25/2016              | 0.093          | 50                | 26                 | 0.686              | 7.5        | <1                | 560        |
| APW6               | 1/23/2017               | 0.076          | 46                | 26                 | 0.448              | 6.9        | <1                | 530        |
| APW6               | 4/24/2017               | 0.074          | 43                | 50                 | 0.470              | 7.2        | <1                | 540        |
| APW6               | 6/13/2017               | 0.093          | 51                | 25                 | 0.567              | 7.1        | 2.3               | 460        |
| APW6               | 11/17/2017              | 0.094          | 50                | 23                 | 0.617              | 7.2        | 1.9               | 470        |
| APW6               | 5/18/2018               | 0.087          | 51                | 25                 | 0.564              | 7.3        | 1.7               | 420        |
| APW6               | 8/17/2018               | NA             | 52                | 25                 | NA                 | 7.3        | 1.7               | NA         |
| APW6               | 11/9/2018               | 0.083          | 51                | 24                 | 0.459              | 7.2        | 2.1               | 440        |
| APW6               | 2/22/2019               | 0.090          | 45                | 24                 | 0.386              | 7.3        | 1.7               | 480        |
| APW6               | 8/23/2019               | 0.11           | 55                | 26                 | 0.314              | 7.3        | 5.8               | 500        |
| APW6               | 2/4/2020                | 0.080<br>NA    | 53<br>NA          | 27<br>NA           | 0.483<br>NA        | 7.5<br>7.4 | <1<br>NA          | 640        |
| APW6               | 6/11/2020<br>7/28/2020  | 0.091          | 55                | NA<br>24           | 0.564              | 7.4        | 3.2               | NA<br>510  |
|                    |                         | 0.091          | 33                | 24                 | 0.304              | 7.0        | 3.2               | 310        |
| Downgradien        |                         |                |                   | 1 00               |                    |            | 1.0               | T 500      |
| APW7               | 12/15/2015              | 0.073          | 74                | 69                 | 0.467              | 7.4        | 13                | 520        |
| APW7<br>APW7       | 1/21/2016               | 0.052          | 74                | 79<br>72           | 0.380              | 7.4        | 8.6               | 440        |
| APW7<br>APW7       | 5/3/2016<br>8/1/2016    | 0.071<br>0.070 | 85<br>86          | 77                 | 0.545<br>0.462     | 7.5<br>7.3 | 7.5<br>2.8        | 500<br>490 |
| APW7               | 10/26/2016              | 0.070          | 86<br>76          | 77                 | 0.462              | 7.3        | 2.8<br><1         | 590        |
| APW7               | 1/26/2017               | 0.082          | 87                | 77                 | 0.423              | 7.2        | <1                | 520        |
| APW7               | 4/24/2017               | 0.069          | 87                | 77                 | 0.367              | 7.3        | <1                | 600        |
| APW7               | 6/13/2017               | 0.084          | 93                | 77                 | 0.425              | 7.2        | <1                | 560        |
| APW7               | 11/17/2017              | 0.097          | 72                | 73                 | 0.508              | 7.2        | 3.8               | 530        |
| APW7               | 5/18/2018               | 0.082          | 97                | 75                 | 0.435              | 7.1        | 4.9               | 500        |
| APW7               | 8/18/2018               | NA             | 100               | 77                 | NA                 | 7.1        | 3.2               | NA         |
| APW7               | 11/9/2018               | 0.080          | 92                | 71                 | 0.343              | 7.0        | 4.5               | 500        |
| APW7               | 2/22/2019               | 0.060          | 45                | 43                 | 0.734              | 7.2        | 66                | 340        |
| APW7               | 8/23/2019               | 0.075          | 58                | 46                 | 0.632              | 7.1        | 62                | 350        |
| APW7               | 2/5/2020                | 0.092          | 100               | 68                 | 0.332              | 7.4        | 5.7               | 640        |
| APW7               | 6/11/2020               | NA<br>0.000    | NA<br>04          | 68                 | NA<br>0.440        | 7.3        | NA<br>0.7         | NA<br>500  |
| APW7               | 7/28/2020               | 0.086          | 94                | 77                 | 0.412              | 7.3        | 6.7               | 530        |

## Analytical Results - Appendix III Newton Primary Ash Pond

| Sample   | Date       | Boron, total | Calcium,<br>total | Chloride,<br>total | Fluoride,<br>total | рН     | Sulfate,<br>total | Total<br>Dissolved<br>Solids |
|----------|------------|--------------|-------------------|--------------------|--------------------|--------|-------------------|------------------------------|
| Location | Sampled    | (mg/L)       | (mg/L)            | (mg/L)             | (mg/L)             | (s.u.) | (mg/L)            | (mg/L)                       |
| APW8     | 12/15/2015 | 0.083        | 85                | 52                 | 0.441              | 7.4    | 35                | 560                          |
| APW8     | 1/21/2016  | 0.060        | 85                | 59                 | 0.414              | 7.5    | 34                | 510                          |
| APW8     | 5/3/2016   | 0.083        | 100               | 55                 | 0.566              | 7.4    | 30                | 560                          |
| APW8     | 8/2/2016   | 0.076        | 94                | 56                 | 0.504              | 7.2    | 35                | 520                          |
| APW8     | 10/26/2016 | 0.091        | 84                | 59                 | 0.463              | 7.4    | 37                | 600                          |
| APW8     | 1/25/2017  | 0.081        | 100               | 57                 | 0.404              | 7.2    | 36                | 600                          |
| APW8     | 4/25/2017  | 0.073        | 100               | 57                 | 0.418              | 7.5    | 38                | 590                          |
| APW8     | 6/13/2017  | 0.092        | 110               | 57                 | 0.449              | 7.3    | 38                | 600                          |
| APW8     | 11/17/2017 | 0.11         | 83                | 50                 | 0.474              | 7.1    | 39                | 490                          |
| APW8     | 5/18/2018  | 0.088        | 92                | 56                 | 0.448              | 7.2    | 37                | 520                          |
| APW8     | 8/18/2018  | NA           | 82                | 57                 | NA                 | 7.2    | 43                | NA                           |
| APW8     | 11/9/2018  | 0.086        | 110               | 56                 | 0.373              | 7.1    | 42                | 580                          |
| APW8     | 2/22/2019  | 0.10         | 80                | 56                 | 0.393              | 7.2    | 46                | 600                          |
| APW8     | 8/23/2019  | 0.10         | 82                | 59                 | 0.337              | 7.2    | 48                | 570                          |
| APW8     | 2/5/2020   | 0.10         | 120               | 55                 | 0.331              | 7.4    | 45                | 700                          |
| APW8     | 6/11/2020  | NA           | NA                | NA                 | NA                 | 7.3    | NA                | NA                           |
| APW8     | 7/28/2020  | 0.087        | 110               | 62                 | 0.441              | 7.3    | 47                | 620                          |
| APW9     | 12/15/2015 | 0.062        | 54                | 88                 | 0.574              | 7.5    | 25                | 630                          |
| APW9     | 1/20/2016  | 0.074        | 57                | 95                 | 0.468              | 7.6    | 27                | 540                          |
| APW9     | 5/3/2016   | 0.070        | 70                | 110                | 0.746              | 7.6    | 18                | 590                          |
| APW9     | 8/2/2016   | 0.073        | 74                | 130                | 0.532              | 7.2    | 4.2               | 640                          |
| APW9     | 10/26/2016 | 0.090        | 77                | 130                | 0.528              | 7.6    | 1.5               | 770                          |
| APW9     | 1/25/2017  | 0.081        | 79                | 130                | 0.468              | 7.5    | <1                | 740                          |
| APW9     | 4/25/2017  | 0.078        | 67                | 120                | 0.515              | 7.5    | 1.1               | 840                          |
| APW9     | 6/13/2017  | 0.053        | 42                | 51                 | 0.755              | 7.5    | 48                | 300                          |
| APW9     | 11/18/2017 | 0.080        | 68                | 84                 | 0.655              | 7.4    | 4.5               | 720                          |
| APW9     | 5/18/2018  | 0.098        | 80                | 120                | 0.467              | 7.4    | 1.0               | 710                          |
| APW9     | 8/17/2018  | NA           | 81                | 130                | NA                 | 7.5    | 2.4               | NA                           |
| APW9     | 11/9/2018  | 0.055        | 44                | 44                 | 0.730              | 7.4    | 62                | 300                          |
| APW9     | 2/22/2019  | 0.054        | 38                | 47                 | 0.714              | 7.5    | 61                | 320                          |
| APW9     | 8/23/2019  | 0.055        | 41                | 51                 | 0.621              | 7.4    | 51                | 360                          |
| APW9     | 2/19/2020  | 0.10         | 88                | 130                | 0.453              | 7.5    | 7.5               | 790                          |
| APW9     | 6/11/2020  | NA           | NA                | 130                | NA                 | 7.4    | NA                | 870                          |
| APW9     | 7/28/2020  | 0.10         | 84                | 140                | 0.537              | 7.4    | 3.2               | 810                          |
| APW10    | 12/16/2015 | 0.066        | 120               | 46                 | 0.328              | 7.1    | 430               | 1000                         |
| APW10    | 1/20/2016  | 0.077        | 120               | 48                 | <0.25              | 7.2    | 410               | 950                          |
| APW10    | 5/3/2016   | 0.065        | 140               | 46                 | 0.448              | 7.1    | 410               | 930                          |
| APW10    | 8/2/2016   | 0.063        | 140               | 45                 | 0.367              | 7.1    | 410               | 840                          |
| APW10    | 10/26/2016 | 0.069        | 120               | 48                 | 0.371              | 7.1    | 470               | 960                          |
| APW10    | 1/25/2017  | 0.065        | 160               | 46                 | 0.258              | 7.1    | 430               | 1000                         |
| APW10    | 4/25/2017  | 0.056        | 120               | 44                 | 0.289              | 7.0    | 410               | 1000                         |
| APW10    | 6/13/2017  | 0.077        | 110               | 46                 | 0.344              | 6.9    | 410               | 920                          |
| APW10    | 11/18/2017 | 0.072        | 120               | 47                 | 0.414              | 6.9    | 390               | 910                          |
| APW10    | 5/18/2018  | 0.080        | 130               | 51                 | 0.335              | 7.2    | 440               | 900                          |
| APW10    | 8/17/2018  | NA           | 130               | 51                 | NA                 | 6.9    | 420               | NA                           |
| APW10    | 11/9/2018  | 0.078        | 140               | 47                 | 0.281              | 7.0    | 410               | 900                          |
| APW10    | 2/22/2019  | 0.079        | 110               | 50                 | 0.276              | 6.9    | 420               | 990                          |
| APW10    | 8/23/2019  | 0.096        | 130               | 50                 | 0.359              | 7.0    | 390               | 1000                         |
| APW10    | 2/5/2020   | 0.094        | 140               | 44                 | <0.25              | 7.1    | 400               | 1200                         |
| APW10    | 6/11/2020  | NA           | NA                | NA                 | NA                 | 7.2    | NA                | 1000                         |
| APW10    | 7/28/2020  | 0.076        | 140               | 53                 | 0.356              | 7.1    | 410               | 1000                         |

Notes:

<sup>1.</sup> Abbreviations: mg/L - milligrams per liter; NA - not analyzed; s.u. - standard units.

#### Analytical Results - Appendix IV Newton Primary Ash Pond

| Antimony   Arsenic, total   | Radium- 226 + Radium 228, tot (pCi/L)  0.311 0.235 0.281 0.616 0.654 0.0999 1.19 1.32 NA NA | Selenium<br>, total<br>(mg/L)<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001 | Thallium,<br>total<br>(mg/L)<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample   Date   Location   Sampled   (mg/L)   | 0.311<br>0.235<br>0.281<br>0.616<br>0.654<br>0.0999<br>1.19<br>1.32<br>NA                   | , total<br>(mg/L)<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001                                 | total   (mg/L)   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0.001   <0 |
| Sample   Location   Sampled   (mg/L)   (mg/L) | 0.311<br>0.235<br>0.281<br>0.616<br>0.654<br>0.0999<br>1.19<br>1.32<br>NA                   | <pre>(mg/L) &lt;0.001 &lt;0.001 0.001 &lt;0.001 &lt;0.001 &lt;0.001 &lt;0.001</pre>                           | <0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Location   Sampled   (mg/L)   (mg/L) | 0.311<br>0.235<br>0.281<br>0.616<br>0.654<br>0.0999<br>1.19<br>1.32<br>NA                   | <0.001<br><0.001<br>0.001<br><0.001<br><0.001<br><0.001<br><0.001                                             | <0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APW5 12/15/2015 <0.003 0.018 0.19 <0.001 <0.001 <0.004 <0.002 0.486 0.0017 0.023 <0.0002 0.023<br>APW5 1/20/2016 <0.003 0.017 0.19 <0.001 <0.001 <0.004 <0.002 0.409 0.0016 0.017 0.0002 0.023<br>APW5 4/27/2016 <0.003 0.021 0.24 <0.001 <0.001 <0.004 <0.002 0.494 0.0012 0.020 0.020 0.002 0.032<br>APW5 8/1/2016 <0.003 0.014 0.21 <0.001 <0.001 <0.004 <0.002 0.494 0.0012 0.020 0.002 0.032<br>APW5 10/25/2016 <0.003 0.014 0.21 <0.001 <0.001 <0.004 <0.002 0.540 <0.001 0.016 <0.002 0.027<br>APW5 11/23/2017 <0.003 0.013 0.22 <0.001 <0.001 <0.001 <0.004 <0.002 0.660 <0.001 0.015 <0.0002 0.027<br>APW5 1/23/2017 <0.003 0.015 0.21 <0.001 <0.001 <0.001 <0.004 <0.002 0.418 <0.001 0.013 <0.002 0.021<br>APW5 4/24/2017 <0.003 0.014 0.20 <0.001 <0.001 <0.001 <0.004 <0.002 0.418 <0.001 0.015 <0.0002 0.021<br>APW5 6/13/2017 <0.003 0.016 0.23 <0.001 <0.001 <0.001 <0.004 <0.002 0.437 0.0014 0.015 <0.0002 0.016<br>APW5 1/17/2017 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.235<br>0.281<br>0.616<br>0.654<br>0.0999<br>1.19<br>1.32<br>NA                            | <0.001<br>0.001<br><0.001<br><0.001<br><0.001<br><0.001                                                       | <0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| APW5         1/20/2016         <0.003         0.017         0.19         <0.001         <0.001         <0.002         0.409         0.0016         0.017         0.00020         0.023           APW5         4/27/2016         <0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.235<br>0.281<br>0.616<br>0.654<br>0.0999<br>1.19<br>1.32<br>NA                            | <0.001<br>0.001<br><0.001<br><0.001<br><0.001<br><0.001                                                       | <0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| APW5         4/27/2016         <0.003         0.021         0.24         <0.001         <0.004         <0.002         0.494         0.0012         0.020         0.002         0.032           APW5         8/1/2016         <0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.281<br>0.616<br>0.654<br>0.0999<br>1.19<br>1.32<br>NA<br>NA                               | 0.001<br><0.001<br><0.001<br><0.001<br><0.001                                                                 | <0.001<br><0.001<br><0.001<br><0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| APW5         8/1/2016         <0.003         0.014         0.21         <0.001         <0.004         <0.002         0.540         <0.001         0.016         <0.0002         0.027           APW5         10/25/2016         <0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.616<br>0.654<br>0.0999<br>1.19<br>1.32<br>NA<br>NA                                        | <0.001<br><0.001<br><0.001<br><0.001                                                                          | <0.001<br><0.001<br><0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| APW5         10/25/2016         <0.003         0.013         0.22         <0.001         <0.004         <0.002         0.660         <0.001         0.015         <0.0002         0.027           APW5         1/23/2017         <0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.654<br>0.0999<br>1.19<br>1.32<br>NA<br>NA                                                 | <0.001<br><0.001<br><0.001                                                                                    | <0.001<br><0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| APW5         1/23/2017         <0.003         0.015         0.21         <0.001         <0.004         <0.002         0.418         <0.001         0.013         <0.0002         0.021         (0.021         <0.001         <0.004         <0.002         0.418         <0.001         0.013         <0.0002         0.021         (0.021         <0.001         <0.001         <0.002         0.437         0.0014         0.015         <0.0002         0.016         <0.002         0.014         <0.002         <0.016         <0.001         <0.001         <0.004         <0.002         0.508         <0.001         <0.001         <0.001         <0.002         <0.001         <0.001         <0.002         0.508         <0.001         <0.002         0.018          <0.002         <0.018         <0.001         <0.001         <0.002         <0.002         <0.001         <0.001         <0.002         <0.002         <0.001         <0.001         <0.002         <0.002         <0.001         <0.001         <0.002         <0.002         <0.001         <0.001         <0.002         <0.002         <0.001         <0.001         <0.002         <0.002         <0.001         <0.001         <0.001         <0.002         <0.002         <0.001         <0.001         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0999<br>1.19<br>1.32<br>NA<br>NA                                                          | <0.001<br><0.001                                                                                              | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| APW5         4/24/2017         < 0.003         0.014         0.20         < 0.001         < 0.001         0.004         < 0.002         0.437         0.0014         0.015         < 0.0002         0.016           APW5         6/13/2017         < 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.19<br>1.32<br>NA<br>NA                                                                    | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW5         6/13/2017         <0.003         0.016         0.23         <0.001         <0.004         <0.002         0.508         <0.001         0.014         <0.0002         0.018           APW5         11/17/2017         NA         NA <td>1.32<br/>NA<br/>NA</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.32<br>NA<br>NA                                                                            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| APW5         11/17/2017         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA<br>NA                                                                                    | <0.001                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| APW5         5/18/2018         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                          |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| APW5 11/9/2018 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APW5 2/22/2019 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA<br>NA                                                                                    | NA<br>NA                                                                                                      | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IL DIVIOLI UKLIGUEZI I NA I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA<br>NA                                                                                    | NA<br>NA                                                                                                      | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| APW5 2/4/2020 NA NA NA NA NA NA NA NA O.480 NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA<br>NA                                                                                    | NA<br>NA                                                                                                      | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| APW5 7/28/2020 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                                                                                    | NA                                                                                                            | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.591                                                                                       | 0.006                                                                                                         | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.236                                                                                       | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.284                                                                                       | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.690                                                                                       | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.329                                                                                       | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.316                                                                                       | <0.001                                                                                                        | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.859                                                                                       | <0.001                                                                                                        | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW6 6/13/2017 <0.003 0.0057 0.22 0.0025 0.0017 <0.004 0.002 0.567 0.0025 0.014 <0.0002 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.932                                                                                       | 0.0014                                                                                                        | 0.0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW6 11/17/2017 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                          | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APW6 5/18/2018 NA NA NA NA NA NA NA NA O.564 NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                          | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APW6   11/9/2018   NA   NA   NA   NA   NA   NA   O.459   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                          | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APW6 2/22/2019 NA NA NA NA NA NA NA NA O.386 NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                          | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APW6 8/23/2019 NA NA NA NA NA NA NA NA O.314 NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                          | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APW6 2/4/2020 NA NA NA NA NA NA NA NA 0.483 NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                          | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APW6 7/28/2020 NA NA NA NA NA NA NA O.564 NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                          | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Downgradient Wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| APW7   12/15/2015   <0.003   0.0039   0.35   <0.001   <0.001   <0.004   <0.002   0.467   <0.001   <0.001   <0.001   <0.002   0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.16                                                                                        | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW7   1/21/2016   <0.003   0.0065   0.40   <0.001   <0.001   <0.004   <0.002   0.38   0.0015   <0.01   <0.002   0.0083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.06                                                                                        | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW7 5/3/2016 <0.003 0.0040 0.41 <0.001 <0.001 <0.004 <0.002 0.545 <0.001 <0.001 <0.001 <0.0086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.74                                                                                        | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW7 8/1/2016 <0.003 0.0049 0.45 <0.001 <0.001 <0.004 <0.002 0.462 <0.001 <0.001 <0.001 <0.000 0.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.32                                                                                        | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW7 10/26/2016 <0.003 0.0058 0.50 <0.001 <0.001 <0.004 <0.002 0.425 <0.001 <0.001 <0.001 <0.0054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.02                                                                                        | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW7 1/26/2017 <0.003 0.0062 0.45 <0.001 <0.001 <0.004 <0.002 0.352 <0.001 <0.001 <0.001 <0.0072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.82                                                                                        | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW7 4/24/2017 <0.003 0.0077 0.45 <0.001 <0.001 0.0049 <0.002 0.367 0.0022 <0.01 <0.0002 0.0029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.26                                                                                        | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW7 6/13/2017 <0.003 0.0087 0.48 <0.001 <0.001 <0.004 <0.002 0.425 0.0046 <0.01 <0.001 <0.0039 APW7 11/17/2017 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.69                                                                                        | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW7 11/17/2017 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA<br>NA                                                                                    | NA<br>NA                                                                                                      | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| APW7 5/18/2018 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                                                                                    | NA<br>NA                                                                                                      | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| APW7 2/22/2019 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                          | NA                                                                                                            | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| APW7 8/23/2019 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                          | NA<br>NA                                                                                                      | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| APW7 2/5/2020 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                          | NA NA                                                                                                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APW7 7/28/2020 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                          | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APW8 12/15/2015 <0.003 0.0083 0.24 <0.001 <0.001 <0.004 <0.002 0.441 0.0016 0.013 <0.0002 0.0075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.95                                                                                        | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW8 12/16/2015 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                          | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APW8 1/20/2016 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                          | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APW8 1/21/2016 <0.003 0.016 0.30 <0.001 <0.001 0.0049 <0.002 0.414 0.0023 0.012 <0.0002 0.0055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.27                                                                                        | <0.001                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| APW8 4/27/2016 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                          | NA                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### Analytical Results - Appendix IV Newton Primary Ash Pond

|          |            |          |          |         |           |                                         |          |         |           |         |          |          |            | Radium-  |          |           |
|----------|------------|----------|----------|---------|-----------|-----------------------------------------|----------|---------|-----------|---------|----------|----------|------------|----------|----------|-----------|
|          |            | Antimony | Arsenic, | Barium, | Beryllium | Cadmium                                 | Chromium | Cobalt, | Fluoride. | Lead,   | Lithium, | Mercury, | Molybdenum | 226 +    | Selenium | Thallium, |
|          |            | , total  | total    | total   | , total   | total                                   | , total  | total   | total     | total   | total    | total    | , total    | Radium   | , total  | total     |
| Sample   | Date       | ,        |          |         | ,         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,        |         |           | ******* |          |          | ,          | 228. tot | ,        |           |
| Location | Sampled    | (mg/L)   | (mg/L)   | (mg/L)  | (mg/L)    | (mg/L)                                  | (mg/L)   | (mg/L)  | (mg/L)    | (mg/L)  | (mg/L)   | (mg/L)   | (mg/L)     | (pCi/L)  | (mg/L)   | (mg/L)    |
| APW8     | 5/3/2016   | <0.003   | 0.012    | 0.32    | <0.001    | <0.001                                  | 0.0045   | <0.002  | 0.566     | 0.0021  | <0.01    | <0.0002  | 0.0063     | 1.88     | 0.0016   | <0.001    |
| APW8     | 8/2/2016   | < 0.003  | 0.013    | 0.32    | < 0.001   | <0.001                                  | < 0.004  | <0.002  | 0.504     | <0.001  | <0.01    | < 0.0002 | 0.0054     | 0.857    | <0.001   | < 0.001   |
| APW8     | 10/26/2016 | < 0.003  | 0.013    | 0.35    | < 0.001   | <0.001                                  | < 0.004  | <0.002  | 0.463     | <0.001  | <0.01    | < 0.0002 | 0.0055     | 0.812    | < 0.001  | < 0.001   |
| APW8     | 1/25/2017  | < 0.003  | 0.017    | 0.37    | < 0.001   | < 0.001                                 | < 0.004  | <0.002  | 0.404     | <0.001  | < 0.01   | < 0.0002 | 0.0057     | 0.499    | < 0.001  | < 0.001   |
| APW8     | 4/25/2017  | < 0.003  | 0.020    | 0.36    | < 0.001   | < 0.001                                 | 0.016    | 0.0056  | 0.418     | 0.0097  | 0.017    | < 0.0002 | 0.0074     | 1.80     | < 0.001  | < 0.001   |
| APW8     | 6/13/2017  | < 0.003  | 0.017    | 0.39    | < 0.001   | <0.001                                  | 0.010    | 0.0043  | 0.449     | 0.0075  | 0.012    | < 0.0002 | 0.0081     | 2.08     | <0.001   | < 0.001   |
| APW8     | 11/17/2017 | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.474     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW8     | 5/18/2018  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.448     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW8     | 11/9/2018  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.373     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW8     | 2/22/2019  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.393     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW8     | 8/23/2019  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.337     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW8     | 2/5/2020   | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.331     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW8     | 7/28/2020  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.441     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW9     | 12/15/2015 | < 0.003  | 0.0070   | 0.24    | < 0.001   | <0.001                                  | <0.004   | <0.002  | 0.574     | 0.0011  | <0.01    | <0.0002  | 0.021      | 0.612    | <0.001   | <0.001    |
| APW9     | 1/20/2016  | < 0.003  | 0.0067   | 0.24    | <0.001    | <0.001                                  | <0.004   | <0.002  | 0.468     | 0.0044  | <0.01    | <0.0002  | 0.023      | 0.743    | <0.001   | <0.001    |
| APW9     | 5/3/2016   | <0.003   | 0.0080   | 0.32    | <0.001    | <0.001                                  | <0.004   | <0.002  | 0.746     | 0.0051  | <0.01    | <0.0002  | 0.021      | 1.54     | <0.001   | <0.001    |
| APW9     | 8/2/2016   | <0.003   | 0.014    | 0.41    | <0.001    | <0.001                                  | <0.004   | <0.002  | 0.532     | <0.001  | <0.01    | <0.0002  | 0.011      | 1.137    | <0.001   | <0.001    |
| APW9     | 10/26/2016 | <0.003   | 0.016    | 0.47    | <0.001    | <0.001                                  | <0.004   | <0.002  | 0.528     | <0.001  | <0.01    | <0.0002  | 0.010      | 1.18     | <0.001   | <0.001    |
| APW9     | 1/25/2017  | < 0.003  | 0.018    | 0.44    | <0.001    | <0.001                                  | < 0.004  | <0.002  | 0.468     | <0.001  | <0.01    | <0.0002  | 0.0075     | 1.78     | <0.001   | <0.001    |
| APW9     | 4/25/2017  | <0.003   | 0.017    | 0.38    | <0.001    | <0.001                                  | <0.004   | <0.002  | 0.515     | <0.001  | <0.01    | 0.00023  | 0.0053     | 1.07     | <0.001   | <0.001    |
| APW9     | 6/13/2017  | < 0.003  | 0.0039   | 0.11    | <0.001    | <0.001                                  | <0.004   | <0.002  | 0.755     | <0.001  | <0.01    | <0.0002  | 0.016      | 0.984    | <0.001   | <0.001    |
| APW9     | 11/18/2017 | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.655     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW9     | 5/18/2018  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.467     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW9     | 11/9/2018  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.73      | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW9     | 2/22/2019  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.714     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW9     | 8/23/2019  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.621     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW9     | 2/19/2020  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.453     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW9     | 7/28/2020  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.537     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW10    | 12/16/2015 | < 0.003  | 0.0034   | 0.038   | < 0.001   | <0.001                                  | < 0.004  | < 0.002 | 0.328     | < 0.001 | 0.030    | <0.0002  | 0.0094     | 0.755    | < 0.001  | < 0.001   |
| APW10    | 1/20/2016  | < 0.003  | 0.0043   | 0.042   | < 0.001   | <0.001                                  | < 0.004  | <0.002  | <0.25     | <0.001  | 0.021    | <0.0002  | 0.011      | 1.16     | < 0.001  | <0.001    |
| APW10    | 5/3/2016   | < 0.003  | 0.0083   | 0.040   | < 0.001   | <0.001                                  | < 0.004  | <0.002  | 0.448     | <0.001  | 0.023    | < 0.0002 | 0.010      | 0.799    | <0.001   | <0.001    |
| APW10    | 8/2/2016   | < 0.003  | 0.0092   | 0.037   | <0.001    | <0.001                                  | <0.004   | <0.002  | 0.367     | <0.001  | 0.026    | <0.0002  | 0.0091     | 0.600    | <0.001   | <0.001    |
| APW10    | 10/26/2016 | < 0.003  | 0.0090   | 0.040   | < 0.001   | <0.001                                  | < 0.004  | <0.002  | 0.371     | <0.001  | 0.027    | <0.0002  | 0.0093     | 0.556    | <0.001   | <0.001    |
| APW10    | 1/25/2017  | < 0.003  | 0.010    | 0.035   | <0.001    | <0.001                                  | <0.004   | <0.002  | 0.258     | <0.001  | 0.023    | <0.0002  | 0.0085     | 0.430    | <0.001   | <0.001    |
| APW10    | 4/25/2017  | < 0.003  | 0.0084   | 0.031   | <0.001    | <0.001                                  | <0.004   | <0.002  | 0.289     | <0.001  | 0.026    | <0.0002  | 0.0071     | 0.604    | <0.001   | <0.001    |
| APW10    | 6/13/2017  | <0.003   | 0.0035   | 0.027   | <0.001    | <0.001                                  | <0.004   | <0.002  | 0.344     | <0.001  | 0.026    | <0.0002  | 0.0091     | 0.897    | <0.001   | <0.001    |
| APW10    | 11/18/2017 | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.414     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW10    | 5/18/2018  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.335     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW10    | 11/9/2018  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.281     | NA      | NA       | NA       | NA.        | NA       | NA       | NA        |
| APW10    | 2/22/2019  | NA       | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.276     | NA      | NA       | NA       | NA         | NA       | NA       | NA        |
| APW10    | 8/23/2019  | NA<br>NA | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.359     | NA      | NA       | NA       | NA.        | NA       | NA       | NA        |
| APW10    | 2/5/2020   | NA.      | NA       | NA      | NA        | NA                                      | NA       | NA      | <0.25     | NA      | NA       | NA NA    | NA<br>NA   | NA       | NA NA    | NA        |
| APW10    | 7/28/2020  | NA<br>NA | NA       | NA      | NA        | NA                                      | NA       | NA      | 0.356     | NA      | NA       | NA       | NA.        | NA       | NA       | NA        |
| Votes:   | :=::===    |          |          | L       |           |                                         |          |         |           |         |          |          |            |          |          |           |

Notes:

<sup>1.</sup> Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter;

|              |            | Boron, | Calcium, | Chloride, | Fluoride, |       | Sulfate, | Total<br>Dissolved |
|--------------|------------|--------|----------|-----------|-----------|-------|----------|--------------------|
| Sample       | Date       | total  | total    | total     | total     | pН    | total    | Solids             |
| Location     | Sampled    | (mg/L) | (mg/L)   | (mg/L)    | (mg/L)    | (STD) | (mg/L)   | (mg/L)             |
| Background V | Vells      |        |          |           |           |       |          |                    |
| G48MG        | 12/16/2015 | 0.11   | 43       | 31        | 0.611     | 7.6   | 22       | 480                |
| G48MG        | 1/18/2016  | 0.12   | 43       | 29        | 0.478     | 7.5   | 19       | 450                |
| G48MG        | 4/26/2016  | 0.2    | 58       | 33        | 0.644     | 6.8   | 18       | 460                |
| G48MG        | 7/27/2016  | 0.097  | 39       | 31        | 0.576     | 7.5   | 8.4      | 440                |
| G48MG        | 10/18/2016 | 0.14   | 38       | 34        | 0.701     | 7.7   | 5.9      | 410                |
| G48MG        | 1/23/2017  | 0.11   | 37       | 31        | 0.535     | 7.5   | 2        | 490                |
| G48MG        | 4/19/2017  | 0.09   | 36       | 33        | 0.714     | 7     | <1       | 820                |
| G48MG        | 6/14/2017  | 0.12   | 38       | 30        | 0.503     | 7     | 1.1      | 460                |
| G48MG        | 11/28/2017 | 0.11   | 36       | 31        | 0.682     | 6.9   | 2.5      | 460                |
| G48MG        | 5/21/2018  | 0.045  | 63       | 22        | 0.366     | 7     | 70       | 450                |
| G48MG        | 11/15/2018 | 0.053  | 72       | 13        | 0.334     | 7     | 54       | 380                |
| G48MG        | 2/19/2019  | 0.048  | 71       | 18        | 0.301     | 7     | 58       | 580                |
| G48MG        | 8/22/2019  | 0.14   | 38       | 26        | 0.657     | 7     | 110      | 600                |
| G48MG        | 2/19/2020  | 0.056  | 70       | 20        | 0.386     | 7.3   | 46       | 560                |
| G48MG        | 8/23/2018  | NA     | 110      | 47        | NA        | 7     | 190      | NA                 |
| G201         | 12/15/2015 | 0.085  | 130      | 3.9       | 0.708     | 7.3   | 550      | 860                |
| G201         | 1/18/2016  | 0.098  | 160      | 4         | 0.65      | 7.3   | 540      | 760                |
| G201         | 4/26/2016  | 0.075  | 160      | 4.2       | 0.786     | 6.6   | 550      | 740                |
| G201         | 7/27/2016  | 0.083  | 140      | 4         | 0.713     | 7.4   | 500      | 760                |
| G201         | 10/18/2016 | 0.12   | 120      | 4.2       | 0.954     | 7.6   | 760      | 700                |
| G201         | 1/18/2017  | 0.11   | 140      | 4.3       | 1.04      | 7.2   | 690      | 800                |
| G201         | 4/19/2017  | 0.086  | 160      | 4.5       | 0.872     | 7.6   | 500      | 840                |
| G201         | 6/14/2017  | 0.12   | 140      | 4.1       | 0.636     | 7.4   | 510      | 730                |
| G201         | 11/28/2017 | 0.1    | 150      | 4.7       | 0.748     | 7.3   | 530      | 790                |
| G201         | 5/21/2018  | 0.093  | 130      | 4.2       | 0.774     | 7.2   | 530      | 770                |
| G201         | 11/12/2018 | 0.098  | 160      | 4.2       | 0.724     | 7.3   | 550      | 810                |
| G201         | 2/19/2019  | 0.098  | 170      | 4.3       | 0.727     | 7.4   | 600      | 960                |
| G201         | 8/22/2019  | 0.12   | 180      | 4.2       | 0.76      | 7.3   | 600      | 1000               |
| G201         | 2/4/2020   | 0.18   | 130      | 34        | 1.03      | 7.1   | 500      | 1400               |
| G201         | 8/15/2018  | NA     | 150      | 3.8       | NA        | 7.3   | 530      | NA                 |
| Downgradien  | t Wells    |        |          |           |           |       |          |                    |
| G06D         | 12/16/2015 | 0.16   | 75       | 63        | <0.25     | 6.7   | 76       | 750                |
| G06D         | 1/19/2016  | 0.11   | 75       | 67        | <0.25     | 6.8   | 81       | 690                |
| G06D         | 4/27/2016  | 0.22   | 120      | 64        | 0.428     | 7     | 51       | 780                |
| G06D         | 7/27/2016  | 0.16   | 99       | 58        | 0.463     | 7     | 33       | 720                |
| G06D         | 10/18/2016 | 0.2    | 91       | 63        | 0.677     | 7     | 33       | 740                |
| G06D         | 1/19/2017  | 0.22   | 95       | 64        | 0.744     | 7.2   | 28       | 780                |
| G06D         | 4/19/2017  | 0.15   | 110      | 58        | 0.751     | 7.1   | 18       | 840                |
| G06D         | 6/14/2017  | 0.17   | 100      | 59        | 0.642     | 7.2   | 18       | 760                |
| G06D         | 11/15/2017 | 0.18   | 88       | 56        | 0.709     | 7.5   | 9.6      | 760                |
| G06D         | 5/21/2018  | 0.17   | 94       | 57        | 0.696     | 7.4   | 13       | 780                |
| G06D         | 11/12/2018 | 0.17   | 120      | 58        | 0.681     | 7.3   | 3        | 770                |
| G06D         | 2/19/2019  | 0.25   | 120      | 58        | 0.635     | 7.5   | 5        | 900                |
| G06D         | 8/22/2019  | 0.18   | 110      | 57        | 0.74      | 7.4   | 1.9      | 820                |
| G06D         | 2/4/2020   | 0.17   | 110      | 56        | 0.704     | 7.1   | 1.6      | 900                |
| G06D         | 8/16/2018  | NA     | 110      | 54        | NA        | 7.7   | 6.5      | NA                 |
| G202         | 12/17/2015 | 0.1    | 110      | 55        | 0.435     | 7.1   | 120      | 700                |
| G202         | 1/20/2016  | 0.055  | 110      | 57        | 0.401     | 6.8   | 130      | 640                |

|          |            | Boron, | Calcium, | Chloride, | Fluoride, |       | Sulfate, | Total<br>Dissolved |
|----------|------------|--------|----------|-----------|-----------|-------|----------|--------------------|
| Sample   | Date       | total  | total    | total     | total     | рН    | total    | Solids             |
| Location | Sampled    | (mg/L) | (mg/L)   | (mg/L)    | (mg/L)    | (STD) | (mg/L)   | (mg/L)             |
| G202     | 4/28/2016  | 0.083  | 130      | 61        | 0.486     | 7.4   | 94       | 640                |
| G202     | 7/27/2016  | 0.09   | 110      | 58        | 0.444     | 7.7   | 82       | 640                |
| G202     | 10/19/2016 | 0.12   | 90       | 70        | 0.552     | 6.9   | 77       | 560                |
| G202     | 1/18/2017  | 0.12   | 100      | 63        | 0.573     | 7.4   | 150      | 640                |
| G202     | 4/20/2017  | 0.078  | 120      | 62        | 0.55      | 7.3   | 66       | 680                |
| G202     | 6/15/2017  | 0.1    | 120      | 63        | 0.382     | 7.2   | 53       | 630                |
| G202     | 11/15/2017 | 0.1    | 180      | 55        | 0.618     | 7.2   | 150      | 720                |
| G202     | 5/23/2018  | 0.11   | 150      | 58        | 0.526     | 7.3   | 160      | 660                |
| G202     | 11/14/2018 | 0.1    | 130      | 56        | 0.421     | 7.2   | 95       | 590                |
| G202     | 2/21/2019  | 0.096  | 130      | 59        | 0.485     | 7.2   | 190      | 740                |
| G202     | 8/22/2019  | 0.12   | 120      | 61        | 0.51      | 7.2   | 53       | 680                |
| G202     | 2/4/2020   | 0.1    | 94       | 60        | 0.553     | 7.3   | 94       | 860                |
| G202     | 8/21/2018  | NA     | 120      | 64        | NA        | 7.3   | 73       | NA                 |
| G203     | 12/16/2015 | 0.07   | 100      | 49        | 0.363     | 7.1   | 95       | 660                |
| G203     | 1/20/2016  | 0.041  | 100      | 51        | 0.323     | 5.8   | 100      | 560                |
| G203     | 4/28/2016  | 0.056  | 130      | 53        | 0.401     | 7.3   | 110      | 590                |
| G203     | 7/27/2016  | 0.065  | 110      | 50        | 0.338     | 7.3   | 130      | 640                |
| G203     | 10/19/2016 | 0.092  | 96       | 60        | 0.459     | 7.2   | 140      | 580                |
| G203     | 1/19/2017  | 0.17   | 110      | 57        | 0.428     | 6.9   | 160      | 690                |
| G203     | 4/20/2017  | 0.061  | 120      | 54        | 0.491     | 6.9   | 120      | 680                |
| G203     | 6/15/2017  | 0.081  | 120      | 51        | 0.328     | 6.9   | 96       | 600                |
| G203     | 11/15/2017 | 0.07   | 110      | 49        | 0.504     | 6.8   | 170      | 720                |
| G203     | 5/23/2018  | 0.095  | 200      | 49        | 0.438     | 6.8   | 150      | 640                |
| G203     | 11/14/2018 | 0.082  | 160      | 47        | 0.344     | 6.8   | 170      | 650                |
| G203     | 2/21/2019  | 0.076  | 140      | 57        | 0.364     | 7.1   | 170      | 870                |
| G203     | 8/22/2019  | 0.09   | 130      | 52        | 0.443     | 7     | 150      | 780                |
| G203     | 2/4/2020   | 0.076  | 130      | 57        | 0.373     | 7.2   | 140      | 930                |
| G203     | 8/21/2018  | NA     | 140      | 55        | NA        | 7     | 120      | NA                 |
| G208     | 12/16/2015 | 0.19   | 110      | 45        | 0.978     | 7.1   | 220      | 1000               |
| G208     | 1/19/2016  | 0.2    | 110      | 44        | 0.848     | 7.1   | 250      | 950                |
| G208     | 4/28/2016  | 0.16   | 140      | 49        | 0.848     | 7.2   | 210      | 800                |
| G208     | 7/29/2016  | 0.18   | 120      | 49        | 1.03      | 6.9   | 230      | 980                |
| G208     | 10/25/2016 | 0.21   | 100      | 47        | 1.21      | 7.3   | 170      | 500                |
| G208     | 1/24/2017  | 0.18   | 100      | 48        | 1.02      | 7.4   | 140      | 880                |
| G208     | 4/20/2017  | 0.15   | 110      | 50        | 1.21      | 7.3   | 110      | 890                |
| G208     | 6/14/2017  | 0.2    | 110      | 47        | 1.05      | 7.3   | 110      | 900                |
| G208     | 11/17/2017 | 0.18   | 110      | 48        | 1.11      | 7.5   | 110      | 820                |
| G208     | 5/23/2018  | 0.19   | 110      | 42        | 1.3       | 7.3   | 91       | 780                |
| G208     | 8/20/2018  | 0.18   | 120      | 47        | 0.966     | 7.5   | 88       | NA                 |
| G208     | 11/13/2018 | 0.18   | 120      | 44        | 1.07      | 7.4   | 45       | 620                |
| G208     | 2/20/2019  | 0.17   | 110      | 53        | 1.04      | 7.5   | 9.5      | 820                |
| G208     | 8/22/2019  | 0.21   | 110      | 45        | 1.07      | 7.5   | 2.7      | 800                |
| G208     | 2/5/2020   | 0.19   | 110      | 54        | 0.707     | 7.1   | 1.6      | 820                |
| G217D    | 12/17/2015 | 0.14   | 120      | 29        | 0.521     | 7.3   | 220      | 820                |
| G217D    | 1/21/2016  | 0.1    | 170      | 30        | 0.469     | 7.4   | 220      | 820                |
| G217D    | 4/29/2016  | 0.16   | 160      | 35        | 0.562     | 7.3   | 370      | 930                |
| G217D    | 7/29/2016  | 0.14   | 150      | 36        | 0.472     | 7.1   | 450      | 1100               |
| G217D    | 10/20/2016 | 0.19   | 140      | 33        | 0.684     | 7.4   | 470      | 1000               |
| G217D    | 1/19/2017  | 0.17   | 170      | 32        | 0.671     | 7.1   | 520      | 1200               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Boron, | Calcium, | Chloride, | Fluoride, |       | Sulfate, | Total<br>Dissolved |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|----------|-----------|-----------|-------|----------|--------------------|
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date       | total  | total    | total     | total     | рН    | total    | Solids             |
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sampled    | (mg/L) | (mg/L)   | (mg/L)    | (mg/L)    | (STD) | (mg/L)   | (mg/L)             |
| G217D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4/20/2017  | 0.13   | 190      | 29        | 0.679     | 7     | 360      | 1000               |
| G217D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/15/2017  | 0.13   | 150      | 24        | 0.535     | 6.8   | 240      | 840                |
| G217D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/17/2015 | 0.44   | 97       | 35        | 1.13      | 7.2   | 86       | 750                |
| G220<br>G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/19/2016  | 0.45   | 93       | 33        | 1.13      | 7.2   | 90       | 700                |
| G220<br>G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4/27/2016  | 0.43   | 120      | 37        | 1.33      | 7.3   | 64       | 700                |
| G220<br>G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/28/2016  | 0.31   | 98       | 39        | 1.33      | 7.3   | 46       | 700                |
| G220<br>G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/20/2016 | 0.4    | 87       | 40        | 1.48      | 7.2   | 58       | 680                |
| G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/24/2017  | 0.4    | 99       | 36        | 1.48      | 7.3   | 38       | 700                |
| G220<br>G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4/25/2017  | 0.24   | 91       | 36        | 1.35      | 6.9   | 31       | 780                |
| G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/14/2017  | 0.27   | 100      | 37        | 1.28      | 6.9   | 29       | 690                |
| G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/17/2017 | 0.26   | 100      | 37        | 1.37      | 7     | 24       | 610                |
| G220<br>G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/22/2018  | 0.49   | 100      | 31        | 1.46      | 7.1   | 81       | 770                |
| G220<br>G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8/16/2018  | 0.49   | 120      | 36        | 1.34      | 7.1   | 64       | NA                 |
| G220<br>G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11/13/2018 | 0.33   | 110      | 35        | 1.34      | 7.1   | 45       | 660                |
| G220<br>G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2/20/2019  | 0.31   | 110      | 39        | 1.24      | 7.1   | 45       | 730                |
| G220<br>G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8/21/2019  | 0.31   | 110      | 37        | 1.24      | 7.1   | 33       | 800                |
| G220<br>G220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2/4/2020   | 0.25   | 100      | 40        | 1.24      | 7.3   | 17       | 950                |
| G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/17/2015 | 0.2    | 120      | 69        | 0.888     | 7.3   | 190      | 1000               |
| G222<br>G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/19/2016  | 0.22   | 150      | 67        | 0.887     | 7.5   | 190      | 980                |
| G222<br>G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4/28/2016  | 0.24   | 120      | 73        | 0.827     | 7.3   | 190      | 1000               |
| G222<br>G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/28/2016  | 0.24   | 140      | 73        | 0.732     | 7.3   | 200      | 1000               |
| G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/2016 | 0.23   | 110      | 70        | 1.13      | 7.3   | 190      | 880                |
| G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/24/2017  | 0.23   | 130      | 67        | 1.13      | 7.4   | 180      | 1000               |
| G222<br>G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4/25/2017  | 0.21   | 120      | 67        | 1.05      | 7.2   | 180      | 1100               |
| G222<br>G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6/14/2017  | 0.18   | 120      | 69        | 1.03      | 7.1   | 56       | 980                |
| G222<br>G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11/15/2017 | 0.22   | 110      | 67        | 1.09      | 7.1   | 200      | 1100               |
| G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/22/2018  | 0.21   | 120      | 67        | 1.3       | 7.1   | 170      | 1000               |
| G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/16/2018  | 0.22   | 140      | 70        | 1.08      | 7.1   | 160      | NA                 |
| G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/12/2018 | 0.21   | 140      | 68        | 0.956     | 7.1   | 150      | 990                |
| G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/20/2019  | 0.21   | 140      | 76        | 0.94      | 7.1   | 150      | 1000               |
| G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/21/2019  | 0.23   | 140      | 69        | 0.982     | 7.1   | 130      | 1100               |
| G222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/4/2020   | 0.23   | 130      | 74        | 0.893     | 7.4   | 120      | 1200               |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/17/2015 | 0.2    | 99       | 91        | 0.691     | 6.7   | 1.3      | 760                |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/20/2016  | 0.15   | 95       | 93        | 0.723     | 6.5   | 2.4      | 700                |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4/28/2016  | 0.22   | 110      | 88        | 0.799     | 6.8   | 2        | 720                |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/28/2016  | 0.2    | 110      | 98        | 0.724     | 6.8   | 1.3      | 720                |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/20/2016 | 0.28   | 85       | 99        | 0.929     | 6.8   | 2.8      | 710                |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/24/2017  | 0.21   | 94       | 88        | 0.738     | 6.8   | 2.1      | 760                |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4/26/2017  | 0.19   | 83       | 85        | 0.864     | 6.4   | <25      | 760                |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/14/2017  | 0.22   | 100      | 88        | 0.782     | 7.1   | 25       | 800                |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/29/2017 | 0.23   | 110      | 100       | 0.781     | 7.2   | 6        | 840                |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/23/2018  | 0.23   | 98       | 100       | 0.975     | 7.2   | 7.5      | 820                |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/21/2018  | 0.092  | 130      | 51        | NA        | 7.2   | 130      | NA                 |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/13/2018 | 0.24   | 120      | 100       | 0.671     | 7.2   | 7.3      | 780                |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/21/2019  | 0.23   | 120      | 130       | 0.645     | 7.1   | 21       | 1000               |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/22/2019  | 0.27   | 140      | 130       | 0.716     | 7.2   | 55       | 980                |
| G223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/4/2020   | 0.23   | 160      | 150       | 0.603     | 7     | 210      | 1500               |
| G224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/17/2015 | 0.082  | 110      | 49        | 0.344     | 7.2   | 140      | 630                |
| G224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/21/2016  | 0.05   | 110      | 50        | 0.329     | 7.1   | 130      | 650                |
| And the second s |            | No.    |          | _         |           | _     |          | _                  |

| Sample<br>Location | Date<br>Sampled | Boron,<br>total<br>(mg/L) | Calcium,<br>total<br>(mg/L) | Chloride,<br>total<br>(mg/L) | Fluoride,<br>total<br>(mg/L) | pH<br>(STD) | Sulfate,<br>total<br>(mg/L) | Total<br>Dissolved<br>Solids<br>(mg/L) |
|--------------------|-----------------|---------------------------|-----------------------------|------------------------------|------------------------------|-------------|-----------------------------|----------------------------------------|
| G224               | 4/28/2016       | 0.1                       | 150                         | 52                           | 0.509                        | 7.3         | 130                         | 620                                    |
| G224               | 7/28/2016       | 0.084                     | 130                         | 55                           | 0.434                        | 7.4         | 150                         | 660                                    |
| G224               | 10/20/2016      | 0.11                      | 100                         | 60                           | 0.469                        | 7.3         | 180                         | 640                                    |
| G224               | 1/24/2017       | 0.082                     | 110                         | 50                           | 0.324                        | 7.5         | 140                         | 690                                    |
| G224               | 4/20/2017       | 0.079                     | 130                         | 54                           | 0.555                        | 7.1         | 140                         | 690                                    |
| G224               | 6/15/2017       | 0.09                      | 120                         | 49                           | 0.348                        | 7.2         | 140                         | 660                                    |
| G224               | 11/15/2017      | 0.093                     | 100                         | 50                           | 0.526                        | 7.3         | 140                         | 680                                    |
| G224               | 5/23/2018       | 0.093                     | 120                         | 49                           | 0.449                        | 7.4         | 140                         | 630                                    |
| G224               | 11/15/2018      | 0.086                     | 120                         | 49                           | 0.369                        | 7.3         | 130                         | 640                                    |
| G224               | 2/21/2019       | 0.08                      | 120                         | 55                           | 0.359                        | 7.4         | 130                         | 740                                    |
| G224               | 8/22/2019       | 0.095                     | 120                         | 50                           | 0.465                        | 7.3         | 130                         | 740                                    |
| G224               | 2/4/2020        | 0.09                      | 140                         | 53                           | 0.396                        | 7.5         | 140                         | 880                                    |
| G224               | 8/21/2018       | NA                        | 130                         | 52                           | NA                           | 7.4         | 140                         | NA                                     |
| R217D              | 11/28/2017      | 0.081                     | 72                          | 25                           | 0.721                        | 6.8         | 47                          | 470                                    |
| R217D              | 5/23/2018       | 0.057                     | 54                          | 28                           | 0.694                        | 7           | 66                          | 320                                    |
| R217D              | 11/16/2018      | 0.1                       | 92                          | 29                           | 0.609                        | 7           | 110                         | 560                                    |
| R217D              | 2/21/2019       | 0.2                       | 550                         | 58                           | 0.287                        | 6.9         | 2100                        | 3200                                   |
| R217D              | 8/21/2019       | 0.17                      | 210                         | 45                           | 0.644                        | 7           | 710                         | 1600                                   |
| R217D              | 2/5/2020        | 0.2                       | 750                         | 90                           | <0.25                        | 6.6         | 2200                        | 3900                                   |
| R217D              | 8/22/2018       | NA                        | 120                         | 110                          | NA                           | 7           | 1.5                         | NA                                     |
| L1R                | 2/4/2020        | 6.9                       | 370                         | 8300                         | 0.542                        | 11          | 21000                       | NA                                     |
| L1R                | 2/19/2020       | NA                        | NA                          | NA                           | NA                           | 11          | NA                          | 49000                                  |
| L301               | 11/19/2019      | 51                        | 79                          | 35                           | 0.326                        | 9.8         | 2600                        | 4400                                   |
| L301               | 2/6/2020        | 53                        | 46                          | 27                           | 0.312                        | 9.9         | 2800                        | 4200                                   |

### Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; s.u. - standard units.

|              | Τ                                                |                  |                | I            | I                | 1                | 1                |                  | I              |                  | I              |                  | Τ                | <u> </u>      |                  |                  |
|--------------|--------------------------------------------------|------------------|----------------|--------------|------------------|------------------|------------------|------------------|----------------|------------------|----------------|------------------|------------------|---------------|------------------|------------------|
|              |                                                  |                  |                |              |                  |                  |                  |                  |                |                  |                |                  |                  | Radium-226 +  |                  |                  |
|              |                                                  | Antimony,        | Arsenic,       | Barium,      | Beryllium,       | Cadmium,         | Chromium,        | Cobalt,          | Fluoride,      | Lead,            | Lithium,       | Mercury,         | Molybdenum,      | Radium 228,   | Selenium,        | Thallium,        |
| Sample       | Date                                             | total            | total          | total        | total            | total            | total            | total            | total          | total            | total          | total            | total            | total         | total            | total            |
| Location     | Sampled                                          | (mg/L)           | (mg/L)         | (mg/L)       | (mg/L)           | (mg/L)           | (mg/L)           | (mg/L)           | (mg/L)         | (mg/L)           | (mg/L)         | (mg/L)           | (mg/L)           | (pCi/L)       | (mg/L)           | (mg/L)           |
| Background \ |                                                  |                  |                |              |                  |                  |                  |                  |                |                  |                |                  |                  |               |                  | _                |
| G48MG        | 12/16/2015                                       | <0.003           | 0.1            | 0.2          | <0.001           | <0.001           | <0.004           | <0.002           | 0.611          | <0.001           | 0.019          | <2e-04           | 0.039            | 0.411         | <0.001           | <0.001           |
| G48MG        | 1/18/2016                                        | <0.003           | 0.096          | 0.22         | <0.001           | <0.001           | <0.004           | <0.002           | 0.478          | <0.001           | <0.01          | <2e-04           | 0.041            | 0.171         | <0.001           | <0.001           |
| G48MG        | 4/26/2016                                        | <0.003           | 0.084          | 0.22         | <0.001           | <0.001           | <0.004           | <0.002           | 0.644          | <0.001           | 0.015          | <2e-04           | 0.039            | 0.656         | <0.001           | <0.001           |
| G48MG        | 7/27/2016                                        | <0.003           | 0.059          | 0.2          | <0.001           | <0.001           | <0.004           | <0.002           | 0.576          | <0.001           | 0.011          | <2e-04           | 0.042            | 0.267         | <0.001           | <0.001           |
| G48MG        | 10/18/2016                                       | <0.003           | 0.043          | 0.2          | <0.001           | <0.001           | <0.004           | <0.002           | 0.701          | <0.001           | <0.01          | <2e-04           | 0.041            | 1.59          | <0.001           | <0.001           |
| G48MG        | 1/23/2017                                        | <0.003           | 0.047          | 0.21         | <0.001           | <0.001           | <0.004           | <0.002           | 0.535          | <0.001           | <0.01          | <2e-04           | 0.038            | 0.426         | <0.001           | <0.001           |
| G48MG        | 4/19/2017                                        | <0.003           | 0.048          | 0.21         | <0.001           | <0.001           | <0.004           | <0.002           | 0.714          | <0.001           | <0.01          | <2e-04           | 0.04             | 0.319         | <0.001           | <0.001           |
| G48MG        | 6/14/2017                                        | <0.003           | 0.048          | 0.22         | <0.001           | <0.001           | <0.004           | <0.002           | 0.503          | <0.001           | <0.01          | <2e-04           | 0.045            | 0.826         | <0.001           | <0.001           |
| G48MG        | 11/28/2017                                       | NA               | NA             | NA           | NA               | NA               | NA               | NA               | 0.682          | NA               | NA             | NA               | NA               | NA            | NA               | NA               |
| G201         | 12/15/2015                                       | <0.003           | 0.028          | 0.39         | <0.001           | <0.001           | <0.004           | <0.002           | 0.708          | 0.002            | <0.01          | <2e-04           | 0.013            | 1.86          | <0.001           | <0.001           |
| G201         | 1/18/2016                                        | <0.003           | 0.034          | 0.85         | <0.001           | <0.001           | 0.016            | 0.0032           | 0.65           | 0.01             | 0.014          | <2e-04           | 0.019            | 3.96          | <0.001           | <0.001           |
| G201         | 4/26/2016                                        | <0.003           | 0.033          | 0.36         | <0.001           | <0.001           | <0.004           | <0.002           | 0.786          | <0.001           | <0.01          | <2e-04           | 0.013            | 0.354         | <0.001           | <0.001           |
| G201         | 7/27/2016                                        | <0.003           | 0.029          | 0.22         | <0.001           | <0.001           | <0.004           | <0.002           | 0.713          | <0.001           | <0.01          | <2e-04           | 0.012            | 0.148         | <0.001           | <0.001           |
| G201         | 10/18/2016                                       | <0.003           | 0.033          | 0.19         | <0.001           | <0.001           | <0.004           | <0.002           | 0.954          | <0.001           | <0.01          | <2e-04           | 0.011            | 0.104         | <0.001           | <0.001           |
| G201         | 1/18/2017                                        | <0.003           | 0.03           | 0.21         | <0.001           | <0.001           | <0.004           | <0.002           | 1.04           | <0.001           | <0.01          | <2e-04           | 0.012            | 0.719         | <0.001           | <0.001           |
| G201         | 4/19/2017                                        | <0.003           | 0.032          | 0.24         | <0.001           | <0.001           | <0.004           | <0.002           | 0.872          | <0.001           | <0.01          | <2e-04           | 0.012            | 0.434         | <0.001           | <0.001           |
| G201         | 6/14/2017                                        | <0.003           | 0.039          | 0.5          | 0.0011           | <0.001           | <0.004           | <0.002           | 0.636          | 0.0016           | <0.01          | <2e-04           | 0.015            | 0.727         | <0.001           | 0.0015           |
| G201         | 11/28/2017                                       | NA               | NA             | NA           | NA               | NA               | NA               | NA               | 0.748          | NA               | NA             | NA               | NA               | NA            | NA               | NA               |
| Downgradier  |                                                  |                  | <b>.</b>       | 1            |                  |                  |                  |                  | 1              |                  | 1              | 1                | 1                | •             |                  |                  |
| G06D         | 12/16/2015                                       | <0.003           | <0.001         | 0.36         | <0.001           | <0.001           | 0.0086           | <0.002           | <0.25          | <0.001           | <0.01          | <2e-04           | 0.015            | 3.81          | 0.0011           | <0.001           |
| G06D         | 1/19/2016                                        | <0.003           | <0.001         | 0.37         | <0.001           | <0.001           | <0.004           | <0.002           | <0.25          | <0.001           | <0.01          | <2e-04           | 0.015            | 7.43          | 0.0011           | <0.001           |
| G06D         | 4/27/2016                                        | <0.003           | 0.004          | 0.58         | <0.001           | <0.001           | 0.0052           | <0.002           | 0.428          | <0.001           | <0.01          | <2e-04           | 0.015            | 2.1           | <0.001           | <0.001           |
| G06D         | 7/27/2016                                        | <0.003           | 0.0062         | 0.63         | <0.001           | <0.001           | 0.008            | <0.002           | 0.463          | <0.001           | <0.01          | <2e-04           | 0.015            | 2.04          | <0.001           | <0.001           |
| G06D         | 10/18/2016                                       | <0.003           | 0.0064         | 0.64         | <0.001           | <0.001           | <0.004           | <0.002           | 0.677          | <0.001           | <0.01          | <2e-04           | 0.014            | 2.56          | <0.001           | <0.001           |
| G06D         | 1/19/2017                                        | <0.003           | 0.0077         | 0.66         | <0.001           | <0.001           | <0.004           | <0.002           | 0.744          | <0.001           | <0.01          | <2e-04           | 0.011            | 1.4           | <0.001           | <0.001           |
| G06D         | 4/19/2017                                        | <0.003           | 0.008          | 0.71         | <0.001           | <0.001           | 0.02             | <0.002           | 0.751          | <0.001           | <0.01          | <2e-04           | 0.015            | 2.31          | <0.001           | <0.001           |
| G06D         | 6/14/2017                                        | <0.003           | 0.012          | 0.73         | <0.001           | <0.001           | 0.035            | <0.002           | 0.642          | 0.001            | <0.01          | <2e-04           | 0.016            | 2.4           | <0.001           | <0.001           |
| G06D         | 11/15/2017                                       | NA               | NA             | NA           | NA               | NA               | NA               | NA               | 0.709          | NA               | NA             | NA               | NA               | NA            | NA               | NA               |
| G202         | 12/17/2015                                       | <0.003           | 0.0081         | 0.49         | <0.001           | <0.001           | <0.004           | <0.002           | 0.435          | <0.001           | <0.01          | <2e-04           | 0.0037           | 0.935         | <0.001           | <0.001           |
| G202         | 1/20/2016                                        | <0.003           | 0.0089         | 0.5          | <0.001           | <0.001           | <0.004           | <0.002           | 0.401          | <0.001           | <0.01          | <2e-04           | 0.0041           | 1.02          | <0.001           | <0.001           |
| G202         | 4/28/2016                                        | <0.003           | 0.0096         | 0.54         | <0.001           | <0.001           | <0.004           | <0.002           | 0.486          | <0.001           | <0.01          | <2e-04           | 0.0036           | 1.72          | <0.001           | <0.001           |
| G202         | 7/27/2016                                        | <0.003           | 0.0077         | 0.54         | <0.001           | <0.001           | <0.004           | <0.002           | 0.444          | <0.001           | <0.01          | 0.00052          | 0.0032           | 1.06          | <0.001           | <0.001           |
| G202         | 10/19/2016                                       | <0.003           | 0.0066         | 0.54         | <0.001           | <0.001           | <0.004           | <0.002           | 0.552          | <0.001           | <0.01          | <2e-04           | 0.0028           | 2.94          | <0.001           | <0.001           |
| G202         | 1/18/2017                                        | <0.003           | 0.0072         | 0.5          | <0.001           | <0.001           | <0.004           | <0.002           | 0.573          | <0.001           | <0.01          | <2e-04           | 0.004            | 1.36          | <0.001           | <0.001           |
| G202<br>G202 | 4/20/2017<br>6/15/2017                           | 0.0036           | 0.0091         | 0.52         | <0.001           | <0.001           | 0.0047           | <0.002           | 0.55<br>0.382  | 0.0013           | <0.01          | 0.0012           | 0.0033           | 0.303         | <0.001           | <0.001           |
| G202<br>G202 | 11/15/2017                                       | <0.003<br>NA     | 0.011<br>NA    | 0.62<br>NA   | <0.001<br>NA     | <0.001<br>NA     | 0.0076<br>NA     | <0.002<br>NA     | 0.382          | 0.0017<br>NA     | <0.01<br>NA    | <2e-04<br>NA     | 0.0034<br>NA     | 4.18<br>NA    | <0.001<br>NA     | <0.001<br>NA     |
|              |                                                  |                  |                |              |                  |                  |                  | <0.002           | ł              |                  |                |                  |                  |               |                  |                  |
| G203<br>G203 | 12/16/2015                                       | <0.003<br><0.003 | 0.014          | 0.38         | <0.001           | <0.001<br><0.001 | <0.004<br><0.004 | <0.002           | 0.363<br>0.323 | <0.001<br>0.0011 | <0.01<br><0.01 | <2e-04<br><2e-04 | 0.0036<br>0.0039 | 0.678<br>1.33 | <0.001<br><0.001 | <0.001<br><0.001 |
| G203<br>G203 | 4/28/2016                                        | <0.003           | 0.014<br>0.016 | 0.42         | <0.001<br><0.001 | <0.001           | <0.004           | <0.002           | 0.323          | <0.0011          |                | <b>+</b>         | 0.0039           | 1.33          | <0.001           | <del> </del>     |
|              |                                                  |                  |                | 0.44         | <b> </b>         | <b>.</b>         | +                |                  |                | <b>-</b>         | <0.01          | <2e-04           | +                |               |                  | <0.001           |
| G203<br>G203 | 7/27/2016<br>10/19/2016                          | <0.003<br><0.003 | 0.013<br>0.016 | 0.41         | <0.001<br><0.001 | <0.001<br><0.001 | <0.004<br><0.004 | <0.002<br><0.002 | 0.338<br>0.459 | <0.001<br><0.001 | <0.01<br><0.01 | <2e-04<br><2e-04 | 0.004<br>0.0039  | 1.8<br>2.3    | <0.001<br><0.001 | <0.001<br><0.001 |
| G203<br>G203 | 1/19/2016                                        | <0.003           | 0.016          | 0.41<br>0.42 | <0.001           | <0.001           | <0.004           | <0.002           | 0.459          | <0.001           | <0.01          | <2e-04<br><2e-04 | 0.0039           | 0.81          | <0.001           | <0.001           |
| G203<br>G203 | 4/20/2017                                        | <0.003           | 0.01           | 0.42         | <0.001           | <0.001           | 0.0053           | <0.002           | 0.428          | 0.0016           | <0.01          | <2e-04<br><2e-04 | 0.0038           | 0.81          | <0.001           | <0.001           |
| G203<br>G203 | 6/15/2017                                        | <0.003           | 0.013          | 0.44         | <0.001           | <0.001           | 0.0053           | 0.0029           | 0.491          | 0.0016           | 0.01           | <2e-04<br><2e-04 | 0.0043           | 2             | <0.001           | <0.001           |
| G203<br>G203 | 11/15/2017                                       | <0.003<br>NA     | 0.016<br>NA    | 0.49<br>NA   | <0.001<br>NA     | VA NA            | 0.018<br>NA      | 0.0029<br>NA     | 0.328          | 0.0053<br>NA     | NA             | <2e-04<br>NA     | 0.0059<br>NA     | NA            | <0.001<br>NA     | <0.001<br>NA     |
|              | 12/16/2015                                       | <0.003           | 0.058          | 0.56         | <0.001           | <0.001           | <0.004           | <0.002           | 0.304          | <0.001           | <0.01          | <2e-04           | 0.0021           | 1.4           | <0.001           | <0.001           |
| G208<br>G208 | 1/19/2016                                        | <0.003           | 0.058          | 0.56         | <0.001           | <0.001           | <0.004           | <0.002           | 0.978          | <0.001           | <0.01          | <2e-04<br><2e-04 | 0.0021           | 3.23          | <0.001           | <0.001           |
| G208<br>G208 | 4/28/2016                                        | <0.003           | 0.065          | 0.67         | <0.001           | <0.001           | 0.0075           | <0.002           | 0.848          | <0.001           | <0.01          | <2e-04<br><2e-04 | 0.0017           | 1.14          | <0.001           | <0.001           |
|              | <del>                                     </del> |                  |                | <b>†</b>     | <b> </b>         | <b>.</b>         | +                |                  | ł              | <b>-</b>         |                | ł                | +                |               |                  | <del> </del>     |
| G208         | 7/29/2016                                        | <0.003           | 0.064          | 0.61         | <0.001           | <0.001           | <0.004           | <0.002           | 1.03           | <0.001           | <0.01          | <2e-04           | <0.001           | 2.29          | <0.001           | <0.001           |

|                |                        |                    |                   |                 |                  |                  |                  |                  |                 |                  |                   |                  |                           | D 11 000         |                    |                  |
|----------------|------------------------|--------------------|-------------------|-----------------|------------------|------------------|------------------|------------------|-----------------|------------------|-------------------|------------------|---------------------------|------------------|--------------------|------------------|
|                |                        | A                  | Awaawia           | Davi            | Dam Illiana      | Cadmina          | Ch wa wa iu wa   | Coholt           | Fluorida        | laad             | l iabi            |                  | NA a le da da de consegue | Radium-226 +     | Calamium           | The Hissan       |
| Commis         | Data                   | Antimony,<br>total | Arsenic,<br>total | Barium,         | Beryllium,       | Cadmium,         | Chromium,        | Cobalt,          | Fluoride,       | Lead,<br>total   | Lithium,<br>total | Mercury,         | Molybdenum,               | Radium 228,      | Selenium,<br>total | Thallium,        |
| Sample         | Date                   | (mg/L)             | (mg/L)            | total<br>(mg/L) | total<br>(mg/L)  | total<br>(mg/L)  | total<br>(mg/L)  | total<br>(mg/L)  | total<br>(mg/L) | (mg/L)           | (mg/L)            | total<br>(mg/L)  | total<br>(mg/L)           | total<br>(pCi/L) | (mg/L)             | total<br>(mg/L)  |
| Location       | Sampled                |                    |                   |                 |                  |                  |                  |                  |                 |                  |                   |                  |                           |                  |                    |                  |
| G208           | 10/25/2016             | <0.003             | 0.068             | 0.67            | <0.001           | <0.001           | <0.004           | <0.002           | 1.21            | <0.001           | <0.01             | <2e-04           | <0.001                    | 1.32             | <0.001             | <0.001           |
| G208           | 1/24/2017              | <0.003<br><0.003   | 0.069<br>0.061    | 0.63<br>0.64    | <0.001<br><0.001 | <0.001           | <0.004           | <0.002<br><0.002 | 1.02<br>1.21    | <0.001<br><0.001 | <0.01<br><0.01    | <2e-04<br><2e-04 | <0.001                    | 0.999            | <0.001<br><0.001   | <0.001<br><0.001 |
| G208<br>G208   | 4/20/2017<br>6/14/2017 | <0.003             | 0.081             | 0.59            | <0.001           | <0.001<br><0.001 | <0.004<br><0.004 | <0.002           | 1.05            | <0.001           | <0.01             | <2e-04<br><2e-04 | <0.001<br><0.001          | 2.32             | <0.001             | <0.001           |
| G208           | 11/17/2017             | NA                 | NA                | NA              | NA               | NA               | NA NA            | NA               | 1.05            | NA               | NA                | NA               | NA                        | NA               | NA                 | V0.001<br>NA     |
| G217D          | 12/17/2017             | <0.003             | 0.048             | 0.35            | <0.001           | <0.001           | 0.014            | 0.0059           | 0.521           | 0.0094           | 0.025             | <2e-04           | 0.015                     | 1.35             | <0.001             | <0.001           |
| G217D<br>G217D | 1/21/2016              | <0.003             | 0.048             | 0.55            | 0.0027           | 0.0014           | 0.014            | 0.0039           | 0.321           | 0.065            | 0.023             | 0.00031          | 0.013                     | 15.2             | 0.0032             | <0.001           |
| G217D<br>G217D | 4/29/2016              | <0.003             | 0.073             | 0.4             | <0.0027          | <0.0014          | 0.03             | 0.036            | 0.469           | 0.003            | 0.023             | <2e-04           | 0.02                      | 1.88             | <0.0032            | <0.001           |
| G217D<br>G217D | 7/29/2016              | <0.003             | 0.049             | 0.4             | <0.001           | <0.001           | <0.014           | <0.002           | 0.302           | 0.0003           | 0.023             | <2e-04           | 0.014                     | 1.45             | <0.001             | <0.001           |
| G217D<br>G217D | 10/20/2016             | <0.003             | 0.038             | 0.36            | <0.001           | <0.001           | <0.004           | <0.002           | 0.472           | <0.0011          | <0.013            | <2e-04           | 0.013                     | 1.43             | <0.001             | <0.001           |
| G217D          | 1/19/2017              | <0.003             | 0.054             | 0.36            | <0.001           | <0.001           | 0.0091           | 0.0048           | 0.671           | 0.0073           | 0.02              | <2e-04           | 0.012                     | 0.783            | <0.001             | <0.001           |
| G217D          | 4/20/2017              | <0.003             | 0.045             | 0.41            | <0.001           | <0.001           | 0.013            | 0.0052           | 0.679           | 0.0075           | 0.021             | <2e-04           | 0.012                     | 1.2              | <0.001             | <0.001           |
| G217D          | 6/15/2017              | <0.003             | 0.049             | 0.36            | <0.001           | <0.001           | 0.0073           | 0.0029           | 0.535           | 0.0053           | 0.014             | <2e-04           | 0.011                     | 1.93             | <0.001             | <0.001           |
| G220           | 12/17/2015             | <0.003             | 0.053             | 0.51            | <0.001           | <0.001           | 0.0061           | <0.002           | 1.13            | 0.002            | 0.016             | <2e-04           | 0.0073                    | 1.62             | <0.001             | <0.001           |
| G220           | 1/19/2016              | <0.003             | 0.054             | 0.51            | <0.001           | <0.001           | <0.004           | <0.002           | 1.08            | <0.001           | <0.01             | <2e-04           | 0.0066                    | 3.34             | <0.001             | <0.001           |
| G220           | 4/27/2016              | <0.003             | 0.075             | 0.61            | <0.001           | <0.001           | <0.004           | <0.002           | 1.33            | <0.001           | <0.01             | <2e-04           | 0.0067                    | 1.08             | <0.001             | <0.001           |
| G220           | 7/28/2016              | <0.003             | 0.07              | 0.55            | <0.001           | <0.001           | <0.004           | <0.002           | 1.21            | <0.001           | <0.01             | <2e-04           | 0.0053                    | 2.26             | <0.001             | <0.001           |
| G220           | 10/20/2016             | <0.003             | 0.075             | 0.57            | <0.001           | <0.001           | <0.004           | <0.002           | 1.48            | <0.001           | <0.01             | <2e-04           | 0.0053                    | 1.46             | <0.001             | <0.001           |
| G220           | 1/24/2017              | <0.003             | 0.082             | 0.61            | <0.001           | <0.001           | 0.0075           | <0.002           | 1.3             | 0.0022           | <0.01             | <2e-04           | 0.0052                    | 1.54             | <0.001             | <0.001           |
| G220           | 4/25/2017              | <0.003             | 0.077             | 0.55            | <0.001           | <0.001           | <0.004           | <0.002           | 1.35            | <0.001           | <0.01             | <2e-04           | 0.004                     | 0.937            | <0.001             | <0.001           |
| G220           | 6/14/2017              | <0.003             | 0.06              | 0.56            | <0.001           | <0.001           | <0.004           | <0.002           | 1.28            | <0.001           | <0.01             | <2e-04           | 0.0049                    | 1.54             | <0.001             | <0.001           |
| G220           | 11/17/2017             | NA                 | NA                | NA              | NA               | NA               | NA               | NA               | 1.37            | NA               | NA                | NA               | NA                        | NA               | NA                 | NA               |
| G222           | 12/17/2015             | <0.003             | 0.046             | 0.75            | <0.001           | <0.001           | 0.004            | <0.002           | 0.888           | <0.001           | <0.01             | <2e-04           | 0.011                     | 0.605            | 0.001              | <0.001           |
| G222           | 1/19/2016              | <0.003             | 0.061             | 0.91            | <0.001           | <0.001           | 0.082            | 0.0076           | 0.827           | 0.0096           | 0.012             | <2e-04           | 0.016                     | 1.65             | <0.001             | <0.001           |
| G222           | 4/28/2016              | <0.003             | 0.047             | 0.78            | <0.001           | <0.001           | 0.0074           | <0.002           | 0.792           | <0.001           | <0.01             | <2e-04           | 0.01                      | 0.788            | <0.001             | <0.001           |
| G222           | 7/28/2016              | <0.003             | 0.056             | 0.8             | <0.001           | <0.001           | <0.004           | <0.002           | 0.958           | <0.001           | <0.01             | <2e-04           | 0.0093                    | 0.573            | <0.001             | <0.001           |
| G222           | 10/25/2016             | <0.003             | 0.052             | 0.8             | <0.001           | <0.001           | <0.004           | <0.002           | 1.13            | <0.001           | <0.01             | <2e-04           | 0.0074                    | 1.55             | <0.001             | <0.001           |
| G222           | 1/24/2017              | <0.003             | 0.051             | 0.83            | <0.001           | <0.001           | <0.004           | <0.002           | 1.09            | <0.001           | <0.01             | <2e-04           | 0.0072                    | 0.484            | <0.001             | <0.001           |
| G222           | 4/25/2017              | <0.003             | 0.042             | 0.69            | <0.001           | <0.001           | <0.004           | <0.002           | 1.05            | <0.001           | <0.01             | <2e-04           | 0.0057                    | 0.819            | <0.001             | <0.001           |
| G222           | 6/14/2017              | <0.003             | 0.13              | 1.5             | <0.001           | <0.001           | <0.004           | <0.002           | 1.27            | <0.001           | <0.01             | <2e-04           | 0.0015                    | 2.47             | <0.001             | <0.001           |
| G222           | 11/15/2017             | NA                 | NA                | NA              | NA               | NA               | NA               | NA               | 1.09            | NA               | NA                | NA               | NA                        | NA               | NA                 | NA               |
| G223           | 12/17/2015             | <0.003             | 0.046             | 0.68            | <0.001           | <0.001           | 0.0053           | <0.002           | 0.691           | <0.001           | <0.01             | <2e-04           | <0.001                    | 0.69             | <0.001             | <0.001           |
| G223           | 1/20/2016              | <0.003             | 0.053             | 0.71            | <0.001           | <0.001           | <0.004           | <0.002           | 0.723           | <0.001           | <0.01             | <2e-04           | <0.001                    | 1.4              | <0.001             | <0.001           |
| G223           | 4/28/2016              | <0.003             | 0.062             | 0.79            | <0.001           | <0.001           | 0.0048           | <0.002           | 0.799           | <0.001           | <0.01             | <2e-04           | 0.0011                    | 1.47             | <0.001             | <0.001           |
| G223           | 7/28/2016              | <0.003             | 0.062             | 0.75            | <0.001           | <0.001           | <0.004           | <0.002           | 0.724           | <0.001           | <0.01             | <2e-04           | <0.001                    | 1.47             | <0.001             | <0.001           |
| G223           | 10/20/2016             | <0.003             | 0.053             | 0.7             | <0.001           | <0.001           | <0.004           | <0.002           | 0.929           | <0.001           | <0.01             | <2e-04           | <0.001                    | 1.77             | <0.001             | <0.001           |
| G223           | 1/24/2017              | <0.003             | 0.053             | 0.75            | <0.001           | <0.001           | 0.0041           | <0.002           | 0.738           | <0.001           | <0.01             | <2e-04           | <0.001                    | 0.227            | <0.001             | <0.001           |
| G223           | 4/26/2017              | <0.003             | 0.045             | 0.6             | <0.001           | <0.001           | 0.0061           | <0.002           | 0.864           | 0.001            | <0.01             | <2e-04           | 0.0015                    | 0.964            | <0.001             | <0.001           |
| G223           | 6/14/2017              | <0.003             | 0.0085            | 0.58            | <0.001           | <0.001           | <0.004           | <0.002           | 0.782           | <0.001           | <0.01             | 0.00049          | 0.0013                    | 1.09             | <0.001             | <0.001           |
| G223           | 11/29/2017             | NA                 | NA                | NA              | NA               | NA               | NA               | NA               | 0.781           | NA               | NA                | NA               | NA                        | NA               | NA                 | NA               |

| Sample<br>Location | Date<br>Sampled | Antimony,<br>total<br>(mg/L) | Arsenic,<br>total<br>(mg/L) | Barium,<br>total<br>(mg/L) | Beryllium,<br>total<br>(mg/L) | Cadmium,<br>total<br>(mg/L) | Chromium,<br>total<br>(mg/L) | Cobalt,<br>total<br>(mg/L) | Fluoride,<br>total<br>(mg/L) | Lead,<br>total<br>(mg/L) | Lithium,<br>total<br>(mg/L) | Mercury,<br>total<br>(mg/L) | Molybdenum,<br>total<br>(mg/L) | Radium-226 +<br>Radium 228,<br>total<br>(pCi/L) | Selenium,<br>total<br>(mg/L) | Thallium,<br>total<br>(mg/L) |
|--------------------|-----------------|------------------------------|-----------------------------|----------------------------|-------------------------------|-----------------------------|------------------------------|----------------------------|------------------------------|--------------------------|-----------------------------|-----------------------------|--------------------------------|-------------------------------------------------|------------------------------|------------------------------|
| G224               | 12/17/2015      | <0.003                       | 0.0026                      | 0.4                        | <0.001                        | <0.001                      | <0.004                       | <0.002                     | 0.344                        | <0.001                   | <0.01                       | <2e-04                      | 0.004                          | 1.1                                             | <0.001                       | <0.001                       |
| G224               | 1/21/2016       | <0.003                       | 0.0064                      | 0.49                       | <0.001                        | <0.001                      | 0.0044                       | <0.002                     | 0.329                        | 0.0038                   | <0.01                       | <2e-04                      | 0.0053                         | 1.69                                            | <0.001                       | <0.001                       |
| G224               | 4/28/2016       | <0.003                       | 0.0083                      | 0.61                       | <0.001                        | <0.001                      | 0.016                        | 0.0042                     | 0.509                        | 0.0097                   | 0.014                       | <2e-04                      | 0.0058                         | 1.07                                            | <0.001                       | <0.001                       |
| G224               | 7/28/2016       | <0.003                       | 0.0063                      | 0.51                       | <0.001                        | <0.001                      | 0.0063                       | 0.0022                     | 0.434                        | 0.0051                   | <0.01                       | <2e-04                      | 0.0044                         | 1.19                                            | <0.001                       | <0.001                       |
| G224               | 10/20/2016      | <0.003                       | 0.0046                      | 0.47                       | <0.001                        | <0.001                      | <0.004                       | <0.002                     | 0.469                        | <0.001                   | <0.01                       | <2e-04                      | 0.0038                         | 2.6                                             | <0.001                       | <0.001                       |
| G224               | 1/24/2017       | <0.003                       | 0.0052                      | 0.48                       | <0.001                        | <0.001                      | <0.004                       | <0.002                     | 0.324                        | 0.0011                   | <0.01                       | <2e-04                      | 0.004                          | 0.803                                           | <0.001                       | <0.001                       |
| G224               | 4/20/2017       | <0.003                       | 0.005                       | 0.52                       | <0.001                        | <0.001                      | <0.004                       | <0.002                     | 0.555                        | 0.0016                   | <0.01                       | <2e-04                      | 0.0044                         | 1.5                                             | <0.001                       | <0.001                       |
| G224               | 6/15/2017       | <0.003                       | 0.0057                      | 0.5                        | <0.001                        | <0.001                      | 0.004                        | <0.002                     | 0.348                        | 0.0028                   | <0.01                       | <2e-04                      | 0.0046                         | 3.55                                            | <0.001                       | <0.001                       |
| G224               | 11/15/2017      | NA                           | NA                          | NA                         | NA                            | NA                          | NA                           | NA                         | 0.526                        | NA                       | NA                          | NA                          | NA                             | NA                                              | NA                           | NA                           |
| R217D              | 11/28/2017      | NA                           | NA                          | NA                         | NA                            | NA                          | NA                           | NA                         | 0.721                        | NA                       | NA                          | NA                          | NA                             | NA                                              | NA                           | NA                           |

# Notes:

<sup>1.</sup> Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter

# 40 CFR § 257.94(E)(2): Alternate Source Demonstration Newton Landfill 2

Newton Power Station Newton, Illinois

# **Illinois Power Generating Company**

April 9, 2018



APRIL 9, 2018 | PROJECT #70092

# 40 CFR § 257.94(E)(2): Alternate Source Demonstration Newton Landfill 2

Newton Power Station
Newton, Illinois

Prepared for: *Illinois Power Generating Company* 

NICOLE M. PAGANO, PG Senior Managing Engineer

# **TABLE OF CONTENTS**

| LIST (  | OF TAB                                        | LES                                                  | ii  |
|---------|-----------------------------------------------|------------------------------------------------------|-----|
| LIST (  | OF FIGU                                       | RES                                                  | ii  |
| LIST (  | OF APPI                                       | ENDICES                                              | ii  |
| ACRO    | NYMS A                                        | ND ABBREVIATIONS                                     | iii |
| 1 IN    | TRODU                                         | JCTION                                               | 1   |
| 1.1     | Overv                                         | iew                                                  | 1   |
| 1.2     | Site L                                        | ocation and Description                              | 1   |
| 1.3     | Descr                                         | iption of CCR Management Units                       | 1   |
| 1.      | 3.1                                           | Phase I Landfill (LF1)                               | 1   |
| 1.      | 3.2                                           | Phase II Landfill (LF2)                              | 1   |
| 1.      | 3.3                                           | Primary Ash Pond (PAP)                               | 2   |
| 1.4     | Geolo                                         | gy and Hydrogeology                                  | 2   |
| 1.      | 4.1                                           | Geology                                              | 2   |
| 1.      | 4.2                                           | Hydrogeology                                         | 2   |
|         | 1.4.2.1                                       | Uppermost Aquifer                                    | 2   |
|         | 1.4.2.2                                       | Lower Limit of Aquifer                               | 2   |
|         | 1.4.2.3                                       | Groundwater Elevations, Flow Direction, and Velocity | 3   |
| 2 G     | ROUND                                         | WATER AND LEACHATE MONITORING                        | 4   |
| 2.1     | Backg                                         | round Groundwater Monitoring                         | 4   |
| 2.2     | Down                                          | gradient Groundwater Monitoring                      | 4   |
| 2.3     | Leach                                         | ate Monitoring                                       | 4   |
| 3 LI    | INES OF                                       | EVIDENCE SUPPORTING ASD                              | 5   |
| 3.1     | Landf                                         | ill Design and Operation                             | 5   |
| 3.2     | Grour                                         | ndwater Quality Signature                            | 5   |
| 3.3     | Lines                                         | of Evidence for SSI Parameters by Well               | 8   |
| 3.      | 3.1                                           | Boron                                                | 8   |
|         | 3.3.1.1                                       | Wells G220 and G222 (Cell 3)                         | 8   |
|         | 3.3.1.2                                       | Well G223 (Cells 1 and 2)                            | 8   |
| 3.3.2   |                                               | Calcium – G202 (Cells 1 and 2)                       | 9   |
| 3.      | 3.3                                           | Chloride                                             |     |
| 3.3.3.1 |                                               | Wells G06D, G208, G220, and G222 (Cell 3)            | 11  |
|         | 3.3.3.2                                       | Wells G202, G203, and G224 (Cells 1 and 2)           | 11  |
|         | 3.3.3.3                                       |                                                      |     |
| 3.      | .3.4 Fluoride – G208, G220, and G222 (Cell 3) |                                                      | 14  |
|         | 3.5                                           | Total Dissolved Solids (TDS) –G222 (Cell 3)          |     |
|         |                                               | Y                                                    |     |
| 5 C     | ONCLUS                                        | IONS AND CERTIFICATION                               | 16  |

#### **LIST OF TABLES**

#### Included in the text.

Table 1 Summary of Ionic Classification

#### **LIST OF FIGURES**

#### Figures 1 and 2 are attached, Figures 3-10 are included in the text.

| Figure 1  | Facility Location Map with Management Units and Sample Locations                |
|-----------|---------------------------------------------------------------------------------|
| Figure 2  | Potentiometric Surface Round 9: November 14, 2017                               |
| Figure 3  | Piper diagram showing ionic composition of samples                              |
| Figure 4  | Enlargement of Piper Diagram                                                    |
| Figure 5  | Boron Boxplot for Cell 3 Wells and G223                                         |
| Figure 6  | Boron Cumulative Distribution Curve for Cell 3 Wells and G223                   |
| Figure 7  | Calcium Time Series of Leachate and G202                                        |
| Figure 8  | Chloride Boxplot for Cell 3 Wells and G202, G203 and G224                       |
| Figure 9  | Chloride Cumulative Distribution Curve for Cell 3 Wells and G202, G203 and G224 |
| Figure 10 | Chloride Timeseries of Leachate and G202, G203 and G224                         |

#### **LIST OF APPENDICES**

Appendix A Kruskal-Wallis Test Results for Boron Observed in Monitoring Well G223, and Chloride in G202, G203, G224

Newton LF Phase II\_ASD Report.docx

#### **ACRONYMS AND ABBREVIATIONS**

ASD alternate source demonstration
CCR Coal Combustion Residuals
CFR Code of Federal Regulation

IEPA Illinois Environmental Protection Agency
LF1 Newton Power Station Phase I Landfill
LF2 Newton Power Station Phase II Landfill

mg/L milligrams per liter msl mean sea level

NPDES National Pollutant Discharge Elimination System

OBG O'Brien & Gere Engineers, Inc.

