

Cynthia Vodopivec Luminant Generation Company LLC Luminant 6555 Sierra Dr. Irving, TX 75039

October 23, 2020

Sent via email

Mr. Andrew R. Wheeler, EPA Administrator Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Mail Code 5304-P Washington, DC 20460

Re: Martin Lake Revised Alternative Closure Demonstration

Dear Administrator Wheeler:

Luminant Generation Company LLC (Luminant) submits this revised request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(1) for the Ash Pond Area and Permanent Disposal Pond 5 located at the Martin Lake Steam Electric Station near Tatum, Texas. Luminant is requesting an extension pursuant to 40 C.F.R. § 257.103(f)(1) to allow the Ash Pond Area and Permanent Disposal Pond 5 to continue to receive CCR and non-CCR wastestreams after April 11, 2021, such that retrofit activity can be undertaken.

The enclosed demonstration prepared by Burns & McDonnell replaces the demonstration that was previously submitted by Luminant to EPA on September 29, 2020. This demonstration addresses all of the criteria in 40 C.F.R. § 257.103(f)(1)(i)-(iii) and contains the documentation required by 40 C.F.R. § 257.103(f)(1)(iv). As allowed by the agency, in lieu of hard copies of these documents, electronic files were submitted to Kirsten Hillyer, Frank Behan, and Richard Huggins via email. The demonstration is also available on Luminant's publicly available website: https://www.luminant.com/ccr/

Sincerely,

Cynthia Vodopivec

VP - Environmental Health & Safety

Cynthin E. Wody

Enclosure

cc: Kirsten Hillyer Frank Behan

Richard Huggins

Martin Lake CCR Surface Impoundments Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Luminant Generation Company LLC

Martin Lake Steam Electric Station Project No. 122702

> Revision 1 October 23, 2020

Burns & McDonnell Engineering Firm F-845

Martin Lake CCR Surface Impoundments Demonstration for a SiteSpecific Alternative to Initiation of Closure Deadline

Prepared for

Luminant Generation Company LLC
Martin Lake Steam Electric Station
Project No. 122702
Tatum, Texas

Revision 1 October 23, 2020

Prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

INDEX AND CERTIFICATION

Luminant Generation Company LLC Martin Lake CCR Surface Impoundments Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Report Index

<u>Chapter</u>		<u>Number</u>
Number	Chapter Title	of Pages
	Executive Summary	1
1.0	Introduction	3
2.0	Workplan	29
4.0	Conclusion	1
Appendix A	Site Plan and Water Balance Diagram	3
Appendix B	Schedule	2

Certification

I hereby certify, as a Professional Engineer in the state of Texas, that the information in this document as noted in the above Report Index was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Luminant Generation Company LLC or others without specific verification or adaptation by the Engineer.

Randell Lee Sedlacek, P.E. (Texas License No. 99506)

Date: October 23, 2020

TABLE OF CONTENTS

				age No.
EXE	CUTIV	E SUMN	MARY	1
1.0	INTE	RODUCT	TION	1-1
2.0	WOI		I	2-1
	2.1		ternative Disposal Capacity and Approach to Obtain Alternative	
			ity - § 257.103(f)(1)(iv)(A)(1)	
		2.1.1	CCR Wastestreams	
		2.1.2	Non-CCR Wastestreams	2-9
		2.1.3	Site-Specific Conditions Supporting Alternative Capacity	
			Approach – § 257.103(f)(1)(iv)(A)(1)(i)	
		2.1.4	Impact to Plant Operations if Alternative Capacity Not Obtained	
			§ 257.103(f)(1)(iv)(A)(1)(ii)	2-14
		2.1.5	Options Considered Both On and Off-Site to Obtain Alternative	
			Capacity	
		2.1.6	Approach to Obtain Alternative Capacity	
		2.1.7	Technical Infeasibility of Obtaining Alternative Capacity prior to	
		2.1.0	April 11, 2021	2-21
		2.1.8	Justification for Time Needed to Complete Development of	2.21
	2.2	D-4-11	Alternative Capacity Approach – § 257.103(f)(1)(iv)(A)(1)(iii)	2-21
	2.2		ed Schedule to Obtain Alternative Disposal Capacity -	2.24
	2.2		103(f)(1)(iv)(A)(2)	
	2.3		ive of Schedule and Visual Timeline - § 257.103(f)(1)(iv)(A)(3)	2-24
	2.4	Progre	ss Towards Obtaining Alternative Capacity -	2.20
		§ 257.	103(f)(1)(iv)(A)(4)	2-29
3.0			ATION AND CERTIFICATION OF COMPLIANCE	
	3.1		's Certification of Compliance - § 257.103(f)(1)(iv)(B)(1)	3-1
	3.2		Representation of Hydrogeologic Information -	
			103(f)(1)(iv)(B)(2)	
	3.3		dwater Monitoring Results - § 257.103(f)(1)(iv)(B)(3)	
	3.4		ption of Site Hydrogeology - § 257.103(f)(1)(iv)(B)(4)	
	3.5		tive Measures Assessment - § 257.103(f)(1)(iv)(B)(5)	
	3.6		ly Selection Progress Reports - § 257.103(f)(1)(iv)(B)(6)	
	3.7		aral Stability Assessment - § 257.103(f)(1)(iv)(B)(7)	
	3.8	Safety	Factor Assessment - § 257.103(f)(1)(iv)(B)(8)	3-2
<i>1</i> 0	CON	וכו וופוכ	NA CONTRACTOR OF THE CONTRACTO	11

APPENDIX A - SITE PLAN AND WATER BALANCE DIAGRAM

APPENDIX B - SCHEDULE

APPENDIX C - EAST ASH POND RETROFIT DESIGN DRAWINGS

APPENDIX D - WEST ASH POND RETROFIT DESIGN DRAWINGS

APPENDIX E - NEW SCRUBBER POND RETROFIT DESIGN DRAWINGS

APPENDIX F - COMPLIANCE DOCUMENTS

LIST OF TABLES

	<u>Page No.</u>
Table 2-1: Martin Lake CCR Surface Impoundment Summary	2-2
Table 2-2: Martin Lake CCR Wastestreams	2-8
Table 2-3: Martin Lake Non-CCR Wastestreams	2-9
Table 2-4: Summary of Pond Design Storage & Operational Capacity	2-12
Table 2-5: Martin Lake Alternatives for Disposal Capacity	2-17
Table 2-6: Retrofit Project Progress Milestones	

LIST OF FIGURES

Figure 2-1: Average Monthly Plant Water Balance vs Impoundment Storage Capacity......2-13

LIST OF ABBREVIATIONS

<u>Abbreviation</u> <u>Term/Phrase/Name</u>

CCR Coal Combustion Residual

CFR Code of Federal Regulations

CY Cubic Yards

EAP East Ash Pond

ELG Effluent Limitations Guidelines and Standards for the Steam Electric

Power Generating Point Source Category

ERCOT Electric Reliability Council of Texas

EPA Environmental Protection Agency

FGD Flue Gas Desulfurization

gal Gallons

GCL Geosynthetic Clay Liner

gpm Gallons Per Minute

GWPS Groundwater Protection Standards

HDPE High Density Polyethylene

Luminant Generation Company, LLC

Martin Lake Steam Electric Station

MGD Million Gallons Per Day

NSP New Scrubber Pond

PDP5 Permanent Disposal Pond 5

RCRA Resource Conservation and Recovery Act

SAP Sampling and Analysis Plan

SSI(s) Statistically Significant Increases

Luminant i Burns & McDonnell

<u>Abbreviation</u>	Term/Phrase/Name
SSL(s)	Statistically Significant Levels
TPDES	Texas Pollutant Discharge Elimination System
WAP	West Ash Pond

EXECUTIVE SUMMARY

Luminant Generation Company LLC (Luminant) submits this request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate retrofit or closure pursuant to 40 C.F.R. § 257.103(f)(1) for the Ash Pond Area and Permanent Disposal Pond 5 (PDP5) located at the Martin Lake Steam Electric Station (Martin Lake). Luminant is requesting an alternative site-specific deadline of June 29, 2022, for the Ash Pond Area, to allow for the continued placement of CCR and non-CCR wastestreams in the Ash Pond Area while the remaining impoundments are sequentially retrofitted. In addition, Luminant is requesting an alternative site-specific deadline of July 1, 2023, for PDP5, to allow for the continued placement of CCR and non-CCR wastestreams in PDP5 during the Ash Pond Area retrofit project and thereafter to begin retrofit of PDP5 (if necessary following an EPA decision on an alternative liner application and demonstration expected to be submitted for PDP5 under the Part B Rule prior to November 30, 2020, and November 30, 2021, respectively).

Martin Lake is a three-unit 2,250-nominal megawatt coal-fired facility located near Tatum, Texas. Martin Lake utilizes the Ash Pond Area (consisting of the East Ash Pond, West Ash Pond, and New Scrubber Pond) and PDP5 to manage sluiced bottom ash, mill rejects, FGD blowdown and non-CCR wastestreams. The various non-CCR wastestreams managed in the impoundments include air pre-heater wash water, boiler non-chemical metal cleaning wastewater, boiler chemical cleaning wastewater, boiler blowdown and boiler sump area flows, and miscellaneous wastewater processes and stormwater. Martin Lake recycles and reuses wastewater stored in the impoundments as makeup water in the plant's operational processes. As a result, Martin Lake also utilizes the CCR surface impoundments to assist in maintaining the site's water balance. To ensure reliable generation and sufficient water storage for plant operations, and to minimize discharge to meet the site's aggressive mass limit of 17.5 pounds of selenium per calendar year into the adjacent Martin Creek Reservoir (combined discharge of all outfalls except for the once-through cooling water (Outfall 001) and discharges from the sewage treatment plant (Outfall 101)), the plant must have access to operate all four of the site's CCR surface impoundments from November through June, and must operate a minimum of three out of the four CCR surface impoundments from July through October. Therefore, Martin Lake has elected to sequentially retrofit its existing CCR surface impoundments, which consists of removing CCR materials from the impoundment to be retrofitted, taking the impoundment out of service and rerouting all wastestreams from the impoundment to the in-service impoundments, relining the impoundment, returning the impoundment to service, and starting the next impoundment retrofit. The retrofit for the East Ash Pond is complete, and Luminant is currently proceeding with the removal of CCR to allow for retrofit of the West Ash Pond before moving to the New Scrubber Pond and potentially PDP5.

Luminant 1 Burns & McDonnell

1.0 INTRODUCTION

On April 17, 2015, the Environmental Protection Agency (EPA) issued the federal Coal Combustion Residual (CCR) Rule, 40 C.F.R. Part 257, Subpart D, to regulate the disposal of CCR materials generated at coal-fueled electric generating units. The rule is being administered under Subtitle D of the Resource Conservation and Recovery Act (RCRA, 42 U.S.C. § 6901 *et seq.*).

On August 28, 2020, the EPA Administrator issued revisions to the CCR Rule that require all unlined surface impoundments to cease receipt of CCR and non-CCR waste and initiate closure by April 11, 2021, unless an alternative deadline is requested and approved. 40 C.F.R. § 257.101(a)(1) (85 Fed. Reg. 53,516 (Aug. 28, 2020)). Specifically, owners and operators of a CCR surface impoundment may seek and obtain an alternative closure deadline by demonstrating that there is currently no alternative capacity available on or off-site and that it is not technically feasible to complete the development of alternative capacity prior to April 11, 2021. 40 C.F.R. § 257.103(f)(1). To make this demonstration, the facility is required to provide detailed information regarding the process the facility is undertaking to develop the alternative capacity. 40 C.F.R. § 257.103(f)(1). Any extensions granted cannot extend past October 15, 2023, except an extension can be granted until October 15, 2024, if the impoundment qualifies as an "eligible unlined CCR surface impoundment" as defined by the rule. 40 C.F.R. § 257.103(f)(1)(vi). Regardless of the maximum time allowed under the rule, EPA explains in the preamble to the Part A rule that each impoundment "must still cease receipt of waste as soon as feasible, and may only have the amount of time [the owner/operator] can demonstrate is genuinely necessary." 85 Fed. Reg. at 53,546.

This document serves as Luminant's Demonstration for a site-specific alternative deadline to initiate retrofit or closure pursuant to 40 C.F.R. § 257.103(f)(1) for the CCR surface impoundments at the Martin Lake Steam Electric Station (Martin Lake), located near Tatum, Texas, which include the following:

- Ash Pond Area:
 - East Bottom Ash Pond (EAP)
 - West Bottom Ash Pond (WAP)
 - New Scrubber Pond (NSP)
- Permanent Disposal Pond 5 (PDP5) this impoundment qualifies as an "eligible unlined CCR surface impoundment" as defined under § 40 C.F.R. 257.53

To obtain an alternative closure deadline under 40 C.F.R. § 257.103(f)(1), a facility must meet the following three criteria:

- 1. § 257.103(f)(1)(i) There is no alternative disposal capacity available on-site or off-site. An increase in costs or the inconvenience of existing capacity is not sufficient to support qualification:
- 2. § 257.103(f)(1)(ii) Each CCR and/or non-CCR wastestream must continue to be managed in that CCR surface impoundment because it was technically infeasible to complete the measures necessary to obtain alternative disposal capacity either on or off-site of the facility by April 11, 2021; and
- 3. § 257.103(f)(1)(iii) The facility is in compliance with all the requirements of the CCR rule.

To demonstrate that the first two criteria above have been met, 40 C.F.R. § 257.103(f)(1)(iv)(A) requires the owner or operator to submit a work plan that contains the following elements:

- A written narrative discussing the options considered both on and off-site to obtain alternative capacity for each CCR and/or non-CCR wastestream, the technical infeasibility of obtaining alternative capacity prior to April 11, 2021, and the option selected and justification for the alternative capacity selected. The narrative must also include all of the following:
 - An in-depth analysis of the site and any site-specific conditions that led to the decision to select the alternative capacity being developed;
 - An analysis of the adverse impact to plant operations if the CCR surface impoundment in question were to no longer be available for use; and
 - A detailed explanation and justification for the amount of time being requested and how it is
 the fastest technically feasible time to complete the development of the alternative capacity.
- A detailed schedule of the fastest technically feasible time to complete the measures necessary for alternate capacity to be available, including a visual timeline representation. The visual timeline must clearly show all of the following:
 - How each phase and the steps within that phase interact with or are dependent on each other and the other phases;
 - All of the steps and phases that can be completed concurrently;
 - The total time needed to obtain the alternative capacity and how long each phase and step within each phase will take; and
 - At a minimum, the following phases: engineering and design, contractor selection, equipment fabrication and delivery, construction, and start up and implementation.
- A narrative discussion of the schedule and visual timeline representation, which must discuss the following:

- Why the length of time for each phase and step is needed and a discussion of the tasks that occur during the specific step;
- Why each phase and step shown on the chart must happen in the order it is occurring;
- The tasks that occur during each of the steps within the phase; and
- Anticipated worker schedules.
- A narrative discussion of the progress the owner or operator has made to obtain alternative capacity for the CCR and/or non-CCR wastestreams. The narrative must discuss all the steps taken, starting from when the owner or operator initiated the design phase up to the steps occurring when the demonstration is being compiled. It must discuss where the facility currently is on the timeline and the efforts that are currently being undertaken to develop alternative capacity.

