CONTENTS

EXECUTIVE SUMMARY

1. Introduction

2. Monitoring and Corrective Action Program Status

3. Key Actions Completed in 2019

4. Problems Encountered and Actions to Resolve the Problems

5. Key Activities Planned for 2020

6. References

TABLES

Table A 2018-2019 Assessment Monitoring Program Summary (in text)

Table 1 2019 Analytical Results – Groundwater Elevation and Appendix III Parameters

Table 2 2019 Analytical Results – Appendix IV Parameters

Table 3 Statistical Background Values

Table 4 Groundwater Protection Standards

FIGURES

Figure 1 Monitoring Well Location Map

APPENDICES

Appendix A Alternate Source Demonstrations
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP1</td>
<td>Ash Pond No. 1</td>
</tr>
<tr>
<td>ASD</td>
<td>Alternate Source Demonstration</td>
</tr>
<tr>
<td>CCR</td>
<td>Coal Combustion Residuals</td>
</tr>
<tr>
<td>GWPS</td>
<td>Groundwater Protection Standard</td>
</tr>
<tr>
<td>SSL</td>
<td>Statistically Significant Level</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

This report has been prepared to provide the information required by Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.90(e) for the Coffeen Ash Pond No. 1 (AP1) located at Coffeen Power Station near Coffeen, Illinois.

Groundwater is being monitored at Coffeen AP1 in accordance with the Assessment Monitoring Program requirements specified in 40 C.F.R. § 257.95.

No changes were made to the monitoring system in 2019 (no wells were installed or decommissioned).

The following Statistically Significant Levels (SSLs) of 40 C.F.R. Part 257 Appendix IV parameters were determined during one or more sampling events in 2019:

- Cobalt at well G307

Alternate Source Demonstrations (ASDs) were completed for the SSLs referenced above and Coffeen AP1 remains in the Assessment Monitoring Program.
1. **INTRODUCTION**

This report has been prepared by Ramboll on behalf of Illinois Power Generating Company, to provide the information required by 40 C.F.R.§ 257.90(e) for the Coffeen AP1 located at Coffeen Power Station near Coffeen, Illinois.

In accordance with 40 C.F.R. § 257.90(e), the owner or operator of a Coal Combustion Residues (CCR) unit must prepare an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year that documents the status of the Groundwater Monitoring and Corrective Action Program for the CCR unit, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and projects key activities for the upcoming year. At a minimum, the Annual Report must contain the following information, to the extent available:

1. A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit.

2. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.

3. In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the Detection Monitoring or Assessment Monitoring Programs.

4. A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from Detection Monitoring to Assessment Monitoring in addition to identifying the constituent(s) detected at a Statistically Significant Increase relative to background levels).

5. Other information required to be included in the Annual Report as specified in §§ 257.90 through 257.98.

This report provides the required information for the Coffeen AP1 for calendar year 2019.
2. MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

No changes have occurred to the Monitoring Program status in calendar year 2019, and Coffeen AP1 remains in the Assessment Monitoring Program in accordance with 40 C.F.R. § 257.95.
3. **KEY ACTIONS COMPLETED IN 2019**

The Assessment Monitoring Program is summarized in Table A. The groundwater monitoring system, including the CCR unit and all background and downgradient monitoring wells is presented in Figure 1. No changes were made to the monitoring system in 2019 (no wells were installed or decommissioned). In general, one groundwater sample was collected from each background and downgradient well during each monitoring event. All samples were collected and analyzed in accordance with the Sampling and Analysis Plan (NRT/OBG, 2017a). All monitoring data obtained under 40 C.F.R. §§ 257.90 through 257.98 (as applicable) in 2019 are presented in Tables 1 and 2. Analytical data were evaluated in accordance with the Statistical Analysis Plan (NRT/OBG, 2017b) to determine any SSLs of Appendix IV parameters over Groundwater Protection Standards (GWPSs).

Statistical background values are provided in Table 3 and GWPSs in Table 4.

Analytical results for the May and August 2018 sampling events were provided in the 2018 Annual Groundwater Monitoring and Corrective Action Report.

Potential alternate sources were evaluated as outlined in the 40 C.F.R. § 257.95(g)(3)(ii). ASDs were completed and certified by a qualified professional engineer. The dates the ASDs were completed are provided in Table A. The ASDs completed in 2019 are included in Appendix A.

1 Exceptions include:
 * G307 was not sampled during the January 23, 2019 sampling event for the reasons presented in Section 4
Table A – 2018-2019 Assessment Monitoring Program Summary

<table>
<thead>
<tr>
<th>Sampling Dates</th>
<th>Analytical Data Receipt Date</th>
<th>Parameters Collected</th>
<th>SSL(s)</th>
<th>SSL(s) Determination Date</th>
<th>ASD Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 11, 14, and 30, 2018</td>
<td>July 16, 2018</td>
<td>Appendix III Appendix IV</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>August 3, 2018</td>
<td>October 8, 2018</td>
<td>Appendix III Appendix IV Detected ¹</td>
<td>Cobalt (G307)</td>
<td>January 7, 2019</td>
<td>April 8, 2019</td>
</tr>
<tr>
<td>January 23, 2019</td>
<td>April 15, 2019</td>
<td>Appendix III Appendix IV</td>
<td>Cobalt (G307)</td>
<td>July 15, 2019</td>
<td>October 14, 2019</td>
</tr>
<tr>
<td>August 13-19, 2019</td>
<td>October 15, 2019</td>
<td>Appendix III Appendix IV Detected ¹</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Notes:
NA: Not Applicable
TBD: To Be Determined

¹ Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 C.F.R. § 257.95(d)(1).
4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

Well G307 was frozen during the January 2019 sampling event (A2); therefore, it was not sampled. A packer was placed inside the well to reduce the likelihood of freezing during future monitoring events.
5. **KEY ACTIVITIES PLANNED FOR 2020**

The following key activities are planned for 2020:

- Continuation of the Assessment Monitoring Program with semi-annual sampling scheduled for the first and third quarters of 2020.
- Complete evaluation of analytical data from the downgradient wells, using GWPSs to determine whether an SSL of Appendix IV parameters has occurred.
- If an SSL is identified, potential alternate sources (i.e., a source other than the CCR unit caused the SSL or that SSL resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated.
 - If an alternate source is demonstrated to be the cause of the SSL, a written demonstration will be completed within 90 days of SSL determination and included in the 2020 Annual Groundwater Monitoring and Corrective Action Report.
 - If an alternate source(s) is not identified to be the cause of the SSL, the applicable requirements of 40 C.F.R. §§ 257.94 through 257.98 (e.g., assessment of corrective measures) as may apply in 2020 will be met, including associated recordkeeping/notifications required by 40 C.F.R. §§ 257.105 through 257.108.
6. REFERENCES