PAP Newton Power Station Primary Ash Pond

SSI statistically significant increase

#### 1 INTRODUCTION

#### 1.1 OVERVIEW

This alternate source demonstration (ASD) has been prepared on behalf of Illinois Power Generating Company by O'Brien & Gere Engineers, Inc. (OBG) to provide pertinent information pursuant to 40 CFR § 257.94(e)(2) for the Newton Power Station Landfill 2 (Phase II Landfill) near Newton, Illinois.

Initial background groundwater monitoring consisting of a minimum of eight samples as required under 40 CFR § 257.94(b) was initiated in December 2015 and completed prior to October 17, 2017. The first semi-annual detection monitoring samples were collected on November 15 to 29, 2017. Evaluation of analytical data from the first detection monitoring sample for statistically significant increases (SSIs) of 40 CFR Part 257 Appendix III parameters over background concentrations was completed within 90 days of collection and analysis of the sample (January 9, 2018). That evaluation identified SSIs at downgradient monitoring wells as follows:

- Boron at wells G220, G222 and G223
- Calcium at well G202
- Chloride at wells G06D, G202, G203, G208, G220, G222, G223 and G224
- Fluoride at wells G208, G220 and G222
- Total dissolved solids at wells G222

40 CFR 257.94(e)(2) allows the owner or operator 90 days from the date of an SSI determination to complete a written demonstration that a source other than the CCR unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality ("alternate source demonstration"). Pursuant to 40 CFR § 257.94(e)(2), the following demonstrates that sources other than the Phase II Landfill, including anthropogenic sources and natural variation in groundwater quality, were the cause of the SSIs listed above. This alternate source demonstration (ASD) was completed within 90 days of determination of the SSIs (April 9, 2018) as required by 40 CFR § 257.94(e)(2).

#### 1.2 SITE LOCATION AND DESCRIPTION

The Newton Power Station is located in Jasper County in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton (Figure 1). The area is surrounded by Newton Lake. Beyond the lake is agricultural land.

#### 1.3 DESCRIPTION OF CCR MANAGEMENT UNITS

The CCR management units at the Newton Power Station include the Phase I Landfill, Primary Ash Pond (CCR Unit ID 501), and the Phase II Landfill (CCR Unit ID 502).

#### 1.3.1 Phase I Landfill (LF1)

The Phase I Landfill (LF1) is an unlined landfill built around 1977 and permitted to start receiving CCRs in 1979. LF1was closed in 1999 with a 40-mil thick geomembrane cap, and is consequently not subject to the USEPA CCR Rule (40 CFR Part 257).

#### 1.3.2 Phase II Landfill (LF2)

The Phase II Landfill (LF2) includes three cells. Cells 1 and 2, encompassing approximately 46 acres, are adjacent to each other and located south and east of LF1. Cell 3 has a footprint of approximately 12 acres and is approximately 1,100 feet west of Cells 1 and 2 and south of the southwestern portion of LF1. All three cells of LF2 are constructed with composite liners with leachate collection systems that meet or exceed the landfill liner performance standards of 40 CFR § 257.70. More details on the liner construction of LF2 are provided in Section 3.1.

Cell 3 is currently inactive and has not received CCR since constructed in 2011.

#### 1.3.3 Primary Ash Pond (PAP)

The Newton Power Station's sole CCR surface impoundment, the Primary Ash Pond (PAP), was constructed in 1977 and has a design capacity of approximately 9,715 acre-feet. The PAP has a surface area of 400 acres and a height of approximately 71 feet above grade. The PAP currently receives bottom ash, fly ash, and low-volume wastewater (LVW) from the plant's two coal-fired boilers, and is operated per NPDES Permit IL0049191, Outfall 001. The PAP was not excavated during construction except for native materials used to build the containment berms.

#### 1.4 GEOLOGY AND HYDROGEOLOGY

The results of the site characterization activities previously performed at the Site are discussed below.

#### 1.4.1 Geology

Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations. The unconsolidated deposits which occur at Newton Power Station include the following units (beginning at the ground surface):

- Ash/Fill Units CCR and fill within the various CCR Units
- Upper Confining Unit Low permeability clays and silts, including the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east, underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) Member of the Pearl Formation and the Vandalia (Till) Member of the Glasford Formation
- Uppermost Aquifer (Groundwater Monitoring Zone) Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation
- Lower Confining Unit Thick, very low permeability silty clay diamicton of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation

The bedrock beneath the facility consists of Pennsylvanian-age Mattoon Formation that is mostly shale near the bedrock surface, but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones. The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the site, but is typically encountered at 90 to 120 ft below ground surface (bgs).

#### 1.4.2 Hydrogeology

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation. Monitoring well locations are shown in Figure 1.

#### 1.4.2.1 Uppermost Aquifer

The uppermost aquifer is the Mulberry Grove Member, typically consisting of fine to coarse sand with varying amounts of clay, silt and fine to coarse gravel. The portion of the Mulberry Grove Member at the site that is defined as a sand layer ranges in thickness from 3 to 17 ft with an average thickness of 8 ft and, with only a few exceptions, occurs between depths of 55 to 88 ft bgs.

#### 1.4.2.2 Lower Limit of Aquifer

The lower hydrostratigaphic units consist of the Smithboro Member and the Banner Formation, both of which are predominantly low permeability clay diamictons with varying amounts of silt, sand, and gravel. The lower unlithified confining unit is 30 to more than 50 ft thick above the underlying bedrock.

#### 1.4.2.3 Groundwater Elevations, Flow Direction, and Velocity

Groundwater elevations across LF2 ranged from approximately 441 to 520 ft MSL (NAVD88) from 2015 to 2017. Figure 2 is the potentiometric surface from the November 2017 detection monitoring event. Overall groundwater flow beneath LF2, within the uppermost aquifer, is southward toward Newton Lake, but with a south component of flow under Areas 1 and 2, and a predominantly eastward flow under Cell 3. Horizontal hydraulic gradients are moderate at 0.016 ft/ft. Calculated groundwater flow velocity based on the January and June 2017 groundwater contour maps was 1.42 ft per day (ft/day).

#### 2 GROUNDWATER AND LEACHATE MONITORING

The uppermost aquifer monitoring well network for Cells 1/2 and Cell 3 is shown on Figure 1 and described below.

#### 2.1 BACKGROUND GROUNDWATER MONITORING

Monitoring wells G201 and G48MG are used to monitor background water quality for LF2. These wells are located north of LF1 and LF2.

#### 2.2 DOWNGRADIENT GROUNDWATER MONITORING

LF2 Cells 1 and 2 are monitored using wells G202, G203, G223, G224, and R217D. LF1 borders these two cells on the north and west sides; the PAP borders them to the east. LF2 Cell 3 is located 1,500 feet to the southwest. The undeveloped area between Cells 1/2, and Cell 3, has been reserved for future landfill expansion, if needed.

LF2 Cell 3 is monitored using wells G06D, G208, G220 and G222. LF2 Cell 3 is bounded to the north by the southern end of LF1. The land bordering the cell to the east, west and south is undeveloped. The lake is 1,000 feet to the southwest. Cell 3 does not contain CCR.

#### 2.3 LEACHATE MONITORING

Leachate generated by LF1 is monitored at location L1R and leachate from LF Cells 1 and 2 is monitored at L301; both locations are shown on Figure 1. Leachate is not generated at Cell 3 since it does not contain CCR.

#### 3 LINES OF EVIDENCE SUPPORTING ASD

As allowed by 40 CFR § 257.94(e)(2), this ASD demonstrates that sources other than LF2 caused the SSI or that the SSI was a result of natural variation in groundwater quality. This ASD is based on the following lines of evidence (LOE) as discussed below.

#### 3.1 LANDFILL DESIGN AND OPERATION

The LF2 includes three cells. Cells 1 and 2 are adjacent to each other and located south and east of LF1. Cells 1 and 2, encompassing approximately 46 acres, were constructed in 1997 and began receiving CCRs that same year. A portion of Cell 2 is still operational. Cell 3 was constructed in 2011 and its footprint is approximately 12 acres. It is currently inactive and has not received CCR since constructed in 2011.

The constructed landfill components for Cells 1, 2, and 3 include the following features from top to bottom:

- Soil cover for frost protection
- 10-ounce/sy geotextile for separation of the leachate management system from the frost protection soil cover
- 1-foot thick sand drainage layer for the leachate collection system
- 60-mil high-density polyethylene (HDPE) geomembrane
- Three feet of compacted, low-permeability soil with a maximum hydraulic conductivity of 1.0 x 10-7 centimeters per second (cm/sec)

All three cells of LF2 are constructed with composite liners with leachate collection systems that meet or exceed the landfill liner performance standards of 40 CFR § 257.70.

#### 3.2 GROUNDWATER QUALITY SIGNATURE

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples with respect to their major cation and anion content, providing the information needed to identify composition categories or groupings. Figure 3 is a Piper diagram that displays the ionic composition of samples from the background and downgradient monitoring wells associated with LF1, LF2, and PAP versus landfill leachate and PAP water. The groupings identified are shown in the green, brown, blue, and purple ellipses on the Piper diagram. These are discussed in more detail below.

Newton LF Phase II\_ASD Report.docx

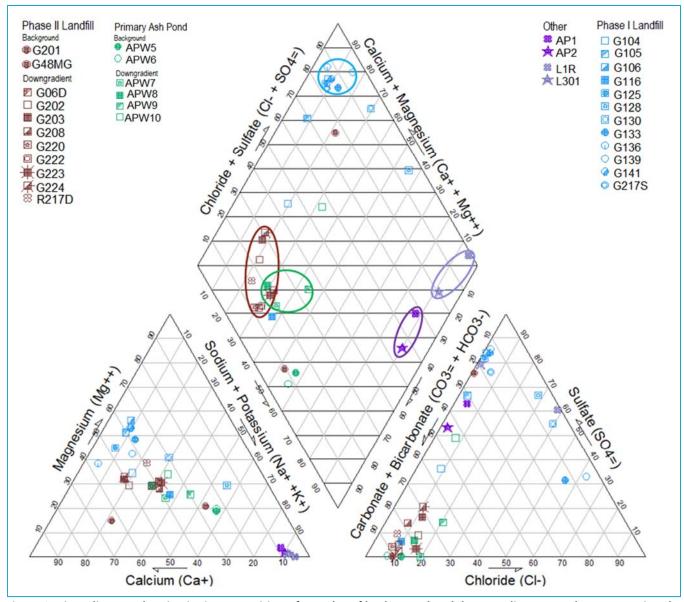



Figure 3. Piper diagram showing ionic composition of samples of background and downgradient groundwater associated with Phase I Landfill (LF1), Phase II Landfill (LF2), and Primary Ash Pond versus landfill leachate and Primary Ash Pond water

The ionic characteristics of the water samples in each grouping are provided in Table 1 below:

| Grouping          | Burgundy                                        | Green                                    | Blue                                           | Light Purple         | Purple                    |
|-------------------|-------------------------------------------------|------------------------------------------|------------------------------------------------|----------------------|---------------------------|
| Locations         | Phase II Landfill<br>Wells (LF2)<br>Groundwater | Primary Ash Pond<br>(PAP)<br>Groundwater | Phase I Landfill<br>Wells (LF1)<br>Groundwater | Landfill Leachate    | Primary Ash Pond<br>Water |
| Dominant          | No dominant                                     | No dominant                              | No dominant                                    | Very High Sodium-    | Very High Sodium-         |
| Cation            | cation                                          | cation                                   | cation                                         | Potassium            | Potassium                 |
| Dominant<br>Anion | Very High<br>Carbonate-<br>Bicarbonate          | Very High<br>Carbonate-<br>Bicarbonate   | High Sulfate                                   | No dominant<br>anion | No dominant<br>anion      |

**Table 1. Summary of Ionic Classification** 

The results can be categorized into three distinct groups. The LF2 groundwater samples (burgundy grouping) and the PAP groundwater samples (green grouping) are very high carbonate-bicarbonate waters with no dominant cation. The LF1 wells (blue grouping) also have no dominant cation, but these waters are high in sulfate. The PAP waters (light purple grouping) and the landfill leachate (purple grouping) are very high sodium-potassium with no dominant anion.

The groundwater samples for both LF2 and PAP are tightly clustered on the Piper diagram. This tight grouping indicates that the groundwater is either not being influenced by other sources, or is being influenced by a consistent, steady-state source, such as LF1, that is influencing all the wells equally and simultaneously.

The presence of a potential mixing zone between LF2 groundwater, PAP groundwater, and LF1 groundwater suggests that LFI is an alternate source of the elevated major cation calcium and elevated major anions chloride and sulfate.

Figure 4 is an enlargement of the LF2 and PAP groundwater sample groupings on the Piper diagram in Figure 3. The intermingling of the results from Cells 1 and 2, and Cell 3 on the Piper diagram indicates that the ionic composition of these groundwaters are similar, despite the distance between them.

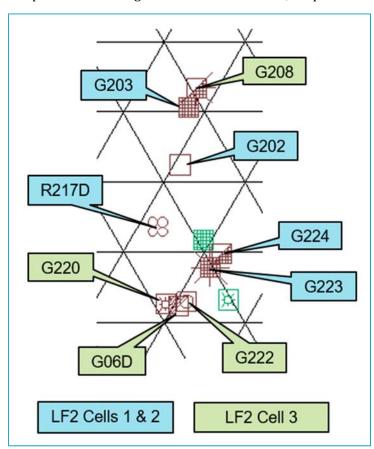



Figure 4. Enlargement of Piper Diagram

#### 3.3 LINES OF EVIDENCE FOR SSI PARAMETERS BY WELL

#### 3.3.1 Boron

#### 3.3.1.1 Wells G220 and G222 (Cell 3)

Monitoring wells G220, and G222 are part of the downgradient monitoring wells for LF2 Cell 3. Cell 3 does not contain CCR; therefore, it cannot be the source of the boron in G220 or G222. The alternate source is likely a steady-state source, as inferred from the Piper diagram, such as LF1.

#### 3.3.1.2 Well G223 (Cells 1 and 2)

It is evident from the Piper diagram (Figure 3) that groundwater samples from G223 have similar ionic composition as groundwater samples from the Cell 3 wells. Box plots of the boron concentrations observed in Cell 3 wells and G223 are shown in the figure below.

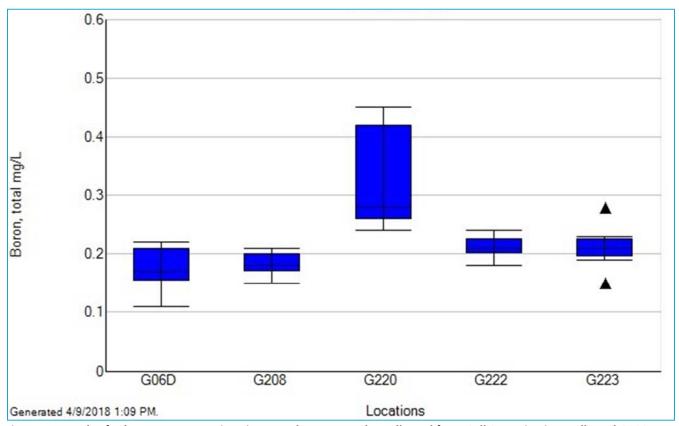



Figure 5. Box plot for boron concentrations in groundwater samples collected from Cell 3 monitoring wells and G223

Figure 5 demonstrates the following:

- Boron concentrations in groundwater samples collected from monitoring well G223 exhibit non-parametric characteristics as shown by the outliers (arrows) at 1.5 times the interquartile range (IQR).
- Boron concentrations in groundwater samples collected from the monitoring wells exhibit some level of skewness, with G06D and G220 having the most, and G223 the least.

The Kruskal-Wallis test was used to see if boron concentrations observed at G223 are part of the same statistical population as those observed at the wells near Cell 3. This is the appropriate test for comparing two or more groups that contain non-parametric data. The null hypothesis  $(H_0)$  is that the groups of data being compared have identical distributions. The hypothesis is true if chi-squared is greater than the H statistic. The test resulted in chi-squared value of 3.841 and an H statistic of 0.029, indicating that the null hypothesis is true, and the boron

concentrations observed at well G223 are part of the same statistical population as those observed in the wells near Cell 3. Test results are provided in Appendix A.

Cumulative distribution curves are provided in Figure 6 below.

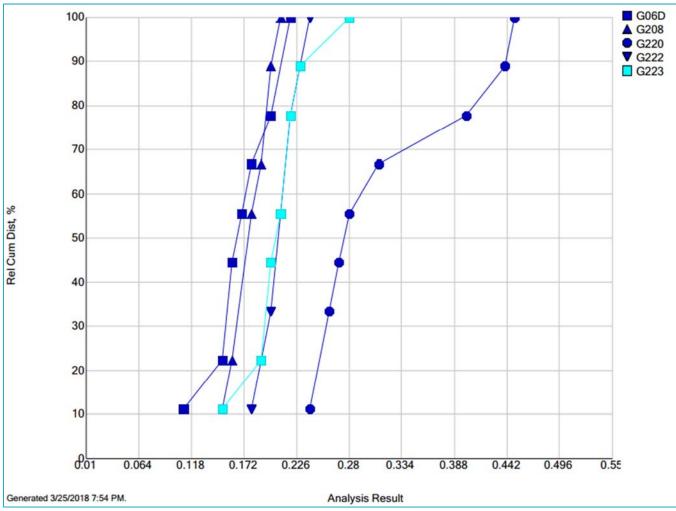



Figure 6. Boron Cumulative Distribution Curve for Cell 3 monitoring wells and G223

The near vertical lines shown in Figure 6, with the exception of G220 (Cell 3), indicate that the concentrations of boron in the wells are stable. The curve for G223 overlaps the curve for G222, further reinforcing that boron concentrations observed at G223 are part of the same statistical population as those observed in the wells near Cell 3.

Boron concentrations observed at well G223 are stable and in the same statistical population as boron concentrations observed in the wells near Cell 3; therefore, it is also likely influenced by an alternate source.

#### 3.3.2 Calcium – G202 (Cells 1 and 2)

Calcium in groundwater at well G202, located downgradient from Cells 1 and 2, generally occurs at concentrations greater than observed in LF2 leachate at sampling location L301. Conversely, the calcium content in the LF1 leachate, as measured at sampling location L1R, is extremely elevated.



Figure 7. Calcium Time Series (logarithmic) of Leachate and G202

Figure 7 is a time series plot of calcium concentrations observed in groundwater at G202 and leachate from LF1 and LF2 from January 2015 to April 2017 and demonstrates the following:

- Calcium concentrations from LF1 leachate (sampling location L1/L1R) range from 110 to 22,000 mg/L with a median value of 180 mg/L; the 22,000 mg/L concentration appears to be an outlier
- Calcium concentrations from LF2 leachate (sampling location L301) range from 19 to 290 mg/L with a median of 52 mg/L
- Calcium concentrations in downgradient well G202 range from 90 to 180 mg/L with a median of 110 mg/L

Since median calcium concentrations measured in LF2 leachate are less than the median concentrations in well G202, LF2 cannot be the source. The source is likely LF1 since the calcium concentrations in LF1 leachate are significantly greater than in those observed in well G202. The median calcium concentration for LF1 leachate is approximately 1.5 times greater than the median calcium concentration observed in groundwater at well G202 and 3.5 times greater than the median calcium concentration in LF2 leachate.

#### 3.3.3 Chloride

#### 3.3.3.1 Wells G06D, G208, G220, and G222 (Cell 3)

Monitoring wells G06D, G208, G220, and G222 are part of the downgradient monitoring system for LF2 Cell 3. Cell 3 does not contain CCR; therefore, it cannot be the source of the chloride in G06D, G208, G220, and G222. The alternate source is likely a steady-state source, as inferred from the Piper diagram, such as LF1.

#### 3.3.3.2 Wells G202, G203, and G224 (Cells 1 and 2)

It is evident from the Piper diagram that groundwater quality at G202, G203, and G224 is similar to the groundwater at Cell 3 wells. Boxplots of the Cell 3 wells and G202, G203, and G224 are shown in Figure 8.

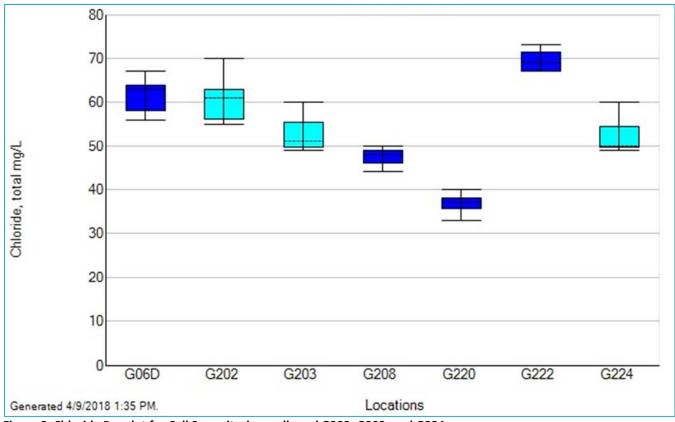



Figure 8. Chloride Boxplot for Cell 3 monitoring wells and G202, G203, and G224

The following observations can be made from Figure 8:

- The ranges of the boxes overlap, indicating that the data between the 75th and 25th quartile are similar
- The minimum and maximum chloride concentrations range from 35 to 72 mg/L
- Chloride concentrations in wells G06D, G202, G203, G208, and G224 are bounded by lower and higher concentrations at the Cell 3 downgradient wells G220 and G222

The Kruskal-Wallis test was used to see if chloride concentrations observed at wells G202, G203, and G224 are part of the same statistical population as chloride concentrations observed in groundwater downgradient from Cell 3. The test resulted in chi-squared value of 7.8 and an H statistic of 4.7, indicating that the null hypothesis is true, and the chloride concentrations observed in wells G202, G203, and G224 are part of the same statistical population as those observed near Cell 3. Test results are provided in Appendix A.

Cumulative distribution curves are presented in the figure below.



Figure 9. Chloride Cumulative Distribution Curve for Cell 3 monitoring wells and G202, G203, and G224

The near vertical lines shown in Figure 9, indicate that the concentration of chloride observed in the monitoring wells is stable. The distribution curves for concentrations observed in G202, G203, and G224 have the same shape and are parallel to those for the concentrations observed in the Cell 3 wells, further supporting that these wells are in the same statistical population.

Chloride concentrations at wells G202, G203, and G224 are stable and in the same population as Cell 3 wells; therefore, chloride in groundwater at these wells must be influenced by an alternate source.

#### 3.3.3.3 High Concentrations in LF1 Leachate Relative to Groundwater

Additional evidence of an alternate source is the extremely high concentrations of chloride in LF1 leachate, as shown on the time series below.

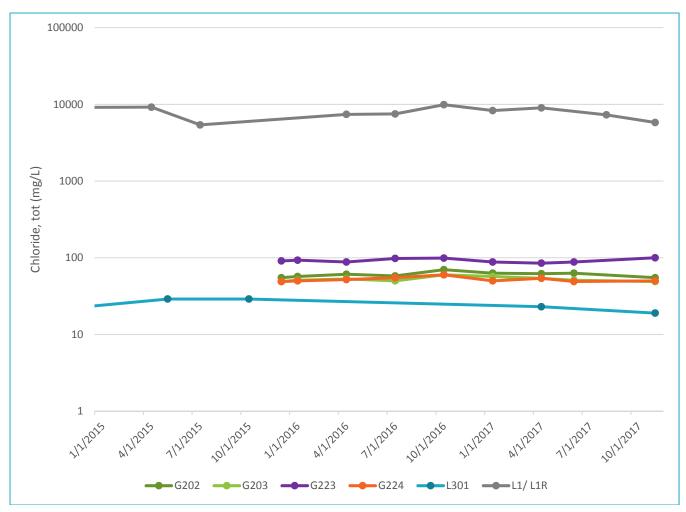



Figure 10. Chloride Time series (logarithmic) of Leachate and G202, G203, G223, and G224

The following observations can be made:

- Chloride concentrations in LF1 leachate (sampling location L1/L1R) range from 5,400 to 9,900 mg/L with a median of 7,500 mg/L
- Chloride concentrations in LF2 leachate (sampling location L301) range from 19 to 29 mg/L with a median of 26 mg/L
- Chloride concentrations in well G202 range from 55 mg/L to 70 mg/L with a median of 61 mg/L
- Chloride concentrations in well G203 range from 49 mg/L to 60 mg/L with a median of 51 mg/L
- Chloride concentrations in well G223 range from 85 mg/L to 100 mg/L with a median of 91mg/L
- Chloride concentrations in well G224 range from 49 mg/L to 60 mg/L with a median of 50 mg/L

Since the chloride concentrations in LF2 leachate are less than the concentrations in downgradient wells G202, G203, G223, and G224, LF2 cannot be the source. The alternate source is likely LF1 since the chloride concentrations in leachate are significantly greater, by two orders of magnitude, than in groundwater at wells G202, G203, G223, and G224.

#### 3.3.4 Fluoride – G208, G220, and G222 (Cell 3)

Monitoring wells G208, G220, and G222 are part of the downgradient monitoring system for LF2 Cell 3. Cell 3 does not contain CCR; therefore, it cannot be the source of the fluoride in wells G208, G220, and G222. The alternate source is likely a steady-state source, as inferred from the Piper diagram, such as LF1.

#### 3.3.5 Total Dissolved Solids (TDS) –G222 (Cell 3)

**OBG** | APRIL 9, 2018

Monitoring well G222 is part of the downgradient monitoring system for LF2 Cell 3. Cell 3 does not contain CCR; therefore, it cannot be the source of the TDS in G222. The alternate source is likely a steady-state source, as inferred from the Piper diagram, such as LF1.

#### 4 SUMMARY

The following bullets summarize the key information and findings:

- Overall groundwater flow within the uppermost aquifer beneath LF2 is southward toward Newton Lake, but with a predominantly eastward flow under Cell 3.
- Cell 3 does not contain CCR; therefore, it cannot be the source of any SSI.
- Groundwater quality in the uppermost aquifer beneath LF2 Cells 1/2 and Cell 3 is statistically similar (i.e. parameter concentrations are part of the same statistical population).
- Boron, calcium, and chloride concentrations in groundwater at wells with an SSI determination are stable, indicating a steady-state source, such as LF1.
- Calcium and chloride concentrations in leachate from LF1 are significantly greater than those observed in the downgradient monitoring wells with an SSI determination, and median concentrations in leachate from LF2 are less than those observed in downgradient monitoring wells with an SSI determination.

#### 5 CONCLUSIONS AND CERTIFICATION

The lines of evidence for this ASD are summarized below.

- Boron SSIs at monitoring wells G220 and G222 are the result of an alternate source because LF2 Cell 3 does not contain CCR; therefore, it cannot be the source.
- Boron SSI at well G223 (Cells 1 and 2) is the result of an alternate source because boron concentrations in well G223 are in the same statistical population as those in the wells monitoring LF2 Cell 3; therefore, Cells 1 and 2 must also be influenced by an alternate source.
- Calcium SSI at well G202 (Cells 1 and 2) is not the result of LF2 because the calcium concentrations in LF2 leachate are lower than the concentrations in well G202. The SSI is the result of an alternate source, likely LF1, since calcium concentrations in LF1 leachate are greater than in well G202.
- Chloride SSIs at wells G06D, G208, G220, and G222 are the result of an alternate source because LF2 Cell 3 does not contain CCR; therefore, it cannot be the source.
- Chloride SSIs at wells G202, G203, G223, and G224 (Cells 1 and 2) are not the result of LF2 impacts to groundwater, as supported by the following:
  - » Chloride concentration in LF2 leachate is less than the concentrations in wells G202, G203, G223, and G224. The SSI is the result of an alternate source, likely LF1, since chloride concentrations in LF1 leachate are greater than those in wells G202, G203, G223, and G224.
  - » Chloride concentrations in wells G202, G203, and G224 are in the same statistical population as those in the wells monitoring LF2 Cell 3; therefore, Cells 1 and 2 must also be influenced by an alternate source.
- Fluoride SSIs at wells G208, G220, and G222 are the result of an alternate source because LF2 Cell 3 does not contain CCR; therefore, it cannot be the source.
- Total dissolved solids SSI at well G222 is the result of an alternate source because LF2 Cell 3 does not contain CCR; therefore, it cannot be the source.

Based on these lines of evidence, it has been demonstrated that the SSIs in G06D, G202, G203, G208, G220, G222, G223, and G224 are not due to the Newton Landfill 2.

This information serves as the written alternate source demonstration prepared in accordance with 40 CFR § 257.94(e)(2) that SSIs observed during the detection monitoring program were not due to the CCR unit but were from anthropogenic impacts from the closed Phase I Landfill, which is not subject to the USEPA CCR Rule. Therefore, an assessment monitoring program is not required and the Newton Phase II Landfill will remain in detection monitoring.

### NEWTON POWER STATION LANDFILL 2 | 40 CFR § 257.94(E)(2): ALTERNATE SOURCE DEMONSTRATION REFERENCES

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac

Qualified Professional Engineer

062-063091

Illinois

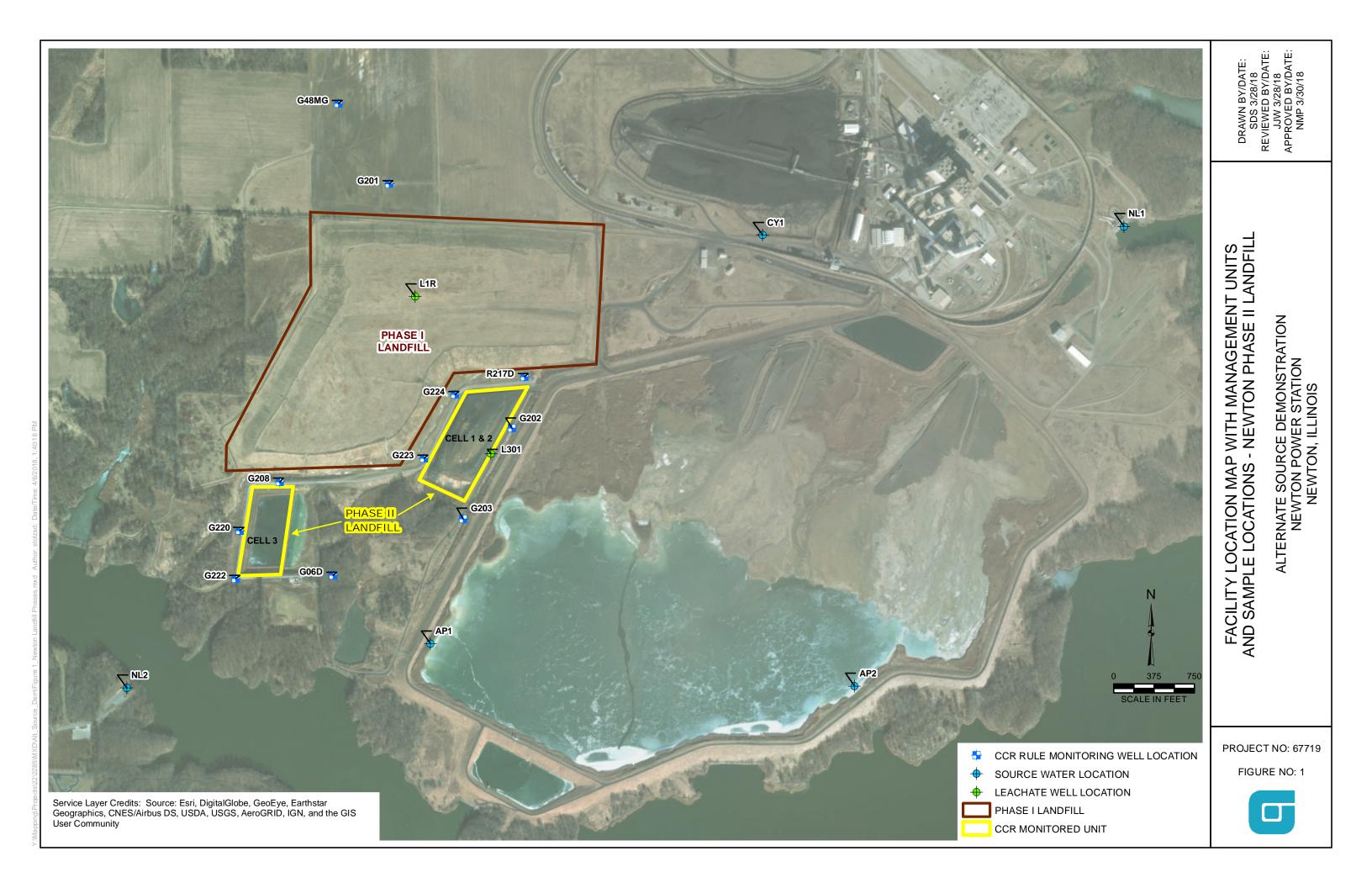
O'Brien & Gere Engineers, Inc.

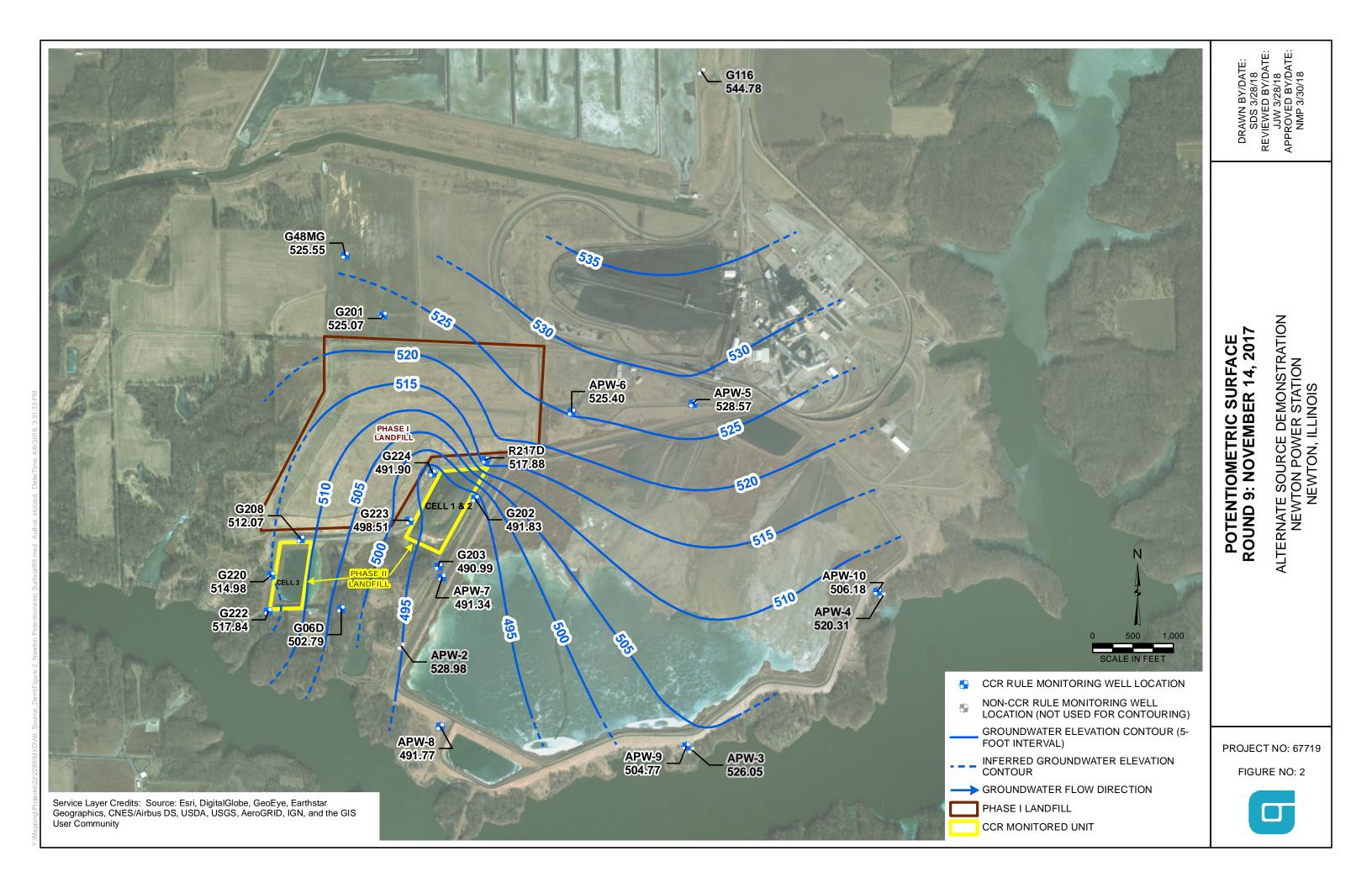
Date: April 9, 2018

ERIC J. TLACHAC REPORTED TO SERVICE OF ILLINGS OF ILLIN

I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Professional Geologist


196-000750


O'Brien & Gere Engineers, Inc.

Date: April 9, 2018









### **Appendix A**

Kruskal-Wallis Test
Results for Boron
Observed in Monitoring
Well G223, and Chloride
in G202, G203, G224

#### Newton Kruskal-Wallis (Intergroup) Test for Group Comparison Statistical Comparison Report

#### **User Supplied Information**

Date Range Selected:12/14/2015 to 11/29/2017Option for LT Pts.:x 0.50Confidence level:95.00%Period Length, mn:3Compliance Locations:G223Data Averaged:No

Background Locations: G06D,G208,G220,G222

**Parameter Code** Parameter Name <u>Units</u> 01022 Boron, total mg/L H Statistic Number of Number of Groups **Total Points** Chi-Squared **H** Statistic (Adj. for ties) Groups (tied) 36 3.841 0.029 0.029 11

Since H Statistic is less than Chi-Square, the means of the compliance and background groups are the same at the 5.00% significance level.

Post-hoc comparisons of compliance wells are not applicable.

#### **Post-hoc Comparisons**

|          |             |                | Background        | Background   |                   |                   |
|----------|-------------|----------------|-------------------|--------------|-------------------|-------------------|
| Location | <u>Type</u> | Class Assigned | Rank Sum          | Rank Average |                   |                   |
| G223     | None        |                | 0.000             | 0.000        |                   |                   |
|          |             |                |                   |              |                   |                   |
|          |             |                | Critical          | Compliance   | Sta               | tistical Evidence |
|          |             |                | <u>Difference</u> | Rank Average | <u>Difference</u> | of Exceedance     |
|          |             |                | N/A               | N/A          | N/A               | N/A               |

MANAGES 1

#### Newton Kruskal-Wallis (Intergroup) Test for Group Comparison Statistical Comparison Report

#### **User Supplied Information**

Background Locations: G06D,G208,G220,G222

| Parameter Code<br>00940 | <u>Parameter Name</u><br>Chloride, total |             | <u>Units</u><br>mg/L |                 |               |
|-------------------------|------------------------------------------|-------------|----------------------|-----------------|---------------|
|                         |                                          |             |                      | H Statistic     | Number of     |
| Number of Groups        | <b>Total Points</b>                      | Chi-Squared | H Statistic          | (Adj. for ties) | Groups (tied) |
| 4                       | 36                                       | 7.8         | 4.7                  | 4.7             | 18            |

Since H Statistic is less than Chi-Square, the means of the compliance and background groups are the same at the 5.00% significance level.

Post-hoc comparisons of compliance wells are not applicable.

#### **Post-hoc Comparisons**

|                  |                     |                  | Background                                         | Background                                                |                          |                                    |
|------------------|---------------------|------------------|----------------------------------------------------|-----------------------------------------------------------|--------------------------|------------------------------------|
| Location         | <u>Type</u>         | Class Assigned   | Rank Sum                                           | Rank Average                                              |                          |                                    |
| G224             | None                |                  | 0.0                                                | 0.0                                                       |                          |                                    |
|                  |                     |                  |                                                    |                                                           |                          |                                    |
|                  |                     |                  | Critical                                           | Compliance                                                | Sta                      | tistical Evidence                  |
|                  |                     |                  | <u>Difference</u>                                  | Rank Average                                              | <u>Difference</u>        | of Exceedance                      |
|                  |                     |                  | N/A                                                | N/A                                                       | N/A                      | N/A                                |
|                  |                     |                  | Background                                         | Background                                                |                          |                                    |
| Location         | Type                | Class Assigned   | Rank Sum                                           | Rank Average                                              |                          |                                    |
| G203             | None                | Class / issigned | 0.0                                                | 0.0                                                       |                          |                                    |
| G203             | None                |                  | 0.0                                                | 0.0                                                       |                          |                                    |
|                  |                     |                  |                                                    |                                                           |                          |                                    |
|                  |                     |                  | Critical                                           | Compliance                                                | Sta                      | tistical Evidence                  |
|                  |                     |                  | Critical <u>Difference</u>                         | Compliance Rank Average                                   | Sta<br><u>Difference</u> | tistical Evidence<br>of Exceedance |
|                  |                     |                  |                                                    | -                                                         |                          |                                    |
|                  |                     |                  | Difference<br>N/A                                  | Rank Average<br>N/A                                       | Difference               | of Exceedance                      |
| Location         | Type                | Class Assigned   | Difference<br>N/A<br>Background                    | Rank Average<br>N/A<br>Background                         | Difference               | of Exceedance                      |
| Location<br>G202 | <u>Type</u><br>None | Class Assigned   | Difference<br>N/A                                  | Rank Average<br>N/A                                       | Difference               | of Exceedance                      |
|                  |                     | Class Assigned   | Difference<br>N/A<br>Background<br>Rank Sum        | Rank Average N/A Background Rank Average                  | Difference               | of Exceedance                      |
|                  |                     | Class Assigned   | Difference<br>N/A<br>Background<br>Rank Sum        | Rank Average N/A Background Rank Average                  | Difference<br>N/A        | of Exceedance                      |
|                  |                     | Class Assigned   | Difference<br>N/A<br>Background<br>Rank Sum<br>0.0 | Rank Average N/A Background Rank Average 0.0              | Difference<br>N/A        | of Exceedance<br>N/A               |
|                  |                     | Class Assigned   | Difference N/A  Background Rank Sum 0.0  Critical  | Rank Average N/A  Background Rank Average 0.0  Compliance | Difference<br>N/A        | of Exceedance<br>N/A               |

1

MANAGES





January 7, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.94(e)(2) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Increases (SSIs) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company by O'Brien & Gere Engineers, Inc., part of Ramboll (OBG) to provide pertinent information pursuant to 40 C.F.R. § 257.94(e)(2) for the Newton Landfill 2 (LF2) located near Newton, Illinois.

The second semi-annual detection monitoring samples (Detection Monitoring Round 2 [D2]) were collected on May 21-23, 2018 and analytical data were received on July 9, 2018. In accordance with 40 C.F.R. § 257.93(h)(2), statistical analysis of the data to identify SSIs of 40 C.F.R. Part 257 Appendix III parameters over background concentrations was completed by October 7, 2018, within 90 days of receipt of the analytical data. The statistical determination identified the following SSIs at downgradient monitoring wells:

- Boron at wells G208, G220, G222, and G223
- Calcium at well G203
- Chloride at wells G06D, G202, G203, G208, G222, G223, and G224
- Fluoride at wells G208, G220, and G222

In accordance with the Statistical Analysis Plan (NRT/OBG, 2017a), to confirm the SSIs, wells G06D, G202, G203, G208, G220, G222, G223, and G224 were resampled on August 15-23, 2018 and analyzed only for the SSI parameters at each well. Following evaluation of analytical data from the resample, the following SSIs were confirmed:

- Boron at wells G220 and G222
- Chloride at wells G06D, G202, G203, G208, G222, G223, and G224
- Fluoride at wells G220 and G222

Pursuant to 40 C.F.R. § 257.94(e)(2), the following demonstrates that sources other than the Newton LF2 were the cause of the SSIs listed above. This ASD was complete by January 7, 2019, within 90 days of determination of the SSIs, as required by 40 C.F.R. § 257.94(e)(2).

#### SITE LOCATION AND DESCRIPTION

The Newton Power Station (Site) is located in Jasper County, in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The area is surrounded by Newton Lake. Beyond the lake is agricultural land.

#### **DESCRIPTION OF PHASE II LANDFILL CCR UNIT**

The Phase II Landfill (LF2) includes three lined disposal cells (Figure 1). LF2 Cells 1 and 2, encompassing approximately 12 acres, and LF2 Cell 3, encompassing approximately 7 acres.

#### **GEOLOGY AND HYDROGEOLOGY**

The site geology and hydrogeology are summarized below from the Hydrogeologic Monitoring Plan (NRT/OBG, 2017b).



#### **GEOLOGY**

Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations. The unconsolidated deposits occurring at Newton Power Station include the following units (beginning at the ground surface):

- Ash/Fill Units CCR and fill within the various CCR Units.
- Upper Confining Unit Low permeability clays and silts, including the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east, underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) and Vandalia (Till) Members of the Glasford Formation.
- Uppermost Aquifer (Groundwater Monitoring Zone) Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford
- Lower Confining Unit Thick, very low permeability silty clay diamictons of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation.

The bedrock beneath the unconsolidated deposits consists of Pennsylvanian-age Mattoon Formation that is mostly shale near the bedrock surface, but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones. The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the site, but is typically encountered at 90 to 120 ft below ground surface (bgs).

#### **HYDROGEOLOGY**

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation. CCR monitoring well locations are shown in Figure 1.

The Uppermost Aquifer, the Mulberry Grove Member, typically consists of fine to coarse sand with varying amounts of clay, silt, and fine to coarse gravel. The portion of the Mulberry Grove Member at the site that is defined as a sand layer ranges in thickness from 3 to 17 ft, with an average thickness of 8 ft. With only a few exceptions, the sand layer occurs between depths of 55 to 88 ft bgs.

The lower hydrostratigaphic units, which comprise lower limit of the Uppermost Aquifer, consist of the Smithboro Member and the Banner Formation, both of which are predominantly low permeability clay diamictons with varying amounts of silt, sand, and gravel. These lower hydrostratigraphic units are 30 ft to more than 50 ft thick above the underlying bedrock.

Groundwater elevations across LF2 ranged from approximately 491 to 529 ft MSL (NAVD88) during D2 (Figure 2). The groundwater elevation contours shown on Figure 2 were measured on May 17, 2018, the first day of a combined sampling event at the Site for LF2 and the Primary Ash Pond and for multiple monitoring programs required by both federal and state regulatory agencies. Overall groundwater flow within the Uppermost Aquifer beneath the site in February 2019 was southward toward Newton Lake, but with flow converging to the south-southeast along the major axis of LF2 Cells 1 & 2, and a predominantly eastward flow under LF2 Cell 3. Based on groundwater flow directions near LF2, groundwater beneath LF2 Cells 1 and 2 does not influence groundwater beneath LF2 Cell 3.



#### **GROUNDWATER MONITORING**

The Uppermost Aquifer monitoring system for LF2 Cells 1, 2, and 3 is shown on Figure 1 and described below. The relative positions of CCR monitoring wells in relation to groundwater flow direction are shown in Figure 2.

#### **BACKGROUND GROUNDWATER MONITORING**

Monitoring wells G201 and G48MG are used to monitor background water quality for LF2 (all cells).

#### DOWNGRADIENT GROUNDWATER MONITORING

Downgradient groundwater quality at LF2 Cells 1 and 2 is monitored using wells G202, G203, G223, G224, and R217D (which replaced well G217D in October 2017).

Downgradient groundwater quality at LF2 Cell 3 is monitored using wells G06D, G208, G220, and G222.

#### ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

As allowed by 40 C.F.R. § 257.94(e)(2), this ASD demonstrates that sources other than LF2 caused the SSI(s), or that the SSI(s) was a result of natural variation in groundwater quality. This ASD is based on the following lines of evidence (LOE):

- 1. Landfill Design and Operation.
- 2. No CCR material has been placed in LF2 Cell 3.
- 3. The ionic composition in groundwater is different than the ionic composition of leachate.
- 4. The ionic composition in groundwater downgradient of LF2 Cells 1 and 2 is similar to groundwater downgradient of LF2 Cell 3 (where no CCR material has been placed).
- 5. Groundwater quality in monitoring wells downgradient of LF2 Cells 1 and 2 is statistically similar to groundwater quality in monitoring wells downgradient of LF2 Cell 3 (where no CCR material has been placed).
- 6. Groundwater flow directions indicate monitoring wells G223, G224, and R217D are not downgradient of LF2 Cells 1 and 2.

These lines of evidence are described and supported in greater detail below.

#### LINE OF EVIDENCE #1: LANDFILL DESIGN AND OPERATION

LF2 Cells 1 and 2 were constructed, and began receiving CCR, in 1997. A portion of LF2 Cell 2 is currently in operation. LF2 Cell 3 is currently inactive and has not received CCR since construction in 2011.

The constructed liner and leachate collection system for LF2 Cells 1, 2, and 3 include the following design components from top to bottom:

- Soil cover for frost protection;
- 10-ounce-per-square-yard (sy) geotextile separation layer between the leachate management system and the frost protection soil cover;
- 1-foot thick sand drainage laver:
- 60-mil high-density polyethylene (HDPE) geomembrane; and
- Three-foot-thick compacted, low-permeability soil having a maximum hydraulic conductivity of 1.0 x 10-7 centimeters per second (cm/sec).



These components meet or exceed the landfill liner performance standards of 40 C.F.R. § 257. The landfill design criteria were intended to provide protection to the Uppermost Aquifer. In addition, the Uppermost Confining Unit provides hydraulic separation between the CCR units at the Site and the Uppermost Aquifer (OBG, 2019). These factors support the conclusion that LF2 is not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

#### LINE OF EVIDENCE #2: NO CCR MATERIAL HAS BEEN PLACED IN LF2 CELL 3

LF2 Cell 3 has never contained CCR; therefore, it cannot be the source of the CCR constituents boron, chloride or fluoride detected in downgradient groundwater monitoring wells. Furthermore, groundwater flow directions near LF2 (Figure 2) indicate groundwater beneath LF2 Cells 1 and 2 does not influence groundwater beneath LF2 Cell 3, so LF2 Cells 1 and 2 cannot be the source of CCR constituents detected in LF2 Cell 3 downgradient monitoring wells.

## LINE OF EVIDENCE #3: THE IONIC COMPOSITION IN GROUNDWATER IS DIFFERENT THAN THE IONIC COMPOSITION OF LEACHATE

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples with respect to their major cation and anion content on the two lower triangular portions of the diagram, providing the information which, when combined on the central, diamond-shaped portion of the diagram, identify composition categories or groupings (groundwater facies). Figure 3, below, is a Piper diagram that displays the ionic composition of samples from the background and downgradient monitoring wells associated with LF2 based on Quarter 3 2018 samples. Figure 3 also includes data collected from the combined LF1 and LF2 leachate tank in Quarter 2 of 2017. Major cations and anions were not analyzed in samples collected from the LF1 and LF2 leachate tank subsequent to Quarter 2 2017.

It is evident from the Piper diagram (Figure 3) that leachate is in the sodium-sulfate hydrochemical facies, and the LF2 groundwater samples (blue symbols) are in the no dominant-bicarbonate hydrochemical facies. All LF2 Cell 1, 2, and 3 groundwater samples cluster into a single distinct hydrochemical facies. Downgradient groundwater samples associated with LF2 have a different ionic composition than leachate, indicating that leachate is not the source of CCR constituents detected in the LF2 groundwater monitoring wells.



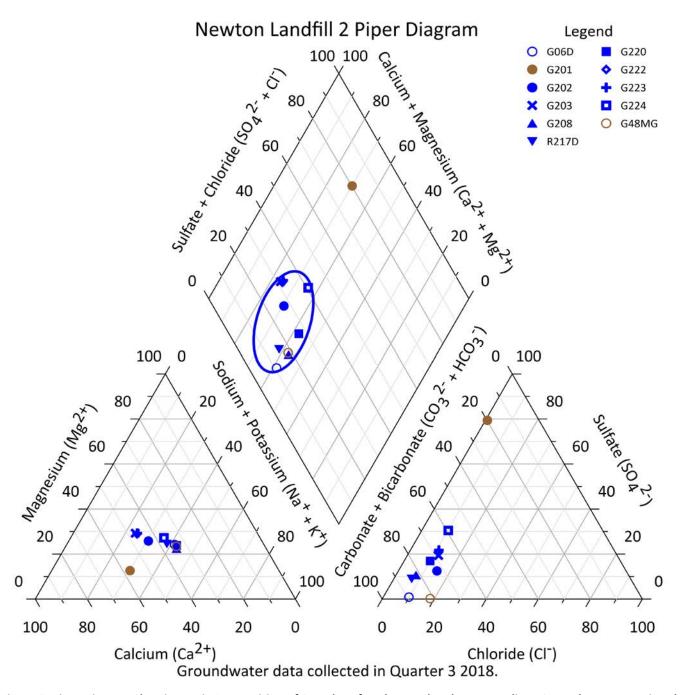



Figure 3. Piper Diagram Showing Ionic Composition of Samples of Background and Downgradient Groundwater Associated with LF2

# LINE OF EVIDENCE #4: THE IONIC COMPOSITION IN GROUNDWATER DOWNGRADIENT OF LF2 CELLS 1 AND 2 IS SIMILAR TO GROUNDWATER DOWNGRADIENT OF LF2 CELL 3 (WHERE NO CCR MATERIAL HAS BEEN PLACED)

As illustrated in the Piper diagram (Figure 3), the ionic composition of all LF2 Cell 1, 2, and 3 groundwater samples are similar and cluster into a single distinct hydrochemical facies (no dominant-bicarbonate). The similarity in ionic composition of groundwater downgradient of LF2 Cell 3 and LF2 Cells 1 and 2, coupled with the fact that Cell 3 has never contained CCR, indicate that LF2 Cells 1 and 2 are not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

## LINE OF EVIDENCE #5: GROUNDWATER QUALITY IN MONITORING WELLS DOWNGRADIENT OF LF2 CELLS 1 AND 2 IS STATISTICALLY SIMILAR TO GROUNDWATER QUALITY IN MONITORING WELLS DOWNGRADIENT OF LF2 CELL 3 (WHERE NO CCR MATERIAL HAS BEEN PLACED)

Box plots graphically represent the first quartile (Q1), median (Q2), and third quartile (Q3) of a given dataset using lines to construct a box where the lower line, midline and upper line of the box represent the values of Q1, Q2 and Q3, respectively. The minimum and maximum values of the dataset (excluding outliers) are illustrated by whisker lines extending beyond the first and third quartiles of the box plot. Outliers are represented by single points plotted outside of the range of the whiskers. Chloride SSIs were identified at all LF2 cells (LF2 Cells 1, 2, and 3) during the D4 sampling event, whereas, other SSIs were only identified at LF2 Cell 3. Figure 4, below, display the chloride data for downgradient groundwater at LF2; triangle symbols identify outlier values that are at least 3 times the IQR.

#### Chloride

Box plots of the chloride concentrations observed in LF2 Cells 1 and 2 downgradient monitoring wells (cyan), and LF2 Cell 3 downgradient monitoring wells (blue) are shown in Figure 4 below.



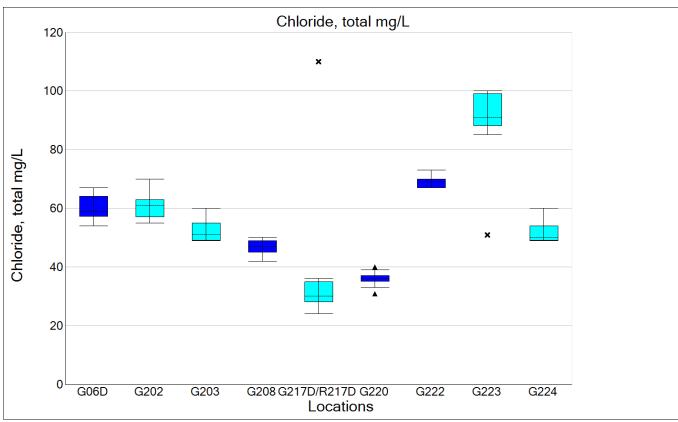



Figure 4. Chloride Box Plot for LF2 Cells 1 and 2 Downgradient Monitoring Wells (cyan) and LF2 Cell 3 Downgradient Monitoring Wells (blue)

The following observations can be made from Figure 5:

- The minimum and maximum chloride concentrations in wells downgradient of LF2 Cell 3 range from 31 to 73 mg/L.
- The minimum and maximum chloride concentrations in wells downgradient of LF2 Cells 1 and 2 range from 24 to 110 mg/L.

Chloride concentrations are within or below the range of concentrations observed at wells downgradient of LF2 Cell 3, with the exception of concentrations at monitoring well G223 and potential statistical outlier concentrations at G217D/R217D (illustrated with black symbols outside of the box plots in Figure 4).

The similarity of groundwater quality downgradient of LF2 Cell 3 and groundwater quality downgradient of LF2 Cells 1 and 2, as represented by the ranges of chloride concentrations (Figure 5), coupled with the fact that Cell 3 has never contained CCR, indicates that LF2 Cells 1 and 2 are not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

## LINE OF EVIDENCE #6: GROUNDWATER FLOW DIRECTIONS INDICATE MONITORING WELLS G223, G224, AND R217D ARE NOT DOWNGRADIENT OF LF2 CELLS 1 AND 2.

Downgradient groundwater at LF2 Cells 1 and 2 is monitored using wells G202, G203, G223, G224, and R217D. Groundwater flow directions indicate monitoring wells G223, G224, and R217D are not downgradient of LF2 Cells 1 and 2 as illustrated in Figure 2. LF2 Cells 1 and 2 are not the source of CCR constituents detected in the LF2 groundwater monitoring wells G223, G224, and R217D based on the position of the monitoring wells relative to groundwater flow directions.



Based on these four lines of evidence, it has been demonstrated that Newton Landfill 2 is not the source of the boron SSIs at G220 and G222; the chloride SSIs at G06D, G202, G203, G208, G222, G223, and G224; and fluoride SSIs at G220 and G222.

This information serves as the written ASD prepared in accordance with 40 C.F.R. § 257.94(e)(2) that the SSIs observed during the D2 were not due to the LF2. Therefore, an assessment monitoring program is not required, and the Newton Landfill 2 will remain in detection monitoring.

#### **REFERENCES**

Natural Resource Technology, an OBG Company (NRT/OBG), 2017a, Statistical Analysis Plan, Coffeen Power Station, Newton Power Station, Illinois Power Generating Company, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017b, Hydrogeologic Monitoring Plan, Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502, Newton Power Station, Canton, Illinois, Illinois Power Generating Company, October 17, 2017.

OBG, 2019, 40 C.F.R. § 257.94(e)(2): Alternate Source Demonstration: Newton Primary Ash Pond, January 7, 2019.

#### **ATTACHMENTS**

| Figure 1 | Facility Location Map with Newton Landfill 2 (Phase II Landfill) Management Units and Sample |
|----------|----------------------------------------------------------------------------------------------|
|          | Locations                                                                                    |

Figure 2 Groundwater Elevation Contour Map – May 17, 2018



I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac

Qualified Professional Engineer

062-063091

Illinois

O'Brien & Gere Engineers, Inc., part of Ramboll

Date: January 7, 2019



I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Professional Geologist

196-000750

O'Brien & Gere Engineers, Inc., part of Ramboll

Date: January 7, 2019

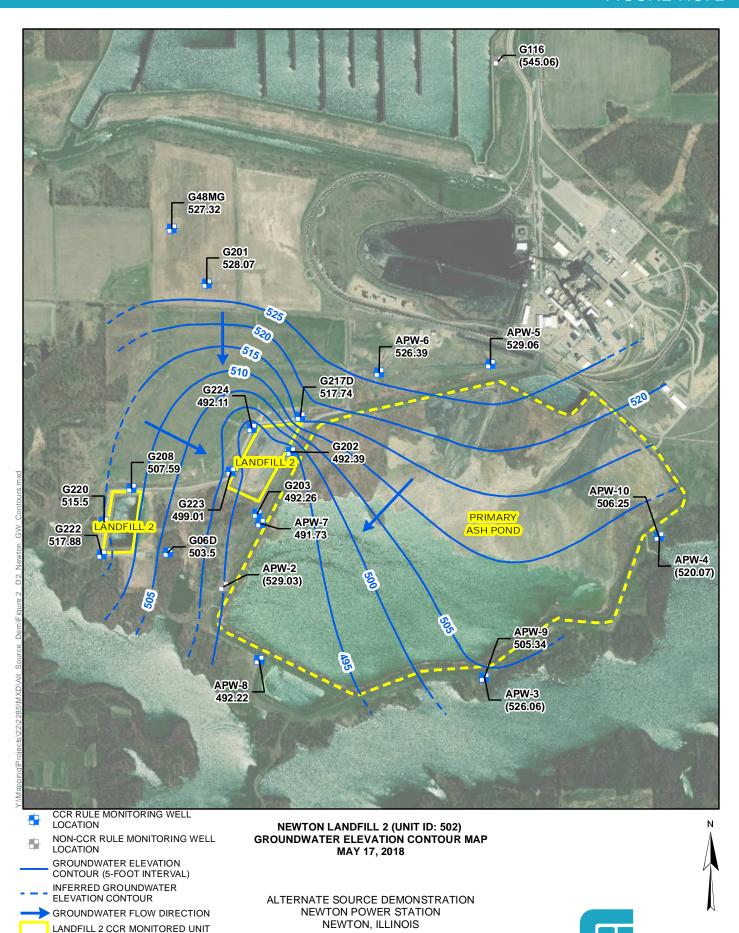


### **Figures**

OBG



FACILITY LOCATION MAP WITH NEWTON LANDFILL 2 (PHASE II LANDFILL) MANAGEMENT UNITS AND SAMPLE LOCATIONS


MANAGEMENT UNITS AND SAMPLE LOCATORINATE SOURCE DEMONSTRATION NEWTON POWER STATION NEWTON, ILLINOIS

DRAWN BY:
MPG
REVIEWED BY:
JJW
APPROVED BY:
NMP

PROJECT NO: 67719

FIGURE NO: 1





650

325

1,300

PRIMARY ASH POND CCR

MONITORED UNIT

July 15, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.94(e)(2) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Increases (SSIs) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company by O'Brien & Gere Engineers, Inc., part of Ramboll (OBG) to provide pertinent information pursuant to 40 C.F.R. § 257.94(e)(2) for the Newton Landfill 2 (LF2) located near Newton, Illinois.

The third semi-annual detection monitoring samples (Detection Monitoring Round 3 [D3]) were collected on November 12-16, 2018 and analytical data were received on January 16, 2019. In accordance with 40 C.F.R. § 257.93(h)(2), statistical analysis of the data to identify SSIs of 40 C.F.R. Part 257 Appendix III parameters over background concentrations was completed by April 16, 2019, within 90 days of receipt of the analytical data. The statistical analysis identified the following SSIs at downgradient monitoring wells:

- Boron at wells G220, G222, and G223
- Chloride at wells G06D, G202, G203, G208, G220, G222, G223, and G224
- Fluoride at wells G208 and G220

Because the Detection Monitoring Round 4 (D4) was completed on February 19-21, 2019, within 90 days from the D3 SSI determination, and in accordance with the Statistical Analysis Plan (NRT/OBG, 2017a), results from D4 sampling were used to verify the D3 SSIs. Following evaluation of analytical data from the D4 sampling, the following SSIs were confirmed for D3:

- Boron at wells G220, G222, and G223
- Chloride at wells G06D, G202, G203, G208, G220, G222, G223, and G224
- Fluoride at wells G208 and G220

Pursuant to 40 C.F.R. § 257.94(e)(2), the following demonstrates that sources other than the Newton LF2 were the cause of the SSIs listed above. This ASD was completed by July 15, 2019, within 90 days of determination of the SSIs, as required by 40 C.F.R. § 257.94(e)(2).

#### SITE LOCATION AND DESCRIPTION

The Newton Power Station (Site) is located in Jasper County, in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The area is surrounded by Newton Lake. Beyond the lake is agricultural land.

#### **DESCRIPTION OF PHASE II LANDFILL CCR UNIT**

The Phase II Landfill (LF2) includes three lined disposal cells (Figure 1). LF2 Cells 1 and 2, encompassing approximately 12 acres, and LF2 Cell 3, encompassing approximately 7 acres.

#### **GEOLOGY AND HYDROGEOLOGY**

The site geology and hydrogeology are summarized below from the Hydrogeologic Monitoring Plan (NRT/OBG, 2017b).



#### **GEOLOGY**

Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations. The unconsolidated deposits occurring at Newton Power Station include the following units (beginning at the ground surface):

- Ash/Fill Units CCR and fill within the various CCR Units.
- Upper Confining Unit Low permeability clays and silts, including the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east, underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) and Vandalia (Till) Members of the Glasford Formation.
- Uppermost Aquifer (Groundwater Monitoring Zone) Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford
   Formation
- Lower Confining Unit Thick, very low permeability silty clay diamictons of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation.

The bedrock beneath the unconsolidated deposits consists of Pennsylvanian-age Mattoon Formation that is mostly shale near the bedrock surface, but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones. The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the site, but is typically encountered at 90 to 120 ft below ground surface (bgs).

#### **HYDROGEOLOGY**

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation. CCR monitoring well locations are shown in Figure 1.

The Uppermost Aquifer, the Mulberry Grove Member, typically consists of fine to coarse sand with varying amounts of clay, silt, and fine to coarse gravel. The portion of the Mulberry Grove Member at the site that is defined as a sand layer ranges in thickness from 3 to 17 ft, with an average thickness of 8 ft. With only a few exceptions, the sand layer occurs between depths of 55 to 88 ft bgs.

The lower hydrostratigaphic units, which comprise lower limit of the Uppermost Aquifer, consist of the Smithboro Member and the Banner Formation, both of which are predominantly low permeability clay diamictons with varying amounts of silt, sand, and gravel. These lower hydrostratigraphic units are 30 ft to more than 50 ft thick above the underlying bedrock.

Groundwater elevations across LF2 ranged from approximately 486 to 530 ft MSL (NAVD88) during D3 (Figure 2). The groundwater elevation contours shown on Figure 2 were measured on November 8, 2018, the first day of a combined sampling event at the Site for LF2 and the Primary Ash Pond and for multiple monitoring programs required by both federal and state regulatory agencies. Overall groundwater flow within the Uppermost Aquifer beneath the site in February 2019 was southward toward Newton Lake, but flow converging to the south-southeast along the major axis of LF2 Cells 1 and 2, and a predominantly eastward flow under LF2 Cell 3. Based on groundwater flow directions near LF2, groundwater beneath LF2 Cells 1 and 2 does not influence groundwater beneath LF2 Cell 3.

#### **GROUNDWATER MONITORING**

The Uppermost Aquifer monitoring system for LF2 Cells 1, 2, and 3 is shown on Figure 1 and described below. The relative positions of CCR monitoring wells in relation to groundwater flow direction are shown in Figure 2.



#### **BACKGROUND GROUNDWATER MONITORING**

Monitoring wells G201 and G48MG are used to monitor background water quality for LF2 (all cells).

#### DOWNGRADIENT GROUNDWATER MONITORING

Downgradient groundwater quality at LF2 Cells 1 and 2 is monitored using wells G202, G203, G223, G224, and R217D (which replaced well G217D in October 2017).

Downgradient groundwater quality at LF2 Cell 3 is monitored using wells G06D, G208, G220, and G222.

#### **ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE**

As allowed by 40 C.F.R. § 257.94(e)(2), this ASD demonstrates that sources other than LF2 caused the SSI(s), or that the SSI(s) was a result of natural variation in groundwater quality. This ASD is based on the following lines of evidence (LOE):

- 1. Landfill Design and Operation.
- 2. No CCR material has been placed in LF2 Cell 3.
- 3. The ionic composition in groundwater is different than the ionic composition of leachate.
- 4. The ionic composition in groundwater downgradient of LF2 Cells 1 and 2 is similar to groundwater downgradient of LF2 Cell 3 (where no CCR material has been placed).
- 5. Groundwater quality in monitoring wells downgradient of LF2 Cells 1 and 2 is statistically similar to groundwater quality in monitoring wells downgradient of LF2 Cell 3 (where no CCR material has been placed).
- 6. Groundwater flow directions indicate monitoring wells G223, G224, and R217D are not downgradient of LF2 Cells 1 and 2.

These lines of evidence are described and supported in greater detail below.

#### LINE OF EVIDENCE #1: LANDFILL DESIGN AND OPERATION

LF2 Cells 1 and 2 were constructed, and began receiving CCR, in 1997. A portion of LF2 Cell 2 is currently in operation. LF2 Cell 3 is currently inactive and has not received CCR since construction in 2011.

The constructed liner and leachate collection system for LF2 Cells 1, 2, and 3 include the following design components from top to bottom:

- Soil cover for frost protection;
- 10-ounce-per-square-yard (sy) geotextile separation layer between the leachate management system and the frost protection soil cover;
- 1-foot thick sand drainage layer;
- 60-mil high-density polyethylene (HDPE) geomembrane; and
- Three-foot-thick compacted, low-permeability soil having a maximum hydraulic conductivity of  $1.0 \times 10^{-7}$  centimeters per second (cm/sec).

These components meet or exceed the landfill liner performance standards of 40 C.F.R. § 257. The landfill design criteria were intended to provide protection to the Uppermost Aquifer. In addition, the Uppermost Confining Unit provides hydraulic separation between the CCR units at the Site and the Uppermost Aquifer (OBG, 2019). These factors support the conclusion that LF2 is not the source of CCR constituents detected in the LF2 groundwater monitoring wells.



#### LINE OF EVIDENCE #2: NO CCR MATERIAL HAS BEEN PLACED IN LF2 CELL 3

LF2 Cell 3 has never contained CCR; therefore, it cannot be the source of the CCR constituents boron, chloride or fluoride detected in downgradient groundwater monitoring wells. Furthermore, groundwater flow directions near LF2 (Figure 2) indicate groundwater beneath LF2 Cells 1 and 2 does not influence groundwater beneath LF2 Cell 3, so LF2 Cells 1 and 2 cannot be the source of CCR constituents detected in LF2 Cell 3 downgradient monitoring wells.

### LINE OF EVIDENCE #3: THE IONIC COMPOSITION IN GROUNDWATER IS DIFFERENT THAN THE IONIC COMPOSITION OF LEACHATE

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples with respect to their major cation and anion content on the two lower triangular portions of the diagram, providing the information which, when combined on the central, diamond-shaped portion of the diagram, identify composition categories or groupings (groundwater facies). Figure 3, below, is a Piper diagram that displays the ionic composition of samples from the background and downgradient monitoring wells associated with LF2 based on Quarter 3 2018 samples. Figure 3 also includes data collected from the combined LF1 and LF2 leachate tank in Quarter 2 of 2017. Major cations and anions were not analyzed in samples collected from the LF1 and LF2 leachate tank subsequent to Quarter 2 2017.

It is evident from the Piper diagram (Figure 3) that leachate is in the sodium-sulfate hydrochemical facies, and the LF2 groundwater samples (blue symbols) are in the no dominant-bicarbonate hydrochemical facies. All LF2 Cell 1, 2, and 3 groundwater samples cluster into a single distinct hydrochemical facies. Downgradient groundwater samples associated with LF2 have a different ionic composition than leachate, indicating that leachate is not the source of CCR constituents detected in the LF2 groundwater monitoring wells.



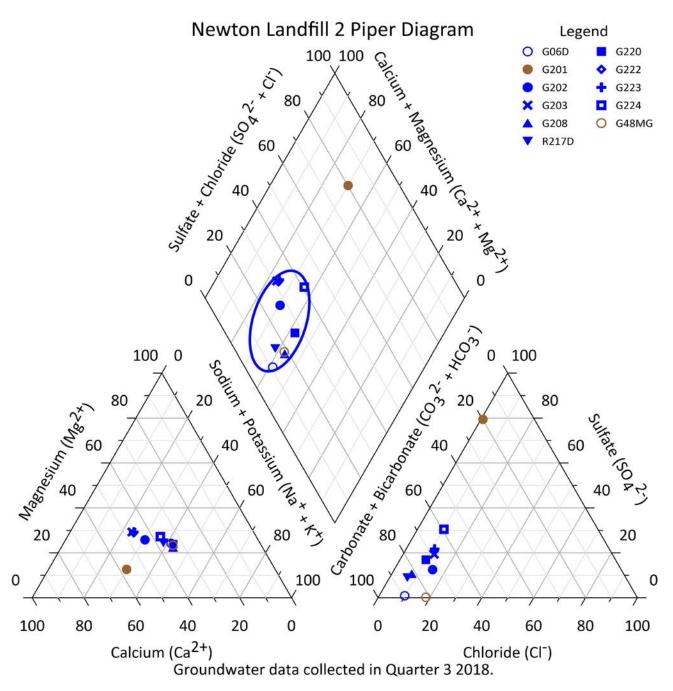



Figure 3. Piper Diagram Showing Ionic Composition of Samples of Background and Downgradient Groundwater Associated with LF2

# LINE OF EVIDENCE #4: THE IONIC COMPOSITION IN GROUNDWATER DOWNGRADIENT OF LF2 CELLS 1 AND 2 IS SIMILAR TO GROUNDWATER DOWNGRADIENT OF LF2 CELL 3 (WHERE NO CCR MATERIAL HAS BEEN PLACED)

As illustrated in the Piper diagram (Figure 3), the ionic composition of all LF2 Cell 1, 2, and 3 groundwater samples are similar and cluster into a single distinct hydrochemical facies (no dominant-bicarbonate). The



similarity in ionic composition of groundwater downgradient of LF2 Cell 3 and LF2 Cells 1 and 2, coupled with the fact that Cell 3 has never contained CCR, indicate that LF2 Cells 1 and 2 are not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

# LINE OF EVIDENCE #5: GROUNDWATER QUALITY IN MONITORING WELLS DOWNGRADIENT OF LF2 CELLS 1 AND 2 IS STATISTICALLY SIMILAR TO GROUNDWATER QUALITY IN MONITORING WELLS DOWNGRADIENT OF LF2 CELL 3 (WHERE NO CCR MATERIAL HAS BEEN PLACED)

Box plots graphically represent the first quartile (Q1), median (Q2), and third quartile (Q3) of a given dataset using lines to construct a box where the lower line, midline and upper line of the box represent the values of Q1, Q2 and Q3, respectively. The minimum and maximum values of the dataset (excluding outliers) are illustrated by whisker lines extending beyond the first and third quartiles of the box plot. Outliers are represented by single points plotted outside of the range of the whiskers. Boron and chloride SSIs were identified at all LF2 cells (LF2 Cells 1, 2, and 3) during the D4 sampling event, whereas, other SSIs were only identified at LF2 Cell 3. Figures 4 and 5, below, display the boron chloride data for downgradient groundwater at LF2; triangle symbols identify outlier values that are at least 1.5 times the interquartile range (IQR) and "x" symbols identify outlier values that are at least 3 times the IQR.

#### Boron

Box plots of the boron concentrations observed in LF2 Cells 1 and 2 downgradient monitoring wells (cyan), and LF2 Cell 3 downgradient monitoring wells (blue) are shown in Figure 4 below.

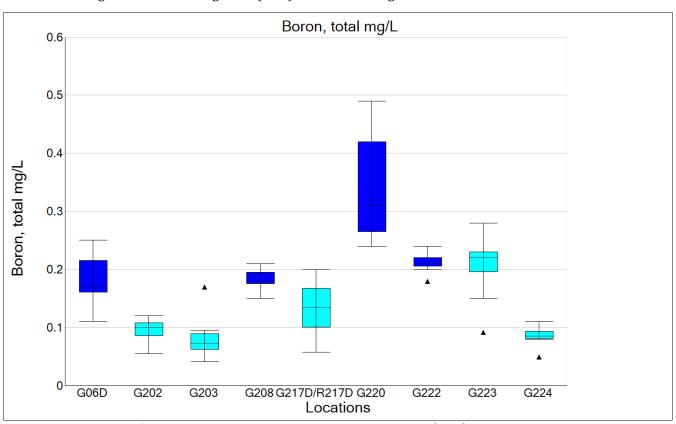



Figure 4. Boron Box Plot for LF2 Cells 1 and 2 Downgradient Monitoring Wells (cyan) and LF2 Cell 3 Downgradient Monitoring Wells (blue)

The following observations can be made from Figure 5:



- The minimum and maximum boron concentrations in wells downgradient of LF2 Cell 3 ranged from 0.11 to 0.49 mg/L.
- The minimum and maximum boron concentrations in wells downgradient of LF2 Cells 1 and 2 ranged from 0.041 to 0.28 mg/L.

Boron concentrations were within or below the range of concentrations observed at wells downgradient of LF2 Cell 3.

#### Chloride

Box plots of the chloride concentrations observed in LF2 Cells 1 and 2 downgradient monitoring wells (cyan), and LF2 Cell 3 downgradient monitoring wells (blue) are shown in Figure 5 below.

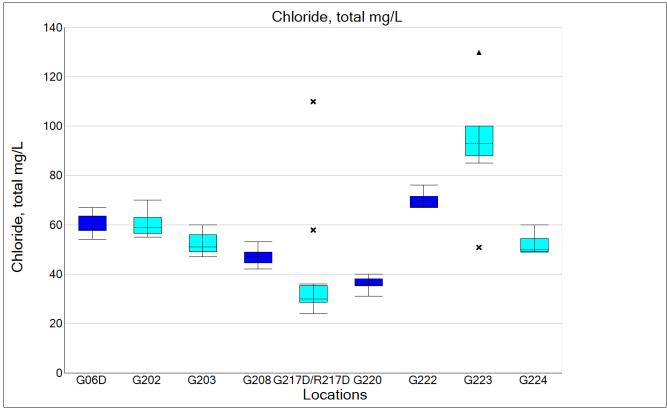



Figure 5. Chloride Box Plot for LF2 Cells 1 and 2 Downgradient Monitoring Wells (cyan) and LF2 Cell 3 Downgradient Monitoring Wells (blue)

The following observations can be made from Figure 7:

- The minimum and maximum chloride concentrations in wells downgradient of LF2 Cell 3 range from 31 to 76 mg/L.
- The minimum and maximum chloride concentrations in wells downgradient of LF2 Cells 1 and 2 range from 24 to 130 mg/L.