To demonstrate that the third criterion above has been met, 40 C.F.R. § 257.103(f)(1)(iv)(B) requires the owner or operator to submit the following information:

- A certification signed by the owner or operator that the facility is in compliance with all of the requirements of 40 C.F.R. Part 257, Subpart D;
- Visual representation of hydrogeologic information at and around the CCR unit(s) that supports
 the design, construction and installation of the groundwater monitoring system. This includes all
 of the following:
 - o Map(s) of groundwater monitoring well locations in relation to the CCR unit(s);
 - o Well construction diagrams and drilling logs for all groundwater monitoring wells; and
 - o Maps that characterize the direction of groundwater flow accounting for seasonal variations.
- Constituent concentrations, summarized in table form, at each groundwater monitoring well monitored during each sampling event;
- A description of site hydrogeology including stratigraphic cross-sections;
- Any corrective measures assessment conducted as required at § 257.96;
- Any progress reports on corrective action remedy selection and design and the report of final remedy selection required at § 257.97(a);
- The most recent structural stability assessment required at § 257.73(d); and
- The most recent safety factor assessment required at § 257.73(e).

2.0 WORKPLAN

To demonstrate that the criteria in 40 C.F.R. § 257.103(f)(1)(i) and (ii) have been met, the following is a workplan consisting of the elements required by § 257.103(f)(1)(iv)(A). This workplan documents that there is no alternative capacity available on or off-site for each of the CCR and/or non-CCR wastestreams that Luminant plans to continue to manage in the Martin Lake CCR surface impoundments and discusses the options considered for alternative disposal capacity. As discussed in more detail below, **Luminant has elected to retrofit its existing CCR surface impoundments.** The workplan provides a detailed schedule for the retrofit project, including a narrative description of the schedule and an update on the progress already made toward retrofit of the CCR surface impoundments. In addition, the narrative includes an analysis of the site-specific conditions that led to the decision to retrofit the impoundments and an analysis of the adverse impact to plant operations if Martin Lake were no longer able to use the CCR surface impoundments.

2.1 No Alternative Disposal Capacity and Approach to Obtain Alternative Capacity - § 257.103(f)(1)(iv)(A)(1)

Luminant owns and operates Martin Lake, a three-unit 2,250-nominal megawatt coal-fired facility located near Tatum, Texas, that burns a mixture of locally mined lignite and Powder River Basin coal. Martin Lake has four CCR surface impoundments (listed in Table 2-1) that receive both CCR and non-CCR wastestreams. An aerial view of the Martin Lake site and the CCR surface impoundments can be found on Figure 1 in Appendix A. The first three impoundments listed (EAP, WAP, and NSP) in Table 2-1 are part of the Ash Pond Area referenced on Luminant's CCR website. This area is equipped with a multi-unit groundwater monitoring network. The fourth, PDP5, is located separately from the Ash Pond Area (as shown in Figure 1 in Appendix A) and has its own groundwater monitoring network. As described in more detail below, Martin Lake does not have alternate onsite or offsite storage capacity that would allow the site to continue to operate safely with more than one CCR impoundment out of service at one time (concurrent with summer peak operation) and maintain compliance with environmental permits and obligations.

Table 2-1: Martin Lake CCR Surface Impoundment Summary

CCR Surface Impoundment Name	Year Placed in Service	Impoundment Size (acres) / Storage Volume (acre-feet) 1	Lined?	Complies with Location Restrictions?	Groundwater Status
East Bottom Ash Pond (EAP)	1977	9.6 / 125.8	No	Yes	Assessment Monitoring was initiated in June 2018. SSLs were identified for beryllium, cobalt, and lithium in January
West Bottom Ash Pond (WAP)	1977	14.6 / 232.6	No	Yes	2019. The Assessment of corrective measures was completed in September 2019. Impoundment retrofit is underway for source control,
New Scrubber Pond (NSP)	1989	12.5 / 198.9	No	Yes	while selection of the groundwater remedy is currently in the feasibility study phase.
Permanent Disposal Pond 5 (PDP5)	2010	40 / 190.3	Yes ²	Yes	SSIs have been identified with successful Alternate Source Demonstrations completed in 2018 and 2019. Remains in Detection Monitoring.

¹Values listed in Inflow Design Flood Control System Plan prepared by Pastor, Behling & Wheeler, LLC in October 2016.

The Martin Lake facility is unique because it operates its CCR-related outfalls essentially as zero discharge facilities to maintain a negative or neutral water balance for the plant. For Martin Lake's CCR related processes the term "water balance" means managing the inflow of water and wastewater into the impoundments to equal or exceed the outflow(s). This is expressed as:

$$(S \pm \Delta I) - (E+O+C) \leq 0$$

Where: Sources (from reservoir and/or groundwater supply wells or rainfall)

Inventory (ponds, volume in process, etc.)

Evaporation (forced and natural)

Output (discharge)

Consumption (moisture in products)

²PDP5 was originally classified as lined per 40 C.F.R. § 257.71(a)(1)(i), which was subsequently vacated by the U.S. Court of Appeals for the D.C. Circuit. This impoundment now qualifies as an eligible unlined CCR surface impoundment per § 257.53.

To achieve the negative/neutral water balance, Martin Lake utilizes the CCR surface impoundments, the low volume wastewater retention pond, and the stormwater retention pond to assist in the storage and management of all the remaining water process flows and stormwater on the plant site. These ponds are inter-connected with pumps and piping systems to allow transport of the non-CCR wastestreams to the CCR surface impoundments as make-up water. There are permitted outfalls for discharge from the wastewater recycling plant (Outfall 201), stormwater retention pond (Outfall 301), low volume wastewater pond (Outfall 401), and from the solid waste disposal area (Outfall 501); however, these outfalls typically do not discharge and the wastewaters are used to support water reuse at the site. The existing site water balance flow diagram is included in Appendix A of this demonstration (see Figure 2) and discussed further in Sections 2.1.1-2.1.2.

The water recycling practices discussed above are both necessary and extremely beneficial from an environmental perspective, minimizing both the discharge of wastewater into and the withdrawal of freshwater from waters of the U.S. Recycling is also necessary because of several factors related to the water quality limitations found in the facility's TPDES wastewater permit. The most restrictive permit requirement is a mass limit of 17.5 pounds for the discharge of selenium per calendar year (2 pounds per rolling 30 days per the selenium monitoring program) into Martin Creek Reservoir, which means that the volume of discharge is inverse to the concentration of selenium in the wastewater. The mass limit applies at all Outfalls combined except for the once-through cooling water (Outfall 001) and discharges from the sewage treatment plant (Outfall 101), which are discharged daily. Further, Outfall 301 (stormwater) and Outfall 401 (low volume wastewater) have daily average limits for selenium of 0.02 and 0.05 parts per million, respectively. Per the TPDES permit for Outfall 401, discharges are authorized only when accumulations of wastewater exceed normal, safe operating water levels as a result of any one or combination of the following:

- Recycle equipment outage, or
- Generating unit outage, or
- A rainfall event or consecutive events equal to or greater than the 10-year/24-hour rainfall event

Due to the combined selenium discharge limitation, and the restrictions on discharge from Outfall 401, Martin Lake is generally limited to discharges of stormwater only via Outfall 301 when the ponds are nearing their maximum capacity. This has not occurred in decades due to the recycling and reuse of stormwater at the site as described further in the sections below.

Rainfall: The largest single input into the site water balance is typically rainfall, which is generally unpredictable for both frequency and volume. The Martin Lake facility is located near the eastern border of Texas in a region known as the Piney Woods. This region is characterized by wet springs, then dry summers with rainfall returning in the fall. The annual rainfall for the area can be highly variable from year to year because of the inflow of the humid Gulf Coast air from the south, dry and/or cool frontal activity from the north, and the occasional hurricane or tropical storm. Located ~12 miles from the nearest weather station at the East Texas Regional Airport, and subject to locally heavy rainfalls, the Martin Lake facility has monitored and recorded its own rainfall data since 1978. In the 41+ year site rainfall record (1978 – September 2020), the average annual rainfall is 48.02 inches, with a minimum of 27.34 inches in 2010, and a maximum of 74.40 inches in 2018.

The facility captures rainfall and runoff from approximately 180 acres of the plant site. This includes 97 acres of direct rainfall into the ponds and 83 acres from areas that have exposed materials such as coal or other industrial activity, including the solids handling area, certain piping routes, secondary containments, and buildings, roads, etc. Of the 83 non-pond acres, the runoff coefficient is normally estimated at 85%. For a 1-inch rainfall, the Martin Lake site usually gains ~ 4.6 million gallons of water into its wastewater management systems. This flow is collected in the low volume wastewater retention pond and stormwater retention pond before being routed to the CCR surface impoundments onsite. Over an average year (e.g., ~48 inches of rainfall), the site gains approximately 675-acre feet of water or 220 million gallons, which depending on the volume and frequency of events, can at times utilize a significant portion of the total operational volume of all ponds on-site.

For reference, the rainfall event most often identified as the standard for water management purposes is the "10-year, 24-hour rainfall event," as defined by the National Weather Service in Technical Paper No. 40, "Rainfall Frequency Atlas of the United States," May 1961. This flow statistically has a 10% chance of occurring each year. For the Martin Lake site, the 10-year/24-hour event is estimated at 7.1 inches, which equates to approximately 34 million gallons of runoff.

Reuse: The wastewater permit limitations at Martin Lake greatly inhibit the management of the captured stormwater in an efficient manner. If it were possible for the site to discharge the captured stormwater in real-time at the permitted daily average limit for selenium (i.e., 0.020 parts per million at Outfall 301), it would reach the mass limit at approximately 105 million gallons, or <48% of the estimated average annual rainfall; however, that same volume would have to be released slowly at 0.40 MGD over a period of 262 days to stay below the 2 pounds per rolling 30 days limitation in the selenium monitoring program. Consequently, due to the discharge limits in the TPDES permit it is not considered feasible for Martin Lake

to discharge this stormwater as it is collected (average monthly rainfall equates to 18 million gallons, with a maximum allowable discharge equal to approximately 12 million gallons per month capped at the maximum of 105 million gallons per year assuming the stormwater meets the selenium concentration and any other applicable limits). The water must be incorporated into the site's CCR surface impoundments to provide adequate storage of this water, particularly during significant rain events that would overwhelm the site stormwater and lignite area runoff ponds. Once this water is comingled with the CCR wastestreams, it can no longer be discharged and must be reused within the plant process systems. It should also be noted that since the stormwater is normally used for make-up to the various systems, that volume would have to be replaced by freshwater.

Martin Lake does have the capability to treat its captured stormwater to a value well below the permitted daily average concentration limit(s), but the treatment processes are physically limited to a rate that is slower than the rate of use of the wastewater as make-up to the CCR systems (an approximately 250 gallons per minute (gpm) treated product water rate vs. an estimated average make-up rate of 2,000 gpm with all units online). The treatment process to produce the lowest selenium concentration achievable involves utilization of multiple water treatment systems in a sequence. These include micro-filtration, reverse osmosis, and demineralizers. This process, however, produces wastestreams of equal volume (approximately 50% of the feed rate) that are essentially untreatable. Introduction of these high concentrate wastestreams back into the wastewater inventory is counter-productive and limits the recycle uses to consumption (i.e., the bottom ash and FGD systems).

<u>Water Availability:</u> The negative/neutral water balance method of operation has also become necessary because of the limited availability of surface water in the State of Texas. Texas is a water rights state, and surface water withdrawals and use are highly regulated. Groundwater is separate but similar issue, with groundwater conservation also highly regulated.

Over the past several decades the addition of new pollution control devices has increased the water consumption at the facility. The use of non-CCR wastewater and site stormwater as make-up to the CCR systems has prevented the need for a large increase in the volume of freshwater needed.

<u>Evaporation</u>: Evaporation, both natural and forced, is another important component of a water balance. Evaporation is the conversion of water from a liquid to a gas. This process is driven by the difference in temperature between the water and the atmosphere and the surface area of the water exposed to the atmosphere.

Natural evaporation occurs at the ambient temperatures for both the water and the air where they interface (i.e., a pond surfaces) and is basically the absorption of heat. Cloud cover is an important factor that slows evaporation, and so is wind which usually enhances evaporation as the wind speed increases. Natural evaporation is highly localized and changes daily, monthly and yearly. It is most often measured as "panevaporation", which is a measurement of the water lost from a "Class A evaporation pan", as used by the National Weather Service. Data from that apparatus cannot, however, be directly correlated to waterbodies such as reservoirs or wastewater ponds because of several factors including wind exposure, water depth, water clarity, and other siting conditions. For the Martin Lake site, historical experience has shown that pond evaporation rates are approximately 75% of the Class A pan evaporation rate.

Forced evaporation is water that is consumed through a process due to contact or exposure to above ambient temperatures. At Martin Lake, this is either in the form of hot gases through the FGD system or the hot ash in the bottom ash system. The amount of water lost due to forced evaporation is dependent on operation of the generating units and the amount of electricity produced. A generating unit operating at a 75% load evaporates roughly 25% less than one operating at 100%, or a full load. This is because the unit is consuming less fuel, producing less hot gas that goes through the FGD system and less ash to the bottom ash system, both of which result in less forced evaporation. The Martin Lake site is dispatched by the Electric Reliability Council of Texas (ERCOT), and the level or rate of generation (i.e., forced evaporation), is set by the ERCOT system supply and demand. The changes in the rate of generation are variable, occur in real time, and can have a range of several hundred megawatts over the course of a day. As an industry standard (and consistent with historical calculations for the Martin Lake site), the forced evaporation rate is approximately equal to one gpm per megawatt, or 60 gallons per megawatt hour.

Together, forced and natural evaporation is critical to the water balance at Martin Lake, representing the highest demand and largest consumers of water and wastewater. It is most noticeable during the hot summer season when all generating units are operating, both forced and natural evaporation rates are at their highest, and wastewater inventories decline daily.

Other factors: The third component of water consumption is the percent moisture that is in the products (e.g., bottom ash and scrubber solids or gypsum), that are either sold or properly disposed of in a landfill. This is a relatively constant value, typically around 10 - 12 percent, with the total volume dependent on amount of the materials that are disposed offsite. This is estimated at approximately 13 gpm and 119 gpm for bottom ash and scrubber solids, respectively, in 2019.

The low chloride content of the fuel used at the site is also an important factor in Martin Lake's ability to reuse its wastewater. Chlorides in the water of a mechanical or biological system can quickly become a problem and damage the metallurgy of the FGD equipment requiring frequent purging of the water. The low chlorides in the Martin Lake fuels help to maximize the reuse and recycling of the CCR system wastewaters.