TABLE 1.
2019 ANALYTICAL RESULTS - GROUNDWATER ELEVATION AND APPENDIX III PARAMETERS
2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

COFFEEN POWER STATION
UNIT ID 101 - COFFEEN ASH POND NO. 1
COFFEEN, ILLINOIS
ASSESSMENT MONITORING PROGRAM

<table>
<thead>
<tr>
<th>Well Identification Number</th>
<th>Latitude (Decimal Degrees)</th>
<th>Longitude (Decimal Degrees)</th>
<th>Date & Time Sampled</th>
<th>Depth to Groundwater (ft)</th>
<th>Groundwater Elevation (ft NAVD88)</th>
<th>Boron, total (mg/L)</th>
<th>Calcium, total (mg/L)</th>
<th>Chloride, total (mg/L)</th>
<th>Fluoride, total (mg/L)</th>
<th>pH (field) (S.U.)</th>
<th>Sulfate, total (mg/L)</th>
<th>Total Dissolved Solids (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G281</td>
<td>39.065405</td>
<td>-89.399322</td>
<td>1/23/2019 12:16</td>
<td>8.17</td>
<td>618.19</td>
<td>0.013</td>
<td>130</td>
<td>85</td>
<td>0.299</td>
<td>7.0</td>
<td>380</td>
<td>880</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/13/2019 13:29</td>
<td>6.20</td>
<td>620.16</td>
<td><0.010</td>
<td>140</td>
<td>72</td>
<td>0.546</td>
<td>6.9</td>
<td>310</td>
<td>900</td>
</tr>
<tr>
<td>G306</td>
<td>39.056494</td>
<td>-89.39356162</td>
<td>1/23/2019 17:29</td>
<td>7.35</td>
<td>618.37</td>
<td>2.4</td>
<td>170</td>
<td>4.1</td>
<td>0.269</td>
<td>7.0</td>
<td>250</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/19/2019 13:19</td>
<td>6.73</td>
<td>618.99</td>
<td>2.5</td>
<td>160</td>
<td>4.4</td>
<td>0.413</td>
<td>7.0</td>
<td>260</td>
<td>780</td>
</tr>
</tbody>
</table>

Background / Upgradient Monitoring Wells

<table>
<thead>
<tr>
<th>Well Identification Number</th>
<th>Latitude (Decimal Degrees)</th>
<th>Longitude (Decimal Degrees)</th>
<th>Date & Time Sampled</th>
<th>Depth to Groundwater (ft)</th>
<th>Groundwater Elevation (ft NAVD88)</th>
<th>Boron, total (mg/L)</th>
<th>Calcium, total (mg/L)</th>
<th>Chloride, total (mg/L)</th>
<th>Fluoride, total (mg/L)</th>
<th>pH (field) (S.U.)</th>
<th>Sulfate, total (mg/L)</th>
<th>Total Dissolved Solids (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G301</td>
<td>39.059502</td>
<td>-89.395415</td>
<td>1/23/2019 14:29</td>
<td>9.42</td>
<td>613.23</td>
<td>2.1</td>
<td>170</td>
<td>21</td>
<td>0.272</td>
<td>7.0</td>
<td>850</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/19/2019 10:50</td>
<td>8.83</td>
<td>613.82</td>
<td>2.0</td>
<td>110</td>
<td>12</td>
<td>0.351</td>
<td>6.9</td>
<td>570</td>
<td>950</td>
</tr>
<tr>
<td>G302</td>
<td>39.059537</td>
<td>-89.393192</td>
<td>1/23/2019 15:33</td>
<td>12.75</td>
<td>607.29</td>
<td>1.9</td>
<td>210</td>
<td>20</td>
<td>0.267</td>
<td>7.0</td>
<td>500</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/19/2019 11:35</td>
<td>10.09</td>
<td>609.95</td>
<td>1.8</td>
<td>120</td>
<td>5.9</td>
<td>0.381</td>
<td>7.0</td>
<td>280</td>
<td>800</td>
</tr>
<tr>
<td>G303</td>
<td>39.057137</td>
<td>-89.39172</td>
<td>1/23/2019 16:38</td>
<td>7.69</td>
<td>614.33</td>
<td>1.8</td>
<td>190</td>
<td>30</td>
<td>0.300</td>
<td>7.0</td>
<td>760</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/19/2019 12:32</td>
<td>4.65</td>
<td>617.37</td>
<td>1.8</td>
<td>190</td>
<td>32</td>
<td>0.334</td>
<td>7.0</td>
<td>730</td>
<td>1700</td>
</tr>
<tr>
<td>G307</td>
<td>39.057205</td>
<td>-89.395663</td>
<td>1/23/2019 NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/19/2019 14:10</td>
<td>0.39</td>
<td>624.33</td>
<td>2.1</td>
<td>280</td>
<td>18</td>
<td>1.37</td>
<td>7.0</td>
<td>1100</td>
<td>1600</td>
</tr>
</tbody>
</table>

Notes:
- 40 C.F.R. = Title 40 of the Code of Federal Regulations
- ft = foot/feet
- mg/L = milligrams per liter
- NS = Not Sampled
- NAVD88 = North American Vertical Datum of 1988
- S.U. = Standard Units
- < = concentration is less than the concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine Statistically Significant Increases (SSIs) over background.
- All depths to groundwater were measured on the first day of the sampling event.
- 4-digit numbers represent SW-846 analytical methods.
TABLE 2.
2019 ANALYTICAL RESULTS - APPENDIX IV PARAMETERS