Chloride concentrations are within or below the range of concentrations observed at wells downgradient of LF2 Cell 3, with the exception of concentrations at monitoring well G223 and potential statistical outlier concentrations at G217D/R217D (illustrated with black symbols outside of the box plots in Figure 5).



The similarity of groundwater quality downgradient of LF2 Cell 3 and groundwater quality downgradient of LF2 Cells 1 and 2, as represented by the ranges of boron chloride concentrations (Figures 4 and 5, respectively), indicate that LF2 Cells 1 and 2 are not the source of CCR constituents detected in the LF2 groundwater monitoring wells

## LINE OF EVIDENCE #6: GROUNDWATER FLOW DIRECTIONS INDICATE MONITORING WELLS G223, G224, AND R217D ARE NOT DOWNGRADIENT OF LF2 CELLS 1 AND 2.

Downgradient groundwater at LF2 Cells 1 and 2 is monitored using wells G202, G203, G223, G224, and R217D. Groundwater flow directions indicate monitoring wells G223, G224, and R217D are not downgradient of LF2 Cells 1 and 2 as illustrated in Figure 2. LF2 Cells 1 and 2 are not the source of CCR constituents detected in the LF2 groundwater monitoring wells G223, G224, and R217D based on the position of the monitoring wells relative to groundwater flow directions.

Based on these six lines of evidence, it has been demonstrated that Newton Landfill 2 is not the source of the boron SSIs at G220, G222, and G223; the chloride SSIs at G06D, G202, G203, G208, G220, G222, G223, and G224; and fluoride SSIs at G208 and G220.

This information serves as the written ASD prepared in accordance with 40 C.F.R. § 257.94(e)(2) that the SSIs observed during the D3 were not due to the LF2. Therefore, an assessment monitoring program is not required, and the Newton Landfill 2 will remain in detection monitoring.

#### **REFERENCES**

Natural Resource Technology, an OBG Company (NRT/OBG), 2017a, Statistical Analysis Plan, Coffeen Power Station, Newton Power Station, Illinois Power Generating Company, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017b, Hydrogeologic Monitoring Plan, Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502, Newton Power Station, Canton, Illinois, Illinois Power Generating Company, October 17, 2017.

OBG, 2019, 40 C.F.R. § 257.94(e)(2): Alternate Source Demonstration: Newton Primary Ash Pond, July 15, 2019.

#### **ATTACHMENTS**

| Figure 1 | Facility Location Map with Newton Landfill 2 (Phase II Landfill) Management Units and Sample |
|----------|----------------------------------------------------------------------------------------------|
|          | Locations                                                                                    |

Figure 2 Groundwater Elevation Contour Map – November 8, 2018



I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac

Qualified Professional Engineer

062-063091 Illinois

O'Brien and Gere Engineers, Inc., a Ramboll Company

Date: July 15, 2019



I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Professional Geologist

196-000750

O'Brien and Gere Engineers, Inc., a Ramboll Company

Date: July 15, 2019

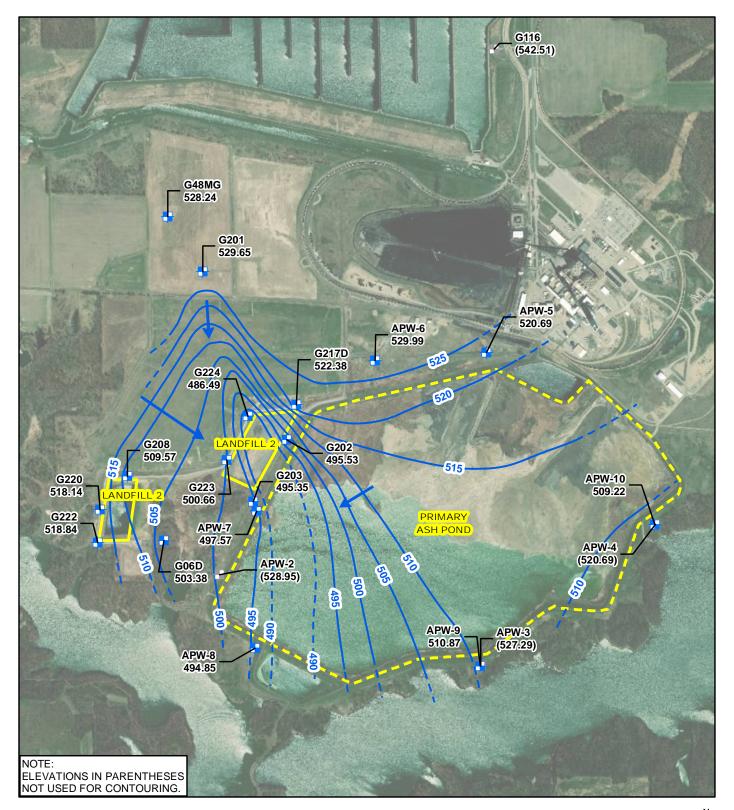


### **Figures**

OBG



FACILITY LOCATION MAP WITH NEWTON LANDFILL 2 (PHASE II LANDFILL) MANAGEMENT UNITS AND SAMPLE LOCATIONS

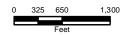

MANAGEMENT UNITS AND SAMPLE LOCATORINATE SOURCE DEMONSTRATION NEWTON POWER STATION NEWTON, ILLINOIS

DRAWN BY:
MPG
REVIEWED BY:
JJW
APPROVED BY:
NMP

PROJECT NO: 67719

FIGURE NO: 1








MONITORED UNIT

NEWTON LANDFILL 2 (UNIT ID: 502)
GROUNDWATER ELEVATION CONTOUR MAP
NOVEMBER 8, 2018

ALTERNATE SOURCE DEMONSTRATION NEWTON POWER STATION NEWTON, ILLINOIS







October 14, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.94(e)(2) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Increases (SSIs) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company by O'Brien & Gere Engineers, Inc., part of Ramboll (OBG) to provide pertinent information pursuant to 40 C.F.R. § 257.94(e)(2) for the Newton Landfill 2 (LF2) located near Newton, Illinois.

The fourth semi-annual detection monitoring samples (Detection Monitoring Round 4 [D4]) were collected on February 19-21, 2019 and analytical data were received on April 15, 2019. In accordance with 40 C.F.R. § 257.93(h)(2) and the Statistical Analysis Plan (NRT/OBG 2017a), statistical analysis of the data to identify SSIs of 40 C.F.R. Part 257 Appendix III parameters over background concentrations was completed by July 15, 2019, within 90 days of receipt of the analytical data. The statistical analysis identified the following SSIs at downgradient monitoring wells:

- Boron at wells G06D, G220, G222, G223, and R217D
- Calcium at well R217D
- Chloride at wells G06D, G202, G203, G208, G220, G222, G223, G224, and R217D
- Fluoride at wells G208 and G220
- Sulfate at well R217D
- Total Dissolved Solids (TDS) at well R217D

Pursuant to 40 C.F.R. § 257.94(e)(2), the following demonstrates that sources other than the Newton LF2 were the cause of the SSIs listed above. This ASD was completed by October 14, 2019, within 90 days of determination of the SSIs, as required by 40 C.F.R. § 257.94(e)(2).

#### SITE LOCATION AND DESCRIPTION

The Newton Power Station (Site) is located in Jasper County, in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The area is surrounded by Newton Lake. Beyond the lake is agricultural land.

#### **DESCRIPTION OF PHASE II LANDFILL CCR UNIT**

The Phase II Landfill (LF2) includes three lined disposal cells (Figure 1). LF2 Cells 1 and 2, encompassing approximately 12 acres, and LF2 Cell 3, encompassing approximately 7 acres.

#### **GEOLOGY AND HYDROGEOLOGY**

The site geology and hydrogeology are summarized below from the Hydrogeologic Monitoring Plan (NRT/OBG, 2017b).

#### **GEOLOGY**

Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations. The unconsolidated deposits occurring at Newton Power Station include the following units (beginning at the ground surface):



- Ash/Fill Units CCR and fill within the various CCR Units.
- Upper Confining Unit Low permeability clays and silts, including the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east, underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) and Vandalia (Till) Members of the Glasford Formation.
- Uppermost Aquifer (Groundwater Monitoring Zone) Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation.
- Lower Confining Unit Thick, very low permeability silty clay diamictons of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation.

The bedrock beneath the unconsolidated deposits consists of Pennsylvanian-age Mattoon Formation that is mostly shale near the bedrock surface, but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones. The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the site, but is typically encountered at 90 to 120 ft below ground surface (bgs).

#### **HYDROGEOLOGY**

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation. CCR monitoring well locations are shown in Figure 1.

The Uppermost Aquifer, the Mulberry Grove Member, typically consists of fine to coarse sand with varying amounts of clay, silt, and fine to coarse gravel. The portion of the Mulberry Grove Member at the site that is defined as a sand layer ranges in thickness from 3 to 17 ft, with an average thickness of 8 ft. With only a few exceptions, the sand layer occurs between depths of 55 to 88 ft bgs.

The lower hydrostratigaphic units, which comprise lower limit of the Uppermost Aquifer, consist of the Smithboro Member and the Banner Formation, both of which are predominantly low permeability clay diamictons with varying amounts of silt, sand, and gravel. These lower hydrostratigraphic units are 30 ft to more than 50 ft thick above the underlying bedrock.

Groundwater elevations across LF2 ranged from approximately 492 to 524 ft MSL (NAVD88) during D4 (Figure 2). The groundwater elevation contours shown on Figure 2 were measured on February 18, 2019, the first day of a combined sampling event at the Site for LF2 and the Primary Ash Pond and for multiple monitoring programs required by both federal and state regulatory agencies. Overall groundwater flow beneath LF2, within the Uppermost Aquifer, is southward toward Newton Lake, but with flow converging to the south-southeast along the major axis of LF2 Cells 1 and 2, and a predominantly eastward flow near LF2 Cell 3. Based on groundwater flow directions near LF2, groundwater beneath LF2 Cells 1 and 2 does not influence groundwater beneath LF2 Cell 3.

#### **GROUNDWATER MONITORING**

The Uppermost Aquifer monitoring system for LF2 Cells 1, 2, and 3 is shown on Figure 1 and described below. The relative positions of CCR monitoring wells in relation to groundwater flow direction are shown in Figure 2.

#### **BACKGROUND GROUNDWATER MONITORING**

Monitoring wells G201 and G48MG are used to monitor background water quality for LF2 (all cells).



#### DOWNGRADIENT GROUNDWATER MONITORING

Downgradient groundwater quality at LF2 Cells 1 and 2 is monitored using wells G202, G203, G223, G224, and R217D (which replaced well G217D in October 2017).

Downgradient groundwater quality at LF2 Cell 3 is monitored using wells G06D, G208, G220, and G222.

#### ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

As allowed by 40 C.F.R. § 257.94(e)(2), this ASD demonstrates that sources other than LF2 caused the SSI(s), or that the SSI(s) was a result of natural variation in groundwater quality. This ASD is based on the following lines of evidence (LOE):

- 1. LF2 composite liner design.
- 2. No CCR material has been placed in LF2 Cell 3.
- 3. The ionic composition in groundwater is different than the ionic composition of leachate.
- 4. The ionic composition of groundwater downgradient of LF2 Cells 1 and 2 is similar to the ionic composition of groundwater downgradient of LF2 Cell 3 (where no CCR material has been placed).
- 5. Groundwater quality in monitoring wells downgradient of LF2 Cells 1 and 2 is statistically similar to groundwater quality in monitoring wells downgradient of LF2 Cell 3 (where no CCR material has been placed).
- 6. Groundwater flow directions indicate monitoring wells G223, G224, and R217D are not downgradient of LF2 Cells 1 and 2.

These lines of evidence are described and supported in greater detail below.

#### LINE OF EVIDENCE #1: LF2 COMPOSITE LINER DESIGN

LF2 Cells 1 and 2 were constructed, and began receiving CCR, in 1997. A portion of LF2 Cell 2 is currently in operation. LF2 Cell 3 is currently inactive and has not received CCR since construction in 2011.

The constructed liner and leachate collection system for LF2 Cells 1, 2, and 3 include the following design components from top to bottom:

- Soil cover for liner frost protection;
- 10-ounce-per-square-yard (sy) geotextile separation layer between the leachate management system and the frost protection soil cover;
- 1-foot thick sand drainage layer;
- 60 mil high-density polyethylene (HDPE) geomembrane; and
- Three-foot-thick compacted, low-permeability soil having a maximum hydraulic conductivity of 1.0 x 10<sup>-7</sup> centimeters per second (cm/sec).

These components meet or exceed the landfill liner performance standards of 40 C.F.R. § 257. The landfill design criteria were intended to provide protection to the Uppermost Aquifer. In addition, the Uppermost Confining Unit provides hydraulic separation between the CCR units at the Site and the Uppermost Aquifer (OBG, 2019) These factors support the conclusion that LF2 is not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

#### LINE OF EVIDENCE #2: NO CCR MATERIAL HAS BEEN PLACED IN LF2 CELL 3

LF2 Cell 3 has never contained CCR; therefore, it cannot be the source of the CCR constituents boron, calcium, chloride, fluoride, sulfate or TDS detected in downgradient groundwater monitoring wells. Furthermore,



groundwater flow directions near LF2 (Figure 2) indicate groundwater beneath LF2 Cells 1 and 2 does not influence groundwater beneath LF2 Cell 3, so LF2 Cells 1 and 2 cannot be the source of CCR constituents detected in LF2 Cell 3 downgradient monitoring wells.

## LINE OF EVIDENCE #3: THE IONIC COMPOSITION IN GROUNDWATER IS DIFFERENT THAN THE IONIC COMPOSITION OF LEACHATE

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples with respect to their major cation and anion content on the two lower triangular portions of the diagram, providing the information which, when combined on the central, diamond-shaped portion of the diagram, identify composition categories or groupings (hydrochemical facies). Figure 3, below, is a Piper diagram that displays the ionic composition of samples collected from the background and downgradient monitoring wells associated with LF2 in Quarter 3 2018. Major cations and anions were not analyzed in samples collected from the background and downgradient wells subsequent to Quarter 3 2018. Figure 3 also displays the ionic composition of samples collected from the combined LF1 and LF2 leachate tank in Quarter 2 2017. Major cations and anions were not analyzed in samples collected from the LF1 and LF2 leachate tank subsequent to Quarter 2 2017.



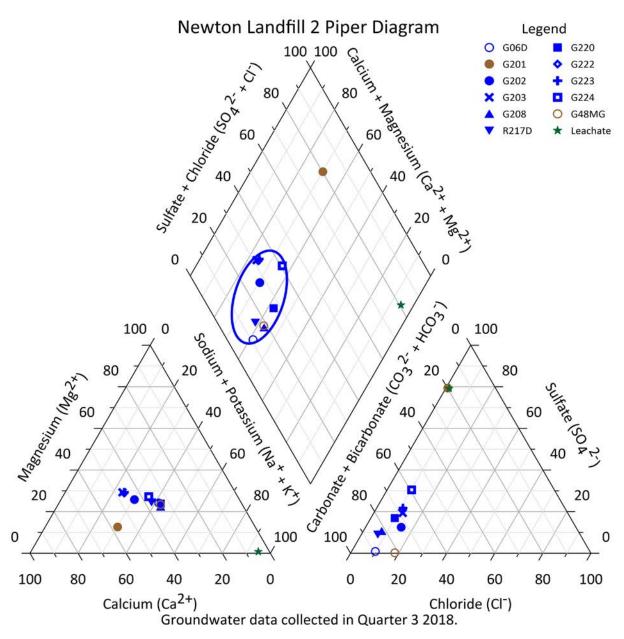



Figure 3. Piper Diagram Showing Ionic Composition of Samples of Groundwater Associated with LF2 and Leachate from Combined LF1 and LF2 Leachate Tank (note: the leachate sample was collected Quarter 2 2017).

It is evident from the Piper diagram (Figure 3) that leachate is in the sodium-sulfate hydrochemical facies, and the LF2 groundwater samples (blue symbols) are in the no dominant-bicarbonate hydrochemical facies. All LF2 Cell 1, 2, and 3 groundwater samples cluster into a single distinct hydrochemical facies. Downgradient groundwater samples associated with LF2 have a different ionic composition than leachate, indicating that leachate is not the source of CCR constituents detected in the LF2 groundwater monitoring wells.



# LINE OF EVIDENCE #4: THE IONIC COMPOSITION IN GROUNDWATER DOWNGRADIENT OF LF2 CELLS 1 AND 2 IS SIMILAR TO GROUNDWATER DOWNGRADIENT OF LF2 CELL 3 (WHERE NO CCR MATERIAL HAS BEEN PLACED)

As illustrated in the Piper diagram (Figure 3), the ionic composition of all LF2 Cell 1, 2, and 3 groundwater samples are similar and cluster into a single distinct hydrochemical facies (no dominant-bicarbonate). The similarity in ionic composition of groundwater downgradient of LF2 Cell 3 and LF2 Cells 1 and 2, coupled with the fact that Cell 3 has never contained CCR, indicate that LF2 Cells 1 and 2 are not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

# LINE OF EVIDENCE #5: GROUNDWATER QUALITY IN MONITORING WELLS DOWNGRADIENT OF LF2 CELLS 1 AND 2 IS STATISTICALLY SIMILAR TO GROUNDWATER QUALITY IN MONITORING WELLS DOWNGRADIENT OF LF2 CELL 3 (WHERE NO CCR MATERIAL HAS BEEN PLACED)

Box plots graphically represent the first quartile (Q1), median (Q2), and third quartile (Q3) of a given dataset using lines to construct a box where the lower line, midline and upper line of the box represent the values of Q1, Q2 and Q3, respectively. The minimum and maximum values of the dataset (excluding outliers) are illustrated by whisker lines extending beyond the first and third quartiles of the box plot. Outliers are represented by single points plotted outside of the range of the whiskers. Boron and chloride SSIs were identified at all LF2 cells (LF2 Cells 1, 2, and 3) during the D4 sampling event, whereas, other SSIs were only identified at either LF2 Cells 1 and 2, or LF2 Cell 3. Figures 4 and 5, below, display the boron and chloride data for downgradient groundwater at LF2; triangle symbols identify outlier values that are at least 1.5 times the interquartile range (IQR) and "x" symbols identify outlier values that are at least 3 times the IQR.

#### **Boron**

Box plots of the boron concentrations observed in LF2 Cells 1 and 2 downgradient monitoring wells (cyan), and LF2 Cell 3 downgradient monitoring wells (blue) are shown in Figure 4 below.



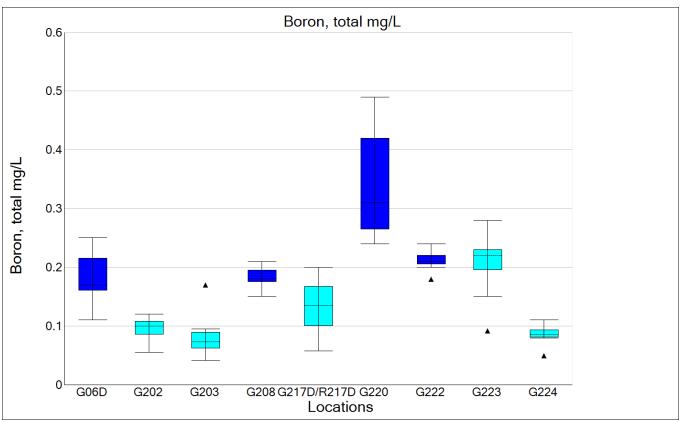



Figure 4. Boron Box Plot for LF2 Cells 1 and 2 Downgradient Monitoring Wells (cyan) and LF2 Cell 3 Downgradient Monitoring Wells (blue)

The following observations can be made from Figure 4

- The minimum and maximum boron concentrations in wells downgradient of LF2 Cell 3 ranged from 0.11 to 0.49 mg/L.
- The minimum and maximum boron concentrations in wells downgradient of LF2 Cells 1 and 2 ranged from 0.041 to 0.28 mg/L.

Boron concentrations downgradient of LF2 Cells 1 and 2 were within or below the range of concentrations observed at wells downgradient of LF2 Cell 3.



#### Chloride

Box plots of the chloride concentrations observed in LF2 Cells 1 and 2 downgradient monitoring wells (cyan), and LF2 Cell 3 downgradient monitoring wells (blue) are shown in Figure 5 below.

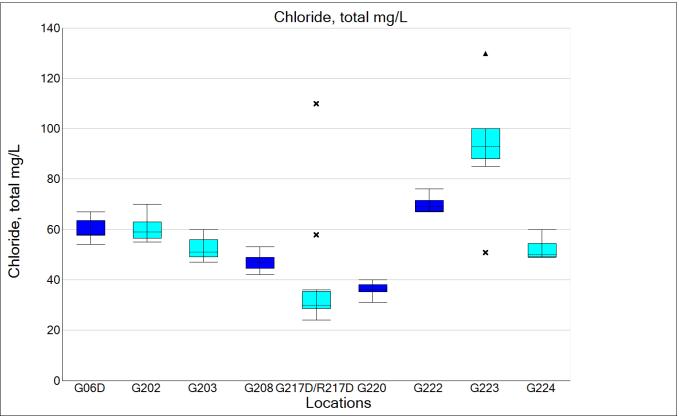



Figure 5. Chloride Box Plot for LF2 Cells 1 and 2 Downgradient Monitoring Wells (cyan) and LF2 Cell 3 Downgradient Monitoring Wells (blue)

The following observations can be made from Figure 5:

- The minimum and maximum chloride concentrations in wells downgradient of LF2 Cell 3 range from 31 to 76 mg/L.
- The minimum and maximum chloride concentrations in wells downgradient of LF2 Cells 1 and 2 range from 24 to 130 mg/L.

Chloride concentrations downgradient of LF2 Cells 1 and 2 are generally within or below the range of concentrations observed at wells downgradient of LF2 Cell 3. The exception is monitoring well G223 and potential statistical outlier concentrations at G217D/R217D (illustrated with black symbols outside of the whiskers in Figure 5).

The similarity of groundwater quality downgradient of LF2 Cell 3 and groundwater quality downgradient of LF2 Cells 1 and 2, as represented by the ranges of boron and chloride concentrations (Figures 4 and 5, respectively), coupled with the fact that Cell 3 has never contained CCR, indicates that LF2 Cells 1 and 2, are not the source of CCR constituents detected in the LF2 groundwater monitoring wells.



## LINE OF EVIDENCE #6: GROUNDWATER FLOW DIRECTIONS INDICATE MONITORING WELLS G223, G224, AND R217D ARE NOT DOWNGRADIENT OF LF2 CELLS 1 AND 2.

Downgradient groundwater at LF2 Cells 1 and 2 is monitored using wells G202, G203, G223, G224, and R217D. Groundwater flow directions indicate monitoring wells G223, G224, and R217D are not downgradient of LF2 Cells 1 and 2 as illustrated in Figure 2. LF2 Cells 1 and 2 are not the source of CCR constituents detected in the LF2 groundwater monitoring wells G223, G224, and R217D based on the position of the monitoring wells relative to groundwater flow directions.

Based on these six lines of evidence, it has been demonstrated that Newton Landfill 2 is not the source of the boron SSIs at G06D, G220, G222, G223, and R217D; the calcium SSI at R217D; the chloride SSIs at G06D, G202, G203, G208, G220, G222, G223, G224, and R217D; the fluoride SSIs at G208 and G220; the sulfate SSI at R217D; and the TDS SSI at R217D.

This information serves as the written ASD prepared in accordance with 40 C.F.R. § 257.94(e)(2) that the SSIs observed during D4 were not due to the LF2. Therefore, an assessment monitoring program is not required, and the Newton Landfill 2 will remain in detection monitoring.

#### **REFERENCES**

Natural Resource Technology, an OBG Company (NRT/OBG), 2017a, Statistical Analysis Plan, Coffeen Power Station, Newton Power Station, Illinois Power Generating Company, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017b, Hydrogeologic Monitoring Plan, Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502, Newton Power Station, Canton, Illinois, Illinois Power Generating Company, October 17, 2017.

OBG, 2019, 40 C.F.R. § 257.94(e)(2): Alternate Source Demonstration: Newton Primary Ash Pond, October 14, 2019.

#### **ATTACHMENTS**

Figure 1 Facility Location Map with Newton Landfill 2 (Phase II Landfill) Management Units and Sample Locations

Figure 2 Groundwater Elevation Contour Map – February 18, 2019



I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac

Qualified Professional Engineer

062-063091 Illinois

O'Brien and Gere Engineers, Inc., a Ramboll Company

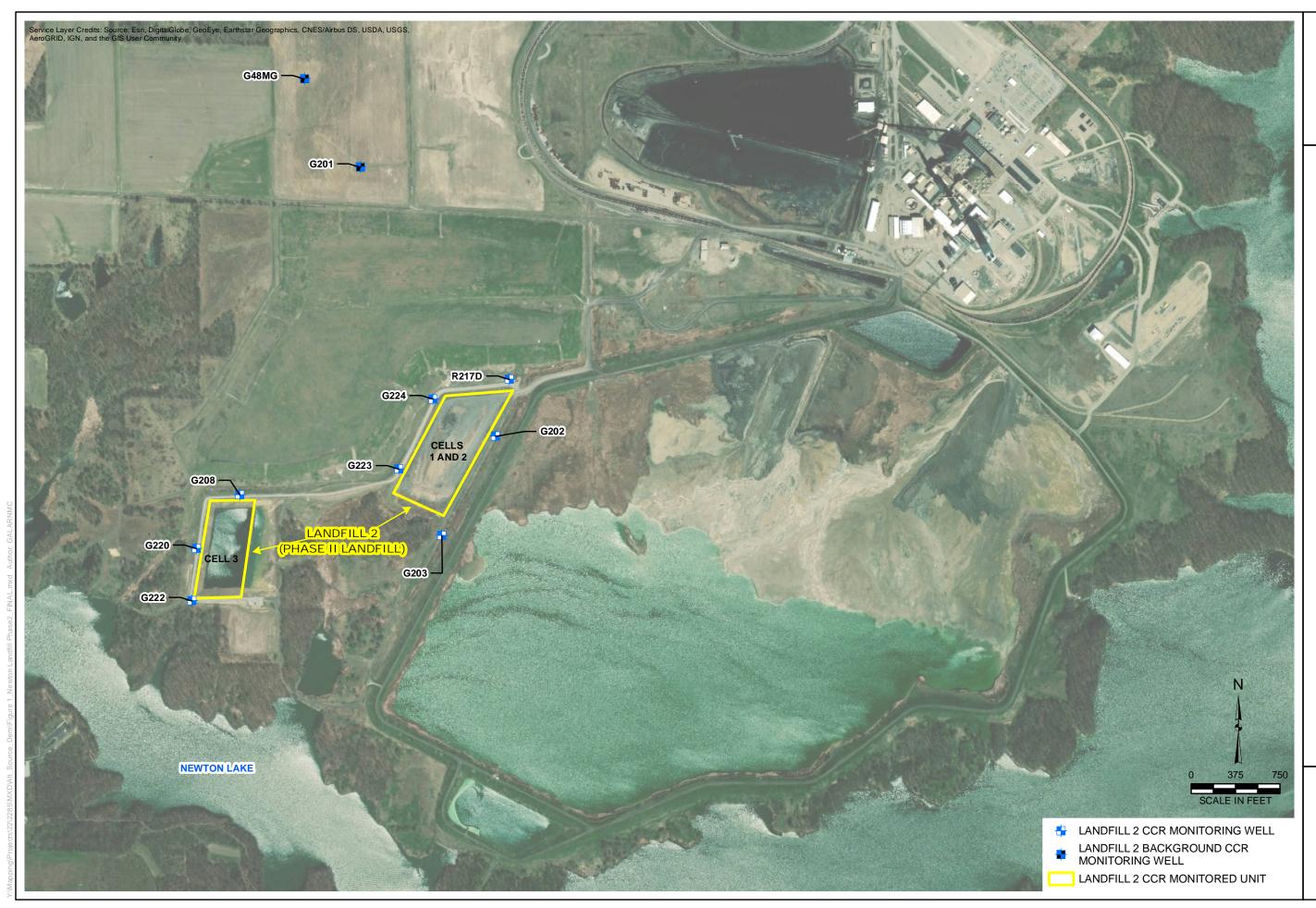
Date: October 14, 2019



I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Professional Geologist

196-000750


O'Brien and Gere Engineers, Inc., a Ramboll Company

Date: October 14, 2019

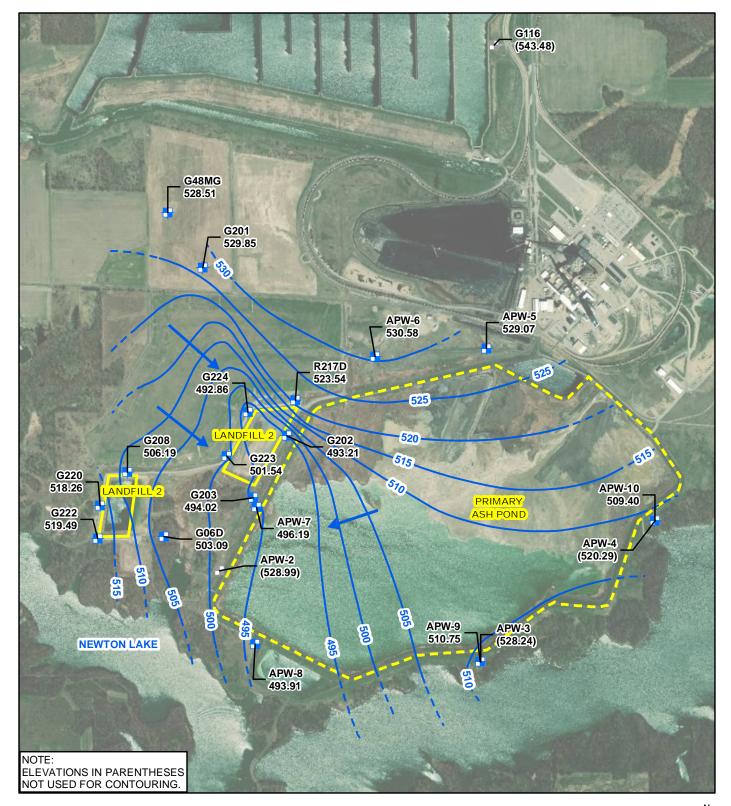


### **Figures**

OBG



FACILITY LOCATION MAP WITH NEWTON LANDFILL 2 (PHASE II LANDFILL) MANAGEMENT UNITS AND SAMPLE LOCATIONS


MANAGEMENT UNITS AND SAMPLE LOCA-ALTERNATE SOURCE DEMONSTRATION NEWTON POWER STATION NEWTON, ILLINOIS

DRAWN BY:
MPG
REVIEWED BY:
JJW
APPROVED BY:
NMP

PROJECT NO: 67719

FIGURE NO: 1







MONITORED UNIT

NEWTON LANDFILL 2 (UNIT ID: 502)
GROUNDWATER ELEVATION CONTOUR MAP
FEBRUARY 18, 2019

ALTERNATE SOURCE DEMONSTRATION NEWTON POWER STATION NEWTON, ILLINOIS







Intended for

**Illinois Power Generating Company** 

Date

April 27, 2020

Project No.

74923

# 40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PHASE II LANDFILL (LF2)

#### **CERTIFICATIONS**

I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Professional Geologist

196-000750 Illinois

O'Brien & Gere Engineers, Inc., a Ramboll Company

Date: April 27, 2020



I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac

Qualified Professional Engineer

062-063091

Illinois

O'Brien & Gere Engineers, Inc., a Ramboll Company

Date: April 27, 2020



#### **CONTENTS**

| 1.    | Introduction                                                         | 3  |
|-------|----------------------------------------------------------------------|----|
| 2.    | Background                                                           | 4  |
| 2.1   | Site location and Description                                        | 4  |
| 2.2   | Description of Phase II Landfill CCR Unit                            | 4  |
| 2.3   | Geology and Hydrogeology                                             | 4  |
| 2.4   | Groundwater and Landfill Monitoring                                  | 5  |
| 3.    | Alternate Source Demonstration: Lines of Evidence                    | 6  |
| 3.1   | LOE #1: LF2 Composite Liner Design                                   | 6  |
| 3.2   | LOE #2: No CCR material has been placed in LF2 Cell 3                | 6  |
| 3.3   | LOE #3: The ionic composition of groundwater is different than the   |    |
|       | ionic composition of leachate                                        | 7  |
| 3.4   | LOE #4: The Ionic Composition of Groundwater Downgradient of LF2     |    |
|       | Cells 1 and 2 Is Similar to the Ionic Composition of Groundwater     |    |
|       | Downgradient of LF2 Cell 3 (Where No CCR Material Has Been Placed)   | 8  |
| 3.5   | LOE #5: Groundwater Quality in Monitoring Wells Downgradient of      |    |
|       | LF2 Cells 1 and 2 Is Statistically Similar to Groundwater Quality in |    |
|       | Monitoring Wells Downgradient of LF2 Cell 3 (Where No CCR Material   |    |
|       | Has Been Placed)                                                     | 8  |
| 3.5.1 | Boron                                                                | 9  |
| 3.5.2 | Chloride                                                             | 10 |
| 3.5.3 | Total Dissolved Solids                                               | 11 |
| 4.    | Conclusions                                                          | 12 |
| 5.    | References                                                           | 13 |

#### TABLES (IN TEXT)

Table A Summary Statistics for Boron in Groundwater

Table B Summary Statistics, Trend, and Coefficient of Variation of Sulfate in Groundwater

#### FIGURES (IN TEXT)

Figure A Piper Diagram
Figure B Sulfate Time Series

Figure C Sulfate Trends in Downgradient Wells

#### FIGURES (ATTACHED)

Figure 1 Sampling Location and Groundwater Elevation Contour Map – August 21, 2019

#### **ACRONYMS AND ABBREVIATIONS**

40 C.F.R. Title 40 of the Code of Federal Regulations

ASD Alternate Source Demonstration
CCR Coal Combustion Residuals
cm/s centimeters per second
GMF Gypsum Management Facility
HDPE high-density polyethylene

IEPA Illinois Environmental Protection Agency

LOE Line of Evidence mg/L milligrams per liter mean sea level

NRT/OBG Natural Resource Technology, an OBG Company

Site Newton Power Station

SSI Statistically Significant Increase

UPL Upper Prediction Limit

#### 1. INTRODUCTION

Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.94(e)(2) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of a Statistically Significant Increase (SSI) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company, by O'Brien & Gere Engineers, Inc., a Ramboll Company (Ramboll), to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for the Newton Phase II Landfill (LF2), located near Newton, IL.

The most recent Detection Monitoring sampling event (D5) was completed on August 21 and August 22, 2019, and analytical data were received on October 28, 2019. Analytical data from D5 were evaluated in accordance with the Statistical Analysis Plan (NRT/OBG, 2017) to determine any Statistically Significant Increases (SSIs) of Appendix III parameters over background concentrations. That evaluation identified SSIs at downgradient monitoring wells as follows:

- Boron at wells G208, G220, G222, and G223
- Calcium at well R217D
- Chloride at wells G06D, G202, G203, G208, G220, G222, G223, G224, and R217D
- Fluoride at wells G208 and G220
- Total Dissolved Solids (TDS) at wells G222 and R217D

Pursuant to 40 C.F.R. § 257.94(e)(2), the following lines of evidence demonstrate that sources other than the Newton LF2 were the cause of the boron, calcium, chloride, fluoride, and TDS SSIs listed above. This ASD was completed by April 27, 2020, within 90 days of determination of the SSIs (January 27, 2020), as required by 40 C.F.R. § 257.94(e)(2).

#### 2. BACKGROUND

#### 2.1 Site location and Description

The Newton Power Station (Site) is located in Jasper County in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The plant is located on the north side of Newton Lake. The area is bounded by Newton Lake and agricultural land to the west, south, and east, and agricultural land to the north. Beyond the lake is additional agricultural land.

#### 2.2 Description of Phase II Landfill CCR Unit

The Phase II Landfill (LF2) includes three lined disposal cells (Figure 1). LF2 Cells 1 and 2, encompass approximately 12 acres, are adjacent to each other and located south and east of the Phase I Landfill (LF1). LF2 Cell 3 encompasses approximately 7 acres and is located approximately 1,100 feet west of Cells 1 and 2. All three cells of LF2 are constructed with composite liners and leachate collection systems that exceed the landfill liner performance standards of 40 CFR § 257.70. Cell 3 is inactive and has not received CCR since constructed in 2011.

#### 2.3 Geology and Hydrogeology

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation.

Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations (Lineback, 1979; Willman et al., 1975). The unconsolidated deposits occurring at Newton Power Station include the following units beginning at the ground surface:

- Ash/Fill Units CCR and fill within the various CCR Units.
- Upper Confining Unit Low permeability clays and silts, including the Peoria Silt (Loess Unit) in
  upland areas and the Cahokia Formation in the flood plain and channel areas to the south and
  east, underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown
  (Till) and Vandalia (Till) Members of the Glasford Formation.
- Uppermost Aquifer Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation.
- Lower Confining Unit Thick, very low permeability silty clay diamictons of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation.

The bedrock beneath the unconsolidated deposits consists of Pennsylvanian-age Mattoon Formation (Willman et al., 1967) that is mostly shale near the bedrock surface but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones (Willman et al., 1975). The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the Site but is typically encountered at 90 to 120 ft below ground surface (bgs).

Groundwater elevations across LF2 ranged from approximately 495 to 518 ft msl during D5 (Figure 1). The groundwater elevation contours shown on Figure 1 were measured on August 21, 2019. Overall groundwater flow beneath LF2, within the Uppermost Aquifer, is

southward toward Newton Lake, but with flow converging to the south-southeast along the major axis of LF2 Cells 1 and 2, and a predominantly eastward flow near LF2 Cell 3. Based on groundwater flow directions near LF2, groundwater beneath LF2 Cells 1 and 2 does not influence groundwater beneath LF2 Cell 3.

#### 2.4 Groundwater and Landfill Monitoring

The Uppermost Aquifer monitoring system for LF2 Cells 1, 2, and 3 is shown on Figure 1 and described below.

Monitoring wells G201 and G48MG are used to monitor background groundwater quality for LF2 (all cells). Groundwater quality at LF2 Cells 1 and 2 is monitored using wells G202, G203, G223, G224, and R217D (which replaced well G217D in October 2017). Groundwater quality at LF2 Cell 3 is monitored using wells G06D, G208, G220, and G222. Leachate from LF2 is monitored using leachate sample location L301 (Figure 1).

## 3. ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

As allowed by 40 C.F.R. § 257.94(e)(2), this ASD demonstrates that sources other than LF2 caused the SSI(s), or that the SSI(s) was a result of natural variation in groundwater quality. This ASD is based on the following lines of evidence (LOE):

- 1. LF2 composite liner design.
- 2. No CCR material has been placed in LF2 Cell 3.
- 3. The ionic composition of groundwater is different than the ionic composition of leachate.
- 4. The ionic composition of groundwater downgradient of LF2 Cells 1 and 2 is similar to the ionic composition of groundwater downgradient of LF2 Cell 3 (where no CCR material has been placed).
- 5. Groundwater quality in monitoring wells downgradient of LF2 Cells 1 and 2 is statistically similar to groundwater quality in monitoring wells downgradient of LF2 Cell 3 (where no CCR material has been placed).

These lines of evidence are described and supported in greater detail below.

#### 3.1 LOE #1: LF2 Composite Liner Design

LF2 Cells 1 and 2 were constructed and began receiving CCR in 1997. Currently, a portion of LF2 Cell 2 is in operation. No CCR has been placed in LF2 Cell 3 .

The constructed liner and leachate collection system for LF2 Cells 1, 2, and 3 include the following design components from top to bottom:

- Soil cover for liner frost protection
- 10-ounce-per-square-yard geotextile separation layer between the leachate management system and the frost protection soil cover
- · 1-foot thick sand drainage layer
- 60 mil high-density polyethylene geomembrane
- Three-foot-thick compacted, low-permeability soil having a maximum hydraulic conductivity of 1.0 x 10<sup>-7</sup> centimeters per second (cm/sec)

These components exceed the landfill liner performance standards of 40 C.F.R. § 257. The landfill design criteria were intended to provide protection to the Uppermost Aquifer. Therefore, the presence of the composite liner suggests that LF2 is not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

#### 3.2 LOE #2: No CCR material has been placed in LF2 Cell 3

LF2 Cell 3 has never contained CCR; therefore, it cannot be the source of the CCR constituents boron, chloride, fluoride, or TDS detected in Cell 3 groundwater monitoring wells (G06D, G208, G220, and G222).

### 3.3 LOE #3: The ionic composition of groundwater is different than the ionic composition of leachate

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples with respect to their major cation and anion content on the two lower triangular portions of the diagram, providing the information which, when combined on the central, diamond-shaped portion of the diagram, identify composition categories or groupings (hydrochemical facies). Figure A, below, is a Piper diagram that displays the ionic composition of samples collected from the background and downgradient monitoring wells associated with LF2, and leachate sampling location L301 associated with LF2, in Quarter 3 2019.

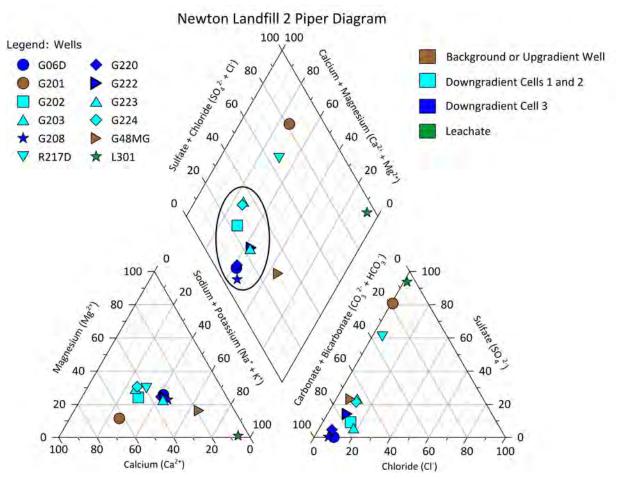



Figure A. Piper Diagram. Shows Ionic Composition of Samples of Groundwater Associated with LF2 in Q3 2019.

It is evident from the Piper diagram (Figure A) that leachate from LF2 (L301; green symbol) is in the sodium-chloride hydrochemical facies, while the LF2 groundwater samples (blue and cyan symbols) are predominantly in the calcium-bicarbonate hydrochemical facies (black grouping) with the exception of groundwater sample R217D which is in the calcium-sulfate hydrochemical facies. Therefore, downgradient groundwater samples associated with LF2 have a different ionic composition than leachate, indicating that leachate is not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

## 3.4 LOE #4: The Ionic Composition of Groundwater Downgradient of LF2 Cells 1 and 2 Is Similar to the Ionic Composition of Groundwater Downgradient of LF2 Cell 3 (Where No CCR Material Has Been Placed)

As illustrated in the Piper diagram (Figure A), the ionic composition of all LF2 Cell 1, 2, and 3 groundwater samples (blue and cyan symbols) are similar and primarily cluster into a single distinct hydrochemical facies (calcium-bicarbonate; black grouping). The only exception is R217D, which is in the calcium-sulfate facies (along with background well G201). Furthermore, the groundwater flow direction indicates that Cell 3 wells are not influenced by Cells 1 and 2 (Figure 1). The similarity in ionic composition of groundwater downgradient of LF2 Cell 3 and LF2 Cells 1 and 2, coupled with the facts that Cell 3 has never contained CCR and groundwater beneath Cell 3 is not influenced by Cells 1 and 2, indicate that LF2 Cells 1 and 2 are not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

## 3.5 LOE #5: Groundwater Quality in Monitoring Wells Downgradient of LF2 Cells 1 and 2 Is Statistically Similar to Groundwater Quality in Monitoring Wells Downgradient of LF2 Cell 3 (Where No CCR Material Has Been Placed)

Box plots graphically represent the first quartile, median, and third quartile of a given dataset using lines to construct a box where the lower line, midline and upper line of the box represent the values of the first quartile, median, and third quartile, respectively. The minimum and maximum values of the dataset (excluding outliers) are illustrated by whisker lines extending beyond the first and third quartiles of the box plot. Outliers are represented by single points plotted outside of the range of the whiskers. Boron, chloride, and TDS SSIs were identified at all LF2 cells (LF2 Cells 1, 2, and 3) during the D5 sampling event, whereas other SSIs were only identified at either LF2 Cells 1 and 2, or LF2 Cell 3. As noted above, groundwater flow direction indicates that Cell 3 wells are not influenced by Cells 1 and 2, and Cell 3 has never contained CCR. Figures B, C, and D display the boron, chloride and TDS data, respectively, for downgradient groundwater at LF2; triangle symbols identify outlier values that are at least 1.5 times the interquartile range (IQR) and "x" symbols identify outlier values that are at least 3 times the IQR.

#### 3.5.1 Boron

Box plots of the boron concentrations observed in LF2 Cells 1 and 2 downgradient monitoring wells (cyan), and LF2 Cell 3 downgradient monitoring wells (blue) are shown in Figure B.

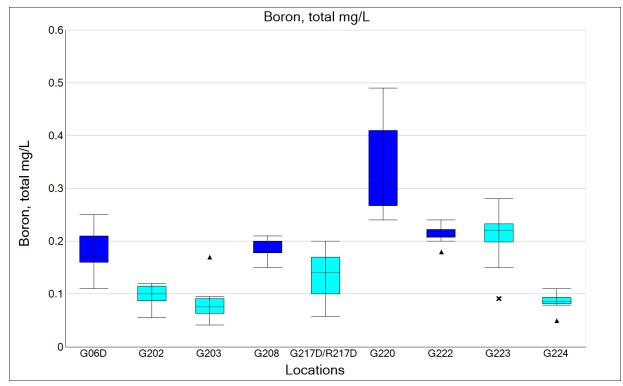



Figure B. Boron Box Plot. Includes LF2 Cells 1 and 2 Downgradient Monitoring Wells (cyan) and LF2 Cell 3 Downgradient Monitoring Wells (blue).

The minimum and maximum boron concentrations in wells downgradient of LF2 Cell 3 ranged from 0.11 to 0.49 milligrams per liter (mg/L). The minimum and maximum boron concentrations in wells downgradient of LF2 Cells 1 and 2 ranged from 0.041 to 0.28 mg/L. Boron concentrations downgradient of LF2 Cells 1 and 2 were within or below the range of concentrations observed at wells downgradient of LF2 Cell 3.

#### 3.5.2 Chloride

Box plots of the chloride concentrations observed in LF2 Cells 1 and 2 downgradient monitoring wells (cyan), and LF2 Cell 3 downgradient monitoring wells (blue) are shown in Figure C below.

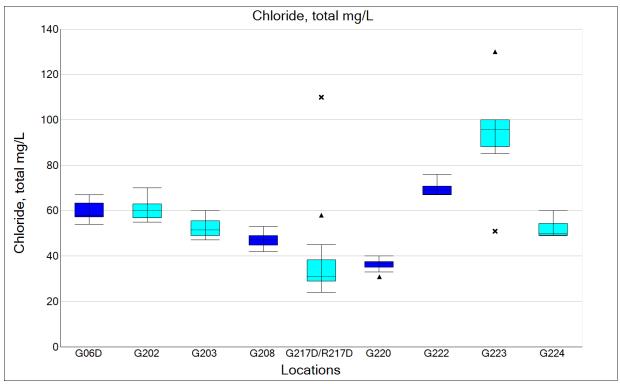



Figure C. Chloride Box Plot. Includes LF2 Cells 1 and 2 Downgradient Monitoring Wells (cyan) and LF2 Cell 3 Downgradient Monitoring Wells (blue).

The minimum and maximum chloride concentrations in wells downgradient of LF2 Cell 3 range from 31 to 76 mg/L. The minimum and maximum chloride concentrations in wells downgradient of LF2 Cells 1 and 2 range from 24 to 130 mg/L.

Chloride concentrations downgradient of LF2 Cells 1 and 2 are generally within or below the range of concentrations observed at wells downgradient of LF2 Cell 3. The exception is monitoring well G223 and potential statistical outlier concentrations at G217D/R217D (illustrated with black symbols outside of the whiskers in Figure C).

#### 3.5.3 Total Dissolved Solids

Box plots of the TDS concentrations observed in LF2 Cells 1 and 2 downgradient monitoring wells (cyan), and LF2 Cell 3 downgradient monitoring wells (blue) are shown in Figure D below.

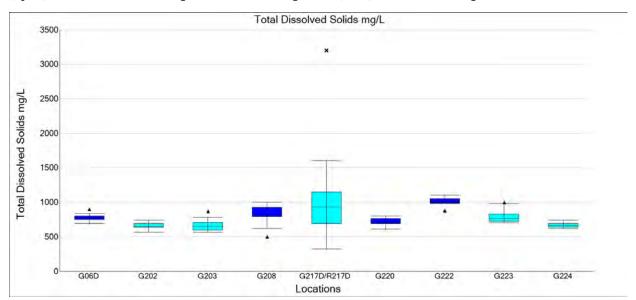



Figure D. Total Dissolved Solids Box Plot. Includes LF2 Cells 1 and 2 Downgradient Monitoring Wells (cyan) and LF2 Cell 3 Downgradient Monitoring Wells (blue).

The minimum and maximum TDS concentrations in wells downgradient of LF2 Cell 3 range from 500 to 1100 mg/L. The minimum and maximum TDS concentrations in wells downgradient of LF2 Cells 1 and 2 range from 320 to 3200 mg/L.

The minimum and maximum TDS concentrations in wells downgradient of LF2 Cells 1 and 2 range from 320 to 3200 mg/L.

TDS concentrations downgradient of LF2 Cells 1 and 2 are generally within or below the range of concentrations observed at wells downgradient of LF2 Cell 3. The exception is monitoring well G217D/R217D which had two TDS concentrations greater than 1100 mg/L, one of which is a potential statistical outlier (illustrated with black symbols outside of the whiskers in Figure D).

The similarity of groundwater quality downgradient of LF2 Cell 3 and groundwater quality downgradient of LF2 Cells 1 and 2, as represented by the ranges of boron, chloride, and TDS concentrations (Figures B, C, and D respectively), coupled with the fact that no CCR material has been placed in LF2 Cell 3, suggests that LF2 Cells 1 and 2 are not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

#### 4. CONCLUSIONS

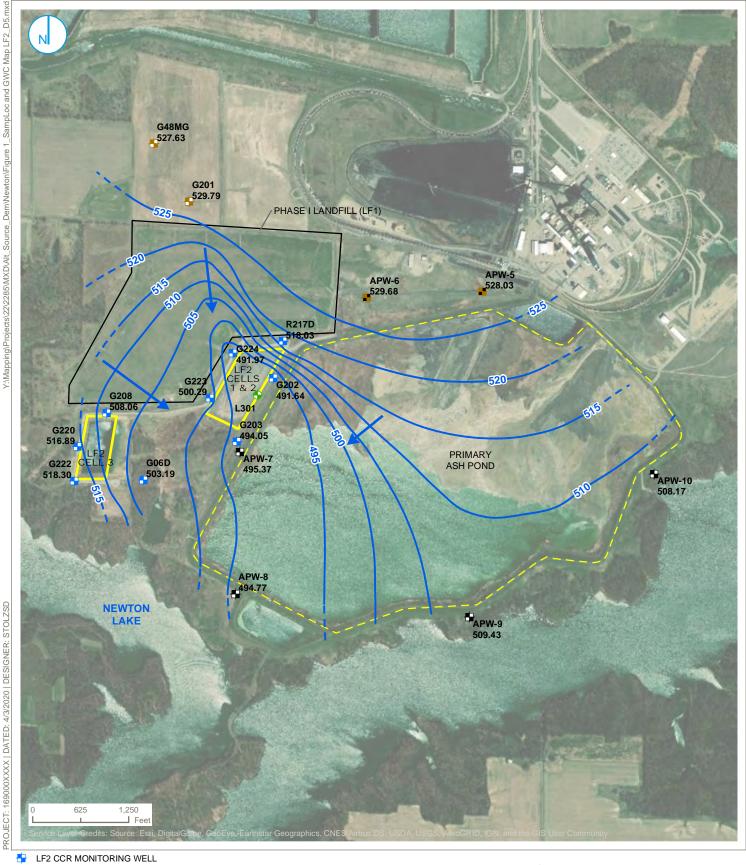
Based on the six lines of evidence below, it has been demonstrated that the boron SSIs at G208, G220, G222, and G223; the calcium SSI at R217D; the chloride SSIs at G06D, G202, G203, G208, G220, G222, G223, G224, and R217D; the fluoride SSIs at G208 and G220; and the TDS SSIs at G222 and R217D are not due to Newton LF2 but are from a source other than the CCR unit being monitored:

- 1. LF2 composite liner design.
- 2. No CCR material has been placed in LF2 Cell 3.
- 3. The ionic composition of groundwater is different than the ionic composition of leachate.
- 4. The ionic composition of groundwater downgradient of LF2 Cells 1 and 2 is similar to the ionic composition of groundwater downgradient of LF2 Cell 3 (where no CCR material has been placed).
- 5. Groundwater quality in monitoring wells downgradient of LF2 Cells 1 and 2 is statistically similar to groundwater quality in monitoring wells downgradient of LF2 Cell 3 (where no CCR material has been placed).
- 6. This information serves as the written ASD prepared in accordance with 40 C.F.R. § 257.94(e)(2) that the SSIs observed during D5 were not due to the LF2. Therefore, an assessment monitoring program is not required, and the Newton Landfill 2 will remain in detection monitoring.

This information serves as the written ASD prepared in accordance with 40 C.F.R. § 257.94(e)(2) that the SSIs observed during D5 were not due to the LF2. Therefore, an assessment monitoring program is not required, and the Newton Landfill 2 will remain in detection monitoring.

#### 5. REFERENCES

Lineback, J., 1979, Quaternary Deposits of Illinois: Illinois State Geological Survey map, scale 1:500,000.


Natural Resource Technology, an OBG Company (NRT/OBG), 2017a, Statistical Analysis Plan, Coffeen Power Station, Newton Power Station, Illinois Power Generating Company, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017b, Hydrogeologic Monitoring Plan, Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502, Newton Power Station, Canton, Illinois, Illinois Power Generating Company, October 17, 2017.

Willman, H.B., J.C. Frye, J.A. Simon, K.E. Clegg, D.H. Swann, E. Atherton, C. Collinson, J.A. Lineback, T.C. Buschbach, and H.B. Willman, 1967, Geologic Map of Illinois: Illinois State Geological Survey map, scale 1:500,000.

Willman, H.B., E. Atherton, T.C. Buschbach, C. Collinson, J.C. Frye, M.E. Hopkins, J.A. Lineback, and J.A. Simon, 1975, Handbook of Illinois Stratigraphy: Illinois State Geological Survey, Bulletin 95, 261 p.

#### **FIGURES**



- ₽ LF2 BACKGROUND CCR MONITORING WELL
- PRIMARY ASH POND CCR MONITORING WELL
- PRIMARY ASH POND BACKGROUND CCR MONITORING WELL
- ♦ LF2 LEACHATE SAMPLE LOCATION
  - GROUNDWATER ELEVATION CONTOUR (5-FOOT INTERVAL)
- INFERRED GROUNDWATER ELEVATION CONTOUR
- GROUNDWATER FLOW DIRECTION
- LF2 CCR UNIT BOUNDARY

PRIMARY ASH POND CCR UNIT BOUNDARY

LF1 UNIT BOUNDARY

SAMPLING LOCATION AND GROUNDWATER ELEVATION CONTOUR MAP AUGUST 21, 2019

NEWTON PHASE II LANDFILL (LF2) (UNIT ID: 502)
ALTERNATE SOURCE DEMONSTRATION
VISTRA ENERGY

VISTRA ENERGY NEWTON POWER STATION NEWTON, ILLINOIS

#### FIGURE 1

RAMBOLL US CORPORATION A RAMBOLL COMPANY



Intended for

**Illinois Power Generating Company** 

Date

October 12, 2020

Project No.

1940074923

# 40 C.F.R. § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON PHASE II LANDFILL (LF2)

#### **CERTIFICATIONS**

I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

OFESSIONA

NICOLE M. PAGANO

196-000750

TINO

ACKERMAN 062.060586

OF ILLINOIS

Nicole M. Pagano Professional Geologist

196-000750 Illinois

Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc.

Date: October 12, 2020

I, Anne Frances Ackerman, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Anne Frances Ackerman

Qualified Professional Engineer

062-060586

Illinois

Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc.

Date: October 12, 2020

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA T 414-837-3607 F 414-837-3608

https://ramboll.com

#### **CONTENTS**

| 1.    | Introduction                                                         | 3  |
|-------|----------------------------------------------------------------------|----|
| 2.    | Background                                                           | 5  |
| 2.1   | Site location and Description                                        | 5  |
| 2.2   | Description of Phase II Landfill CCR Unit                            | 5  |
| 2.3   | Geology and Hydrogeology                                             | 5  |
| 2.4   | Groundwater and Landfill Monitoring                                  | 6  |
| 3.    | Alternate Source Demonstration: Lines of Evidence                    | 7  |
| 3.1   | LOE #1: LF2 Composite Liner Design                                   | 7  |
| 3.2   | LOE #2: No CCR material has been placed in LF2 Cell 3                | 7  |
| 3.3   | LOE #3: The ionic composition of groundwater is different than the   |    |
|       | ionic composition of leachate                                        | 8  |
| 3.4   | LOE #4: The Ionic Composition of Groundwater Downgradient of LF2     |    |
|       | Cells 1 and 2 Is Similar to the Ionic Composition of Groundwater     |    |
|       | Downgradient of LF2 Cell 3 (Where No CCR Material Has Been Placed)   | 9  |
| 3.5   | LOE #5: Groundwater Quality in Monitoring Wells Downgradient of      |    |
|       | LF2 Cells 1 and 2 Is Statistically Similar to Groundwater Quality in |    |
|       | Monitoring Wells Downgradient of LF2 Cell 3 (Where No CCR Material   |    |
|       | Has Been Placed)                                                     | 9  |
| 3.5.1 | Boron                                                                | 9  |
| 3.5.2 | Chloride                                                             | 10 |
| 3.5.3 | Total Dissolved Solids                                               | 11 |
| 4.    | Conclusions                                                          | 13 |
| 5.    | References                                                           | 14 |

#### FIGURES (IN TEXT)

Figure A Piper Diagram
Figure B Boron Box Plot
Figure C Chloride Box Plot

Figure D Total Dissolved Solids Box Plot

#### FIGURES (ATTACHED)

Figure 1 Sampling Location and Groundwater Elevation Contour Map – February 3, 2020

#### **ACRONYMS AND ABBREVIATIONS**

40 C.F.R. Title 40 of the Code of Federal Regulations

ASD Alternate Source Demonstration
CCR Coal Combustion Residuals
cm/s centimeters per second
f/k/a formerly known as

IEPA Illinois Environmental Protection Agency

IQR interquartile range LF2 Newton Phase II Landfill

LOE line of evidence mg/L milligrams per liter mean sea level

NRT/OBG Natural Resource Technology, an OBG Company

Site Newton Power Station

SSI Statistically Significant Increase

TDS total dissolved solids
UPL Upper Prediction Limit

#### 1. INTRODUCTION

Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.94(e)(2) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of a Statistically Significant Increase (SSI) over background for groundwater constituents listed in Appendix III of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSI(s), or that the SSI(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Illinois Power Generating Company, by Ramboll Americas Engineering Solutions, Inc., formerly known as (f/k/a) O'Brien & Gere Engineers, Inc., to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for the Newton Phase II Landfill (LF2), located near Newton, IL.

A background total dissolved solids (TDS) concentration for one of the eight baseline sampling events from 2015-2017 was revised by the lab shortly after the initial report was released, but inadvertently omitted from the database until realized during a database QC in 2020. Including this data point caused a change in the distribution of the background TDS data from normal to non-normal, prompting a change in the way that the background Upper Prediction Limit (UPL) is calculated and resulting in a reduction of the UPL from 1,005 milligrams per liter (mg/L) to 860 mg/L.

Because the corrected TDS UPL is lower than the one used to determine SSIs through the D5 sampling event, there were unreported TDS SSIs during these events as follows:

- Well G222 during the D2 sampling event (Q2 2018)
- Well G222 during the D3 sampling event (Q4 2018)
- Wells G06D, G203, G222, and G223 during the D4 sampling event (Q1 2019)
- Well G223 during the D5 sampling event (Q3 2019)

These wells all had one or more SSIs for other parameters during these sampling events, and ASDs for those SSIs were completed [self-implementing program]. The lines of evidence (LOE) presented in these ASDs address the unreported TDS SSIs as well as the reported SSIs for other parameters. Therefore, the previous ASDs support the conclusion that the unreported TDS SSIs are not caused by LF2.

The most recent Detection Monitoring sampling event (Detection Monitoring Round 6 [D6]) was completed on February 4, 5, 6 and 19, 2020, and analytical data were received on April 15, 2020. Analytical data from D6 were evaluated in accordance with the Statistical Analysis Plan (Natural Resource Technology, an OBG Company [NRT/OBG], 2017) to determine any SSIs of Appendix III parameters over background concentrations. That evaluation identified SSIs at downgradient monitoring wells as follows:

- Boron at wells G208, G220, G222, G223, and R217D
- Calcium at well R217D
- Chloride at wells G06D, G202, G203, G208, G220, G222, G223, G224, and R217D
- Fluoride at well G220
- Sulfate at R217D

TDS at wells G06D, G203, G220, G222, G223, G224, and R217D

In accordance with the Statistical Analysis Plan, wells G202, G203, G208, G220, G222, G223, G224, and R217D were resampled on May 20-21 (as part of the Illinois Environmental Protection Agency [IEPA] quarterly sampling event) and well G06D was resampled on June 11, 2020 and analyzed only for TDS (all wells), calcium (R217D), and sulfate (R217D) to confirm the SSIs. Following evaluation of analytical data from the resample event, the following SSIs remained:

- Boron at wells G208, G220, G222, G223, and R217D
- · Calcium at well R217D
- Chloride at wells G06D, G202, G203, G208, G220, G222, G223, G224, and R217D
- Fluoride at well G220
- TDS at wells G06D, G222, G223, and R217D

Pursuant to 40 C.F.R. § 257.94(e)(2), the following LOEs demonstrate that sources other than LF2 were the cause of the boron, calcium, chloride, fluoride, and TDS SSIs listed above. This ASD was completed by October 12, 2020, within 90 days of determination of the SSIs (July 14, 2020), as required by 40 C.F.R. § 257.94(e)(2).

#### 2. BACKGROUND

#### 2.1 Site location and Description

The Newton Power Station (Site) is located in Jasper County in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The plant is located on the north side of Newton Lake. The area is bounded by Newton Lake and agricultural land to the west, south, and east, and agricultural land to the north. Beyond the lake is additional agricultural land.

#### 2.2 Description of Phase II Landfill CCR Unit

LF2 includes three lined disposal cells (Figure 1). LF2 Cells 1 and 2, encompassing approximately 12 acres, are adjacent to each other and located south and east of the Phase I Landfill (LF1). LF2 Cell 3 encompasses approximately 7 acres and is located approximately 1,100 feet west of Cells 1 and 2. All three cells of LF2 are constructed with composite liners and leachate collection systems that exceed the landfill liner performance standards of 40 CFR § 257.70. Cell 3 is inactive and has not received CCR since it was constructed in 2011.

#### 2.3 Geology and Hydrogeology

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation.

Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations (Lineback, 1979; Willman et al., 1975). The unconsolidated deposits occurring at Newton Power Station include the following units beginning at the ground surface:

- Upper Confining Unit Low permeability clays and silts, including the Peoria Silt (Loess Unit) in
  upland areas and the Cahokia Formation in the flood plain and channel areas to the south and
  east, underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown
  (Till) and Vandalia (Till) Members of the Glasford Formation.
- Uppermost Aquifer Thin to moderately thick (3 to 17 feet), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation.
- Lower Confining Unit Thick, very low permeability silty clay diamictons of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation.

The bedrock beneath the unconsolidated deposits consists of Pennsylvanian-age Mattoon Formation (Willman et al., 1967) that is mostly shale near the bedrock surface but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several sandstones (Willman et al., 1975). The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the Site but is typically encountered at 90 to 120 feet below ground surface (bgs).

Groundwater elevations across LF2 ranged from approximately 493 to 519 feet mean sea level (msl) during D6 (Figure 1). The groundwater elevation contours shown on Figure 1 were measured on February 3, 2020. Overall groundwater flow beneath LF2, within the Uppermost Aquifer, is southward toward Newton Lake, but with flow converging to the south-southeast along the major

axis of LF2 Cells 1 and 2, and a predominantly eastward flow near LF2 Cell 3. Based on groundwater flow directions near LF2, groundwater beneath LF2 Cells 1 and 2 does not influence groundwater beneath LF2 Cell 3.

#### 2.4 Groundwater and Landfill Monitoring

The Uppermost Aquifer monitoring system for LF2 Cells 1, 2, and 3 is shown on Figure 1.

Monitoring wells G201 and G48MG are used to monitor background groundwater quality for LF2 (all cells). Groundwater quality at LF2 Cells 1 and 2 is monitored using wells G202, G203, G223, G224, and R217D (which replaced well G217D in October 2017). Groundwater quality at LF2 Cell 3 is monitored using wells G06D, G208, G220, and G222. Leachate from LF2 is monitored using leachate sample location L301 (Figure 1).

# 3. ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

As allowed by 40 C.F.R. § 257.94(e)(2), this ASD demonstrates that sources other than LF2 caused the SSI(s), or that the SSI(s) was a result of natural variation in groundwater quality. This ASD is based on the following LOE:

- 1. LF2 composite liner design.
- 2. No CCR material has been placed in LF2 Cell 3.
- 3. The ionic composition of groundwater is different than the ionic composition of leachate.
- 4. The ionic composition of groundwater downgradient of LF2 Cells 1 and 2 is similar to the ionic composition of groundwater downgradient of LF2 Cell 3 (where no CCR material has been placed).
- 5. Groundwater quality in monitoring wells downgradient of LF2 Cells 1 and 2 is statistically similar to groundwater quality in monitoring wells downgradient of LF2 Cell 3 (where no CCR material has been placed).

These LOEs are described and supported in greater detail below.

#### 3.1 LOE #1: LF2 Composite Liner Design

LF2 Cells 1 and 2 were constructed and began receiving CCR in 1997. Currently, a portion of LF2 Cell 2 is in operation. No CCR has been placed in LF2 Cell 3.

The constructed liner and leachate collection system for LF2 Cells 1, 2, and 3 include the following design components from top to bottom:

- Soil cover for liner frost protection
- 10-ounce-per-square-yard geotextile separation layer between the leachate management system and the frost protection soil cover
- 1-foot thick sand drainage layer
- 60-millimeter high-density polyethylene geomembrane
- Three-foot-thick compacted, low-permeability soil having a maximum hydraulic conductivity of 1.0 x 10<sup>-7</sup> centimeters per second (cm/s)

These components exceed the landfill liner design criteria of 40 C.F.R. § 257. The landfill design criteria were intended to provide protection to the Uppermost Aquifer. Therefore, the presence of the composite liner suggests that LF2 is not contributing CCR constituents to the groundwater in the vicinity of LF2.

#### 3.2 LOE #2: No CCR material has been placed in LF2 Cell 3

LF2 Cell 3 has never contained CCR; therefore, it cannot be the source of the CCR constituents boron, chloride, fluoride, or TDS detected in Cell 3 groundwater monitoring wells (G06D, G208, G220, and G222).

## 3.3 LOE #3: The ionic composition of groundwater is different than the ionic composition of leachate

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples with respect to their major cation and anion content on the two lower triangular portions of the diagram, providing the information which, when combined on the central, diamond-shaped portion of the diagram, identify composition categories or groupings (hydrochemical facies). Figure A, below, is a Piper diagram that displays the ionic composition of samples collected from the background and downgradient monitoring wells associated with LF2, and leachate sampling location L301 associated with LF2, in the D6 sampling event.

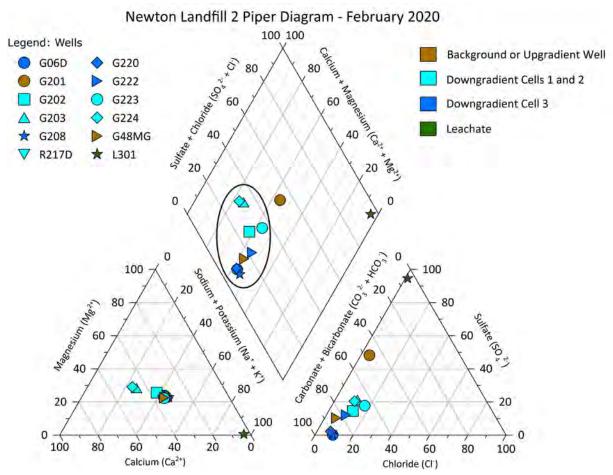



Figure A. Piper Diagram. Shows Ionic Composition of Samples of Groundwater and Leachate Associated with LF2 During D6 Sampling Event.

It is evident from the Piper diagram (Figure A) that leachate from LF2 (L301; green symbol) is in the sodium-chloride hydrochemical facies, while the LF2 groundwater samples (blue and cyan symbols) are predominantly in the calcium-bicarbonate hydrochemical facies (black grouping). Therefore, downgradient groundwater samples associated with LF2 have a different ionic composition than leachate, indicating that leachate is not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

# 3.4 LOE #4: The Ionic Composition of Groundwater Downgradient of LF2 Cells 1 and 2 Is Similar to the Ionic Composition of Groundwater Downgradient of LF2 Cell 3 (Where No CCR Material Has Been Placed)

As illustrated in the Piper diagram (Figure A), the ionic composition of all LF2 Cell 1, 2, and 3 groundwater samples (blue and cyan symbols) are similar and primarily cluster into a single distinct hydrochemical facies (calcium-bicarbonate; black grouping). Furthermore, the groundwater flow direction indicates that Cell 3 wells are not influenced by Cells 1 and 2 (Figure 1). The similarity in ionic composition of groundwater downgradient of LF2 Cell 3 and LF2 Cells 1 and 2, coupled with the facts that Cell 3 has never contained CCR and groundwater beneath Cell 3 is not influenced by Cells 1 and 2, indicate that LF2 Cells 1 and 2 are not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

# 3.5 LOE #5: Groundwater Quality in Monitoring Wells Downgradient of LF2 Cells 1 and 2 Is Statistically Similar to Groundwater Quality in Monitoring Wells Downgradient of LF2 Cell 3 (Where No CCR Material Has Been Placed)

Box plots graphically represent the range of values of a given dataset using lines to construct a box where the lower line, midline and upper line of the box represent the values of the first quartile, median, and third quartile values, respectively. The minimum and maximum values of the dataset (excluding outliers) are illustrated by whisker lines extending beyond the first and third quartiles of (*i.e.*, below and above) the box. The interquartile range (IQR) is the distance between the first and third quartiles. Outliers (values that are at least 1.5 times the IQR away from the edges of the box) are represented by single points plotted outside of the range of the whiskers. Boron, chloride, and TDS SSIs were identified at all LF2 cells (LF2 Cells 1, 2, and 3) during the D6 sampling event, whereas other SSIs were only identified at either LF2 Cells 1 and 2, or LF2 Cell 3. As noted above, groundwater flow direction indicates that Cell 3 wells are not influenced by Cells 1 and 2, and Cell 3 has never contained CCR.

#### 3.5.1 Boron

Box plots of the boron concentrations observed in LF2 Cells 1 and 2 downgradient monitoring wells (cyan), and LF2 Cell 3 downgradient monitoring wells (blue) are shown in Figure B.



Figure B. Boron Box Plot. Includes LF2 Cells 1 and 2 Downgradient Monitoring Wells (cyan) and LF2 Cell 3 Downgradient Monitoring Wells (blue).

The minimum and maximum boron concentrations in wells downgradient of LF2 Cell 3 ranged from 0.11 to 0.49 mg/L. The minimum and maximum boron concentrations in wells downgradient of LF2 Cells 1 and 2 ranged from 0.041 to 0.28 mg/L. Boron concentrations downgradient of LF2 Cells 1 and 2 were within or below the range of concentrations observed at wells downgradient of LF2 Cell 3.

#### 3.5.2 Chloride

Box plots of the chloride concentrations observed in LF2 Cells 1 and 2 downgradient monitoring wells (cyan), and LF2 Cell 3 downgradient monitoring wells (blue) are shown in Figure C below.

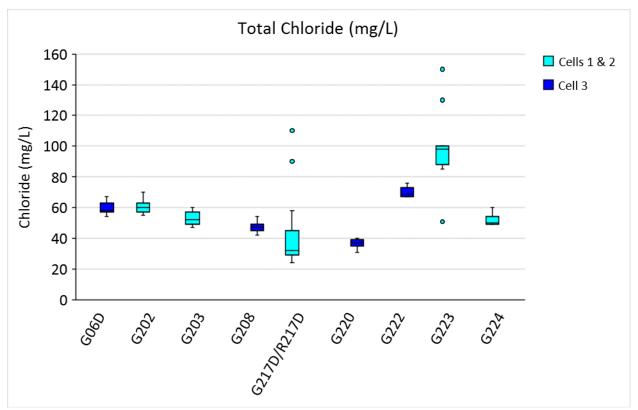



Figure C. Chloride Box Plot. Includes LF2 Cells 1 and 2 Downgradient Monitoring Wells (cyan) and LF2 Cell 3 Downgradient Monitoring Wells (blue).

The minimum and maximum chloride concentrations in wells downgradient of LF2 Cell 3 range from 31 mg/L to 76 mg/L. The minimum and maximum chloride concentrations in wells downgradient of LF2 Cells 1 and 2 range from 24 mg/L to 150 mg/L.

Chloride concentrations downgradient of LF2 Cells 1 and 2 are generally within or below the range of concentrations observed at wells downgradient of LF2 Cell 3. The exceptions are monitoring well G223 and potential statistical outlier concentrations only at G217D/R217D (illustrated with filled symbols outside of the whiskers in Figure C).

#### 3.5.3 Total Dissolved Solids

Box plots of the TDS concentrations observed in LF2 Cells 1 and 2 downgradient monitoring wells (cyan), and LF2 Cell 3 downgradient monitoring wells (blue) are shown in Figure D below.

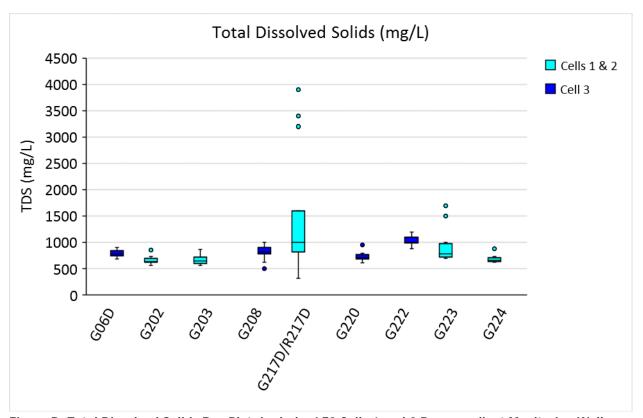



Figure D. Total Dissolved Solids Box Plot. Includes LF2 Cells 1 and 2 Downgradient Monitoring Wells (cyan) and LF2 Cell 3 Downgradient Monitoring Wells (blue).

The minimum and maximum TDS concentrations in wells downgradient of LF2 Cell 3 range from 500 to 1200 mg/L. The minimum and maximum TDS concentrations in wells downgradient of LF2 Cells 1 and 2 range from 320 mg/L to 3900 mg/L.

TDS concentrations downgradient of LF2 Cells 1 and 2 are generally within or below the range of concentrations observed at wells downgradient of LF2 Cell 3. The exceptions (*i.e.*, have concentrations greater than 1200 mg/L) are three data points at monitoring well G217D/R217D (two of which are potential statistical outliers, illustrated with filled symbols outside of the whiskers in Figure D) and one at monitoring well G223 (which is also a potential statistical outlier).

The similarity of groundwater quality downgradient of LF2 Cell 3 and groundwater quality downgradient of LF2 Cells 1 and 2, as represented by the ranges of boron, chloride, and TDS concentrations (Figures B, C, and D respectively), coupled with the fact that no CCR material has been placed in LF2 Cell 3, suggests that LF2 Cells 1 and 2 are not the source of CCR constituents detected in the LF2 groundwater monitoring wells.

#### 4. CONCLUSIONS

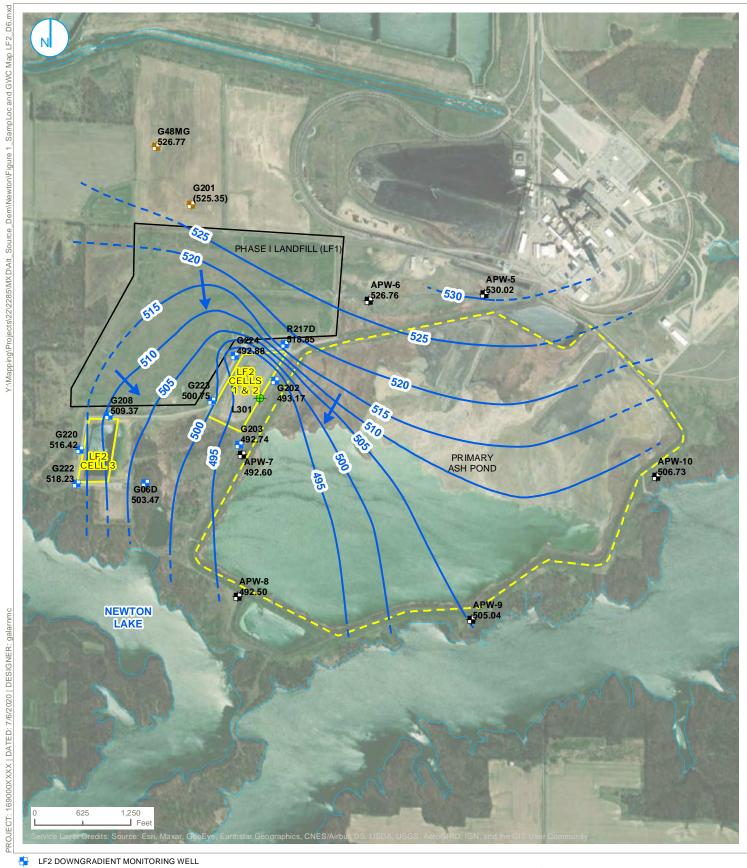
Based on the five LOE below, it has been demonstrated that the boron SSIs at G208, G220, G222, G223, and R217D; the calcium SSI at R217D; the chloride SSIs at G06D, G202, G203, G208, G220, G222, G223, G224, and R217D; the fluoride SSI at G220; and the TDS SSIs at G06D, G222, G223 and R217D are not due to LF2 but are from a source other than the CCR unit being monitored:

- 1. LF2 composite liner design.
- 2. No CCR material has been placed in LF2 Cell 3.
- 3. The ionic composition of groundwater is different than the ionic composition of leachate.
- 4. The ionic composition of groundwater downgradient of LF2 Cells 1 and 2 is similar to the ionic composition of groundwater downgradient of LF2 Cell 3 (where no CCR material has been placed).
- 5. Groundwater quality in monitoring wells downgradient of LF2 Cells 1 and 2 is statistically similar to groundwater quality in monitoring wells downgradient of LF2 Cell 3 (where no CCR material has been placed).

This information serves as the written ASD prepared in accordance with 40 C.F.R. § 257.94(e)(2) that the SSIs observed during D6 were not due to the LF2. Therefore, an assessment monitoring program is not required, and the Newton Landfill 2 will remain in detection monitoring.

#### 5. REFERENCES

Lineback, J., 1979, Quaternary Deposits of Illinois: Illinois State Geological Survey map, scale 1:500,000.


Natural Resource Technology, an OBG Company (NRT/OBG), 2017a, Statistical Analysis Plan, Coffeen Power Station, Newton Power Station, Illinois Power Generating Company, October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017b, Hydrogeologic Monitoring Plan, Newton Primary Ash Pond – CCR Unit ID 501, Newton Landfill 2 – CCR Unit ID 502, Newton Power Station, Canton, Illinois, Illinois Power Generating Company, October 17, 2017.

Willman, H.B., J.C. Frye, J.A. Simon, K.E. Clegg, D.H. Swann, E. Atherton, C. Collinson, J.A. Lineback, T.C. Buschbach, and H.B. Willman, 1967, Geologic Map of Illinois: Illinois State Geological Survey map, scale 1:500,000.

Willman, H.B., E. Atherton, T.C. Buschbach, C. Collinson, J.C. Frye, M.E. Hopkins, J.A. Lineback, and J.A. Simon, 1975, Handbook of Illinois Stratigraphy: Illinois State Geological Survey, Bulletin 95, 261 p.

### **FIGURES**



LF2 UPGRADIENT MONITORING WELL

PRIMARY ASH POND CCR RULE MONITORING

LF2 LEACHATE SAMPLE LOCATION

GROUNDWATER ELEVATION CONTOUR (5-FT CONTOUR INTERVAL, NAVD 88)

INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION SURFACE WATER FEATURE

LF2 CCR UNIT BOUNDARY

PRIMARY ASH POND CCR UNIT BOUNDARY LF1 UNIT BOUNDARY

**SAMPLING LOCATION AND GROUNDWATER ELEVATION CONTOUR MAP FEBRUARY 3, 2020** 

**NEWTON PHASE II LANDFILL (LF2) (UNIT ID: 502)** ALTERNATE SOURCE DEMONSTRATION

VISTRA ENERGY NEWTON POWER STATION NEWTON, ILLINOIS

### FIGURE 1

RAMBOLL US CORPORATION A RAMBOLL COMPANY



| ATTACHMENT 6 - | - SITE HYDROG | EOLOGY AND | O STRATIGRAPI<br>SECTIONS C | HIC CROSS-<br>OF THE SITE |
|----------------|---------------|------------|-----------------------------|---------------------------|
|                |               |            |                             |                           |
|                |               |            |                             |                           |



# CONCEPTUAL SITE MODEL AND DESCRIPTION OF SITE HYDROGEOLOGY (PRIMARY ASH POND)

The Newton Power Station (Power Station) conceptual site model (CSM) and Description of Site Hydrogeology for the Primary Ash Pond (PAP) located near Newton, Illinois is described in the following sections.

#### REGIONAL SETTING

The PAP is located in Jasper County in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton. The PAP lies at the southeastern portion of the Springfield Plain of the Till Plains section, the largest physiographic division in Illinois, covering approximately four-fifths of the state. It is characterized by its flatness and shallowly entrenched drainage. The unlithified geologic deposits in the region range from 100 to 120 feet (ft) thick and are derived from recent river deposition (alluvium), glacial outwash, and glacial till deposits. The unlithified deposits directly overly Pennsylvanian Mattoon Formation bedrock.