<u>Water Management:</u> Intensive water management is a practice to minimize the amount of stormwater that is required to be captured and maximize the reuse of all water wastestreams produced at the site. This practice also makes it possible to minimize the input of new freshwater to only what is needed for specific processes, help to balance the equation, and avoid discharge of wastewater. At Martin Lake it requires constant diligence since so many of the large inputs and consumptive uses are highly variable and controlled by outside forces (e.g., rainfall, natural evaporation, and unit operation/generation (i.e., forced evaporation)).

These factors allow the Martin Lake site to use its non-CCR wastewater (e.g., low volume wastewater, boiler water treatment wastewater, lignite and coal pile runoff, captured stormwater, etc.) as sources of make-up water. The wastewaters are continuously recycled into the CCR systems which are large consumers of water, that require constant make-up, and that would otherwise require like volumes of freshwater (surface and/or groundwater).

All of this has led Martin Lake to adopt the reuse of wastewater and captured stormwater as make-up to the CCR systems in order to maintain the negative/neutral water balance. These practices are feasible at Martin Lake because of three factors: a generally favorable climate (long, hot summers with high evaporation rate), the use of low chloride fuel sources (lignite & western coal), and intensive wastewater management focused on recycling and reuse of wastewater.

2.1.1 CCR Wastestreams

Luminant evaluated each CCR wastestream generated at Martin Lake (See Table 2-2). The existing site water balance is included in Appendix A of this demonstration (see Figure 2). Fly ash is collected dry and disposed in A-1 Area Landfill onsite, therefore it is not part of this extension request. For the reasons discussed below in Table 2-2, the following CCR wastestreams must continue to be placed in the CCR surface impoundments due to the lack of alternative capacity both on and off-site.

Table 2-2: Martin Lake CCR Wastestreams

CCR Wastestream	Estimated Average Flow (MGD)	Description	Luminant Notes
Bottom Ash (and non- CCR mill reject) sluice	13.14	Operated as closed-loop system with CCR sluiced to dewatering bins for solids removal before collecting flow in Ash Pond Area for reuse.	The water in this system is recycled from the Ash Pond Area (with makeup from the onsite non-CCR ponds) or sent to PDP5 as required to maintain the overall site water balance and avoid discharge of wastewater and site stormwater into Martin Creek Reservoir.
FGD Blowdown	4 (3.3 as overflow, 0.69 as underflow and filtrate)	Purged to thickeners. Overflow returned to FGD system. Underflow can be routed to NSP but is typically routed to solid waste handling system with solids removed and hauled to A-1 Area Landfill. The filtrate (non-CCR) is then returned to the NSP. Underflow can be routed to PDP5 from the NSP when solid waste handling system is down for maintenance or when upset conditions occur in the process.	Water from the NSP is currently recycled to the FGD system through the wastewater recycling facility. The intermittent purges of CCR solids from the system during upsets or maintenance events cannot be routed to another location onsite outside the Ash Pond Area or PDP5. Prior to the April 11, 2021 deadline, Luminant will reroute the filtrate to the retrofitted EAP rather than the unlined NSP during normal operation; however, this wastestream will be comingled with other flows that must be managed in the other unlined portions of the Ash Pond Area and PDP5 to prevent discharges that exceed the permitted limits.

Since these wastestreams contain CCR material, they cannot be routed to any location onsite other than the existing CCR surface impoundments and the volume is too large to be managed onsite in temporary tanks. If 24 hours would provide sufficient residence time for the settling of the fine solids in these wastestreams, approximately 650 frac tanks would be required to store and treat the bottom ash transport water and an additional 35 frac tanks would be required for the FGD wastewater underflow (if the solids handling system is down for maintenance). These tanks would cover approximately 10 acres of the site, and even if there were enough flat area available with truck access for these tanks, they would require significant amounts of interconnecting piping and an unacceptable amount of potential leaks. Furthermore, assuming a solids content of 3% in the comingled wastestreams, approximately 20 of these frac tanks would need to be removed and replaced each day. Per the effluent limits at 40 C.F.R. § 423.16(e)(1), the FGD wastewater cannot be discharged offsite without significant pretreatment, for which the treatment systems currently do not exist onsite and would take over two years to design and install. This treatment system is not required for ELG compliance at Martin Lake and has not been initiated to date since Luminant plans to comply with

ELG using our historical water management practices to maintain zero discharge of CCR wastestreams. Per the limits at 40 C.F.R. § 423.16(g)(1), the bottom ash transport water cannot be disposed offsite. Consequently, the options considered to install temporary tanks to store and reuse this wastewater onsite or to install pipelines or mobilize trucking for offsite disposal of these CCR wastestreams is not considered a feasible alternative at Martin Lake.

2.1.2 Non-CCR Wastestreams

Luminant evaluated each non-CCR wastestream placed in the Martin Lake CCR surface impoundments. For the reasons discussed below in Table 2-3, each of the following non-CCR wastestreams must continue to be placed in the CCR surface impoundments due to lack of alternative capacity both on and off-site.

Table 2-3: Martin Lake Non-CCR Wastestreams

Non-CCR Wastestream	Estimated Average Flow (MGD)	Description	Luminant Notes	
Air Pre-Heater Wash Water	Outage Only	Wash water	Prior to the April 11, 2021 deadline, Luminant will reroute this wash water to the retrofitted EAP; however, these wastestreams will be sourced from or	
Boiler Non- Chemical Metal Cleaning Wastewater	Outage Only	Wash water from fireside and back-pass washes. Typically sluiced to dewatering bins for solids removal before collecting flow in Ash Pond Area for reuse.	comingled with other CCR wastestreams that must be managed in the other unlined portions of the Ash Pond Area and PDP5 to prevent discharges that exceed the permitted limits.	
Boiler Blowdown and Boiler Area Sump Flows	0.186	Boiler Blowdown and Wash Water (this is an estimate of water added to the system and does not include recycled portion of the CCR wastestreams in the sumps from hopper and boiler seal trough overflows which cannot be segregated)	Prior to the April 11, 2021 deadline, Luminant will reroute these flows to the retrofitted EAP; however, these wastestreams will be comingled with other CCR wastestreams that must be	
Miscellaneous Plant Drains and Wash Water	0.836 to EAP/WAP, 0.438 to NSP	Estimated flow of wash water incorporated into Ash Pond Area from boiler area and FGD solids handling area wash flows. The wastewater permit does not allow these contact waste streams to be routed to the Low Volume Retention Pond (Outfall 401).	managed in the other unlined portion of the Ash Pond Area and PDP5 to prevent discharges that exceed the permitted limits.	

Non-CCR Wastestream	Estimated Average Flow (MGD)	Description	Luminant Notes
			These flows are routed to the Ash Pond Area (and potentially from the Ash Pond Area to PDP5) via yard sumps and drains. If these wastestreams are no longer managed in the CCR impoundments, major modifications to the wastewater permit would be required as well as the development of additional storage and treatment system capacity, extending the overall compliance schedule. The site is only able to purge low
Misc. Process Wastewater (includes water pumped from Low Volume Retention Pond for Reuse)	Estimated at 0.448 (including service water contributions for wash activities and excluding stormwater contributions which are intermittent)	Includes, Demineralizer Regeneration Flows, Reverse Osmosis System Reject Flows, Other Water Treatment Wastewaters, Miscellaneous Plant Drains (wash water), and Oil Water Separator discharge.	volume wastewater via Outfall 401 under specific permit conditions coincident with equipment/unit outages and/or significant rain events (greater than 10-yr/24-hr storm event). Maximum flow would be at 0.16 MGD after treatment to achieve the permitted daily average selenium concentration allowed, capped at an annual maximum of 4.8 million gallons. Treatment of these flows concentrates the contaminants present in the CCR impoundments and reduces the site's ability to discharge stormwater (due to the combined 17.5-pound maximum annual limit for selenium). The peak flows from rain events cannot feasibly be discharged based on this restriction, and once comingled with CCR wastestreams in the CCR impoundments cannot be discharged at all. The forced evaporation at the site allows for reuse and elimination of this wastewater faster than it can be discharged and prevents the discharge of selenium to the captive biological species in the Martin Creek Reservoir which is open to the public.

Non-CCR Wastestream	Estimated Average Flow (MGD)	Description	Luminant Notes
Captured Site Stormwater (falls directly in the CCR impoundments or is pumped from Low Volume Retention and Stormwater Retention Ponds)	0.6 (based on daily average of average annual precipitation/run off captured; however, this flow is intermittent and has significant peak flow events throughout the year)	Stormwater that falls directly in impoundments (97 acres) or that is captured from solids handling area and the plant yard drains (83 acres)	These flows are routed to the Ash Pond Area (and potentially from the Ash Pond Area to PDP5) via yard sumps and drains. If these wastestreams are no longer managed in the CCR impoundments, major modifications to the wastewater permit would be required as well as the development of additional storage and treatment system capacity, extending the overall compliance schedule. Only able to purge stormwater via Outfall 301 at 0.4 MGD at the permitted daily average selenium concentration allowed, capped at an annual maximum of 105 million gallons per year. The peak flows from rain events cannot feasibly be discharged based on this restriction, and once comingled with CCR wastestreams in the CCR impoundments cannot be discharged at all. The forced evaporation at the site allows for reuse and elimination of this wastewater faster than it can be discharged and prevents the discharge of selenium to the captive biological species in the Martin Creek Reservoir which is open to the public.

2.1.3 Site-Specific Conditions Supporting Alternative Capacity Approach – § 257.103(f)(1)(iv)(A)(1)(i)

The four CCR surface impoundments at Martin Lake receive both the CCR sluice flows and the various non-CCR wastestreams produced onsite. In addition to providing treatment for the reduction of total suspended solids, the CCR impoundments are also a critical component in the management of the overall site water balance as described in Section 2.1.

The design storage and operational capacity of the Martin Lake CCR impoundments are summarized in Table 2-4. Each of these ponds, with the exceptions of PDP5 and the stormwater retention pond, require approximately 40% of the design volume to operate (i.e., the "operational volume" in Table 2-4). This volume is needed to provide suction to the pumps that recirculate the water back to the plant for re-use. Accordingly, only approximately 60% of the design volume of these ponds is available to manage the

inflow of water and wastewater into the ponds. The available storage capacity at any point in time is impacted by the accumulation of solids in the impoundments, as well as the ever-changing amount of stormwater and process water contained in the pond system.

Table 2-4: Summary of Pond Design Storage & Operational Capacity

Impoundment	Design Volume (gal)	Operational Volume (gal)
EAP	43,000,000	25,800,000
WAP	70,000,000	42,000,000
NSP	58,000,000	34,800,000
PDP5*	66,000,000	66,000,000
Low Volume Retention Pond	49,550,000	29,730,000
Storm Water Retention Pond*	34,300,000	34,300,000
Total Capacity (gal)	320,850,000	232,630,000

^{*} Surge ponds

Luminant considered the possibility of simultaneously retrofitting two ponds, but an evaluation of the construction complexity, logistical and technical issues for scheduling for two ponds that physically share many common utilities, many of the same dikes, the same roads, and the same access/egress points with the adjacent pond that must remain in-service to support power plant operations, presented unacceptable risk to operation of the generating units. It also presented significant water balance, water management, and wastewater permit compliance risks, even under normal rainfall conditions.

The typical operation and management of the CCR ponds for the past several decades has been that one pond is generally considered out-of-service to allow for solids removal. Ordinarily, it takes 6-8 months of out-of-service time to complete solids removal. If additional work for maintenance or repairs is needed, the out-of-service period is often extended.

If a pond is out-of-service for a simple clean-out, the clean-out operations can be stopped and the pond quickly returned to service temporarily if necessary due to unplanned operational events or heavy rainfall; however, if the pond requires liner repairs or replacement it is critical to the project to complete all the necessary repairs or replacement before the pond is returned to service. This means that during a project involving a liner retrofit, water balance becomes critical and sometimes requires extraordinary management effort.

Figure 2-1 below shows a five-year forecast of the pond levels onsite, assuming all ponds are in service. This figure is based on the average annual rainfall (48 inches per year, distributed on an average monthly basis), the last five years of average monthly generation (from EIA data), forced evaporation at one gpm per megawatt (or 60 gallons per megawatt hour), natural evaporation at 75% of the Class A pan evaporation rate for the pond areas, 50 million gallons per month of boiler blowdown, service water, and low volume wastewater contributions (approximately 1.908 MGD excluding outage flows and stormwater per Table 2-3), pond storage volumes per Table 2-4, and using a starting pond available capacity consistent with measurements at the site on October 20, 2020 (approximately 50% of the pond operational capacity available). As shown, the minimum available pond capacity over the next few years is forecasted to be approximately 48 million gallons in May of 2021, increasing to 73 million gallons in May of 2022, and 97 million gallons in May of 2023 (assuming all of the ponds are in service). Again, these reserve limits are based on average rainfall only, but clearly demonstrate that removing even the smallest remaining CCR impoundment from service for retrofit (the NSP at approximately 35 million gallons of operational volume) significantly compromises the site's storage capacity. Removing two impoundments from service concurrently is not feasible based on average rainfall, historical average monthly evaporation, and the estimated average plant process water contributions.

Figure 2-1: Average Monthly Plant Water Balance vs Impoundment Storage Capacity

The current plan involves removing the WAP (70 million gallons of total volume) from service on July 5, 2021, at which point the site is forecasted to have 21 million gallons of remaining storage capacity (not

Luminant 2-13 Burns & McDonnell

including the WAP). Martin Lake intends to remove solids from the NSP concurrently with the WAP retrofit; however, the NSP will not be removed from service and will remain available to receive additional water as required to maintain the site water balance. If the site were to attempt to remove two ponds from service simultaneously for retrofits, any number of single events such as an unplanned unit outage, equipment failure for the one in-service pond, along with above average rainfall could very likely create wastewater management issues that would require the temporary placement of wastewater back into one of the ponds.

Average rainfall at the site for April through June is 13.12 inches (approximately 190 acre feet or 62 million gallons of water). These wet months are also coincident with spring outages, representing some of the lower forced evaporation rates for the site. Per Figure 2-1, these months represent the periods with the minimum available storage capacity in the site pond system. The following summer months provide the best conditions for earthwork construction, particularly pond work, and consequently, Martin Lake must perform the retrofit activities in the summer months (ideally July through October) during periods with reduced rainfall and peak unit operations. As described in Section 2.1, a 10-year 24-hour storm event at Martin Lake (7.1 inches of rainfall) would contribute approximately 34 million gallons of stormwater runoff which could not be discharged at a rate higher than 0.4 MGD (2 pounds per rolling 30 days per the selenium monitoring program). If this event occurs at any point during the retrofit cycle, the plant's ability to continue operations without discharging would be compromised. Performing the retrofit operations sequentially to have one pond out-of-service at any given time in the summer months provides the operational flexibility and adequate pond space required for upset conditions, such as above average rainfall events or periods or unscheduled unit shutdowns.