2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

COFFEEN POWER STATION
UNIT ID 101 - COFFEEN ASH POND NO. 1
COFFEEN, ILLINOIS
ASSESSMENT MONITORING PROGRAM

<table>
<thead>
<tr>
<th>Well Identification Number</th>
<th>Latitude (Decimal Degrees)</th>
<th>Longitude (Decimal Degrees)</th>
<th>Date & Time Sampled</th>
<th>Antimony, total (mg/L)</th>
<th>Arsenic, total (mg/L)</th>
<th>Barium, total (mg/L)</th>
<th>Beryllium, total (mg/L)</th>
<th>Cadmium, total (mg/L)</th>
<th>Chromium, total (mg/L)</th>
<th>Cobalt, total (mg/L)</th>
<th>Fluoride, total (mg/L)</th>
<th>Lead, total (mg/L)</th>
<th>Lithium, total (mg/L)</th>
<th>Mercury, total (mg/L)</th>
<th>Molybdenum, total (mg/L)</th>
<th>Radium 226/228, Combined (pCi/L)</th>
<th>Selenium, total (mg/L)</th>
<th>Thallium, total (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G281</td>
<td>39.056505</td>
<td>-89.399322</td>
<td>1/23/2019 12:16</td>
<td><0.0030</td>
<td><0.0010</td>
<td>0.0720</td>
<td><0.0010</td>
<td><0.0010</td>
<td><0.0040</td>
<td>0.299</td>
<td><0.0010</td>
<td><0.01</td>
<td><0.0010</td>
<td><0.0010</td>
<td>0.332</td>
<td><0.0010</td>
<td><0.0010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/13/2019 13:29</td>
<td>NA</td>
<td>0.0015</td>
<td>0.091</td>
<td><0.0010</td>
<td><0.0010</td>
<td>0.0048</td>
<td><0.0020</td>
<td>0.546</td>
<td>0.0016</td>
<td>0.014</td>
<td>NA</td>
<td><0.0010</td>
<td>0.879</td>
<td><0.0010</td>
<td></td>
</tr>
<tr>
<td>G308</td>
<td>39.056494</td>
<td>-89.39935612</td>
<td>1/23/2019 17:29</td>
<td><0.0030</td>
<td>0.020</td>
<td>0.0013</td>
<td><0.0010</td>
<td>0.013</td>
<td>0.020</td>
<td>0.269</td>
<td>0.028</td>
<td>0.036</td>
<td><0.0020</td>
<td>0.037</td>
<td>2.61</td>
<td>0.0028</td>
<td><0.0010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/19/2019 13:55</td>
<td>NA</td>
<td>0.0025</td>
<td>0.088</td>
<td><0.0010</td>
<td>0.013</td>
<td>0.0004</td>
<td>0.413</td>
<td>0.031</td>
<td>0.015</td>
<td>NA</td>
<td>0.0016</td>
<td>0.533</td>
<td><0.0010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G301</td>
<td>39.059502</td>
<td>-89.399415</td>
<td>1/23/2019 14:20</td>
<td><0.0030</td>
<td>0.0045</td>
<td>0.11</td>
<td><0.0010</td>
<td><0.0010</td>
<td>0.017</td>
<td>0.0034</td>
<td>0.272</td>
<td>0.0066</td>
<td>0.015</td>
<td>NA</td>
<td><0.0010</td>
<td>0.943</td>
<td><0.0010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/19/2019 10:52</td>
<td>NA</td>
<td><0.0010</td>
<td>0.020</td>
<td><0.0010</td>
<td><0.0010</td>
<td>0.0040</td>
<td><0.0020</td>
<td>0.351</td>
<td><0.0010</td>
<td>0.014</td>
<td>NA</td>
<td><0.0010</td>
<td>1.60</td>
<td><0.0010</td>
<td></td>
</tr>
<tr>
<td>G302</td>
<td>39.059537</td>
<td>-89.399319</td>
<td>1/23/2019 15:35</td>
<td><0.0030</td>
<td>0.013</td>
<td>0.005</td>
<td><0.0010</td>
<td><0.0010</td>
<td>0.019</td>
<td>0.0084</td>
<td>0.267</td>
<td>0.011</td>
<td>0.028</td>
<td>NA</td>
<td><0.0010</td>
<td>2.92</td>
<td>0.0011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/19/2019 11:35</td>
<td>NA</td>
<td><0.0010</td>
<td>0.028</td>
<td><0.0010</td>
<td><0.0010</td>
<td>0.0040</td>
<td><0.0020</td>
<td>0.381</td>
<td><0.0010</td>
<td>0.020</td>
<td>NA</td>
<td><0.0010</td>
<td>1.80</td>
<td><0.0010</td>
<td></td>
</tr>
<tr>
<td>G303</td>
<td>39.057137</td>
<td>-89.39172</td>
<td>1/23/2019 16:38</td>
<td><0.0030</td>
<td>0.0031</td>
<td>0.015</td>
<td><0.0010</td>
<td><0.0010</td>
<td>0.0040</td>
<td><0.0020</td>
<td>0.300</td>
<td><0.0010</td>
<td>0.033</td>
<td>NA</td>
<td><0.0010</td>
<td>0.884</td>
<td><0.0010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/19/2019 12:32</td>
<td>NA</td>
<td>0.0036</td>
<td>0.016</td>
<td><0.0010</td>
<td><0.0010</td>
<td>0.0045</td>
<td>0.0024</td>
<td>0.334</td>
<td><0.0010</td>
<td>0.058</td>
<td>NA</td>
<td>0.0021</td>
<td>1.14</td>
<td><0.0010</td>
<td></td>
</tr>
<tr>
<td>G307</td>
<td>39.057205</td>
<td>-89.395663</td>
<td>1/23/2019 14:17</td>
<td>NA</td>
<td>0.0049</td>
<td>0.1100</td>
<td><0.0010</td>
<td><0.0010</td>
<td>0.027</td>
<td>0.0035</td>
<td>1.37</td>
<td>0.010</td>
<td>0.030</td>
<td>NA</td>
<td>0.0020</td>
<td>1.06</td>
<td><0.0012</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- 40 C.F.R. = Title 40 of the Code of Federal Regulations
- mg/L = milligrams per liter
- NA = Not Analyzed
- NS = Not Sampled
- pCi/L = picoCuries per liter
- < = concentration is less than concentration shown, which corresponds to the reporting limit for the method; estimated concentrations below the reporting limit and associated qualifiers are not provided since not utilized in statistics to determine Statistically Significant Levels (SSLs) over Groundwater Protection Standards.
- 4-digit numbers represent SW-846 analytical methods and 3 digit numbers represent Clean Water Act analytical methods.
- Only the parameters detected during the previous sampling events were analyzed during this sampling event, in accordance with 40 C.F.R. § 257.95(c)(1).
TABLE 3
STATISTICAL BACKGROUND VALUES
2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT
COFFEEN POWER STATION
UNIT ID 101 - ASH POND NO. 1
COFFEEN, ILLINOIS
ASSESSMENT MONITORING PROGRAM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Statistical Background Value (UPL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 C.F.R. Part 257 Appendix III</td>
<td></td>
</tr>
<tr>
<td>Boron (mg/L)</td>
<td>2.90</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>151</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>75</td>
</tr>
<tr>
<td>Fluoride (mg/L)</td>
<td>0.459</td>
</tr>
<tr>
<td>pH (S.U.)</td>
<td>6.5 / 7.1</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>700</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>884</td>
</tr>
</tbody>
</table>