The Mattoon Formation is the youngest formation in the Pennsylvanian System in Illinois. It is underlain by the Bond Formation, while the top is mostly an erosional surface overlain by Pleistocene glacial deposits. The Mattoon Formation has a maximum thickness of more than 600 feet in the central part of the Illinois Basin in Jasper County. It is characterized by a complex sequence of thin limestones, coals, black fissile shales, underclays, thick gray shales, and several well-developed sandstones. Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations (Lineback, 1979; Willman et al., 1975). Borings advanced at the Power Station indicate that the elevation of the top of the bedrock surface at the PAP is approximately 400 to 450 ft above mean sea level (msl). The depth to bedrock varies widely in the area owing to the undulatory nature of the eroded upper bedrock surface and ranges from approximately 90 to 120 ft. Logs indicate that the lithology of the uppermost bedrock is mostly shale.

#### SITE GEOLOGY

The unconsolidated deposits occurring at the PAP include the following units (beginning at the ground surface):

- Upper Confining Unit Low permeability clays and silts, including the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east, underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) and Vandalia (Till) Members of the Glasford Formation.
- Uppermost Aquifer Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation.
- Lower Confining Unit Thick, very low permeability silty clay diamictons of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation.
- Bedrock Pennsylvanian-age Mattoon Formation that is mostly shale near the bedrock surface, but is
  characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several
  sandstones. The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in
  depth in the vicinity of the PAP, but is typically encountered at 90 to 120 ft below ground surface (bgs).



Two cross-sections showing the subsurface materials encountered at the PAP is included as an attachment to this demonstration.

#### SITE HYDROGEOLOGY

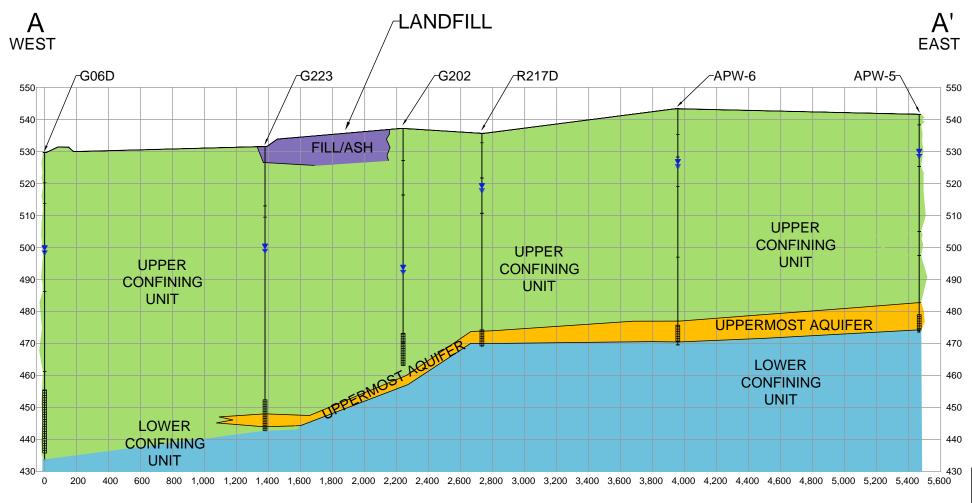
The CCR groundwater monitoring system consists of six monitoring wells installed in the uppermost aquifer and adjacent to the PAP (APW5, APW6, APW7, APW8, APW9 and APW10) (see Monitoring Well Location Map, and Well Construction Diagrams and Drilling Logs attached to this demonstration). The unit utilizes two background monitoring wells (APW5 and APW6) as part of the CCR groundwater monitoring system.

#### **Hydraulic Conductivity**

Hydraulic conductivity/slug tests were completed in wells screened in the unlithified material during prior site investigations and by NRT in April 2017. The hydraulic conductivity values determined from 15 individual monitoring wells within the uppermost aquifer ranged from 3.9 x  $10^{-8}$  to 3.6 x  $10^{-2}$  centimeters per second (cm/s). The geometric mean of the hydraulic conductivity for NRT tested monitoring wells in the Uppermost Aquifer, excluding one outlier, is  $2.5 \times 10^{-4}$  cm/s.

The uppermost unit intercepted in the area of the PAP is the silty to sandy clay of the "Upper Drift", or aquitard, as identified in the Rapps' 1997 landfill investigation and consists of Peoria Silt, Sangamon Soil, and/or Hagarstown Member. The hydraulic conductivity of this unit, as tested at monitoring wells near the landfill with screen depths between 8 and 36 ft bgs (Rapps, 1997), ranged from  $2.4 \times 10^{-6}$  to  $6.1 \times 10^{-5}$  cm/s with a geometric mean of  $1.7 \times 10^{-5}$  cm/s. Three in-situ tests conducted by NRT of the uppermost materials near the Primary Ash Pond, on wells screened between 7 and 20 ft bgs, had a geometric mean hydraulic conductivity of  $1.3 \times 10^{-5}$  cm/s.

#### Groundwater Elevations, Flow Direction and Velocity


Groundwater elevations across the PAP ranged from 491 to 530 ft msl from December 2015 to June 2020. Groundwater flow in the Uppermost Aquifer beneath the eastern portion of PAP is generally to the south toward Newton Lake. The flow direction diverges to the southwest beneath the western portion of the PAP, consistent with groundwater flow in the area converging between the PAP and the Phase 2 Landfill to the west (see Groundwater Contour Maps attached to this demonstration). Calculated groundwater flow velocity based on the January and June 2017 groundwater contours was 0.12 ft/day.

#### **REFERENCES**

Lineback, J., 1979, Quaternary Deposits of Illinois: Illinois State Geological Survey map, scale 1:500,000.

Willman, H.B., E. Atherton, T.C. Buschbach, C. Collinson, J.C. Frye, M.E. Hopkins, J.A. Lineback, and J.A. Simon, 1975, Handbook of Illinois Stratigraphy: Illinois State Geological Survey, Bulletin 95, 261 p.

Rapps Engineering and Applied Science, 1997, Hydrogeologic Investigation and Groundwater Monitoring Program, CIPS – Newton Power Station Landfill, Jasper County, Illinois, in Newton Power Station Landfill, Application for Landfill Permit.





FILL / ASH

UPPER CONFINING UNIT

UPPERMOST AQUIFER

UPPERMOST AQUIFER

**LEGEND** 

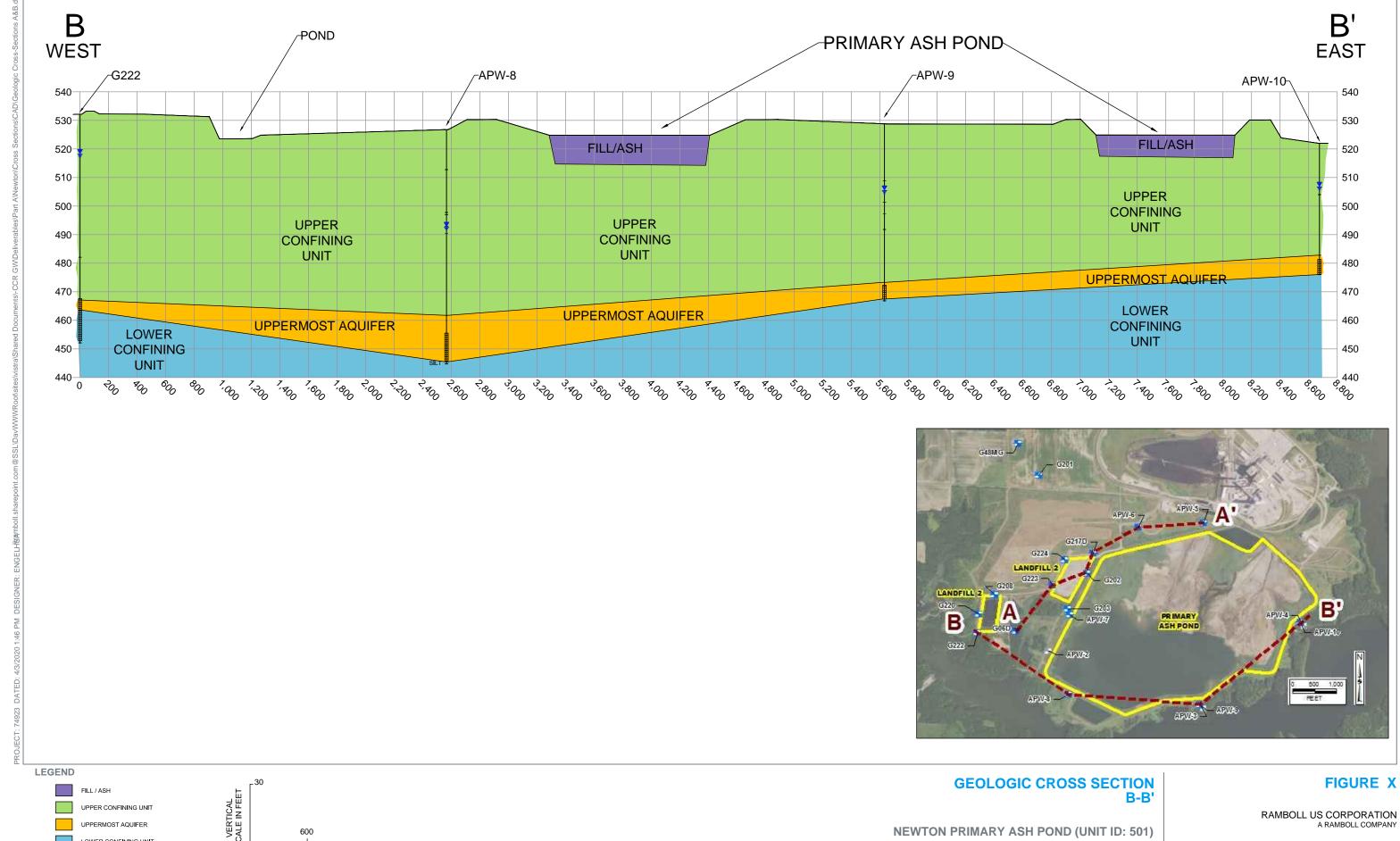
LOWER CONFINING UNIT

WELL SCREEN

GROUNDWATER ELEVATION

HORIZONTAL
SCALE IN FEET

VERTICAL EXAGGERATION =20


### GEOLOGIC CROSS SECTION

NEWTON PRIMARY ASH POND (UNIT ID: 501)
40 C.F.R § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION
NEWTON POWER STATION
NEWTON, ILLINOIS

### FIGURE X

RAMBOLL US CORPORATION A RAMBOLL COMPANY





UPPER CONFINING UNIT

UPPERMOST AQUIFER

LOWER CONFINING UNIT

WELL SCREEN

GROUNDWATER ELEVATION

HORIZONTAL

SCALE IN FEET

VERTICAL EXAGGERATION =20

## B-B'

RAMBOLL US CORPORATION A RAMBOLL COMPANY

**NEWTON PRIMARY ASH POND (UNIT ID: 501)** 40 C.F.R § 257.94(e)(2): ALTERNATE SOURCE DEMONSTRATION NEWTON POWER STATION NEWTON, ILLINOIS



## **OBG**

# **Hydrogeologic Monitoring Plan**

Newton Primary Ash Pond – CCR Unit ID 501

Newton Landfill 2 – CCR Unit ID 502

Newton Power Station Canton, Illinois

### **Illinois Power Generating Company**

October 17, 2017



OCTOBER 17, 2017 | PROJECT #2285

OBG

### **Hydrogeologic Monitoring Plan**

Newton Primary Ash Pond – CCR Unit ID 501 Newton Landfill 2 – CCR Unit ID 502

Newton Power Station Canton, Illinois

Prepared for: Illinois Power Generating Company

STUART J. CRAVENS, PG Principal Hydrogeologist

ROBERT J KARNAUSKAS, PG, PH Principal Hydrogeologist

### **TABLE OF CONTENTS**

| LIS | ST OF T            | ABLES                                               | ii |
|-----|--------------------|-----------------------------------------------------|----|
| LIS | ST OF F            | IGURES                                              | ii |
| LIS | ST OF A            | PPENDICES                                           | ii |
|     |                    | MS AND ABBREVIATIONS                                |    |
| 1   | INTR               | ODUCTION                                            | 1  |
| 1   | 1.1 0 <sup>-</sup> | verview                                             | 1  |
| 1   | 1.2 Pı             | evious Investigations and Reports                   | 1  |
| 1   | 1.3 Si             | te Location and Description                         | 2  |
| 1   | 1.4 D              | escription of CCR management units                  | 2  |
|     | 1.4.1              | Newton Primary Ash Pond (CCR Unit ID 501)           | 2  |
|     | 1.4.2              | Newton Landfill 2 (CCR Unit ID 502)                 | 2  |
| 2   | GEOL               | OGY AND HYDROGEOLOGY                                | 3  |
| 2   | 2.1 G              | eology                                              | 3  |
|     | 2.1.1              | Regional Setting                                    | 3  |
|     | 2.1.2              | Site Geology                                        | 3  |
|     | 2.1.               | 2.1 Ash/Fill Units                                  | 4  |
|     | 2.1.               | 2.2 Cahokia Formation                               | 4  |
|     | 2.1.               | 2.3 Peoria Silt (Loess Unit)                        | 4  |
|     | 2.1.               | 2.4 Sangamon Soil                                   | 4  |
|     | 2.1.               | 2.6 Vandalia (Till) Member                          | 4  |
|     | 2.1.               | 2.7 Mulberry Grove Member                           | 4  |
|     | 2.1.               | 2.8 Smithboro (Till) Member                         | 4  |
|     | 2.1.               | 2.9 Banner Formation                                | 5  |
| 2   | 2.2 H              | ydrogeology                                         | 5  |
|     | 2.2.1              | Uppermost Aquifer                                   | 5  |
|     | 2.2.2              | Lower Limit of Aquifer                              | 5  |
|     | 2.2.3              | Hydraulic Conductivity                              | 5  |
|     | 2.2.4              | Groundwater Elevations, Flow Direction and Velocity | 6  |
| 3   | GROU               | NDWATER MONITORING                                  | 7  |
|     | 3.1                | CCR Monitoring Well Network                         | 7  |
| RF  | FEREN              | CES                                                 | 9  |

## NEWTON POWER STATION | HYDROGEOLOGIC MONITORING PLAN TABLE OF CONTENTS

#### **LIST OF TABLES**

Table 1 Vertical Gradients

Table 2 Groundwater Flow Velocities

Table 3 CCR Groundwater Monitoring Well Information (In Text)

#### **LIST OF FIGURES**

Figure 1 Site Location Map

Figure 2 Groundwater Sampling Well Location Map

#### **LIST OF APPENDICES**

Appendix A Geologic Cross Sections

Appendix B Geotechnical Exploration Locations and Laboratory Test Results

Appendix C Hydraulic Conductivity/Slug Test Results
Appendix D Groundwater Elevation Contour Maps



#### **ACRONYMS AND ABBREVIATIONS**

bgs below ground surface
CCR coal combustion residual
CFR Code of Federal Regulations
cm/s centimeters per second
CPT Cone Penetrometer Test

ft feet

ft/ft feet per feet

ft MSL feet above Mean Sea Level HMP Hydrogeologic Monitoring Plan

ID Identification number

IEPA Illinois Environmental Protection Agency
IPGC Illinois Power Generating Company
ISGS Illinois State Geological Survey

NPS Newton Power Station

NRT Natural Resource Technology, an OBG Company

PWS Public Water Supply

RCRA Resource Conservation and Recovery Act

SAP Sampling and Analysis Plan

USEPA United States Environmental Protection Agency

#### 1 INTRODUCTION

#### 1.1 OVERVIEW

This Hydrogeologic Monitoring Plan (HMP) has been prepared by Natural Resource Technology, an OBG Company (NRT) to provide background information necessary to support the monitoring well network established for development of the Sampling and Analysis Plan (SAP) requirements of the United States Environmental Protection Agency (USEPA) Final Rule to regulate the disposal of Coal Combustion Residual (CCR) as solid waste under Subtitle D of the Resource Conservation and Recovery Act (RCRA) [40 CFR 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015] for the Newton Power Station, Jasper County, Illinois. The Newton Power Station is owned by Illinois Power Generating Company (IPGC). This HMP will apply specifically to the following CCR Units: Newton Primary Ash Pond (CCR Unit ID 501) and Newton Landfill 2 (CCR Unit ID 502), as defined further below.

#### 1.2 PREVIOUS INVESTIGATIONS AND REPORTS

Numerous hydrogeologic investigations have been performed concerning the CCR Units located at the Newton Power Station. The information presented in this HMP includes data collected in support of the monitoring well network established for development of the Sampling and Analysis Plan (SAP) and supplements comprehensive data collection and evaluations from prior hydrogeologic investigation reports (most recent to oldest), including, but not limited to, the following:

- Rapps Engineering and Applied Science, April 10 2013, Phase I Hydrogeological Assessment Report, Coal Combustion Product Impoundment, Ameren Energy Generating Company, Newton Energy Center, Jasper County, Illinois. A hydrogeologic study to assess the potential for constituent migration from this impoundment. Report includes: water well survey, development of a groundwater monitoring plan, and an initial groundwater quality assessment. This report summarizes hydrogeologic information pertinent to the site, evaluates groundwater quality data to determine if operation of the impoundment has adversely affected groundwater, and makes recommendations for future actions related to groundwater quality management.
- Geotechnology, Inc., February 8, 2011, Initiation of Monitoring Report, Ameren, Newton Power Station, Newton, Illinois. This report documents the results of the monitoring well installation and groundwater monitoring activities performed at the site. Three wells were installed, developed and sampled.
- Rapps Engineering and Applied Science, November 2009, Site Characterization and Groundwater Monitoring Plan for CCP Impoundment, Ameren Energy Generating Company, Newton Power Station, Jasper County, Illinois. Hydrogeologic study and groundwater monitoring plan to assess the potential for constituent migration from this impoundment. Includes an assessment of subsurface hydrogeologic conditions at the site, identification of private, potable water wells and oil and gas wells within 2,500 feet of the facility, public water supply (PWS) wells within 10 miles of the facility, and plans for a groundwater monitoring well network designed to characterize and monitor groundwater quality.
- Rapps Engineering and Applied Science, 1997, Hydrogeologic Investigation and Groundwater Monitoring Program, Newton Power Station, Jasper County, Illinois. Investigation presents site-specific data obtained through the completion of approximately 40 borings, 20 monitoring wells, and review of regional information and an evaluation of subsurface data from nearby residential wells. Part of Application for Landfill Permit Rapps 1997.

The HMP supports the monitoring well network established for development of the SAP and provides the following background information:

- Site Geology and Hydrogeology
- Aguifer Properties
- Monitoring Network Placement and Rationale



#### 1.3 SITE LOCATION AND DESCRIPTION

The Newton Power Station (NPS) is located in Jasper County in the southeastern part of central Illinois, approximately 7 miles southwest of the town of Newton (Figure 1). The plant is located on the north side of Newton Lake and has one active CCR impoundment (Newton Primary Ash Pond) located in Section 26 and the western half of Section 25, Township 6 North, Range 8 East. The site also contains the Newton Landfill 2, located in the western half of Section 26 and eastern half of Section 27, Township 6 North, Range 8 East. The area is also bounded by agricultural land and Newton Lake to the west, south, and east. Beyond the lake is additional agricultural land.

#### 1.4 DESCRIPTION OF CCR MANAGEMENT UNITS

The CCR Units at the Newton Power Station, including the Newton Primary Ash Pond (CCR Unit ID 501) and the Newton Landfill 2 (CCR Unit ID 502), will hereafter be referred to as the 'Site'.

#### 1.4.1 Newton Primary Ash Pond (CCR Unit ID 501)

The NPS's sole CCR impoundment, consisting of a Primary Ash Pond, was constructed in 1977 and has a design capacity of approximately 9,715 acre-feet for the primary pond. There is also a non-CCR 83.6 acre-feet Secondary Pond. The Primary Ash Pond has a surface area of 400 acres and a height of approximately 71 feet above grade. The Secondary Pond has an area of 9.3 acres and a height of approximately 29 feet above grade. The Primary Ash Pond currently receives bottom ash, fly ash, and low-volume wastewater (LVW) from the plant's two coal-fired boilers. The CCR impoundment is operated per NPDES Permit IL0049191, Outfall 001. The impoundment was not excavated during construction except for native materials used to build the containment berms.

#### 1.4.2 Newton Landfill 2 (CCR Unit ID 502)

Newton Landfill 2 includes two cells, Phase I (west) cell and Phase II (east) cell. The Phase I cell, built around 1977, was unlined, and accepted sodium-based flue gas desulfurization (FGD) wastes. Phase I was closed in 1999 with a 40-millimeter thick geomembrane cap and currently has a Groundwater Management Zone (GMZ) established. Following a switch by the NPS to western coal in 1997, the Phase II cell began receiving coal ash that same year; a portion of the Phase II cell is still operational. The Phase II cell has a geomembrane liner with a leachate collection system.



#### 2 GEOLOGY AND HYDROGEOLOGY

The results of the site characterization activities performed at the Site are discussed below.

#### 2.1 GEOLOGY

Geologic units present at the Site include fill, ash generated at the site, unlithified alluvial sediments, unlithified glacial deposits, and Pennsylvanian-age bedrock.

#### 2.1.1 Regional Setting

Illinois is situated in the south-central part of the great Central Lowland Province near the confluence of two major lines of drainage, the Mississippi and Ohio Rivers (Leighton et al., 1948). The NPS lies at the southeastern portion of the Springfield Plain of the Till Plains section, the largest physiographic division in Illinois, covering approximately four-fifths of the state. It is characterized by its flatness and shallowly entrenched drainage. Drainage systems are well developed, and the district is in a late youthful stage of dissection.

The unlithified geologic deposits in the region range from 100 to 120 feet (ft) thick and are derived from recent river deposition (alluvium), glacial outwash, and glacial till deposits. The unlithified deposits directly overly Pennsylvanian Mattoon Formation bedrock. The Mattoon Formation is the youngest formation in the Pennsylvanian System in Illinois. It is underlain by the Bond Formation, while the top is mostly an erosional surface overlain by Pleistocene glacial deposits. The Mattoon Formation has a maximum thickness of more than 600 feet in the central part of the Illinois Basin in Jasper County. It is characterized by a complex sequence of thin limestones, coals, black fissile shales, underclays, thick gray shales, and several well developed sandstones. The lateral extent of many of the named units has not been determined due to widely scattered outcrops and scarce subsurface data. However, coals and limestone units are considered to be as persistent as those in the underlying Bond Formation.

Borings advanced at the NPS as part of a hydrogeologic site investigation for a CCP landfill indicate that the elevation of the top of the bedrock surface at the site is approximately 400 to 450 ft MSL. The depth to bedrock varies widely in the area owing to the undulatory nature of the eroded upper bedrock surface and ranges from approximately 90 to 120 ft. Logs indicate that the lithology of the uppermost bedrock is mostly shale.

#### 2.1.2 Site Geology

The geology has been evaluated during previous hydrogeologic investigations and groundwater quality assessments since the first borings and monitoring wells were installed. Quaternary deposits in the Newton area consist mainly of diamictons and outwash deposits that were deposited during Illinoian and Pre-Illinoian glaciations. The unconsolidated deposits which occur at Newton Power Station include the following units (beginning at the ground surface):

- Ash/Fill Units CCR and fill within the various CCR Units
- Upper Confining Unit Low permeability clays and silts, including the Peoria Silt (Loess Unit) in upland areas and the Cahokia Formation in the flood plain and channel areas to the south and east, underlain by the Sangamon Soil, and the predominantly clay diamictons of the Hagarstown (Till) Member of the Pearl Formation and the Vandalia (Till) Member of the Glasford Formation
- Uppermost Aquifer (Groundwater Monitoring Zone) Thin to moderately thick (3 to 17 ft), moderate to high permeability sand, silty sand, and sandy silt/clay units of the Mulberry Grove Member of the Glasford Formation
- Lower Confining Unit Thick, very low permeability silty clay diamicton of the Smithboro (Till) Member of the Glasford Formation and the silty clay diamictons of the Banner Formation
- Bedrock Pennsylvanian-age Mattoon Formation that is mostly shale near the bedrock surface, but is characterized at depth by a complex sequence of shales, thin limestones, coals, underclays, and several

sandstones. The erosional surface of the Pennsylvanian-age Mattoon Formation bedrock ranges widely in depth in the vicinity of the site, but is typically encountered at 90 to 120 ft below ground surface (bgs).

The major unconsolidated materials present at the site are discussed in greater detail below:

#### 2.1.2.1 Ash/Fill Units

Ash is present within the Newton Primary Ash Pond as well as the Newton Landfill 2. The majority of ash fill at the Newton Primary Ash Pond lies on top of the loess and clay.

#### 2.1.2.2 Cahokia Formation

The Cahokia Formation of the Holocene Stage consists of deposits in floodplains and channels of modern rivers and streams and consists of mostly poorly sorted sand, silt, and clay with wood and shell fragments and local deposits of sandy gravel. The Cahokia is likely present in the Big Muddy Creek valley west of the site and along the bottom of Newton Lake to the east, which used to be the bottomland for Law Creek (Lineback, 1979; Berg and Kempton, 1987).

#### 2.1.2.3 Peoria Silt (Loess Unit)

The Peoria Silt is a Loess Unit which extends from beneath the topsoil, derived from the loess, to the top of the Hagarstown Member. The loess, ranging in thickness from 3 to 9 ft where present, has been described as silt, clayey silt, and silty clay. The Loess Unit is generally considered unsaturated.

#### 2.1.2.4 Sangamon Soil

The Sangamon Soil formed between the interglacial period between the Illinoian and Wisconsinan stages of glaciation as a result of weathering of the upper portion of the Illinoian drift. This layer occurs throughout the site and consists of approximately 2 to 6 ft of light brown to light gray silty clay

#### 2.1.2.5 Hagarstown (Till) Member

The Hagarstown Member (also referred to as Hagarstown Beds) of the Pearl Formation, consists of clay till with varying amounts of sand and gravel. Where present at the site, the clay till ranges in thickness from 3 to over 24 ft. Where present, the sandy portion of the Hagarstown is generally less than 5 ft thick. The composition of the sandy portion of the Hagarstown unit varies across the site and was classified as gravelly till, poorly sorted gravel, well sorted gravel, sand and silty sand.

#### 2.1.2.6 Vandalia (Till) Member

The Vandalia Member is a sandy/silty till with thin, discontinuous lenses of silt, sand, and gravel. The Vandalia Till was encountered in all borings advanced at the site. The Vandalia Till typically ranges in thickness from 20 to 60 ft. Results from laboratory tests completed for vertical hydraulic conductivity indicate the Vandalia unit has a very low vertical hydraulic conductivity.

#### 2.1.2.7 Mulberry Grove Member

As described by Willman et al. (1975), the Mulberry Grove Member of the Glasford Formation typically consists of a thin, lenticular unit of gray sandy silt (Willman et al., 1975). It represents the interval between the retreat of the glacier that deposited the Smithboro Member and the advance of the glacier that deposited the Vandalia Member. At the site, the Mulberry Grove Member consists of fine to coarse sand with varying amounts of silt and small to large gravel. The portion of the Mulberry Grove Member at the site that is defined as a sand layer ranges in thickness from 3 to 17 ft with an average thickness of 8 ft. This unit generally occurs across the site at depths between 55 and 88 ft bgs.

#### 2.1.2.8 Smithboro (Till) Member

The Smithboro Member is described as a gray, compact, silty-clay diamicton. The Smithboro Member typically ranges in thickness from 10 to 20 ft.



#### 2.1.2.9 Banner Formation

The Banner Formation consists of pre-Illinoian undifferentiated diamictons and intercalated sand and gravel outwash that generally rest directly on bedrock. The Banner Formation is approximately 20 to 30 ft thick at the site and consist of greenish-gray silty clay with traces of sand.

| Name                      | Age            | Description                                                                                                                                                                                                                             |
|---------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cahokia                   | Holocene       | poorly sorted sand, silt, and clay (alluvial)                                                                                                                                                                                           |
| Peoria Silt               | Wisconsinan    | sandy silt along bluffs to clayey silt away from bluffs; local lenses of fine to med grained sand; 3-9 ft thick                                                                                                                         |
| Sangamon Soil             | Sangamonian    | light brown to light gray silty clay; weathered upper portion of Illinoisan drift; 2.5-5.5 ft thick                                                                                                                                     |
| Member Illinoisan brown s |                | gravel, sand, and gravelly diamicton; 3-24' thick where present; reddish-<br>brown silty clay with some sand and gravel; surface at 510 to 532 ft; can also<br>be gravelly till with poorly sorted gravel, well sorted gravel, and sand |
| Illinoisan 9 7            |                | gray silty to sandy clay diamicton with traces sand and gravel; thin lenses of silt, sand, and gravel; 20-60 ft thick                                                                                                                   |
| Mulberry Grove            | Illinoisan     | fine to coarse sand with varying amounts of silt and fine to coarse gravel; 3 - 17 ft thick; may contain lenses of silt, sand and gravel                                                                                                |
| Smithboro<br>Member       | Illinoisan     | gray, silty clay diamicton w/ traces sand and gravel; 10-20 ft thick                                                                                                                                                                    |
| Banner<br>Formation       | pre-Illinoisan | undifferentiated diamictons; greenish-gray moist silty clay with traces of sand; 20-30 ft thick                                                                                                                                         |

#### 2.2 HYDROGEOLOGY

The information used to describe the hydrogeology is based on the local geology obtained from published sources, hydrogeologic investigation data, and boring data collected during monitoring well installation.

#### 2.2.1 Uppermost Aquifer

The uppermost aquifer is the Mulberry Grove Member, typically consisting of fine to coarse sand with varying amounts of clay, silt and fine to coarse gravel. The portion of the Mulberry Grove Member at the site that is defined as a sand layer ranges in thickness from 3 to 17 ft. with an average thickness of 8 ft and with only a few exceptions occurs between depths of 55 to 88 ft bgs.

#### 2.2.2 Lower Limit of Aquifer

The lower hydrostratigaphic units consist of the Smithboro Member and the Banner Formation, both of which are predominantly low permeability clay diamictons with varying amounts of silt, sand and gravel. The lower unlithified confining unit is 30 to more than 50 ft thick above the underlying bedrock.

#### 2.2.3 Hydraulic Conductivity

Hydraulic conductivity/slug tests were completed in wells screened in the unlithified material during prior site investigations and by NRT in April 2017. The hydraulic conductivity values determined from 15 individual monitoring wells (Appendix C) within the uppermost aquifer (Mulberry Grove Member) ranged from  $3.9 \times 10^{-8}$  to  $3.6 \times 10^{-2}$  centimeters per second (cm/s). The geometric mean of the hydraulic conductivity for NRT tested monitoring wells in the Uppermost Aquifer, excluding one outlier, is  $2.5 \times 10^{-4}$  cm/s. Monitoring wells around the Primary Ash Pond had a geometric mean hydraulic conductivity of  $1.2 \times 10^{-3}$  cm/s and those around Landfill 2, excluding one outlier, had a geometric mean hydraulic conductivity of  $7.4 \times 10^{-5}$  cm/s. Field hydraulic conductivity test results reported by Rapps (1997) for six locations near Landfill 1 ranged from  $2.5 \times 10^{-6}$  to  $6.0 \times 10^{-3}$  cm/s with a geometric mean of  $9.8 \times 10^{-4}$  cm/s.

#### NEWTON POWER STATION | HYDROGEOLOGIC MONITORING PLAN 2 GEOLOGY AND HYDROGEOLOGY

The uppermost unit intercepted in the area of the Primary Ash Pond and Landfill 2 is the silty to sandy clay of the "Upper Drift", or aquitard, as identified in the Rapp's 1997 landfill investigation and consists of Peoria Silt, Sangamon Soil, and/or Hagarstown Member. The hydraulic conductivity of this unit, as tested at monitoring wells near the landfill with screen depths between 8 and 36 ft bgs (Rapps, 1997), ranged from  $2.4 \times 10^{-6}$  to  $6.1 \times 10^{-5}$  cm/s with a geometric mean of  $1.7 \times 10^{-5}$  cm/s. Three in-situ tests conducted by NRT of the uppermost materials near the Primary Ash Pond, on wells screened between 7 and 20 ft bgs, had a geometric mean hydraulic conductivity of  $1.3 \times 10^{-5}$  cm/s. Laboratory testing results for five soil samples collected from depths of 20 to 32 ft bgs in the underlying Vandalia Member (Rapps, 1997) ranged from  $6.3 \times 10^{-9}$  to  $2.1 \times 10^{-8}$  cm/s with a geometric mean hydraulic conductivity of  $1.1 \times 10^{-8}$  cm/s.

The hydraulic conductivity value determined from one field (i.e. in-situ) test of the upper part of the Lower Confining Unit by Rapps (1997), at a depth of 79 to 87 ft bgs, was  $1.4 \times 10^{-7}$  cm/s.

#### 2.2.4 Groundwater Elevations, Flow Direction and Velocity

Seasonal variation of groundwater levels and flow direction at the Landfill is indicated in the series of 2015-2017 groundwater elevation contour maps (Appendix D). Groundwater elevations across Landfill 2 ranged from approximately 441 to 520 ft MSL (NAVD88) from 2015 to 2017. Overall groundwater flow beneath the two phases of Landfill 2 within the uppermost aquifer is southward toward Newton Lake, but with predominantly eastward flow under Phase I (west phase of Landfill 2) and an east and south component of flow under Phase II (east phase of Landfill 2). Horizontal hydraulic gradients (Table 1) were moderate at 0.016 ft/ft. Calculated groundwater flow velocity based on the January and June 2017 groundwater contour maps was 1.42 ft per day (ft/day).

Seasonal variation of groundwater levels and flow direction at the Primary Ash Pond is indicated in the series of 2015-2017 groundwater elevation contour maps (Appendix D). Groundwater elevations across the GMF Pond ranged from approximately 492 to 508 ft MSL. Groundwater flow across Primary Ash Pond within the uppermost aquifer is consistently in a south to southwest direction toward Newton Lake. Horizontal hydraulic gradients (Table 1) were low at 0.007 ft/ft. Calculated groundwater flow velocity based on the January and June 2017 groundwater contour maps was 0.12 ft/day.

Vertical hydraulic gradients as measured between shallow water table wells and uppermost aquifer monitoring wells was consistently downward at both the Landfill 2 and the Primary Ash Pond (Table 1).



#### 3 GROUNDWATER MONITORING

In August 2015, NRT began an assessment of the existing monitoring well network(s) at the Newton Power Station with respect to the existing CCR units. Included in the assessment was a review of the current placement and number of monitoring wells with respect to individual and contiguous CCR units as well as potential locations for new monitoring wells, as appropriate. The discussion below summarizes the results of this assessment and the supplemental well installations.

#### 3.1 CCR Monitoring Well Network

The 40 CFR Part 257 well network consists of seventeen monitoring wells installed in the uppermost aquifer and adjacent to the Newton Landfill 2 (G06D, G48MG, G201, G202, G203, G208, G217D, G220, G222, G223, G224) and the Newton Primary Ash Pond (APW5, APW6, APW7, APW8, APW9, APW10). The Site utilizes four upgradient (or background) monitoring wells (APW5, APW6, G201, and G48MG) as part of their CCR monitoring well network. The boring logs, well construction forms and other related monitoring well forms are available in the Operating Records as required by Title 40 CFR Part 257 Section 257.91 for each monitored CCR Unit. Sampling of these wells commenced December 2015. The 40 CFR Part 257 groundwater monitoring network well locations are shown on Figure 1. Details on the procedures and techniques used to fulfill the groundwater sampling and analysis program requirements are found in the SAPs for Newton Power Station. The well depths, well screen intervals, depth to groundwater and monitored units at the 40 CFR Part 257 monitoring well network locations are summarized below:

**Table 3: CCR Groundwater Monitoring Well Information** 

|                | Primary Ash Pond Monitoring Well Information (Unit ID: 501) |                                  |                            |                                     |                             |  |  |
|----------------|-------------------------------------------------------------|----------------------------------|----------------------------|-------------------------------------|-----------------------------|--|--|
| Well<br>Number | Well Depth<br>(ft bgs)                                      | Well Screen Interval<br>(ft bgs) | Depth to Water<br>(ft bgs) | Unit Monitored                      | Screened Interval Lithology |  |  |
| APW5           | 68                                                          | 63-68                            | 13.89                      | Upgradient<br>Shallow Unlithified   | Sand                        |  |  |
| APW6           | 74                                                          | 68-73                            | 19.21                      | Upgradient<br>Shallow Unlithified   | Sand                        |  |  |
| APW7           | 83                                                          | 78-83                            | 45.05                      | Downgradient<br>Shallow Unlithified | Sand                        |  |  |
| APW8           | 82                                                          | 71-81                            | 35.29                      | Downgradient<br>Shallow Unlithified | Sand                        |  |  |
| APW9           | 62                                                          | 56-61                            | 26.00                      | Downgradient<br>Shallow Unlithified | Sand                        |  |  |
| APW10          | 46                                                          | 41-46                            | 16.98                      | Downgradient<br>Shallow Unlithified | Sand                        |  |  |

# NEWTON POWER STATION | HYDROGEOLOGIC MONITORING PLAN 3 GROUNDWATER MONITORING

| Landfill 2 Monitoring Well Information (Unit ID: 502) |                            |                                  |                                   |                                     |                                |  |
|-------------------------------------------------------|----------------------------|----------------------------------|-----------------------------------|-------------------------------------|--------------------------------|--|
| Well<br>Number                                        | Well Depth<br>(ft bgs)     | Well Screen Interval<br>(ft bgs) | Depth to Water<br>(ft bgs)        | Unit Monitored                      | Screened Interval<br>Lithology |  |
| G06D                                                  | 96                         | 74-94                            | 30.12                             | Downgradient<br>Shallow Unlithified | Clay                           |  |
| G48MG                                                 | 77                         | 71.5-76.5                        | 18.59                             | Upgradient<br>Shallow Unlithified   | Sand                           |  |
| G201                                                  | <b>G201</b> 69 59-69 18 54 |                                  | Upgradient<br>Shallow Unlithified | Sand                                |                                |  |
| G202                                                  | 74                         | 64-74                            | 43.21                             | Downgradient<br>Shallow Unlithified | Clay/Gravel                    |  |
| G203                                                  | 73                         | 63-73                            | 37.60                             | Downgradient<br>Shallow Unlithified | Sand/Silt                      |  |
| G208                                                  | 95                         | 74-94                            | 19.13                             | Downgradient<br>Shallow Unlithified | Silty Clay                     |  |
| G217D                                                 | 69.3                       | * - 69.3                         | 16.14                             | Downgradient<br>Shallow Unlithified | N/A*                           |  |
| G220                                                  | 87                         | 76-86                            | 16.59                             | Downgradient<br>Shallow Unlithified | Silt/Sand                      |  |
| G222                                                  | 80                         | 64-79                            | 14.09                             | Downgradient<br>Shallow Unlithified | Silty Clay/Sand                |  |
| G223                                                  | 89                         | 79-89                            | 33.64                             | Downgradient<br>Shallow Unlithified | Silty/ Clay/Silty<br>Sand      |  |
| G224                                                  | 74                         | 63-73                            | 41.73                             | Downgradient<br>Shallow Unlithified | Silty Sand/Sand                |  |

Notes:

Groundwater depth measurements were collected June 12, 2017.

NM indicates groundwater depth was not measured.



<sup>\*</sup>boring log not available for review

#### **REFERENCES**

Berg, R.C., and J.P. Kempton, 1987, Stack-Unit Mapping of Geologic Materials in Illinois to a Depth of 15 Meters: Illinois State Geological Survey, Circular 542, 23 p.

Berg, R.C., J.P. Kempton, and K. Cartwright, 1984, Potential for Contamination of Shallow Aquifers in Illinois: Illinois State Geological Survey, Circular 532, 30 p.

Geotechnology, Inc., 2011, Initiation of Monitoring Report, Ameren – Newton Power Station, Project No. J017150.01, February 8, 2011.

Hansel, A.K., and W.H. Johnson, 1996, Wedron and Mason Groups: Lithostratigraphic Reclassification of Deposits of the Wisconsin Episode, Lake Michigan Lobe Area: Illinois State Geological Survey, Bulletin 104, 116 p.

Sanders, L. L., 1998. A Manual of Field Hydrogeology, Prentice Hall, Inc.

Jacobs, A.M., and J.A. Lineback, 1969, Glacial Geology of the Vandalia, Illinois, Region: Illinois State Geological Survey, Circular 442, 24 p.

Killey, M.M., and J.A. Linback, 1983, Stratigraphic Reassignment of the Hagarstown Member in Illinois: Illinois State Geological Survey, Circular 529, pp. 13-16.

Kolata, D.R., 2005, Bedrock Geology of Illinois: Illinois State Geological Survey map, scale 1:500,000.

Leighton, M.M., G.E. Ekblaw, and L. Horberg, 1948, Physiographic Divisions of Illinois: Illinois State Geological Survey, Report of Investigations 129, 19 p.

Lineback, J., 1979, Quaternary Deposits of Illinois: Illinois State Geological Survey map, scale 1:500,000.

Rapps Engineering and Applied Science, 1997, Hydrogeologic Investigation and Groundwater Monitoring Program, CIPS – Newton Power Station Landfill, Jasper County, Illinois, <u>in</u> Newton Power Station Landfill, Application for Landfill Permit.

Rapps Engineering and Applied Science, 2009, Site Characterization and Groundwater Monitoring Plan for CCP Impoundment, Newton Power Station, November 2009.

Selkregg, L.F., W.A. Pryor, and J.P. Kempton, 1957, Groundwater Geology in South-Central Illinois: Illinois State Geological Survey, Circular 225, 30 p.

USEPA, 2015, Disposal of Coal Combustion Residuals from Electric Utilities, Final Rule, 40 CFR Parts 257 and 261, Hazardous and Solid Waste Management System, April 2015.

Willman, H.B., and J.C. Frye, 1970, Pleistocene Stratigraphy of Illinois: Illinois State Geological Survey, Bulletin 94, 204 p.

Willman, H.B., J.C. Frye, J.A. Simon, K.E. Clegg, D.H. Swann, E. Atherton, C. Collinson, J.A. Lineback, T.C. Buschbach, and H.B. Willman, 1967, Geologic Map of Illinois: Illinois State Geological Survey map, scale 1:500,000.

Willman, H.B., E. Atherton, T.C. Buschbach, C. Collinson, J.C. Frye, M.E. Hopkins, J.A. Lineback, and J.A. Simon, 1975, Handbook of Illinois Stratigraphy: Illinois State Geological Survey, Bulletin 95, 261 p.



### **Tables**

OBG

**Table 1. Vertical Gradients Newton Power Station** January 2017 and June 2017 **Hydrogeologic Monitoring Plan** 

| Date 06/12/2017 |                          |                        |                  |                   |                                         |      |  |  |
|-----------------|--------------------------|------------------------|------------------|-------------------|-----------------------------------------|------|--|--|
|                 | Groundwater<br>Elevation |                        |                  | Dist. Change (dL) | Vertical Hydraulic Gradient<br>(dH/dL)* |      |  |  |
| APW-7           | 493.32                   | 455.92                 | 2.10             | 2.10 7.55         |                                         | down |  |  |
| G203            | 495.42                   | 463.47                 | 2.10             | 7.55              | 0.278                                   | down |  |  |
| APW-9           | 505.52                   | 469.76                 | 18.85            | 40.05             |                                         | down |  |  |
| APW-3           | 524.37                   | 513.80                 | 10.05            | 44.04             | 0.428                                   | down |  |  |
| APW-10          | 507.27                   | 478.84                 | 2.54             | 00.00             | 0.084                                   | down |  |  |
| APW-4           | 509.81                   | 508.90                 | 2.54             | 30.06             |                                         |      |  |  |
|                 |                          |                        |                  |                   |                                         |      |  |  |
| Date            |                          |                        | 01/16/20         | 17                |                                         |      |  |  |
|                 | Groundwater<br>Elevation | Reference<br>Elevation | Head Change (dH) | Dist. Change (dL) | Vertical Hydraulic Gradier<br>(dH/dL)*  |      |  |  |
| APW-7           | 492.98                   | 455.92                 | 0.04             | 7.55              | 0.005                                   | down |  |  |
| G203            | 493.02                   | 463.47                 | 0.04             |                   |                                         |      |  |  |
| APW-9           | 505.67                   | 469.76                 | 20.93            | 44.04             | 0.475                                   | down |  |  |
| APW-3           | 526.60                   | 513.80                 | 20.93            |                   |                                         |      |  |  |
| APW-10          | 506.96                   | 478.84                 | 14.05            | 30.06             | 0.467                                   | down |  |  |
|                 |                          |                        |                  |                   |                                         |      |  |  |

Notes:

1. The reference point is equal to the water elevation when the water table intersects the screen, or the screen midpoint if the screen is submerged.

\*: Vertical gradients less than ±0.0015 are considered flat, and they typically have less than 0.02 foot difference between wells

#### Table 2. Groundwater Flow Velocities Newton Power Station January 2017 and June 2017 Hydrogeologic Monitoring Plan

| 6/12/2017 (Round 8)     |                                          |                                   |                    |                   |  |  |  |  |
|-------------------------|------------------------------------------|-----------------------------------|--------------------|-------------------|--|--|--|--|
|                         | Average Hydraulic<br>Conductivity (cm/s) | Horizontal Hydraulic<br>Gradient* | Effective Porosity | Velocity (ft/day) |  |  |  |  |
| Newton Primary Ash Pond | 1.2E-03                                  | 0.007                             | 0.2                | 0.12              |  |  |  |  |
| Newton Landfill 2       | 7.4E-05                                  | 0.016                             | 0.2                | 1.42              |  |  |  |  |
|                         | 1/16/2017 (Round 6)                      |                                   |                    |                   |  |  |  |  |
|                         | Average Hydraulic Horizontal Hydraulic   |                                   |                    |                   |  |  |  |  |
|                         | Conductivity (cm/s)                      | Gradient*                         | Effective Porosity | Velocity (ft/day) |  |  |  |  |
| Newton Primary Ash Pond | 1.2E-03                                  | 0.007                             | 0.2                | 0.12              |  |  |  |  |
| Newton Landfill 2       | 7.4E-05                                  | 0.016                             | 0.2                | 1.42              |  |  |  |  |

#### Note:



<sup>1)</sup> cm/sec x 2,835 = feet/day

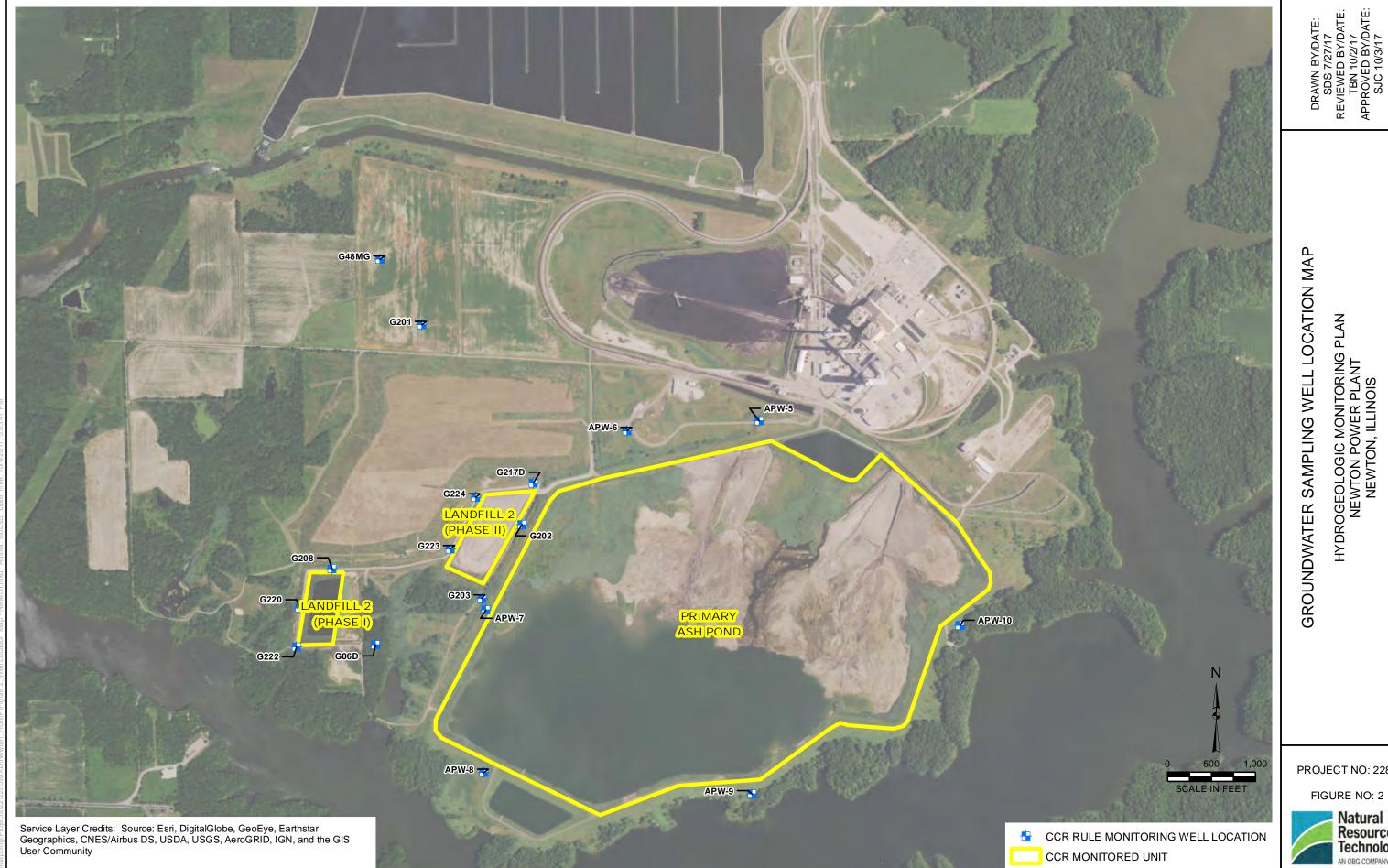
<sup>2)</sup> Source of hydraulic conductivity values is the geometric mean value for the aquifer unit.

<sup>3)</sup> The effective porosity of the clayey sand/silty sand aquifer (20%) was estimated from literature values (Sanders, 1998)

 $<sup>^*\, \</sup>text{Horizontal hydraulic gradient calculated from water levels in CCR wells near the primary ash pond and landfill 2}$ 

#### **Figures**

OBG


DRAWN BY/DATE: SDS 7/27/17 REVIEWED BY/DATE: TBN 10/2/17 APPROVED BY/DATE: SJC 10/3/17

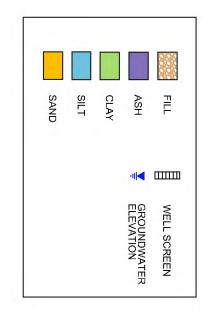
#### SITE LOCATION MAP

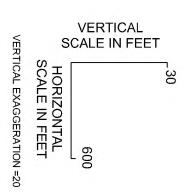
HYDROGEOLOGIC MONITORING PLAN NEWTON POWER PLANT NEWTON, ILLINOIS PROJECT NO: 2285

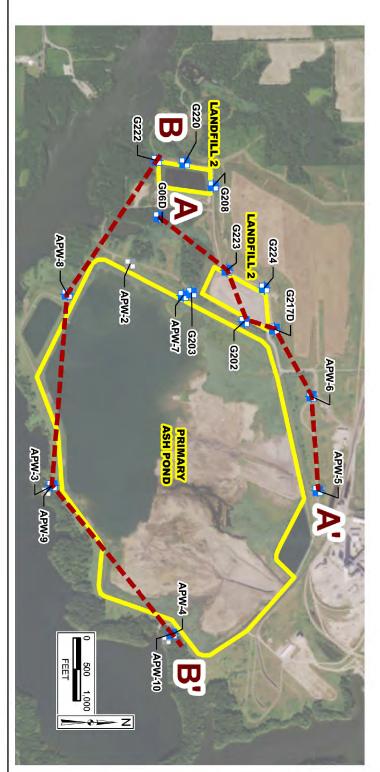
FIGURE NO: 1

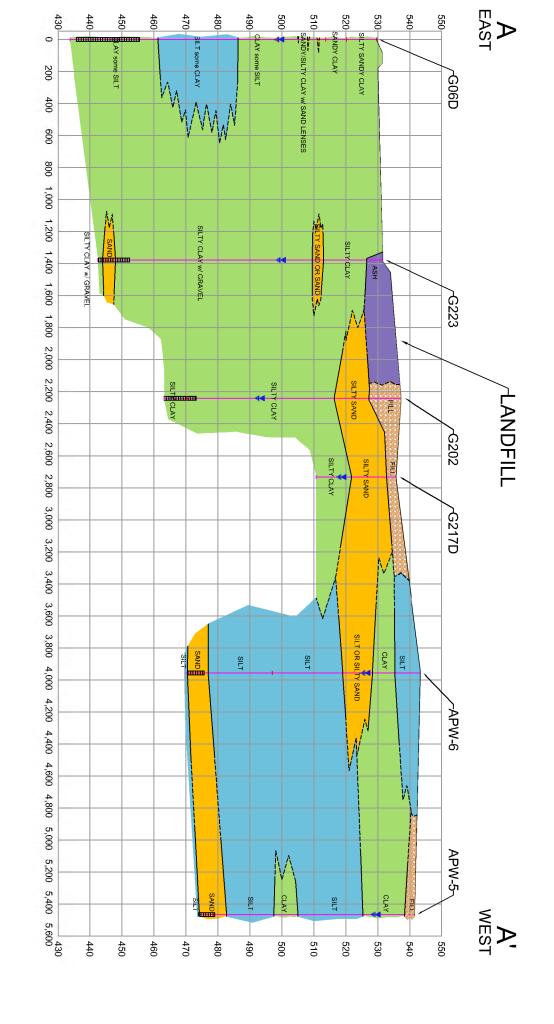





HYDROGEOLOGIC MONITORING PLAN NEWTON POWER PLANT NEWTON, ILLINOIS


PROJECT NO: 2285


FIGURE NO: 2




# Appendix A Geologic Cross Sections

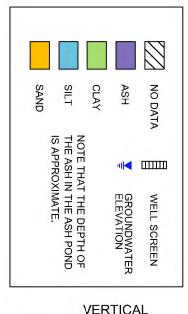


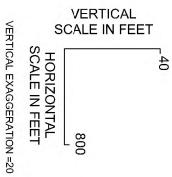


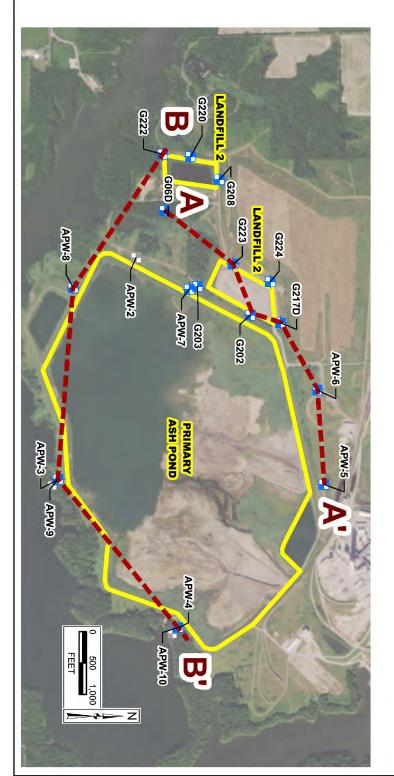


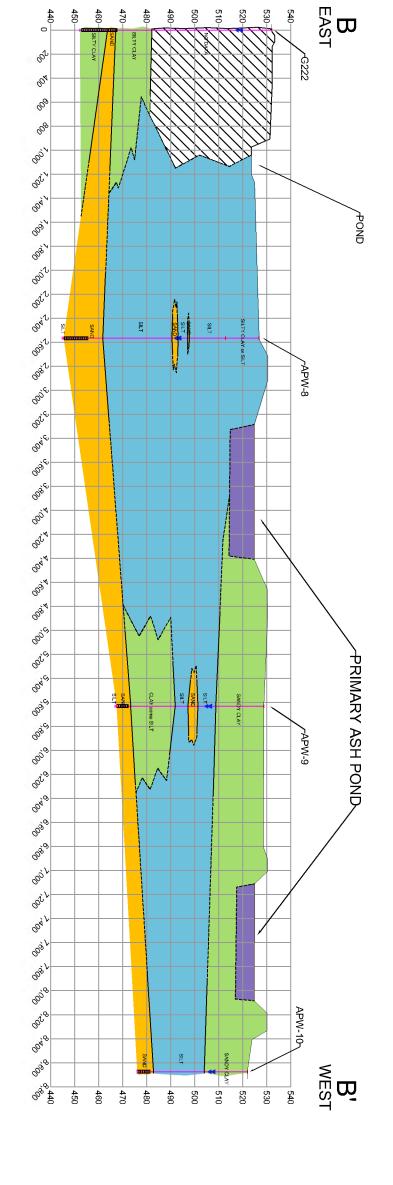


PROJECT NO.
2285
FIGURE NO.
APPENDIX A-1





#### **GEOLOGIC CROSS-SECTION A-A'**


HYDROGEOLOGIC MONITORING PLAN


NEWTON POWER STATION NEWTON, ILLINOIS

| DRAWN BY:    | JMO       | DATE:     | 08/29/2017        |
|--------------|-----------|-----------|-------------------|
| CHECKED BY:  | TBN       | DATE:     | 10/2/2017         |
| APPROVED BY: | SJC       | DATE:     | 10/2/2017         |
| DRAWING NO:  | Fig A - G | eologic C | ross-Section A-A' |
| REFERENCE: . |           |           |                   |









PROJECT NO.
2285
FIGURE NO.
APPENDIX A-2



#### **GEOLOGIC CROSS-SECTION B-B'**

HYDROGEOLOGIC MONITORING PLAN

NEWTON POWER STATION NEWTON, ILLINOIS

| DRAWN BY:     | JMO      | DATE:      | 08/29/2017       |
|---------------|----------|------------|------------------|
| CHECKED BY:   | TBN      | DATE:      | 10/2/2017        |
| APPROVED BY:  | SJC      | DATE:      | 10/2/2017        |
| DRAWING NO: 1 | Fig X_Ge | eologic Cr | oss-Section A-A' |
| REFERENCE: .  |          |            |                  |

#### **Appendix B**

Geotechnical Exploration Locations and Laboratory Test Results

Appendix B From: AECOM, 2015, Dynegy CCR-Newton Investigation

OBG



| BORING   | SAMPLE | DEPTH     |         |        |         | IDENT | IFICATION |         | KT IESI | IIIO DA | 1 A OOM | PERMEABILITY |         | STRENGT | H      | CONSOL | LIDATION  | REMARKS |
|----------|--------|-----------|---------|--------|---------|-------|-----------|---------|---------|---------|---------|--------------|---------|---------|--------|--------|-----------|---------|
|          |        |           | WATER   | LIQUID | PLASTIC | PLAS. | USCS      | SIEVE   | HYDRO.  | TOTAL   | DRY     | 1            | TEST    | PEAK    | STRAIN | 1      | ONDITIONS |         |
| NO.      | NO.    |           | CONTENT | LIMIT  | LIMIT   | INDEX | SYMB.     |         | % MINUS | UNIT    | UNIT    |              | TYPE    | SHEAR   | @ PEAK | VOID   | SATUR-    |         |
|          |        |           |         |        |         |       | (1)       | NO. 200 |         | WEIGHT  | WEIGHT  |              | @STRESS | STRESS  | STRESS | RATIO  | ATION     |         |
|          |        | (ft)      | (%)     | (-)    | (-)     | (-)   | ( )       | (%)     | (%)     | (pcf)   | (pcf)   | (cm/sec)     | (ksf)   | (ksf)   | (%)    | (-)    | (%)       |         |
| NEW-B001 | ST-5   | 10-12     | (1.1)   | ( )    | ( )     | ( )   |           | (1.1)   | (**)    | 125.4   | (1 - 7  | (1 1111)     | ( - /   | ( - )   | (**)   | ( /    | (1.1)     |         |
| NEW-B001 | ST-5   | 10.55     | 19.3    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B001 | ST-5B  | 10.75     | 18.1    | 50     | 14      | 36    | СН        | 79.1    |         | 132.6   | 112.3   |              | CIU@1.5 | 2.3     | 21.3   |        |           | T3937   |
| NEW-B001 | ST-7   | 20-22     |         |        |         |       |           |         |         | 130.1   |         |              |         |         |        |        |           |         |
| NEW-B001 | ST-7   | 20.3      | 22.8    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B001 | ST-7   | 20.85     | 18.4    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B001 | ST-7B  | 21.1      | 16.2    | 49     | 13      | 36    | CL        | 59.9    |         | 134.5   | 115.7   |              | CIU@3.0 | 2.6     | 20.6   |        |           | T3939   |
| NEW-B001 | S-8    | 25-27     | 17.1    |        |         |       | CL        | 65.3    |         |         |         |              |         |         |        |        |           |         |
| NEW-B001 | S-10   | 35-37     | 15.8    | 25     | 14      | 11    | CL        | 55.6    | 17      |         |         |              |         |         |        |        |           |         |
| NEW-B001 | S-11   | 40-41     | 14.6    | 22     | 13      | 9     | CL        | 57.0    | 11      |         |         |              |         |         |        |        |           |         |
| NEW-B001 | S-13   | 45-47     | 11.8    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B001 | S-15   | 50-52     | 12.3    | 27     | 18      | 9     | CL        |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B001 | S-16   | 55-57     | 11.5    | 30     | 13      | 17    | CL        | 63.3    | 16      |         |         |              |         |         |        |        |           |         |
| NEW-B001 | S-18   | 65-67     | 12.8    | 33     | 14      | 19    | CL        | 64.6    | 18      |         |         |              |         |         |        |        |           |         |
| NEW-B001 | S-19   | 70-70.92  | 12.4    | 24     | 15      | 9     | CL        |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B001 | S-20   | 75-77     | 13.0    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B001 | S-23   | 90-92     | 12.8    | 28     | 14      | 14    | CL        |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B001 | S-24   | 95-97     | 11.0    |        |         |       | SM        | 13.4    | 2       |         |         |              |         |         |        |        |           |         |
| NEW-B003 | S-3    | 9-11      | 16.1    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B003 | ST-1   | 14-15.9   |         |        |         |       |           |         |         | 129.5   |         |              |         |         |        |        |           |         |
| NEW-B003 | ST-1   | 14.55     | 16.3    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B003 | ST-1   | 15.1      | 23.7    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B003 | ST-1C  | 15.35     | 20.9    | 59     | 15      | 44    | CH        | 77.3    |         | 129.5   | 107.1   |              | CIU@2.5 | 1.7     | 15.7   |        |           | T3940   |
| NEW-B003 | S-4    | 20-22     | 17.7    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B003 | ST-2   | 23-24.6   |         |        |         |       |           |         |         | 130.6   |         |              |         |         |        |        |           |         |
| NEW-B003 | ST-2   | 23.35     | 16.6    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B003 | ST-2   | 23.9      | 19.5    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B003 | ST-2B  | 24.15     | 19.4    | 43     | 17      | 26    | CL        | 82.7    |         | 130.9   | 109.7   |              | UU@4    | 2.5     | 15.0   |        | ļ         | UU296a  |
| NEW-B003 | S-5    | 25-27     | 19.2    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B003 | ST-3   | 27.5-29.5 |         |        |         |       |           |         |         | 128.1   |         |              |         |         |        |        |           |         |
| NEW-B003 | ST-3   | 28.05     | 19.7    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B003 | ST-3B  | 28.3      | 21.2    |        |         |       | CH        |         |         | 126.4   | 104.3   | 9.6E-8       |         |         |        |        | ļ         | P10611  |
| NEW-B003 | ST-3   | 28.6      | 22.8    |        |         |       |           |         |         |         |         |              |         |         |        |        |           |         |
| NEW-B003 | ST-3C  | 28.8      | 21.1    | 55     | 16      | 39    | CH        |         |         | 129.2   | 106.7   |              | UU@3    | 3.0     | 15.0   |        |           | UU296b  |

Prepared by: YC Reviewed by: GET Date: 11/17/2015

TerraSense, LLC 45H Commerce Way Totowa, N 07512 Project No.: T60428794 File: Indx1.xls Page 1 of 8

| BORING    | SAMPLE     | DEPTH           |         |        |         | IDENT | IFICATION |         | KT IESI | IIIO DA | I A OUN | PERMEABILITY   |         | STRENGT | H      | CONSO | LIDATION  | REMARKS          |
|-----------|------------|-----------------|---------|--------|---------|-------|-----------|---------|---------|---------|---------|----------------|---------|---------|--------|-------|-----------|------------------|
| Bortinto  | O/ UVII EE | <i>DEI</i> 1111 | WATER   | LIQUID | PLASTIC | PLAS. | USCS      | SIEVE   | HYDRO.  | TOTAL   | DRY     | - ERWIE ABIETT | TEST    | PEAK    | STRAIN |       | ONDITIONS | T(LIVI) (I (I (C |
| NO.       | NO.        |                 | CONTENT | LIMIT  | LIMIT   | INDEX | SYMB.     |         | % MINUS | UNIT    | UNIT    |                | TYPE    | SHEAR   | @ PEAK | VOID  | SATUR-    |                  |
|           |            |                 |         |        |         |       | (1)       | NO. 200 |         | -       | WEIGHT  |                | @STRESS | STRESS  | STRESS | RATIO | ATION     |                  |
|           |            | (ft)            | (%)     | (-)    | (-)     | (-)   | ( - )     | (%)     | (%)     | (pcf)   | (pcf)   | (cm/sec)       | (ksf)   | (ksf)   | (%)    | (-)   | (%)       |                  |
| NEW-B003  | S-6        | 30-32           | 19.6    | 42     | 14      | 28    | CL        | 69.8    | 23      | (1)     | (1-2-7  | (=====)        | ()      | (/      | (75)   | ( /   | (,,,      |                  |
| NEW-B003  | S-7        | 35-37           | 17.0    | 41     | 15      | 26    | CL        |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B003  | S-8        | 40-42           | 22.9    | 50     | 18      | 32    | CH        | 88.2    | 25      |         |         |                |         |         |        |       |           |                  |
| NEW-B003  | S-9B       | 46-47           | 11.7    |        |         |       |           |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B003  | S-12       | 60-62           | 13.3    | 32     | 35      | 17    | CL        |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B003  | S-13       | 65-67           | 12.7    |        |         |       | CL        | 67.6    | 19      |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | S-3        | 5-7             | 13.9    |        |         |       | CL        | 64.2    |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | ST-4       | 8-10            |         |        |         |       |           |         |         | 132.3   |         |                |         |         |        |       |           |                  |
| NEW-B004  | ST-4       | 8.15            | 16.1    |        |         |       |           |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | ST-4       | 8.7             | 18.5    |        |         |       |           |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | ST-4       | 9.25            | 17.9    |        |         |       |           |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | ST-4C      | 9.5             | 18.5    | 50     | 13      | 37    | CH        | 83.9    | 28      | 131.3   | 110.9   |                | CIU@0.5 | 1.4     | 17.9   |       |           | T3936            |
| NEW-B004  | S-5        | 10-12           | 20.0    |        |         |       |           |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | S-6        | 15-17           | 20.3    |        |         |       | CL        | 79.3    |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | ST-7       | 18-20           |         |        |         |       |           |         |         | 126.9   |         |                |         |         |        |       |           |                  |
| NEW-B004  | ST-7       | 18.55           | 18.1    |        |         |       |           |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | ST-7       | 19.1            | 16.7    |        |         |       |           |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | ST-7C      | 19.35           | 18.3    | 52     | 15      | 37    | CH        |         |         | 128.5   | 108.7   |                | CIU@3.0 | 2.4     | 20.5   |       |           | T3941            |
| NEW-B004  | S-8        | 20-22           | 20.3    |        |         |       |           |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | S-9        | 25-27           | 20.7    |        |         |       |           |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | S-10       | 27.5-29.5       | 17.7    | 37     | 14      | 23    | CL        | 61.7    | 25      |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | ST-12      | 33-33.5         |         |        |         |       |           |         |         | 106.5   |         |                |         |         |        |       |           |                  |
|           | ST-12A     | 33.2            | 9.7     | 24     | 13      | 11    | CL        |         |         | 136.2   | 124.2   | 6.4E-6         |         |         |        |       |           | P10610           |
| NEW-B004  | ST-12      | 33.5            | 10.2    |        |         |       |           |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | S-13       | 33.5-35.5       | 9.0     |        |         |       | CL        | 52.8    | 16      |         |         |                |         |         |        |       |           |                  |
| NEW-B004  | S-14       | 36-37.92        | 8.9     | 26     | 13      | 13    | CL        |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004A | S-1        | 45-46           | 10.4    |        |         |       | CL        | 63.2    | 13      |         |         |                |         |         |        |       |           |                  |
| NEW-B004A | S-2        | 50-52           | 11.3    | 29     | 15      | 14    | CL        |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004A | S-3        | 55-57           | 10.0    |        |         |       |           |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004A | S-4        | 60-62           | 11.4    |        |         |       | CL        | 68.1    |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004A | S-6        | 70-72           | 16.8    | 32     | 14      | 18    | CL        |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004A | S-8        | 80-82           | 12.5    | 31     | 14      | 17    | CL        |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004A | S-10       | 90-92           | 10.9    |        |         |       |           |         |         |         |         |                |         |         |        |       |           |                  |
| NEW-B004A | S-11       | 95-97           | 11.1    |        |         |       | SW-SM     | 11.2    | 3       |         |         |                |         |         |        |       |           |                  |

Prepared by: YC Reviewed by: GET Date: 11/17/2015

TerraSense, LLC 45H Commerce Way Totowa; № 07512 Project No.: T60428794 File: Indx1.xls Page 2 of 8

| BORING   | SAMPLE    | DEPTH    |           |       |         | IDENT | IFICATION |         | KT IESII | INO DA | I A OUN | PERMEABILITY     |         | STRENGT | <br>'H | CONSO | LIDATION  | REMARKS        |
|----------|-----------|----------|-----------|-------|---------|-------|-----------|---------|----------|--------|---------|------------------|---------|---------|--------|-------|-----------|----------------|
| Borring  | O/ WIT EL | בו ווו   | WATER     | HOUID | PLASTIC | PLAS. | USCS      | SIEVE   | HYDRO.   | TOTAL  | DRY     | T ERWIE/REIEIT I | TEST    | PEAK    | STRAIN |       | ONDITIONS | INE IVID (INCO |
| NO.      | NO.       |          | CONTENT   | LIMIT | LIMIT   | INDEX | SYMB.     | MINUS   |          | UNIT   | UNIT    |                  | TYPE    | SHEAR   | @ PEAK | VOID  | SATUR-    |                |
|          |           |          | 001112111 |       |         |       | (1)       | NO. 200 | 2 μm     | -      | WEIGHT  |                  | @STRESS | STRESS  | STRESS | RATIO | ATION     |                |
|          |           | (ft)     | (%)       | (-)   | (-)     | (-)   | (.)       | (%)     | (%)      | (pcf)  | (pcf)   | (cm/sec)         | (ksf)   | (ksf)   | (%)    | (-)   | (%)       |                |
| NEW-B005 | S-3       | 5-7      | 17.9      | 47    | 15      | 32    | CL        | (/-/    | (,,,     | ( /    | (1-2-7  | (=====)          | ()      | (1101)  | (15)   | ( /   | (,,,      |                |
| NEW-B005 | S-5       | 10-12    | 9.8       | 24    | 13      | 11    | CL        |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B005 | S-6       | 15-16.5  | 9.4       | 27    | 12      | 15    | CL        | 54.6    | 16       |        |         |                  |         |         |        |       |           |                |
| NEW-B005 | S-7       | 20-20.92 | 10.8      | 26    | 13      | 13    | CL        |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B005 | S-8       | 25-26    | 11.6      |       |         |       | CL        | 54.6    | 18       |        |         |                  |         |         |        |       |           |                |
| NEW-B005 | S-10      | 35-37    | 11.3      |       |         |       | ML        | 66.4    |          |        |         |                  |         |         |        |       |           |                |
| NEW-B005 | S-11      | 40-42    | 14.0      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B005 | S-12      | 45-47    | 13.1      | 33    | 15      | 18    | CL        | 70.2    | 19       |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | S-3       | 10-12    | 21.2      | 66    | 14      | 52    | CH        | 88.2    | 36       |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-1      | 20-22    |           |       |         |       |           |         |          | 128.0  |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-1      | 20.4     | 21.6      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-1      | 20.95    | 16.4      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-1B     | 21.2     | 18.2      | 40    | 17      | 23    | CL        | 78.4    | 22       | 130.8  | 110.6   |                  | UU@3.5  | 2.3     | 8.7    |       |           | UU301f         |
| NEW-B006 | ST-2      | 25-27    |           |       |         |       |           |         |          | 140.1  |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-2      | 25.4     | 17.9      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-2      | 25.95    | 18.2      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-2      | 26.5     | 18.6      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-2C     | 26.75    | 19.7      | 44    | 12      | 32    | CL        | 65.6    | 28       | 128.8  | 107.6   |                  | CIU@7.5 | 3.0     | 12.8   |       |           | T3945          |
| NEW-B006 | S-6       | 27-29    | 19.4      | 54    | 13      | 41    | CH        |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-3      | 30-32    |           |       |         |       |           |         |          | 133.0  |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-3      | 30.45    | 29.1      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-3      | 31.0     | 20.4      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-3B     | 31.25    | 20.7      |       |         |       | CL        |         |          | 130.6  | 108.1   | 1.6E-7           |         |         |        |       |           | P10597         |
| NEW-B006 | ST-3      | 31.55    | 18.5      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-3C     | 31.8     | 18.3      | 37    | 15      | 22    | CL        | 52.1    | 21       | 133.3  | 112.8   |                  | CIU@7.2 | 4.0     | 14.8   |       |           | T3915          |
| NEW-B006 | S-7       | 32-34    | 17.5      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-4      | 35-35.8  |           | 30    | 13      | 17    | CL        | 58.3    | 20       | 148.8  |         |                  |         |         |        |       |           |                |
| NEW-B006 | ST-4      | 35.4     | 11.1      |       |         |       | CL        |         |          | 140.2  | 126.2   |                  | DS@9    | 6.6     |        |       |           | DS1619         |
| NEW-B006 | ST-4      | 35.6     | 15.8      |       |         |       | CL        |         |          | 147.4  | 127.2   |                  | DS@18   | 11.5    |        |       |           | DS1617         |
| NEW-B006 | ST-4      | 35.7     | 11.2      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-B006 | S-9       | 40-42    | 13.0      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-C006 | ST-1      | 10-12    |           |       |         |       |           |         |          | 115.2  |         |                  |         |         |        |       |           |                |
| NEW-C006 | ST-1      | 10.5     | 26.7      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |
| NEW-C006 | ST-1      | 11.05    | 27.1      |       |         |       |           |         |          |        |         |                  |         |         |        |       |           |                |

Prepared by: YC Reviewed by: GET Date: 11/17/2015

TerraSense, LLC 45H Commerce Way Totowa, 129 07512 Project No.: T60428794 File: Indx1.xls Page 3 of 8

| BORING   | SAMPLE     | DEPTH   |         |          |         | IDENT | IFICATION |         | RT IESI | INO DA | I A OUN | PERMEABILITY  |            | STRENGT | <br>H  | CONSOL | IDATION   | REMARKS  |
|----------|------------|---------|---------|----------|---------|-------|-----------|---------|---------|--------|---------|---------------|------------|---------|--------|--------|-----------|----------|
| BOILING  | O/ WIII LL | DEI III | WATER   | LIQUID   | PLASTIC |       | USCS      | SIEVE   | HYDRO.  | TOTAL  | DRY     | 1 EKWEADIEH 1 | TEST       | PEAK    | STRAIN |        | ONDITIONS |          |
| NO.      | NO.        |         | CONTENT | LIMIT    | LIMIT   | INDEX | SYMB.     | MINUS   | % MINUS | UNIT   | UNIT    |               | TYPE       | SHEAR   | @ PEAK | VOID   | SATUR-    | 1        |
|          |            |         | 00      |          |         |       | (1)       | NO. 200 | 2 μm    | -      | WEIGHT  |               | @STRESS    | STRESS  | STRESS | RATIO  | ATION     | 1        |
|          |            | (ft)    | (%)     | (-)      | (-)     | (-)   | (.)       | (%)     | (%)     | (pcf)  | (pcf)   | (cm/sec)      | (ksf)      | (ksf)   | (%)    | (-)    | (%)       |          |
| NEW-C006 | ST-1B      | 11.3    | 25.2    | 54       | 16      | 38    | СН        | (/-/    | (74)    | 124.1  | 99.2    | (0.1.000)     | CIU@1.5    | . ,     | 13.7   | ( )    | (,,,      | T3916    |
| NEW-C006 | ST-2       | 12-14   |         | <u> </u> |         |       | <u> </u>  |         |         | 121.4  | 00.2    |               | 0.00.00.00 |         |        |        |           | 100.0    |
| NEW-C006 | ST-2       | 12.75   | 19.3    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-C006 | ST-2B      | 13.0    | 18.9    | 53       | 14      | 39    | СН        |         |         | 131.5  | 110.6   |               | CIU@2.0    | 2.4     | 16.7   |        |           | T3917    |
| NEW-B007 | S-4        | 7.5-9.5 | 13.2    |          |         |       |           |         |         |        |         |               |            |         | -      |        |           |          |
| NEW-B007 | ST-1       | 10-12   |         |          |         |       |           |         |         | 131.6  |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-1       | 10.75   | 16.5    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-1       | 11.3    | 17.3    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-1C      | 11.55   | 15.4    | 38       | 14      | 24    | CL        |         |         | 135.1  | 117.1   |               | CIU@1.0    | 2.3     | 21.5   |        |           | T3933    |
| NEW-B007 | ST-2       | 20-22   |         |          |         |       |           |         |         | 143.6  |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-2       | 20.25   | 10.1    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-2       | 20.8    | 12.7    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-2B      | 21.0    | 12.1    | 30       | 13      | 17    | CL        | 52.3    |         | 140.5  | 125.4   |               | CIU@2.5    | 3.7     | 21.1   |        |           | T3934    |
| NEW-B007 | S-6        | 25-27   | 16.3    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-3       | 30-32   |         |          |         |       |           |         |         | 131.1  |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-3       | 30.35   | 17.8    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-3       | 30.9    | 20.1    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-3       | 31.45   | 19.2    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-3C      | 31.7    | 21.5    | 52       | 12      | 40    | CH        | 71.5    | 29      | 132.0  | 108.6   |               | UU@6.0     | 2.6     | 11.7   |        |           | UU288d   |
| NEW-B007 | S-7        | 35-37   | 14.8    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-4       | 40-42   |         |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-4       | 40.85   | 25.1    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-4B      | 41.0    | 17.5    | 57       | 13      | 44    | CH        |         |         |        | 110.5   |               | DS@5       | 2.7     |        |        |           | DS1620   |
| NEW-B007 | ST-4C      | 41.3    | 14.7    |          |         |       | CH        |         |         | 128.7  | 112.2   |               | DS@10      | 5.4     |        |        |           | DS1621   |
| NEW-B007 | ST-4B      | 41.5    | 16.1    |          |         |       | CH        |         |         | 132.6  | 114.2   |               | DS@15      | 7.6     |        |        |           | DS1622   |
| NEW-B007 | ST-5       | 50-51.5 |         |          |         |       |           |         |         | 131.5  |         |               |            |         |        |        |           | igsquare |
| NEW-B007 | ST-5A      | 50.3    | 16.3    |          |         |       | CH        |         |         | 137.1  | 117.9   | 5.1E-9        |            |         |        |        |           | P10598   |
| NEW-B007 | ST-5       | 50.8    | 14.0    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B007 | ST-5B      | 51.05   | 13.9    | 32       | 16      | 16    | CL        |         |         | 136.1  | 119.5   |               | DSS@7.6    | 3.5     | 5.6    |        |           | DSS855   |
| NEW-B008 | ST-1       | 15-17   |         |          |         |       |           |         |         | 132.9  |         |               |            |         |        |        |           | igsquare |
| NEW-B008 | ST-1       | 15.85   | 11.1    |          |         |       |           |         |         |        |         |               |            |         |        |        |           | igsquare |
| NEW-B008 | ST-1       | 16.4    | 16.9    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |
| NEW-B008 | ST-1C      | 16.65   | 16.7    | 50       | 13      | 37    | CH        | 74.4    |         | 136.3  | 116.8   |               | UU@2.5     | 3.1     | 15.0   |        |           | UU288e   |
| NEW-B008 | S-4        | 20-22   | 20.1    |          |         |       |           |         |         |        |         |               |            |         |        |        |           |          |