2.1.4 Impact to Plant Operations if Alternative Capacity Not Obtained – § 257.103(f)(1)(iv)(A)(1)(ii)

As indicated in Table 2-4 and Figure 2-1, removing any more than one of the CCR impoundments from service would significantly reduce the storage capacity of the site pond system by over 30%. The remaining impoundments onsite (low volume wastewater retention pond, and stormwater retention pond) do not typically have space to independently store and/or treat a 10-year/24-hour rainfall event (due to water already present in the ponds that are never emptied, and due to routine solids accumulation and management) with more than one of the CCR ponds out-of-service. The loss of storage space from any one CCR pond adds to the volume that must be handled by the remaining ponds. Any significant rainfall during the period where more than one impoundment is out of service for retrofit construction would create insurmountable water balance concerns and wastewater management/permit issues.

In addition to the TPDES wastewater permit limitation on selenium (discussed in Section 2.1), there are also other permit limitations that do not allow the reroute of certain non-CCR wastestreams from the CCR ponds to the non-CCR ponds. From a risk and a wastewater compliance standpoint, it is basically untenable to remove more than one of the CCR ponds at the same time while a generating unit is in operation. If the plants were required to cease operation on April 11, 2021, to retrofit the impoundments and maintain CCR compliance, the site's evaporation capacity would be significantly reduced, the rainfall would overwhelm the impoundments, and the site would be forced to discharge wastestreams in potential violation of the permit. Consequently, the requested extension is necessary to allow continued operation of the plant during the retrofit activities.

To maintain reliable generation and sufficient water storage to sustain zero discharge during average and heavy rainfall events, the plant must operate a minimum of three out of the four CCR surface impoundments. Specifically, for the plant to continue operating and generating electricity during retrofit work, the CCR impoundments will require sequential retrofitting to consist of diverting all wastestreams from the impoundment to be retrofitted by pumping water to the other impoundments, removing CCR materials (bottom ash or FGD solids) for disposal in the A-1 Area landfill, relining the impoundment, returning the impoundment to service, and starting the next impoundment retrofit. All of this must take into consideration typical and possibly atypical wet weather conditions.

2.1.5 Options Considered Both On and Off-Site to Obtain Alternative Capacity

As EPA explained in the preamble of the 2015 rule, it is not possible for sites that sluice CCR material to an impoundment to eliminate the impoundment and dispose of the material offsite. See 80 Fed. Reg. 21,301, 21,423 (Apr. 17, 2015) ("[W]hile it is possible to transport dry ash off-site to [an] alternate disposal facility that is simply not feasible for wet-generated CCR. Nor can facilities immediately convert to dry handling systems."). Luminant agrees with EPA in this assessment and confirms that off-site alternatives are not an option for wet-generated CCR and wet-generated non-CCR wastestreams. At Martin Lake, all dry-handled CCR wastestreams are currently disposed of in the A-1 Area landfill onsite. The wet-generated CCR wastestreams are comingled with non-CCR wastestreams in the site impoundments and reused within the plant process. If the excess comingled water generated at the site were able to be collected in tanks and trucked offsite, approximately 250 trucks would be required per day driving an unknown distance across rural Texas roads. This significant daily tanker truck volume would result in increased potential for safety

Luminant 2-15 Burns & McDonnell

¹ As EPA recognized in the final rule, "[t]he Martin Lake circumstances are unique in that the facility plans to retrofit four impoundments, and each retrofit must occur sequentially because the facility requires a minimum of three impoundments to be operating at any one time in order for the plant to operate." 85 Fed. Reg. at 53,528.

and noise impacts and further increases in greenhouse gas emissions and carbon footprint. Furthermore, the current ELG rules do not allow offsite discharge of FGD blowdown without pretreatment to meet the effluent limits at 40 C.F.R. § 423.16(e)(1), for which treatment systems do not currently exist and would likely take longer to install than the time expected to retrofit the remaining site impoundments. The ELG rules (at 40 C.F.R. § 423.16(g)(1)) forbid the discharge of bottom ash transport water to publicly owned treatment works (including the waters comingled with the bottom ash transport water). Consequently, there are no feasible offsite-disposal options for the wet-generated wastestreams at Martin Lake. The only feasible onsite alternatives involve continued use of the CCR surface impoundments at Martin Lake.

Martin Lake evaluated the construction of new impoundments as a potential solution for CCR compliance. As shown on Figure 3 in Appendix A, Martin Lake is landlocked with the Martin Creek Reservoir located on the north, east, and south sides of the plant. The western boundary is formed by residential properties and mining operations as shown in Figure 3. Much of the site that is outside the floodplain is occupied with critical infrastructure including the lignite/coal storage piles, the switchyard, transmission lines, railroad lines, the solids handling area, and the existing site impoundments. The limited space and congestion in and around the plant and the solids handling areas does not provide sufficient space for the construction of a new pond(s) or temporary tanks to manage and store the CCR and non-CCR wastestreams. The other areas adjacent to PDP5 are not considered technically feasible to support the construction of new impoundments due to potential wetlands impacts, location restrictions concerns, proximity to the plant boundary and adjacent private water supply wells, acquisition of water rights, and permitting concerns as noted on Figure 3 in Appendix A. Furthermore, additional impoundments would only increase the amount of stormwater captured and managed on the site.

The other options considered for alternative disposal capacity of the wastestreams currently routed to the Martin Lake CCR surface impoundments are summarized in Table 2-5. Additional details on the CCR and non-CCR wastestreams included in this demonstration request are found in Table 2-2 and Table 2-3, respectively.

Table 2-5: Martin Lake Alternatives for Disposal Capacity

Alternative Capacity Technology	Average Time (Months) ¹	Feasible at Martin Lake?	Selected?	Luminant Notes
Conversion to dry handling	33.8	Yes	No	A dry bottom ash conversion could be performed; however, the duration is expected to take longer than the CCR impoundment retrofits and would delay the removal of CCR materials from the unlined impoundments until this conversion is completed. Furthermore, Martin Lake would still require large volumes of storage for the stormwater and other non-CCR wastestreams onsite, which would require the use of real estate currently occupied by the CCR surface impoundments.
Non-CCR wastewater basin	23.5	No	No	This option only provides a partial solution since the CCR wastestreams cannot be directed to non-CCR basins. Furthermore, the volume of non-CCR wastestreams and stormwater cannot be contained within the non-CCR basins that exist onsite, and cannot be fully discharged according to the mass selenium limits in the discharge permit. Additional ponds would increase the amount of stormwater captured onsite, and there is not suitable real estate onsite to construct additional non-CCR basins for the storage of non-CCR wastestreams without significant grading and permitting efforts that would likely extend this average timeline estimated by EPA (see Figure 3 in Appendix A).
Wastewater treatment facility	22.3	No	No	Due to Martin Lake practices for recycling water within the plant, building a treatment system (such as chemical precipitation, settling ponds, or concrete tanks) to remove solids would not assist with overall storage volume needs for stormwater and process water management at the Martin Lake site (hundreds of millions of gallons required). The combined mass limit on selenium restricts the potential to discharge this water to the adjacent Martin Creek Reservoir, so water treatment alone would not provide adequate compliance. The site must capture and reuse the vast majority of its wastewater and stormwater.

Alternative Capacity Technology	Average Time (Months) ¹	Feasible at Martin Lake?	Selected?	Luminant Notes
New CCR surface impoundment	31	No	No	There is not suitable real estate onsite to construct a new CCR surface impoundment that could manage and store the plant's wastestreams (see Figure 3 in Appendix A). The individual USACE 404 permitting activities associated with the remaining areas of the site (or the construction to fill the area and provide adequate aquifer separation) are expected to increase the average time estimated by EPA. This option would also delay the removal of CCR materials from the unlined impoundments until this impoundment construction is completed.
Retrofit of a CCR surface impoundment	29.8	Yes	Yes	This alternative maintains required water storage onsite and accelerates the removal of CCR material from the unlined impoundments earlier than all other options considered.
Multiple technology system	39.1	No	No	Any multi-technology solution would require hundreds of millions of gallons of storage for non-CCR wastestreams and stormwater management. This is not considered technically feasible at Martin Lake as previously discussed.
Temporary treatment system	Not defined	No	No	Treatment and discharge of the water is not an option for the wastestreams at Martin Lake due to the combined mass limit on the discharge of selenium from the Martin Lake outfalls. Luminant would need to provide 35,000,000 gallons of storage to replace the operational volume of the smallest CCR impoundment onsite and allow for continued operation while retrofitting two impoundments simultaneously. Given the size of the wastestreams that would need to be managed and the non-CCR wastewater storage capacity needed to replace the CCR surface impoundments at Martin Lake, temporary treatment systems are not practical. Luminant has chosen to focus on implementing the necessary measures for the retrofit of the Martin Lake CCR surface impoundments rather than try to develop temporary tank-based storage for all wastestreams.

¹From Table 3. See 85 Fed. Reg. at 53,534.

2.1.6 Approach to Obtain Alternative Capacity

Due to the overall water management needs of the facility, including storage of CCR and non-CCR wastestreams generated at the site, the only viable solution for alternative disposal capacity involves a sequential retrofit of the existing CCR surface impoundments pursuant to the retrofit criteria in 40 C.F.R.

§ 257.102(k). As discussed in more detail in Section 2.1.5 and shown in Figure 3 in Appendix A, there is not enough site footprint available to construct a new CCR surface impoundment outside the boundary of the existing impoundments, and even if dry bottom ash handling systems were installed at Martin Lake, the plant would continue to require the surface area and the volume of the existing impoundments for evaporation and water management at the site. Consequently, even if a dry bottom ash handling system was installed, a similar retrofit activity (removal of CCR material and installation of a new liner system) to manage non-CCR wastestreams would still be required and the dry ash conversion project would likely only extend the schedule required for the overall project.

As shown on the schedule in Appendix B, Luminant has been taking steps to address the CCR surface impoundments at Martin Lake since 2015. Luminant hired Burns & McDonnell to evaluate the steps necessary to comply with the CCR Rule published in April 2015. Burns & McDonnell also evaluated the overall plant water balance to estimate the impacts associated with taking impoundments out of operation during various operational scenarios. Luminant cannot remove more than one of its CCR surface impoundments from service at a time to perform retrofit activities (see Section 2.1.4).

Luminant installed monitoring wells in September of 2015 and performed background groundwater sampling from October of 2015 to December of 2016. During this time, several engineering firms assisted Luminant in preparing the required CCR compliance documentation, which Luminant posted on its public CCR website. Key information is summarized in Table 2-1. As indicated in Luminant's CCR compliance documents, the Martin Lake CCR impoundments comply with the location restrictions, the required safety factors and stability assessments were satisfied, and the impoundments were deemed to be low hazard facilities.

In February 2019, after beryllium, cobalt, and lithium were first identified at statistically significant levels (SSL) above the groundwater protection standards (GWPS), Luminant issued an RFP for engineering services to support the retrofit activities of the Ash Pond Area. HDR was awarded the scope to evaluate retrofit alternatives and design the selected solution. HDR investigated alternatives to perform the retrofit as follows:

- 1. Retrofit the EAP, Subdivide and Retrofit the WAP, and Decommission the NSP
- 2. Retrofit the EAP, Subdivide and Retrofit the NSP, and Decommission the WAP
- 3. Retrofit the EAP, WAP, and NSP (maintaining the existing footprint/storage capacity)
- 4. Retrofit the EAP, Subdivide and Retrofit the WAP, and Cap-in-Place the NSP

Each alternative, except for Alternative 3, requires elimination of a portion of the CCR surface impoundment area available to the plant, which would reduce the water storage capacity and result in water balance issues, as summarized in Section 2.1.4. Each alternative, except for Alternate 3, also requires construction of intermediate berms within the CCR impoundment footprint, which would extend the permitting and construction schedule for the project and further reduce the usable volume of the impoundments. Consequently, Luminant has selected Alternative 3 to retrofit all three impoundments in the Ash Pond Area in sequence. Each of these impoundments are currently lined with a 4" concrete revetment mat, two layers of HDPE geomembrane material that sandwich a drainage net or geocomposite material, and various thicknesses of underlying clay soils. As discussed in the retrofit plan prepared by HDR pursuant to 40 C.F.R. § 257.102(k), and posted to Luminant's CCR website, the retrofit project includes leaving this existing liner system in place and retrofitting in the following general sequence for each impoundment, beginning with the EAP in 2020, and then progressing to the WAP in 2021 and the NSP in 2022:

- Remove any CCR material, rocks, and other sediment from the pond. The material will be loaded on railcars for transport to the Martin Lake A-1 Area Landfill.
- Clean the existing concrete revetment mat surface, by washing with water from the adjacent operating ponds and returning both the wash water and sediment to the operating ponds.
- Load and haul general soil fill material from the Owner's stockpile located at Liberty Mine. This stockpile is located approximately 4.5 miles from the Ash Pond Area. This pile may be relocated as required to support mining operations.
- Place the general fill material over the existing concrete revetment to a depth of at least six (6) inches, nominally compact it, and smooth roll to finish the installation. This material will provide the soil buffer/grading layer above the existing concrete surface as referenced in the facility retrofit plan.
- Install a composite liner system including a geosynthetic clay liner (GCL) with a maximum hydraulic conductivity of 1 x 10⁻⁹ cm/sec overlain by a 60-mil high-density polyethylene (HDPE) geomembrane, as specified in 40 C.F.R. § 257.70(b).

As shown in Table 2-4, PDP5 provides a significant amount of the excess site storage capacity and must be used to receive CCR and non-CCR wastestreams during the retrofit of the Ash Pond Area. Once the Ash Pond Area is retrofitted and returned to service, PDP5 may be retrofitted beginning in July of 2023 (following the wet spring months and spring outage season that requires increased water storage capacity compared to the summer months at Martin Lake) or, alternatively, PDP5 may qualify for the alternate liner demonstration under the Part B CCR Rule.