[O: KLP 12/11/19, C: RAB 12/12/19]

Notes:
40 C.F.R. = Title 40 of the Code of Federal Regulations
mg/L = milligrams per liter
S.U. = Standard Units
UPL = Upper Prediction Limit
TABLE 4.
GROUNDWATER PROTECTION STANDARDS
2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT
COFFEEN POWER STATION
UNIT ID 101 - ASH POND NO. 1
COFFEEN, ILLINOIS
ASSESSMENT MONITORING PROGRAM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Groundwater Protection Standard¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony (mg/L)</td>
<td>0.006</td>
</tr>
<tr>
<td>Arsenic (mg/L)</td>
<td>0.010</td>
</tr>
<tr>
<td>Barium (mg/L)</td>
<td>2</td>
</tr>
<tr>
<td>Beryllium (mg/L)</td>
<td>0.004</td>
</tr>
<tr>
<td>Cadmium (mg/L)</td>
<td>0.005</td>
</tr>
<tr>
<td>Chromium (mg/L)</td>
<td>0.10</td>
</tr>
<tr>
<td>Cobalt (mg/L)</td>
<td>0.006</td>
</tr>
<tr>
<td>Fluoride (mg/L)</td>
<td>4</td>
</tr>
<tr>
<td>Lead (mg/L)</td>
<td>0.015</td>
</tr>
<tr>
<td>Lithium (mg/L)</td>
<td>0.040</td>
</tr>
<tr>
<td>Mercury (mg/L)</td>
<td>0.002</td>
</tr>
<tr>
<td>Molybdenum (mg/L)</td>
<td>0.10</td>
</tr>
<tr>
<td>Radium 226+228 (pCi/L)</td>
<td>5</td>
</tr>
<tr>
<td>Selenium (mg/L)</td>
<td>0.05</td>
</tr>
<tr>
<td>Thallium (mg/L)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

[O: KLT 12/11/19, C: RAB 12/12/19]

Notes:
40 C.F.R. = Title 40 of the Code of Federal Regulations
mg/L = milligrams per liter
pCi/L = picoCuries per liter
¹Groundwater Protection Standard is the higher of the Maximum Contaminant Level / Health-Based Level or background.
MONITORING WELL LOCATION MAP

COFFEEN ASH POND NO. 1
UNIT ID: 101

UPGRADIENT MONITORING WELL LOCATION
DOWNGRADIENT MONITORING WELL LOCATION
BACKGROUND MONITORING WELL LOCATION
CCR MONITORED UNIT

2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT
VISTRA CCR RULE GROUNDWATER MONITORING
COFFEEN POWER STATION
COFFEEN, ILLINOIS

FIGURE 1
APPENDIX A
ALTERNATE SOURCE DEMONSTRATIONS
40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION
COFFEEN ASH POND NO. 1
APRIL 8, 2019
April 8, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Levels (SSLs) over groundwater protection standards of groundwater constituents listed in Appendix IV of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration[ASD]).

This ASD has been prepared on behalf of Dynegy Midwest Generation, LLC (DMG), by OBG, part of Ramboll (OBG) to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for the Coffeen Ash Pond No. 1 (AP1), located near Coffeen, Illinois.

Initial background groundwater monitoring, consisting of a minimum of eight samples, as required under 40 C.F.R. § 257.94(b), was initiated in December 2015 and completed prior to October 17, 2017. Comparison of background groundwater quality with concentrations of parameters in downgradient monitoring wells, observed during the November 2017 Detection Monitoring Program sampling event, identified a statistically significant increase (SSI) for one or more 40 C.F.R. Part 257 Appendix III parameters at AP1. Consequently, and in accordance with 40 C.F.R. § 257.94(e), an assessment monitoring program, in accordance with 40 C.F.R. § 257.95, was established by April 9, 2018, for AP1.

The first Assessment Monitoring sampling event was completed on May 29, 2018. In accordance with 40 C.F.R. § 257.95(d)(1), all wells were resampled on August 3, 2018, for all Appendix III parameters and Appendix IV parameters detected during the first Assessment Monitoring sampling event. Analytical data from the resampling event was evaluated in accordance with the statistical analysis plan \(^1\) to determine any SSIs of Appendix III parameters over background concentrations or statistically significant levels (SSLs) of Appendix IV parameters over Groundwater Protection Standards (GWPSs). That evaluation identified SSLs at downgradient monitoring wells as follows:

- Cobalt at well G304/G307

G304 was replaced by G307 in July 2016; G307 is screened in the same geologic, unit and at a similar elevation, as G304. Data for samples collected from G304 from 2015-2016 is pooled for statistical purposes with data for samples collected subsequently from G307.

Pursuant to 40 C.F.R. § 257.95(g)(3)(ii), the following demonstrates that sources other than the AP1 were the cause of the SSL listed above. This alternate source demonstration (ASD) was completed within 90 days of determination of the SSLs (January 9, 2019), as required by 40 C.F.R. § 257.95(g)(3)(ii).

ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

This ASD is based on the following lines of evidence (LOE):

1. Cobalt is absent from AP1 source water.
2. AP1 is in close proximity to historic coal mining activity for Herrin (No. 6) Coal, which contains cobalt

These lines of evidence are described and supported in greater detail below. Monitoring wells and source water sample locations are shown in Attachment A.

LOE #1: COBALT IS ABSENT FROM AP1 SOURCE WATER.

Cobalt was not detected in source water samples from AP1, collected from multiple pond surface water locations (Attachment A). A time series for cobalt concentrations is provided in Figure 1.

Figure 1. Time series showing cobalt concentrations in G307 compared to source water from AP1.

The following observations can be made from Figure 1:

- Cobalt was not detected in source water samples from AP1.
- Groundwater from background well G281 and upgradient well G306 has detections of cobalt (between 0.0023 and 0.02 mg/L) during multiple groundwater monitoring events.

For AP1 to be the source of cobalt in groundwater, cobalt would have to be present in AP1 source water, specifically at concentrations greater than those detected in the groundwater. Therefore, AP1 is not the source of the cobalt observed in groundwater, including G304/G307. Cobalt was also detected in background well G281 and upgradient well G306, indicating that cobalt concentrations are either naturally occurring due to geochemical variations within the Uppermost Aquifer or from upgradient anthropogenic sources.
LOE #2: AP1 IS IN CLOSE PROXIMITY TO HISTORIC COAL MINING ACTIVITY FOR HERRIN (NO. 6) COAL WHICH CONTAINS COBALT.