Prepared by: YC Reviewed by: GET Date: 11/17/2015

TerraSense, LLC 45H Commerce Way Totowa; 180 07512 Project No.: T60428794 File: Indx1.xls Page 4 of 8

| BORING   | SAMPLE | DEPTH      |         |        |         | IDENT | IFICATION |         | XI IESII |        | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | PERMEABILITY |         | STRENGT | Ή      | CONSO      | LIDATION  | REMARKS        |
|----------|--------|------------|---------|--------|---------|-------|-----------|---------|----------|--------|-----------------------------------------|--------------|---------|---------|--------|------------|-----------|----------------|
|          |        |            | WATER   | LIQUID | PLASTIC | PLAS. | USCS      | SIEVE   | HYDRO.   | TOTAL  | DRY                                     |              | TEST    | PEAK    | STRAIN | INITIAL CO | ONDITIONS |                |
| NO.      | NO.    |            | CONTENT | LIMIT  | LIMIT   | INDEX | SYMB.     | MINUS   | % MINUS  | UNIT   | UNIT                                    |              | TYPE    | SHEAR   | @ PEAK | VOID       | SATUR-    |                |
|          |        |            |         |        |         |       | (1)       | NO. 200 | 2 μm     | WEIGHT | WEIGHT                                  |              | @STRESS | STRESS  | STRESS | RATIO      | ATION     |                |
|          |        | (ft)       | (%)     | (-)    | (-)     | (-)   |           | (%)     | (%)      | (pcf)  | (pcf)                                   | (cm/sec)     | (ksf)   | (ksf)   | (%)    | (-)        | (%)       |                |
| NEW-B008 | S-5    | 22.5-24.5  | 22.6    |        |         |       |           |         |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B008 | S-6    | 25-27      | 23.2    |        |         |       |           |         |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B008 | ST-2   | 27.5-28.75 |         |        |         |       |           |         |          | 130.3  |                                         |              |         |         |        |            |           |                |
| NEW-B008 | ST-2A  | 27.7       | 20.3    |        |         |       | CL        |         |          | 122.5  | 101.8                                   |              | DS@2    | 1.2     |        |            |           | DS1624         |
| NEW-B008 | ST-2B  | 28         | 14.4    | 49     | 14      | 35    | CL        |         |          | 133.8  | 117.0                                   |              | DS@4    | 2.9     |        |            |           | DS1626         |
| NEW-B008 | ST-2C  | 28.4       | 16.4    |        |         |       | CL        |         |          | 133.2  | 114.5                                   |              | DS@8    | 4.4     |        |            |           | DS1628         |
| NEW-B008 | S-7    | 35-37      | 13.8    |        |         |       |           |         |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B008 | S-8    | 40-42      | 14.6    |        |         |       | SC        | 46.9    | 9        |        |                                         |              |         |         |        |            |           |                |
| NEW-B008 | S-10   | 50-51.5    | 15.4    | 32     | 16      | 16    | CL        | 65.4    | 20       |        |                                         |              |         |         |        |            |           |                |
| NEW-B009 | ST-1   | 9-11       |         |        |         |       |           |         |          | 131.1  |                                         |              |         |         |        |            |           |                |
| NEW-B009 | ST-1   | 9.5        | 20.0    |        |         |       |           |         |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B009 | ST-1B  | 9.75       | 19.0    | 47     | 15      | 32    | CL        |         |          | 132.3  | 111.2                                   |              | UU@2.0  | 2.5     | 15.0   |            |           | UU288f         |
| NEW-B009 | S-3    | 14-16      | 15.3    |        |         |       |           |         |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B009 | S-4    | 19-21      | 18.3    |        |         |       |           |         |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B009 | ST-2   | 29-31.3    |         |        |         |       |           |         |          | 128.8  |                                         |              |         |         |        |            |           |                |
| NEW-B009 | ST-2B  | 30.0       | 16.7    | 31     | 14      | 17    | CL        |         |          | 132.6  | 113.6                                   |              | CIU@4.0 | 2.9     | 10.5   |            |           | T3942          |
| NEW-B009 | ST-2   | 30.35      | 19.5    |        |         |       |           |         |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B009 | S-6    | 34-35.5    | 8.6     | 24     | 12      | 12    | CL        | 51.6    |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B009 | S-7    | 37.5-38    | 16.9    |        | 19      | NP    | ML        |         |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B009 | S-9    | 42.5-44.5  | 15.0    |        |         |       |           |         |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B009 | S-10   | 50-52      | 13.7    |        |         |       | CL        | 74.0    | 21       |        |                                         |              |         |         |        |            |           |                |
| NEW-B009 | S-11   | 55-57      | 14.6    |        |         |       |           |         |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B009 | S-12   | 60-62      | 13.5    | 24     | 16      | 8     | CL        | 66.4    | 18       |        |                                         |              |         |         |        |            |           |                |
| NEW-B009 | S-14   | 70-71.42   | 12.2    |        |         |       | CL        | 51.5    | 12       |        |                                         |              |         |         |        |            |           |                |
| NEW-B010 | ST-1   | 5-7        |         |        |         |       |           |         |          | 137.3  |                                         |              |         |         |        |            |           |                |
| NEW-B010 | ST-1   | 5.55       | 10.9    |        |         |       |           |         |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B010 | ST-1   | 6.1        | 15.8    | 0 :    | 4.5     |       | 6.        |         |          | 445 -  | 10= -                                   |              | 0111011 | 4 .     | 0      | 1          |           | <b>T</b> 00 10 |
| NEW-B010 | ST-1C  | 6.3        | 10.2    | 24     | 13      | 11    | CL        |         |          | 140.5  | 127.5                                   |              | CIU@1.0 | 4.4     | 21.3   |            |           | T3943          |
| NEW-B010 | S-4    | 10-12      | 13.7    |        |         |       |           |         |          | 107.5  |                                         |              |         |         |        |            |           |                |
| NEW-B010 | ST-2   | 15-17      | 40.0    |        |         |       |           |         |          | 137.9  |                                         |              |         |         |        |            |           |                |
| NEW-B010 | ST-2   | 15.7       | 13.9    |        |         |       |           |         |          |        |                                         |              |         |         |        |            |           |                |
| NEW-B010 | ST-2   | 16.25      | 12.7    |        |         |       |           |         |          |        |                                         |              | 0       |         |        |            |           |                |
| NEW-B010 | ST-2C  | 16.5       | 13.8    | 33     | 13      | 20    | CL        |         |          | 137.3  | 120.6                                   |              | CIU@2   | 3.5     | 20.9   |            |           | T3944          |
| NEW-B010 | S-5    | 20-22      | 16.1    |        |         |       |           |         |          |        |                                         |              |         |         |        |            |           |                |

Prepared by: YC Reviewed by: GET Date: 11/17/2015

TerraSense, LLC 45H Commerce Way Totowa₁ੴ 07512 Project No.: T60428794 File: Indx1.xls Page 5 of 8

| BORING   | SAMPLE | DEPTH     |         |        |         | IDENT | IFICATION |         | XI IESII | IIIO DA | 174 OOM | PERMEABILITY |         | STRENGT | Ή      | CONSO | LIDATION  | REMARKS |
|----------|--------|-----------|---------|--------|---------|-------|-----------|---------|----------|---------|---------|--------------|---------|---------|--------|-------|-----------|---------|
|          |        |           | WATER   | LIQUID | PLASTIC | PLAS. | USCS      | SIEVE   | HYDRO.   | TOTAL   | DRY     |              | TEST    | PEAK    | STRAIN |       | ONDITIONS |         |
| NO.      | NO.    |           | CONTENT | LIMIT  | LIMIT   | INDEX | SYMB.     | MINUS   | % MINUS  | UNIT    | UNIT    |              | TYPE    | SHEAR   | @ PEAK | VOID  | SATUR-    |         |
|          |        |           |         |        |         |       | (1)       | NO. 200 | 2 μm     | WEIGHT  | WEIGHT  |              | @STRESS | STRESS  | STRESS | RATIO | ATION     |         |
|          |        | (ft)      | (%)     | (-)    | (-)     | (-)   | , ,       | (%)     | (%)      | (pcf)   | (pcf)   | (cm/sec)     | (ksf)   | (ksf)   | (%)    | (-)   | (%)       |         |
| NEW-B010 | S-6    | 25-27     | 19.1    | . , ,  | , ,     | ``    |           | , ,     | , ,      | ,       | ,, ,    | , , ,        | , ,     | ` '     | , ,    | ,,,   | , ,       |         |
| NEW-B010 | S-7    | 30-32     | 21.0    | 49     | 16      | 33    | CL        | 62.3    | 24       |         |         |              |         |         |        |       |           |         |
| NEW-B010 | S-8    | 35-37     | 8.5     | 23     | 12      | 11    | CL        |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B010 | S-12   | 47.5-48.2 | 13.5    |        |         |       |           |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B010 | S-13   | 50-50.8   | 10.1    |        |         |       | SC        | 22.3    | 6        |         |         |              |         |         |        |       |           |         |
| NEW-B010 | S-16   | 65-67     | 15.0    |        |         |       | CL        | 70.6    |          |         |         |              |         |         |        |       |           |         |
| NEW-B010 | S-18   | 75-77     | 14.5    | 28     | 15      | 13    | CL        |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B010 | S-19   | 80-82     | 14.7    | 25     | 15      | 10    | CL        |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-4   | 8-10      |         |        |         |       |           |         |          | 134.0   |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-4   | 8.65      | 15.5    |        |         |       |           |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-4   | 9.2       | 14.9    |        |         |       |           |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-4C  | 9.45      | 12.6    | 34     | 13      | 21    | CL        |         |          | 139.6   | 123.9   |              | UU@1.5  | 4.1     | 15.0   |       |           | UU296d  |
| NEW-B012 | ST-7   | 20-21.7   |         |        |         |       |           |         |          | 135.0   |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-7   | 20.35     | 14.8    |        |         |       |           |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-7A  | 20.6      | 13.3    |        |         |       | CL        |         |          | 137.1   | 121.0   | 7.8E-9       |         |         |        |       |           | P10609  |
| NEW-B012 | ST-7   | 20.9      | 16.7    |        |         |       |           |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-7B  | 21.15     | 13.3    | 35     | 13      | 22    | CL        | 52.1    |          | 138.4   | 122.1   |              | CIU@2.5 | 3.2     | 21.8   |       |           | T3938   |
| NEW-B012 | S-8    | 25-27     | 15.2    | 36     | 13      | 23    | CL        |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | S-9    | 30-32     | 12.9    |        |         |       |           |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | S-10   | 35-37     | 16.8    | 40     | 15      | 25    | CL        |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | S-11   | 40-42     | 9.9     |        |         |       | CL        | 55.9    | 17       |         |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-12  | 45-47     |         |        |         |       |           |         |          | 131.7   |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-12  | 45.55     | 19.8    |        |         |       |           |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-12  | 46.15     | 14.3    |        |         |       |           |         |          |         |         |              |         |         |        |       |           |         |
|          | ST-12C | 46.4      | 17.5    | 43     | 14      | 29    | CL        | 62.1    | 30       | 133.6   | 113.8   |              | CIU@6   | 3.4     | 23.3   |       |           | T3883   |
| NEW-B012 | S-13   | 50-52     | 20.0    |        |         |       |           |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | S-14   | 55-57     | 15.8    | 41     | 13      | 28    | CL        |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-15  | 60-62     |         |        |         |       |           |         |          | 136.2   |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-15  | 60.65     | 18.7    |        |         |       |           |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-15  | 61.2      | 14.1    |        |         |       |           |         |          |         |         |              |         |         |        |       |           |         |
|          | ST-15C | 61.45     | 12.8    | 42     | 14      | 28    | CL        |         |          | 132.5   | 117.6   |              | DSS@7.2 | 2.8     | 7.1    |       |           | DSS849  |
| NEW-B012 | S-17   | 70-72     | 10.9    |        |         |       |           |         |          |         |         |              |         |         |        |       |           |         |
| NEW-B012 | S-18   | 75-77     | 11.8    | 29     | 13      | 16    | CL        | 53.3    | 17       |         |         |              |         |         |        |       |           |         |
| NEW-B012 | ST-19  | 80-82     |         |        |         |       |           |         |          | 139.7   |         |              |         |         |        |       |           |         |

Prepared by: YC Reviewed by: GET Date: 11/17/2015

TerraSense, LLC 45H Commerce Way Totowa; 182 07512 Project No.: T60428794 File: Indx1.xls Page 6 of 8

| BORING   | SAMPLE   | DEPTH    |          |         |         | IDENT | IFICATION |         | RT IESI     | IIIO DA | 1 A OOM | PERMEABILITY |         | STRENGT | <u></u> | CONSOL | IDATION   | REMARKS |
|----------|----------|----------|----------|---------|---------|-------|-----------|---------|-------------|---------|---------|--------------|---------|---------|---------|--------|-----------|---------|
| BORING   | OAWII LL | DEI III  | WATER    | HOHID   | PLASTIC |       | USCS      | SIEVE   | HYDRO.      | TOTAL   | DRY     | LINICADICITI | TEST    | PEAK    | STRAIN  |        | ONDITIONS | KLWAKKO |
| NO.      | NO.      |          | CONTENT  | LIMIT   | LIMIT   | INDEX | SYMB.     | MINUS   | % MINUS     | UNIT    | UNIT    |              | TYPE    | SHEAR   | @ PEAK  | VOID   | SATUR-    |         |
| NO.      | NO.      |          | CONTLINI | LIIVIII | LIIVIII | INDLX | (1)       | NO. 200 | 2 μm        | _       | WEIGHT  |              | @STRESS | STRESS  | STRESS  | RATIO  | ATION     |         |
|          |          | (ft)     | (%)      | (-)     | (-)     | (-)   | (1)       | (%)     | 2 μm<br>(%) | (pcf)   | (pcf)   | (cm/sec)     | (ksf)   | (ksf)   | (%)     | (-)    | (%)       |         |
| NEW-B012 | ST-19    | 80.85    | 12.2     | (-)     | (-)     | (-)   |           | (70)    | (70)        | (pci)   | (pci)   | (CITI/SEC)   | (KSI)   | (1631)  | (70)    | (-)    | ( /0)     |         |
|          | ST-19    | 80.95    | 11.7     |         |         |       |           |         |             |         |         |              |         |         |         |        |           |         |
|          | ST-19    | 81.1     | 11.2     | 25      | 14      | 11    | SC        |         |             | 136.8   | 122.9   |              | DS@6    | 4.2     |         |        |           | DS1611  |
| NEW-B012 | ST-19    | 81.5     | 10.5     | 2.5     | 17      | - 1 1 | SC        |         |             | 139.2   | 126.0   |              | DS@24   | 15.1    |         |        |           | DS1611  |
| NEW-B012 | ST-19    | 81.8     | 16.9     |         |         |       | SC        |         |             | 130.5   | 111.7   |              | DS@24   | 7.2     |         |        |           | DS1612  |
| NEW-B012 | S-20     | 85-87    | 16.2     | 34      | 14      | 20    | CL        |         |             | 100.0   | 111.7   |              | D0@12   | 1.2     |         |        |           | D01013  |
| NEW-B012 | S-22     | 95-97    | 15.7     | 37      | 17      | 20    | OL        |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B012 | ST-1     | 2.5-4.1  | 10.7     |         |         |       |           |         |             | 140.5   |         |              |         |         |         |        |           |         |
| NEW-B014 | ST-1A    | 2.95     |          |         |         |       |           |         |             | 140.0   |         |              |         |         |         |        |           |         |
| NEW-B014 | ST-1     | 3.25     | 13.5     |         |         |       |           |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B014 | ST-1B    | 3.5      | 9.5      | 28      | 13      | 15    | SC        | 46.2    | 16          | 142.7   | 130.3   |              | UU@0.5  | 5.8     | 8.4     |        |           | UU260f  |
| NEW-B014 | S-3      | 7.5-9.5  | 13.7     | 41      | 14      | 27    | CL        | 10.2    |             |         | 100.0   |              | 0000.0  | 0.0     | 0. 1    |        |           | 002001  |
| NEW-B014 | S-4      | 10-12    | 18.7     | 42      | 15      | 27    | CL        |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B014 | ST-2     | 15-16.9  |          |         |         |       |           |         |             | 133.8   |         |              |         |         |         |        |           |         |
| NEW-B014 | ST-2     | 15.6     | 11.6     |         |         |       |           |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B014 | ST-2B    | 15.85    | 12.2     | 31      | 14      | 17    | CL        |         |             | 139.2   | 124.1   |              | EXT CIU | -1.6    | -8.4    |        |           | TE15001 |
| NEW-B014 | ST-2     | 16.15    | 10.2     | -       |         |       |           |         |             |         |         |              |         | 110     |         |        |           |         |
| NEW-B014 | S-5      | 20-22    | 9.6      |         |         |       | SC        | 49.8    |             |         |         |              |         |         |         |        |           |         |
| NEW-B014 | S-6      | 25-27    | 16.1     | 40      | 15      | 25    | CL        | 59.0    |             |         |         |              |         |         |         |        |           |         |
| NEW-B014 | S-7      | 30-31.33 | 16.7     |         |         |       | _         |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B014 | S-7A     | 31.33-32 | 17.5     |         |         |       | CL        | 60.4    |             |         |         |              |         |         |         |        |           |         |
| NEW-B014 | ST-3     | 35-37    |          |         |         |       |           |         |             | 135.0   |         |              |         |         |         |        |           |         |
| NEW-B014 | ST-3     | 35.3     | 19.7     |         |         |       |           |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B014 | ST-3     | 35.85    | 15.9     |         |         |       |           |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B014 | ST-3     | 36.4     | 12.6     |         |         |       |           |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B014 | ST-3C    | 36.65    | 16.3     | 38      | 13      | 25    | SC        | 13.5    | 4           | 132.6   | 114.0   |              | CIU@3   | 4.2     | 12.9    |        |           | T3884   |
| NEW-B014 | S-8      | 40-42    | 16.2     | 39      | 14      | 25    | CL        |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B014 | S-10     | 48-50    | 17.5     |         |         |       |           |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B015 | ST-1     | 10-12    |          |         |         |       |           |         |             | 130.3   |         |              |         |         |         |        |           |         |
| NEW-B015 | ST-1A    | 10.4     |          |         |         |       |           |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B015 | ST-1     | 10.7     | 20.7     |         |         |       |           |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B015 | ST-1B    | 10.95    | 23.0     | 59      | 15      | 44    | CH        |         |             | 126.0   | 102.5   |              | CIU@1.5 | 1.3     | 18.0    |        |           | T3885   |
| NEW-B015 | S-5      | 15-17    | 18.4     |         |         |       |           |         |             |         |         |              |         |         |         |        |           |         |
| NEW-B015 | S-6      | 20-22    | 18.2     |         |         |       |           |         |             |         |         |              |         |         |         |        |           |         |

Prepared by: YC Reviewed by: GET Date: 11/17/2015

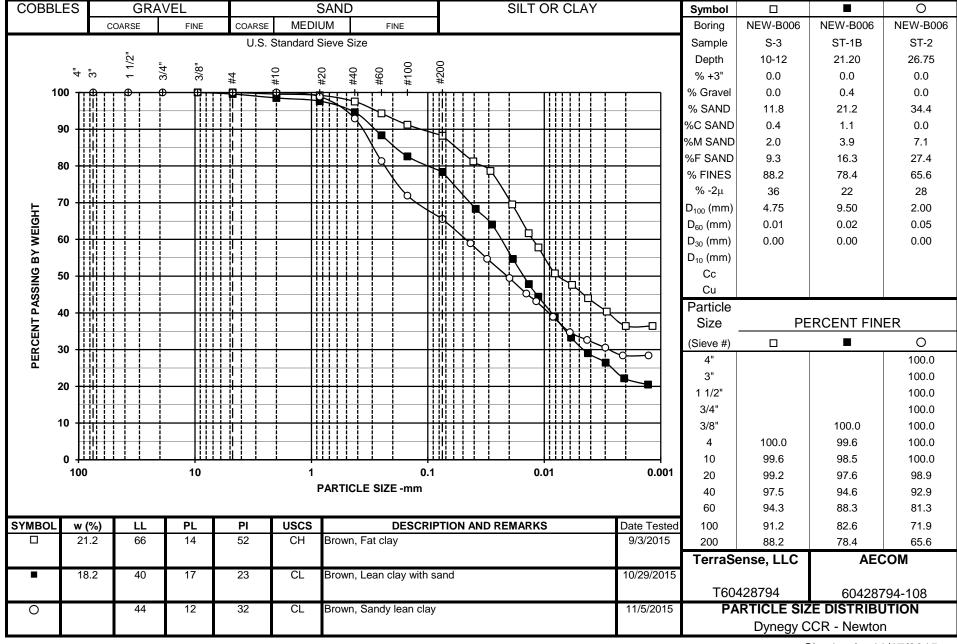
TerraSense, LLC 45H Commerce Way Totowa;1 № 3 07512 Project No.: T60428794 File: Indx1.xls Page 7 of 8

| BORING   | SAMPLE | DEPTH   |         |        |         | IDENT | IFICATION | TESTS   |         |        |        | PERMEABILITY |         | STRENGT | Ή      | CONSOL     | IDATION   | REMARKS  |
|----------|--------|---------|---------|--------|---------|-------|-----------|---------|---------|--------|--------|--------------|---------|---------|--------|------------|-----------|----------|
|          |        |         | WATER   | LIQUID | PLASTIC | PLAS. | USCS      | SIEVE   | HYDRO.  | TOTAL  | DRY    |              | TEST    | PEAK    | STRAIN | INITIAL CO | ONDITIONS |          |
| NO.      | NO.    |         | CONTENT | LIMIT  | LIMIT   | INDEX | SYMB.     | MINUS   | % MINUS | UNIT   | UNIT   |              | TYPE    | SHEAR   | @ PEAK | VOID       | SATUR-    |          |
|          |        |         |         |        |         |       | (1)       | NO. 200 | 2 μm    | WEIGHT | WEIGHT |              | @STRESS | STRESS  | STRESS | RATIO      | ATION     |          |
|          |        | (ft)    | (%)     | (-)    | (-)     | (-)   |           | (%)     | (%)     | (pcf)  | (pcf)  | (cm/sec)     | (ksf)   | (ksf)   | (%)    | (-)        | (%)       |          |
| NEW-B015 | ST-2   | 25-27   |         |        |         |       |           |         |         | 130.2  |        |              |         |         |        |            |           |          |
| NEW-B015 | ST-2   | 25.2    | 15.6    |        |         |       |           |         |         |        |        |              |         |         |        |            |           |          |
| NEW-B015 | ST-2A  | 25.45   | 24.0    |        |         |       | CH        |         |         | 126.1  | 101.7  | 1.8E-9       |         |         |        |            |           | P10608   |
| NEW-B015 | ST-2   | 25.75   | 24.7    |        |         |       |           |         |         |        |        |              |         |         |        |            |           |          |
| NEW-B015 | ST-2B  | 26.0    | 19.5    | 52     | 15      | 37    | CH        |         |         | 131.4  | 110.0  |              | CIU@5   | 3.1     | 13.2   |            |           | T3935    |
| NEW-B015 | S-7    | 30-32   | 16.3    | 37     | 13      | 24    | CL        |         |         |        |        |              |         |         |        |            |           |          |
| NEW-B015 | S-8    | 35-37   | 21.5    | 46     | 14      | 32    | CL        | 84.5    | 36      |        |        |              |         |         |        |            |           |          |
| NEW-B015 | S-9    | 40-42   | 8.1     |        |         |       |           |         |         |        |        |              |         |         |        |            |           |          |
| NEW-B015 | S-11   | 50-52   | 14.1    |        |         |       |           |         |         |        |        |              |         |         |        |            |           |          |
| NEW-B015 | ST-3   | 60-61.3 |         |        |         |       |           |         |         | 137.7  |        |              |         |         |        |            |           |          |
| NEW-B015 | ST-3   | 60.15   | 11.7    |        |         |       |           |         |         |        |        |              |         |         |        |            |           |          |
| NEW-B015 | ST-3   | 60.35   | 11.2    |        |         |       | CL        |         |         | 139.6  | 125.5  |              | DS@3.75 | 3.2     |        |            |           | DS1623   |
| NEW-B015 | ST-3   | 60.75   | 11.9    | 30     | 15      | 15    | CL        |         |         | 140.2  | 125.3  |              | DS@7.5  | 5.4     |        |            |           | DS1625   |
| NEW-B015 | ST-3   | 61.05   | 12.7    |        |         |       | CL        |         |         | 139.8  | 124.1  |              | DS@15   | 9.1     |        |            |           | DS1627   |
| NEW-B015 | ST-4   | 70-70.3 |         |        |         |       |           |         |         |        |        |              |         |         |        |            |           | no tests |
| NEW-B016 | S-3A   | 5-6     | 16.4    | 35     | 13      | 22    | CL        |         |         |        |        |              |         |         |        |            |           |          |
| NEW-B016 | S-3B   | 6.5-7   |         |        |         |       | SM        | 13.2    | 7       |        |        |              |         |         |        |            |           |          |
| NEW-B016 | S-4B   | 8-9     | 11.3    |        |         |       |           |         |         |        |        |              |         |         |        |            |           |          |
| NEW-B016 | S-5    | 10-12   | 12.1    |        |         |       | ML        | 62.6    |         |        |        |              |         |         |        |            |           |          |
| NEW-B016 | S-6    | 15-17   | 11.1    | 52     | 14      | 38    | CH        | 73.0    | 20      |        |        |              |         |         |        |            |           |          |
| NEW-B016 | S-7    | 20-22   | 14.5    |        |         |       |           |         |         |        |        |              |         |         |        |            |           |          |
| NEW-B016 | S-9    | 30-32   | 11.6    | 29     | 15      | 14    | CL        |         |         |        |        |              |         |         |        |            |           |          |
| NEW-B016 | S-10   | 35-37   | 13.2    |        |         |       |           |         |         |        |        |              |         |         | _      |            |           |          |
|          |        |         |         |        |         |       |           |         |         |        |        |              |         |         |        |            |           |          |
|          |        |         |         |        |         |       |           |         |         |        |        |              |         |         |        |            |           |          |

Note: (1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.

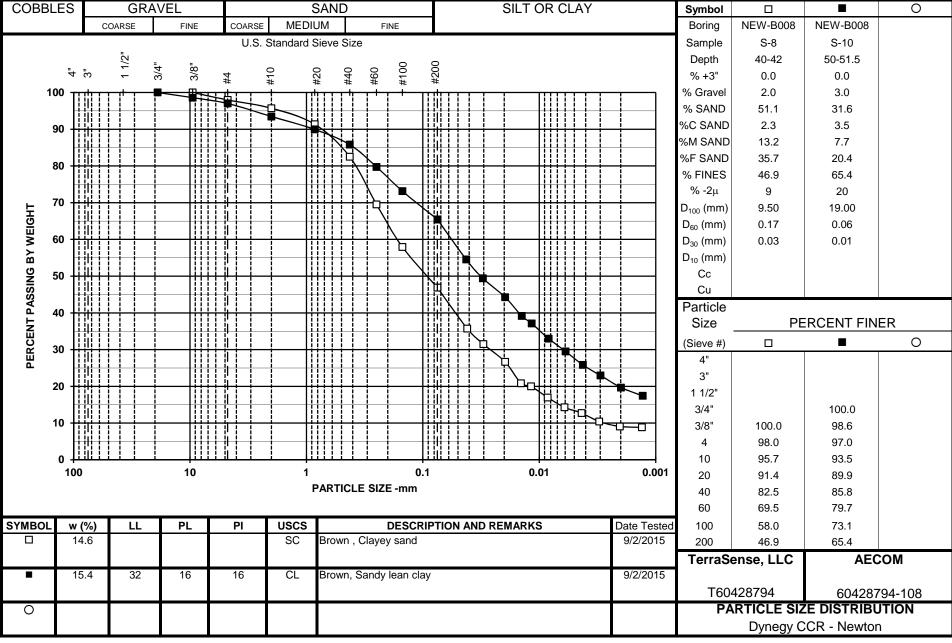
Prepared by: YC Reviewed by: GET Date: 11/17/2015 TerraSense, LLC 45H Commerce Way Totowa; 184 07512 Project No.: T60428794 File: Indx1.xls Page 8 of 8

| COBB            | LES               | GRA                                               | VEL                                              |                                        |                                                  | SAND                                              | SILT OR CLAY                                     |              | Symbol                |           |             | 0        |  |
|-----------------|-------------------|---------------------------------------------------|--------------------------------------------------|----------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------|-----------------------|-----------|-------------|----------|--|
|                 |                   | COARSE                                            | FINE                                             | COARSE                                 | MEDIL                                            | JM FINE                                           |                                                  |              | Boring                | NEW-B001  | NEW-B001    | NEW-B001 |  |
|                 |                   |                                                   |                                                  | U.S.                                   | Standard S                                       | Sieve Size                                        |                                                  |              | Sample                | S-10      | S-11        | S-16     |  |
|                 |                   | 1/2"                                              | <u>.</u> .                                       |                                        | _                                                | 0                                                 | 2                                                |              | Depth                 | 35-37     | 40-41       | 55-57    |  |
|                 | 4 9               | . ± − − − − − − − − − − − − − − − − − −           | 3/4"                                             | <b>4</b>                               | #10                                              | #40<br>#60<br>#100                                | #200<br>#                                        |              | % +3"                 | 0.0       | 0.0         | 0.0      |  |
| 1               | 100 TII           | <del>!!! ! ! ! ! ! !</del>                        |                                                  | 40:                                    | <del>'</del>                                     | <del> </del>                                      | <del></del>                                      | <del></del>  | % Gravel              | 3.9       | 1.6         | 4.0      |  |
|                 | H                 |                                                   |                                                  |                                        | <u> </u>                                         |                                                   |                                                  | <del> </del> | % SAND                | 40.5      | 41.4        | 32.7     |  |
| 1               | 90                | ## # # # # # # # # # # # # # # # # # #            | <del>                                     </del> | ###                                    |                                                  |                                                   |                                                  | 4            | %C SAND               | 3.9       | 4.2         | 4.0      |  |
|                 | l i i             |                                                   |                                                  |                                        | 1 1                                              |                                                   |                                                  | <u> </u>     | %M SAND               | 7.5       | 9.2         | 7.4      |  |
|                 | 80                |                                                   |                                                  |                                        | ر السيار                                         |                                                   |                                                  |              | %F SAND               | 29.2      | 28.0        | 21.4     |  |
|                 | 00 11             |                                                   | [] <del> </del>                                  |                                        | <u> </u>                                         |                                                   |                                                  |              | % FINES               | 55.6      | 57.0        | 63.3     |  |
|                 | 70                |                                                   |                                                  |                                        |                                                  |                                                   |                                                  |              | % -2μ                 | 17        | 11          | 16       |  |
| 노               | 70                |                                                   | <u> </u>                                         |                                        |                                                  |                                                   | <del>!!!                                  </del> |              | D <sub>100</sub> (mm) | 19.00     | 9.50        | 19.00    |  |
| EIG             |                   |                                                   |                                                  |                                        |                                                  |                                                   |                                                  |              | D <sub>60</sub> (mm)  | 0.11      | 0.10        | 0.07     |  |
| BY WEIGHT       | 60 <del>†::</del> |                                                   |                                                  |                                        |                                                  |                                                   |                                                  | +            | D <sub>30</sub> (mm)  | 0.01      | 0.02        | 0.01     |  |
|                 | H                 |                                                   |                                                  |                                        |                                                  |                                                   | hn(ki ki i i liiiiii i                           | +            | D <sub>10</sub> (mm)  | n)        |             |          |  |
| S<br>S          | 50 +              |                                                   | <del>                                     </del> | +++                                    | <del>    </del>                                  | <del>                                      </del> |                                                  | +            | Сс                    |           |             |          |  |
| SSI             | H                 |                                                   | <del>       </del>                               | ###                                    | <del>    </del>                                  |                                                   | <del>                                     </del> |              | Cu                    |           |             |          |  |
| ĕ               | 40 +              |                                                   | <del>    </del>                                  |                                        |                                                  | <del> </del>                                      |                                                  | ∔            | Particle              | _         |             |          |  |
| PERCENT PASSING | ļi,               |                                                   |                                                  |                                        | <del>      </del>                                |                                                   |                                                  | <u> </u>     | Size                  | •         | RCENT FIN   |          |  |
| SC.             |                   |                                                   |                                                  |                                        | <del>                                     </del> |                                                   | 100                                              | <u> </u>     | (Sieve #)             |           |             | 0        |  |
| PE              | [                 |                                                   |                                                  | <u> </u>                               | والسلا                                           |                                                   |                                                  |              | 4"                    |           | <del></del> |          |  |
|                 | 20                |                                                   | <u>  </u>                                        | <u> </u>                               | <u>.i.</u> Ti                                    |                                                   |                                                  |              | 3"                    |           |             |          |  |
|                 | 20 TH             |                                                   |                                                  |                                        |                                                  |                                                   |                                                  | ****         | 1 1/2"                |           |             |          |  |
|                 | H                 |                                                   |                                                  |                                        |                                                  |                                                   |                                                  |              | 3/4"                  | 100.0     |             | 100.0    |  |
| 1               | ''                |                                                   |                                                  | 111                                    |                                                  |                                                   | <del>                                     </del> |              | 3/8"                  | 98.9      | 100.0       | 97.9     |  |
| 1               | H                 | <del>                                      </del> |                                                  |                                        |                                                  |                                                   |                                                  | +            | 4                     | 96.1      | 98.4        | 96.0     |  |
|                 | ننل و             | <u> </u>                                          | ئنننل                                            | ــــــــــــــــــــــــــــــــــــــ | <del>الِ ن</del>                                 | <del>iiiii i          </del>                      | <u> </u>                                         | <u> </u>     | 10                    | 92.3      | 94.2        | 92.0     |  |
|                 | 100               | 1                                                 | 10                                               |                                        | 1 _                                              | 0.1                                               | 0.01                                             | 0.001        | 20                    | 90.4      | 90.5        | 88.8     |  |
|                 |                   |                                                   |                                                  |                                        | F                                                | PARTICLE SIZE -mm                                 |                                                  |              | 40                    | 84.8      | 85.0        | 84.7     |  |
|                 | _                 |                                                   | _                                                |                                        |                                                  |                                                   |                                                  |              | 60                    | 73.9      | 76.4        | 77.7     |  |
| SYMBOL          |                   |                                                   | PL                                               | PI                                     | USCS                                             |                                                   | PTION AND REMARKS                                | Date Tested  | 100                   | 63.9      | 66.8        | 70.4     |  |
|                 | 15.               | 5.8 25                                            | 14                                               | 11                                     | CL                                               | Brown, Sandy lean clay                            |                                                  | 9/2/2015     | 200                   | 55.6      | 57.0        | 63.3     |  |
|                 |                   |                                                   |                                                  |                                        |                                                  |                                                   |                                                  |              | TerraSe               | ense, LLC | AEC         | OM       |  |
| •               | 14.               | 1.6 22                                            | 13                                               | 9                                      | CL                                               | Brown, Sandy lean clay                            |                                                  | 9/2/2015     | Į.                    |           |             |          |  |
|                 |                   |                                                   |                                                  |                                        |                                                  |                                                   |                                                  |              |                       | 428794    |             | 794-108  |  |
| 0               | 11.               | 1.5 30                                            | 13                                               | 17                                     | CL                                               | Dark brown, Sandy lean                            | clay                                             | 9/2/2015     | PA                    |           | E DISTRIBU  |          |  |
|                 |                   |                                                   |                                                  |                                        |                                                  |                                                   |                                                  |              |                       | Dynegy C  | CR - Newtor | 1        |  |
|                 |                   |                                                   |                                                  |                                        |                                                  |                                                   |                                                  |              |                       |           | 0:4         |          |  |


| COBE                      | BLES            | GR                                                | AVEL                 |                                                   |                 | SAND                                              | SILT OR CLAY                                     |                | Symbol                |            |                    | 0       |
|---------------------------|-----------------|---------------------------------------------------|----------------------|---------------------------------------------------|-----------------|---------------------------------------------------|--------------------------------------------------|----------------|-----------------------|------------|--------------------|---------|
|                           |                 | COARSE                                            | FINE                 | COARSE                                            | MEDIL           | JM FINE                                           |                                                  |                | Boring                | NEW-B001   | NEW-B001           |         |
|                           |                 |                                                   |                      | U.S.                                              | Standard S      | Sieve Size                                        |                                                  |                | Sample                | S-18       | S-24               |         |
|                           |                 | 3"<br>1 1/2"                                      | <u>.</u>             |                                                   | _               | 0                                                 | 9                                                |                | Depth                 | 65-67      | 95-97              |         |
|                           | 4               | . −                                               | 3/4"                 | <b>4</b>                                          | #10             | #20<br>#40<br>#100                                | #200                                             |                | % +3"                 | 0.0        | 0.0                |         |
|                           | 100 TI          | <del>!!                                   </del>  |                      | <del> </del>                                      | <del>'</del>    | <del>, , , , , , , , , , , , , , , , , , , </del> | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del> |                | % Gravel              | 2.9        | 13.0               |         |
|                           | H               |                                                   |                      |                                                   | 1               |                                                   |                                                  |                | % SAND                | 32.5       | 73.6               |         |
|                           | 90 🕌            |                                                   |                      |                                                   | ✡╧┤┆            |                                                   |                                                  |                | %C SAND               | 6.6        | 16.7               |         |
|                           | ļį              |                                                   |                      |                                                   | 7               | 1441                                              |                                                  |                | %M SAND               | 8.3        | 33.3               |         |
|                           | 80              |                                                   |                      |                                                   |                 |                                                   | <u> </u>                                         |                | %F SAND               | 17.7       | 23.6               |         |
|                           | ·               |                                                   |                      |                                                   |                 |                                                   |                                                  |                | % FINES               | 64.6       | 13.4               |         |
|                           | 70              |                                                   |                      |                                                   | 7               |                                                   |                                                  |                | % -2μ                 | 18         | 2                  |         |
| 노                         | 70              |                                                   |                      |                                                   | 7               |                                                   |                                                  |                | D <sub>100</sub> (mm) | 19.00      | 19.00              |         |
| EIG                       |                 |                                                   |                      |                                                   | \               |                                                   |                                                  |                | D <sub>60</sub> (mm)  | 0.06       | 1.41               |         |
| ₹                         | 60              |                                                   | <del>      </del>    | <del>                                      </del> | <del>  \ </del> |                                                   |                                                  |                | D <sub>30</sub> (mm)  | 0.01       | 0.33               |         |
| PERCENT PASSING BY WEIGHT |                 | <del>                                      </del> | <del>      </del>    | <del>                                      </del> | <del>  \ </del> | <del>                                     </del>  |                                                  | -              | D <sub>10</sub> (mm)  |            |                    |         |
| S<br>S                    | 50 <del> </del> | <del>!!!                                  </del>  | <del>-i -     </del> | <del>           </del>                            | 1               |                                                   |                                                  | <del>-  </del> | Cc                    |            |                    |         |
| SSI                       | ļ.              |                                                   | -                    |                                                   | -               | N:                                                |                                                  |                | Cu                    |            |                    |         |
| Α̈́                       | 40              | <u> </u>                                          | <u>i        </u>     | <u> </u>                                          | <u> </u>        | <u>    N                                  </u>    |                                                  |                | Particle              |            |                    |         |
| Ę                         |                 |                                                   |                      |                                                   |                 |                                                   |                                                  |                | Size                  | PE         | RCENT FIN          | ER      |
| SS                        | 30              |                                                   |                      |                                                   |                 | <u>                                     </u>      |                                                  |                | (Sieve #)             |            |                    | 0       |
| l Ä                       | 30              |                                                   |                      |                                                   |                 |                                                   |                                                  |                | 4"                    |            |                    |         |
|                           |                 |                                                   |                      |                                                   |                 |                                                   |                                                  |                | 3"                    |            |                    |         |
|                           | 20              |                                                   |                      | <del>                                      </del> | 1 1             |                                                   | <del>#++++++++++++++++++++++++++++++++++++</del> | 4              | 1 1/2"                |            |                    |         |
|                           | 1               |                                                   | 1 1111               |                                                   | 1               |                                                   |                                                  |                | 3/4"                  | 100.0      | 100.0              |         |
|                           | 10 +            | <del>                                     </del>  | <del>      </del>    | <del>          </del>                             | <del>    </del> | <del> </del>                                      |                                                  | <del>-  </del> | 3/8"                  | 98.8       | 95.6               |         |
|                           | H               | <del>                                      </del> | -                    | <del>                                     </del>  |                 | 11111111111                                       |                                                  |                | 4                     | 97.1       | 87.0               |         |
|                           | ىل 0            | <u> </u>                                          |                      | <u> </u>                                          |                 |                                                   | <u> </u>                                         |                | 10                    | 90.6       | 70.3               |         |
|                           | 100             |                                                   | 10                   |                                                   | 1               | 0.1                                               | 0.01                                             | 0.001          | 20                    | 86.7       | 50.1               |         |
|                           |                 |                                                   |                      |                                                   | F               | PARTICLE SIZE -mm                                 |                                                  |                | 40                    | 82.3       | 37.0               |         |
|                           |                 |                                                   |                      |                                                   |                 |                                                   |                                                  |                | 60                    | 76.7       | 24.3               |         |
| SYMBO                     |                 |                                                   | PL                   | PI                                                | USCS            | DESCRI                                            | PTION AND REMARKS                                | Date Tested    | 100                   | 70.6       | 17.5               |         |
|                           | 12              | 8 33                                              | 14                   | 19                                                | CL              | Dark brown, Sandy lear                            | n clay                                           | 9/2/2015       | 200                   | 64.6       | 13.4               |         |
|                           |                 |                                                   |                      |                                                   |                 |                                                   |                                                  |                | TerraSe               | ense, LLC  | AEC                | ОМ      |
|                           | 11              | .0                                                |                      |                                                   | SM              | Brown, Silty sand                                 |                                                  | 9/2/2015       |                       |            |                    |         |
|                           |                 |                                                   |                      |                                                   |                 |                                                   |                                                  |                | T60                   | 428794     | 604287             | 794-108 |
| 0                         |                 |                                                   |                      |                                                   |                 | Ī                                                 |                                                  |                |                       | RTICLE SIZ |                    |         |
|                           |                 |                                                   |                      |                                                   |                 |                                                   |                                                  |                |                       | Dynegy C   | CR - Newtor        | า       |
|                           |                 |                                                   |                      |                                                   |                 |                                                   |                                                  |                |                       |            | Variable and a dis |         |

| COBB            | LES           | GR                                                | AVEL                                             |                                                   | 5                                            | SAND                                              | SILT OR CLAY                                      |                                                    | Symbol                |            |             | 0        |
|-----------------|---------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-----------------------|------------|-------------|----------|
|                 |               | COARSE                                            | FINE                                             | COARSE                                            | MEDIL                                        | JM FINE                                           |                                                   |                                                    | Boring                | NEW-B003   | NEW-B003    | NEW-B003 |
|                 |               |                                                   |                                                  | U.S.                                              | Standard S                                   | Sieve Size                                        |                                                   |                                                    | Sample                | S-6        | S-8         | S-13     |
| 1               |               | 1/2"                                              | <u>.</u> .                                       |                                                   | _                                            | 0                                                 |                                                   |                                                    | Depth                 | 30-32      | 40-42       | 65-67    |
| 1               | 4 9           | . <del>,</del> −                                  | 3/4"                                             | #<br>4                                            | #10                                          | #40<br>#60<br>#100                                | 200<br>#                                          |                                                    | % +3"                 | 0.0        | 0.0         | 0.0      |
| 1               | 00 TI         | <del>hi P</del> i                                 | <del>!                                    </del> |                                                   | + +                                          | <del> </del>                                      | <del></del>                                       | <del>.                                      </del> | % Gravel              | 2.1        | 0.2         | 8.7      |
|                 | H             |                                                   |                                                  |                                                   | ₽──╁                                         |                                                   |                                                   | -                                                  | % SAND                | 28.1       | 11.6        | 23.7     |
|                 | 90 H          |                                                   |                                                  | 1                                                 |                                              |                                                   |                                                   | +                                                  | %C SAND               | 1.3        | 0.4         | 3.3      |
|                 | ļi:           |                                                   |                                                  |                                                   | $\gamma - \psi$                              |                                                   |                                                   | <u> </u>                                           | %M SAND               | 4.7        | 2.0         | 4.3      |
|                 | 80            |                                                   |                                                  |                                                   | 1 1                                          |                                                   |                                                   |                                                    | %F SAND               | 22.1       | 9.2         | 16.0     |
|                 |               |                                                   |                                                  | : : : : : :                                       |                                              |                                                   |                                                   |                                                    | % FINES               | 69.8       | 88.2        | 67.6     |
|                 | -, [[         |                                                   |                                                  |                                                   |                                              |                                                   |                                                   |                                                    | % -2μ                 | 23         | 25          | 19       |
| 노               | 70            |                                                   |                                                  |                                                   | 1 1                                          | <del>!!!!!!!!!</del>                              |                                                   |                                                    | D <sub>100</sub> (mm) | 9.50       | 9.50        | 37.50    |
|                 |               |                                                   |                                                  |                                                   | 1 1                                          |                                                   |                                                   |                                                    | D <sub>60</sub> (mm)  | 0.04       | 0.02        | 0.05     |
| BY WEIGHT       |               |                                                   |                                                  |                                                   | <del>†  </del>                               |                                                   |                                                   | + 1                                                | D <sub>30</sub> (mm)  | 0.00       | 0.00        | 0.01     |
| B               |               |                                                   | +                                                |                                                   | + +                                          |                                                   |                                                   | +                                                  | D <sub>10</sub> (mm)  |            |             |          |
| N<br>S          | 50 +++        |                                                   | + + + + + + + + + + + + + + + + + + + +          |                                                   | + +                                          |                                                   |                                                   | +                                                  | Сс                    |            |             |          |
| SSI             |               |                                                   |                                                  | <del>                                      </del> | + ++                                         | <del>                                      </del> | <del>                                      </del> |                                                    | Cu                    |            |             |          |
| ₽               | 40 +          | 444                                               | 1 1111                                           |                                                   |                                              |                                                   |                                                   |                                                    | Particle              |            |             |          |
| l F             | Щ             |                                                   |                                                  |                                                   | <u>                                     </u> |                                                   |                                                   |                                                    | Size                  | PE         | RCENT FIN   | ER       |
| PERCENT PASSING | 30            |                                                   | <u>      </u>                                    |                                                   | <u>i li</u>                                  |                                                   |                                                   |                                                    | (Sieve #)             |            |             | 0        |
| PEF             | ~~ [ <u>[</u> |                                                   |                                                  |                                                   |                                              | :::::::::::::::::::::::::::::::::::::::           |                                                   | <u>,                                    </u>       | 4"                    |            |             |          |
|                 | <u>, []</u>   |                                                   |                                                  |                                                   |                                              |                                                   | 111111111111111111111111111111111111111           |                                                    | 3"                    |            |             |          |
|                 | 20 TO         |                                                   |                                                  |                                                   |                                              |                                                   |                                                   | 9                                                  | 1 1/2"                |            |             | 100.0    |
|                 | TI.           |                                                   |                                                  |                                                   |                                              |                                                   |                                                   |                                                    | 3/4"                  |            |             | 92.3     |
|                 | ווד יי        |                                                   | <del>      </del>                                | <del>                                      </del> | <del>†  </del>                               | <del>                                     </del>  |                                                   |                                                    | 3/8"                  | 100.0      | 100.0       | 92.3     |
|                 | H             | <del>                                      </del> |                                                  |                                                   |                                              | ::::::::::::::::::::::::::::::::::::::            | !!; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;           |                                                    | 4                     | 97.9       | 99.8        | 91.3     |
|                 | ننل ٥         |                                                   |                                                  |                                                   | نا ان                                        |                                                   | •                                                 |                                                    | 10                    | 96.6       | 99.4        | 88.0     |
|                 | 100           |                                                   | 10                                               |                                                   | 1                                            | 0.1                                               | 0.01                                              | 0.001                                              | 20                    | 95.7       | 99.1        | 86.6     |
|                 |               |                                                   |                                                  |                                                   | F                                            | PARTICLE SIZE -mm                                 |                                                   |                                                    | 40                    | 91.9       | 97.4        | 83.7     |
|                 |               |                                                   |                                                  |                                                   |                                              |                                                   |                                                   |                                                    | 60                    | 83.3       | 94.1        | 78.6     |
| SYMBOL          |               |                                                   | PL                                               | PI                                                | USCS                                         |                                                   | TION AND REMARKS                                  | Date Tested                                        | 100                   | 75.6       | 90.8        | 73.0     |
|                 | 19.           | .6 42                                             | 14                                               | 28                                                | CL                                           | Brown , Sandy lean clay                           | ,                                                 | 9/3/2015                                           | 200                   | 69.8       | 88.2        | 67.6     |
|                 |               |                                                   |                                                  |                                                   |                                              |                                                   |                                                   |                                                    | TerraS                | ense, LLC  | AEC         | COM      |
| •               | 22.           | .9 50                                             | 18                                               | 32                                                | CH                                           | Brown, Fat clay                                   |                                                   | 9/3/2015                                           |                       |            |             |          |
|                 |               |                                                   |                                                  |                                                   |                                              |                                                   |                                                   |                                                    |                       | 428794     |             | 794-108  |
| 0               | 12.           | .7                                                |                                                  |                                                   | CL                                           | Brown, Sandy lean clay                            |                                                   | 8/31/2015                                          | PA                    | RTICLE SIZ | E DISTRIBU  | JTION    |
|                 |               |                                                   |                                                  |                                                   |                                              |                                                   |                                                   |                                                    |                       | Dynegy C   | CR - Newtor | า        |
|                 |               |                                                   |                                                  |                                                   |                                              |                                                   |                                                   |                                                    |                       |            | 0:41        |          |

| COBE                      | BLES              |                     | GR               | AVEI         | L                 |                                                   |                                                  | SAND                                              |                                               | SILT OR                             | R CLAY                                            |                 | Symbol                |                         |            | 0         |
|---------------------------|-------------------|---------------------|------------------|--------------|-------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-----------------------------------------------|-------------------------------------|---------------------------------------------------|-----------------|-----------------------|-------------------------|------------|-----------|
|                           |                   | CC                  | DARSE            |              | FINE              | COARS                                             | SE MEDIL                                         | JM FINE                                           |                                               |                                     |                                                   |                 | Boring                | NEW-B004                | NEW-B004   | NEW-B004  |
|                           |                   |                     |                  |              |                   | U.S                                               | S. Standard S                                    | Sieve Size                                        |                                               |                                     |                                                   |                 | Sample                | ST-4C                   | S-10       | S-13      |
|                           |                   |                     | 1/2"             | =.           | =_                |                                                   |                                                  | 0 (                                               | 0                                             |                                     |                                                   |                 | Depth                 | 9.5                     | 27.5-29.5  | 33.5-35.5 |
|                           | 4                 | 'n                  | <del>-</del>     | 3/4"         | 3/8"              | #<br>4                                            | #10                                              | #40<br>#60<br>#100                                | #200                                          |                                     |                                                   |                 | % +3"                 | 0.0                     | 0.0        | 0.0       |
|                           | 100 T             | <del>! : :</del>    | <del></del>      | <del>-</del> |                   |                                                   |                                                  | H                                                 | <del>!! ! ! ! !</del>                         | : :::                               |                                                   | -               | % Gravel              | 0.4                     | 1.7        | 3.3       |
|                           | H                 |                     | +                | +            |                   |                                                   |                                                  |                                                   |                                               |                                     |                                                   | 1               | % SAND                | 15.7                    | 36.6       | 43.9      |
|                           | 90                | <del>      </del>   | +                | -            | _                 | <del>         </del>                              | <del>-                                    </del> |                                                   |                                               |                                     |                                                   | +               | %C SAND               | 0.9                     | 2.3        | 4.0       |
|                           | Ļ                 |                     | 11               | <u> </u>     |                   |                                                   |                                                  |                                                   | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;        | _                                   |                                                   |                 | %M SAND               | 2.7                     | 6.2        | 9.9       |
|                           | XII +-            |                     | $\perp \perp$    | <u> </u>     |                   |                                                   |                                                  |                                                   |                                               |                                     |                                                   |                 | %F SAND               | 12.1                    | 28.1       | 30.0      |
|                           |                   |                     |                  |              |                   | <u>                                      </u>     |                                                  |                                                   | <u>                                      </u> |                                     | <u>                                      </u>     |                 | % FINES               | 83.9                    | 61.7       | 52.8      |
|                           | 70                |                     |                  |              |                   |                                                   |                                                  |                                                   |                                               | _                                   |                                                   |                 | % -2μ                 | 28                      | 25         | 16        |
| 보                         | 1::               |                     |                  |              |                   |                                                   |                                                  | <del>                                      </del> |                                               |                                     |                                                   |                 | D <sub>100</sub> (mm) | 9.50                    | 9.50       | 9.50      |
| PERCENT PASSING BY WEIGHT |                   |                     |                  | 1            |                   |                                                   |                                                  |                                                   |                                               | Ta III                              |                                                   |                 | D <sub>60</sub> (mm)  | 0.02                    | 0.07       | 0.14      |
| - ≥                       | 60                | 11 1 1              | ++               | †            |                   | <del>                                      </del> |                                                  |                                                   |                                               |                                     |                                                   | 1               | D <sub>30</sub> (mm)  | 0.00                    | 0.00       | 0.01      |
| B                         |                   | !!                  | ++               | 1            |                   |                                                   |                                                  |                                                   |                                               | <u>.   \q    </u>                   |                                                   |                 | D <sub>10</sub> (mm)  |                         |            |           |
| <u>8</u>                  | 3U <del>111</del> | <del>!!    </del>   | ++-              | <del> </del> | <del>-     </del> | <del>        </del>                               |                                                  | <del>!!!!!!!!!</del>                              |                                               | <u>┖</u> ! घ!!                      | <del>                                      </del> | + -             | Сс                    |                         |            |           |
| SSI                       | ļ.                |                     | +                | ┼            |                   |                                                   |                                                  |                                                   | # N. I - I                                    |                                     |                                                   | 1               | Cu                    |                         |            |           |
| 4                         | 40                | <del>        </del> | ++-              | <del> </del> | <del>-     </del> | <del>           </del>                            |                                                  |                                                   |                                               | <del>▕</del><br><mark>▕<br/></mark> |                                                   | <u> </u>        | Particle              |                         |            |           |
|                           | ļį                |                     | $\perp \perp$    | 1            | _ ;;;             | 1111                                              | _                                                |                                                   |                                               | No. 19                              |                                                   |                 | Size                  | PE                      | RCENT FIN  | ER        |
| 3C                        | .30               |                     | <del>     </del> | <u>i</u>     |                   |                                                   |                                                  |                                                   |                                               | المحال                              |                                                   | <u> </u>        | (Sieve #)             |                         |            | 0         |
| PEF                       |                   |                     |                  |              |                   |                                                   |                                                  |                                                   |                                               | 4                                   |                                                   |                 | 4"                    | 100.0                   |            |           |
|                           | 20                |                     |                  |              |                   |                                                   |                                                  |                                                   |                                               |                                     |                                                   |                 | 3"                    | 100.0                   |            |           |
|                           | <sup>20</sup> T   |                     |                  |              |                   |                                                   |                                                  |                                                   |                                               |                                     | 11 Y Q                                            | <del>}-</del> - | 1 1/2"                | 100.0                   |            |           |
|                           |                   |                     |                  | 1            |                   |                                                   |                                                  |                                                   |                                               |                                     |                                                   | 70              | 3/4"                  | 100.0                   |            |           |
|                           | 10                | 11 1 1              |                  | †            |                   |                                                   |                                                  |                                                   |                                               |                                     |                                                   | 1               | 3/8"                  | 100.0                   | 100.0      | 100.0     |
|                           | l:                |                     | 11               | 1            |                   | 1111                                              | <u> </u>                                         |                                                   |                                               | -                                   |                                                   |                 | 4                     | 99.6                    | 98.3       | 96.7      |
|                           | 0 <u>ļi</u>       | ili i i             | ii               | i            |                   | <u> </u>                                          |                                                  |                                                   | <u> </u>                                      |                                     | <u> </u>                                          | <u> </u>        | 10                    | 98.8                    | 96.0       | 92.7      |
|                           | 100               |                     |                  |              | 10                |                                                   | 1.                                               | 0.1                                               |                                               | 0.01                                |                                                   | 0.001           | 20                    | 98.3                    | 94.4       | 89.5      |
|                           |                   |                     |                  |              |                   |                                                   | F                                                | PARTICLE SIZE -mm                                 |                                               |                                     |                                                   |                 | 40                    | 96.1                    | 89.8       | 82.8      |
|                           |                   |                     |                  |              |                   |                                                   |                                                  |                                                   |                                               |                                     |                                                   |                 | 60                    | 91.5                    | 80.1       | 71.7      |
| SYMBO                     | L w (             | %)                  | LL               |              | PL                | PI                                                | USCS                                             |                                                   |                                               | REMARKS                             |                                                   | Date Tested     | 100                   | 87.2                    | 70.0       | 61.4      |
|                           |                   |                     | 50               |              | 13                | 37                                                | CH                                               | Gray brown , Fat clay wi                          | th sand                                       |                                     |                                                   | 10/27/2015      | 200                   | 83.9                    | 61.7       | 52.8      |
|                           |                   |                     |                  |              |                   |                                                   |                                                  |                                                   |                                               |                                     |                                                   |                 | TerraS                | ense, LLC               | AEC        | OM        |
| -                         | 17                | .7                  | 37               |              | 14                | 23                                                | CL                                               | Brown, Sandy lean clay                            |                                               |                                     |                                                   | 9/2/2015        |                       |                         |            |           |
|                           |                   |                     |                  |              |                   |                                                   |                                                  |                                                   |                                               |                                     |                                                   |                 |                       | 428794                  |            | 94-108    |
| 0                         | 9.                | 0                   |                  |              |                   |                                                   | CL                                               | Light brown, Sandy lean                           | clay                                          |                                     |                                                   | 8/31/2015       | PA                    | ARTICLE SIZ<br>Dynegy C | E DISTRIBU |           |
|                           |                   |                     |                  |              |                   |                                                   |                                                  |                                                   |                                               |                                     |                                                   |                 |                       |                         |            |           |


| COBBI                     | LES                 | GRA                                              | AVEL                    |                                                   | 5                                             | SAND                                              | SIL                                               | T OR CLAY                                         |             | Symbol                |           |                 | 0               |
|---------------------------|---------------------|--------------------------------------------------|-------------------------|---------------------------------------------------|-----------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------|-----------------------|-----------|-----------------|-----------------|
|                           |                     | COARSE                                           | FINE                    | COARSE                                            | MEDIU                                         | JM FINE                                           |                                                   |                                                   |             | Boring                | NEW-B004A | NEW-B004A       |                 |
|                           |                     |                                                  |                         | U.S.                                              | Standard S                                    | Sieve Size                                        |                                                   |                                                   |             | Sample                | S-1       | S-11            |                 |
|                           |                     | 3"<br>1 1/2"                                     | <u>.</u> .              |                                                   | _                                             |                                                   | 0                                                 |                                                   |             | Depth                 | 45-46     | 95-96.5         |                 |
|                           | 4 9                 | . ←                                              | 3/4"                    | #<br>4                                            | #10                                           | #40<br>#60<br>#100                                | #200                                              |                                                   |             | % +3"                 | 0.0       | 0.0             |                 |
| 1                         | 00 TI               | <del>!! : : <b>!</b> : -</del>                   | <del> P</del>           | <b>#</b>                                          | <del>'</del>                                  | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>  | <del>:::::::::::::::::::::::::::::::::::::</del>  |                                                   |             | % Gravel              | 0.5       | 20.8            |                 |
|                           | H                   |                                                  |                         | + + -                                             | 忡─₩                                           | <u> </u>                                          |                                                   | <del></del>                                       |             | % SAND                | 36.3      | 68.0            |                 |
|                           | 90 🕌                |                                                  | <del>L      </del>      | <del>        </del>                               | <del>     </del>                              |                                                   |                                                   | <del></del>                                       |             | %C SAND               | 3.6       | 17.6            |                 |
|                           | ļi.                 |                                                  |                         | ji i i                                            |                                               |                                                   |                                                   |                                                   |             | %M SAND               | 7.8       | 26.4            |                 |
|                           | 80                  |                                                  |                         |                                                   |                                               |                                                   |                                                   |                                                   |             | %F SAND               | 24.9      | 24.0            |                 |
|                           | ·                   |                                                  |                         | N                                                 |                                               |                                                   |                                                   |                                                   |             | % FINES               | 63.2      | 11.2            |                 |
|                           | - I                 |                                                  |                         |                                                   |                                               |                                                   |                                                   |                                                   |             | % -2μ                 | 13        | 3               |                 |
| 노                         | 70                  |                                                  | ! !!!!!                 | 11 1                                              |                                               | <del>                                      </del> |                                                   |                                                   |             | D <sub>100</sub> (mm) | 9.50      | 37.50           |                 |
| Sii                       | HH                  |                                                  | 1 11111                 | #                                                 | <u>.                                     </u> |                                                   | #                                                 |                                                   |             | D <sub>60</sub> (mm)  | 0.07      | 1.82            |                 |
| ₹                         | 60 <del>     </del> |                                                  | <del>       </del>      | <del>                                      </del> | <u>₹                                    </u>  |                                                   | <del>                                     </del>  |                                                   | + -         | D <sub>30</sub> (mm)  | 0.02      | 0.36            |                 |
| B                         | +                   | <del>                                     </del> | <del>      </del>       | <del>            </del>                           | $+$ $\vee$ $+$                                | <del>                                     </del>  | <del>                                     </del>  | <del>-                                     </del> | +           | D <sub>10</sub> (mm)  |           | 0.06            |                 |
| S<br>S                    | 50 ∰                | <del>!!                                   </del> | <del>i           </del> | <del>          </del>                             | <del> </del>                                  |                                                   | <del>                                      </del> | <del></del>                                       | +           | Сс                    |           | 1.1             |                 |
| SSI                       | H                   |                                                  |                         | #                                                 | 1 1                                           | !N:                                               |                                                   |                                                   |             | Cu                    |           | 28.4            |                 |
| PA                        | 40                  |                                                  | <u> </u>                | <u> </u>                                          | <u> </u>                                      | <u>   N                                  </u>     |                                                   |                                                   |             | Particle              |           |                 |                 |
| Z                         | 111                 |                                                  |                         | <u> </u>                                          |                                               |                                                   |                                                   |                                                   |             | Size                  | PE        | RCENT FIN       | ER              |
| PERCENT PASSING BY WEIGHT | 30                  |                                                  | <u>       </u>          |                                                   |                                               |                                                   |                                                   |                                                   |             | (Sieve #)             |           |                 | 0               |
| l Ä                       | 30 [[               |                                                  |                         |                                                   |                                               |                                                   |                                                   | <sub></sub>                                       |             | 4"                    |           |                 |                 |
|                           | []                  |                                                  |                         |                                                   |                                               |                                                   |                                                   | <u> </u>                                          |             | 3"                    |           |                 |                 |
|                           | 20                  |                                                  | !  !!!!                 |                                                   | † †                                           |                                                   | <del>                                      </del> |                                                   |             | 1 1/2"                |           | 100.0           |                 |
|                           | T:                  |                                                  | 1                       | 11 1                                              | † †                                           |                                                   | Шіііі                                             |                                                   | 4           | 3/4"                  |           | 88.9            |                 |
|                           | 10 +                | <del>                                     </del> | <del>       </del>      | <del>                                      </del> |                                               |                                                   |                                                   | <del>-                                     </del> | 1           | 3/8"                  | 100.0     | 86.2            |                 |
|                           | H                   |                                                  | <del>       </del>      | #                                                 | + +                                           |                                                   | <del>░░┆┋</del> ═┋╼┋                              |                                                   |             | 4                     | 99.5      | 79.2            |                 |
|                           | ننل ه               | <u>                                     </u>     | <u>:  ::::</u>          |                                                   | <del>-      </del>                            |                                                   | <u> </u>                                          |                                                   |             | 10                    | 95.9      | 61.6            |                 |
|                           | 100                 |                                                  | 10                      |                                                   | 1                                             | 0.1                                               |                                                   | 0.01                                              | 0.001       | 20                    | 93.5      | 51.0            |                 |
|                           |                     |                                                  |                         |                                                   | F                                             | PARTICLE SIZE -mm                                 |                                                   |                                                   |             | 40                    | 88.1      | 35.2            |                 |
|                           |                     |                                                  |                         |                                                   |                                               |                                                   |                                                   |                                                   |             | 60                    | 80.2      | 21.3            |                 |
| SYMBOL                    | . w ('              |                                                  | PL                      | PI                                                | USCS                                          | DESCRI                                            | PTION AND REMA                                    | RKS                                               | Date Tested | 100                   | 72.8      | 14.5            |                 |
|                           | 10                  | .4                                               |                         |                                                   | CL                                            | Brown, Sandy lean clay                            | ,                                                 |                                                   | 8/31/2015   | 200                   | 63.2      | 11.2            |                 |
|                           |                     |                                                  |                         |                                                   |                                               |                                                   |                                                   |                                                   |             | TerraS                | ense, LLC | AEC             | OM              |
|                           | 11.                 | .1                                               |                         |                                                   | SW-SM                                         | Brown, Well-graded sa                             | nd with silt and grav                             | /el                                               | 8/31/2015   |                       | -         |                 |                 |
|                           |                     |                                                  |                         |                                                   |                                               |                                                   |                                                   |                                                   |             | T60                   | 428794    | 604287          | <b>'</b> 94-108 |
| 0                         | 1                   |                                                  |                         |                                                   |                                               |                                                   |                                                   |                                                   |             |                       |           | E DISTRIBL      |                 |
|                           |                     |                                                  |                         |                                                   |                                               |                                                   |                                                   |                                                   |             |                       | Dynegy C  | CR - Newtor     | า               |
|                           |                     |                                                  |                         |                                                   |                                               |                                                   |                                                   |                                                   |             |                       |           | Navida vila did |                 |

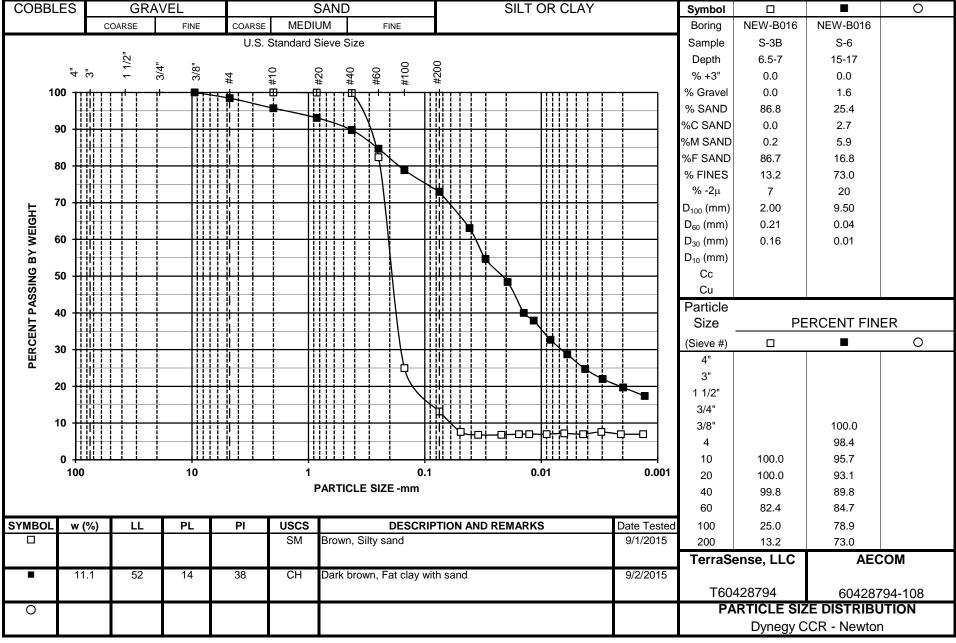
| COBE                      | BLES                    | G                                                 | RAVEL          |                                                  |                                                  | 5                                            | SAND                                               |                                         | SILT OR CLAY                                     |                                                  | Symbol                |           |             | 0        |
|---------------------------|-------------------------|---------------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------|-----------|-------------|----------|
|                           |                         | COARSE                                            | FI             | INE                                              | COARSE                                           | MEDIU                                        | JM FINE                                            |                                         |                                                  |                                                  | Boring                | NEW-B005  | NEW-B005    | NEW-B005 |
|                           |                         |                                                   |                |                                                  | U.S. \$                                          | Standard S                                   | Sieve Size                                         |                                         |                                                  |                                                  | Sample                | S-6       | S-8         | S-12     |
|                           |                         | 1/2"                                              | 느              | Ę.,                                              |                                                  |                                              | 0                                                  | 9                                       |                                                  |                                                  | Depth                 | 15-16.5   | 25-26       | 45-47    |
|                           | 4                       | μ <u>−</u>                                        | 3/4"           | 3/8                                              | # .                                              | #10                                          | #40<br>#60<br>#100                                 | #200                                    |                                                  |                                                  | % +3"                 | 0.0       | 0.0         | 0.0      |
|                           | 100 T                   | <del>!!! ! ! ! !</del>                            | -              | <del>Print</del>                                 | di i                                             |                                              | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>   | <u> </u>                                | 1 1111111                                        | -                                                | % Gravel              | 1.8       | 7.0         | 1.4      |
|                           | +                       | <del>                                     </del>  | -              |                                                  |                                                  | ़                                            |                                                    | :'::::::::::::::::::::::::::::::::::::: |                                                  |                                                  | % SAND                | 43.6      | 38.4        | 28.4     |
|                           | 90                      |                                                   |                | <del>     </del>                                 |                                                  | •                                            |                                                    |                                         | <del>-i      -</del>                             |                                                  | %C SAND               | 3.1       | 2.5         | 3.6      |
|                           | ļ.                      |                                                   | _ <b>i</b>     | <del>      </del>                                |                                                  | <u> </u>                                     |                                                    |                                         |                                                  | i                                                | %M SAND               | 9.8       | 9.3         | 6.1      |
|                           | ×0 ++                   |                                                   |                |                                                  |                                                  |                                              |                                                    |                                         |                                                  |                                                  | %F SAND               | 30.7      | 26.7        | 18.8     |
|                           | · L                     |                                                   | -              |                                                  |                                                  |                                              | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                  |                                         |                                                  | ļ                                                | % FINES               | 54.6      | 54.6        | 70.2     |
|                           | 70                      |                                                   |                |                                                  |                                                  |                                              |                                                    |                                         |                                                  |                                                  | % -2μ                 | 16        | 18          | 19       |
| 붗                         |                         |                                                   |                | TIIII                                            |                                                  |                                              |                                                    |                                         |                                                  |                                                  | D <sub>100</sub> (mm) | 9.50      | 19.00       | 9.50     |
| EIG                       |                         |                                                   | İ              |                                                  |                                                  |                                              |                                                    |                                         |                                                  |                                                  | D <sub>60</sub> (mm)  | 0.12      | 0.13        | 0.04     |
| _ ≥                       | 60 🕆                    |                                                   | 1              |                                                  |                                                  | 1 1                                          |                                                    |                                         |                                                  | !                                                | D <sub>30</sub> (mm)  | 0.01      | 0.01        | 0.01     |
| <u>6</u>                  | H                       |                                                   | -              | <del>      </del>                                |                                                  | <del>!</del>                                 | <del>                                     </del>   |                                         | <del>,          </del>                           |                                                  | D <sub>10</sub> (mm)  |           |             |          |
| S<br>S                    | 50 <del>   </del>       | <del>                                      </del> | <del>-  </del> | ╫╫┼                                              | <del>                                     </del> | <del>!      </del>                           | <del>                                     </del>   |                                         | <del>\                                    </del> | <del>-                                    </del> | Сс                    |           |             |          |
| SS                        | -  -                    |                                                   | -              |                                                  |                                                  |                                              |                                                    |                                         | <u> </u>                                         |                                                  | Cu                    |           |             |          |
| PERCENT PASSING BY WEIGHT | 40 🕂                    |                                                   |                | <del>     </del>                                 | <u> </u>                                         | <del>!  !</del>                              |                                                    |                                         |                                                  | <u> </u>                                         | Particle              |           |             |          |
|                           | ļ.                      |                                                   |                | <u> </u>                                         |                                                  |                                              |                                                    |                                         |                                                  |                                                  | Size                  | PE        | RCENT FIN   |          |
| RCI                       | 30 <del>++</del>        |                                                   | _              | <del>     </del>                                 |                                                  |                                              |                                                    |                                         |                                                  |                                                  | (Sieve #)             |           |             | 0        |
| PE                        | ļļ.                     |                                                   | _              |                                                  |                                                  | <u>                                     </u> |                                                    |                                         |                                                  |                                                  | 4"                    |           |             |          |
|                           | 20                      |                                                   |                | <u>     </u>                                     | <u> </u>                                         | <u>i li</u>                                  |                                                    |                                         |                                                  |                                                  | 3"                    |           |             |          |
|                           |                         |                                                   | İ              |                                                  |                                                  |                                              |                                                    |                                         |                                                  | A                                                | 1 1/2"                |           |             |          |
|                           | 40                      |                                                   |                |                                                  |                                                  |                                              |                                                    |                                         |                                                  |                                                  | 3/4"                  |           | 100.0       |          |
|                           | 10                      |                                                   |                |                                                  |                                                  | 1 1                                          |                                                    |                                         |                                                  |                                                  | 3/8"                  | 100.0     | 96.8        | 100.0    |
|                           | I                       |                                                   | i              |                                                  |                                                  | 1 1                                          |                                                    |                                         |                                                  |                                                  | 4                     | 98.2      | 93.0        | 98.6     |
|                           | 0 부 <del>፡</del><br>100 | <u>uriii</u>                                      | <u> </u>       | <del>                                     </del> | <u> </u>                                         | <del> </del> i-                              | <del>iiiii i                                </del> | <u> </u>                                | 0.01                                             | 0.001                                            | 10                    | 95.1      | 90.5        | 95.0     |
|                           | 100                     |                                                   |                | 10                                               |                                                  | 1                                            | PARTICLE SIZE -mm                                  |                                         | 0.01                                             | 0.001                                            | 20                    | 91.7      | 87.1        | 92.6     |
|                           |                         |                                                   |                |                                                  |                                                  | r                                            | ARTICLE SIZE -IIIII                                |                                         |                                                  |                                                  | 40                    | 85.3      | 81.2        | 89.0     |
| -                         |                         |                                                   | 1 _            |                                                  |                                                  |                                              |                                                    |                                         |                                                  |                                                  | 60                    | 73.7      | 71.4        | 83.1     |
| SYMBO                     |                         |                                                   |                |                                                  | PI                                               | USCS                                         |                                                    | TION AND                                | REMARKS                                          | Date Tested                                      | 100                   | 63.4      | 62.5        | 76.6     |
|                           | 9.                      | .4 27                                             | 1:             | _                                                | 15                                               | CL                                           | Brown, Sandy lean clay                             |                                         |                                                  | 9/3/2015                                         | 200                   | 54.6      | 54.6        | 70.2     |
|                           |                         | 0                                                 |                |                                                  |                                                  | 01                                           | D                                                  |                                         |                                                  | 0/04/2045                                        | TerraSe               | ense, LLC | AEC         | OM       |
| -                         | 11                      | .6                                                |                |                                                  |                                                  | CL                                           | Brown, Sandy lean clay                             |                                         |                                                  | 8/31/2015                                        | T00                   | 400704    |             |          |
|                           |                         | 4 00                                              |                | _                                                | 40                                               | 01                                           | Davida harasana da ara                             | 20 1                                    |                                                  | 0/0/2245                                         |                       | 428794    |             | 794-108  |
| 0                         | 13                      | 33                                                | 1              | 5                                                | 18                                               | CL                                           | Dark brown, Lean clay v                            | vith sand                               |                                                  | 9/2/2015                                         | I PA                  |           | E DISTRIBU  |          |
|                           |                         |                                                   |                |                                                  |                                                  |                                              |                                                    |                                         |                                                  |                                                  |                       | Dynegy C  | CR - Newtor | 1        |



| COBB                      | LES              | GI                                                | RAVEL          |             |                                                   |                                                  | SAND                                              |                                                  |                                |         | SILT C     | R CLAY                                            |                                                  | Symbol                |            |             | 0       |
|---------------------------|------------------|---------------------------------------------------|----------------|-------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------|---------|------------|---------------------------------------------------|--------------------------------------------------|-----------------------|------------|-------------|---------|
|                           |                  | COARSE                                            |                | FINE        | COARSE                                            | MEDI                                             | JM                                                | FINE                                             |                                |         |            |                                                   |                                                  | Boring                | NEW-B006   | NEW-B006    |         |
|                           |                  |                                                   |                |             | U.S.                                              | Standard S                                       | Sieve Size                                        |                                                  |                                |         |            |                                                   |                                                  | Sample                | ST-3C      | ST-4        |         |
|                           |                  | 1/2"                                              | 느              | <u>.</u>    |                                                   | _                                                |                                                   | _ 0                                              | 9                              |         |            |                                                   |                                                  | Depth                 | 31.8       | 35-35.8     |         |
|                           | 4 :              | <u>~</u>                                          | 3/4"           | 3/8"        | #<br>4                                            | #10                                              | #20<br>#40                                        | #60                                              | #200                           |         |            |                                                   |                                                  | % +3"                 | 0.0        | 0.0         |         |
| l '                       | 100 TI           | <del>!!          </del>                           | <del>- p</del> |             | +                                                 |                                                  |                                                   | + + + +                                          | <del></del>                    | 1 1     | ; 1        |                                                   | ;;                                               | % Gravel              | 2.3        | 6.2         |         |
|                           | H                |                                                   |                | +           |                                                   | ᅷ                                                |                                                   | <del>                                     </del> |                                | +++     | -          | <del>                                     </del>  | +                                                | % SAND                | 45.6       | 35.5        |         |
|                           | 90               |                                                   | <del>-</del>   | <del></del> | <b></b>                                           |                                                  | <del>                                      </del> |                                                  |                                |         | -   -      | <del>                                      </del> | <del>                                     </del> | %C SAND               | 4.1        | 4.0         |         |
|                           | ļ                |                                                   | i              |             | <u> </u>                                          |                                                  |                                                   |                                                  |                                |         |            |                                                   |                                                  | %M SAND               | 10.8       | 8.6         |         |
|                           | 80               |                                                   |                |             |                                                   |                                                  |                                                   |                                                  |                                |         |            |                                                   |                                                  | %F SAND               | 30.7       | 22.9        |         |
|                           | 30               |                                                   |                |             |                                                   |                                                  |                                                   |                                                  |                                |         |            |                                                   |                                                  | % FINES               | 52.1       | 58.3        |         |
|                           | -n               |                                                   | -              |             |                                                   | ] [                                              |                                                   |                                                  |                                |         |            |                                                   |                                                  | % -2μ                 | 21         | 20          |         |
| 노                         | /0 <del>  </del> |                                                   |                |             | #                                                 |                                                  |                                                   | 1/                                               |                                |         |            |                                                   |                                                  | D <sub>100</sub> (mm) | 19.00      | 9.50        |         |
| <u> </u>                  |                  |                                                   | -              |             | #                                                 | † †                                              |                                                   |                                                  |                                |         | 1          |                                                   |                                                  | D <sub>60</sub> (mm)  | 0.15       | 0.09        |         |
| Š                         | 60               |                                                   | +              |             | <del>                                      </del> | + +                                              |                                                   | 17                                               |                                |         |            |                                                   | + + -                                            | D <sub>30</sub> (mm)  | 0.01       | 0.01        |         |
| B⊀                        | H                | <del>                                      </del> |                |             | #                                                 | +                                                |                                                   | $\vdash\vdash$                                   | $\mathcal{X} \cap \mathcal{X}$ | igoplus |            | <del>                                      </del> | + + -                                            | D <sub>10</sub> (mm)  |            |             |         |
| S                         | 50 🕌             | <del>!!                                   </del>  |                |             |                                                   | <del>                                     </del> | <del>                                      </del> |                                                  |                                |         | + +        | <del>                                      </del> | <del>                                     </del> | Сс                    |            |             |         |
| SS                        | ļ                |                                                   | <u> </u>       |             | <u> </u>                                          |                                                  |                                                   |                                                  |                                | i ii    | $\perp$    |                                                   |                                                  | Cu                    |            |             |         |
| ΡĄ                        | 40               |                                                   | <u> </u>       |             | <u> </u>                                          | <del>    </del>                                  |                                                   |                                                  |                                |         | )          | <u> </u>                                          |                                                  | Particle              |            |             |         |
| 볼                         | 111              |                                                   | _              |             | <u> </u>                                          |                                                  |                                                   |                                                  |                                | 7       | ╮╬╲┋╻      |                                                   |                                                  | Size                  | PE         | RCENT FIN   | IER     |
| PERCENT PASSING BY WEIGHT | 30               |                                                   | !              |             |                                                   |                                                  |                                                   |                                                  |                                |         | <u>[""</u> |                                                   |                                                  | (Sieve #)             |            |             | 0       |
| 点                         |                  |                                                   | <u> </u>       |             |                                                   | i Ti                                             |                                                   |                                                  |                                |         |            |                                                   |                                                  | 4"                    |            |             |         |
|                           | 111              |                                                   | -              |             |                                                   |                                                  |                                                   |                                                  |                                |         |            |                                                   |                                                  | 3"                    |            |             |         |
|                           | 20 +             |                                                   | 1              |             |                                                   |                                                  |                                                   |                                                  |                                |         | 1 1        |                                                   |                                                  | 1 1/2"                |            |             |         |
|                           |                  |                                                   | -              |             | #                                                 | † †                                              |                                                   |                                                  |                                |         |            |                                                   | † †                                              | 3/4"                  | 100.0      |             |         |
|                           | 10 🕂             |                                                   | -              |             |                                                   |                                                  |                                                   |                                                  |                                |         |            |                                                   | <del>                                     </del> | 3/8"                  | 99.2       | 100.0       |         |
|                           | H                | <del>                                     </del>  |                |             | <del>∄</del> ∔∔                                   | -                                                |                                                   |                                                  |                                |         |            |                                                   |                                                  | 4                     | 97.7       | 93.8        |         |
|                           | نا ه             |                                                   | i              | _           | 11 1                                              | <u>i  i</u>                                      |                                                   |                                                  |                                |         |            |                                                   |                                                  | 10                    | 93.6       | 89.8        |         |
|                           | 100              |                                                   |                | 10          |                                                   | 1                                                |                                                   |                                                  | 0.1                            |         | 0.0        | )1                                                | 0.001                                            | 20                    | 89.4       | 85.9        |         |
|                           |                  |                                                   |                |             |                                                   | ı                                                | PARTICLE                                          | SIZE -mm                                         |                                |         |            |                                                   |                                                  | 40                    | 82.8       | 81.2        |         |
|                           |                  |                                                   |                |             |                                                   |                                                  |                                                   |                                                  |                                |         |            |                                                   |                                                  | 60                    | 71.4       | 73.4        |         |
| SYMBOL                    | _ w (            | %) LL                                             | .              | PL          | PI                                                | USCS                                             |                                                   | DESCI                                            | RIPTION                        | AND     | REMARKS    |                                                   | Date Tested                                      | 100                   | 60.5       | 65.6        |         |
|                           | Ì                | 37                                                |                | 15          | 22                                                | CL                                               | Dark brow                                         | n, Sandy le                                      |                                |         |            |                                                   | 10/13/2015                                       | 200                   | 52.1       | 58.3        |         |
|                           |                  |                                                   |                | 1           |                                                   |                                                  |                                                   |                                                  |                                |         |            |                                                   |                                                  | TerraSe               | ense, LLC  | AEC         | СОМ     |
| •                         |                  | 30                                                | )              | 13          | 17                                                | CL                                               | Light brow                                        | n, Sandy le                                      | ean clay                       |         |            |                                                   | 9/28/2015                                        | 1                     | , -        |             |         |
|                           |                  |                                                   |                |             |                                                   |                                                  |                                                   | -                                                | •                              |         |            |                                                   |                                                  | T604                  | 428794     | 604287      | 794-108 |
| 0                         |                  |                                                   |                |             |                                                   |                                                  |                                                   |                                                  |                                |         |            |                                                   |                                                  |                       | RTICLE SIZ |             |         |
|                           |                  |                                                   | 1              |             |                                                   |                                                  |                                                   |                                                  |                                |         |            |                                                   |                                                  |                       |            | CR - Newton |         |
|                           | -                |                                                   |                |             |                                                   | -                                                |                                                   |                                                  |                                |         |            |                                                   |                                                  |                       |            | V           |         |