2.1.7 Technical Infeasibility of Obtaining Alternative Capacity prior to April 11, 2021

Luminant began designing the retrofit of the Ash Pond Area impoundments in early 2019. The retrofit of the first of three impoundments (EAP) was completed in early October 2020. The remaining two impoundments within the Ash Pond Area will be completed sequentially after the first retrofit is complete, and Luminant and its contractors are anticipating this work to be completed for one pond in each calendar year. PDP5 will be retrofitted with a composite liner following completion of the Ash Pond Area retrofit (unless it qualifies for an alternate liner demonstration under the future Part B Rule). No more than one impoundment can be removed from service at a time without reducing the site water storage capacity below the necessary minimum levels for continued intermittent operation without discharge from the site pond system, and additional storage and treatment system capacity would need to be installed and the discharge permit modified if continued discharge were required. Consequently, it is not possible to implement the measures discussed above in a way that would likely be successful by April 11, 2021.²

2.1.8 Justification for Time Needed to Complete Development of Alternative Capacity Approach – § 257.103(f)(1)(iv)(A)(1)(iii)

The schedule for developing alternative disposal capacity is described in more detail in Sections 2.2 and 2.3. The milestones for progress are summarized in Table 2-6 below. Luminant is requesting an alternative site-specific deadline of June 29, 2022, for the Ash Pond Area, to allow for the continued placement of CCR and non-CCR wastestreams in the Ash Pond Area while the remaining impoundments are retrofitted. In addition, Luminant is requesting an alternative site-specific deadline of July 1, 2023, for PDP5, to allow for the continued placement of CCR and non-CCR wastestreams in PDP5 during the Ash Pond Area retrofit project and thereafter to initiate retrofit of PDP5 (if necessary following an EPA decision on the alternate liner application and demonstration expected to be submitted for PDP5 under the Part B Rule prior to November 30, 2020, and November 30, 2021, respectively). As discussed above in Section 0, the primary factor affecting the time needed to complete the retrofit project at Martin Lake is the fact that the facility was designed and experience has shown that no more than one impoundment at a time can be removed from service at a time. The removal of an impoundment for retrofit activities must occur in the summer months, when historically the rainfall volumes are reduced coincident with peak unit operations and evaporation capacity; therefore minimizing the facility's water storage requirements and minimizing the potential discharge from the facility (as well as any potential exceedances of the permitted selenium limit).

Luminant 2-21 Burns & McDonnell

² As EPA recognized in the final rule, "[t]he Agency intends for unique circumstances like Martin Lake to be addressed through the alternative closure provisions of the final rule." 85 Fed. Reg. at 53,528.

If Luminant were to consider alternative temporary solutions to allow for more than one impoundment to be removed from service at a time, such a measure would require the use of approximately 1,700 frac tanks to provide similar storage capacity to the operational volume of the smallest impoundment requiring retrofit onsite (the NSP at 34.8 million gallons) simultaneously with the WAP or with PDP5. These tanks would cover over 25 acres of the site, and even if there were enough flat area available with truck access for these tanks, they would require significant amounts of interconnecting piping and an unacceptable number of potential leaks. Furthermore, assuming a solids content of 1% in the comingled wastestreams, approximately 17 of these frac tanks would need to be removed and replaced each day. Luminant expects considerable challenges with removing the solids from these frac tanks at the site landfill.

Because of the high risk of leakage from the tank piping and the need for daily tank removal and replacement due to solid accumulation, the tank site would cover at least 25 acres plus an estimated 10 acres for the roads and pipeline corridors to and from the tank array. As a result, at least 35 acres of controlled stormwater drainage (~45 million gallons) would have to be added to the current 180 acres that is managed in the ponds. Temporary tanks for storage of millions of gallons of stormwater are not considered technically feasible to mobilize and allow for simultaneous retrofit of two site impoundments. Consequently, Luminant believes this requested schedule showing sequential annual retrofits for each of the remaining two (or potentially three) CCR surface impoundments onsite represents the fastest technically feasible timeframe for compliance at Martin Lake, and these durations are consistent with EPA's assessment that 12 months accurately reflects the amount of time needed to retrofit a single surface impoundment. See 85 Fed. Reg. at 53,529.

Table 2-6: Retrofit Project Progress Milestones

Year or Progress Reporting Period	Status	Milestone Description	Luminant Notes
2019	Completed	Evaluate retrofit scenarios, Complete Design Activities	Luminant began design of the retrofit solution in early 2019.

Year or Progress Reporting Period	Status	Milestone Description	Luminant Notes	
2020	Completed	Bid and Award construction contract for EAP retrofit, complete the EAP retrofit, begin CCR removal from the WAP, submit Demonstration under 257.103(f)(1) requesting extension of the deadline to cease placing wastestreams into Ash Pond Area and PDP5	The construction of the first pond retrofit (EAP) has been completed as of early October 2020.	
April 30, 2021	Scheduled	Bid and Award construction contract for WAP retrofit, Continue removal of CCR from WAP	The WAP will remain in service during CCR removal to receive excess rainfall and prevent unnecessary discharge until late June 2021. On July 5, 2021, flows will cease to the WAP and will be routed to the retrofitted EAP and the unlined NSP, and PDP5 will remain in service to continue to provide storage capacity for excess CCR and non-CCR wastestreams and stormwater. In the event the site experiences heavy rain events during the unit outages when the WAP is scheduled to be retrofitted, temporary use of the WAP for wastewater or stormwater storage may be necessary.	
October 31, 2021	Scheduled	Complete removal of CCR from WAP, Complete construction of WAP retrofit (other than punchlist items), Begin Dewatering/CCR Removal from NSP	The WAP construction is forecasted to be completed within calendar year 2021. Concurrent with the WAP retrofit, NSP CC removal operations will be initiated; however, the NSP will remain in service to receive excess rainfall and prevent unnecessary discharge until late June 202	
April 30, 2022	Scheduled	Continued CCR Removal from NSP, Bid and Award construction contract for NSP retrofit	On June 29, 2022, flows will cease to the NSP and will be routed to the retrofitted EAP and WAP. PDP5 will remain in service to continue to provide storage capacity for excess CCR and non-CCR wastestreams and stormwater. In the event the site experiences heavy rain events during the planned unit outages prior to when the NSP is scheduled to be retrofitted, the temporary use of the NSP for wastewater or stormwater storage may be necessary.	

Year or Progress Reporting Period	Status	Milestone Description	Luminant Notes
October 31, 2022	Scheduled	Complete construction of NSP retrofit and begin potential detailed design for PDP5 retrofit	Luminant is projecting that retrofit activities for the Ash Pond Area can be completed by November 1, 2022. This is subject to delays primarily associated with the unknown efficiency of dewatering/dredging of scrubber solids from the NSP. At this point, flows will be concentrated to the retrofitted Ash Pond Area and Luminant will begin removing CCR material from PDP5 if required; however, PDP5 must remain in service to receive excess rainfall and prevent unnecessary discharge until July 1, 2023.
July 1, 2023	TBD (depends on alternate liner status under Part B Rule)	Begin retrofit for PDP5	PDP5 would cease receiving all wastestreams on July 1, 2023, and begin retrofit if it does not qualify for alternate liner demonstration.

2.2 Detailed Schedule to Obtain Alternative Disposal Capacity - § 257.103(f)(1)(iv)(A)(2)

The required visual timeline representation of the schedule is included in Appendix B of this demonstration and described further in Section 2.3 below.

2.3 Narrative of Schedule and Visual Timeline - § 257.103(f)(1)(iv)(A)(3)

The third section for the workplan is a "detailed narrative of the schedule and the timeline discussing all the necessary phases and steps in the workplan, in addition to the overall timeframe that will be required to obtain capacity and cease receipt of waste." 85 Fed. Reg. at 53,544. As EPA explained in the preamble to the Part A rule, this section of the workplan must discuss "why the length of time for each phase and step is needed, including a discussion of the tasks that occur during the specific stage of obtaining alternative capacity. It must also discuss the tasks that occur during each of the steps within the phase." 85 Fed. Reg. at 53,544. In addition, the schedule should "explain why each phase and step shown on the chart must happen in the order it is occurring and include a justification for the overall length of the phase" and the "anticipated worker schedule." 85 Fed. Reg. at 53,544. EPA notes the overall "discussion of the schedule assists EPA in understanding why the time requested is accurate." 85 Fed. Reg. at 53,544.

As described in Section 2.1.6, the CCR surface impoundments must be retrofitted sequentially, with no more than one impoundment undergoing retrofit at any point in time, and preferably during the summer months while the units are operating and evaporating any excess water that could accumulate. These periods require the least total water storage capacity to maintain zero discharge operations at the site. This start date is subject to delays caused by significant rain events as well as any prolonged outages at the plant.

Based on the estimated durations shown in Appendix B, each impoundment retrofit will require a minimum of one construction season for completion. The following paragraphs outline the scope required for the retrofit of each impoundment in the Ash Pond Area. The design drawings, which include additional scope definition for each impoundment, are included in Appendix C (EAP), Appendix D (WAP), and Appendix E (NSP). The design for the PDP5 retrofit will be completed if necessary following the determination of the facility's alternate liner status under the Part B Rule. The construction activities for the PDP5 retrofit are not included within this Demonstration as they will occur after the requested alternative deadline for PDP5 (if retrofit is necessary following EPA's review of PDP5's alternate liner status under the Part B Rule).

EAP Retrofit Activities: As noted on the schedule in Appendix B, the construction for the EAP retrofit has been completed; however, the sequence of activities is included in this narrative as it provides context for the remaining facilities that will rely on similar activities and sequence to this completed project. Luminant removed nearly all the CCR material in 2019. The durations shown on the project schedule match both the estimates developed by the selected construction contractor and experienced on the EAP retrofit. These durations are based on an average work schedule of six days per week, are subject to delays caused by significant rain events, and are based on the following scope of work which must be performed in the sequence listed below:

- Contractor shall order necessary materials and mobilize to the site. The lead time for the liner
 materials and the piping are shown on the Appendix B schedule and are based on feedback from
 suppliers and confirmed by the construction contractor.
- Contractor shall remove any remaining CCR material, rocks, and sediment from the EAP, and haul
 and stockpile this material at the Decant Basin. Luminant will load the stockpiled material onto rail
 cars for disposal at the Martin Lake A-1 Area Landfill. This effort is referred to as Site Preparation
 on the Appendix B schedule.
- Contractor shall use water from the adjacent WAP or NSP to wash remaining CCR material off the sides and floor of the EAP and remove the material. The existing revetment mat within the EAP will be visually inspected to confirm CCR material, rocks and sediment have been removed.

- Contractor shall load and haul general soil fill material from the stockpile located at Liberty Mine. This stockpile is located approximately 4.5 miles from the EAP. Contractor shall place the general fill material over the existing concrete revetment to a depth of at least six (6) inches, nominally compact it, and smooth roll to finish the installation.
- Contractor shall load and haul general soil fill material from the stockpile located at Liberty Mine to the location identified as the "Temporary Stockpile Location" south of PDP 5 (see Appendix C Drawings). Upon completion, Contractor shall seed the stockpile and install erosion control measures, such as silt fencing, at the stockpile. The stockpiled material, either from the mine or this temporary location, will be used to support the subsequent WAP and NSP retrofit activities.
- Contractor shall install a GCL over the sides and floor of the EAP and secure it in a perimeter anchor trench.
- Contractor shall install a 60-mil HDPE liner directly on the GCL and secure it in a perimeter anchor trench. This occurred at the same time as the GCL placement, lagging slightly behind it but overlapping. Consequently, these activities are shown on the same timeline in Appendix B. As shown in Appendix C, the GCL and the membrane are also attached to piping (air vents and dewatering line) with pipe boots and are battened to the concrete structures within the impoundment during this installation period.
- Contractor shall modify the existing 48-inch suction line on the south end of the pond by increasing the screened area as shown in the plans (see Appendix C Drawings). This activity is complete.
- Contractor shall install all 12-inch HDPE pipe as shown in the plans. Each pipeline will start at its corresponding isolation valve previously installed by Luminant. This work has been completed so the new lines can be placed into service prior to returning any water to the EAP and to allow for full function of the plant recycle systems once the WAP and eventually NSP are removed from service for retrofitting. As shown in Appendix C, this piping is anchored to a concrete slab that is tied into the new EAP impoundment liner and will not create a new liner penetration. Approximately 5,400 linear feet of piping was rerouted or added as part of this project.
- The Contractor shall pump off stormwater as necessary from the EAP to the WAP during construction. This is an ongoing activity that will be required following each rain event during the construction period. Consequently, it is not shown on the construction schedule.
- Upon completion, Luminant will resume operation of the EAP by transferring a portion of the water from the WAP so CCR material removal efforts can progress more efficiently at that facility.

<u>WAP Retrofit Activities:</u> As noted on the schedule in Appendix B, the design is completed for the WAP retrofit; however, the construction contract has not been bid or awarded at this time. This procurement effort

will be completed in time to support construction of the WAP retrofit (planned for July 2021), after the spring rainfall periods when the storage capacity required at Martin Lake is reduced by the peak summer operation of the generating units. Luminant began removing a majority of the CCR material during the 2020 summer operational period and those efforts are continuing; however, any significant rain events that occur in the fall of 2020 through the spring of 2021 may need to be diverted to the WAP as required. The remaining durations shown on the project schedule are based on the estimated durations and work schedule received from the EAP construction contractor and have been adjusted based on the estimated quantity differences between the EAP and the WAP. The WAP retrofit includes the following scope of work, which must be performed in the sequence listed below:

- Contractor shall order necessary materials and mobilize to the site.
- Contractor shall remove any remaining CCR material, rocks, and sediment from the WAP, and haul and stockpile this material at the Decant Basin. Luminant will load the stockpiled material onto rail cars for disposal at the Martin Lake A-1 Area Landfill.
- Contractor shall use water from the adjacent EAP or NSP to wash remaining CCR material off
 the sides and floor of the WAP and remove the material. The WAP will be visually inspected to
 confirm CCR material, rocks and sediment have been removed.
- Contractor shall load and haul general soil fill material from the stockpile, which will have been relocated adjacent to PDP5. Contractor shall place the general fill material over the existing concrete revetment to a depth of at least six (6) inches, nominally compact it, and smooth roll to finish the installation. This activity must be completed after the existing revetment mat is inspected and confirmed to be free of CCR material but before the liner system can be placed.
- Contractor shall install a GCL over the sides and floor of the WAP and secure it in a perimeter anchor trench.
- Contractor shall install a 60-mil HDPE liner directly on the GCL and secure it in a perimeter anchor trench. This will occur at the same time as the GCL placement, lagging slightly behind it but overlapping. Consequently, these activities are shown on the same timeline. As shown in Appendix D, the GCL and the membrane will also be attached to piping (air vents and standpipe) with pipe boots and will be battened to the concrete structures within the impoundment during this installation period.
- The Contractor shall pump off storm water as necessary from the WAP to the EAP during construction. This is an ongoing activity that will be required following each rain event during the construction period. Consequently, it is not shown on the construction schedule.

 Upon completion, Luminant will post the required notification of retrofit completion and resume operation of the WAP, likely by transferring the water from the NSP so that CCR material removal efforts can progress more efficiently at that facility.

NSP Retrofit Activities: As noted on the schedule in Appendix B, the design is completed for the NSP retrofit; however, the construction contract has not been bid or awarded at this time. This procurement effort will be completed in time to support construction of the NSP retrofit beginning approximately July 2022, when the storage capacity required at Martin Lake is reduced by the peak summer operation of the generating units. Luminant will begin removing the CCR material during the summer 2021 operational period and the impoundment will be dewatered once the WAP is placed into service; however, any significant rain events that occur through the spring of 2022 will be diverted to the NSP as required to prevent discharge from the site. The durations shown on the project schedule are based on the estimated durations and work schedule developed by the EAP construction contractor and have been adjusted based on the estimated quantity differences between the EAP and the NSP. The contractor scope for the NSP retrofit is identical to the WAP except for the quantity differences and an additional pipe rack liner attachment. The design drawings for the NSP retrofit are included in Appendix E.