The area below and surrounding AP1 is associated with mined and unmined Herrin (No. 6) Coal, which was in production through 1983. Coal was mined at depths of approximately 500 feet below ground surface. The extent of the surrounding mine, and its associated features, are shown in Attachment B. Two shafts associated with the mine were located in close proximity to SSL well G304/G307 and background well G306.

Historic aerials are suggestive of coal storage in close proximity to G305, G306, and G307 (Figure 2), and upgradient of G307 with regard to groundwater flow (Figure 3). Small amounts of coal were observed to be mixed within the upper layers of soil in the boring for G306; associated boring logs are provided in Attachment C.

Figure 2. An aerial photograph from April 2005\(^2\) shows potential coal storage near G307 and G306, and a mine shaft (black box) near G305. Groundwater generally flows from the southwest to the northeast across AP1.

A review by the Illinois State Geological Survey (ISGS) of coal quality in Montgomery County near AP1 indicated the presence of cobalt within the Herrin (No. 6) Coal at concentrations between 1.4 and 7.0 ppm\(^3\). Background well G306, for which small amounts of coal were observed in the associated soil boring, has demonstrated

elevated concentrations of cobalt. Background well G281, which is the monitoring well farthest outside of the historic coal mine footprint buffer, has the lowest detections of cobalt of AP1 monitoring wells.

Analytical samples collected by ISGS from Montgomery County also indicate a greater sulfur content in the Herrin (No. 6) Coal (median 4.6%), which is considered a medium- to high-sulfur coal (3-5%). A study of groundwater quality near surface coal mines, performed by the U.S. Geological Survey (USGS) provides data on the effects of mines on groundwater quality. The study used Piper diagrams to evaluate regional differences in major ion composition of groundwater in areas mined for high-sulfur coal and unmined areas. Groundwater samples collected from wells downgradient of the reclaimed mine areas evaluated in the study have a broad range of carbonate-bicarbonate anions, as well as moderate to high concentrations of calcium cations in high-sulfur coal regions. Groundwater samples collected from AP1 monitoring wells reflect a broad distribution of carbonate-bicarbonate anions and moderate concentrations of calcium cations, similar to those from the USGS study. Piper diagrams in Figures 4 and 5 present this graphically.

![Piper diagram showing ionic composition of groundwater at AP1.](image)

Figure 5. Piper diagram showing ionic composition of groundwater downgradient of reclaimed surface coal mines in high-sulfur coal regions (modified from USGS).

State of Illinois groundwater quality regulations (Illinois Administrative Code [IAC] Title 35 Part 620 Groundwater Quality) acknowledge that water quality is adversely affected in areas where coal mining activity has occurred, which are consistent with water quality exceedances at G307.

The absence of cobalt in the AP1 surface water, combined with the presence of cobalt in Herrin (No. 6) Coal, suggests that cobalt concentrations in AP1 monitoring wells are influenced by the surrounding coal mines and associated mining activity (e.g., storage on the ground surface).

Based on these two lines of evidence, it has been demonstrated that Coffeen Ash Pond No. 1 has not caused the SSL in G307.

This information serves as the written alternate source demonstration prepared in accordance with 40 C.F.R. § 257.95(g)(3)(ii) that the SSL observed during the assessment monitoring program was not due to the CCR unit, but was from a combination of naturally-occurring conditions and potential upgradient anthropogenic impacts. Therefore, a corrective measures assessment is not required and AP1 will remain in assessment monitoring.

Attachments:
- Figure 3 Groundwater Elevation Contour Map
- Attachment A Sample Location Map
- Attachment B Herrin (No. 6) Coal Mine Extent Map
- Attachment C G305 and G306 Boring Logs
I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac
Qualified Professional Engineer
062-063091
Illinois
O’Brien & Gere Engineers, Inc., part of Ramboll
Date: April 8, 2019

I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano
Professional Geologist
196-000750
O’Brien & Gere Engineers, Inc., part of Ramboll
Date: April 8, 2019
40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION
COFFEEN ASH POND 1

Figures
Attachment A
Sample Location Map
Attachment B

Herrin (No. 6) Coal Mine
Extent Map
GMF RECYCLE POND

ASH POND NO. 2

ASH POND NO. 1

G281

G301

G302

G307

G303

G306

NOTE:
COAL MINE EXTENTS DISPLAYED ARE SOURCED FROM ISGS PRAIRIE RESEARCH INSTITUTE ILMINE MAP

HERRIN COAL MINE EXTENT MAP

40 CFR § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION

COFFEEN ASH POND NO. 1

COFFEEN POWER STATION

COFFEEN, ILLINOIS

O'BRIEN & GERE ENGINEERS, INC.
Attachment C
G305 and G306 Boring Logs
Lithologic Description

- **Fill**: Grayish brown (10YR5/2), moist, soft, silty clay with few small to coarse sand and few small to large gravel.
- **Fill**: Black (10YR2/1), moist, loose, silty, fine- to coarse-grained sand with little coal fragments.
- **Gray (10YR6/1)** and light yellowish brown (10YR6/4), moist, very stiff, silty sand with little clay.
- **Gray (10YR5/1)** with 30% dark yellowish brown (10YR4/6) mottles, moist, very stiff, silty clay with trace very fine-grained sand.
- **Gray (10YR5/1)** with 30% dark yellowish brown (10YR4/6) mottles, moist, stiff, silty clay with trace very fine- to coarse-grained sand.
- **Dark gray (10YR4/1)** with 25% dark yellowish brown (10YR4/6) mottles, moist, very stiff, silty clay with few fine- to coarse-grained sand and trace small gravel.
- **Gray (10YR5/1)** with 35% dark yellowish brown (10YR4/6) mottles, moist, very stiff, silty clay with few fine- to coarse-grained sand and trace small gravel.
- **Yellowish brown (10YR5/8)** with 15% gray (10YR5/1) mottles, moist, very stiff, silty clay with few fine- to coarse-grained sand and trace small gravel.
- **Gray (10YR5/1)** with 15% yellowish brown (10YR5/6) mottles, moist, stiff, silty clay with little fine- to coarse-grained sand and trace small gravel.
- **Gray (10YR5/1)** with 40% yellowish brown (10YR5/8) mottles, moist, very stiff, silty clay with trace fine- to coarse-grained sand.