| COBB            | LES                 | GR/                                                | AVEL                |                                                   |                 | SAND                                              | SILT OR CLAY                                     |                                                  | Symbol                |            |             | 0       |
|-----------------|---------------------|----------------------------------------------------|---------------------|---------------------------------------------------|-----------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------|------------|-------------|---------|
|                 |                     | COARSE                                             | FINE                | COARSE                                            | MEDIL           | JM FINE                                           |                                                  |                                                  | Boring                | NEW-B007   |             |         |
|                 |                     |                                                    |                     | U.S.                                              | Standard S      | Sieve Size                                        |                                                  |                                                  | Sample                | ST-3C      |             |         |
|                 |                     | 3"<br>1 1/2"                                       | E. E.               |                                                   |                 | 0                                                 | 0                                                |                                                  | Depth                 | 31.7       |             |         |
|                 | 4                   | ۳ <del>-</del>                                     | 3/4"                | #<br>4                                            | #10             | #20<br>#40<br>#100                                | #200                                             |                                                  | % +3"                 | 0.0        |             |         |
| 1               | 100 T:              | <del>!!! ! !! !                           </del>   | <del>! P!!!</del>   | <del>- (i)</del>                                  |                 | <del>k                                    </del>  | <del></del>                                      | <del></del>                                      | % Gravel              | 0.3        |             |         |
|                 | ļį                  |                                                    |                     | ###                                               | -               |                                                   |                                                  |                                                  | % SAND                | 28.2       |             |         |
|                 |                     |                                                    |                     | <u>                                     </u>      |                 |                                                   |                                                  |                                                  | %C SAND               | 0.7        |             |         |
|                 |                     |                                                    |                     | <u> </u>                                          |                 |                                                   |                                                  |                                                  | %M SAND               | 3.5        |             |         |
|                 | 80                  | fil I I I I                                        |                     |                                                   |                 |                                                   |                                                  |                                                  | %F SAND               | 23.9       |             |         |
|                 | ° T                 |                                                    |                     |                                                   |                 |                                                   |                                                  |                                                  | % FINES               | 71.5       |             |         |
|                 | İ                   |                                                    |                     |                                                   |                 |                                                   | 4                                                |                                                  | % -2μ                 | 29         |             |         |
| <b>⊨</b>        | /U T                | 171 I I I I                                        |                     |                                                   | + +             | <del>!!!!!!!!! </del>                             |                                                  |                                                  | D <sub>100</sub> (mm) | 9.50       |             |         |
| BY WEIGHT       | H                   |                                                    | <del>       </del>  | #                                                 |                 |                                                   |                                                  |                                                  | D <sub>60</sub> (mm)  | 0.03       |             |         |
| ×               | 60                  |                                                    |                     |                                                   | + +             |                                                   | <del>╢┼┼╎</del> ╄╴╴╫╫┼┼┼                         | -                                                | D <sub>30</sub> (mm)  | 0.00       |             |         |
| B≺              | ļ.                  | <del>                                     </del>   |                     | <del>-            </del>                          | 1 1             |                                                   |                                                  |                                                  | D <sub>10</sub> (mm)  |            |             |         |
| Ď               | 50 H                | <del>                                      </del>  | <del>i liii</del> i | <del>                                      </del> | <del>    </del> | <del>                                      </del> | <del>                                     </del> | <u> </u>                                         | Сс                    |            |             |         |
| ll SS           |                     |                                                    |                     |                                                   |                 |                                                   |                                                  |                                                  | Cu                    |            |             |         |
| PAS             | 40 11               |                                                    |                     | <u>!                                     </u>     |                 | <u>                                     </u>      |                                                  |                                                  | Particle              |            |             |         |
| <u> </u>        | <del>-</del> 0      |                                                    |                     |                                                   |                 | 111111111111111                                   |                                                  |                                                  | Size                  | PE         | RCENT FIN   | ER      |
| PERCENT PASSING | - 11                |                                                    |                     |                                                   |                 |                                                   |                                                  |                                                  | (Sieve #)             |            |             | 0       |
| Ä               | 3U +-               |                                                    |                     |                                                   | <del> </del>    |                                                   |                                                  |                                                  | 4"                    |            |             |         |
| I <sup>6</sup>  | 1                   | <del>                                      </del>  | <del>       </del>  | 1111                                              | 1 1             |                                                   |                                                  |                                                  | 3"                    |            |             |         |
|                 | 20 <del>     </del> | <del>!!!                                    </del> | <del>    </del>     | <del>'' ' ' ' '</del>                             |                 |                                                   |                                                  |                                                  | 1 1/2"                |            |             |         |
|                 |                     |                                                    | <del>! !!!!!</del>  |                                                   |                 | <del>!!!!!!!!!!</del>                             |                                                  | <del>-                                    </del> | 3/4"                  |            |             |         |
|                 | 10 +                |                                                    | <del>       </del>  |                                                   |                 |                                                   | <u> </u>                                         | <del>-  </del>                                   | 3/8"                  | 100.0      |             |         |
|                 |                     |                                                    |                     |                                                   |                 |                                                   |                                                  |                                                  | 4                     | 99.7       |             |         |
|                 | لل ه                | <u>                                     </u>       | <u>      </u>       |                                                   | <u>i  i</u>     |                                                   |                                                  |                                                  | 10                    | 98.9       |             |         |
|                 | 100                 |                                                    | 10                  |                                                   | 1               | 0.1                                               | 0.01                                             | 0.001                                            | 20                    | 98.4       |             |         |
|                 |                     |                                                    |                     |                                                   | F               | PARTICLE SIZE -mm                                 |                                                  |                                                  | 40                    | 95.4       |             |         |
|                 |                     |                                                    |                     |                                                   |                 |                                                   |                                                  |                                                  | 60                    | 86.9       |             |         |
| SYMBOL          | _ w (               | '%) LL                                             | PL                  | PI                                                | USCS            | DESCRI                                            | PTION AND REMARKS                                | Date Tested                                      | 100                   | 78.2       |             |         |
|                 | 21                  |                                                    | 12                  | 40                                                |                 | Brown , Fat clay with sa                          |                                                  | 10/19/2015                                       | 200                   | 71.5       |             |         |
|                 | 1                   |                                                    |                     |                                                   |                 |                                                   |                                                  |                                                  |                       | ense, LLC  | ΔFC         | COM     |
|                 | 1                   |                                                    | + +                 |                                                   |                 |                                                   |                                                  |                                                  | 1040                  | 555, 225   | , , , ,     | · · ·   |
|                 |                     |                                                    |                     |                                                   |                 |                                                   |                                                  |                                                  |                       | 428794     |             | 794-108 |
| 0               |                     |                                                    |                     |                                                   |                 |                                                   |                                                  |                                                  | PA                    | RTICLE SIZ |             |         |
|                 |                     |                                                    |                     |                                                   |                 |                                                   |                                                  |                                                  |                       | Dynegy C   | CR - Newtor | า       |
|                 |                     |                                                    |                     |                                                   |                 |                                                   | •                                                |                                                  |                       |            | Naval da 44 |         |




| COBB            | LES          | GR                          | RAVEL             |                                                   |                                                  | SAND                                              | SILT OR CLAY      |                                                  | Symbol                |           |             | 0        |
|-----------------|--------------|-----------------------------|-------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------|--------------------------------------------------|-----------------------|-----------|-------------|----------|
|                 |              | COARSE                      | FINE              | COARSE                                            | MEDIL                                            | UM FINE                                           |                   |                                                  | Boring                | NEW-B009  | NEW-B009    | NEW-B009 |
|                 |              |                             |                   | U.S.                                              | Standard S                                       | Sieve Size                                        |                   |                                                  | Sample                | S-10      | S-12        | S-14     |
|                 |              | 1/2"                        | <u> </u>          |                                                   | _                                                | 0                                                 | 9                 |                                                  | Depth                 | 50-52     | 60-62       | 70-71.4  |
|                 | 4 2          | . <del>,</del> _            | 3/4"              | #<br>4                                            | #10                                              | #20<br>#40<br>#60<br>#100                         | #200              |                                                  | % +3"                 | 0.0       | 0.0         | 0.0      |
| 1               | 100 TII      | <del>!! ! ! ! ! </del>      | P.                | <del>.</del>                                      | <u> </u>                                         | <del> </del>                                      |                   | <del>,                                    </del> | % Gravel              | 3.5       | 1.7         | 9.8      |
|                 |              |                             |                   |                                                   | •                                                |                                                   |                   | +                                                | % SAND                | 22.5      | 31.9        | 38.7     |
|                 | 90 🚻         | 11 i i i i<br><del>  </del> | 1 M++             | ;∥;;<br><del>+</del> ₽ <del>↓</del> ;             | <del>                                     </del> |                                                   |                   | <del>     </del>                                 | %C SAND               | 1.9       | 3.7         | 4.6      |
|                 |              |                             |                   | $\square$                                         | ↳⇊                                               |                                                   |                   | <u> </u>                                         | %M SAND               | 3.8       | 7.3         | 10.7     |
|                 | 80           |                             |                   |                                                   |                                                  |                                                   |                   | <u> </u>                                         | %F SAND               | 16.8      | 20.9        | 23.4     |
|                 | 00 lii       | ii i i i                    |                   | 1 1 1 1                                           |                                                  |                                                   |                   |                                                  | % FINES               | 74.0      | 66.4        | 51.5     |
|                 | <b>7</b> []] |                             |                   |                                                   |                                                  |                                                   | H                 |                                                  | % -2μ                 | 21        | 18          | 12       |
| 눞               | 70           |                             | <del>      </del> | <del>                                      </del> | † †                                              |                                                   |                   | <del>                                     </del> | D <sub>100</sub> (mm) | 9.50      | 9.50        | 19.00    |
| BY WEIGHT       |              |                             |                   |                                                   | † †                                              |                                                   |                   | <del> </del>                                     | D <sub>60</sub> (mm)  | 0.04      | 0.05        | 0.16     |
| Š               |              |                             |                   |                                                   |                                                  |                                                   |                   | <del>                                     </del> | D <sub>30</sub> (mm)  | 0.01      | 0.01        | 0.02     |
| B               |              |                             | <del>      </del> |                                                   | + +                                              |                                                   |                   | +                                                | D <sub>10</sub> (mm)  |           | ļ<br>       |          |
| S<br>S          | 50 +++       |                             |                   |                                                   |                                                  |                                                   |                   | <del>                                     </del> | Cc                    |           | ļ<br>       |          |
| SSI             |              |                             |                   | + # + + +                                         |                                                  |                                                   |                   | <del>     </del>                                 | Cu                    |           |             |          |
| ΡĄ              | الله مه      |                             | <u> </u>          |                                                   |                                                  |                                                   |                   | <u> </u>                                         | Particle              |           |             |          |
| 눌               | · []         |                             |                   |                                                   | <u> </u>                                         |                                                   |                   |                                                  | Size                  | PE        | RCENT FIN   | ER       |
| PERCENT PASSING | 30           |                             |                   | <u> </u>                                          | <u>i li</u>                                      | <u> </u>                                          |                   |                                                  | (Sieve #)             |           |             | 0        |
| PEF             | ~~ Ti        |                             |                   |                                                   |                                                  |                                                   | 0, 1              |                                                  | 4"                    |           |             |          |
|                 | <u> </u>     |                             |                   |                                                   |                                                  |                                                   |                   | \\\_\                                            | 3"                    |           | ļ<br>       |          |
|                 | 20 TT        |                             | <del>      </del> |                                                   |                                                  |                                                   |                   |                                                  | 1 1/2"                |           | ļ<br>       |          |
|                 |              |                             |                   |                                                   |                                                  |                                                   |                   | ┰┪╽                                              | 3/4"                  |           | ļ<br>       | 100.0    |
| 1               | וון יי       |                             | 1 1111            | +#++                                              | <del>                                     </del> | <del>!!!!!!!!!</del>                              |                   | $\rightarrow$                                    | 3/8"                  | 100.0     | 100.0       | 91.6     |
| 1               | H            |                             | 1 1111            | ++++                                              | <del>    </del>                                  | <del>                                      </del> |                   | +                                                | 4                     | 96.5      | 98.3        | 90.2     |
|                 | ننل ه        |                             |                   |                                                   | ـــٰـــــــــــــــــــــــــــــــــ            | 1                                                 | <u> </u>          | <u> </u>                                         | 10                    | 94.7      | 94.6        | 85.6     |
|                 | 100          |                             | 10                |                                                   | 1                                                | 0.1                                               | 0.01              | 0.001                                            | 20                    | 93.4      | 91.6        | 81.1     |
| 1               |              |                             |                   |                                                   | F                                                | PARTICLE SIZE -mm                                 |                   |                                                  | 40                    | 90.9      | 87.3        | 74.9     |
|                 |              |                             |                   |                                                   |                                                  |                                                   |                   |                                                  | 60                    | 86.0      | 81.3        | 67.0     |
| SYMBOL          |              |                             | PL                | PI                                                | USCS                                             |                                                   | PTION AND REMARKS | Date Tested                                      | 100                   | 80.3      | 74.4        | 59.5     |
|                 | 13.          |                             |                   |                                                   | CL                                               | Brown, Lean clay with sa                          | and               | 8/31/2015                                        | 200                   | 74.0      | 66.4        | 51.5     |
|                 |              |                             | \                 |                                                   | <u>L</u>                                         |                                                   |                   |                                                  | TerraSe               | ense, LLC | AEC         | OM       |
|                 | 13.          | .5 24                       | 16                | 8                                                 | CL                                               | Brown, Sandy lean clay                            | ·                 | 9/2/2015                                         | 1                     |           |             |          |
|                 |              |                             | \                 |                                                   | <u>L</u> \                                       |                                                   |                   |                                                  |                       | 428794    |             | 794-108  |
| 0               | 12.          | .2                          |                   |                                                   | CL                                               | Brown, Sandy lean clay                            | ·                 | 9/2/2015                                         | PA                    |           | E DISTRIBU  |          |
|                 |              |                             | \                 |                                                   | <u>L</u>                                         |                                                   |                   |                                                  | <u></u>               | Dynegy C  | CR - Newtor | <u>1</u> |
| _               |              |                             |                   |                                                   |                                                  |                                                   |                   |                                                  |                       |           | _           |          |

| COBE                      | BLES       | GRA                                               | VEL                                              |                                                   |                                                   | SAND                                              | SILT OR CLAY                                       |              | Symbol                |            |             | 0      |
|---------------------------|------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|--------------|-----------------------|------------|-------------|--------|
|                           |            | COARSE                                            | FINE                                             | COARSE                                            | MEDIL                                             | JM FINE                                           |                                                    |              | Boring                | NEW-B010   | NEW-B010    |        |
|                           |            |                                                   |                                                  | U.S.                                              | Standard S                                        | Sieve Size                                        |                                                    |              | Sample                | S-7        | S-13        |        |
|                           |            | 3"                                                | <u>.</u> .                                       |                                                   | _                                                 | 0                                                 | 9                                                  |              | Depth                 | 30-32      | 50-50.8     |        |
|                           | 4 9        | <u>,</u> μ                                        | 3/4"<br>3/8"                                     | <b>#</b>                                          | #10                                               | #20<br>#40<br>#100                                | #500<br>#                                          |              | % +3"                 | 0.0        | 0.0         |        |
|                           | 100 TI     | <del>::: : : : : : : : : : : : : : : : : : </del> | ! <del> </del>                                   | <del>*</del>                                      | <del>"</del>                                      | <del>, , , , , , , , , , , , , , , , , , , </del> | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>   |              | % Gravel              | 0.9        | 10.9        |        |
|                           | H          |                                                   | I IIN                                            | #1                                                | ₽─₩                                               | 7                                                 |                                                    |              | % SAND                | 36.8       | 66.8        |        |
|                           | 90         | <del>                                      </del> | <u>                                     </u>     | <u>\</u>                                          | <del>    </del>                                   |                                                   |                                                    |              | %C SAND               | 2.5        | 18.3        |        |
|                           | ļ.         |                                                   |                                                  | $\mathbb{N} \perp$                                | <u>i li</u>                                       |                                                   |                                                    |              | %M SAND               | 6.5        | 32.3        |        |
|                           | 80         |                                                   |                                                  |                                                   |                                                   |                                                   |                                                    |              | %F SAND               | 27.9       | 16.2        |        |
|                           | 00         |                                                   |                                                  |                                                   |                                                   |                                                   |                                                    |              | % FINES               | 62.3       | 22.3        |        |
|                           |            |                                                   |                                                  |                                                   | 4                                                 |                                                   |                                                    |              | % -2μ                 | 24         | 6           |        |
| 노                         | 70         | <del>  </del>                                     |                                                  | #                                                 | <u> </u>                                          |                                                   | <del>                                     </del>   |              | D <sub>100</sub> (mm) | 9.50       | 9.50        |        |
| <u> </u>                  | - Hi       |                                                   |                                                  | #                                                 | <del>  \                                   </del> | 11111 1 N                                         | <u> </u>                                           |              | D <sub>60</sub> (mm)  | 0.07       | 1.33        |        |
| ×                         | 60 44      |                                                   |                                                  | <del>                                      </del> | + \                                               | <del>!!!!!!!!!!!</del>                            |                                                    |              | D <sub>30</sub> (mm)  | 0.00       | 0.24        |        |
| PERCENT PASSING BY WEIGHT | H          | <del>                                     </del>  |                                                  | #                                                 | + \ <u>\</u>                                      | <u> </u>                                          | <del>      N_                               </del> |              | D <sub>10</sub> (mm)  |            |             |        |
| S<br>S                    | 50 ₩       | <del>!!!                                  </del>  | <del>                                     </del> | #                                                 | <u> </u>                                          | <del>Niii i -    </del>                           | ╫┼┼┞╁╴┼┈┼┼┼┼┼                                      |              | Сс                    |            |             |        |
| SSI                       | H          |                                                   | <u> </u>                                         |                                                   |                                                   | !N::::::::::::::::::::::::::::::::::::            |                                                    |              | Cu                    |            |             |        |
| ΡĄ                        | 40         |                                                   | <u> </u>                                         | <u> </u>                                          | <u> </u>                                          |                                                   |                                                    |              | Particle              |            |             |        |
| F                         |            |                                                   |                                                  |                                                   |                                                   | !!!! <b>!</b> !!!                                 |                                                    |              | Size                  | PE         | RCENT FIN   | ER     |
| 2                         | 30         |                                                   |                                                  |                                                   |                                                   | <u>                                      </u>     |                                                    |              | (Sieve #)             |            |             | 0      |
| l Ä                       | <b>™</b> ∏ |                                                   |                                                  |                                                   |                                                   |                                                   | <u>     </u>                                       |              | 4"                    |            |             |        |
| _                         | 🖽          |                                                   |                                                  |                                                   |                                                   |                                                   |                                                    | <del>-</del> | 3"                    |            |             |        |
|                           | 20         | <del>                                      </del> |                                                  | <del>                                      </del> | † †                                               |                                                   |                                                    |              | 1 1/2"                |            |             |        |
|                           |            |                                                   |                                                  | #                                                 | 1 1                                               |                                                   |                                                    |              | 3/4"                  |            |             |        |
|                           | 10 +       | <del>                                     </del>  |                                                  | <del>                                      </del> | <del>:  </del>                                    | <del> </del>                                      |                                                    | +            | 3/8"                  | 100.0      | 100.0       |        |
|                           | H          | <del>                                      </del> |                                                  | ₩ 🕂                                               |                                                   |                                                   |                                                    |              | 4                     | 99.1       | 89.1        |        |
|                           | ننل ه      |                                                   | <u> </u>                                         | 11 1                                              | <u>.                                      </u>    |                                                   | <u> </u>                                           |              | 10                    | 96.6       | 70.8        |        |
|                           | 100        |                                                   | 10                                               |                                                   | 1                                                 | 0.1                                               | 0.01                                               | 0.001        | 20                    | 95.0       | 52.2        |        |
|                           |            |                                                   |                                                  |                                                   | F                                                 | PARTICLE SIZE -mm                                 |                                                    |              | 40                    | 90.2       | 38.5        |        |
|                           |            |                                                   |                                                  |                                                   |                                                   |                                                   |                                                    |              | 60                    | 80.1       | 30.6        |        |
| SYMBO                     | L w (      | (%) LL                                            | PL                                               | PI                                                | USCS                                              | DESCRI                                            | PTION AND REMARKS                                  | Date Tested  | 100                   | 70.6       | 26.1        |        |
|                           | 21         |                                                   | 16                                               | 33                                                | CL                                                | Brown , Sandy lean clay                           |                                                    | 9/2/2015     | 200                   | 62.3       | 22.3        |        |
|                           |            |                                                   |                                                  |                                                   |                                                   |                                                   |                                                    |              | TerraS                | ense, LLC  | AEC         | OM     |
| •                         | 10         | ).1                                               |                                                  |                                                   | SC                                                | Brown, Clayey sand                                |                                                    | 9/2/2015     |                       | ,          |             |        |
|                           |            |                                                   |                                                  |                                                   |                                                   |                                                   |                                                    |              | T60-                  | 428794     | 604287      | 94-108 |
| 0                         |            |                                                   | 1 1                                              |                                                   |                                                   |                                                   |                                                    |              |                       | RTICLE SIZ |             |        |
|                           |            |                                                   |                                                  |                                                   |                                                   |                                                   |                                                    |              |                       |            | CR - Newtor |        |
|                           |            |                                                   |                                                  |                                                   |                                                   |                                                   |                                                    |              |                       |            | 0:41144     |        |

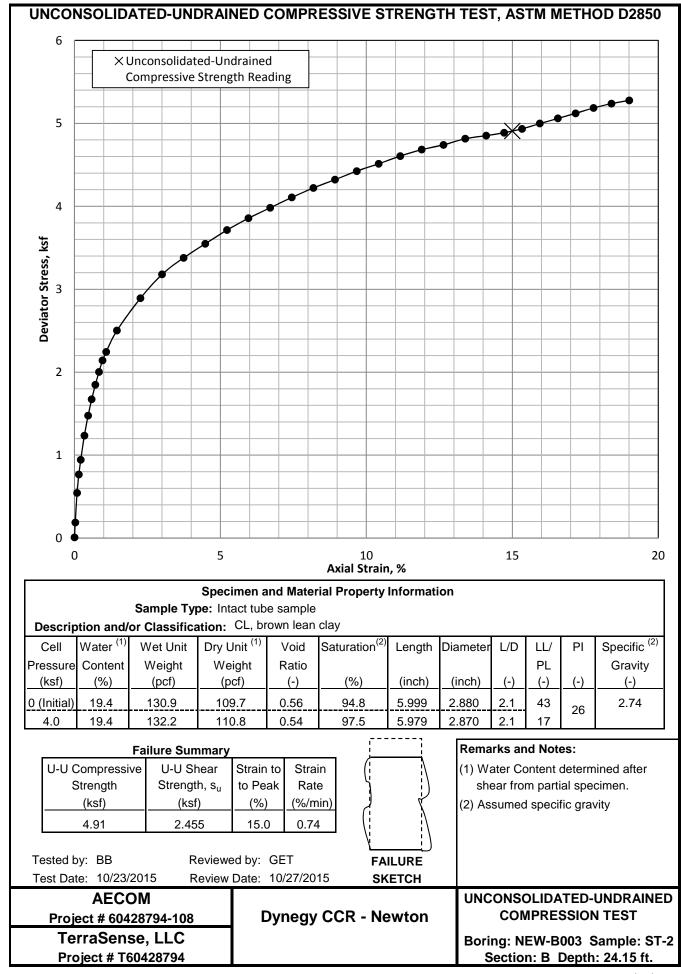
| COBB                      | LES         | GR/                                               | AVEL                                             |                       |                                              | SAND                                              | SILT OR CLAY                                     |                                                  | Symbol                |           |             | 0        |
|---------------------------|-------------|---------------------------------------------------|--------------------------------------------------|-----------------------|----------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------|-----------|-------------|----------|
|                           |             | COARSE                                            | FINE                                             | COARSE                | MEDIL                                        | JM FINE                                           |                                                  |                                                  | Boring                | NEW-B012  | NEW-B012    | NEW-B012 |
|                           |             |                                                   |                                                  | U.S.                  | Standard S                                   | Sieve Size                                        |                                                  |                                                  | Sample                | S-11      | ST-12C      | S-18     |
|                           |             | 1/2"                                              | E. E.                                            |                       |                                              | 0                                                 | 5                                                |                                                  | Depth                 | 40-42     | 46.4        | 75-77    |
|                           | 4 9         | <u>ω</u> − −                                      | 3/4"                                             | #<br>4                | #10                                          | #40<br>#60<br>#100                                | #500<br>#                                        |                                                  | % +3"                 | 0.0       | 0.0         | 0.0      |
| 1                         | 100 TII     | <del>!!! ! ! ! !                          </del>  |                                                  | <del></del>           | <del>'</del>                                 | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>  | <del>!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!</del> | <del>,                                    </del> | % Gravel              | 2.6       | 2.4         | 4.6      |
|                           |             |                                                   | 1                                                |                       |                                              | <del>}}}} } </del>                                | #######################################          | <del>     </del>                                 | % SAND                | 41.5      | 35.5        | 42.1     |
|                           | 90 🕌        | <del>                                      </del> | <del>       </del>                               | +                     |                                              |                                                   |                                                  | <u> </u>                                         | %C SAND               | 3.3       | 2.3         | 3.3      |
|                           | بنا         |                                                   | <u> </u>                                         | 411                   | 1 1                                          |                                                   |                                                  |                                                  | %M SAND               | 9.3       | 7.0         | 9.2      |
|                           | 80          |                                                   |                                                  |                       |                                              |                                                   |                                                  |                                                  | %F SAND               | 28.8      | 26.1        | 29.6     |
|                           | ~           |                                                   |                                                  |                       |                                              |                                                   |                                                  |                                                  | % FINES               | 55.9      | 62.1        | 53.3     |
|                           | 70          |                                                   |                                                  |                       |                                              | //8/                                              |                                                  |                                                  | % -2μ                 | 17        | 30          | 17       |
| 눞                         | 70          | <del>                                      </del> |                                                  |                       |                                              |                                                   | <del>                                     </del> |                                                  | D <sub>100</sub> (mm) | 9.50      | 19.00       | 19.00    |
| EG                        |             |                                                   | †                                                |                       | † †                                          | <u>                                  </u>         |                                                  |                                                  | D <sub>60</sub> (mm)  | 0.11      | 0.07        | 0.14     |
| ₹                         | 60 🚻        |                                                   | <del>       </del>                               | <del>          </del> | + +                                          | <del>                                     </del>  |                                                  | +                                                | D <sub>30</sub> (mm)  | 0.01      | 0.00        | 0.01     |
| B                         |             | <del>                                      </del> | <del>       </del>                               | 111                   | + #                                          | <del>                                     </del>  | # <u>{</u>                                       |                                                  | D <sub>10</sub> (mm)  |           |             |          |
| S<br>S                    | 50 ₩        | ╫┼┼┼                                              | <del>                                     </del> | #++                   | +                                            | <del>                                      </del> | <del>₩\\\</del> =                                | +                                                | Сс                    |           |             |          |
| SSI                       | H           |                                                   |                                                  | #                     |                                              | <del>                                     </del>  |                                                  | <del> </del>                                     | Cu                    |           |             |          |
| PA                        | 40          |                                                   | <del>       </del>                               | # 1                   | <del>     </del>                             | <del>                                     </del>  |                                                  | <u> </u>                                         | Particle              |           |             |          |
| PERCENT PASSING BY WEIGHT |             |                                                   |                                                  | <u> </u>              | 1 1                                          | <u> </u>                                          |                                                  |                                                  | Size                  | PE        | RCENT FIN   |          |
| Ğ                         | 30          |                                                   | <u>      </u>                                    |                       | <u>                                     </u> |                                                   |                                                  |                                                  | (Sieve #)             |           |             | 0        |
| PEF                       |             |                                                   |                                                  |                       | $\perp \perp \parallel$                      | <u>                                     </u>      |                                                  |                                                  | 4"                    |           |             |          |
|                           | <u>, []</u> |                                                   |                                                  |                       |                                              |                                                   | 1                                                |                                                  | 3"                    |           |             |          |
|                           | 20          |                                                   |                                                  |                       |                                              | <del>!!!!!!!!!!</del>                             | <del>                                     </del> |                                                  | 1 1/2"                |           |             |          |
|                           |             |                                                   |                                                  | <u> </u>              | † †                                          |                                                   |                                                  | 79                                               | 3/4"                  |           | 100.0       | 100.0    |
|                           | 10          | <del>                                      </del> |                                                  | <del>        </del>   | <del>†    </del>                             | <u>iiii i i i li</u>                              |                                                  | <del>     </del>                                 | 3/8"                  | 100.0     | 99.4        | 97.3     |
|                           | H           | #                                                 | †                                                | #1  -                 | † †                                          | <del>                                     </del>  | <del>                                     </del> |                                                  | 4                     | 97.4      | 97.6        | 95.4     |
| 1                         | ننل ه       | <u> </u>                                          | <del>-  </del>                                   | <u> </u>              | ــــــــــــــــــــــــــــــــــــــ       | <del>                                 </del>      | <u> </u>                                         | <u>-</u>                                         | 10                    | 94.1      | 95.3        | 92.1     |
|                           | 100         |                                                   | 10                                               |                       | 1                                            | 0.1                                               | 0.01                                             | 0.001                                            | 20                    | 91.2      | 93.0        | 88.9     |
|                           |             |                                                   |                                                  |                       | F                                            | PARTICLE SIZE -mm                                 |                                                  |                                                  | 40                    | 84.8      | 88.3        | 82.9     |
|                           |             |                                                   |                                                  |                       |                                              |                                                   |                                                  |                                                  | 60                    | 73.9      | 78.5        | 71.9     |
| SYMBOL                    |             |                                                   | PL                                               | PI                    | USCS                                         |                                                   | PTION AND REMARKS                                | Date Tested                                      | 100                   | 63.9      | 69.1        | 61.5     |
|                           | 9.9         | .9                                                |                                                  |                       | CL                                           | Brown , Sandy lean clay                           |                                                  | 9/2/2015                                         | 200                   | 55.9      | 62.1        | 53.3     |
|                           |             |                                                   | <u></u>                                          |                       |                                              |                                                   |                                                  |                                                  | TerraSe               | ense, LLC | AEC         | COM      |
| •                         | I           | 43                                                | 14                                               | 29                    | CL                                           | Brown, Sandy lean clay                            |                                                  | 9/23/2015                                        | Į.                    |           |             |          |
|                           |             |                                                   |                                                  | 1                     |                                              |                                                   |                                                  |                                                  |                       | 428794    |             | 794-108  |
| 0                         | 11.         | .8 29                                             | 13                                               | 16                    | CL                                           | Brown, Sandy lean clay                            |                                                  | 9/2/2015                                         | PA                    |           | E DISTRIBU  |          |
| L_                        |             | L                                                 | <u></u> I                                        |                       |                                              |                                                   |                                                  |                                                  | <u></u>               | Dynegy C  | CR - Newtor | 1        |
|                           |             |                                                   |                                                  |                       |                                              |                                                   |                                                  |                                                  |                       |           |             |          |

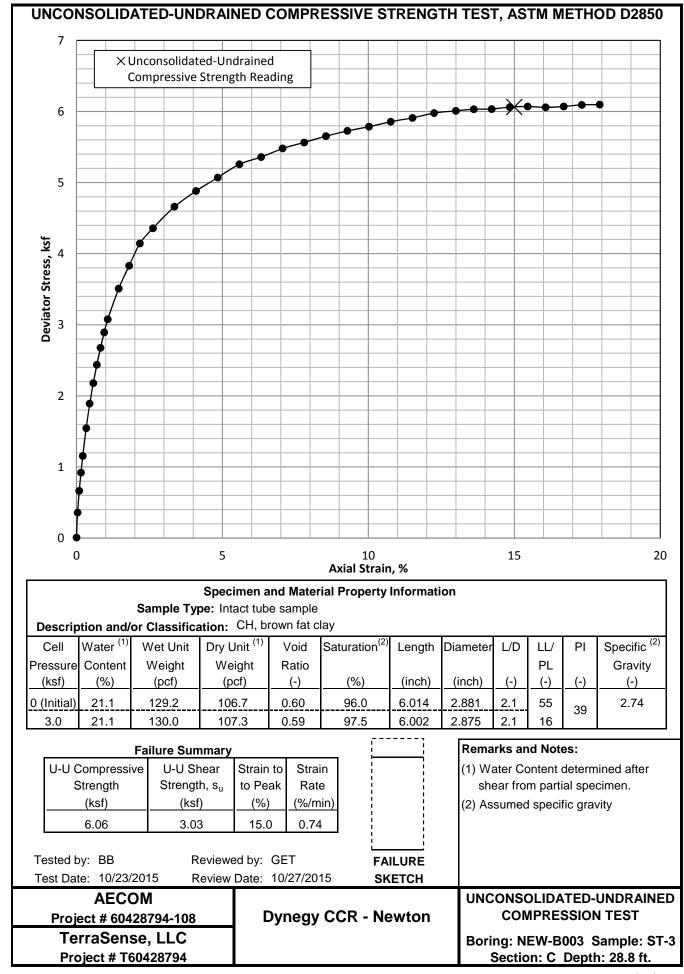
| COBB                      | LES               | GR/                                               | AVEL                                              |                                                   | 5                                                  | SAND                        |                                                   | SILT OR CLAY                                     |                | Symbol                |            |              | 0      |
|---------------------------|-------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-----------------------------|---------------------------------------------------|--------------------------------------------------|----------------|-----------------------|------------|--------------|--------|
|                           |                   | COARSE                                            | FINE                                              | COARSE                                            | MEDIL                                              | JM FINE                     |                                                   |                                                  |                | Boring                | NEW-B014   | NEW-B014     |        |
|                           |                   |                                                   |                                                   | U.S.                                              | Standard S                                         | Sieve Size                  |                                                   |                                                  |                | Sample                | ST-1B      | ST-3C        |        |
|                           |                   | 3"<br>1 1/2"                                      | E. E.                                             |                                                   |                                                    | 0                           | 0                                                 |                                                  |                | Depth                 | 3.5        | 36.65        |        |
|                           | 4                 |                                                   | 3/4"                                              | #<br>4                                            | #10                                                | #40<br>#60<br>#100          | #200<br>#                                         |                                                  |                | % +3"                 | 0.0        | 0.0          |        |
| 1                         | 100 <del>T.</del> | <del>!!                                   </del>  |                                                   | +                                                 |                                                    |                             | <del>// / / / / / / / / / / / / / / / / / /</del> | <del> </del>                                     | <del>.</del> 1 | % Gravel              | 3.4        | 21.7         |        |
|                           | . I∔              |                                                   | \                                                 | <b>#</b>                                          | <u> </u>                                           |                             |                                                   | <del>                                     </del> | <u> </u>       | % SAND                | 50.4       | 64.8         |        |
|                           | 90                |                                                   |                                                   |                                                   |                                                    |                             |                                                   |                                                  |                | %C SAND               | 4.1        | 15.5         |        |
|                           |                   |                                                   | I IINI                                            | <u> </u>                                          | }                                                  |                             |                                                   |                                                  |                | %M SAND               | 11.5       | 31.0         |        |
|                           | .                 |                                                   |                                                   | di I I                                            |                                                    |                             |                                                   |                                                  |                | %F SAND               | 34.9       | 18.3         |        |
|                           | 80                |                                                   |                                                   |                                                   |                                                    |                             |                                                   |                                                  |                | % FINES               | 46.2       | 13.5         |        |
|                           | ļ.                |                                                   |                                                   | 11                                                | 1 1                                                |                             |                                                   |                                                  |                | % -2μ                 | 16         | 4            |        |
| <b>⊨</b>                  | 70 🕂              |                                                   | <del>       </del>                                | #                                                 |                                                    |                             |                                                   | <del>                                     </del> | +              | D <sub>100</sub> (mm) | 9.50       | 19.00        |        |
| 효                         | H-                |                                                   |                                                   | #                                                 |                                                    |                             |                                                   | <del>                                     </del> | +              | D <sub>60</sub> (mm)  | 0.19       | 1.73         |        |
| WE                        | 60 #              |                                                   | <del>       </del>                                | # + +                                             |                                                    |                             |                                                   |                                                  | -              | D <sub>30</sub> (mm)  | 0.01       | 0.40         |        |
| B≺                        | . I∔              |                                                   |                                                   |                                                   | $\downarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ |                             |                                                   |                                                  |                | D <sub>10</sub> (mm)  |            |              |        |
| 9                         | 50 ↓              |                                                   | <del>                                      </del> | <del>                                      </del> |                                                    |                             |                                                   | <del>                                     </del> |                | Сс                    |            |              |        |
| Sis                       |                   |                                                   | <u>                                     </u>      |                                                   |                                                    | $N(1) \mid 1 \mid 1 \mid 1$ | <u>H</u>                                          |                                                  |                | Cu                    |            |              |        |
| AS                        | 40                |                                                   |                                                   |                                                   |                                                    |                             |                                                   |                                                  |                | Particle              | ·          | <u> </u>     |        |
| Ė                         | 40 🕆              |                                                   |                                                   |                                                   |                                                    |                             |                                                   |                                                  |                | Size                  | PE         | RCENT FINE   | ER     |
| PERCENT PASSING BY WEIGHT |                   |                                                   |                                                   |                                                   |                                                    |                             |                                                   | <del>-</del>                                     |                | (Sieve #)             |            |              | 0      |
| Ä                         | .30)              |                                                   |                                                   |                                                   |                                                    |                             |                                                   | <u> </u>                                         |                | 4"                    |            |              |        |
|                           | İ                 |                                                   |                                                   | 1111                                              | 1 1                                                |                             |                                                   |                                                  |                | 3"                    |            |              |        |
|                           | 20 +              |                                                   | <del>! !!!!!</del>                                | <del>!!!                                  </del>  |                                                    |                             |                                                   |                                                  |                | 1 1/2"                |            |              |        |
|                           | T                 |                                                   | <del>      </del>                                 |                                                   | † †                                                |                             |                                                   | <del>          </del>                            |                | 3/4"                  |            | 100.0        |        |
|                           | 10 🕂              | <del>                                      </del> |                                                   | <del>                                      </del> |                                                    | <del></del>                 | <del>░┆┡</del> ┾═┾ <sub>╼</sub>                   |                                                  | +              | 3/8"                  | 100.0      | 91.6         |        |
|                           | H                 |                                                   |                                                   |                                                   |                                                    |                             |                                                   |                                                  |                | 4                     | 96.6       | 78.3         |        |
|                           | ₀↓└               |                                                   | <u> </u>                                          | 11 1                                              | <u>i [i</u>                                        | <u> </u>                    |                                                   | <u>.                                      </u>   |                | 10                    | 92.5       | 62.8         |        |
|                           | 100               |                                                   | 10                                                |                                                   | 1                                                  | 0.1                         |                                                   | 0.01                                             | 0.001          | 20                    | 88.7       | 51.1         |        |
|                           |                   |                                                   |                                                   |                                                   | F                                                  | PARTICLE SIZE -mm           |                                                   |                                                  |                | 40                    | 81.1       | 31.8         |        |
|                           |                   |                                                   |                                                   |                                                   |                                                    |                             |                                                   |                                                  |                | 60                    | 66.9       | 20.2         |        |
| SYMBOL                    | _ w (             | %) LL                                             | PL                                                | PI                                                | USCS                                               | DESCRIF                     | TION AND R                                        | EMARKS                                           | Date Tested    | 100                   | 54.9       | 15.9         |        |
|                           | 9.                |                                                   | 13                                                | 15                                                | SC                                                 | Orange brown, Clayey s      |                                                   |                                                  | 9/18/2015      | 200                   | 46.2       | 13.5         |        |
|                           |                   |                                                   |                                                   |                                                   |                                                    |                             |                                                   |                                                  |                | TerraSe               | ense, LLC  | AEC          | ОМ     |
| -                         |                   | 38                                                | 13                                                | 25                                                | SC                                                 | Brown, Clayey sand with     | n gravel                                          |                                                  | 9/23/2015      |                       | ,          |              |        |
|                           |                   |                                                   |                                                   |                                                   |                                                    |                             |                                                   |                                                  |                | T604                  | 428794     | 604287       | 94-108 |
| 0                         |                   |                                                   |                                                   |                                                   |                                                    |                             |                                                   |                                                  |                | PA                    | RTICLE SIZ | E DISTRIBU   |        |
|                           |                   |                                                   |                                                   |                                                   |                                                    |                             |                                                   |                                                  |                |                       | Dynegy C   | CR - Newton  |        |
| _                         | _                 | _                                                 |                                                   |                                                   |                                                    |                             |                                                   |                                                  | _              | _                     |            | Sanda ala da |        |

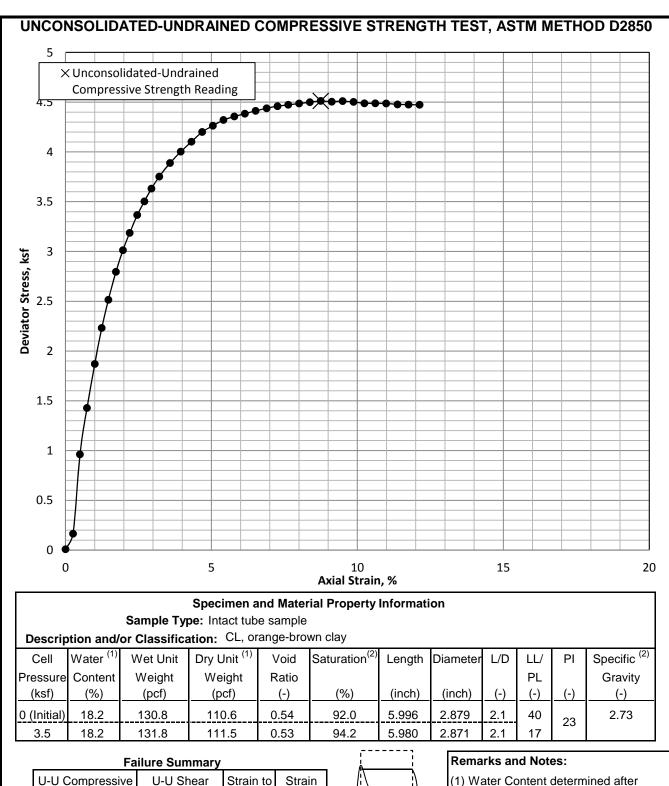
| COBBL           | _ES      |                                                   | GRA\               | /EL_        |                              |                                                   |                                              |          | ND               |                                                   |                                                  |                        |           |          | 5        | SILT | OR (             | CLAY               | Y              |              | Symbol                |                 |              | 0       |
|-----------------|----------|---------------------------------------------------|--------------------|-------------|------------------------------|---------------------------------------------------|----------------------------------------------|----------|------------------|---------------------------------------------------|--------------------------------------------------|------------------------|-----------|----------|----------|------|------------------|--------------------|----------------|--------------|-----------------------|-----------------|--------------|---------|
| L               |          | COAF                                              | RSE                | FINE        |                              | COARSE                                            | MED                                          | IUM      |                  | F                                                 | INE                                              |                        |           |          |          |      |                  |                    |                |              | Boring                | NEW-B015        |              |         |
|                 |          |                                                   |                    |             |                              | U.S.                                              | Standard                                     | Sie      | ve Siz           | :e                                                |                                                  |                        |           |          |          |      |                  |                    |                |              | Sample                | S-8             |              |         |
|                 |          | Ş                                                 | 1 1/2"<br>3/4"     | . 5.        |                              |                                                   |                                              |          |                  |                                                   | 0                                                | 0                      |           |          |          |      |                  |                    |                |              | Depth                 | 35-37           |              |         |
|                 | 4 9      | , w                                               | 11/                | 3/8         | 5                            | #<br>4                                            | #10                                          | #20      | #40              | 09#                                               | #100                                             | #200                   |           |          |          |      |                  |                    |                |              | % +3"                 | 0.0             |              |         |
| 1               | 00 TI    | <u>!!                                   </u>      | <del>+ , ,</del> + | <del></del> |                              |                                                   |                                              | ĊΤ       |                  | <del>. ;                                   </del> | <del>.                                    </del> |                        |           |          |          |      | 1:::             | <del></del>        |                | :            | % Gravel              | 0.2             |              |         |
|                 | H        |                                                   |                    |             |                              |                                                   | <u> </u>                                     | Ш        | 114              | $\rightarrow$                                     | <u> </u>                                         |                        | Н         | -1-1     | _ i      |      | <del>     </del> | +++                |                | <u> </u>     | % SAND                | 15.3            |              |         |
|                 | 90 👯     |                                                   |                    |             |                              |                                                   | <u>i                                    </u> | Ш        | <del>     </del> | <u> </u>                                          |                                                  |                        |           | 11       |          |      |                  | <del>       </del> |                | <u> </u>     | %C SAND               | 0.5             |              |         |
|                 |          |                                                   |                    |             | <u> </u>                     |                                                   |                                              | Ш        | <u> </u>         |                                                   | 1                                                |                        | Ш         |          |          |      |                  | <u> </u>           |                |              | %M SAND               | 0.9             |              |         |
|                 | 80       |                                                   |                    |             |                              |                                                   |                                              | Ш        |                  |                                                   |                                                  |                        | Ш         |          |          |      |                  |                    |                |              | %F SAND               | 13.8            |              |         |
| '               | °°⊞      |                                                   |                    |             | Ш                            |                                                   |                                              | Ш        |                  |                                                   |                                                  |                        |           |          |          |      | Ш                |                    |                |              | % FINES               | 84.5            |              |         |
|                 |          |                                                   |                    |             |                              |                                                   | 1                                            | Ш        | 111              |                                                   | İ                                                |                        | X         | 11       | İ        |      | Ш                | 111                |                |              | % -2μ                 | 36              |              |         |
|                 | 70 🚻     |                                                   | + +                |             | ${}^{\dagger\dagger\dagger}$ | <del>!        </del>                              | † †                                          | Ш        | 111              | $\top$                                            | <del>                                     </del> |                        |           | ++       | 一        |      |                  |                    |                | †            | D <sub>100</sub> (mm) | 9.50            |              |         |
| BY WEIGHT       |          |                                                   | ++                 |             | 111                          | #                                                 |                                              | Ш        |                  | +                                                 | !                                                |                        | \         | H        | -        |      |                  | <del>       </del> |                | +            | D <sub>60</sub> (mm)  | 0.04            |              |         |
| ×               |          |                                                   | ++                 |             | ₩                            | <del>                                     </del>  |                                              |          |                  | ÷                                                 | <del>!</del>                                     | <del>- 11111</del>     | $\neg$    | <u> </u> | +        |      |                  |                    |                | +            | D <sub>30</sub> (mm)  | 0.00            |              |         |
| B≺              | H        | <del>                                      </del> | +                  |             |                              | <del>                                     </del>  |                                              |          |                  | -                                                 | <u> </u>                                         |                        | н         | N        |          |      |                  | 111                |                |              | D <sub>10</sub> (mm)  |                 |              |         |
|                 |          | <del>          </del>                             | $\dashv \dashv$    |             | <del>!!!</del>               | <del>                                      </del> | + +                                          | Ш        | +++              | <u> </u>                                          | <u>i                                     </u>    | 4114                   | -11       | -   -    | Ų.       |      | <del>     </del> | <del>     </del>   |                | 4            | Сс                    |                 |              |         |
| ll Si           |          |                                                   | _                  | [           |                              |                                                   | 1                                            | Ш        |                  |                                                   | <u> </u>                                         |                        | Ш         |          | Ĺ        | \    |                  |                    |                |              | Cu                    |                 |              |         |
| PAS             | 40 111   |                                                   |                    |             |                              | <u>!                                     </u>     |                                              | <u> </u> | <u>       </u>   | -                                                 | <u> </u>                                         |                        | 11        |          | -        |      | 1111             | 111                |                |              | Particle              |                 |              |         |
| <u> </u>        | 40 ∏     |                                                   |                    |             |                              |                                                   |                                              | Ш        |                  |                                                   |                                                  |                        |           |          |          |      |                  | <u> </u>           | <del>5</del> - | <u>-</u>     | Size                  | PE              | RCENT FIN    | ER      |
| PERCENT PASSING | 111      |                                                   |                    |             |                              |                                                   | 1                                            | Ш        |                  |                                                   | İ                                                |                        |           |          |          |      |                  |                    | T              | <del></del>  | (Sieve #)             |                 |              | 0       |
| Ä               |          | <del>                                      </del> | 11                 |             | 111                          | <del>ii i i</del>                                 | -                                            | Ш        | -                | $\top$                                            | i                                                |                        | 11        | 11       | 寸        |      |                  | 111                |                |              | 4"                    | _               |              | _       |
| I <sup>6</sup>  | Ħ        |                                                   | 1 1                |             | ###                          | 11 1                                              | 1                                            |          | 111              |                                                   | !                                                |                        | +1        | 11       | _        |      |                  |                    |                |              | 3"                    |                 |              |         |
| :               | 20 🚻     |                                                   | ++                 |             | ₩                            | <del>!        </del>                              | _                                            | ₩        |                  | +                                                 | <del>!                                    </del> | <del>           </del> | $\pm \pm$ | + +      | +        |      | ╫                |                    | +              | +            | 1 1/2"                |                 |              |         |
|                 |          |                                                   | + +                |             | ₩                            | <del>                                      </del> | 1 1                                          | +++      | +++              | ÷                                                 | į –                                              |                        | H         | + 1      | $\dashv$ |      | -                | $\overline{}$      |                | <del> </del> | 3/4"                  |                 |              |         |
|                 |          |                                                   | ++                 |             |                              |                                                   |                                              | Ш        |                  | +                                                 | <del> </del>                                     |                        |           | ┿        | -        |      | <del>    </del>  |                    | $\vdash$       | +            | 3/8"                  | 100.0           |              |         |
|                 |          |                                                   | -                  |             |                              | <u> </u>                                          | <u> </u>                                     |          | 111              | -                                                 | 1                                                |                        | +         | - -      | _        |      |                  | 111                |                | -            | 4                     | 99.8            |              |         |
|                 | ننل ہ    |                                                   |                    | !           |                              |                                                   |                                              |          | <u> </u>         |                                                   | į                                                |                        | Ш         |          | į        |      |                  | <u> </u>           |                | <u> </u>     | 10                    | 99.2            |              |         |
|                 | 100      |                                                   |                    | 10          |                              |                                                   | 1                                            |          |                  |                                                   | (                                                | 0.1                    |           |          |          | 0    | .01              |                    |                | 0.001        | 20                    | 99.0            |              |         |
|                 |          |                                                   |                    |             |                              |                                                   |                                              | PA       | RTICL            | E SIZ                                             | E-mm                                             | ١                      |           |          |          |      |                  |                    |                |              | 40                    | 98.3            |              |         |
|                 |          |                                                   |                    |             |                              |                                                   |                                              |          |                  |                                                   |                                                  |                        |           |          |          |      |                  |                    |                |              | 60                    | 95.5            |              |         |
| SYMBOL          | w (      | %)                                                | LL                 | PL          |                              | PI                                                | USCS                                         | Т        |                  |                                                   | DESC                                             | RIPT                   | ION       | AND      | RE       | MARK | S                |                    |                | Date Tested  |                       | 92.4            |              |         |
|                 | 21       |                                                   | 46                 | 14          | 1                            | 32                                                | CL                                           | Ві       | own ,            |                                                   | clay wi                                          |                        |           |          |          |      |                  |                    |                | 9/2/2015     | 200                   | 84.5            |              |         |
|                 |          |                                                   |                    |             |                              |                                                   |                                              |          |                  |                                                   | •                                                |                        |           |          |          |      |                  |                    |                |              |                       | ense, LLC       | ΔF(          | COM     |
|                 |          |                                                   |                    |             | +                            |                                                   |                                              | +        |                  |                                                   |                                                  |                        |           |          |          |      |                  |                    |                |              | 1                     | oso, <b>LLO</b> | AL           | J       |
|                 |          |                                                   |                    |             | I                            |                                                   |                                              |          |                  |                                                   |                                                  |                        |           |          |          |      |                  |                    |                |              | T60                   | 428794          | 604287       | 794-108 |
| 0               |          | -                                                 |                    |             | +                            |                                                   |                                              | +        |                  |                                                   |                                                  |                        |           |          |          |      |                  |                    |                |              |                       | ARTICLE SIZ     |              |         |
|                 |          |                                                   |                    |             | I                            |                                                   |                                              |          |                  |                                                   |                                                  |                        |           |          |          |      |                  |                    |                |              | I ''                  |                 | CR - Newton  |         |
|                 | <u> </u> |                                                   |                    |             |                              |                                                   |                                              |          |                  |                                                   |                                                  |                        |           |          |          |      |                  |                    |                |              |                       | Dynegy C        | OIX - INGWIO | ı       |



| PERM                                                      | EABILIT                 | Y TEST: FA     |              |         |          | T VOLUM   | /IE U-TL          | IBE       |               |            |            |                |
|-----------------------------------------------------------|-------------------------|----------------|--------------|---------|----------|-----------|-------------------|-----------|---------------|------------|------------|----------------|
|                                                           |                         |                | TM D 5084 -  |         | d F      |           |                   |           |               |            |            |                |
| Project No.: T60428794                                    |                         |                | NEW-B003     |         |          |           |                   |           |               |            | Test No.:  | P10611         |
| Project Name: Dynegy CCR - Newton                         |                         | SAMPLE:        | ST-3         |         |          | DEF       | PTH (ft):         | 28.3      |               |            |            |                |
| Specimen - Apparatus set-up - Test Information            |                         | Cell No.       | D            |         | Appai    | ratus No. | 2                 |           | Stage No.:    |            |            |                |
| Preliminary Length/Area Calculations                      | <ol> <li>Spe</li> </ol> | cimen Teste    | d in :       | X       | Triaxial | l Cell or |                   | Compa     | ction Mold    | or         |            |                |
| Lo = 4.021 in Lo= 10.212 cm                               |                         |                |              | Х       | with sto | ones or   |                   | Stones    | with filter p | aper or    |            | top + bottom   |
| dLc= 0.057 in Ao = $42.07 \text{ cm}^2$                   | , ,                     | cimen orienta  |              | X       | Vertica  |           |                   |           | tal permea    | ability de | terminatio | n              |
| Lc= $3.964$ in Vo = $429.65$ cm <sup>3</sup>              | 3) Dur                  | ing saturation | n: Water flu | shed up | -        | •         |                   |           | X             | No         |            | Yes            |
| Lc= 10.068 cm                                             | 4) Dur                  | ing consolida  | ation:       | Х       | Top an   | d bottom  | drainag           | e or      |               | Top        |            | Bottom only    |
| $dVc = 3 Vo * (dLc/Lo)$ $dVc = 18.27 cm^3$                | 5) Dire                 | ction of perm  | eant:        | Х       | Up duri  | ing or    |                   | Down d    | uring perm    | neation    |            |                |
| $Vc = 411.38 \text{ cm}^3$                                | 6) Per                  | meant: water   | used         | Х       | Тар      |           |                   | Distilled |               |            |            |                |
| $Sc = 0.246 \text{ cm}^{-1}$ $Ac = 40.862 \text{ cm}^{2}$ | or                      |                |              |         | Demine   | eralized  |                   | 0.005 N   | calcium s     | ulfate (C  | CaSO4)     | Permeability   |
| Equations Used                                            | Consol                  | Temp.          | Date         |         | Time     |           | Ini               | tial      | U-tu          | ibe Read   |            | Preliminary    |
| Kt = - 0.0000746 * Sc/dT(min) * In (ho/hf)                | Stage-                  |                |              |         |          |           | $\sigma_{c}$      | Ub        | Head          | Tail       | Flow       | Final at 20°C  |
| RT = (-0.02452*(ave. temp in C) + 1.495)                  | Trial                   |                |              |         |          |           |                   |           | (cm)          | (cm)       | in/out     | cm/sec         |
| K @ 20 °C = RT * Kt TubeC= 1.3214                         | No.                     | ° C            |              | hr      | min      | sec       | psi               | psi       | (cc)          | (cc)       | gradient   | Dev. from Ave. |
| TEST SUMMARY                                              | initial                 | 21.0           | 10/27/15     | 09      | 13       | 00        | 120.8             | 100.0     | 60.70         | 42.60      | 1.01       | 9.84E-08       |
| Final Specimen and Test Conditions                        | final                   | 21.2           | 10/27/15     | 09      | 51       | 00        |                   |           | 58.18         | 43.40      |            | 9.51E-08       |
| $Lc = 10.068$ cm $\varepsilon_{axial} = 1.4\%$            | 1                       | RT = 0.978     | dT =         | _       | 38.00 m  | _         | σ' <sub>c</sub> = | 3.0 ksf   | 0.187         | 0.185      | io= 22.6   |                |
| $Ac = 41.331 \text{ cm}^2$                                | initial                 | 21.2           | 10/27/15     | 09      | 52       | 00        | 120.8             | 100.0     | 59.07         | 43.10      | 1.05       | 1.01E-07       |
| Vc= 416.10 cm <sup>3</sup> $\epsilon_{vol}$ = 3.2%        | final                   | 21.5           | 10/27/15     | 10      | 30       | 00        |                   |           | 56.79         | 43.80      |            | 9.72E-08       |
| $Sc = 0.244 \text{ cm}^{-1} \text{ Sc} = Lc / Ac$ , final | 2                       | RT = 0.971     | dT =         |         | 38.00 m  | nin       | σ' <sub>c</sub> = | 3.0 ksf   | 0.170         |            | io= 19.9   | 1%             |
|                                                           | initial                 | 21.5           | 10/27/15     | 10      | 31       | 00        | 120.8             | 100.0     | 58.80         | 43.20      | 1.00       | 1.03E-07       |
| $W \gamma_{\tau} \gamma_{d} S$                            | final                   | 21.8           | 10/27/15     | 11      | 15       | 00        |                   |           | 56.22         | 44.03      |            | 9.82E-08       |
| (%) (pcf) (pcf) (%)                                       | 3                       | RT = 0.964     | dT =         |         | 44.00 m  |           | σ' <sub>c</sub> = | 3.0 ksf   | 0.192         |            | io= 19.5   | 2%             |
| Initial 21.21 126.4 104.3 91.3                            | initial                 | 21.8           | 10/27/15     | 11      | 16       | 00        | 120.8             | 100.0     | 58.70         | 43.23      | 1.00       | 1.01E-07       |
| PreTest 21.34 130.7 107.7 100.0                           | final                   | 22.3           | 10/27/15     | 12      | 07       | 00        |                   |           | 55.84         | 44.15      |            | 9.53E-08       |
|                                                           | 4                       | RT = 0.954     | dT =         |         | 51.00 m  | nin       | σ' <sub>c</sub> = | 3.0 ksf   | 0.213         | 0.213      | io= 19.3   | -1%            |
| HYDRAULIC CONDUCTIVITY SUMMARY                            | initial                 |                |              |         |          |           |                   |           |               |            |            |                |
| Averages for trials: 1-4                                  | final                   |                |              |         |          |           |                   |           |               |            |            |                |
| ave K @ 20 °C: 9.64E-08 cm/sec                            | 5                       |                |              |         |          |           |                   |           |               |            |            |                |
| $(i_0)$ ave = 20.3                                        | initial                 |                |              |         |          |           |                   |           |               |            | ]          |                |
|                                                           | final                   |                |              |         |          |           |                   |           |               |            | <b> </b>   |                |
| Tested By: BB Reviewed By: G. Thomas                      | 6                       |                |              |         |          |           |                   |           |               |            |            |                |

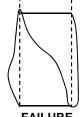

| PERMEABILITY TEST: FALLING HEAD - CONSTANT VOLUME U-TUBE                            |                              |              |                   |                                 |                            |           |                                     |                                 |                                 |          |                                                    |                |  |
|-------------------------------------------------------------------------------------|------------------------------|--------------|-------------------|---------------------------------|----------------------------|-----------|-------------------------------------|---------------------------------|---------------------------------|----------|----------------------------------------------------|----------------|--|
| ASTM D 5084 - Method F                                                              |                              |              |                   |                                 |                            |           |                                     |                                 |                                 |          |                                                    |                |  |
| Project No.: T60428794 BORING: NEW-B004 Test No.: P10610                            |                              |              |                   |                                 |                            |           |                                     | P10610                          |                                 |          |                                                    |                |  |
| Project Name: Dynegy CCR - Newton                                                   |                              | SAMPLE:      |                   |                                 | DEF                        | PTH (ft): | 33.2                                |                                 |                                 |          |                                                    |                |  |
| Specimen - Apparatus set-up - Test Information                                      |                              |              |                   |                                 |                            | atus No.  | 3                                   |                                 | Stage No.:                      |          |                                                    |                |  |
| Preliminary Length/Area Calculations                                                | 1) Specimen Tested in :      |              |                   | X                               | Triaxial                   | Cell or   |                                     |                                 | action Mold <u>or</u>           |          |                                                    |                |  |
| Lo = 3.994 in Lo= 10.145 cm                                                         |                              | X            | with sto          |                                 |                            | 4         | s with filter paper or top + bottom |                                 |                                 |          |                                                    |                |  |
| dLc= 0.058 in Ao = $42.13 \text{ cm}^2$                                             | 2) Specimen orientation for: |              |                   | X                               |                            |           |                                     |                                 | ntal permeability determination |          |                                                    |                |  |
| Lc= $3.936$ in Vo = $427.40$ cm <sup>3</sup>                                        | ,                            | •            | shed up           | sides of specimen to remove air |                            |           |                                     | X                               | No                              |          | Yes                                                |                |  |
| Lc= 9.997 cm                                                                        | 4) During consolidation:     |              |                   | X                               | Top and bottom drainage or |           |                                     |                                 | Тор                             |          | Bottom only                                        |                |  |
| $dVc = 3 Vo * (dLc/Lo)$ $dVc = 18.62 cm^3$                                          | 5) Direction of permeant :   |              |                   | X                               | Up duri                    | ng or     |                                     |                                 | during permeation               |          |                                                    |                |  |
| $Vc = 408.78 \text{ cm}^3$                                                          | 6) Per                       | meant: water | used <b>x</b> Tap |                                 |                            |           |                                     | Distilled                       |                                 |          |                                                    |                |  |
| $Sc = 0.245 \text{ cm}^{-1}$ Ac= $40.889 \text{ cm}^2$                              | or                           |              |                   | Demineralized                   |                            |           |                                     | 0.005 N calcium sulfate (CaSO4) |                                 |          | Permeability                                       |                |  |
| Equations Used                                                                      | Consol                       | Temp.        | Date              | Date Time                       |                            |           | Ini                                 | tial                            | U-tube Rea                      |          | <del>.                                      </del> | Preliminary    |  |
| Kt = - 0.0000755 * Sc/dT(min) * In (ho/hf)                                          | Stage-                       |              |                   |                                 |                            |           | $\sigma_{c}$                        | Ub                              | Head                            | Tail     | Flow                                               | Final at 20°C  |  |
| RT = (-0.02452*(ave. temp in C) + 1.495)                                            | Trial                        |              |                   |                                 |                            |           |                                     |                                 | (cm)                            | (cm)     | in/out                                             | cm/sec         |  |
| K @ 20 °C = RT * Kt TubeC= 1.3132                                                   | No.                          | ° C          |                   | hr                              | min                        | sec       | psi                                 | psi                             | (cc)                            | (cc)     | gradient                                           | Dev. from Ave. |  |
| TEST SUMMARY                                                                        | initial                      | 21.0         | 10/27/15          | 09                              | 06                         | 00        | 131.3                               | 100.0                           | 58.00                           | 49.20    | 1.02                                               | 6.64E-06       |  |
| Final Specimen and Test Conditions                                                  | final                        | 21.0         | 10/27/15          | 09                              | 08                         | 00        |                                     |                                 | 54.56                           | 50.26    |                                                    | 6.41E-06       |  |
| $Lc = 9.997 \text{ cm} \qquad \epsilon_{\text{axial}} = 1.5\%$                      | 1                            | RT = 0.980   | dT =              | 1                               | 2.00 mi                    |           | σ' <sub>c</sub> =                   | 4.5 ksf                         | 0.257                           | 0.253    |                                                    |                |  |
| $Ac = 41.520 \text{ cm}^2$                                                          | initial                      | 21.0         | 10/27/15          | 09                              | 09                         | 00        | 131.3                               | 100.0                           | 58.00                           | 49.20    | 0.99                                               | 6.63E-06       |  |
| $Vc = 415.09 \text{ cm}^3 \qquad \epsilon_{Vol} = 2.9\%$                            | final                        | 21.0         | 10/27/15          | 09                              | 12                         | 00        |                                     |                                 | 53.58                           | 50.60    |                                                    | 6.40E-06       |  |
| $Sc = 0.241 \text{ cm}^{-1} \text{ Sc} = Lc / Ac$ , final                           | 2                            | RT = 0.980   | dT =              |                                 | 3.00 mi                    |           | σ' <sub>c</sub> =                   | 4.5 ksf                         | 0.330                           | 0.334    | io= 11.1                                           | -1%            |  |
| _                                                                                   | initial                      | 21.0         | 10/27/15          | 09                              | 13                         | 00        | 131.3                               | 100.0                           | 58.00                           | 49.20    | 1.00                                               | 6.65E-06       |  |
| $\mathbf{w} \qquad \qquad \gamma_{\tau} \qquad \qquad \gamma_{d} \qquad \mathbf{S}$ | final                        | 21.0         | 10/27/15          | 09                              | 14                         | 30        |                                     |                                 | 55.20                           | 50.08    | <b> </b>                                           | 6.42E-06       |  |
| (%) (pcf) (pcf) (%)                                                                 | 3                            | RT = 0.980   | dT =              |                                 | 1.50 mi                    |           | σ' <sub>c</sub> =                   | 4.5 ksf                         | 0.209                           | 0.210    |                                                    | 0%             |  |
| Initial 9.67 136.2 124.2 70.9                                                       | initial                      | 21.0         | 10/27/15          | 09                              | 16                         | 00        | 131.3                               | 100.0                           | 58.00                           | 49.20    | 0.97                                               | 6.76E-06       |  |
| PreTest 12.18 143.5 127.9 100.0                                                     |                              | 21.0         | 10/27/15          | 09                              | 18                         | 30        |                                     | 4 = 1 . (                       | 53.98                           | 50.50    | ļ                                                  | 6.52E-06       |  |
|                                                                                     | 4                            | RT = 0.980   | dT =              |                                 | 2.50 mi                    | n         | σ' <sub>c</sub> =                   | 4.5 ksf                         | 0.300                           | 0.310    | io= 11.1                                           | 1%             |  |
| HYDRAULIC CONDUCTIVITY SUMMARY                                                      | initial                      |              |                   |                                 |                            |           | ł                                   |                                 |                                 |          | 4                                                  |                |  |
| Averages for trials: 1-4                                                            | final                        |              |                   |                                 |                            |           |                                     |                                 |                                 |          | <del> </del>                                       |                |  |
| ave K @ 20 °C: <b>6.44E-06</b> cm/sec                                               | 5                            |              |                   |                                 |                            |           |                                     |                                 |                                 |          |                                                    |                |  |
| (i <sub>o</sub> )ave = 11.1                                                         | initial                      |              |                   |                                 |                            |           |                                     |                                 |                                 |          | 1                                                  |                |  |
| Tested Dur DD                                                                       | final                        |              |                   |                                 |                            |           |                                     |                                 |                                 |          | <del> </del>                                       |                |  |
| Tested By: BB Reviewed By: G. Thomas                                                | 6                            |              |                   |                                 |                            |           |                                     |                                 |                                 | <u> </u> |                                                    |                |  |


| PERMEABILITY TEST: FALLING HEAD - CONSTANT VOLUME U-TUBE   |                                     |                                                  |                                |               |                               |          |                   |                                 |            |                  |          |                |  |
|------------------------------------------------------------|-------------------------------------|--------------------------------------------------|--------------------------------|---------------|-------------------------------|----------|-------------------|---------------------------------|------------|------------------|----------|----------------|--|
| ASTM D 5084 - Method F                                     |                                     |                                                  |                                |               |                               |          |                   |                                 |            |                  |          |                |  |
| Project No.: T60428794 BORING: NEW-B006 Test No.: P1059    |                                     |                                                  |                                |               |                               |          |                   | P10597                          |            |                  |          |                |  |
| Project Name: Dynegy CCR - Newton                          | SAMPLE: ST-3                        |                                                  |                                |               | DEPTH (ft): 31.25             |          |                   |                                 |            |                  |          |                |  |
| Specimen - Apparatus set-up - Test Information             | Cell No. D                          |                                                  |                                |               | Apparatus No. 1 Stage No.:    |          |                   |                                 |            |                  |          |                |  |
| Preliminary Length/Area Calculations                       | 1) Specimen Tested in :             |                                                  |                                | Х             | Triaxial Cell or Compaction N |          |                   |                                 |            | on Mold or       |          |                |  |
| Lo = 3.986 in Lo= 10.124 cm                                |                                     | x                                                | with stones or Stones with fil |               |                               |          |                   | th filter paper ortop + bottom  |            |                  |          |                |  |
| dLc= 0.132 in Ao = $41.97 \text{ cm}^2$                    | 2) Spe                              | X                                                |                                |               |                               |          |                   | ermeability determination       |            |                  |          |                |  |
| Lc= $3.854$ in Vo = $424.87$ cm <sup>3</sup>               | 3) During saturation: Water flusher |                                                  |                                |               |                               |          |                   | X                               | No         |                  | Yes      |                |  |
| Lc= 9.789 cm                                               | 4) Dur                              | 4) During consolidation: <b>x</b> Top and bottom |                                |               |                               | d bottom | drainag           | e or                            |            | Top              |          | Bottom only    |  |
| $dVc = 3 Vo * (dLc/Lo)$ $dVc = 42.21 cm^3$                 | 5) Dire                             | 5) Direction of permeant :                       |                                |               |                               |          |                   |                                 | uring perm | rring permeation |          |                |  |
| $Vc = 382.66 \text{ cm}^3$                                 | 6) Per                              | meant: water                                     | ter used <b>x</b> Tap          |               |                               |          |                   | Distilled                       |            |                  |          |                |  |
| $Sc = 0.250 \text{ cm}^{-1}$ Ac= 39.091 cm <sup>2</sup>    | or                                  |                                                  |                                | Demineralized |                               |          |                   | 0.005 N calcium sulfate (CaSO4) |            |                  |          | Permeability   |  |
| Equations Used                                             | Consol                              | Temp.                                            | Date Time                      |               |                               |          | Initial           |                                 | U-tube Rea |                  | ding     | Preliminary    |  |
| Kt = - 0.0000757 * Sc/dT(min) * In (ho/hf)                 | Stage-                              |                                                  |                                |               |                               |          | $\sigma_{c}$      | Ub                              | Head       | Tail             | Flow     | Final at 20°C  |  |
| RT = (-0.02452*(ave. temp in C) + 1.495)                   | Trial                               |                                                  |                                |               |                               |          |                   |                                 | (cm)       | (cm)             | in/out   | cm/sec         |  |
| K @ 20 °C = RT * Kt TubeC= 1.3127                          | No.                                 | ° C                                              |                                | hr            | min                           | sec      | psi               | psi                             | (cc)       | (cc)             | gradient | Dev. from Ave. |  |
| TEST SUMMARY                                               | initial                             | 22.7                                             | 10/7/15                        | 09            | 32                            | 00       | 130.0             | 80.0                            | 55.90      | 38.12            | 0.98     | 1.95E-07       |  |
| Final Specimen and Test Conditions                         | final                               | 22.5                                             | 10/7/15                        | 10            | 57                            | 00       |                   |                                 | 48.00      | 40.65            |          | 1.70E-07       |  |
| $Lc = 9.789$ cm $\varepsilon_{axial} = 3.3\%$              | 1                                   | RT = 0.941                                       | dT =                           |               | 85.00 m                       | nin      | $\sigma'_c =$     | 7.2 ksf                         | 0.592      | 0.606            | io= 22.8 | 5%             |  |
| $Ac = 42.154 \text{ cm}^2$                                 | initial                             | 22.6                                             | 10/7/15                        | 11            | 52                            | 00       | 130.0             | 80.0                            | 55.90      | 38.10            | 0.99     | 1.86E-07       |  |
| Vc= 412.65 cm <sup>3</sup> $\epsilon_{\text{vol}} = 2.9\%$ | final                               | 22.5                                             | 10/7/15                        | 13            | 37                            | 00       |                   |                                 | 47.18      | 40.85            |          | 1.62E-07       |  |
| $Sc = 0.232 \text{ cm}^{-1}  Sc = Lc / Ac$ , final         | 2                                   | RT = 0.942                                       | dT =                           |               | 105.00 r                      | nin      | $\sigma'_{c} =$   | 7.2 ksf                         | 0.653      | 0.659            | io= 22.9 | 0%             |  |
|                                                            | initial                             | 22.5                                             | 10/7/15                        | 13            | 39                            | 00       | 130.0             | 80.0                            | 56.20      | 38.00            | 1.01     | 1.82E-07       |  |
| $	ext{w} 	 \gamma_{	au} 	 \gamma_{	ext{d}} 	 S$            | final                               | 22.7                                             | 10/7/15                        | 14            | 44                            | 00       |                   |                                 | 49.75      | 40.00            |          | 1.59E-07       |  |
| (%) (pcf) (pcf) (%)                                        | 3                                   | RT = 0.941                                       | dT =                           |               | 65.00 m                       | nin      | $\sigma'_c =$     | 7.2 ksf                         | 0.483      | 0.479            | io= 23.4 | -2%            |  |
| Initial 20.74 130.6 108.1 98.3                             | initial                             | 22.7                                             | 10/7/15                        | 14            | 48                            | 00       | 130.0             | 80.0                            | 55.80      | 38.12            | 0.99     | 1.78E-07       |  |
| PreTest 19.44 133.0 111.3 100.0                            | final                               | 22.8                                             | 10/7/15                        | 17            | 24                            | 00       |                   |                                 | 45.44      | 41.40            |          | 1.55E-07       |  |
|                                                            | 4                                   | RT = 0.937                                       | dT =                           | •             | 156.00 r                      | nin      | $\sigma'_c =$     | 7.2 ksf                         | 0.776      | 0.786            | io= 22.7 | -4%            |  |
| HYDRAULIC CONDUCTIVITY SUMMARY                             | initial                             |                                                  |                                |               |                               |          |                   |                                 |            |                  | ]        |                |  |
| Averages for trials: 1-4                                   | final                               |                                                  |                                |               |                               |          |                   |                                 |            |                  |          |                |  |
| ave K @ 20 °C: 1.62E-07 cm/sec                             | 5                                   |                                                  | dT =                           |               |                               |          | $\sigma'_{c} =$   |                                 |            |                  |          |                |  |
| $(i_o)$ ave = 22.9                                         | initial                             |                                                  |                                |               |                               |          |                   |                                 |            |                  |          |                |  |
|                                                            | final                               |                                                  |                                |               |                               |          |                   |                                 |            |                  |          |                |  |
| Tested By: BB Reviewed By: G. Thomas                       | 6                                   |                                                  | dT =                           |               |                               |          | σ' <sub>c</sub> = |                                 |            |                  |          |                |  |


| PERMEABILITY TEST: FALLING HEAD - CONSTANT VOLUME U-TUBE       |                                 |                        |          |              |                                    |                               |                   |           |              |                               |             |                |  |  |
|----------------------------------------------------------------|---------------------------------|------------------------|----------|--------------|------------------------------------|-------------------------------|-------------------|-----------|--------------|-------------------------------|-------------|----------------|--|--|
| ASTM D 5084 - Method F                                         |                                 |                        |          |              |                                    |                               |                   |           |              |                               |             |                |  |  |
| Project No.: T60428794 BORING: NEW-B007                        |                                 |                        |          |              |                                    | Test No.: P10598              |                   |           |              |                               |             |                |  |  |
| Project Name: Dynegy CCR - Newton                              | SAMPLE: ST-5A                   |                        |          |              | DEPTH (ft): 50.3                   |                               |                   |           |              |                               |             |                |  |  |
| Specimen - Apparatus set-up - Test Information                 | Cell No. 6                      |                        |          |              | Apparatus No. 2 Stage No.:         |                               |                   |           |              |                               |             |                |  |  |
| Preliminary Length/Area Calculations                           | 1) Specimen Tested in :         |                        |          | Х            | Triaxia                            | Triaxial Cell or Compaction N |                   |           |              |                               | on Mold or  |                |  |  |
| Lo = 3.981 in Lo= 10.112 cm                                    |                                 | Х                      | with sto | ones or      |                                    | Stones                        | with filter p     | aper or   | top + bottom |                               |             |                |  |  |
| dLc= 0.088 in Ao = $42.06 \text{ cm}^2$                        | 2) Specimen orientation for:    |                        |          | Х            | Vertica                            | l or                          |                   | Horizor   | tal permea   | al permeability determination |             |                |  |  |
| Lc= $3.893$ in Vo = $425.32$ cm <sup>3</sup>                   | 3) During saturation: Water flu |                        |          | shed u       |                                    |                               |                   |           | Х            | No                            |             | Yes            |  |  |
| Lc= 9.888 cm                                                   | 4) During consolidation:        |                        |          | Х            | Top and bottom <u>drainag</u> e or |                               |                   |           | Top          |                               | Bottom only |                |  |  |
| $dVc = 3 Vo * (dLc/Lo)$ $dVc = 28.21 cm^3$                     | 5) Dire                         | irection of permeant : |          |              | Up during or Dow                   |                               |                   | Down d    | luring perm  |                               |             |                |  |  |
| $Vc = 397.12 \text{ cm}^3$                                     | 6) Per                          | meant: water           | used     | <b>x</b> Tap |                                    |                               |                   | Distilled |              |                               |             |                |  |  |
| $Sc = 0.246 \text{ cm}^{-1}$ Ac= 40.161 cm <sup>2</sup>        | or                              |                        |          |              | Demine                             | eralized                      |                   | 0.005 N   | l calcium s  | ulfate (C                     | CaSO4)      | Permeability   |  |  |
| Equations Used                                                 | Consol                          | Temp.                  | Date Tir |              | Time                               |                               | Ini               | tial      | U-tube Read  |                               | ding        | Preliminary    |  |  |
| Kt = - 0.0000746 * Sc/dT(min) * In (ho/hf)                     | Stage-                          |                        |          |              |                                    |                               | $\sigma_{c}$      | Ub        | Head         | Tail                          | Flow        | Final at 20°C  |  |  |
| RT = (-0.02452*(ave. temp in C) + 1.495)                       | Trial                           |                        |          |              |                                    |                               |                   |           | (cm)         | (cm)                          | in/out      | cm/sec         |  |  |
| K @ 20 °C = RT * Kt TubeC= 1.3214                              | No.                             | ° C                    |          | hr           | min                                | sec                           | psi               | psi       | (cc)         | (cc)                          | gradient    | Dev. from Ave. |  |  |
| TEST SUMMARY                                                   | initial                         | 22.8                   | 10/8/15  | 09           | 06                                 | 00                            | 132.0             | 80.0      | 60.40        | 42.75                         | 1.02        | 4.30E-09       |  |  |
| Final Specimen and Test Conditions                             | final                           | 22.3                   | 10/9/15  | 80           | 55                                 | 00                            |                   |           | 56.60        | 43.95                         |             | 3.90E-09       |  |  |
| $Lc = 9.888$ cm $\varepsilon_{axial} = 2.2\%$                  | 1                               | RT = 0.942             | dT =     |              | 429.00                             |                               | σ' <sub>c</sub> = | 7.5 ksf   | 0.283        | 0.278                         | io= 22.4    | -24%           |  |  |
| $Ac = 41.793 \text{ cm}^2$                                     | initial                         | 22.3                   | 10/9/15  | 80           | 59                                 | 00                            | 132.0             | 80.0      | 60.75        | 42.65                         | 0.99        | 5.83E-09       |  |  |
| $Vc = 413.25 \text{ cm}^3 \qquad \epsilon_{Vol} = 2.8\%$       | final                           | 22.7                   | 10/9/15  | 19           | 26                                 | 00                            |                   |           | 58.28        | 43.45                         |             | 5.28E-09       |  |  |
| $Sc = 0.237 \text{ cm}^{-1} \text{ Sc} = Lc / Ac$ , final      | 2                               | RT = 0.943             | dT =     |              | 627.00 r                           | nin                           | σ' <sub>c</sub> = | 7.5 ksf   | 0.184        |                               | io= 23.0    | 3%             |  |  |
|                                                                | initial                         | 22.7                   | 10/9/15  | 19           | 31                                 | 00                            | 132.0             | 80.0      | 60.30        | 42.80                         | 1.02        | 5.81E-09       |  |  |
| $w \qquad \qquad \gamma_{t} \qquad \qquad \gamma_{d} \qquad S$ | final                           | 23.0                   | 10/10/15 | 11           | 41                                 | 00                            |                   |           | 56.80        | 43.90                         |             | 5.22E-09       |  |  |
| (%) (pcf) (pcf) (%)                                            | 3                               | RT = 0.935             | dT =     |              | 970.00 r                           | nin                           | σ' <sub>c</sub> = | 7.5 ksf   | 0.260        | 0.255                         | io= 22.2    | 2%             |  |  |
| Initial 16.26 137.1 117.9 99.6                                 | initial                         | 23.1                   | 10/10/15 | 12           | 10                                 | 00                            | 132.0             | 80.0      | 60.35        | 42.70                         | 0.98        | 5.99E-09       |  |  |
| PreTest 14.82 139.3 121.3 100.0                                | final                           | 22.0                   | 10/11/15 | 11           | 33                                 | 00                            |                   |           | 55.45        | 44.30                         |             | 5.42E-09       |  |  |
|                                                                | 4                               | RT = 0.942             | dT =     |              | 403.00                             | min                           | $\sigma'_{c} =$   | 7.5 ksf   | 0.365        | 0.370                         | io= 22.4    | 6%             |  |  |
| HYDRAULIC CONDUCTIVITY SUMMARY                                 | initial                         | 23.2                   | 10/11/15 | 19           | 17                                 | 00                            | 132.0             | 80.0      | 60.13        | 42.50                         | 0.86        | 4.99E-09       |  |  |
| Averages for trials: 2-6                                       | final                           | 22.9                   | 10/13/15 | 16           | 42                                 | 00                            |                   |           | 53.15        | 45.10                         |             | 4.46E-09       |  |  |
| ave K @ 20 °C: 5.11E-09 cm/sec                                 | 5                               | RT = 0.930             | dT =     |              | 725.00                             |                               | σ' <sub>c</sub> = | 7.5 ksf   | 0.519        | 0.602                         | io= 22.4    | -13%           |  |  |
| $(i_0)$ ave = 22.2                                             | initial                         | 22.9                   | 10/13/15 | 16           | 53                                 | 00                            | 132.0             | 80.0      | 60.05        | 42.87                         | 1.00        | 5.93E-09       |  |  |
|                                                                | final                           | 22.4                   | 10/14/15 | 80           | 45                                 | 00                            |                   |           | 56.61        | 43.98                         |             | 5.36E-09       |  |  |
| Tested By: BB Reviewed By: G. Thomas                           | 6                               | RT = 0.940             | dT =     | (            | 952.00 r                           | min                           | σ' <sub>c</sub> = | 7.5 ksf   | 0.256        | 0.257                         | io= 21.8    | 5%             |  |  |