The CCR removal efforts at the NSP will be different than at the WAP. There is a similar amount of material in each pond; however, the scrubber sludge will be significantly more challenging to dewater and decant than the bottom ash fines. This leads to a longer removal schedule necessary to drain the material for excavation and decant the material (at the Decant Pad/Basins) prior to loading on rail cars. Even when dewatered, this material will be significantly wetter than the ash fines which may impact landfill operations during disposal. This operation will likely require a larger surface area to promote spreading and drying of the material prior to compaction, and that could impact the rate at which material can be hauled to the landfill. Luminant will provide ongoing schedule updates in the required semi-annual progress reports; however, this activity, along with any anticipated delays due to rain or delayed starts due to increased demand for water storage onsite, are the primary factors that could extend the schedule for this retrofit project.

<u>PDP5</u> Retrofit Activities: Luminant intends to evaluate the Part B Rule requirements and anticipates applying for the alternate liner demonstration for PDP5 prior to or on November 30, 2020. For purposes of this request, Luminant has included the construction sequence for a potential PDP5 retrofit that may follow the NSP retrofit in the same sequence described for the Ash Pond Area above if the EPA denies the application or the ensuing demonstration. PDP5 cannot be removed from service until approximately July 1, 2023, following the spring outage season and typically wet spring months and coincident with summer

peak operation so that plant operations can be sustained with the reduced pond capacity during the retrofit project. The schedule in Appendix B shows the design and construction procurement efforts being completed as required to meet this allowable construction period.

2.4 Progress Towards Obtaining Alternative Capacity - § 257.103(f)(1)(iv)(A)(4)

In the preamble to the final Part A rule, EPA explains that this "section [of the workplan] must discuss all of the steps taken, starting from when the owner or operator initiated the design phase all the way up to the current steps occurring while the workplan is being drafted." 85 Fed. Reg. at 53,544. The discussion also must indicate where the facility currently is on the timeline and the processes that are currently being undertaken at the facility to develop alternative capacity. 85 Fed. Reg. at 53,545.

As shown in Appendix B and described in Section 2.1.6 and Table 2-6, Luminant has made considerable progress toward creating alternative disposal capacity for the CCR and non-CCR wastestreams at Martin Lake, specifically the Ash Pond Area units. Design for the retrofit project is complete, the required notification of intent to retrofit has been posted to Luminant's CCR website for the Ash Pond Area, and construction of the EAP retrofit has been completed as shown in Appendix B, prior to the April 11, 2021, deadline. Luminant has also started removing the CCR material from the WAP, and that effort is anticipated to be completed early next year.

3.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE

To demonstrate that the criteria in 40 C.F.R. § 257.103(f)(1)(iii) has been met, the following information and submissions are submitted pursuant to 40 C.F.R. § 257.103(f)(1)(iv)(B) to demonstrate that the CCR surface impoundments at Martin Lake are in compliance with the CCR rule.

3.1 Owner's Certification of Compliance - § 257.103(f)(1)(iv)(B)(1)

In accordance with 40 C.F.R. § 257.103(f)(1)(iv)(B)(1), I hereby certify that, based on my inquiry of those persons who are immediately responsible for compliance with environmental regulations for the CCR Ash Pond Area and PDP5 at Martin Lake, the facilities are in compliance with all of the requirements contained in 40 C.F.R. Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. Martin Lake's CCR compliance website is up-to-date and contains all the necessary documentation and notification postings.

LUMINANT GENERATION COMPANY LLC

Cynthia Vodopivec

VP - Environmental Health & Safety

October 23, 2020

3.2 Visual Representation of Hydrogeologic Information - § 257.103(f)(1)(iv)(B)(2)

Consistent with the requirements of § 257.103(f)(1)(iv)(B)(2)(i) – (iii), Luminant has attached the following items to this demonstration:

- Map(s) of groundwater monitoring well locations in relation to the CCR unit (Appendix F1)
- Well construction diagrams and drilling logs for all groundwater monitoring wells (Appendix F2)
- Maps that characterize the direction of groundwater flow accounting for seasonal variations (Appendix F3)

3.3 Groundwater Monitoring Results - § 257.103(f)(1)(iv)(B)(3)

Tables summarizing constituent concentrations at each groundwater monitoring well for the Ash Pond Area and PDP5 are included as Appendix F4.

Luminant 3-1 Burns & McDonnell

3.4 Description of Site Hydrogeology - § 257.103(f)(1)(iv)(B)(4)

A description of site hydrogeology and stratigraphic cross-sections of the site (including the Ash Pond Area and PDP5) are included as Appendix F5.

3.5 Corrective Measures Assessment - § 257.103(f)(1)(iv)(B)(5)

For the Ash Pond Area, the first assessment monitoring samples were collected in June 2018. The results, through the first 2020 semi-annual monitoring period, indicate the Ash Pond area is currently in assessment monitoring, with exceedances of the groundwater protection standards (GWPS) for beryllium, cobalt, and lithium first determined in January of 2019. Accordingly, pursuant to § 257.96, a corrective measures assessment report was prepared for the Ash Pond Area in September 2019 and is included as Appendix F6. For PDP5, detection monitoring has indicated statistically significant increases (SSIs) above the background concentrations; however, Luminant has completed successful alternate source demonstrations and the facility remains in detection monitoring. Accordingly, an assessment of corrective measures is not required for PDP5.

3.6 Remedy Selection Progress Reports - § 257.103(f)(1)(iv)(B)(6)

For the Ash Pond Area, selection of a remedy is underway. Accordingly, pursuant to § 257.97(a), semi-annual remedy selection progress reports were prepared for the Ash Pond Area on March 4, 2020, and September 3, 2020, and are included as Appendix F7. As noted above, an assessment of corrective measures and the resulting remedy selection efforts are not currently required for PDP5.

3.7 Structural Stability Assessment - § 257.103(f)(1)(iv)(B)(7)

Pursuant to § 257.73(d), the initial structural stability assessment report for Martin Lake was prepared in October 2016 and is included as Appendix F8. As required for compliance, another stability assessment will be completed in October 2021.

3.8 Safety Factor Assessment - § 257.103(f)(1)(iv)(B)(8)

Pursuant to § 257.73(e), the initial safety factor assessment report for Martin Lake was prepared in October 2016 and is included as Appendix F9. As required for compliance, another safety factor assessment will be completed in October 2021.

Luminant 3-2 Burns & McDonnell

4.0 CONCLUSION

Based upon the information submitted in this demonstration, the Ash Pond Area and PDP5 at Martin Lake qualify for the site-specific alternative deadline for the initiation of closure as allowed by 40 C.F.R. § 257.103(f)(1).

Therefore, Luminant requests that EPA approve the demonstration and grant an alternative deadline of June 29, 2022, for the Ash Pond Area, to allow for the continued placement of CCR and non-CCR wastestreams in the Ash Pond Area while the remaining impoundments are sequentially retrofitted. In addition, Luminant is requesting an alternative site-specific deadline of July 1, 2023, for PDP5, to allow for the continued placement of CCR and non-CCR wastestreams in PDP5 during the Ash Pond Area retrofit project and thereafter to begin retrofit of PDP5 (if necessary following an EPA decision on the alternate liner application and demonstration expected to be submitted for PDP5 under the Part B Rule prior to November 30, 2020, and November 30, 2021, respectively). If retrofit of PDP5 is necessary, the retrofit work would initiate on July 1, 2023, following the wet spring months coincident with the spring outages when the maximum site water storage capacity is required. Luminant will update EPA on the project and any potential schedule impacts as part of the semi-annual progress reports required at 40 C.F.R. § 257.103(f)(1)(x), and if a need for a later compliance deadline is determined, Luminant will seek additional time as described in 40 C.F.R. § 257.103(f)(1)(vii).

Dallas, Texas 75248-1229

972.960.4400

VICINITY MAP NOT TO SCALE

Construction Drawings For

Martin Lake Steam Electric Station

CCR Impoundment Reline East Ash Pond

Project No. 10172630

Rusk County, Texas January 2020

INDEX OF DRAWINGS

GENERAL

ABBREVIATIONS AND GENERAL NOTES

SITE LAYOUT EAST ASH POND DETAILS (1 OF 2)

STOCKPILE AND HAUL ROUTE

RUSK COUNTY, TEXAS

SCALE

1 2 5 7 8

			PROJECT MANAGER	D. VOGT, P.E.
			DESIGNED BY	K. PERERA
			DRAWN BY	J. RAYMOND
	01/29/2020	ISSUED FOR BID	CHECKED BY	M. ROBERTS
Е	01/23/2020	ISSUED FOR CLIENT REVIEW		
D	01/14/2020	ISSUED FOR CLIENT REVIEW		
С	12/20/2019	ISSUED FOR CLIENT REVIEW		
В	11/26/2019	ISSUED FOR CLIENT REVIEW		
Α	11/12/2019	ISSUED FOR CLIENT REVIEW		
ISSUE	DATE	DESCRIPTION	PROJECT NUMBER	10172630

MARTIN LAKE STEAM ELECTRICAL STATION EAST ASH POND RELINE RUSK COUNTY, TEXAS

RUSK COUNTY, TEXAS

SHEET FILENAME 00C-05.dwg 00C-05 SCALE NOT TO SCALE

SCALE 1" = 200'

00C-06

SHEET 00C-07

VALVE SETTING 3 000C-10

CONNECTION TO NORTH THICKENER PIPELINE A 00C-07

CONNECTION TO 104 WETWELL TO ESP PIPELINE C NOT TO SCALE

CONNECTION TO SOUTH THICKENER PIPELINE B NOT TO SCALE

CONNECTION TO 304 WETWELL TO ESP PIPELINE C 00C-07

			DESIGNED BY	J. ORDONEZ, P.E.
			DRAWN BY	J. RAYMOND
F	01/29/2020	ISSUED FOR BID	CHECKED BY	D. VOGT, P.E.
Е	01/23/2020	ISSUED FOR CLIENT REVIEW		
D	01/14/2020	ISSUED FOR CLIENT REVIEW		
С	12/20/2019	ISSUED FOR CLIENT REVIEW		
В	11/26/2019	ISSUED FOR CLIENT REVIEW		
Α	11/12/2019	ISSUED FOR CLIENT REVIEW		
SSUE	DATE	DESCRIPTION	PROJECT NUMBER	10172630

PROJECT MANAGER D. VOGT, P.E.

MARTIN LAKE STEAM ELECTRICAL STATION EAST ASH POND RELINE RUSK COUNTY, TEXAS

YARD PIPING CONNECTIONS AND DETAILS

FILENAME 00C-08.dwg

SCALE NOT TO SCALE

00C-08

GENERAL NOTES:

1. SHUTDOWNS I

SHUTDOWNS REQUIRED FOR CONNECTIONS SHALL BE COORDINATED WITH THE PLANT.
 THE CONNECTIONS LOCATION TO ALL EXISTING PIPELINES ARE APPROXIMATE AND SHOULD BE CONFIRMED IN THE FIELD BY THE CONTRACTOR AND PLANT OPERATIONS.

3. CONNECTIONS C AND D MUST BOTH BE COMPLETE BEFORE MAKING EITHER OF THESE LINES OPERATIONAL.

 ALL PIPE AND FITTING SIZES SHALL BE CONFIRMED IN THE FIELD BY THE CONTRACTOR PRIOR TO ORDERING OR MANUFACTURING OF PIPE.

KEY NOTES:

1 EXISTING TO REMAIN

2 PIPELINE REROUTE

3 12" ISOLATION VALVE

4 INSTALL SIZE ON SIZE TEE

2 5 7

TERMINATION DETAIL A AT EXISTING PIPE RACK NOT TO SCALE

TERMINATION DETAIL C AT EXISTING PIPE RACK C NOT TO SCALE

TERMINATION DETAIL B AT EXISTING PIPE RACK B OOC-09

TERMINATION DETAIL D AT EXISTING PIPE RACK D OCC-09

		·		I
SSUE	DATE	DESCRIPTION	PROJECT NUMBER	10172630
Α	11/12/2019	ISSUED FOR CLIENT REVIEW		
В	11/26/2019	ISSUED FOR CLIENT REVIEW		
С	12/20/2019	ISSUED FOR CLIENT REVIEW		
D	01/14/2020	ISSUED FOR CLIENT REVIEW		
E	01/23/2020	ISSUED FOR CLIENT REVIEW		
F	01/29/2020	ISSUED FOR BID	CHECKED BY	D. VOGT, P.E.
			DRAWN BY	J. RAYMOND
			DESIGNED BY	J. ORDONEZ, P.E.

PROJECT MANAGER D. VOGT, P.E.

MARTIN LAKE STEAM ELECTRICAL STATION EAST ASH POND RELINE RUSK COUNTY, TEXAS

YARD PIPING CONNECTIONS AND DETAILS

GENERAL NOTES:

1. EXISTING PIPELINES SHOWN SHALL BE

REROUTED TO THE EAST ASH POND IN ORDER TO RELINE THE NEW SCRUBBER

2. SHUTDOWNS REQUIRED FOR CONNECTIONS SHALL BE COORDINATED WITH THE PLANT.

3. THE CONNECTIONS LOCATION TO ALL EXISTING PIPELINES ARE APPROXIMATE AND

SHOULD BE CONFIRMED IN THE FIELD BY THE CONTRACTOR AND PLANT OPERATIONS.

JOINTS IN ACCORDANCE WITH PROJECT SPECIFICATIONS, UNLESS OTHERWISE NOTED.

4. ALL JOINTS SHALL BE FUSION WELDED BUTT

5. ALL PIPE AND FITTING SIZES SHALL BE

CONFIRMED IN THE FIELD BY THE

MANUFACTURING OF PIPE.