Field Boring Log

Field Boring Log Details
- **Borehole ID**: G305
- **Well ID**: G305
- **Surface Elev.**: 622.54 ft. MSL
- **Completion**: 18.45 ft. BGS
- **Station**: 2,515,199.36N
- **Elevation MSL**: 871,156.33E

Sample Testing

<table>
<thead>
<tr>
<th>Number</th>
<th>% Recovery</th>
<th>% Recovery</th>
<th>Moisture (%)</th>
<th>Dry Den. (lb/ft³)</th>
<th>Moisture (%)</th>
<th>RQD</th>
<th>Blows / 6 in</th>
<th>Blows / 6 in</th>
<th>Blows / 6 in</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>14/24</td>
<td>58%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>N=7</td>
<td>N=7</td>
<td>N=7</td>
</tr>
<tr>
<td>2A</td>
<td>17/24</td>
<td>71%</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>N=14</td>
<td>N=14</td>
<td>N=14</td>
</tr>
<tr>
<td>3A</td>
<td>18/24</td>
<td>75%</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>N=9</td>
<td>N=9</td>
<td>N=9</td>
</tr>
<tr>
<td>4A</td>
<td>16/24</td>
<td>67%</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>N=13</td>
<td>N=13</td>
<td>N=13</td>
</tr>
<tr>
<td>5A</td>
<td>23/24</td>
<td>96%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>N=8</td>
<td>N=8</td>
<td>N=8</td>
</tr>
<tr>
<td>6A</td>
<td>21/24</td>
<td>88%</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>N=10</td>
<td>N=10</td>
<td>N=10</td>
</tr>
<tr>
<td>7A</td>
<td>24/24</td>
<td>100%</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>N=17</td>
<td>N=17</td>
<td>N=17</td>
</tr>
<tr>
<td>8A</td>
<td>19/24</td>
<td>79%</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>N=7</td>
<td>N=7</td>
<td>N=7</td>
</tr>
<tr>
<td>9A</td>
<td>22/24</td>
<td>92%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>N=10</td>
<td>N=10</td>
<td>N=10</td>
</tr>
<tr>
<td>9B</td>
<td>0/5</td>
<td>0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N=12</td>
<td>N=12</td>
<td>N=12</td>
</tr>
</tbody>
</table>

Water Level Information
- **End of Boring**: 18.45 feet
- **Surface Elev.**: 622.54 ft. MSL

Weather
- Cloudy, breezy, warm, lo 60s

Drilling Method
- 4 ¼” HSA, split spoon sampler

Failure Type
- D-50 Turbo Tracked MST 800ATV

Driller
- D. Crump

Eng/Geo
- S. Keim

Field Staff
- B. Williamson

Contractors
- Ramsey Geotechnical Engineering LLC
- Natural Resource Technology, Inc.

Project Information
- Coffeen Power Station
- Site: Coffeen, Illinois
- Location: Coffeen Power Station
- Client: Natural Resource Technology, Inc.
- Contract: 15E0030
- Rig: D-50 Turbo Tracked MST 800ATV
- Drilling Method: 4 ¼” HSA, split spoon sampler

Note: G305 installed in borehole.
Lithologic Description

1. **Very dark brown (10YR2/2), moist, medium, SILT with little clay and few very fine- to medium-grained sand, roots, trace coal fragments.**

2. **Dark gray (10YR4/1) with 5% dark yellowish brown (10YR3/6) mottles, moist, stiff, SILT with little clay and trace very fine- to medium-grained sand.**

3. **Gray (10YR6/1) with 10% yellowish brown (10YR5/6) mottles, moist, very stiff, SILT with little clay and trace very fine-grained sand.**

4. **Gray (10YR6/1) with 20% yellowish brown (10YR5/6) mottles, moist, very stiff, SILT with some clay and trace very fine-grained sand.**

5. **Gray (10YR5/1) with 30% dark yellowish brown (10YR4/6) mottles, moist, very stiff, silty CLAY with trace very fine- to coarse-grained sand.**

6. **Gray (10YR5/1) with 20% dark yellowish brown (10YR4/6) mottles, moist, very stiff, silty CLAY with some clay and trace very fine-grained sand.**

7. **Yellowish brown (10YR5/6), wet, soft, very fine- to coarse-grained sandy CLAY with little silt.**

8. **Yellowish brown (10YR5/6), wet, medium dense, silty, very fine- to medium-grained SAND with trace coarse-grained sand.**

9. **Yellowish brown (10YR5/6), moist, dense, fine- to coarse-grained SAND with little silt, little very fine-grained sand, and trace small gravel.**

10. **Brown (10YR5/3) with 20% dark yellowish brown (10YR4/6) mottles, moist, hard, SILT with little clay, few very fine- to coarse-grained sand, and trace small gravel.**

End of boring = 18.0 feet

NOTE(S): G306 installed in borehole.
40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION
COFFEEN ASH POND NO. 1
OCTOBER 14, 2019
October 14, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Levels (SSLs) over groundwater protection standards (GWPSs) of groundwater constituents listed in Appendix IV of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (alternate source demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Midwest Generation, LLC (DMG), by O’Brien & Gere Engineers, Inc., part of Ramboll (OBG), to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for the Coffeen Ash Pond No. 1 (AP1), located near Coffeen, Illinois.

The second Assessment Monitoring sampling event (A2) was completed on January 21-23, 2019, and analytical data were received on April 15, 2019. Analytical data from all sampling events, from December 2015 through A2, were evaluated in accordance with the Statistical Analysis Plan\(^1\), to determine any Statistically Significant Increases (SSIs) of Appendix III parameters over background concentrations, or SSLs of Appendix IV parameters over Groundwater Protection Standards (GWPSs). That evaluation identified SSLs at downgradient monitoring wells as follows:

- Cobalt at well G304/G307

G304 was replaced by G307 in July 2016; G307 is screened in the same geologic, unit and at a similar elevation, as G304. Data for samples collected from G304 from 2015-2016 is pooled for statistical purposes with data for samples collected subsequently from G307.

Pursuant to 40 C.F.R. § 257.95(g)(3)(ii), the following lines of evidence demonstrate that sources other than the Baldwin Bottom Ash Pond were the cause of the SSLs listed above. This alternate source demonstration (ASD) was completed by October 14, 2019, within 90 days of determination of the SSLs (July 15, 2019), as required by 40 C.F.R. § 257.95(g)(3)(ii).

ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

As allowed by 40 C.F.R. § 257.94(g)(3), this ASD demonstrates that sources other than Coffeen AP1 (the CCR unit) caused the SSL. Lines of evidence supporting this ASD include the following:

1. Cobalt is absent from AP1 source water.
2. AP1 is in close proximity to historic coal mining activity for Herrin (No. 6) Coal, which contains cobalt

These lines of evidence are described and supported in greater detail below. Monitoring wells and source water sample locations are shown in Attachment A.

LOE #1: COBALT IS ABSENT FROM AP1 SOURCE WATER.