| PERM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IEABILITY | TEST: FAI                  | LLING HEA    | D - CO | NSTAN                 | T VOLUN   | 1E U-TU           | BE        |               |              |             |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|--------------|--------|-----------------------|-----------|-------------------|-----------|---------------|--------------|-------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | AST                        | ГМ D 5084 -  | Metho  | d F                   |           |                   |           |               |              |             |                |
| Project No.: T60428794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | BORING:                    | NEW-B012     |        |                       |           |                   |           |               |              | Test No.:   | P10609         |
| Project Name: Dynegy CCR - Newton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | SAMPLE:                    | ST-7         |        | DEPTH (ft): 20.6      |           |                   |           |               |              |             |                |
| Specimen - Apparatus set-up - Test Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | Cell No.                   | С            |        | Appa                  | ratus No. | 1                 |           | Stage No.: 5  |              |             |                |
| Preliminary Length/Area Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1) Spec   | cimen Teste                | d in :       | X      | -                     | Cell or   |                   |           | ction Mold    |              |             |                |
| Lo = 4.004 in Lo= 10.171 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                            |              |        | with stones or Stones |           |                   | Stones    | with filter p | top + bottom |             |                |
| dLc= 0.045 in Ao = $41.88 \text{ cm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2) Spec   | imen orienta               | ation for:   | X      | Vertica               | l or      |                   | Horizon   | tal permea    | ability de   | termination |                |
| Lc= $3.959$ in Vo = $425.95$ cm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3) Duri   | ng saturatior              | n: Water flu | shed u | p sides               | of specim | en to re          | move ai   | X             | No           |             | Yes            |
| Lc= 10.057 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,         | ng consolida               |              | X      | Top an                | d bottom  | drainag           |           |               | Top          |             | Bottom only    |
| $dVc = 3 Vo * (dLc/Lo)$ $dVc = 14.36 cm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 5) Direction of permeant : |              |        | Up dur                | ing or    |                   | Down d    | uring perm    | neation      |             |                |
| $Vc = 411.59 \text{ cm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6) Pern   | 6) Permeant: water used    |              |        | Тар                   |           |                   | Distilled |               |              |             |                |
| $Sc = 0.246 \text{ cm}^{-1}$ Ac= $40.926 \text{ cm}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or        |                            |              |        | Demine                | eralized  |                   | 0.005 N   | l calcium s   | ulfate (C    | CaSO4)      | Permeability   |
| Equations Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Consol    | Temp.                      | Date         |        | Time                  |           | Ini               | tial      |               | ibe Read     | ding        | Preliminary    |
| Kt = - 0.0000757 * Sc/dT(min) * In (ho/hf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stage-    |                            |              |        |                       |           | $\sigma_{c}$      | Ub        | Head          | Tail         | Flow        | Final at 20°C  |
| RT = (-0.02452*(ave. temp in C) + 1.495)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trial     |                            |              |        |                       |           |                   |           | (cm)          | (cm)         | in/out      | cm/sec         |
| K @ 20 °C = RT * Kt TubeC= 1.3127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No.       | ۰C                         |              | hr     | min                   | sec       | psi               | psi       | (cc)          | ` /          | _           | Dev. from Ave. |
| TEST SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | initial   | 21.6                       | 10/26/15     | 09     | 43                    | 00        | 117.4             | 100.0     | 58.25         | 37.33        | 0.97        | 8.93E-09       |
| Final Specimen and Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | final     | 22.5                       | 10/26/15     | 12     | 19                    | 00        |                   |           | 57.10         | 37.70        |             | 8.38E-09       |
| Lc = 10.057 cm $\epsilon_{axial}$ = 1.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | RT = 0.954                 | dT =         |        | 156.00 r              |           | σ' <sub>c</sub> = | 2.5 ksf   | 0.086         | 0.089        |             | 8%             |
| $Ac = 41.598 \text{ cm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | initial   | 22.5                       | 10/26/15     | 12     | 20                    | 00        | 117.4             | 100.0     | 58.63         | 37.24        | 1.04        | 8.86E-09       |
| Vc= 418.35 cm <sup>3</sup> $\epsilon_{vol}$ = 1.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | final     | 23.6                       | 10/26/15     | 14     | 37                    | 00        |                   |           | 57.60         | 37.55        |             | 8.11E-09       |
| $Sc = 0.242 \text{ cm}^{-1} \text{ Sc} = Lc / Ac$ , final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | RT = 0.930                 | dT =         |        | 137.00 r              | _         | σ' <sub>c</sub> = | 2.5 ksf   | 0.077         |              | io= 26.7    | 4%             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | initial   | 23.6                       | 10/26/15     | 14     | 38                    | 00        | 117.4             | 100.0     | 58.85         | 37.16        | 0.99        | 8.15E-09       |
| extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	extstyle 	ext | final     | 23.5                       | 10/26/15     | 18     | 00                    | 00        |                   |           | 57.45         | 37.60        |             | 7.36E-09       |
| (%) (pcf) (pcf) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | RT = 0.918                 | dT =         |        | 202.00 r              | _         | $\sigma'_{c} =$   | 2.5 ksf   | 0.105         | 0.105        |             | -5%            |
| Initial 13.28 137.1 121.0 88.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | initial   | 23.5                       | 10/26/15     | 18     | 03                    | 00        | 117.4             | 100.0     | 59.00         | 37.19        | 1.02        | 7.74E-09       |
| PreTest 14.02 140.5 123.2 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 21.0                       | 10/27/15     | 80     | 44                    | 00        |                   |           | 53.90         | 38.75        |             | 7.23E-09       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | RT = 0.949                 | dT =         |        | 381.00 r              | nin       | σ' <sub>c</sub> = | 2.5 ksf   | 0.382         | 0.374        | io= 27.3    | -7%            |
| HYDRAULIC CONDUCTIVITY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | initial   |                            |              |        |                       |           |                   |           |               |              |             |                |
| Averages for trials: 1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | final     |                            |              |        |                       |           |                   |           |               |              |             |                |
| ave K @ 20 °C: <b>7.77E-09</b> cm/sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5         |                            |              |        | 1                     | ı         |                   |           |               |              |             |                |
| $(i_0)$ ave = 26.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | initial   |                            |              |        |                       |           |                   |           |               |              |             |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | final     |                            |              |        |                       |           |                   |           |               |              |             |                |
| Tested By: BB Reviewed By: G. Thomas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6         |                            |              |        |                       |           |                   |           |               |              |             |                |

| PERMEABILITY TEST: FALLING HEAD - CONSTANT VOLUME U-TUBE         |                         |                            |                         |          |                   |                   |                   |               |                |                            |           |                |  |
|------------------------------------------------------------------|-------------------------|----------------------------|-------------------------|----------|-------------------|-------------------|-------------------|---------------|----------------|----------------------------|-----------|----------------|--|
|                                                                  |                         |                            | TM D 5084 -             |          | d F               |                   |                   |               |                |                            |           |                |  |
| Project No.: T60428794                                           |                         |                            | NEW-B015                |          |                   |                   |                   |               |                |                            | Test No.: | P10608         |  |
| Project Name: Dynegy CCR - Newton                                | SAMPLE: ST-2A           |                            |                         |          | DEPTH (ft): 25.45 |                   |                   |               |                |                            |           |                |  |
| Specimen - Apparatus set-up - Test Information                   | Cell No. C              |                            |                         |          | Appai             | ratus No.         | 3                 |               | Stage No.:     |                            |           |                |  |
| Preliminary Length/Area Calculations                             | 1) Specimen Tested in : |                            |                         | X        | Triaxial          | Cell or           |                   | Compa         | action Mold or |                            |           |                |  |
| Lo = 4.012 in Lo= 10.191 cm                                      |                         |                            | <b>x</b> with stones or |          |                   |                   | Stones            | with filter p | aper or        | top + bottom               |           |                |  |
| dLc= 0.025 in Ao = $42.03 \text{ cm}^2$                          |                         | cimen orienta              |                         | X        | Vertica           |                   |                   |               |                | permeability determination |           |                |  |
| Lc= $3.987$ in Vo = $428.31$ cm <sup>3</sup>                     | ,                       | ing saturatio              |                         | shed up  | 7                 | •                 |                   |               | X              | No                         |           | Yes            |  |
| Lc= 10.127 cm                                                    | ,                       | ing consolida              |                         | Х        | Top an            | d bottom          |                   |               |                | Top                        |           | Bottom only    |  |
| $dVc = 3 Vo * (dLc/Lo)$ $dVc = 8.01 cm^3$                        | ,                       | 5) Direction of permeant : |                         |          | Up duri           | ing or            |                   | 4             | uring perm     | neation                    |           |                |  |
| $Vc = 420.30 \text{ cm}^3$                                       | 6) Per                  | meant: water               | used                    | X        | Тар               |                   |                   | Distilled     |                |                            |           |                |  |
| $Sc = 0.244 \text{ cm}^{-1}$ Ac= 41.501 cm <sup>2</sup>          | or                      |                            |                         |          | Demine            | eralized          |                   | 0.005 N       | l calcium s    | ulfate (C                  | CaSO4)    | Permeability   |  |
| Equations Used                                                   | Consol                  | Temp.                      | Date                    |          | Time              |                   | Ini               | tial          | U-tu           | be Read                    | ding      | Preliminary    |  |
| Kt = - 0.0000755 * Sc/dT(min) * In (ho/hf)                       | Stage-                  |                            |                         |          |                   |                   | $\sigma_{c}$      | Ub            | Head           | Tail                       | Flow      | Final at 20°C  |  |
| RT = (-0.02452*(ave. temp in C) + 1.495)                         | Trial                   |                            |                         |          |                   |                   |                   |               | (cm)           | (cm)                       | in/out    | cm/sec         |  |
| K @ 20 °C = RT * Kt TubeC= 1.3132                                | No.                     | ° C                        |                         | hr       | min               | sec               | psi               | psi           | (cc)           | (cc)                       | gradient  | Dev. from Ave. |  |
| TEST SUMMARY                                                     | initial                 | 22.5                       | 10/16/15                | 09       | 48                | 00                | 106.9             | 100.0         | 63.45          | 47.50                      | 0.86      | 3.95E-09       |  |
| Final Specimen and Test Conditions                               | final                   | 24.0                       | 10/16/15                | 16       | 24                | 00                |                   |               | 62.46          | 47.86                      |           | 3.57E-09       |  |
| $Lc = 10.127 \text{ cm}$ $\epsilon_{axial} = 0.6\%$              | 1                       | RT = 0.925                 | dT =                    |          | 396.00 n          |                   | σ' <sub>c</sub> = | 1.0 ksf       | 0.074          | 0.086                      | io= 19.8  | 95%            |  |
| $Ac = 42.456 \text{ cm}^2$                                       | initial                 | 21.0                       | 10/19/15                | 09       | 42                | 00                | 106.9             | 100.0         | 64.94          | 47.00                      | 0.80      | 2.38E-09       |  |
| $Vc = 429.98 \text{ cm}^3 \qquad \epsilon_{\text{vol}} = -0.4\%$ | final                   | 22.5                       | 10/19/15                | 17       | 53                | 00                |                   |               | 64.10          | 47.33                      |           | 2.24E-09       |  |
| $Sc = 0.239 \text{ cm}^{-1} \text{ Sc} = Lc / Ac$ , final        | 2                       | RT = 0.962                 | dT =                    |          | 191.00 n          | _                 | σ' <sub>c</sub> = | 1.0 ksf       | 0.063          | 0.079                      | io= 22.3  | 22%            |  |
|                                                                  | initial                 | 22.5                       | 10/19/15                | 17       | 54                | 00                | 106.9             | 100.0         | 66.26          | 46.67                      | 0.87      | 2.07E-09       |  |
| w $\gamma_{\tau}$ $\gamma_{d}$ S                                 | final                   | 22.0                       | 10/20/15                | 80       | 42                | 00                |                   |               | 64.84          | 47.18                      |           | 1.92E-09       |  |
| (%) (pcf) (pcf) (%)                                              | 3                       | RT = 0.949                 | dT =                    |          | 388.00 n          | nin               | σ' <sub>c</sub> = | 1.0 ksf       | 0.106          | 0.122                      | io= 24.3  | 5%             |  |
| Initial 23.96 126.1 101.7 96.8                                   | initial                 | 22.0                       | 10/20/15                | 80       | 45                | 00                | 106.9             | 100.0         | 66.70          | 46.50                      | 0.89      | 1.67E-09       |  |
| PreTest 24.99 126.6 101.3 100.0                                  | final                   | 23.1                       | 10/20/15                | 17       | 04                | 00                |                   |               | 66.02          | 46.74                      |           | 1.54E-09       |  |
|                                                                  | 4                       | RT = 0.942                 | dT =                    | 4        | 199.00 n          | _                 | σ' <sub>c</sub> = | 1.0 ksf       | 0.051          | 0.057                      | io= 25.1  | -16%           |  |
| HYDRAULIC CONDUCTIVITY SUMMARY                                   | initial                 | 23.1                       | 10/20/15                | 17       | 07                | 00                | 106.9             | 100.0         | 66.82          | 46.46                      | 1.02      | 1.76E-09       |  |
| Averages for trials: 2-5                                         | final                   | 21.5                       | 10/21/15                | 80       | 45                | 00                |                   |               | 65.49          | 46.87                      |           | 1.63E-09       |  |
| ave K @ 20 °C: 1.83E-09 cm/sec                                   | 5 RT = 0.948 dT =       |                            | (                       | 938.00 n | nin               | σ' <sub>c</sub> = | 1.0 ksf           | 0.099         | 0.098          | io= 25.3                   | -11%      |                |  |
| $(i_0)$ ave = 24.2                                               | initial                 |                            |                         |          |                   |                   |                   |               |                |                            |           |                |  |
|                                                                  | final                   |                            |                         |          |                   |                   |                   |               |                |                            |           |                |  |
| Tested By: BB Reviewed By: G. Thomas                             | 6                       |                            | dT =                    |          |                   |                   | $\sigma'_{c} =$   |               |                |                            |           |                |  |








| Fa              | illure Summary           |           |         |
|-----------------|--------------------------|-----------|---------|
| U-U Compressive | U-U Shear                | Strain to | Strain  |
| Strength        | Strength, s <sub>u</sub> | to Peak   | Rate    |
| (ksf)           | (ksf)                    | (%)       | (%/min) |
| 4.51            | 2.255                    | 8.7       | 0.74    |

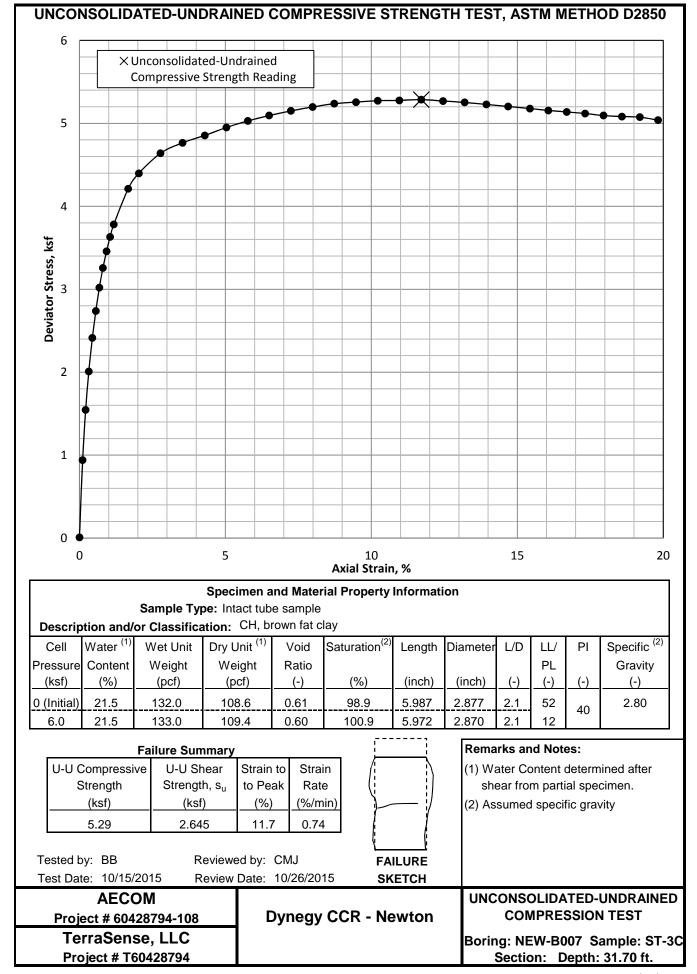
Reviewed by: GET **FAILURE** Review Date: 11/2/2015 **SKETCH** 

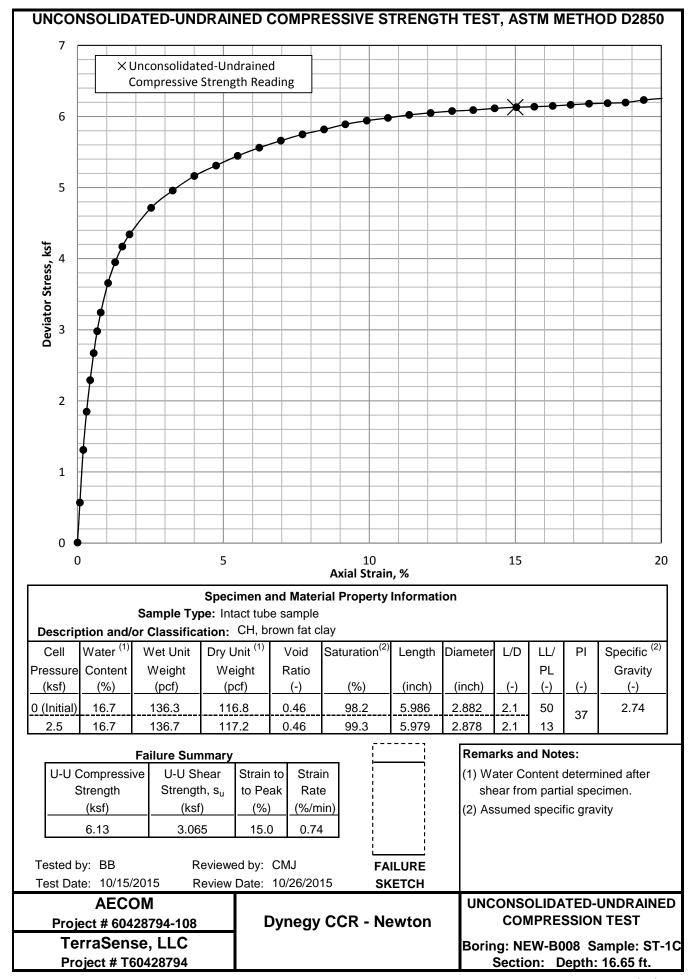


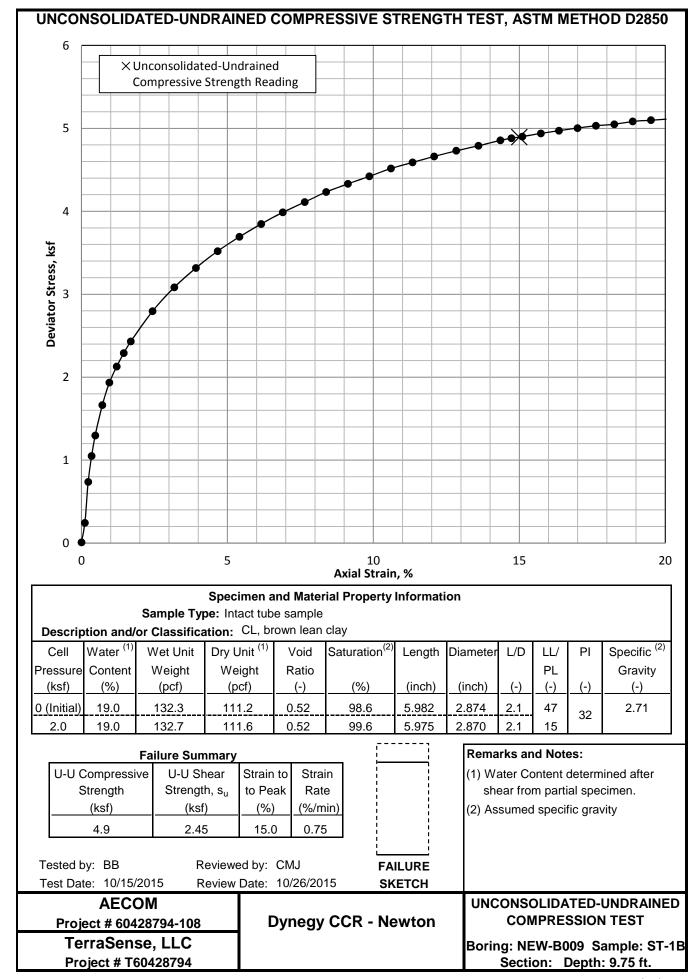
- shear from partial specimen.
- (2) Assumed specific gravity

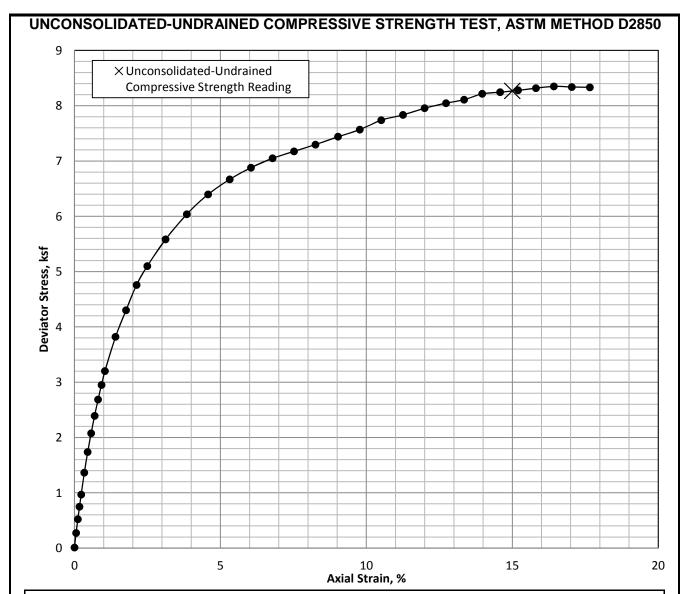
Test Date: 10/28/2015 AECOM

Tested by: BB


Project # 60428794-108


TerraSense, LLC Project # T60428794


**Dynegy CCR - Newton** 


**UNCONSOLIDATED-UNDRAINED COMPRESSION TEST** 

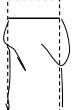
Boring: NEW-B006 Sample: ST-1 Section: B Depth: 21.20 ft.










## Specimen and Material Property Information Sample Type: Intact tube sample Description and/or Classification: CL, brown sandy clay, trace gravel Cell Water (1) Wet Unit Dry Unit (1) Void Saturation (2) Length Diameter L/D LL/ PI Specific (2) Pressure Content Weight Weight Ratio (96) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196) (196)

| Cell        | vvalei  | Wet Offic | Dry Offic | v Olu | Saturation | Lengin | Diameter | レル  | LL/ |     | Specific |
|-------------|---------|-----------|-----------|-------|------------|--------|----------|-----|-----|-----|----------|
| Pressure    | Content | Weight    | Weight    | Ratio |            |        |          |     | PL  |     | Gravity  |
| (ksf)       | (%)     | (pcf)     | (pcf)     | (-)   | (%)        | (inch) | (inch)   | (-) | (-) | (-) | (-)      |
| 0 (Initial) | 12.6    | 139.6     | 123.9     | 0.38  | 91.1       | 6.033  | 2.883    | 2.1 | 34  | 21  | 2.74     |
| 1.5         | 12.6    | 140.3     | 124.5     | 0.37  | 92.7       | 6.023  | 2.878    | 2.1 | 13  | 21  |          |
|             |         |           |           |       |            |        |          |     |     |     |          |

**Failure Summary** 

| U-U Compressive | U-U Shear                | Strain to | Strain  |
|-----------------|--------------------------|-----------|---------|
| Strength        | Strength, s <sub>u</sub> | to Peak   | Rate    |
| (ksf)           | (ksf)                    | (%)       | (%/min) |
| 8.27            | 4.135                    | 15.0      | 0.74    |

Review Date: 10/29/2015

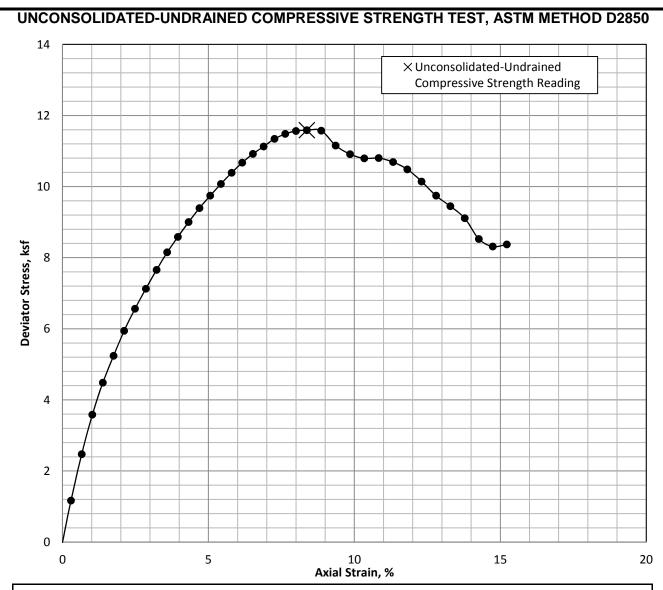


**SKETCH** 

## Remarks and Notes:

- (1) Water Content determined after shear from partial specimen.
- (2) Assumed specific gravity

Test Date: 10/23/2015 **AECOM** 


Tested by: BB

Project # 60428794-108
TerraSense, LLC
Project # T60428794

**Dynegy CCR - Newton** 

UNCONSOLIDATED-UNDRAINED COMPRESSION TEST

Boring: NEW-B012 Sample: ST-4 Section: C Depth: 9.45 ft.



## **Specimen and Material Property Information** Sample Type: Intact tube sample Description and/or Classification: SC, orange brown clayey sand Water (1) Dry Unit (1) Void Saturation<sup>(2)</sup> L/D ы Specific (2) Cell Wet Unit Length Diameter LL/ Pressure Content Weight Weight Ratio PLGravity (%) (pcf) (%) (inch) (-) (-) (-) (ksf) (pcf) (-) (inch) (-)6.025 2.1 0 (Initial) 9.5 142.7 130.3 0.31 84.3 2.886 28 2.73 15 2.1

**Failure Summary U-U Compressive** U-U Shear Strain to Strain Strength Strength, su to Peak Rate (ksf) (ksf) (%)(%/min) 11.6 5.8 8.4

142.9

130.4

0.31

0.73

84.7

## Remarks and Notes:

(1) Water Content determined after shear from partial specimen.

13

(2) Assumed specific gravity

Tested by: BB Test Date: 9/17/2015

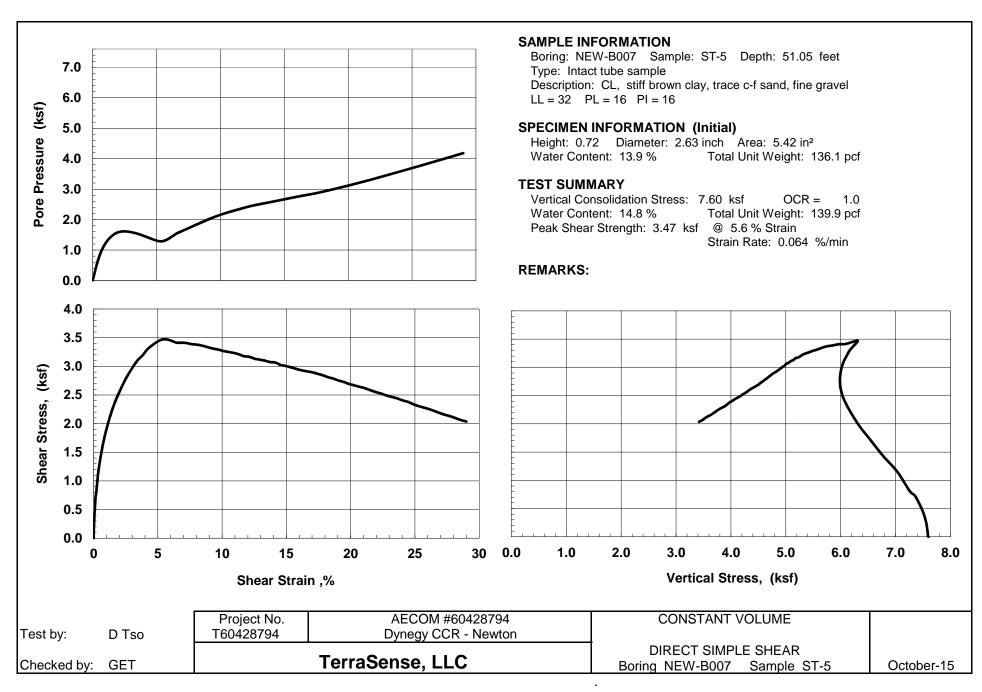
9.5

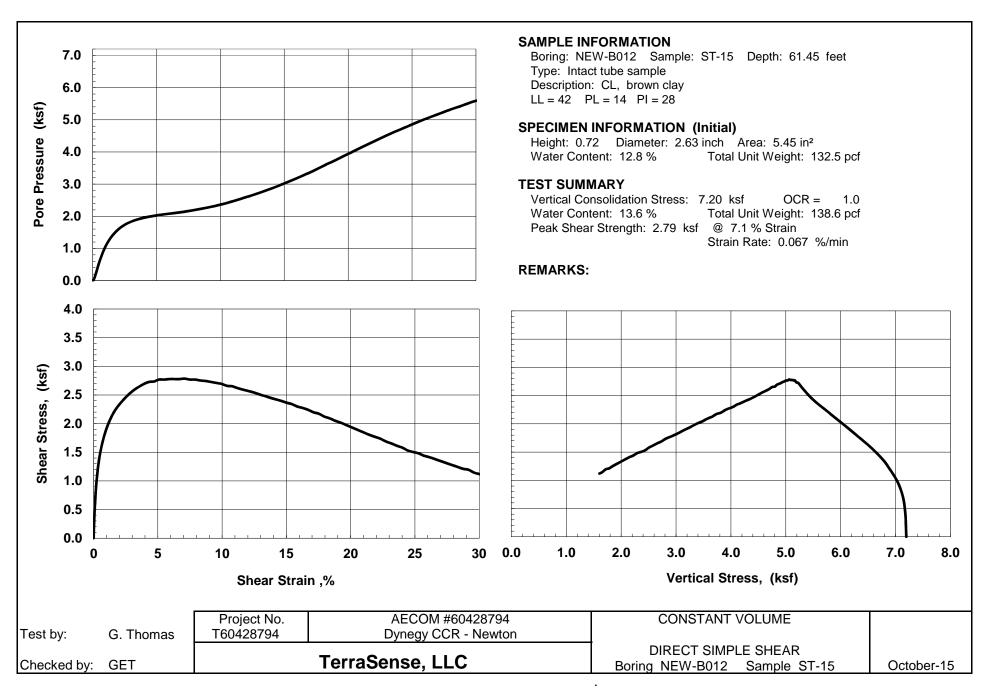
0.5

Reviewed by: GET Review Date: 10/27/2015 **FAILURE SKETCH** 

6.023

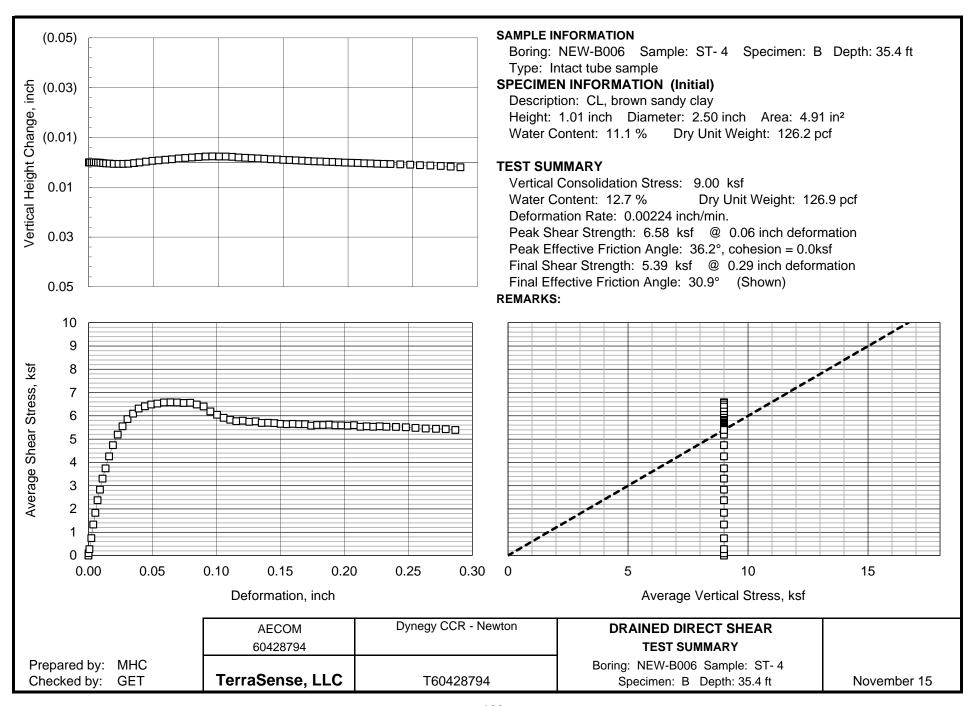
2.885

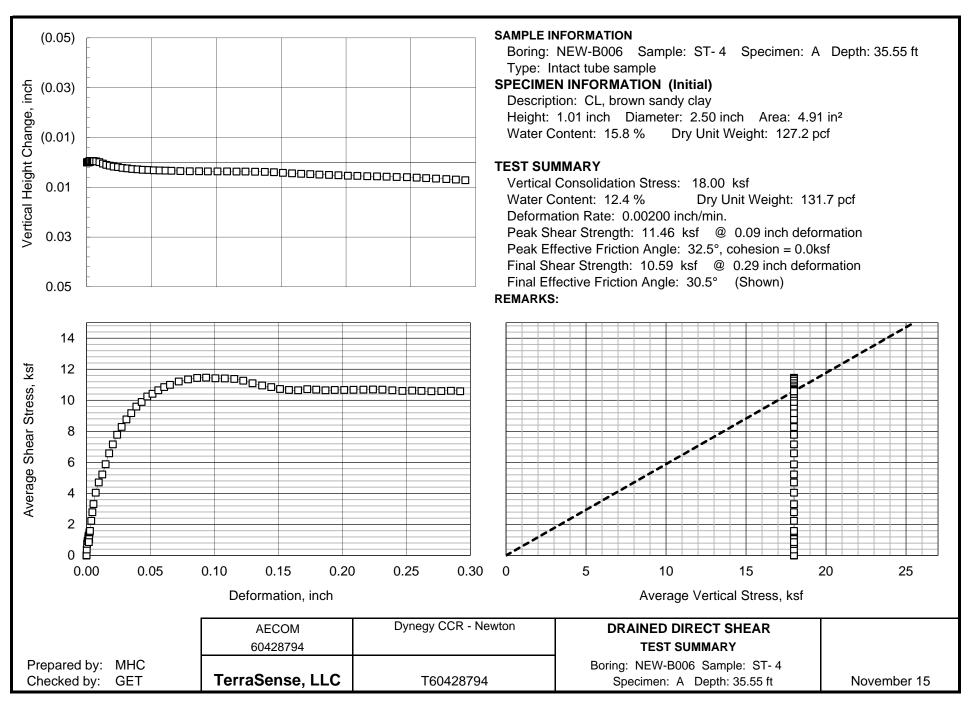

AECOM

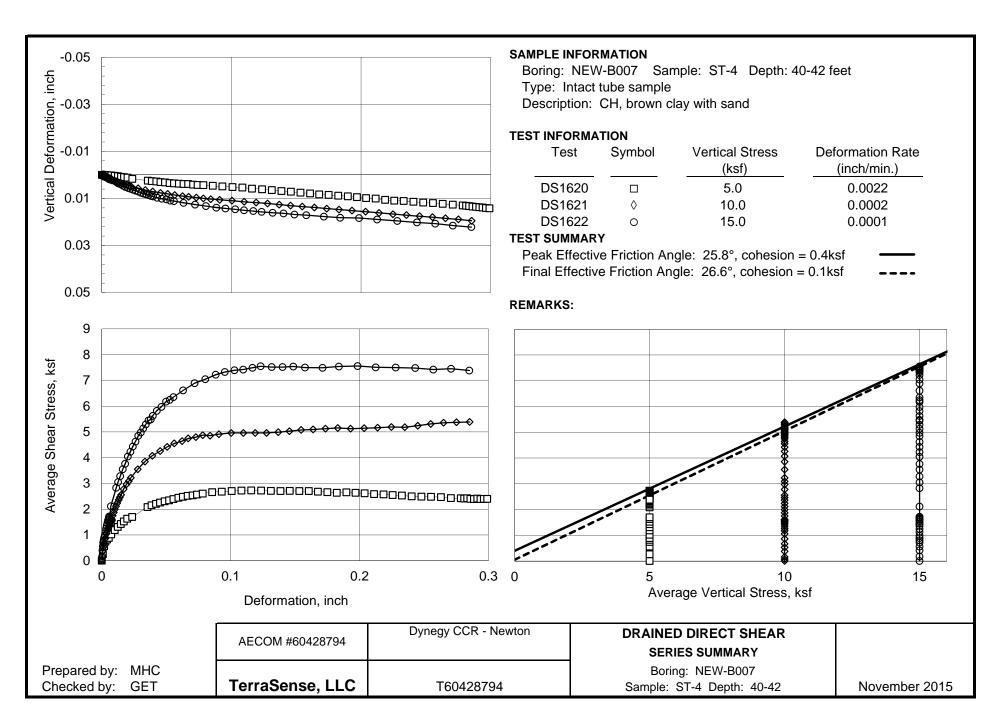

Project # 60428794-108 TerraSense, LLC Project # T60428794

**Dynegy CCR - Newton** 

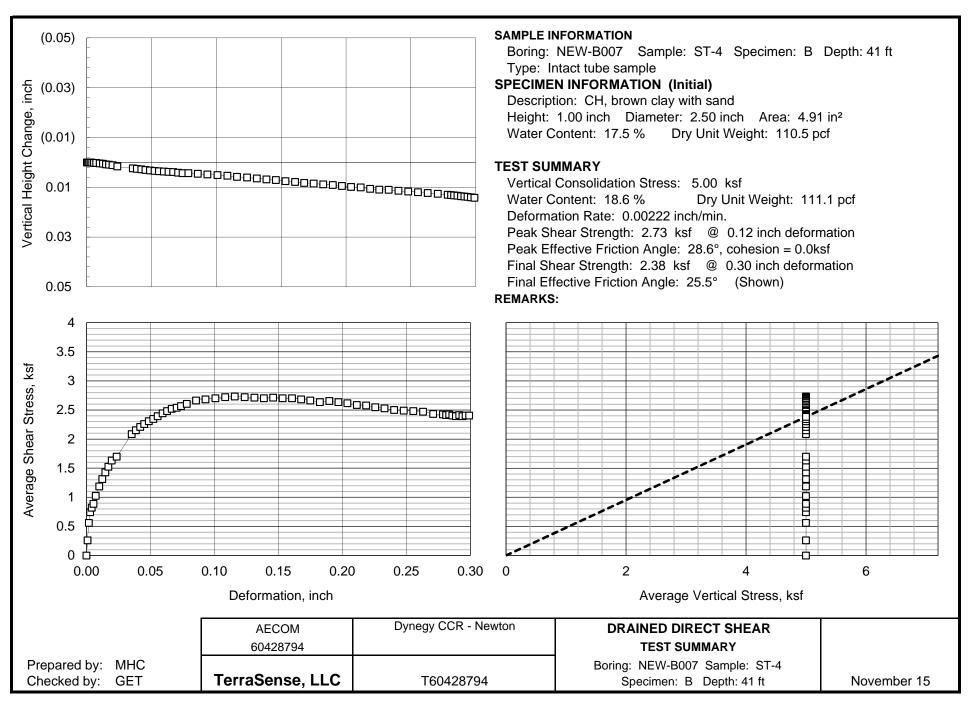
**UNCONSOLIDATED-UNDRAINED COMPRESSION TEST** 

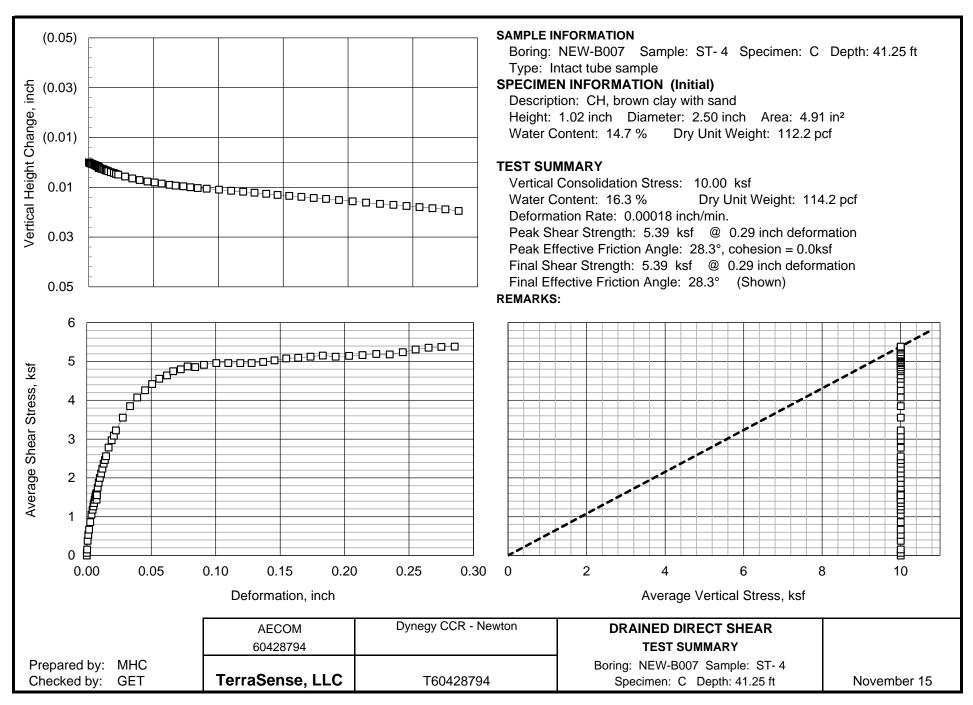

Boring: NEW-B014 Sample: ST-1 Section: B Depth: 3.50 ft.

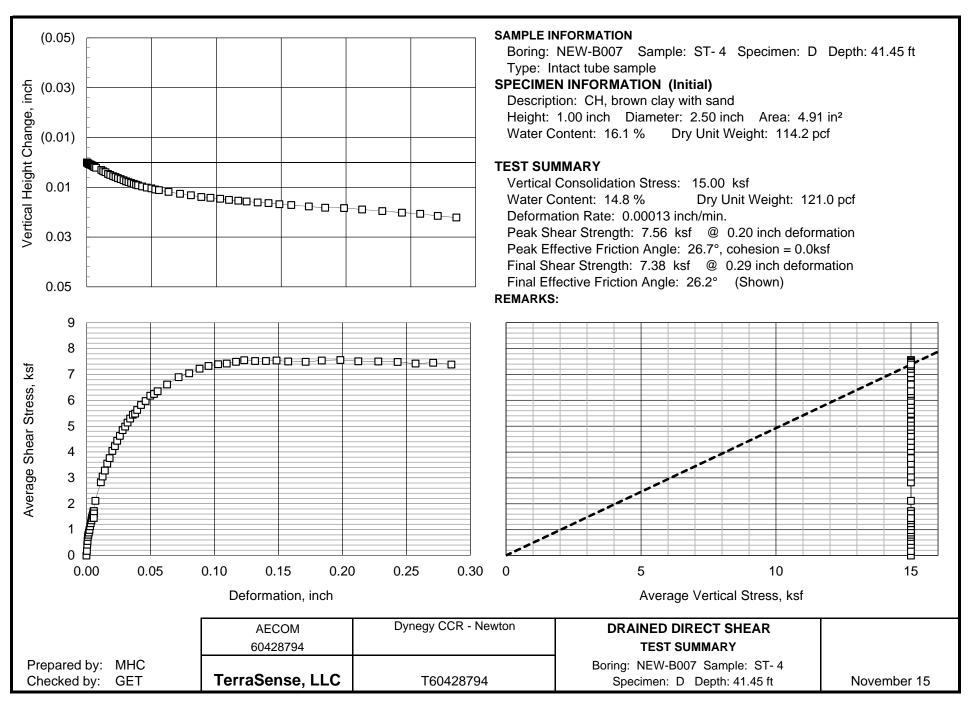


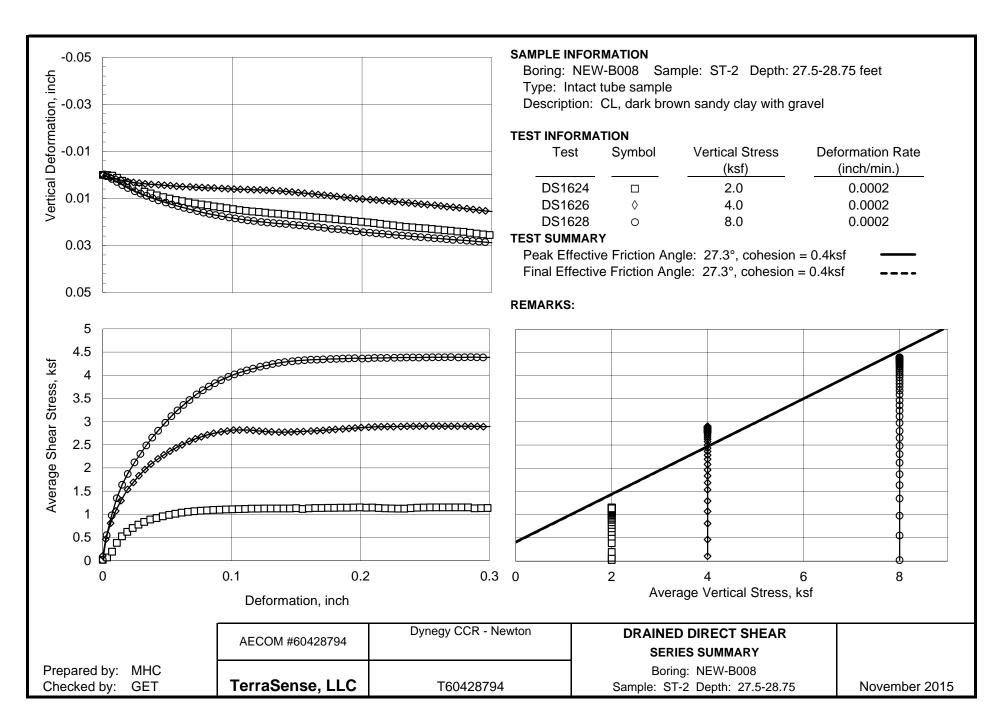





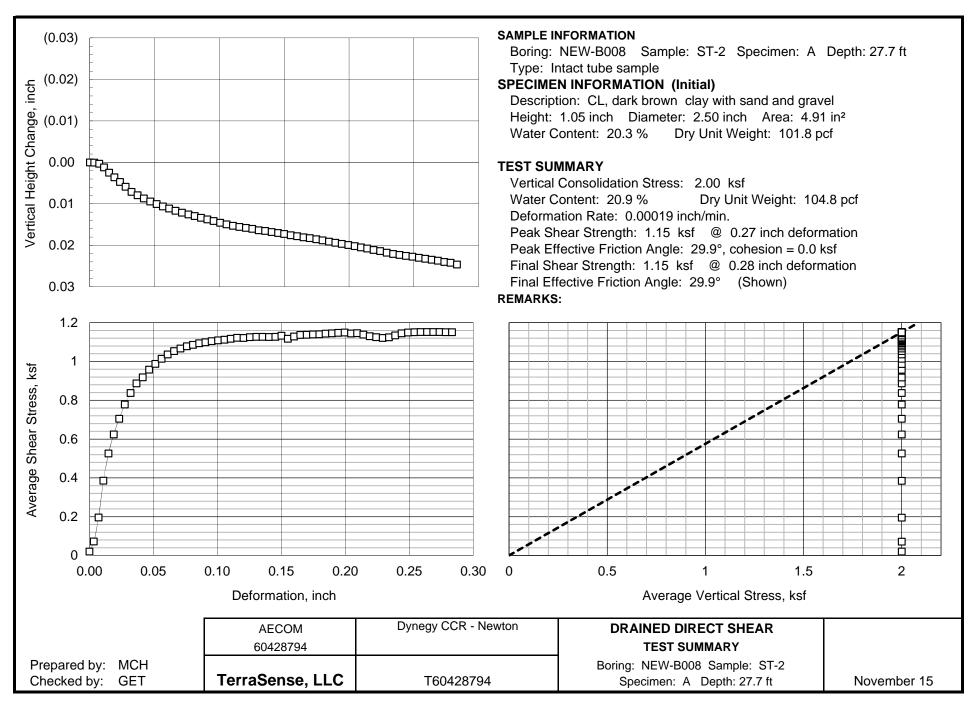


|                                                |           |                | STAGED        | DRAINED D           | IRECT S              | HEAR TEST S  | SERIES     |                                                  |                   |              |         |
|------------------------------------------------|-----------|----------------|---------------|---------------------|----------------------|--------------|------------|--------------------------------------------------|-------------------|--------------|---------|
| Boring No                                      | Depth     | Wo             | $\gamma_{to}$ | γ <sub>do</sub>     | σ' <sub>v,c</sub>    | Deformation  |            | at Peal                                          | Shear Stres       | S            | Remarks |
|                                                |           |                |               |                     |                      | rate         |            | at High                                          | n Deformation     |              |         |
|                                                | (ft)      |                |               |                     | (ksf)                | (inch/min)   |            | _                                                |                   |              |         |
| Sample/                                        | Test      | W <sub>c</sub> | $\gamma_{tc}$ | $\gamma_{	ext{dc}}$ | $\epsilon_{\sf v,c}$ | $t_c$        | $\Delta L$ | $\tau_{h}$                                       | $\mathcal{E}_{v}$ | Φ'           |         |
| Specimen                                       | ID        | (estimated)    | (estimated)   | (estimated)         |                      |              |            |                                                  |                   |              |         |
|                                                |           | (%)            | (pcf)         | (pcf)               | (%)                  | (days)       | (inch)     | (ksf)                                            | (%)               | for c'=0     |         |
| NEW-B006                                       | 35.4      | 11.1           | 140.2         | 126.2               | 9.00                 | 2.2E-3       | 0.06       | 6.58                                             | -0.12             | 36.2         |         |
| ST- 4                                          | DS1619    | 12.7           | 142.9         | 126.9               | 2.4                  | 0.05         | 0.29       | 5.39                                             | 0.19              | 30.9         |         |
| NEW-B006                                       | 35.6      | 15.8           | 147.4         | 127.2               | 18.00                | 2.0E-3       | 0.09       | 11.46                                            | 0.36              | 32.5         |         |
| ST- 4                                          | DS1617    | 12.4           | 148.1         | 131.7               | 27.0                 | 0.16         | 0.29       | 10.59                                            | 0.71              | 30.5         |         |
|                                                |           |                |               |                     |                      |              |            |                                                  |                   |              | -       |
|                                                |           |                |               |                     |                      |              |            |                                                  |                   |              |         |
|                                                |           |                |               |                     |                      | <del> </del> |            |                                                  |                   |              |         |
|                                                |           |                |               |                     |                      |              |            |                                                  |                   |              |         |
|                                                | Dagaria   | tion of Materi | al Tantad and | l Damarka           |                      |              | <u>_</u>   |                                                  | Ctronost          | h Envelope C | \       |
|                                                | Descrip   | olion of Malen | ai resteu and | Remarks             |                      |              | }          | <del>-</del> .                                   |                   | h Envelope S |         |
|                                                |           |                |               |                     |                      |              |            | Test                                             | Failure           | Φ'           | c'      |
| DS1619                                         | CL, brown | sandy clay     |               |                     |                      |              |            | Series                                           | Criterion         | (degree)     | (ksf)   |
| D01017                                         |           |                |               |                     |                      |              |            | 1                                                | 1                 | 28.4         | 1.7     |
| DS1617                                         | CL, brown | sandy clay     |               |                     |                      |              | -          |                                                  | 2                 | 30.0         | 0.2     |
| Failure 1. Peak shear Criterion 2. High deform |           |                |               |                     |                      |              |            |                                                  |                   |              |         |
|                                                |           |                |               |                     |                      |              | _          |                                                  |                   |              |         |
|                                                |           | AE             | COM #604287   | 794                 | Dyne                 | gy CCR - New | vton       | on DRAINED DIRECT SHEAR SERIES SUMMARY           |                   |              |         |
| Prepared by<br>Checked by                      |           | Ter            | raSense, I    | LC                  |                      | T60428794    |            | Boring: NEW-B006 Sample: ST- 4 Depth: 35-35.8 ft |                   |              | - 4     |

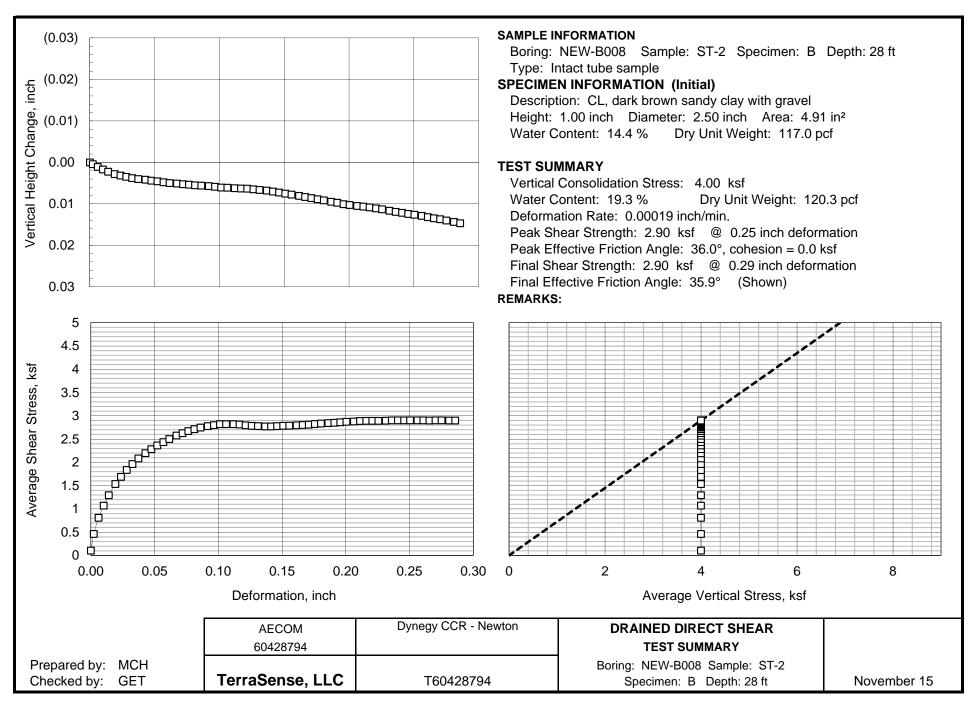


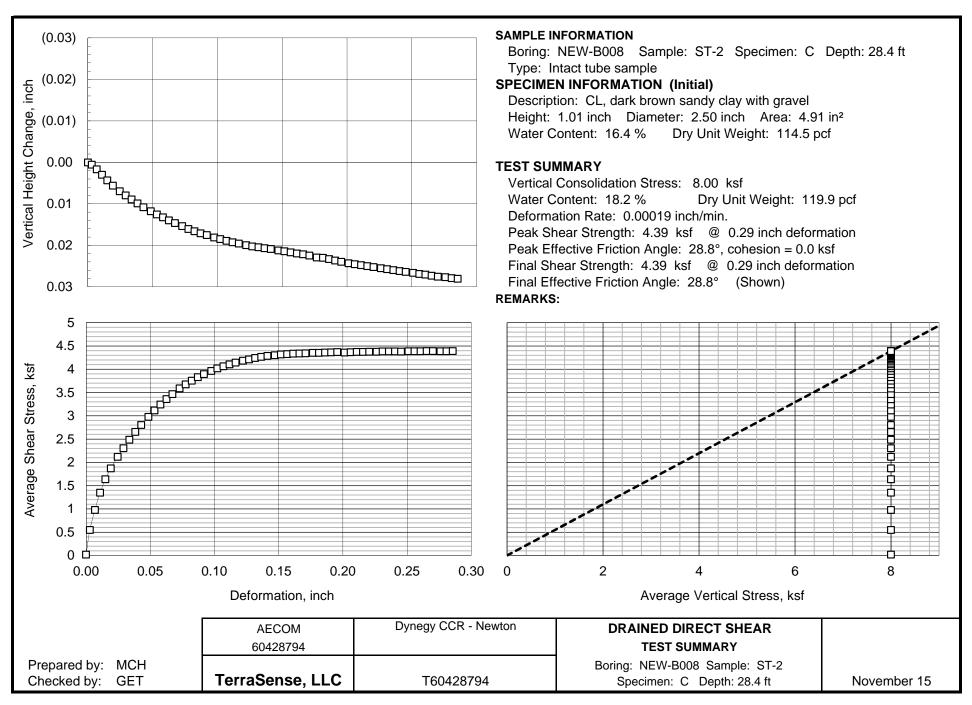



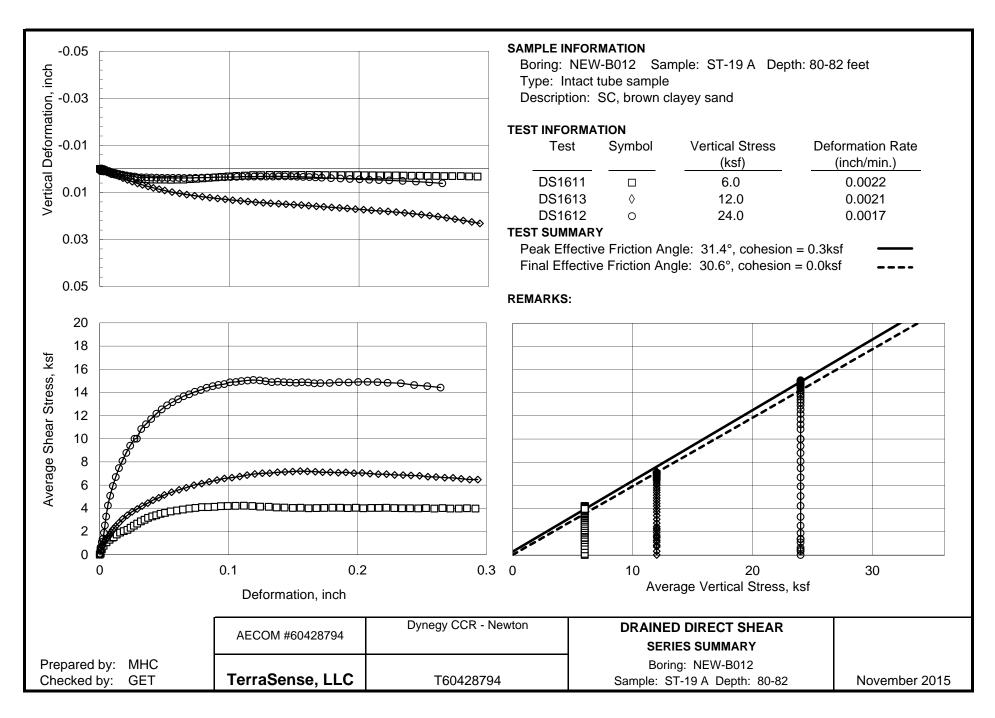




|                          |            |                    | STAGED               | DRAINED D             | IRECT SI          | HEAR TEST S    | SERIES                                        |            |                   |                 |            |
|--------------------------|------------|--------------------|----------------------|-----------------------|-------------------|----------------|-----------------------------------------------|------------|-------------------|-----------------|------------|
| Boring No                | Depth      | Wo                 | $\gamma_{to}$        | $\gamma_{\sf do}$     | σ' <sub>v,c</sub> | Deformation    |                                               | at Peak    | Shear Stress      | S               | Remarks    |
|                          |            |                    |                      |                       | ,                 | rate           |                                               | at High    | Deformation       |                 | - <b>-</b> |
|                          | (ft)       |                    |                      |                       | (ksf)             | (inch/min)     |                                               |            |                   |                 |            |
| Sample/                  | Test       | W <sub>c</sub>     | $\gamma_{tc}$        | $\gamma_{	extsf{dc}}$ | $\epsilon_{V,C}$  | t <sub>c</sub> | $\Delta$ L                                    | $\tau_{h}$ | $\mathcal{E}_{v}$ | Φ'              |            |
| Specimen                 | ID         | (estimated)<br>(%) | (estimated)<br>(pcf) | (estimated) (pcf)     | (%)               | (days)         | (inch)                                        | (ksf)      | (%)               | for c'=0        |            |
| NEW-B007                 | 41.0       | 17.5               | 129.9                | 110.5                 | 5.00              | 2.2E-3         | 0.12                                          | 2.73       | 0.58              | 28.6            |            |
| ST-4                     | DS1620     | 18.6               | 131.8                | 111.1                 | 2.9               | 1.69           | 0.30                                          | 2.38       | 1.45              | 25.5            |            |
| NEW-B007                 | 41.3       | 14.7               | 128.7                | 112.2                 | 10.00             | 1.8E-4         | 0.29                                          | 5.39       | 1.91              | 28.3            |            |
| ST- 4                    | DS1621     | 16.3               | 132.9                | 114.2                 | 4.7               | 0.71           | 0.29                                          | 5.39       | 1.91              | 28.3            |            |
| NEW-B007                 | 41.5       | 16.1               | 132.6                | 114.2                 | 15.00             | 1.3E-4         | 0.20                                          | 7.56       | 1.83              | 26.7            |            |
| ST- 4                    | DS1622     | 14.8               | 138.9                | 121.0                 | 8.5               | 0.78           | 0.29                                          | 7.38       | 2.21              | 26.2            |            |
|                          | -          |                    |                      |                       |                   |                |                                               |            |                   |                 | -          |
|                          |            |                    |                      |                       |                   |                |                                               |            |                   |                 | -          |
|                          | Danasia    | tion of Maton      | al Taata d au        | I Damada              |                   |                | 1 [                                           |            | Otana a art       | h Farralana C   |            |
|                          | Descrip    | otion of Materi    | ai rested and        | Remarks               |                   |                |                                               |            |                   | h Envelope S    | 1          |
|                          |            |                    |                      |                       |                   |                |                                               | Test       | Failure           | Φ'              | C'         |
| DS1620                   | CH, brown  | clay with sand     | i                    |                       |                   |                |                                               | Series     | Criterion         | (degree)        | (ksf)      |
| DS1621                   | CH brown   | clay with sand     |                      |                       |                   |                |                                               | 1          | 2                 | 25.8<br>26.6    | 0.4        |
| D31621                   | CH, DIOWII | ciay with Sanc     | 1                    |                       |                   |                |                                               |            |                   | 20.0            | 0.1        |
| DS1622                   | CH, brown  | clay with sand     | ı                    |                       |                   |                |                                               | Failure    | •                 | 1. Peak she     | ar stress  |
| Criterion 2. High deform |            |                    |                      |                       |                   |                |                                               |            |                   | rmation         |            |
|                          |            |                    |                      |                       |                   |                |                                               |            |                   |                 |            |
|                          |            | AE                 | COM #604287          | '94                   | Dyne              | gy CCR - New   |                                               |            |                   |                 | 2          |
| Prepared by:             | МПС        |                    |                      |                       |                   |                | SERIES SUMMARY                                |            |                   |                 | Γ 1        |
| Checked by:              |            | Ter                | raSense, L           | I C                   |                   | T60428794      | Boring: NEW-B007 Sample: ST-4 Depth: 40-42 ft |            |                   | · <del>-4</del> |            |

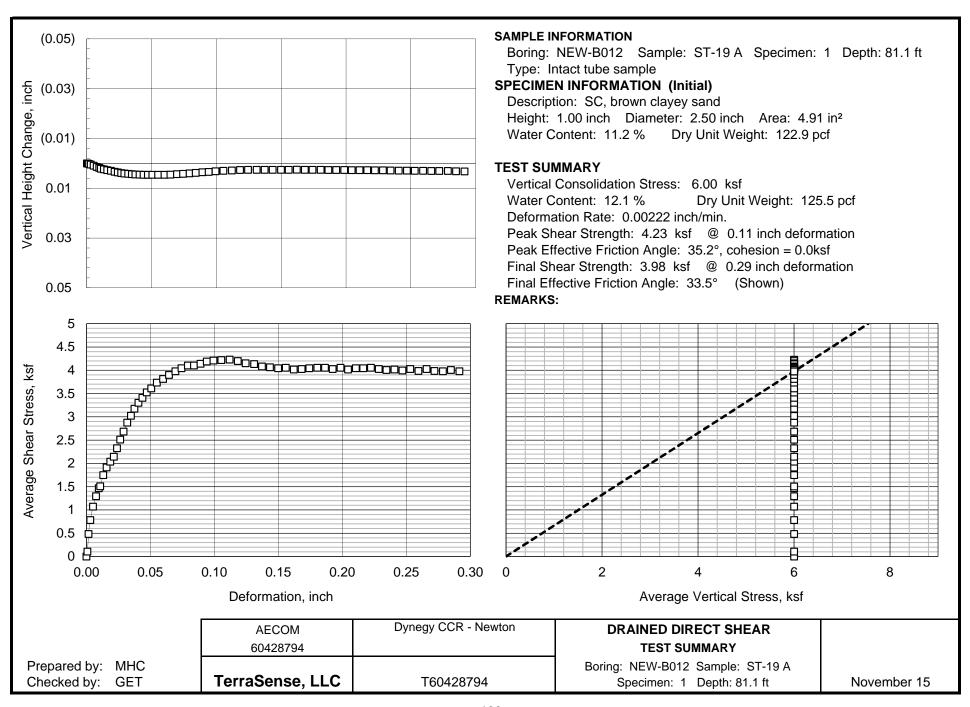


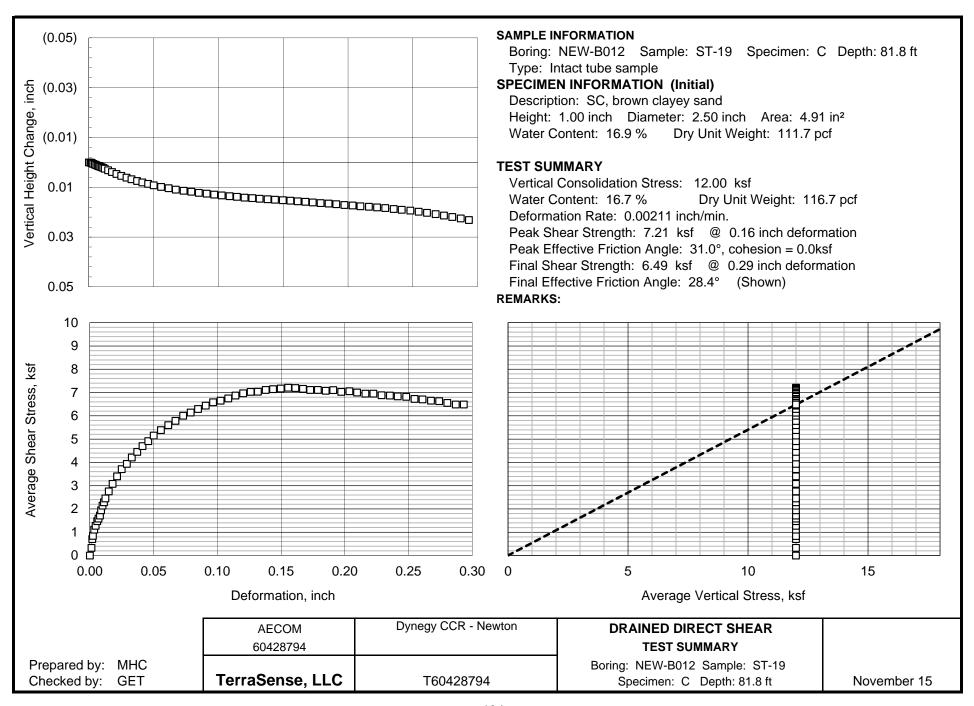



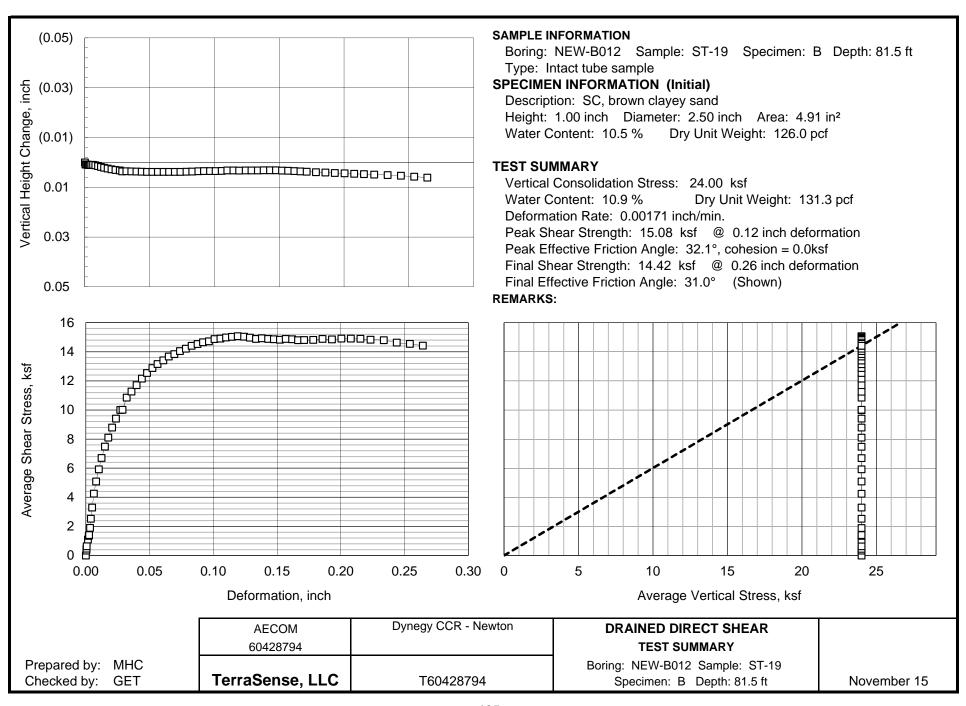



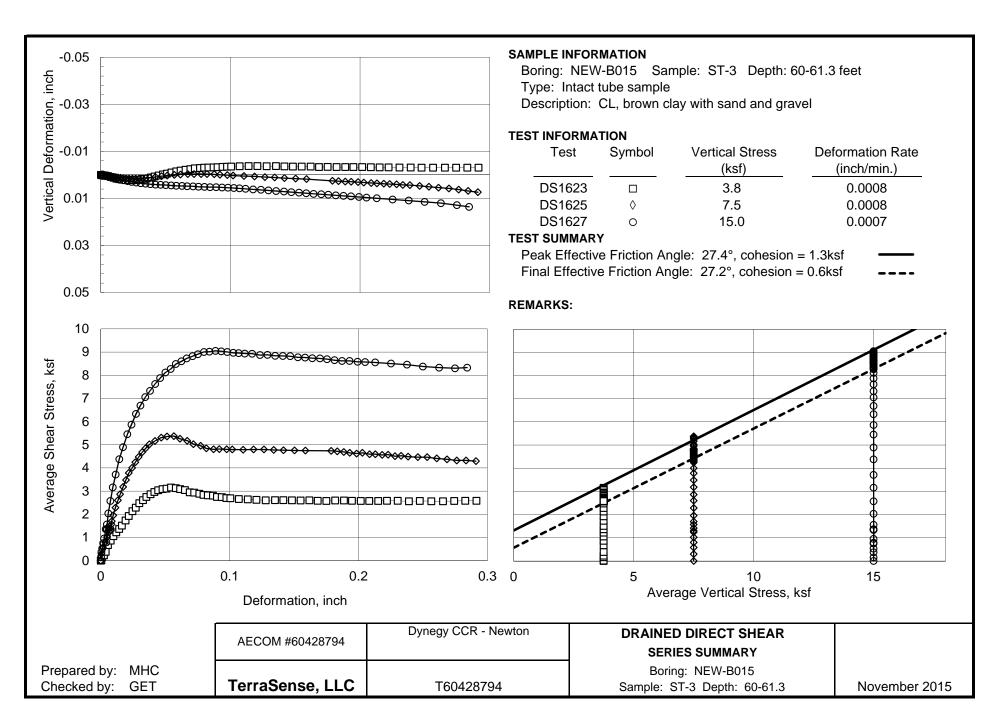




|                             |             |                 | STAGED        | DRAINED D             | IRECT S              | HEAR TEST S    | SERIES                                             |            |                |              |         |
|-----------------------------|-------------|-----------------|---------------|-----------------------|----------------------|----------------|----------------------------------------------------|------------|----------------|--------------|---------|
| Boring No                   | Depth       | Wo              | $\gamma_{to}$ | $\gamma_{\sf do}$     | σ' <sub>v,c</sub>    | Deformation    |                                                    | at Peak    | Shear Stress   | 3            | Remark  |
|                             |             |                 |               |                       |                      | rate           |                                                    | at High    | n Deformation  |              | 7       |
|                             | (ft)        |                 |               |                       | (ksf)                | (inch/min)     |                                                    |            |                |              |         |
| Sample/                     | Test        | W <sub>c</sub>  | $\gamma_{tc}$ | $\gamma_{	extsf{dc}}$ | $\epsilon_{\sf V,C}$ | t <sub>c</sub> | $\Delta$ L                                         | $\tau_{h}$ | $\epsilon_{v}$ | Φ'           |         |
| Specimen                    | ID          | (estimated)     | (estimated)   | (estimated)           |                      |                |                                                    |            |                |              |         |
| ·                           |             | ` (%)           | (pcf)         | (pcf)                 | (%)                  | (days)         | (inch)                                             | (ksf)      | (%)            | for c'=0     |         |
| NEW-B008                    | 27.7        | 20.3            | 122.5         | 101.8                 | 2.00                 | 1.9E-4         | 0.27                                               | 1.15       | 2.29           | 29.9         |         |
| ST-2                        | DS1624      | 20.9            | 126.7         | 104.8                 | 4.0                  | 0.33           | 0.28                                               | 1.15       | 2.34           | 29.9         |         |
| NEW-B008                    | 28.0        | 14.4            | 133.8         | 117.0                 | 4.00                 | 1.9E-4         | 0.25                                               | 2.90       | 1.26           | 36.0         | .]      |
| ST-2                        | DS1626      | 19.3            | 143.5         | 120.3                 | 4.4                  | 0.67           | 0.29                                               | 2.90       | 1.46           | 35.9         |         |
| NEW-B008                    | 28.4        | 16.4            | 133.2         | 114.5                 | 8.00                 | 1.9E-4         | 0.29                                               | 4.39       | 2.79           | 28.8         | _]      |
| ST-2                        | DS1628      | 18.2            | 141.6         | 119.9                 | 7.2                  | 0.67           | 0.29                                               | 4.39       | 2.79           | 28.8         |         |
|                             | -           |                 |               |                       |                      |                |                                                    |            |                |              |         |
|                             | <b>-</b> .  |                 |               |                       |                      |                |                                                    |            |                |              | <b></b> |
|                             | Descrip     | otion of Materi | al Tested and | I Remarks             |                      |                | ] [                                                |            | Strengt        | h Envelope S | Summary |
|                             |             |                 |               |                       |                      |                | ľ                                                  | Test       | Failure        | Φ'           | C'      |
| DS1624                      | CL, dark br | own sandy cla   | y with gravel |                       |                      |                |                                                    | Series     | Criterion      | (degree)     | (ksf)   |
|                             | ,           | ,               | , ,           |                       |                      |                |                                                    | 1          | 1              | 27.3         | 0.4     |
| DS1626                      | CL, dark br | own sandy cla   | y with gravel |                       |                      |                | •                                                  |            | 2              | 27.3         | 0.4     |
| DS1628                      | CL, dark br | own clay with   | sand and gra  | avel                  |                      |                |                                                    | Failure    |                | 1. Peak she  |         |
| Criterion 2. High           |             |                 |               |                       |                      |                |                                                    |            |                |              | rmation |
|                             |             |                 |               |                       |                      |                |                                                    |            |                |              |         |
|                             |             | AE              | COM #604287   | '94                   | Dyne                 | gy CCR - New   | Newton DRAINED DIRECT SHEAR SERIES SUMMARY         |            |                |              | 2       |
| Prepared by:<br>Checked by: |             | Ter             | raSense, L    | ıc                    |                      | T60428794      | Boring: NEW-B008 Sample: ST-2 Depth: 27.5-28.75 ft |            |                | T-2          |         |