CONTRACTOR PRIOR TO ORDERING OR

FILENAME 00C-09.dwg

SCALE NOT TO SCALE

00C-09

— DO NOT USE OR INSTALL A GASKET BETWEEN THE TWO HDPE FLANGES SLIP ON STEEL FLANGE CLASS 150 ALL COMPONENTS SHALL BE IN ACCORDANCE WITH PROJECT SPECIFICATIONS BUTT FUSED FLANGE x PLAIN END HDPE SPOOL (TYPICAL EACH SIDE)

SLIP ON FLANGE CONNECTION (

PIPE STRAP FOR DISCHARGE PIPING 4
NOT TO SCALE

1" DIA ANCHOR BOLT
OR ADHESIVE ANCHOR
WITH NUT AND LOCKWASHER
(TYP 2 PER STRAP)

			PROJECT MANAGER	D. VOGT, P.E.
			DESIGNED BY	J. ORDONEZ, P.E.
			DRAWN BY	J. RAYMOND
F	01/29/2020	ISSUED FOR BID	CHECKED BY	D. VOGT, P.E.
Е	01/23/2020	ISSUED FOR CLIENT REVIEW		
D	01/14/2020	ISSUED FOR CLIENT REVIEW		
С	12/20/2019	ISSUED FOR CLIENT REVIEW		
В	11/26/2019	ISSUED FOR CLIENT REVIEW		
Α	11/12/2019	ISSUED FOR CLIENT REVIEW		
SSUE	DATE	DESCRIPTION	PROJECT NUMBER	10172630

MARTIN LAKE STEAM ELECTRICAL STATION EAST ASH POND RELINE **RUSK COUNTY, TEXAS**

YARD PIPING DETAILS

FILENAME 00C-10.dwg SCALE NOT TO SCALE SHEET 00C-10

			DESIGNED BY	K. PERERA
			DRAWN BY	J. RAYMOND
F	01/29/2020	ISSUED FOR BID	CHECKED BY	M. ROBERTS
Е	01/23/2020	ISSUED FOR CLIENT REVIEW		
D	01/14/2020	ISSUED FOR CLIENT REVIEW		
С	12/20/2019	ISSUED FOR CLIENT REVIEW		
В	11/26/2019	ISSUED FOR CLIENT REVIEW	-	
Α	11/12/2019	ISSUED FOR CLIENT REVIEW		
ISSUE	DATE	DESCRIPTION	PROJECT NUMBER	10172630
		·		

ARTIN LAKE STEAM ELECTRICAL STATION EAST ASH POND RELINE RUSK COUNTY, TEXAS

 FILENAME
 00C-11.dwg

 SCALE
 1" = 600'

00C-11

972.960.4400

VICINITY MAP

NOT TO SCALE

Construction Drawings For

Martin Lake Steam Electric Station

CCR Impoundment Reline West Ash Pond

Project No. 10172630

Rusk County, Texas January 2020

INDEX OF DRAWINGS

<u>GENERAL</u>

G-01 COVER SHEET

G-02 ABBREVIATIONS AND GENERAL NOTES

CIVII

00C-01 SITE LAYOUT 00C-02 WEST ASH POND 00C-03 CROSS SECTIONS 00C-04 DETAILS (1 OF 2) 00C-05 DETAILS (2 OF 2)

0C-06 STOCKPILE AND HAUL ROUTE

PROJECT NUMBER | 10172630

GENERAL NOTES

ALL WORK UNDER THIS CONTRACT SHALL BE PERFORMED IN ACCORDANCE WITH THE PLANS AND PROJECT SPECIFICATIONS. IN THE EVENT OF A DISCREPANCY BETWEEN THE PLANS AND THE PROJECT SPECIFICATIONS, THE

COORDINATE SYSTEM IS BASED ON LOCAL SURVEY. THE BENCHMARKS TO BE USED FOR CONSTRUCTION ARE LOCATED AS SHOWN ON DRAWING NO. 00C-01. EXISTING CONTOURS ARE BASED ON TOPOGRAPHICAL SURVEY PERFORMED FEBRUARY 12-20, 2019 BY LACY SURVEYING. CURRENT GROUND ELEVATIONS MAY VARY FROM THOSE SHOWN DUE TO SITE WORK

THE CONTRACTOR SHALL VERIFY EXISTING CONTOURS PRIOR TO THE START OF WORK.

THERE SHALL NOT BE ANY ADDITIONAL PAYMENT OR EXTENSION OF CONTRACT TIME FOR WORKING WITH SATURATED SOILS OR

THE CONTRACTOR SHALL TAKE ALL NECESSARY PRECAUTIONS TO PROTECT EXISTING ROADS, BENCHMARKS AND EXISTING GROUNDWATER MONITOR WELLS DURING THE CONSTRUCTION PERIOD. THE CONTRACTOR SHALL BE SOLEY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE INCURRED BY THE CONTRACTOR'S FAILURE TO EXACTLY

THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES HAVE NOT BEEN ESTABLISHED BY THE OWNER OR ENGINEER. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE OCCASIONED BY THE CONTRACTORS FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UTILITIES. THE CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING PROPER SAFE WORKING DISTANCE FROM ALL UTILITY

FINISHED GROUND ELEVATIONS SHALL MATCH EXISTING GROUND ELEVATIONS EXCEPT AS SHOWN ON THE PLANS. ALL EXCESS SOIL FROM THE EXCAVATION AND GRADING SHALL BE PLACED IN DESIGNATED STOCKPILE LOCATIONS AS APPROVED BY THE OWNER. IF WASTE IS ENCOUNTERED DURING EXCAVATION, THE OWNER SHALL BE NOTIFIED AND THE WASTE REMOVED AND PLACED IN AREAS DESIGNATED AS APPROVED BY THE OWNER. TRANSPORT OF SOIL TO FILL AREAS SHALL BE CONDUCTED BY THE CONTRACTOR AT NO ADDITIONAL EXPENSE TO THE OWNER.

GEOTECHNICAL INVESTIGATION REPORTS FOR THE SITE ARE AVAILABLE FOR REVIEW AT LUMINANT'S DALLAS OFFICES. THE CONTRACTOR MAY PERFORM ADDITIONAL GEOTECHNICAL INVESTIGATIONS, AS DEEMED NECESSARY FOR CONSTRUCTION ACTIVITIES, PROVIDED ALL NECESSARY PERMITS AND APPROVALS ARE OBTAINED FROM LUMINANT PRIOR TO INITIATING SUCH WORK. HOWEVER, THERE SHALL BE NO ADDITIONAL PAYMENT TO THE CONTRACTOR FOR

THE CONTRACTOR SHALL CONSTRUCT, AND UPON COMPLETION OF THE PROJECT, REMOVE TEMPORARY CONSTRUCTION ACCESS ROADS. SUCH ROADS SHALL BE LOCATED AS APPROVED BY THE OWNER. DRAINAGE PATTERNS AT THE SITE SHALL NOT BE ALTERED BY ROAD CONSTRUCTION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR CONSTRUCTION AND MAINTENANCE OF TEMPORARY DRAINAGE STRUCTURES, INCLUDING CULVERTS, AT NO ADDITIONAL COST TO THE OWNER.

THE CONTRACTOR SHALL INSTALL, MAINTAIN, AND UPON COMPLETION OF THE PROJECT, REMOVE TEMPORARY EROSION AND SEDIMENT CONTROLS AS APPROVED BY LUMINENT ENVIRONMENTAL SERVICES AND IN ACCORDANCE WITH THE SITE SWPPP AND PURSUANT TO TPDES REQUIREMENTS. SUCH CONTROLS SHALL BE PLACED AT THE LIMITS OF DISTURBED AREAS AND AT INTERMEDIATE LOCATIONS WHERE CONCENTRATED FLOW IS LIKELY.

TEMPORARY CONSTRUCTION SLOPES SHALL NOT BE GREATER THAN 2H:1V. STEEPER SLOPES WILL ONLY BE ALLOWED IF THE CONTRACTOR PROVIDES A GEOTECHNICAL ENGINEERING REPORT SPECIFYING MAXIMUM SLOPES AND THE

THE CONTRACTOR SHALL REMOVE ALL VEGETATION WITHIN THE CONSTRUCTION LIMITS AS REQUIRED TO CONSTRUCT THE PROJECT. ALL VEGETATION SHALL BE REMOVED BY CONTRACTOR AT NO ADDITIONAL EXPENCE TO OWNER.

THE CONTRACTOR SHALL OBTAIN AND CONDUCT WORK CONSISTENT WITH A TPDES PERMIT FOR CONSTRUCTION, REFER TO TECHNICAL SPECIFICATIONS. PREPARATION OF A SWPPP AND OBTAINING THE TPDES PERMIT ARE THE

THE CONTRACTOR SHALL IMMEDIATELY REPORT TO THE ENGINEER ANY ERROR OR DISCREPANCY FOUND ONCE THE CONTRACT DOCUMENT IS CAREFULLY REVIEWED AND ALL ASPECTS OF FIELD WORK HAVE BEEN VERIFIED. IN THE EVENT THE CONTRACTOR CONTINUES TO WORK ON AN ITEM WHERE AN ERROR EXISTS, IT SHALL BE DEEMED THAT THE CONTRACTOR BID AND INTENDED TO EXECUTE THE MORE STRINGENT OR HIGHER QUALITY REQUIREMENT WITHOUT AN INCREASE IN CONTRACT SUM OR TIME. THE CONTRACTOR SHALL ALSO BE RESPONSIBLE TO CORRECT ANY FAILURE OF COMPANY PARTS TO COORDINATE OR FIT PROPERLY INTO FINAL POSITION, AS A RESULT OF CONTRACTOR

THE DRAWINGS AND SPECIFICATIONS SHOULD AGREE WITH EACH OTHER. AND WORK CALLED FOR BY DRAWINGS AND NOT MENTIONED IN SPECIFICATION, OR VICE VERSA, SHALL BE FURNISHED BY BOTH. WHEN DISCREPANCIES EXIST BETWEEN SCALE AND DIMENSIONS, THE DIMENSIONED FIGURE SHALL BE USED.

17. CONTRACTOR AND EACH SUBCONTRACTOR SHALL VERIFY ALL GRADES, LINES, LEVELS, AND DIMENSIONS AS INDICATED ON DRAWINGS, AND HE SHALL REPORT ERRORS TO THE ENGINEER BEFORE COMMENCING WORK. THE CONTRACTOR SHALL ESTABLISH BENCHMARKS IN AT LEAST TWO WIDELY SEPARATED PLACES, AND AS WORK

CONTRACTOR SHALL PROVIDE EROSION CONTROL BY SEEDING FOR ALL AREAS DISTURBED BY CONTRACTOR DURING THE CONSTRUCTION OF THIS PROJECT. THE CONTRACTOR SHALL NOT DISTURB ANY AREA WITHOUT THE APPROVAL OF THE ENGINEER. EROSION CONTROL BY SEEDING SHALL CONFORM TO STANDARD SPECIFICATION 02930.

CONTRACTOR SHALL INSTALL EROSION AND SEDIMENT CONTROLS AS PER SPECIFICATIONS DURING CONSTRUCTION. SUCH CONTROLS SHALL BE PLACED AT LIMITS OF DISTURBED AREAS AND AT INTERMEDIATE LOCATIONS WHERE

STORMWATER THAT HAS COME INTO CONTACT WITH THE ASH WITHIN THE EXCAVATED POND IS TO BE CONSIDERED CONTACT STORMWATER. CONTRACTOR WILL CONTROL THE WATER ON SITE IN COMPLIANCE WITH THE TPDES PERMIT.

THE CONTRACTOR IS REQUIRED TO PRESENT THE SWPPP TO LUMINANT ENVIRONMENTAL SERVICES FOR APPROVAL

22. THE CONTRACTOR IS REQUIRED TO SUBMIT THE NOTICE OF INTENT AND NOTICE OF TERMINATION FOR THE TPDES PERMIT.

23. THE CONTRACTOR IS TO ACQUIRE A DIGGING PERMIT FROM THE PLANT BEFORE COMMENCING ANY EXCAVATION ACTIVITY.

DESIGNED BY K. PERERA **DRAWN BY** J. RAYMOND **CHECKED BY** M. ROBERTS 01/31/2020 ISSUED FOR BID

DESCRIPTION

ISSUE

DATE

FILENAME 00G-02.dwg

SCALE

SHEET 00G-02

LEGEND ---- TOP OF CCR MATERIAL — — — EXISTING GROUND SURFACE PROPOSED GRADE NOTES: 1. CCR ELEVATION FROM BATHYMETRIC SURVEY TAKEN FEBRUARY 2019 BY LACEY SURVEYING OF ARP, TEXAS. AT START OF PROJECT, OWNER WILL HAVE REMOVED BULK OF CCR MATERIAL FROM THE WEST ASH 2. CONTRACTOR WILL REMOVE REMAINING CCR MATERIAL, ROCKS AND SEDIMENT WITHIN POND BEFORE INSTALLATION OF THE LINER --- 350 340 — - 340 340 — - 340 SEE NOTE 1 - 330 320 **≦** 320− 320-320 WEST ASH POND (WAP) WEST ASH POND (WAP) 310 — - 310 310 — - 310 - 300 300 -300 — - 300 -1+00 0+00 5+00 6+00 7+00 10+00 11+00 12+00 13+00 14+00 17+00 18+00 0+00 1+00 2+00 3+00 5+00 6+00 1+00 2+00 3+00 4+00 15+00 16+00 4+00 SECTION B-B

HORIZONTAL SCALE: 1" = 100'; VERTICAL SCALE: 1" = 20' 00C-02 SECTION A-A

HORIZONTAL SCALE: 1" = 100'; VERTICAL SCALE: 1" = 20' 00C-02 PROJECT MANAGER D. VOGT, P.E. **CROSS SECTIONS DESIGNED BY** K. PERERA MARTIN LAKE STEAM ELECTRICAL STATION **DRAWN BY** J. RAYMOND WEST ASH POND RELINE CHECKED BY M. ROBERTS

ISSUED FOR BID

PROJECT NUMBER 10172630

DESCRIPTION

A 01/31/2020

Luminant

RUSK COUNTY, TEXAS

FILENAME 00C-03.dwg

00C-03

1 2 5 5

MARTIN LAKE STEAM ELECTRICAL STATION
WEST ASH POND RELINE
RUSK COUNTY, TEXAS

DETAILS (2 OF 2)

FILENAME 00C-05.dwg

SCALE NOT TO SCALE

00C-05

			PROJECT MANAGER	D. VOGT, P.E.
			DESIGNED BY	K. PERERA
			DRAWN BY	J. RAYMOND
			CHECKED BY	M. ROBERTS
			_	
			_	
			-	
Α	01/31/2020	ISSUED FOR BID	-	
ISSUE	DATE	DESCRIPTION	PROJECT NUMBER	10172630
			•	•

RTIN LAKE STEAM ELECTRICAL STATION
WEST ASH POND RELINE
RUSK COUNTY, TEXAS

0 1" 2"

FILENAME 00C-06.dwg

SCALE 1" = 600'

оос-06

VICINITY MAP

NOT TO SCALE

Construction Drawings For

Martin Lake Steam Electric Station

CCR Impoundment Reline New Scrubber Pond

Project No. 10172630

Rusk County, Texas January 2020

INDEX OF DRAWINGS

<u>GENERAL</u>

G-01 COVER SHEET

G-02 ABBREVIATIONS AND GENERAL NOTES

CIVII

OC-01 SITE LAYOUT
OC-02 NEW SCRUBBER POND
OC-03 ROSS SECTIONS
OC-04 DETAILS (1 OF 2)