Cobalt was not detected in source water samples from AP1, collected from multiple pond surface water locations (Attachment A). A time series for cobalt concentrations is provided in Figure 1.

![Figure 1. Time series showing cobalt concentrations in G307 compared to source water from AP1.](image)

The following observations can be made from Figure 1:

- Cobalt was not detected in source water samples from AP1.
- Groundwater from background well G281 and upgradient well G306 has detections of cobalt (between 0.0023 and 0.02 mg/L) during multiple groundwater monitoring events.

For AP1 to be the source of cobalt in groundwater, cobalt would have to be present in AP1 source water, specifically at concentrations greater than those detected in the groundwater. Therefore, AP1 is not the source of the cobalt observed in groundwater, including G304/G307. Cobalt was also detected in background well G281 and upgradient well G306, indicating that cobalt concentrations are either naturally occurring due to geochemical variations within the Uppermost Aquifer or from upgradient anthropogenic sources.

LOE #2: AP1 IS IN CLOSE PROXIMITY TO HISTORIC COAL MINING ACTIVITY FOR HERRIN (NO. 6) COAL WHICH CONTAINS COBALT.

The area below and surrounding AP1 is associated with mined and unmined Herrin (No. 6) Coal, which was in production through 1983. Coal was mined at depths of approximately 500 feet below ground surface. The extent
of the surrounding mine, and its associated features, are shown in Attachment B. Two shafts associated with the mine were located in close proximity to SSL well G304/G307 and background well G306.

Historic aerials are suggestive of coal storage in proximity to G305, G306, and G307 (Figure 2), and upgradient of G307 with regard to groundwater flow (Figure 3; attached). Small amounts of coal were observed to be mixed within the upper layers of soil in the boring for G306; associated boring logs are provided in Attachment C.

Figure 2. An aerial photograph from April 2005\(^2\) shows potential coal storage near G307 and G306, and a mine shaft (black box) near G305. Groundwater generally flows from the southwest to the northeast across AP1.

A review by the Illinois State Geological Survey (ISGS) of coal quality in Montgomery County near AP1 indicated the presence of cobalt within the Herrin (No. 6) Coal at concentrations between 1.4 and 7.0 ppm\(^3\). Background well G306, for which small amounts of coal were observed in the associated soil boring, has demonstrated elevated concentrations of cobalt. Background well G281, which is the monitoring well farthest outside of the historic coal mine footprint buffer, has the lowest detections of cobalt of AP1 monitoring wells.

Analytical samples collected by ISGS from Montgomery County also indicate a greater sulfur content in the Herrin (No. 6) Coal (median 4.6\%), which is considered a medium- to high-sulfur coal (3-5\%).\(^4\) A study of

groundwater quality near surface coal mines, performed by the U.S. Geological Survey (USGS) provides data on the effects of mines on groundwater quality. The study used Piper diagrams to evaluate regional differences in major ion composition of groundwater in areas mined for high-sulfur coal and unmined areas. Groundwater samples collected from wells downgradient of the reclaimed mine areas evaluated in the study have a broad range of carbonate-bicarbonate anions, as well as moderate to high concentrations of calcium cations in high-sulfur coal regions. Groundwater samples collected from AP1 monitoring wells reflect a broad distribution of carbonate-bicarbonate anions and moderate concentrations of calcium cations, similar to those from the USGS study. Piper diagrams in Figures 4 and 5 present this graphically.

Figure 4. Piper diagram showing ionic composition of groundwater at AP1.

40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION
COFFEEEN ASH POND NO. 1

Figure 3. Piper diagram showing ionic composition of groundwater downgradient of reclaimed surface coal mines in high-sulfur coal regions (modified from USGS).

State of Illinois groundwater quality regulations (Illinois Administrative Code [IAC] Title 35 Part 620 Groundwater Quality) acknowledge that water quality is adversely affected in areas where coal mining activity has occurred, which would be consistent with water quality exceedances at G307.

The absence of cobalt in the AP1 surface water, combined with the presence of cobalt in Herrin (No. 6) Coal, suggests that cobalt concentrations in AP1 monitoring wells are influenced by the surrounding coal mines and associated mining activity (e.g., storage on the ground surface).

Based on these two lines of evidence, it has been demonstrated that Coffeen Ash Pond No. 1 has not caused the SSL in G307.

This information serves as the written alternate source demonstration prepared in accordance with 40 C.F.R. § 257.95(g)(3)(ii) that the SSL observed during the assessment monitoring program was not due to the CCR unit, but was from a combination of naturally-occurring conditions and potential upgradient anthropogenic impacts. Therefore, a corrective measures assessment is not required and AP1 will remain in assessment monitoring.

Attachments:
- Figure 3 Groundwater Elevation Contour Map
- Attachment A Sample Location Map
- Attachment B Herrin (No. 6) Coal Mine Extent Map
- Attachment C G305 and G306 Boring Logs
I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac
Qualified Professional Engineer
062-063091
Illinois
O’Brien & Gere Engineers, Inc., a Ramboll Company
Date: October 14, 2019

I, Nicole M. Pagano, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano
Professional Geologist
196-000750
O’Brien & Gere Engineers, Inc., a Ramboll Company
Date: October 14, 2019
Attachments
Figures
Attachment A
Sample Location Map
Sample Location Map
Coffeen Ash Ponds
Coffeen, Illinois

Source Water Sample Locations
Upgradient or Background Monitoring Well Location
Downgradient Monitoring Well Location
CCR Monitored Unit

Drawn By/Date: SDS 4/8/19
Reviewed By/Date: KLT 4/8/19
Approved By/Date: KLT 4/8/19

SCALE IN FEET

FIGURE 1
Attachment B

Herrin (No. 6) Coal Mine Extent Map
Attachment C

G305 and G306 Boring Logs
FIELD BORING LOG

CLIENT: Natural Resource Technology, Inc.
Site: Coffeen Power Station
Location: Coffeen, Illinois
Project: 15E0030
DATES: Start: 5/3/2016
Finish: 5/3/2016
WEATHER: Cloudy, breezy, warm, lo 60s

TOPOGRAPHIC MAP INFORMATION:
- **Quadrangle:** Coffeen, IL
- **Township:** East Fork
- **Section 14, Tier 7N; Range 3W**

WATER LEVEL INFORMATION:
- **Depth ft. BGS:**
- **Elevation ft. MSL:**
- **Remarks:**
 - 3.00 - During Drilling
 - =