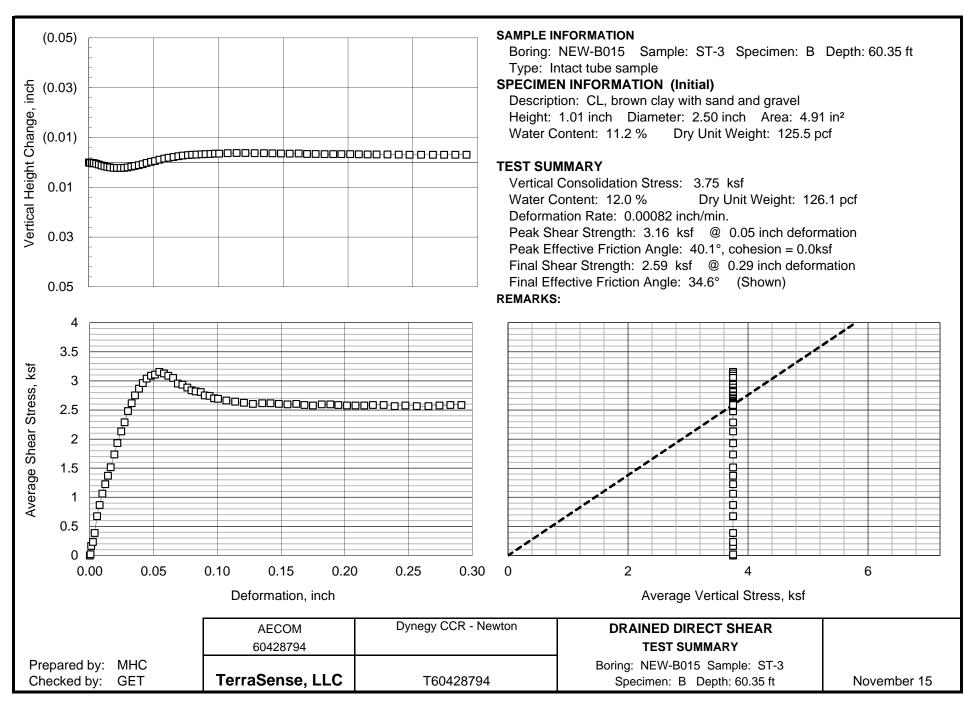


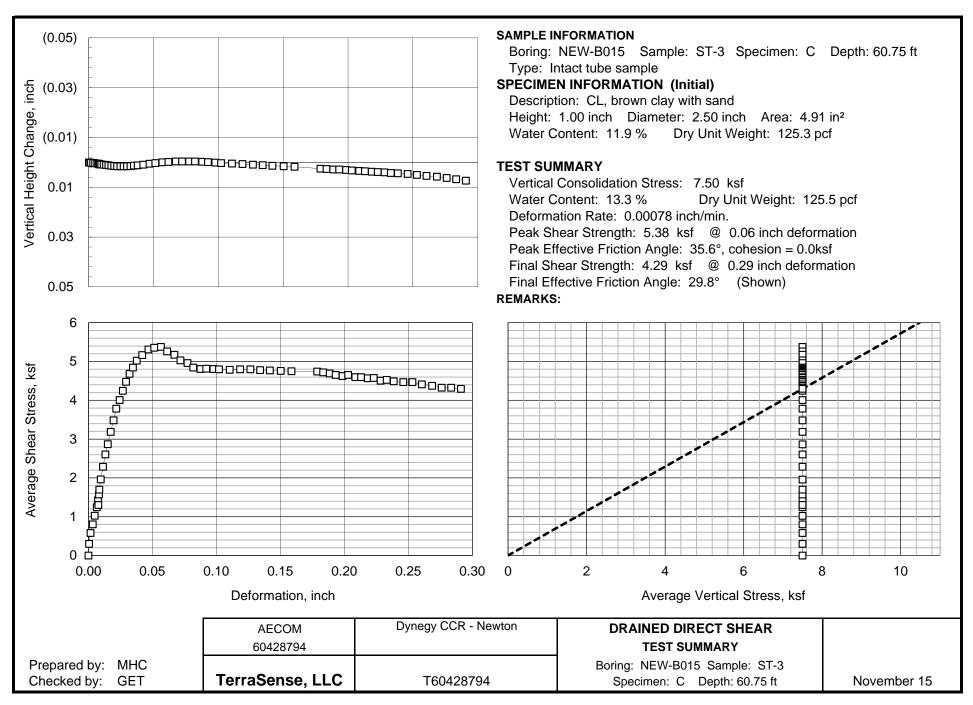



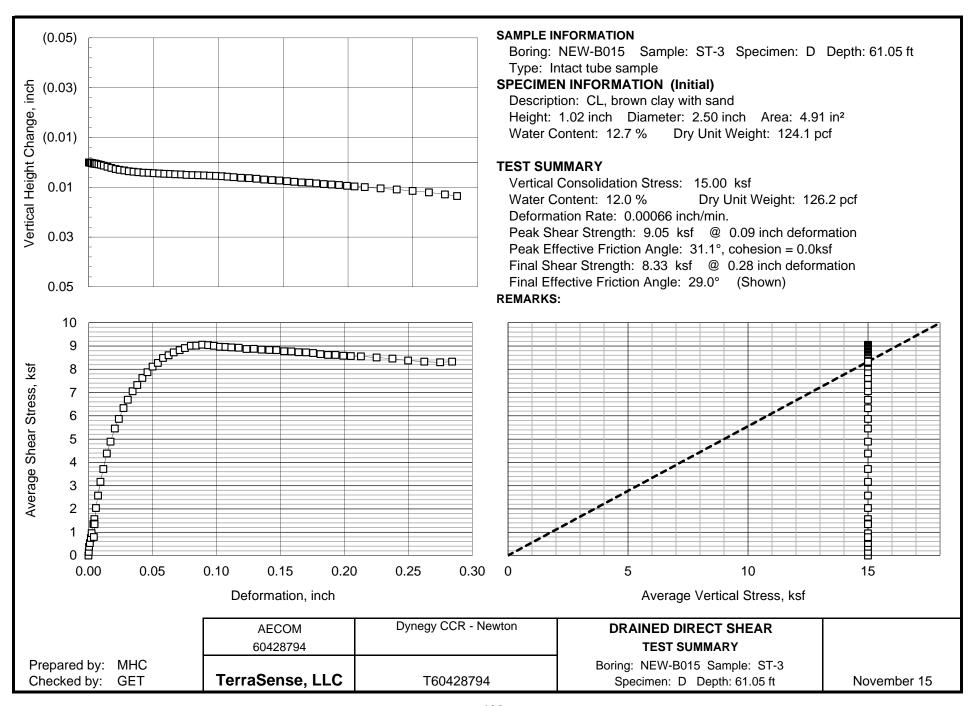



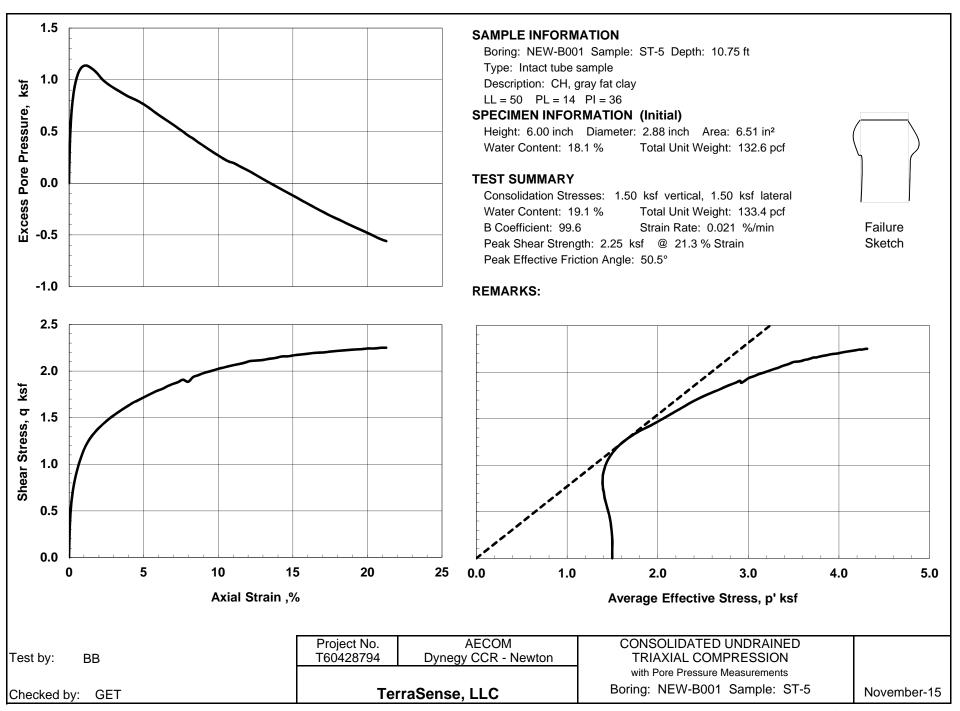



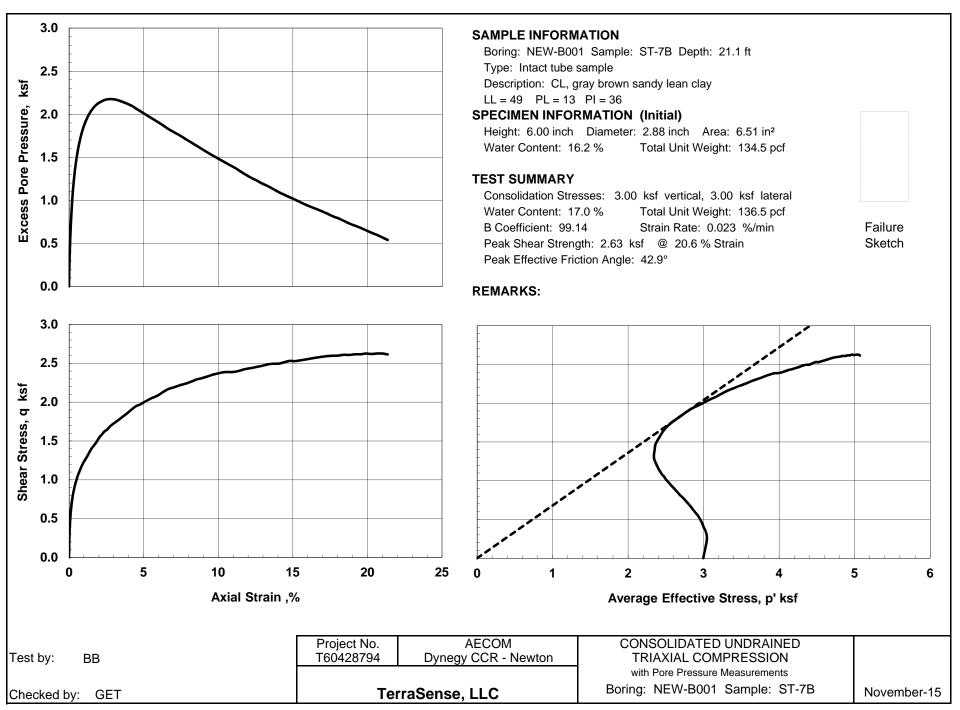

|                                                                            |           |                 | STAGED        | DRAINED D             | IRECT S           | HEAR TEST S    | SERIES                                   |                                                     |                    |              |         |
|----------------------------------------------------------------------------|-----------|-----------------|---------------|-----------------------|-------------------|----------------|------------------------------------------|-----------------------------------------------------|--------------------|--------------|---------|
| Boring No                                                                  | Depth     | Wo              | $\gamma_{to}$ | $\gamma_{\sf do}$     | σ' <sub>v,c</sub> | Deformation    |                                          | at Peak                                             | Shear Stress       | 3            | Remark  |
|                                                                            |           |                 |               |                       |                   | rate           |                                          | at High                                             | Deformation        |              | 1       |
|                                                                            | (ft)      |                 |               |                       | (ksf)             | (inch/min)     |                                          |                                                     |                    |              |         |
| Sample/                                                                    | Test      | w <sub>c</sub>  | $\gamma_{tc}$ | $\gamma_{	extsf{dc}}$ | $\epsilon_{V,C}$  | t <sub>c</sub> | $\Delta$ L                               | $\tau_{h}$                                          | $\epsilon_{\sf v}$ | Φ'           |         |
| Specimen                                                                   | ID        | (estimated)     | (estimated)   | (estimated)           |                   |                |                                          |                                                     |                    |              |         |
|                                                                            |           | (%)             | (pcf)         | (pcf)                 | (%)               | (days)         | (inch)                                   | (ksf)                                               | (%)                | for c'=0     |         |
| NEW-B012                                                                   | 81.1      | 11.2            | 136.8         | 122.9                 | 6.00              | 2.2E-3         | 0.11                                     | 4.23                                                | 0.28               | 35.2         |         |
| ST-19 A                                                                    | DS1611    | 12.1            | 140.7         | 125.5                 | 4.4               | 0.06           | 0.29                                     | 3.98                                                | 0.32               | 33.5         |         |
| NEW-B012                                                                   | 81.8      | 16.9            | 130.5         | 111.7                 | 12.00             | 2.1E-3         | 0.16                                     | 7.21                                                | 1.54               | 31.0         |         |
| ST-19                                                                      | DS1613    | 16.7            | 136.2         | 116.7                 | 8.6               | 1.81           | 0.29                                     | 6.49                                                | 2.32               | 28.4         |         |
| NEW-B012                                                                   | 81.5      | 10.5            | 139.2         | 126.0                 | 24.00             | 1.7E-3         | 0.12                                     | 15.08                                               | 0.33               | 32.1         |         |
| ST-19                                                                      | DS1612    | 10.9            | 145.6         | 131.3                 | 14.6              | 0.13           | 0.26                                     | 14.42                                               | 0.61               | 31.0         |         |
|                                                                            |           |                 |               |                       |                   |                |                                          |                                                     |                    |              |         |
|                                                                            | Descrip   | otion of Materi | al Tested and | l Remarks             |                   |                | ] [                                      |                                                     | Strengt            | h Envelope S | Summary |
|                                                                            | -         |                 |               |                       |                   |                |                                          | Test                                                | Failure            | Φ'           | C'      |
| DS1611                                                                     | SC, brown | clayey sand     |               |                       |                   |                |                                          | Series                                              | Criterion          | (degree)     | (ksf)   |
|                                                                            |           |                 |               |                       |                   |                |                                          | 1                                                   | 1                  | 31.4         | 0.3     |
| DS1613                                                                     | SC, brown | clayey sand     |               |                       |                   |                |                                          |                                                     | 2                  | 30.6         | 0.0     |
| DS1612 SC, brown clayey sand Failure 1. Peak sheat Criterion 2. High defor |           |                 |               |                       |                   |                |                                          |                                                     |                    |              |         |
|                                                                            |           |                 |               |                       |                   |                |                                          |                                                     |                    |              |         |
|                                                                            |           | AE              | COM #604287   | 94                    | Dyne              | gy CCR - New   | vton DRAINED DIRECT SHEAR SERIES SUMMARY |                                                     |                    |              | 2       |
| Prepared by<br>Checked by                                                  |           | Ter             | raSense, L    | LC.                   |                   | T60428794      |                                          | Boring: NEW-B012 Sample: ST-19 A<br>Depth: 80-82 ft |                    |              | 19 A    |

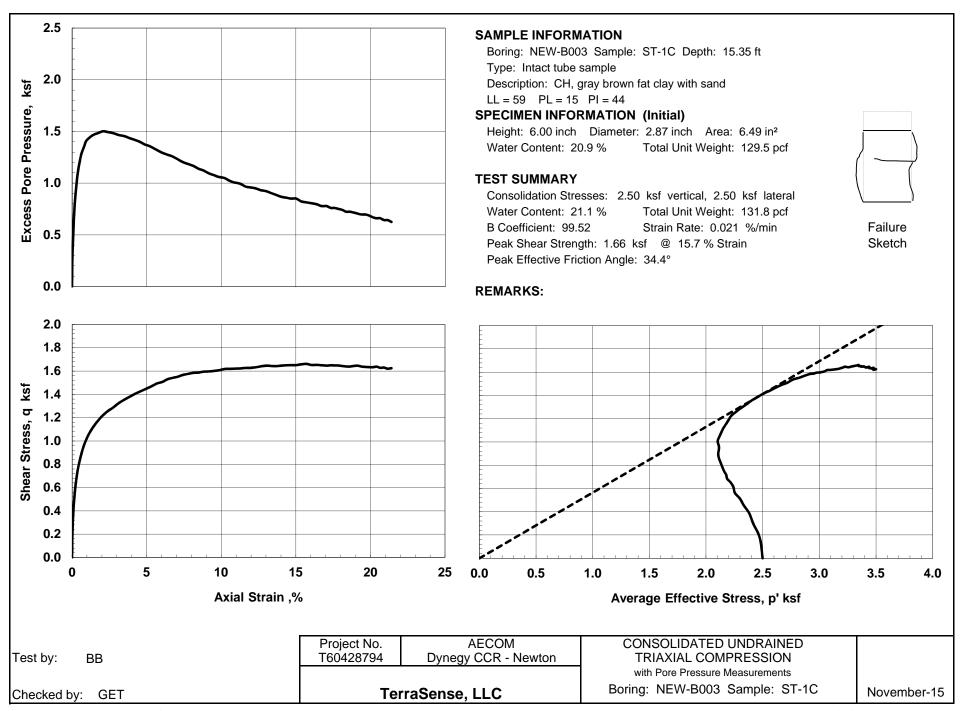


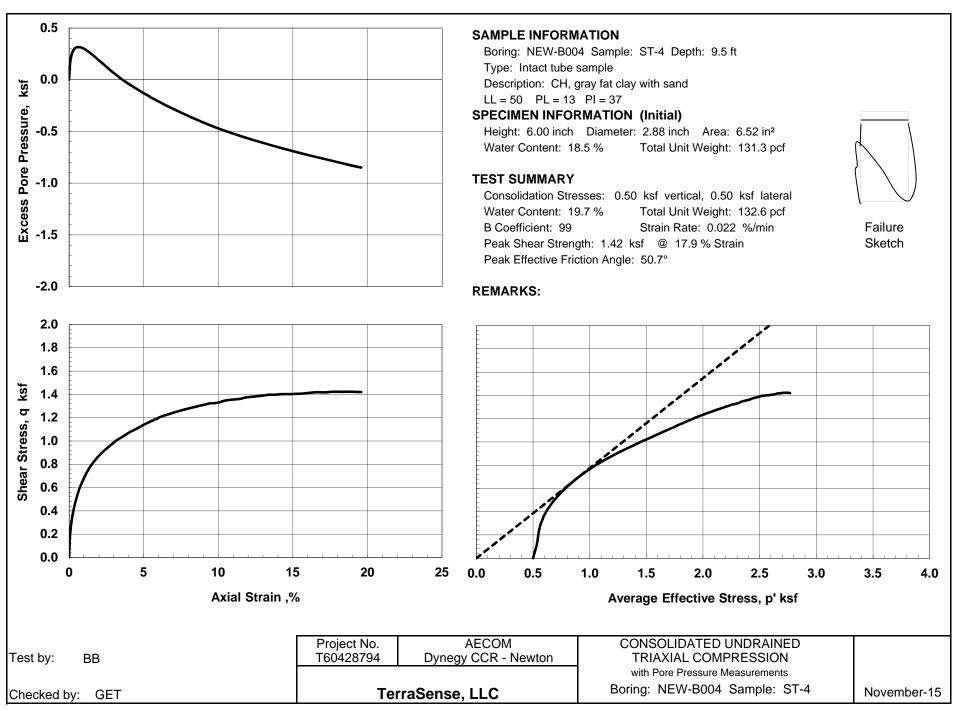



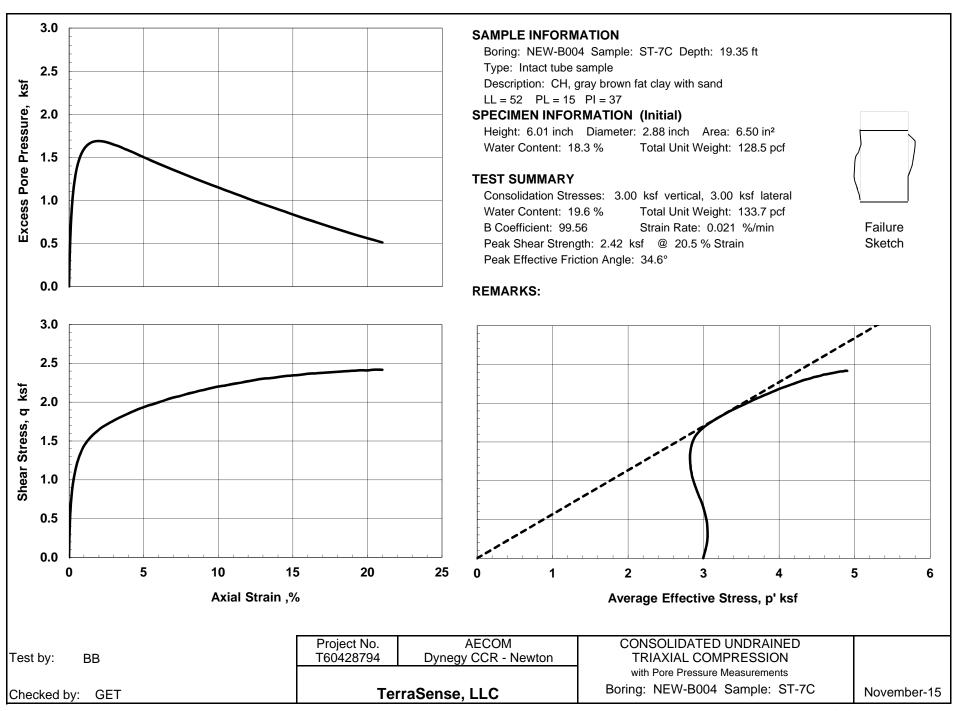



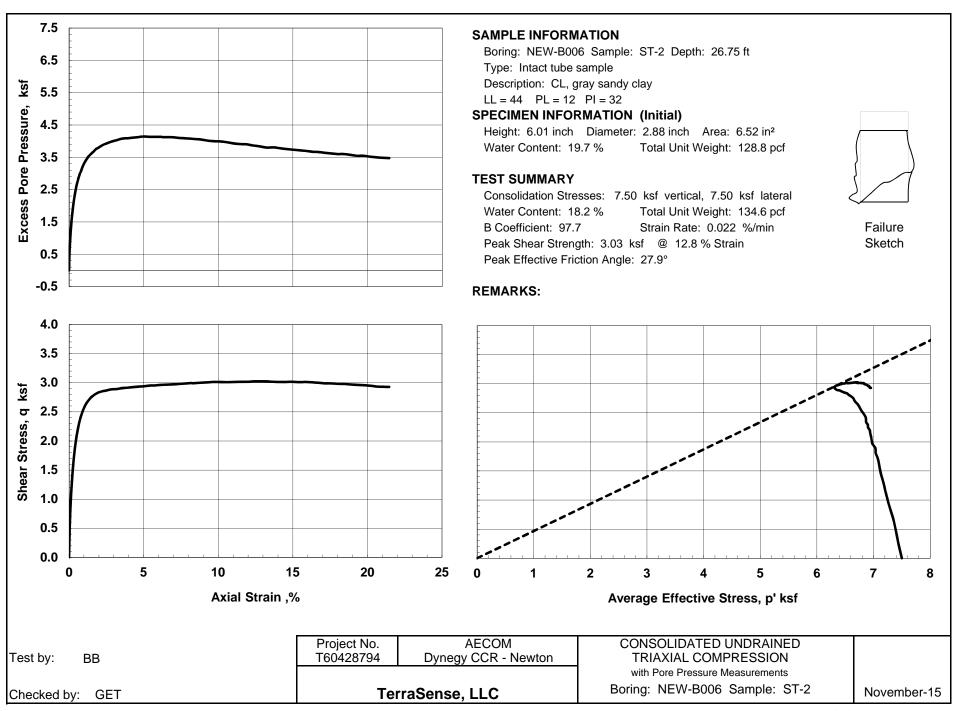



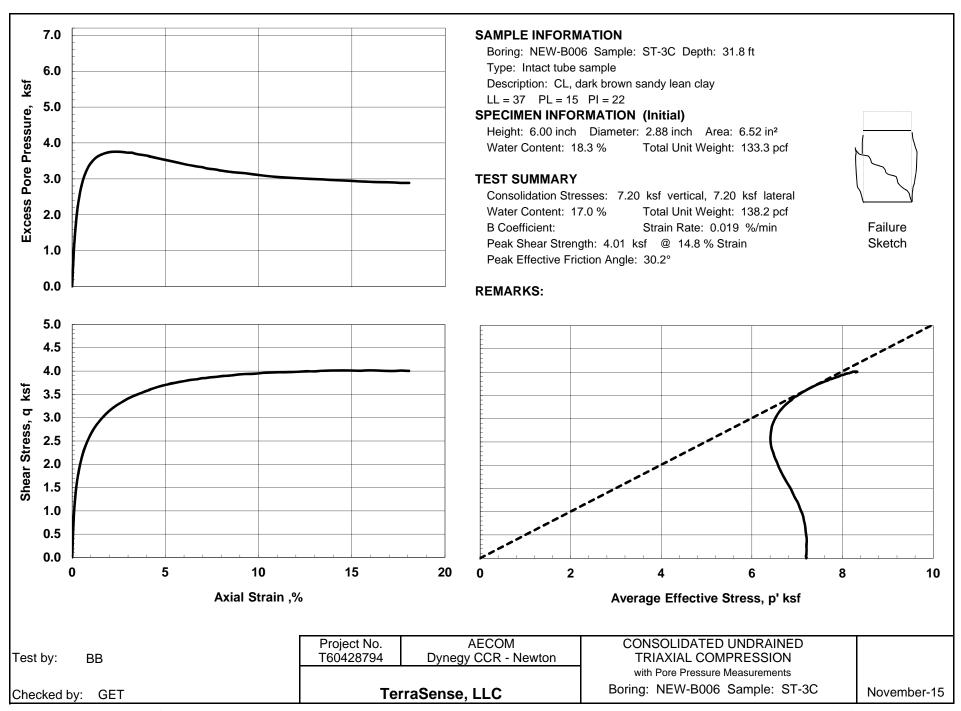


|                           |           |                    | STAGED               | DRAINED D             | IRECT S           | HEAR TEST S    | SERIES                                          |                      |                         |                              |         |
|---------------------------|-----------|--------------------|----------------------|-----------------------|-------------------|----------------|-------------------------------------------------|----------------------|-------------------------|------------------------------|---------|
| Boring No                 | Depth     | Wo                 | $\gamma_{to}$        | $\gamma_{\sf do}$     | σ' <sub>v,c</sub> | Deformation    |                                                 | at Peak              | Shear Stress            | 3                            | Remark  |
|                           |           |                    |                      |                       |                   | rate           |                                                 | at High              | n Deformation           |                              | 7       |
|                           | (ft)      |                    |                      |                       | (ksf)             | (inch/min)     |                                                 |                      |                         |                              |         |
| Sample/                   | Test      | W <sub>c</sub>     | $\gamma_{tc}$        | $\gamma_{	extsf{dc}}$ | $\epsilon_{V,C}$  | t <sub>c</sub> | $\Delta$ L                                      | $\tau_{h}$           | $\epsilon_{\sf v}$      | Φ'                           |         |
| Specimen                  | ID        | (estimated)<br>(%) | (estimated)<br>(pcf) | (estimated)<br>(pcf)  | (%)               | (days)         | (inch)                                          | (ksf)                | (%)                     | for c'=0                     |         |
| NEW-B015                  | 60.4      | 11.2               | 139.6                | 125.5                 | 3.75              | 8.2E-4         | 0.05                                            | 3.16                 | -0.10                   | 40.1                         |         |
| ST-3                      | DS1623    | 12.0               | 141.2                | 126.1                 | 2.8               | 0.63           | 0.29                                            | 2.59                 | -0.30                   | 34.6                         |         |
| NEW-B015                  | 60.8      | 11.9               | 140.2                | 125.3                 | 7.50              | 7.8E-4         | 0.06                                            | 5.38                 | 0.00                    | 35.6                         |         |
| ST-3                      | DS1625    | 13.3               | 142.1                | 125.5                 | 2.7               | 0.24           | 0.29                                            | 4.29                 | 0.73                    | 29.8                         |         |
| NEW-B015                  | 61.1      | 12.7               | 139.8                | 124.1                 | 15.00             | 6.6E-4         | 0.09                                            | 9.05                 | 0.51                    | 31.1                         |         |
| ST-3                      | DS1627    | 12.0               | 141.4                | 126.2                 | 4.9               | 1.08           | 0.28                                            | 8.33                 | 1.33                    | 29.0                         |         |
|                           |           |                    |                      |                       |                   |                |                                                 |                      |                         |                              | -       |
|                           |           |                    |                      |                       |                   |                |                                                 |                      |                         |                              |         |
|                           | Descrip   | otion of Materi    | al Tested and        | I Remarks             |                   |                | ] [                                             |                      | Strengt                 | h Envelope S                 | Summary |
|                           | ·         |                    |                      |                       |                   |                |                                                 | Test                 | Failure                 | Φ'                           | C'      |
| DS1623                    | CL, brown | clay with sand     | and gravel           |                       |                   |                |                                                 | Series               | Criterion               | (degree)                     | (ksf)   |
|                           | •         | ,                  | · ·                  |                       |                   |                | •                                               | 1                    | 1                       | 27.4                         | 1.3     |
| DS1625                    | CL, brown | clay with sand     |                      |                       |                   |                |                                                 |                      | 2                       | 27.2                         | 0.6     |
| DS1627                    | CL, brown | clay with sand     |                      |                       |                   |                |                                                 | Failure<br>Criterion |                         | 1. Peak shea<br>2. High defo |         |
|                           |           |                    |                      |                       |                   |                | _                                               |                      |                         |                              |         |
|                           |           | AE                 | ECOM #604287         | '94                   | Dyne              | gy CCR - Nev   | vton                                            | D                    | RAINED DIR<br>SERIES SU |                              | 1       |
| Prepared by<br>Checked by |           | Ter                | raSense, L           | LC                    |                   | T60428794      | Boring: NEW-B015 Sample: ST-3 Depth: 60-61.3 ft |                      |                         |                              | T-3     |

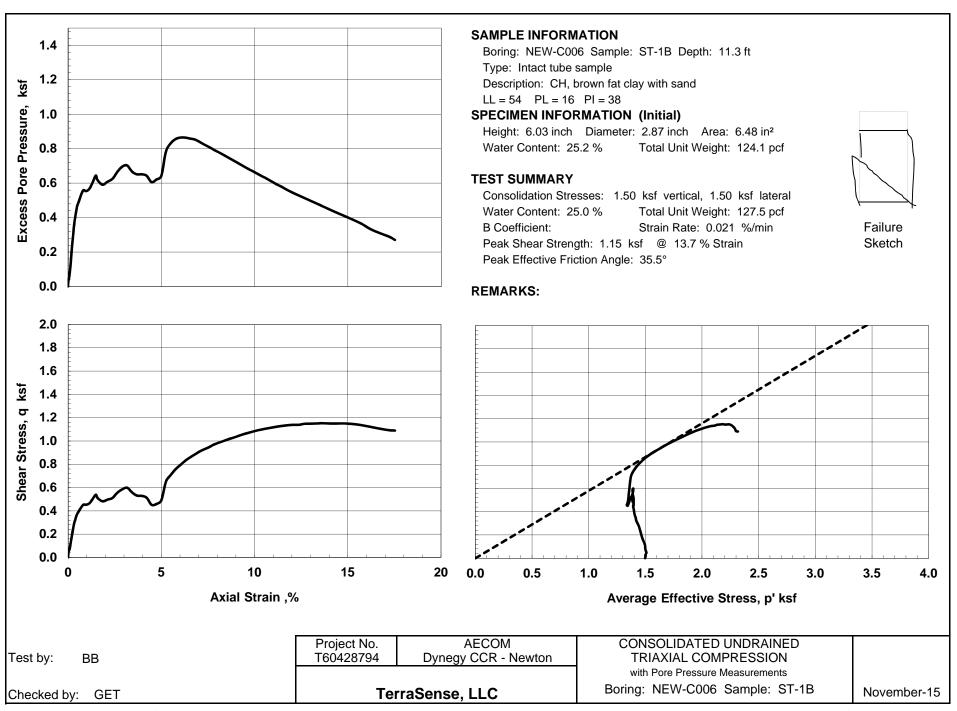


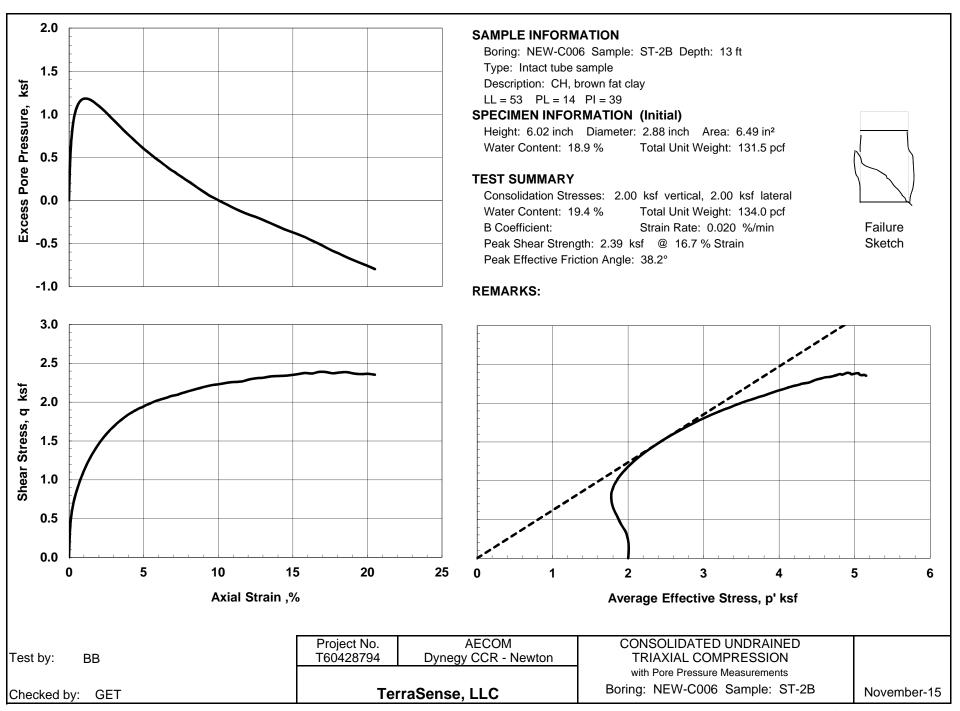



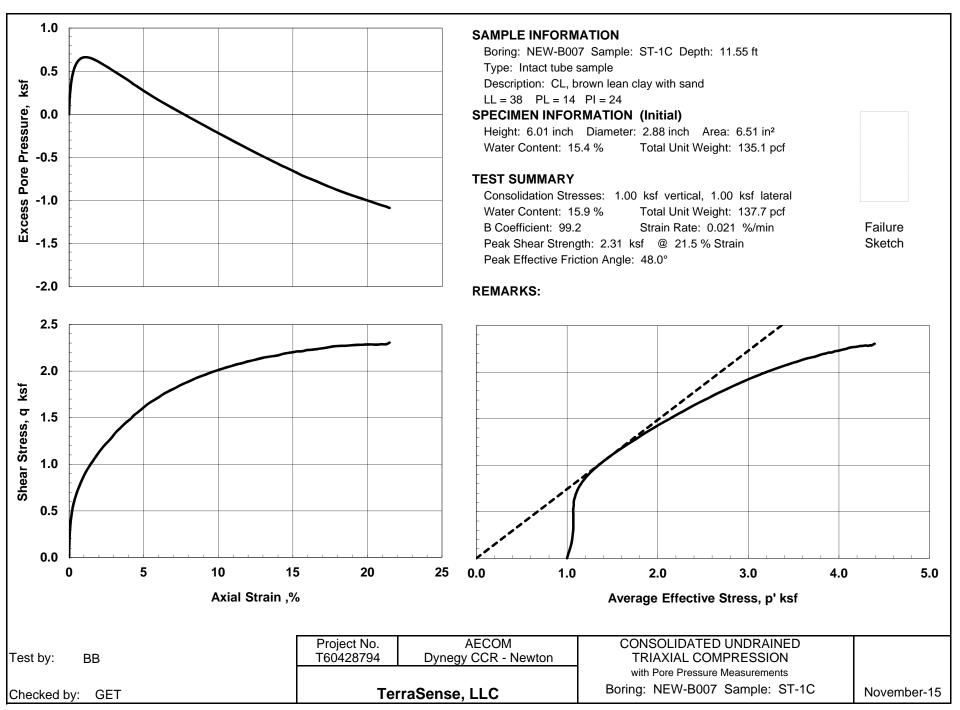



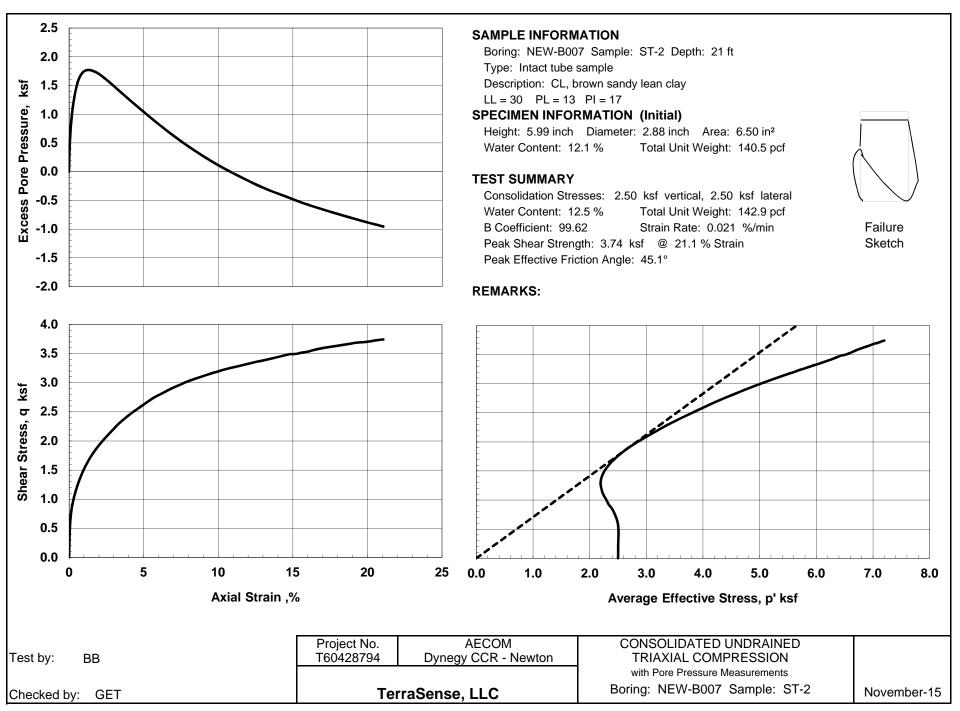



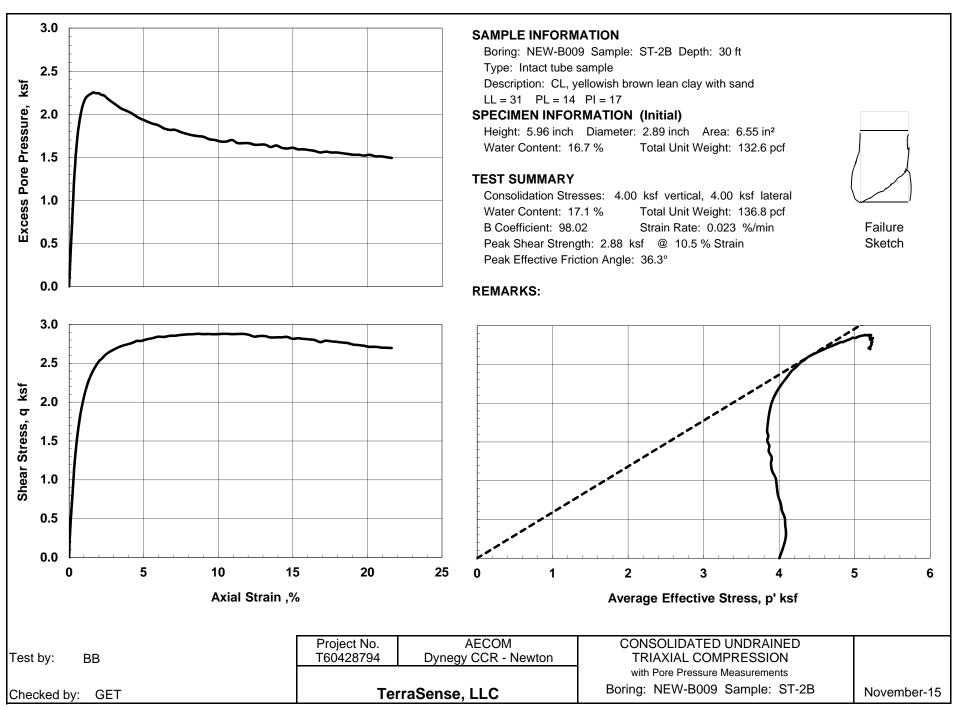



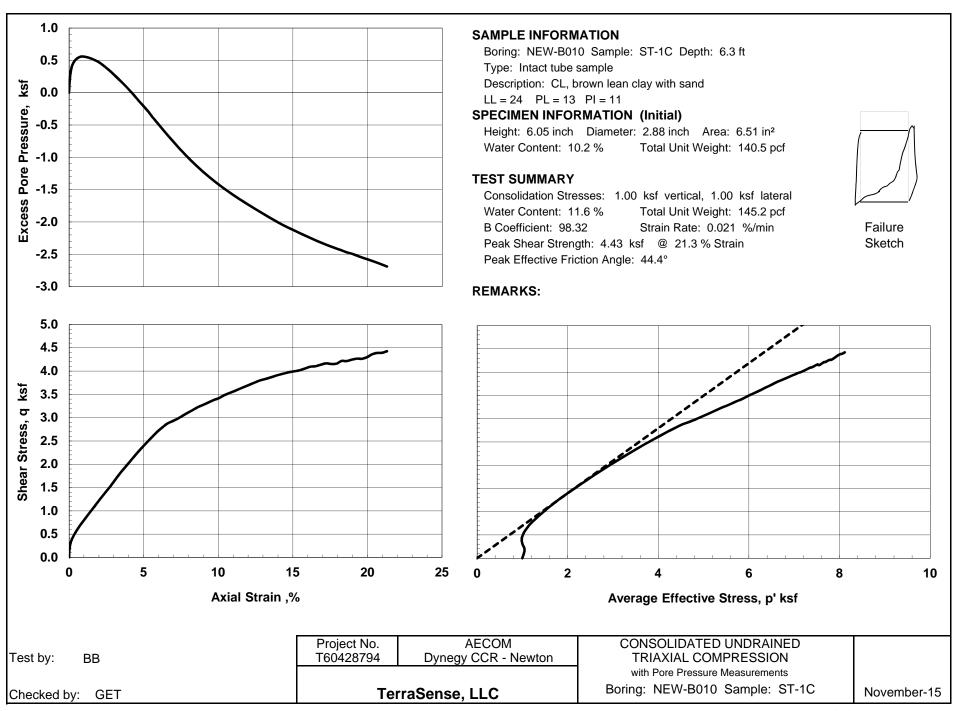



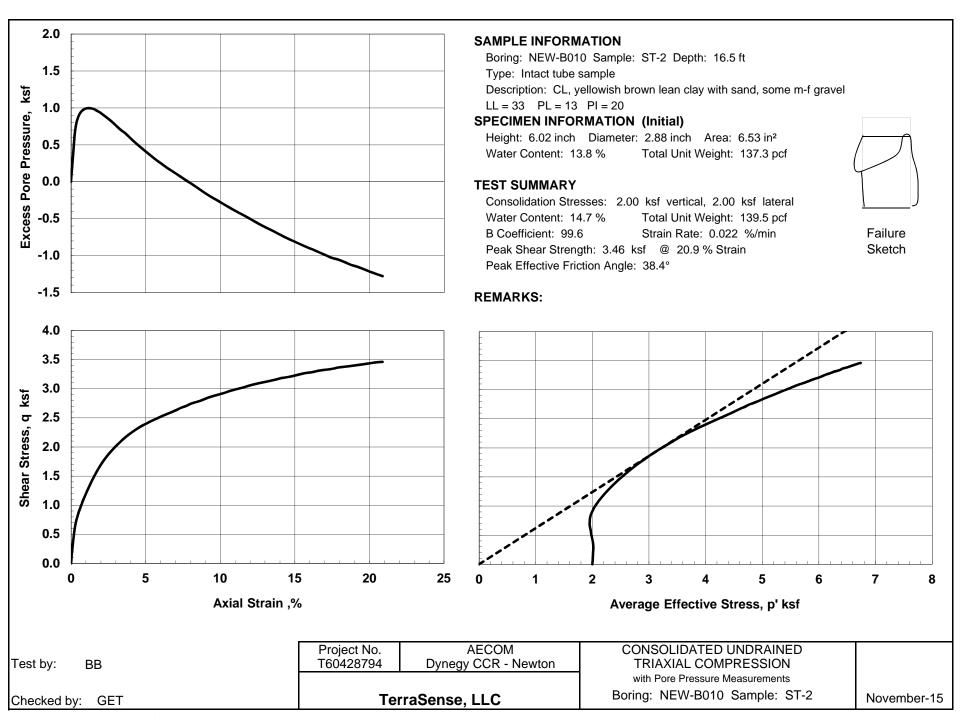



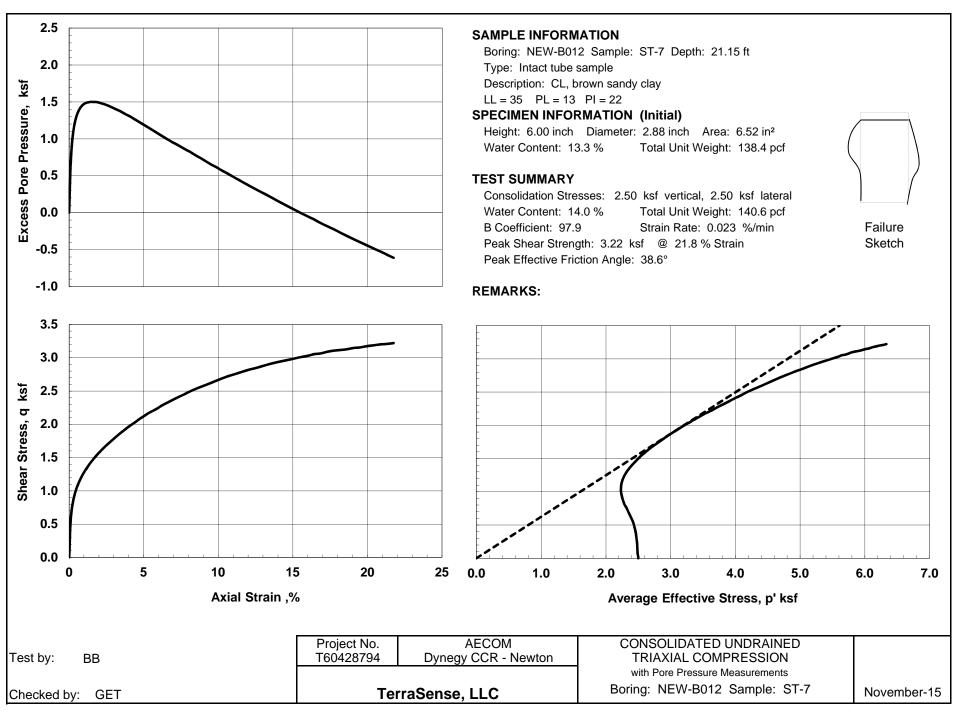



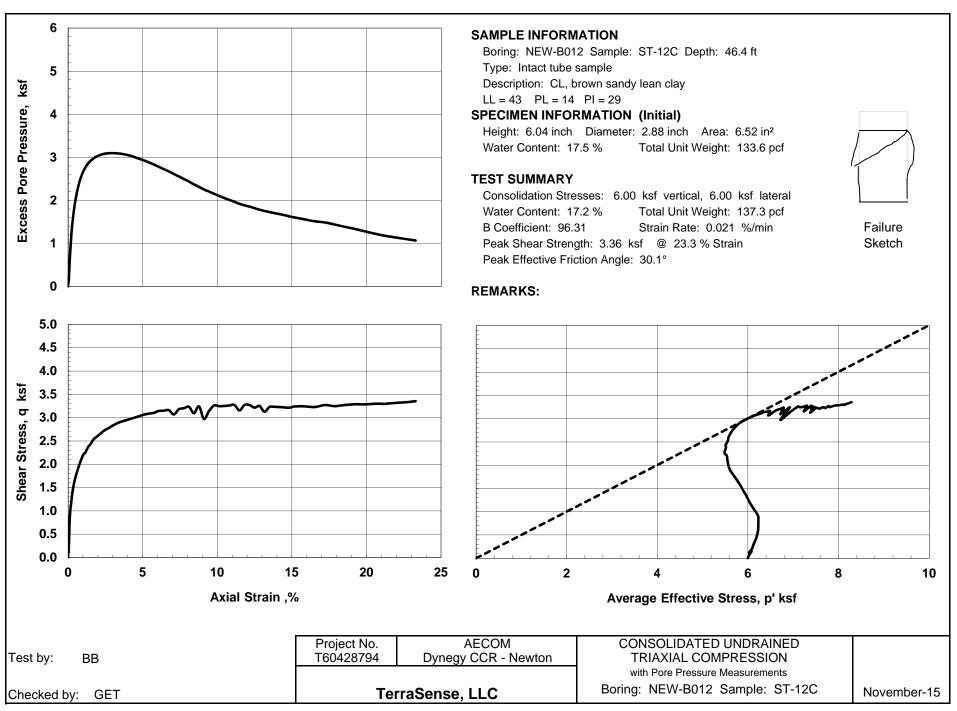



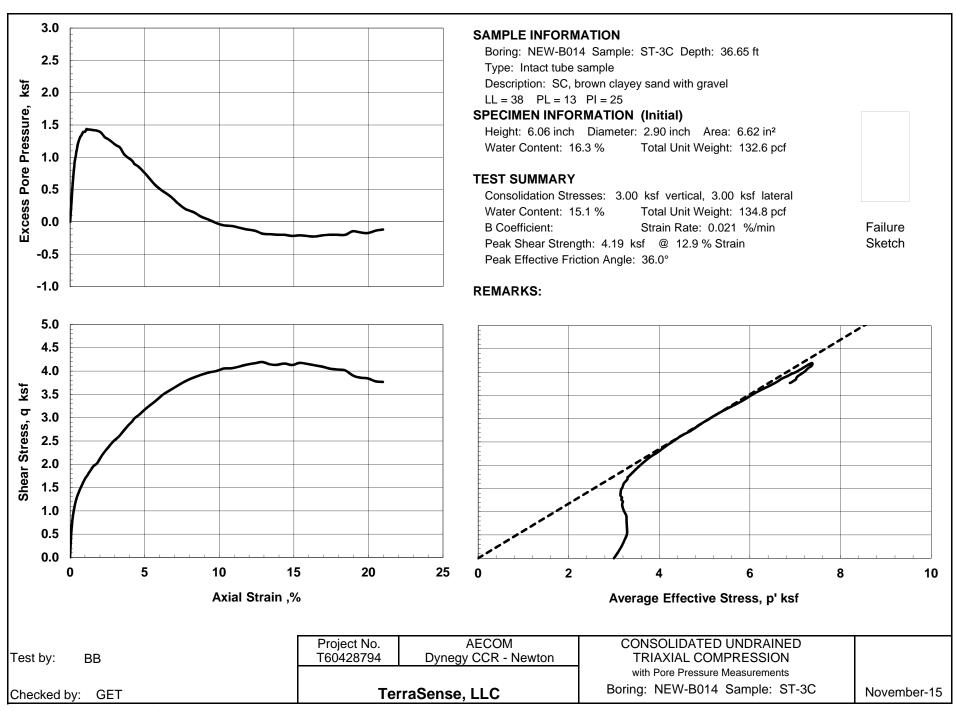



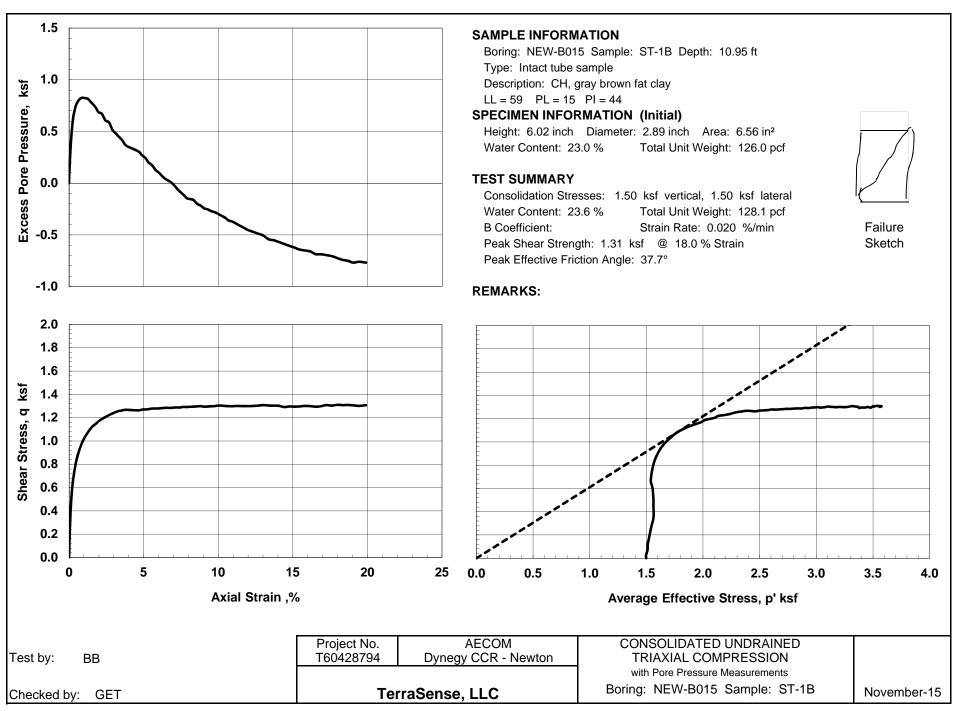



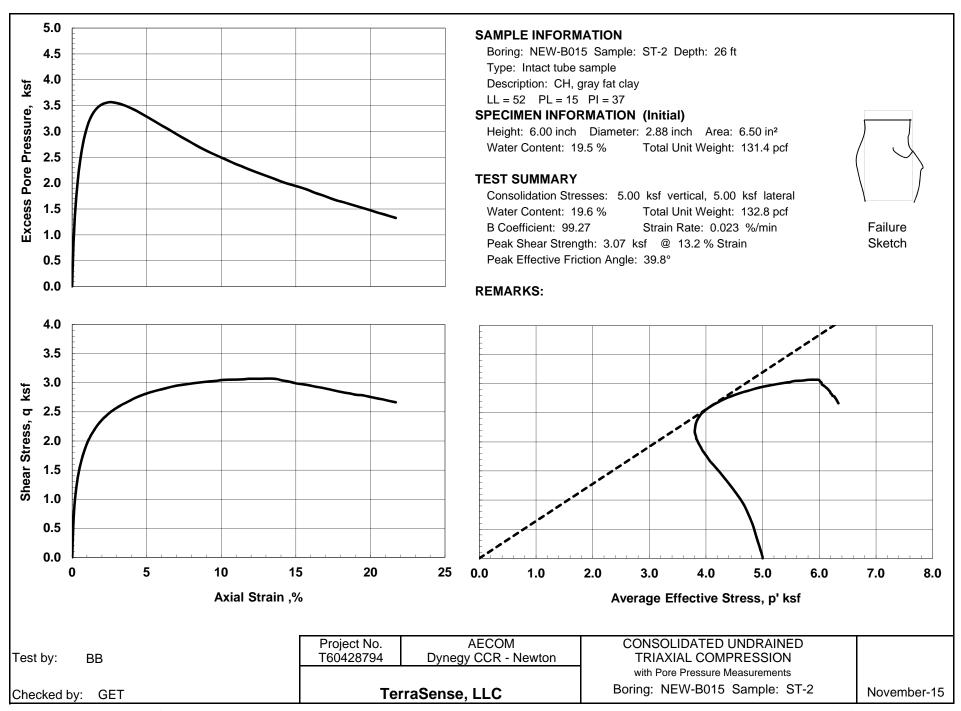



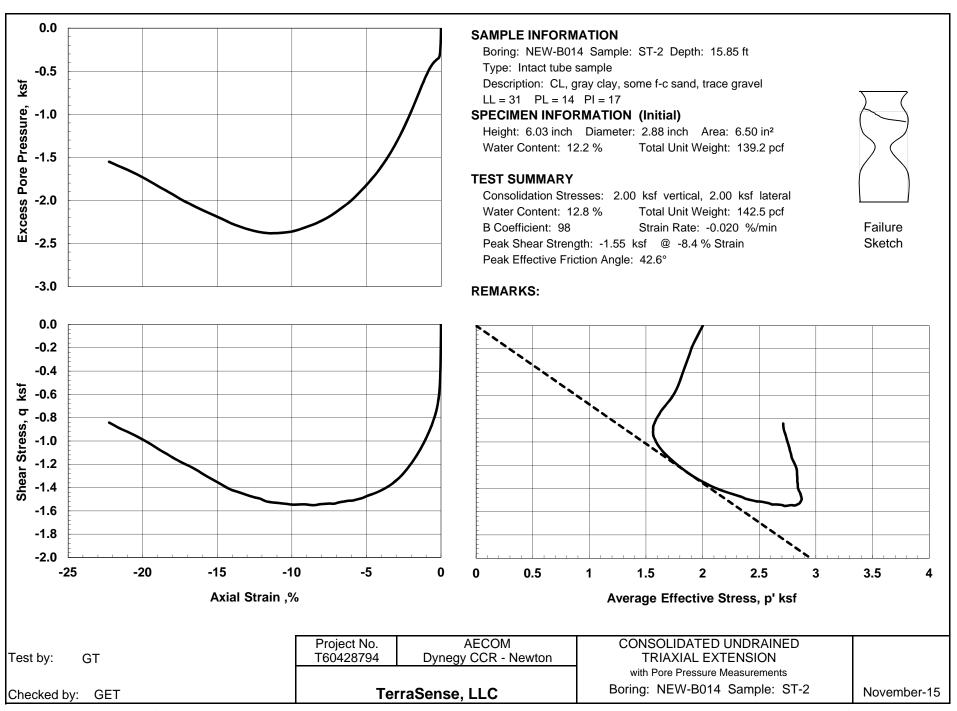














Appendix C

Hydraulic

Conductivity/Slug Test

Results

OBG

Appendix C - Table 1
Newton Power Station
Slug Test Results - Primary Ash Pond Wells (ID 501)
Hydrogeologic Monitoring Plan

| Well ID | Slug In 1 | Slug In 2 | Slug In 3 | Slug Out 1 | Slug Out 2 | Slug Out 3 | Slug Out 4 | MIN      | MAX      | GEOMEAN | Solution    |
|---------|-----------|-----------|-----------|------------|------------|------------|------------|----------|----------|---------|-------------|
| APW2    |           | 4.41E-05  |           | 4.52E-05   |            | 3.45E-05   |            | 3.45E-05 | 4.52E-05 | 4.1E-05 | Bouwer-Rice |
| APW3    | 8.44E-06  |           |           | 8.61E-06   |            |            |            | 8.44E-06 | 8.61E-06 | 8.5E-06 | Bouwer-Rice |
| APW4    | 6.66E-06  |           |           | 5.14E-06   |            |            |            | 5.14E-06 | 6.66E-06 | 5.8E-06 | Bouwer-Rice |
| APW5    | 5.66E-04  | 1.42E-03  |           | 1.54E-04   | 2.74E-04   | 2.56E-04   |            | 1.54E-04 | 1.42E-03 | 3.9E-04 | Bouwer-Rice |
| APW6    | 1.64E-03  | 2.18E-03  |           |            | 2.09E-03   | 1.98E-03   |            | 1.64E-03 | 2.18E-03 | 2.0E-03 | Bouwer-Rice |
| APW7    | 2.25E-03  |           |           |            | 3.24E-03   | 2.99E-03   | 2.75E-03   | 2.25E-03 | 3.24E-03 | 2.8E-03 | Bouwer-Rice |
| APW8    | 6.60E-04  | 1.31E-03  |           |            | 1.06E-03   | 7.89E-04   |            | 6.60E-04 | 1.31E-03 | 9.2E-04 | Bouwer-Rice |
| APW9    | 3.21E-03  | 3.28E-03  |           | 3.40E-03   | 3.00E-03   |            |            | 3.00E-03 | 3.40E-03 | 3.2E-03 | Bouwer-Rice |
| APW10   | 5.27E-04  | 5.49E-04  |           |            | 5.73E-04   | 5.60E-04   |            | 5.27E-04 | 5.73E-04 | 5.5E-04 | Bouwer-Rice |

All slug test (i.e. hydraulic conductivity) results are in centimeters per second

Not Applicable



Appendix C - Table 2
Newton Power Station
Slug Test Results - Landfill 2 CCR Wells (ID 502)
Hydrogeologic Monitoring Plan

| Well ID | Slug In 1 | Slug In 2 | Slug In 3 | Slug Out 1 | Slug Out 2 | Slug Out 3 | MIN      | MAX      | GEOMEAN | Solution    |
|---------|-----------|-----------|-----------|------------|------------|------------|----------|----------|---------|-------------|
| G06D    |           |           |           | 3.92E-08   |            |            | 3.92E-08 | 3.92E-08 | 3.9E-08 | Bouwer-Rice |
| G202    | 1.70E-02  | 1.43E-02  |           |            | 2.87E-02   | 2.33E-02   | 1.43E-02 | 2.87E-02 | 2.0E-02 | Bouwer-Rice |
| G203    | 2.53E-02  |           |           | 2.42E-02   | 3.47E-02   |            | 2.42E-02 | 3.47E-02 | 2.8E-02 | Bouwer-Rice |
| G208    |           |           |           | 1.32E-08   |            |            | 1.32E-08 | 1.32E-08 | 1.3E-08 | Bouwer-Rice |
| G217D   | 2.27E-04  | 2.92E-04  |           |            |            | 3.03E-04   | 2.27E-04 | 3.03E-04 | 2.7E-04 | Bouwer-Rice |
| G220    |           |           |           | 3.51E-07   |            |            | 3.51E-07 | 3.51E-07 | 3.5E-07 | Bouwer-Rice |
| G222    |           |           |           | 1.54E-06   |            |            | 1.54E-06 | 1.54E-06 | 1.5E-06 | Bouwer-Rice |
| G223    | 5.19E-05  | 2.50E-05  |           | 1.37E-05   | 1.79E-05   |            | 1.37E-05 | 5.19E-05 | 2.4E-05 | Bouwer-Rice |
| G224    | 5.15E-02  | 1.90E-02  | 4.64E-02  | 4.31E-02   |            | 2.97E-02   | 1.90E-02 | 5.15E-02 | 3.6E-02 | Bouwer-Rice |

All slug test (i.e. hydraulic conductivity) results are in centimeters per second
Not Applicable



## Appendix D Groundwater Elevation Contour Maps

OBG

DRAWN BY/DATE: SDS 10/3/17 REVIEWED BY/DATE: TBN 10/3/17 APPROVED BY/DATE: SJC 10/3/17

#### GROUNDWATER ELEVATION CONTOUR MAP ROUND 6: JANUARY 16, 2017

HYDROGEOLOGIC MONITORING PLAN NEWTON POWER STATION NEWTON, ILLINOIS PROJECT NO: 2285

FIGURE NO: 1



DRAWN BY/DATE: SDS 8/12/17 REVIEWED BY/DATE: TBN 8/12/17 APPROVED BY/DATE: JJW 8/30/17

#### GROUNDWATER ELEVATION CONTOUR MAP ROUND 8: JUNE 12, 2017

HYDROGEOLOGIC MONITORING PLAN NEWTON POWER STATION NEWTON, ILLINOIS PROJECT NO: 2285

FIGURE NO: 1





### OBG

THERE'S A WAY







Submitted to Illinois Power Generating Company 6725 North 500<sup>th</sup> Street Newton, IL 62448 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

# CCR Rule Report: Initial Structural Stability Assessment

For

Primary Ash Pond

At Newton Power Station

#### 1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Primary Ash Pond at the Illinois Power Generating Company Newton Power Station meets the structural stability assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(d). The Primary Ash Pond is located near Newton, Illinois in Jasper County, approximately 0.2 miles southwest of the Newton Power Station. The Primary Ash Pond serves as the wet impoundment basin for CCR produced by the Newton Power Station.

The Primary Ash Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that an initial structural stability assessment for an existing CCR surface impoundment be completed by October 17, 2016. In general, the initial structural stability assessment must document that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial structural stability assessment was conducted in accordance with the requirements of 40 CFR § 257.73(d). The owner or operator must prepare a periodic structural stability assessment every five years.

#### 2 Initial Structural Stability Assessment

40 CFR §257.73(d)(1)

The owner or operator of the CCR unit must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. The assessment must, at a minimum, document whether the CCR unit has been designed, constructed, operated, and maintained with [the standards in (d)(1)(i)-(vii)].

An initial structural stability assessment has been performed to document that the design, construction, operation and maintenance of the Primary Ash Pond is consistent with recognized and generally accepted good engineering practices and meets the standards in 257.73(d)(1)(i)-(vii). The results of the structural stability assessment are discussed in the following sections. Based on the assessment and its results, the design, construction, operation, and maintenance of the Primary Ash Pond were found to be consistent with recognized and generally accepted good engineering practices.

#### 2.1 Foundations and Abutments (§257.73(d)(1)(i))

CCR unit designed, constructed, operated, and maintained with stable foundations and abutments.

The stability of the foundations was evaluated using soil data from field investigations and reviewing design drawings, operational and maintenance procedures, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the foundations. The Primary Ash Pond is a ring dike structure and does not have abutments.

The foundation consists of stiff to hard soil, which indicates stable foundations. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the foundation. The slope stability analyses are discussed in the CCR Rule Report: Initial Safety Factor Assessment for Primary Ash Pond at Newton Power Station (October 2016). A review of operational and maintenance procedures as well as current and past performance of the dikes has determined appropriate processes are in place for continued operational performance.

Based on the conditions observed by AECOM, the Primary Ash Pond was designed and constructed with stable foundations. Operational and maintenance procedures are in place to address any issues related to the stability of foundations; therefore, the Primary Ash Pond meets the requirements in §257.73(d)(1)(i).

#### 2.2 Slope Protection (§257.73(d)(1)(ii))

CCR unit designed, constructed, operated, and maintained with adequate slope protection to protect against surface erosion, wave action and adverse effects of sudden drawdown.

The adequacy of slope protection was evaluated by reviewing design drawings, operational and maintenance procedures, and conditions observed in the field by AECOM.

Based on this evaluation, adequate slope protection was designed and constructed at the Primary Ash Pond. No evidence of significant areas of erosion or wave action were observed. The interior and exterior slopes are protected with vegetation. Where the exterior slopes are adjacent to Newton Lake, they are protected with crushed stone erosion protection. Crushed stone erosion protection is also located on the interior slopes in limited areas. Operational and maintenance procedures are in place to repair the vegetation as needed to protect against

surface erosion or wave action. Sudden drawdown of the pool in the Primary Ash Pond is not expected to occur due to operational controls associated with lowering the pool level. Therefore, slope protection to protect against the adverse effects of sudden drawdown is not required as sudden drawdown conditions are not expected to occur. Therefore, the Primary Ash Pond meets the requirements in §257.73(d)(1)(ii).

#### 2.3 Dike Compaction (§257.73(d)(1)(iii))

CCR unit designed, constructed, operated, and maintained with dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit.

The density of the dike materials was evaluated using soil data from field investigations and reviewing design drawings, operational and maintenance procedures, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the dike over the range of expected loading conditions as defined within §257.73(e)(1).

Based on this evaluation, the dike consists of stiff material, with isolated zones of soft, medium stiff, and very stiff material, which is indicative of mechanically compacted dikes. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the dike; therefore, the original design and construction of the Primary Ash Pond included sufficient dike compaction. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for Primary Ash Pond at Newton Power Station* (October 2016); Operational and maintenance procedures are in place to identify and mitigate deficiencies in order to maintain sufficient density and compaction of the dikes to withstand the range of loading conditions. Therefore, the Primary Ash Pond meets the requirements in §257.73(d)(1)(iii).

#### 2.4 Vegetated Slopes (§257.73(d)(1)(iv))<sup>1</sup>

CCR unit designed, constructed, operated, and maintained with vegetated slopes of dikes and surrounding areas, except for slopes which have an alternate form or forms of slope protection.

The adequacy of slope vegetation was evaluated by reviewing design drawings, operational and maintenance procedures, and conditions observed in the field by AECOM.

Based on this evaluation, the vegetation on the interior and exterior slopes is adequate as no substantial bare or overgrown areas were observed. Crushed stone erosion protection is present on portions of the exterior slopes adjacent to Newton Lake and is used as an alternative form of slope protection, which is adequate as significant areas of erosion were not observed. Therefore, the original design and construction of the Primary Ash Pond included adequate vegetation of the dikes and surrounding areas. Adequate operational and maintenance procedures are in place to regularly manage vegetation growth, including mowing and seeding any bare areas, as evidenced by the conditions observed by AECOM. Therefore, the Primary Ash Pond meets the requirements in §257.73(d)(1)(iv).

As modified by court order issued June 14, 2016, Utility Solid Waste Activities Group v. EPA, D.C. Cir. No. 15-1219 (order granting remand and vacatur of specific regulatory provisions).

#### 2.5 Spillways (§257.73(d)(1)(v))

CCR unit designed, constructed, operated, and maintained with a single spillway or a combination of spillways configured as specified in [paragraph (A) and (B)]:

- (A) All spillways must be either:
  - (1) of non-erodible construction and designed to carry sustained flows; or
  - (2) earth- or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected.
- (B) The combined capacity of all spillways must adequately manage flow during and following the peak discharge from a:
  - (1) Probable maximum flood (PMF) for a high hazard potential CCR surface impoundment; or
  - (2) 1000-year flood for a significant hazard potential CCR surface impoundment; or
  - (3) 100-year flood for a low hazard potential CCR surface impoundment.

The spillways were evaluated using design drawings, operational and maintenance procedures, and conditions observed in the field by AECOM. Additionally, hydrologic and hydraulic analyses were completed to evaluate the capacity of the spillway relative to inflow estimated for the 1,000-year flood event for the significant hazard potential Primary Ash Pond. The hazard potential classification assessment was performed by Stantec in 2016 in accordance with §257.73(a)(2).

The spillways are comprised of concrete and sliplined corrugated metal pipes, which are non-erodible materials designed to carry sustained flows. The capacity of the spillway was evaluated using hydrologic and hydraulic analysis performed per §257.82(a). The analysis found that the spillways can adequately manage flow during peak discharge resulting from the 1,000-year storm event without overtopping of the embankments. The hydrologic and hydraulic analyses are discussed in the *CCR Rule Report: Initial Inflow Design Flood Control System Plan for Primary Ash Pond at Newton Power Station* (October 2016). Operational and maintenance procedures are in place to repair any issues with the spillways and remove debris or other obstructions from the spillways, as evidenced by the conditions observed by AECOM. As a result, these procedures are appropriate for maintaining the spillways. Therefore, the Primary Ash Pond meets the requirements in §257.73(d)(1)(v).

#### 2.6 Stability and Structural Integrity of Hydraulic Structures (§257.73(d)(1)(vi))

CCR unit designed, constructed, operated, and maintained with hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure.

The stability and structural integrity of the slip-lined corrugated metal pipe (CMP) outflow pipes passing through the dike of the Primary Ash Pond were evaluated using design drawings, operational and maintenance procedures, closed-circuit television (CCTV) pipe inspection, and conditions observed in the field by AECOM. No other hydraulic structures are known to pass through the dike of or underlie the base of the Primary Ash Pond.

The CCTV pipe inspection of the slip-lined CMP outflow pipes covered the complete length of both pipes and found the pipes to be free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris that may negatively affect the operation of the hydraulic structure. Operational and maintenance procedures are in place to repair any issues with the spillway and remove debris or other obstructions from the spillways, as evidenced by the conditions observed by AECOM. As a result, these procedures are appropriate for maintaining the spillway. Therefore, the Primary Ash Pond meets the requirements in §257.73(d)(1)(vi).

#### 2.7 Downstream Slope Inundation/Stability (§257.73(d)(1)(vii))

CCR unit designed, constructed, operated, and maintained with, for CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.

The structural stability of the downstream slopes of the Primary Ash Pond was evaluated by comparing the location of the Primary Ash Pond relative to adjacent water bodies using published Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM), aerial imagery, conditions observed in the field by AECOM, and sudden drawdown slope stability analyses.

Based on this evaluation, Newton Lake is adjacent to the southern downstream slopes of the Primary Ash Pond. No other rivers, streams, or lakes are adjacent to the downstream slopes of the Primary Ash Pond. Sudden drawdown slope stability analyses were performed at 4 cross sections adjacent to Newton Lake, and considered a drawdown from a normal pool to empty pool condition, thereby evaluating both sudden drawdown and empty and low pool conditions. The resulting factors of safety were found to satisfy the criteria listed in United States Army Corps of Engineers Engineer Manual 1110-2-1902 for drawdown from normal to low pool, as factor of safety criteria for sudden drawdown slope stability is not expressly stated as a requirement of §257.73(d)(1)(vii). Therefore, the Primary Ash Pond meets the requirements listed in §257.73(d)(1)(vii).

#### 3 Certification Statement

CCR Unit: Illinois Power Generating Company; Newton Power Station; Primary Ash Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial structural stability assessment dated October 3, 2016 was conducted in accordance with the requirements of 40 CFR § 257.73(d).

Printed Name

Date



#### About AFCOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With nearly 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$19 billion.

More information on AECOM and its services can be found at <a href="https://www.aecom.com">www.aecom.com</a>.





Submitted to Illinois Power Generating Company 6725 North 500<sup>th</sup> Street Newton, IL 62448 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

# CCR Rule Report: Initial Safety Factor Assessment

For

Primary Ash Pond

At Newton Power Station

## 1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Primary Ash Pond at the Illinois Power Generating Company Newton Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The Primary Ash Pond is located near Newton, Illinois in Jasper County, approximately 0.2 miles southwest of the Newton Power Station. The Primary Ash Pond serves as the wet impoundment basin for CCR produced by the Newton Power Station.

The Primary Ash Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.

# 2 Initial Safety Factor Assessment

### 40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

- (i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.
- (ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.
- (iii) The calculated seismic factor of safety must equal or exceed 1.00.
- (iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of the Primary Ash Pond. The exploration consisted of hollow-stem auger borings, cone penetration testing, piezometer installation and laboratory program including strength, hydraulic conductivity, consolidation, and index testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

In general, the subsurface conditions at the Primary Ash Pond consist of medium stiff to stiff embankment fill (clay) overlying stiff to hard clay, which in turn overlies very stiff to very hard glacial till. Phreatic water is above the embankment/foundation of the Primary Ash Pond.

Ten (10) representative cross sections were analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross sections were located to represent critical surface geometry, subsurface stratigraphy, and phreatic conditions across the site. Each cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

The Soils Susceptible to Liquefaction loading condition, §257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibly evaluation did not find soils susceptible to liquefaction within the Primary Ash Pond dikes. As a result, this loading condition is not applicable to the Primary Ash Pond at the Newton Power Station.

Results of the Initial Safety Factor Assessments for the critical cross-section for each loading condition (i.e., the lowest calculated factor of safety out of the 10 cross sections analyzed for each loading condition) are listed in Table 1.

§257.73(e)(1) Minimum Factor of Calculated Factor of **Loading Conditions** Subsection Safety Safety Maximum Storage Pool Loading 1.50 1.66 (i) Maximum Surcharge Pool Loading (ii) 1.40 1.66 1.07 Seismic 1.00 (iii) 1.20 Not Applicable Soils Susceptible to Liquefaction (iv)

Table 1 – Summary of Initial Safety Factor Assessments

Based on this evaluation, the Primary Ash Pond meets the requirements in §257.73(e)(1).

# 3 Certification Statement

CCR Unit: Illinois Power Generating Company; Newton Power Station; Primary Ash Pond

A MODEER SC.

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 3, 2016 meets the requirements of 40 CFR §257.73(e).

Printed Name

Date

#### About AFCOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With nearly 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$19 billion.

More information on AECOM and its services can be found at <a href="https://www.aecom.com">www.aecom.com</a>.



# CLOSURE PLAN FOR EXISTING CCR SURFACE IMPOUNDMENT 40 CFR 257.102(b) REV 0 – 10/17/2016

| SITE INFORMATION                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Site Name / Address                                                                                                                                                                                                                        | Newton Power Station / 6725 North 500 <sup>th</sup> Street, Newton, IL 62448                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Owner Name / Address                                                                                                                                                                                                                       | Illinois Power Generating                                                                                                                                                         | Company / 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Eastport Plaza Drive, Collinsville, IL 62234                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| CCR Unit                                                                                                                                                                                                                                   | Primary Ash Pond                                                                                                                                                                  | Closure Method<br>Final Cover Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| CLOSURE PLAN DESCRIPTION                                                                                                                                                                                                                   |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| (b)(1)(i) – Narrative description of how<br>the CCR unit will be closed in<br>accordance with this section.                                                                                                                                | CCR in place. The CC cover will be sloped through a series of dr collection channel. Fr Settling Pond to the r Pond a spillway will le written closure plan engineering design fo | R in the Primary to promote drainage channels om the perimete north and the Secard to Newton La will be amended or the grading an effect this written of the promote of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the | red, as necessary, to facilitate closure by leaving Ash Pond will be shaped and graded. The final inage and stormwater runoff will be conveyed on the cover system to a perimeter stormwate or channel, stormwater will flow to the Secondary Pond to the south. From the Secondary Red. In accordance with 257.102(b)(3), this initial ded to provide additional details after the final d cover system is completed, if the final design closure plan. This initial closure plan reflects the |  |  |
| (b)(1)(iii) – If closure of the CCR unit will be accomplished by leaving CCR in place, a description of the final cover system and methods and procedures used to install the final cover.                                                 | earthen material with a permeability of less than or equal to the permeability of the                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| (b)(1)(iii) – How the final cover system                                                                                                                                                                                                   | will achieve the performance                                                                                                                                                      | e standards in 257.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .02(d).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| (d)(1)(i) Control, minimize or eliminate, to the maximum extent feasible, post-closure infiltration of liquids into the waste and releases of CCR, leachate, or contaminated run-off to the ground or surface waters or to the atmosphere. |                                                                                                                                                                                   | of CCR, less the present greater Therefore will not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The permeability of the final cover will be equal to or less than the permeability of the natural subsoils present below the CCR material or permeability no greater than 1x10 <sup>-5</sup> cm/sec, whichever is less. Therefore, the permeability of the final cover system will not be greater than 1x10 <sup>-5</sup> cm/sec. The final cover system will be graded with a minimum 2% slope.                                                                                                |  |  |
| (d)(1)(ii) — Preclude the probability of future impoundment of water, sediment, or slurry.                                                                                                                                                 |                                                                                                                                                                                   | slope.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The final cover will be installed with a minimum 2% slope. Drainage channels will be installed with a minimum 0.5% slope.                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| (d)(1)(iii) — Include measures that provide for major slope stability to prevent the sloughing or movement of the final cover system during the closure and post-closure care period.                                                      |                                                                                                                                                                                   | or the drainage Drainage mats version meet t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The final cover will have a minimum 2% slope and drainage channels will have minimum 0.5% slope. Drainage channels will be lined with turf reinforced mats where required to reduce the potential for erosion. The final slope of the berms and cover will meet the stability requirements to prevent sloughing or movement of the final cover system.                                                                                                                                          |  |  |
| (d)(1)(iv) – Minimize the need for further maintenance of the CCR unit.                                                                                                                                                                    |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The final cover will be vegetated to minimize erosion and maintenance.                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

| CLOSURE PLAN DESCRIPTION                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d)(1)(v) — Be completed in the shortest amount of time consistent with recognized and generally accepted good engineering practices.                                                                                                            | Closure is estimated to be completed no later than five years upon commencement of activities.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (d)(2)(i) — Free liquids must be eliminated by removing liquid wastes or solidifying the remaining wastes and waste residue.                                                                                                                     | The unit will be dewatered sufficiently, as necessary, to remove the free liquids to provide a stable base for the construction of the final cover system.                                                                                                                                                                                                                                                                                                                                                           |
| (d)(2)(ii) — Remaining wastes must be stabilized sufficiently to support the final cover system.                                                                                                                                                 | Dewatering as necessary and regrading of existing in-<br>place CCR will sufficiently stabilize the waste such that<br>the final cover will be supported.                                                                                                                                                                                                                                                                                                                                                             |
| (d)(3) — A final cover system must be installed to minimize infiltration and erosion, and at minimum, meets the requirements of (d)(3)(i).                                                                                                       | The final cover will consist of a minimum 18" earthen material layer with permeability equal to or less than the permeability of the natural subsoils or no greater than 1x10 <sup>-5</sup> cm/sec, whichever is less. Therefore, the permeability of the final cover system will be not greater than 1x10 <sup>-5</sup> cm/sec. Erosion will be minimized with a soil layer of no less than 6" of earthen material capable of sustaining native plant growth. The final cover surface will be seeded and vegetated. |
| (d)(3)(i) – The design of the final cover system must be included in the written closure plan.                                                                                                                                                   | When the design of the final cover system is completed, the written closure plan will be amended if the final design would substantially change this written closure plan. The design of the final cover system will meet the requirements of §(d)(3)(i)(A)–(D) as described below.                                                                                                                                                                                                                                  |
| (d)(3)(i)(A) – The permeability of the final cover system must be less than or equal to the permeability of any bottom liner system or natural subsoils present, or a permeability no greater than $1 \times 10^{-5}$ cm/sec, whichever is less. | The permeability of the final cover will be equal to or less than the permeability of the natural subsoils or no greater than 1x10 <sup>-5</sup> cm/sec, whichever is less. Therefore, the permeability of the final cover system will be not greater than 1x10 <sup>-5</sup> cm/sec.                                                                                                                                                                                                                                |
| (d)(3)(i)(B) — The infiltration of liquids through the closed CCR unit must<br>be minimized by the use of an infiltration layer than contains a minimum<br>of 18 inches of earthen material.                                                     | The final cover will include a minimum 18" of compacted earthen material with a permeability equal to or less than the permeability of the natural subsoils or no greater than 1x10 <sup>-5</sup> cm/sec, whichever is less. Therefore, the permeability of the final cover system will be not greater than 1x10 <sup>-5</sup> cm/sec.                                                                                                                                                                               |
| (d)(3)(i)(C) – The erosion of the final cover system must be minimized by the use of an erosion layer that contains a minimum of six inches of earthen material that is capable of sustaining native plant growth.                               | The final cover will include a minimum 6" of an earthen erosion layer that is capable of sustaining native plant growth. The final cover will be seeded and vegetated.                                                                                                                                                                                                                                                                                                                                               |
| (d)(3)(i)(D) – The disruption of the integrity of the final cover system must be minimized through a design that accommodates settling and subsidence.                                                                                           | The final cover will be installed with a minimum 2% slope and will incorporate calculated settlement as well as differential settling and subsidence.                                                                                                                                                                                                                                                                                                                                                                |

| INVENTORY AND AREA ESTIMATES                                                                            |                        |
|---------------------------------------------------------------------------------------------------------|------------------------|
| (b)(1)(iv) – Estimate of the maximum inventory of CCR ever on-site over the active life of the CCR unit | 39,790,000 cubic yards |
| (b)(1)(v) – Estimate of the largest area of the CCR unit ever requiring a final cover                   | 404 acres              |

### **CLOSURE SCHEDULE**

(b)(1)(vi) – Schedule for completing all activities necessary to satisfy the closure criteria in this section, including an estimate of the year in which all closure activities for the CCR unit will be completed. The schedule should provide sufficient information to describe the sequential steps that will be taken to close the CCR unit, including major milestones and the estimated timeframes to complete each step or phase of CCR unit closure.

The milestone and the associated timeframes are initial estimates. Some of the activities associated with the milestones will overlap. Amendments to the milestones and timeframes will be made as more information becomes available.

| Written Closure Plan                                                                                                                                     | October 17, 2016                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Notification of Intent to Close Placed in Operating Record                                                                                               | No later than the date closure of the CCR unit is initiated. Closure to commence in accordance with the applicable timeframes in 40 CFR 257.102(e). |
| <ul> <li>Agency coordination and permit acquisition</li> <li>Coordinating with state agencies for compliance</li> <li>Acquiring state permits</li> </ul> | Year 1 – 5 (estimated) Year 1 (estimated)                                                                                                           |
| Mobilization                                                                                                                                             | Year 1 (estimated)                                                                                                                                  |
| Dewater and stabilize CCR  Complete dewatering, as necessary Complete stabilization of CCR                                                               | Year 2 (estimated) Year 2 (estimated)                                                                                                               |
| Grading     Grading of CCR material in pond to facilitate surface water drainage                                                                         | Year 2 - 5 (estimated)                                                                                                                              |
| Installation of final cover                                                                                                                              | Year 2 - 5 (estimated)                                                                                                                              |
| Estimate of Year in which all closure activities will be completed                                                                                       | Year 5                                                                                                                                              |

### **AMENDMENT AND CERTIFICATION**

(b)(3)(i) – The owner or operator may amend the initial or any subsequent written closure plan developed pursuant to 257.102(b)(1) at any time.

(b)(3)(ii) – The owner or operator must amend the written closure plan whenever: (A) There is a change in the operation of the CCR unit that would substantially affect the written closure plan in effect; or (B) Before or after closure activities have commenced, unanticipated events necessitate a revision of the written closure plan.

(b)(3)(iii) – The owner or operator must amend the closure plan at least 60 days prior to a planned change in the operation of the facility or CCR unit, or no later than 60 days after an unanticipated event requires the need to revise an existing written closure plan. If a written closure plan is revised after closure activities have commenced for a CCR unit, the owner or operator must amend the current closure plan no later than 30 days following the triggering event.

(b)(4) – The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer that the initial and any amendment of the written closure plan meets the requirements of this 40 CFR 257.102.

This initial closure plan will be amended as required by 257.102(b)(3) and, as allowed by 257.102(b)(3), may be amended at any time, including as more information becomes available.

Certification by a qualified professional engineer will be appended to this plan.

Certification Statement 40 CFR § 257.102 (d)(3)(iii) – Design of the Final Cover System for a CCR Surface Impoundment

CCR Unit: Illinois Power Generating Company; Newton Power Station; Primary Ash Pond

I, Victor Modeer, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify, to the best of my knowledge, information, and belief, that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the design of the final cover system as included in the initial written closure plan, dated October 17, 2016 meets the requirements of 40 CFR § 257.102.

Victor Modeer, PE, D.GE

Printed Name

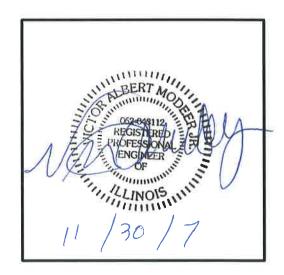
Date



Certification Statement 40 CFR § 257.102 (b)(4) – Initial Written Closure Plan for a CCR Surface Impoundment

CCR Unit: Illinois Power Generating Company; Newton Power Station; Primary Ash Pond

I, Victor Modeer, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify, to the best of my knowledge, information, and belief, that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the initial written closure plan, dated October 17, 2016, meets the requirements of 40 CFR § 257.102.


| Victor | Modeer. | DE  | D GE |  |
|--------|---------|-----|------|--|
| victor | wodeer. | PF. | D.GE |  |

----

**Printed Name** 

10/11/16

Date





40 C.F.R. § 257.102(B)(3): Closure Plan Addendum Newton Primary Ash Pond September 29, 2020

# **ADDENDUM NO. 1 NEWTON PRIMARY ASH POND CLOSURE PLAN**

This Addendum No. 1 to the Closure Plan for Existing Coal Combustion Residuals (CCR) Impoundment for the Newton Primary Ash Pond at the Newton Power Station, Revision 0 - October 17, 2016 has been prepared to meet the requirements of Title 40 of the Code of Federal Regulations (40 C.F.R.) Section 257.103(f)(2)(v)(D) as a component of the demonstration that the Newton Primary Ash Pond qualifies for a site-specific alternative deadline to initiate closure due to permanent cessation of a coal-fired boiler by a certain date.

The Newton Primary Ash Pond will begin construction of closure by July 17, 2024 and cease receipt and placement of CCR and non-CCR wastestreams no later than July 17, 2027 as indicated in the Newton Power Station Alternative Closure Demonstration dated September 29, 2020. Closure will be completed by October 17, 2028 within the 5-year timeframe included in the Closure Schedule identified in the Newton Primary Ash Pond Closure Plan in accordance with 40 C.F.R. § 257.102(f)(ii).

All other aspects of the Closure Plan remain unchanged.

### **CERTIFICATION**

I, Eric J. Tlachac, a Qualified Professional Engineer in good standing in the State of Illinois, certify that the information in this addendum is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein. ERIC J. TLACHAC 062-063091

Eric J. Tlachac

Qualified Professional Engineer

062-063091

Illinois

Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc.

Date: September 29, 2020



CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 •• 816-333-9400 •• 816-333-3690 •• www.burnsmcd.com