Lithologic Description:
- Fill - Grayish brown (10YR5/2), moist, soft, silty CLAY with few small to coarse sand and few small to large gravel.
- Fill - Black (10YR2/1), moist, loose, silty, fine- to coarse-grained SAND with little coal fragments.
- Gray (10YR6/1) and light yellowish brown (10YR6/4), moist, very stiff, SILT with little clay.
- Gray (10YR5/1) with 30% dark yellowish brown (10YR4/6) mottles, moist, very stiff, silty CLAY with trace very fine-grained sand.
- Gray (10YR5/1) with 35% dark yellowish brown (10YR4/6) mottles, moist, very stiff, silty CLAY with few fine- to coarse-grained sand and trace small gravel.
- Yellowish brown (10YR5/8) with 15% gray (10YR5/1) mottles, moist, very stiff, silty CLAY with few fine- to coarse-grained sand and trace small gravel.
- Gray (10YR5/1) with 15% yellowish brown (10YR5/6) mottles, moist, stiff, silty CLAY with little fine- to coarse-grained sand and trace small gravel.
- Brown (10YR5/3), wet, loose, very silty, very fine- to coarse-grained SAND with trace small gravel.
- Brown (10YR5/3) with 40% yellowish brown (10YR5/8) mottles, moist, very stiff, SILT with little clay and trace fine- to coarse-grained sand.

NOTES:
- G305 installed in borehole.

FIELD STAFF: Driller: B. Williamson
Eng/Geo: S. Keim

SAMPLE	**TESTING**	**DEPTH ft. BGS**	**Lithologic Description**	**Borehole Detail**	**Elevation ft. MSL**	**Remarks**
1A | 14/24 | ss | 7-2 | 12 | Fill - Grayish brown (10YR5/2), moist, soft, silty CLAY with few small to coarse sand and few small to large gravel. | 622
2A | 17/24 | ss | 6-7 | 19 | Fill - Black (10YR2/1), moist, loose, silty, fine- to coarse-grained SAND with little coal fragments. | 620
3A | 18/24 | ss | 3-3 | 28 | Gray (10YR6/1) and light yellowish brown (10YR6/4), moist, very stiff, SILT with little clay. | 618
4A | 16/24 | ss | 6-6 | 24 | Gray (10YR5/1) with 30% dark yellowish brown (10YR4/6) mottles, moist, very stiff, silty CLAY with trace very fine-grained sand. | 616
5A | 23/24 | ss | 1-3 | 21 | Dark gray (10YR4/1) with 25% dark yellowish brown (10YR4/6) mottles, moist, very stiff, silty CLAY with few fine- to coarse-grained sand and trace small gravel. | 614
6A | 21/24 | ss | 3-4 | 21 | Gray (10YR5/1) with 35% dark yellowish brown (10YR4/6) mottles, moist, very stiff, silty CLAY with few fine- to coarse-grained sand and trace small gravel. | 612
7A | 24/24 | ss | 8-8 | 18 | Yellowish brown (10YR5/8) with 15% gray (10YR5/1) mottles, moist, very stiff, silty CLAY with few fine- to coarse-grained sand and trace small gravel. | 610
8A | 19/24 | ss | 3-3 | 18 | Gray (10YR5/1) with 15% yellowish brown (10YR5/6) mottles, moist, stiff, silty CLAY with little fine- to coarse-grained sand and trace small gravel. | 608
9A | 22/24 | ss | 1-3 | 19 | Gray (10YR5/1) with 15% yellowish brown (10YR5/6) mottles, moist, stiff, silty CLAY with some fine- to coarse-grained sand and trace small gravel. | 606
9B | 0/5 | BD | 0% | 15 | Brown (10YR5/3), wet, loose, very silty, very fine- to coarse-grained SAND with trace small gravel. | 600

End of boring = 18.45 feet

FIELD BORING LOG

Page 1 of 1
FIELD BORING LOG

CLIENT: Natural Resource Technology, Inc.
Site: Coffeen Power Station
Location: Coffeen, Illinois
Project: 15E0030
DATES: Start: 5/3/2016
Finish: 5/3/2016
WEATHER: Sunny, calm, warm, lo 60s

<table>
<thead>
<tr>
<th>Number</th>
<th>Depth (ft. BGS)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>14</td>
<td>Very dark brown (10YR2/2), moist, medium, SILT with little clay and few very fine- to medium-grained sand, roots, trace coal fragments.</td>
</tr>
<tr>
<td>2A</td>
<td>21</td>
<td>Dark gray (10YR4/1) with 5% dark yellowish brown (10YR3/6) mottles, moist, stiff, SILT with little clay and trace very fine- to medium-grained sand.</td>
</tr>
<tr>
<td>2B</td>
<td>19</td>
<td>Gray (10YR6/1) with 10% yellowish brown (10YR5/6) mottles, moist, very stiff, SILT with little clay and trace very fine-grained sand.</td>
</tr>
<tr>
<td>3A</td>
<td>30</td>
<td>Gray (10YR6/1) with 20% yellowish brown (10YR5/6) mottles, moist, very stiff, SILT with some clay and trace very fine-grained sand.</td>
</tr>
<tr>
<td>4A</td>
<td>26</td>
<td>Gray (10YR5/1) with 30% dark yellowish brown (10YR4/6) mottles, moist, very stiff, silty CLAY with trace very fine- to coarse-grained sand.</td>
</tr>
<tr>
<td>5A</td>
<td>24</td>
<td>Gray (10YR5/1) with 30% dark yellowish brown (10YR4/6) mottles, moist, stiff, silty CLAY with trace very fine- to coarse-grained sand.</td>
</tr>
<tr>
<td>6A</td>
<td>20</td>
<td>Gray (10YR5/1) with 30% dark yellowish brown (10YR4/6) mottles, moist, stiff, silty CLAY with trace very fine- to coarse-grained sand.</td>
</tr>
<tr>
<td>7A</td>
<td>12</td>
<td>Yellowish brown (10YR5/6), wet, soft, very fine- to coarse-grained sandy CLAY with little silt.</td>
</tr>
<tr>
<td>8A</td>
<td>15</td>
<td>Yellowish brown (10YR5/6), wet, medium dense, silty, very fine- to medium-grained SAND with trace coarse-grained sand.</td>
</tr>
<tr>
<td>8B</td>
<td>12</td>
<td>Yellowish brown (10YR5/6), moist, dense, fine- to coarse-grained SAND with little silt, little very fine-grained sand, and trace small gravel.</td>
</tr>
<tr>
<td>9A</td>
<td>10</td>
<td>Brown (10YR5/3) with 20% dark yellowish brown (10YR4/6) mottles, moist, hard, SILT with little clay, few very fine- to coarse-grained sand, and trace small gravel.</td>
</tr>
</tbody>
</table>

NOTE(S): G306 installed in borehole.