0C-05 DETAILS (2 OF 2) 0C-06 STOCKPILE AND HAUL ROUTE

GENERAL NOTES

- ALL WORK UNDER THIS CONTRACT SHALL BE PERFORMED IN ACCORDANCE WITH THE PLANS AND PROJECT SPECIFICATIONS. IN THE EVENT OF A DISCREPANCY BETWEEN THE PLANS AND THE PROJECT SPECIFICATIONS, THE SPECIFICATIONS SHALL GOVERN.
- COORDINATE SYSTEM IS BASED ON LOCAL SURVEY. THE BENCHMARKS TO BE USED FOR CONSTRUCTION ARE LOCATED AS SHOWN ON DRAWING NO. 00C-01. EXISTING CONTOURS ARE BASED ON TOPOGRAPHICAL SURVEY PERFORMED FEBRUARY 12-20, 2019 BY LACY SURVEYING. CURRENT GROUND ELEVATIONS MAY VARY FROM THOSE SHOWN DUE TO SITE WORK THAT HAS BEEN PERFORMED SINCE THE SURVEY WAS PERFORMED.
- 3. THE CONTRACTOR SHALL VERIFY EXISTING CONTOURS PRIOR TO THE START OF WORK.
- THERE SHALL NOT BE ANY ADDITIONAL PAYMENT OR EXTENSION OF CONTRACT TIME FOR WORKING WITH SATURATED SOILS OR HANDLING WATER SEEPAGE DUE TO RAINFALL, RUNOFF AND INFILTRATION.
- THE CONTRACTOR SHALL TAKE ALL NECESSARY PRECAUTIONS TO PROTECT EXISTING ROADS, BENCHMARKS AND EXISTING GROUNDWATER MONITOR WELLS DURING THE CONSTRUCTION PERIOD. THE CONTRACTOR SHALL BE SOLEY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE INCURRED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PROTECT THE GROUNDWATER MONITOR WELLS, BENCHMARKS AND EXISTING ROADS.
- THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES HAVE NOT BEEN ESTABLISHED BY THE OWNER OR ENGINEER. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE OCCASIONED BY THE CONTRACTORS FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UTILITIES. THE CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING PROPER SAFE WORKING DISTANCE FROM ALL UTILITY EASEMENTS OR LINES.
- 7. EXCAVATION BY "BLASTING" IS NOT PERMITTED ON THIS PROJECT.
- FINISHED GROUND ELEVATIONS SHALL MATCH EXISTING GROUND ELEVATIONS EXCEPT AS SHOWN ON THE PLANS. ALL EXCESS SOIL FROM THE EXCAVATION AND GRADING SHALL BE PLACED IN DESIGNATED STOCKPILE LOCATIONS AS APPROVED BY THE OWNER. IF WASTE IS ENCOUNTERED DURING EXCAVATION, THE OWNER SHALL BE NOTIFIED AND THE WASTE REMOVED AND PLACED IN AREAS DESIGNATED AS APPROVED BY THE OWNER. TRANSPORT OF SOIL TO FILL AREAS SHALL BE CONDUCTED BY THE CONTRACTOR AT NO ADDITIONAL EXPENSE TO THE OWNER.
- GEOTECHNICAL INVESTIGATION REPORTS FOR THE SITE ARE AVAILABLE FOR REVIEW AT LUMINANT'S DALLAS OFFICES. THE CONTRACTOR MAY PERFORM ADDITIONAL GEOTECHNICAL INVESTIGATIONS, AS DEEMED NECESSARY FOR CONSTRUCTION ACTIVITIES, PROVIDED ALL NECESSARY PERMITS AND APPROVALS ARE OBTAINED FROM LUMINANT PRIOR TO INITIATING SUCH WORK. HOWEVER, THERE SHALL BE NO ADDITIONAL PAYMENT TO THE CONTRACTOR FOR ADDITIONAL GEOTECHNICAL INVESTIGATIONS.
- THE CONTRACTOR SHALL CONSTRUCT, AND UPON COMPLETION OF THE PROJECT, REMOVE TEMPORARY CONSTRUCTION ACCESS ROADS. SUCH ROADS SHALL BE LOCATED AS APPROVED BY THE OWNER. DRAINAGE PATTERNS AT THE SITE SHALL NOT BE ALTERED BY ROAD CONSTRUCTION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR CONSTRUCTION AND MAINTENANCE OF TEMPORARY DRAINAGE STRUCTURES, INCLUDING CULVERTS, AT NO ADDITIONAL COST TO THE OWNER.
- THE CONTRACTOR SHALL INSTALL, MAINTAIN, AND UPON COMPLETION OF THE PROJECT, REMOVE TEMPORARY EROSION AND SEDIMENT CONTROLS AS APPROVED BY LUMINENT ENVIRONMENTAL SERVICES AND IN ACCORDANCE WITH THE SITE SWPPP AND PURSUANT TO TPDES REQUIREMENTS. SUCH CONTROLS SHALL BE PLACED AT THE LIMITS OF DISTURBED AREAS AND AT INTERMEDIATE LOCATIONS WHERE CONCENTRATED FLOW IS LIKELY.
- TEMPORARY CONSTRUCTION SLOPES SHALL NOT BE GREATER THAN 2H:1V. STEEPER SLOPES WILL ONLY BE ALLOWED IF THE CONTRACTOR PROVIDES A GEOTECHNICAL ENGINEERING REPORT SPECIFYING MAXIMUM SLOPES AND THE DURATION FOR WHICH SUCH SLOPES SHALL REMAIN IN PLACE
- THE CONTRACTOR SHALL REMOVE ALL VEGETATION WITHIN THE CONSTRUCTION LIMITS AS REQUIRED TO CONSTRUCT THE PROJECT. ALL VEGETATION SHALL BE REMOVED BY CONTRACTOR AT NO ADDITIONAL EXPENCE TO OWNER.
- THE CONTRACTOR SHALL OBTAIN AND CONDUCT WORK CONSISTENT WITH A TPDES PERMIT FOR CONSTRUCTION, REFER TO TECHNICAL SPECIFICATIONS. PREPARATION OF A SWPPP AND OBTAINING THE TPDES PERMIT ARE THE CONTRACTORS RESPONSIBILITY.
- THE CONTRACTOR SHALL IMMEDIATELY REPORT TO THE ENGINEER ANY ERROR OR DISCREPANCY FOUND ONCE THE CONTRACT DOCUMENT IS CAREFULLY REVIEWED AND ALL ASPECTS OF FIELD WORK HAVE BEEN VERIFIED. IN THE EVENT THE CONTRACTOR CONTINUES TO WORK ON AN ITEM WHERE AN ERROR EXISTS, IT SHALL BE DEEMED THAT THE CONTRACTOR BID AND INTENDED TO EXECUTE THE MORE STRINGENT OR HIGHER QUALITY REQUIREMENT WITHOUT AN INCREASE IN CONTRACT SUM OR TIME. THE CONTRACTOR SHALL ALSO BE RESPONSIBLE TO CORRECT ANY FAILURE OF COMPANY PARTS TO COORDINATE OR FIT PROPERLY INTO FINAL POSITION, AS A RESULT OF CONTRACTOR FAILURE TO RAISE OR RESOLVE A DISCREPANCY.
- THE DRAWINGS AND SPECIFICATIONS SHOULD AGREE WITH EACH OTHER, AND WORK CALLED FOR BY DRAWINGS AND NOT MENTIONED IN SPECIFICATION, OR VICE VERSA, SHALL BE FURNISHED BY BOTH. WHEN DISCREPANCIES EXIST BETWEEN SCALE AND DIMENSIONS, THE DIMENSIONED FIGURE SHALL BE USED.
- 17. CONTRACTOR AND EACH SUBCONTRACTOR SHALL VERIFY ALL GRADES, LINES, LEVELS, AND DIMENSIONS AS INDICATED ON DRAWINGS, AND HE SHALL REPORT ERRORS TO THE ENGINEER BEFORE COMMENCING WORK. THE CONTRACTOR SHALL ESTABLISH BENCHMARKS IN AT LEAST TWO WIDELY SEPARATED PLACES, AND AS WORK PROGRESSES THE CONTRACTOR WILL MAINTAIN ADEQUATE HORIZONTAL AND VERTICAL CONTROL.
- CONTRACTOR SHALL PROVIDE EROSION CONTROL BY SEEDING FOR ALL AREAS DISTURBED BY CONTRACTOR DURING THE CONSTRUCTION OF THIS PROJECT. THE CONTRACTOR SHALL NOT DISTURB ANY AREA WITHOUT THE APPROVAL OF THE ENGINEER. EROSION CONTROL BY SEEDING SHALL CONFORM TO STANDARD SPECIFICATION 02930.
- CONTRACTOR SHALL INSTALL EROSION AND SEDIMENT CONTROLS AS PER SPECIFICATIONS DURING CONSTRUCTION. SUCH CONTROLS SHALL BE PLACED AT LIMITS OF DISTURBED AREAS AND AT INTERMEDIATE LOCATIONS WHERE CONCENTRATED FLOW IS LIKELY.
- STORMWATER THAT HAS COME INTO CONTACT WITH THE ASH WITHIN THE EXCAVATED POND IS TO BE CONSIDERED CONTACT STORMWATER. CONTRACTOR WILL CONTROL THE WATER ON SITE IN COMPLIANCE WITH THE TPDES PERMIT.
- THE CONTRACTOR IS REQUIRED TO PRESENT THE SWPPP TO LUMINANT ENVIRONMENTAL SERVICES FOR APPROVAL PRIOR TO THE COMMENCEMENT OF CONSTRUCTION ACTIVITIES.
- 22. THE CONTRACTOR IS REQUIRED TO SUBMIT THE NOTICE OF INTENT AND NOTICE OF TERMINATION FOR THE TPDES PERMIT.
- 23. THE CONTRACTOR IS TO ACQUIRE A DIGGING PERMIT FROM THE PLANT BEFORE COMMENCING ANY EXCAVATION ACTIVITY.

MARTIN LAKE STEAM ELECTRICAL STATION **NEW SCRUBBER POND RELINE RUSK COUNTY, TEXAS**

FILENAME 00G-02.dwg

SCALE

SHEET 00G-02

1 2 5

PROPOSED GRADE

NOTES:

--- 350

--- 330

-- 300

8+00

| 320 \

- 1. CCR ELEVATION FROM BATHYMETRIC SURVEY TAKEN FEBRUARY 2019 BY LACEY SURVEYING OF ARP, TEXAS. AT START OF PROJECT, OWNER WILL HAVE REMOVED BULK OF CCR MATERIAL FROM THE NEW SCRUBBER POND
- CONTRACTOR WILL REMOVE REMAINING CCR MATERIAL, ROCKS AND SEDIMENT WITHIN POND BEFORE INSTALLATION OF THE LINER SYSTEM.

MARTIN LAKE STEAM ELECTRICAL STATION NEW SCRUBBER POND RELINE RUSK COUNTY, TEXAS

1 2 5

PROPOSED NEW SCRUBBER POND RETROFIT SECTION 1 NOT TO SCALE

MARTIN LAKE STEAM ELECTRICAL STATION NEW SCRUBBER POND RELINE RUSK COUNTY, TEXAS

DETAILS (2 OF 2)

00C-05

			PROJECT MANAGER	D. VOGT, P.E.
			DESIGNED BY	K. PERERA
			DRAWN BY	J. RAYMOND
			CHECKED BY	M. ROBERTS
Α	01/31/2020	ISSUED FOR BID		
ISSUE	DATE	DESCRIPTION	PROJECT NUMBER	10172630
			•	•

ARTIN LAKE STEAM ELECTRICAL STATION
NEW SCRUBBER POND RELINE
RUSK COUNTY, TEXAS

FILENAME 00C-06.dwg

SCALE 1" = 600'

00C-06

LEGEND

1

DOWNGRADIENT CCR MONITORING WELL

UPGRADIENT CCR MONITORING WELL

CLIENT LUMINANT

PROJECT

MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

TITLE

CONSULTANT

DETAILED SITE PLAN - ASH POND AREA

GOLDER

YYY-MM-DD	2020-01-23
DESIGNED	AJD
PREPARED	AJD
REVIEWED	WFV
APPROVED	WFV

REFERENCE(S)
BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 4/6/17.

PROJECT NO. REV. FIGURE 19122262 0 1

MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS Figure 1

PDP 5 AREA **DETAILED SITE PLAN**

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

Ash Pond Area

Luminant Log of Boring: H-26 Completion Date: 9/14/2015 Drilling Method: Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.) 6.5 Tatum, TX Driller: 50 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description USCS (ft) Materials 0 ML (0 - 3) Silty CLAY, dark brown, dry, soft to firm, weak cementation, flat, low plasticity (3 - 7) Sandy CLAY, red/orange with gray clay ribbons, dry, soft to firm, weak SC 10.0/10.0 cementation, medium plasticity, minor rounded pebbles 8 (7 - 11) Silty SAND, gray, dry, soft, weak cementation, subrounded, sharp contact 12 10.0/10.0 16 МĿ (11 - 30) Clayey silty SAND, tan with red and gray ribbons, moist to wet, soft, weak 20 cementation, medium plasticity 24 10.0/10.0 28 32 (30 - 40) SAND, tan and orange, fine grained, higher clay content (31'-34'), wet, very soft 10.0/10.0 SP. to soft, low to medium plasticity 36 40 (40 - 44) SAND, red, wet, soft to firm, moderate cementation, heavy iron content, iron SW concretions ("rocky" texture) 10.0/10.0 (44 - 50) SAND, red and gray, wet, soft, fine grained, subrounded, gradual color change SP to dark brown/black (47'-50'), moisture content decreases with depth, hard sand (48'-50') 48 52

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-35) Casing, 2" Sch 40 FJT PVC (35-40) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-31') Grout (31'-33') Bentonite pellets (33'-40') 20/40 sand

Luminant Log of Boring: H-27 Completion Date: 9/15/2015 Drilling Method: Sonic Martin Lake Steam Electric Station **Drilling Company:** Borehole Diameter (in.) Walker-Hill Environmental 6.5 Tatum, TX Driller: 50 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description USCS (ft) Materials 0 10.0/10.0 8 (0 - 20) CLAY, orange and brown mottling, minor black sreaking, blocky, moist, soft to hard, low to high plasticity, dry and variable sand content (5'-7'), wet at 20' 12 10.0/10.0 16 20 SP (20 - 21) SAND, gray, moist, soft, subrounded, sharp contact 24 (21 - 28) CLAY, gray and orange, blocky, moist, firm to hard, moderate cementation, low 10.0/10.0 plasticity 28 32 (28 - 40) SAND, light gray to tan/orange, moist to wet, soft, none to low plasticity, minor SP clay content decreasing with depth 10.0/10.0 36 40 (40 - 44) Sandy CLAY, orange and gray, moist, firm, low to medium plasticity, flat, sharp contact, very hard and little to no sand at 43' 44 10.0/10.0 (44 - 50) Clayey SAND, orange and gray, wet, soft, low plasticity, fine grained, ŚP decreasing clay content with depth, sharp contact, color change to brown at 48' 48 52

PBW

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446 1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-45) Casing, 2" Sch 40 FJT PVC (45-50) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-41') Grout (41'-43') Bentonite pellets (43'-50') 20/40 sand

Luminant Log of Boring: H-28 Completion Date: 9/15/2015 Drilling Method: Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.) 6.5 Tatum, TX Driller: 40 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description USCS (ft) Materials 0 2 SP (0 - 6) Soil with SAND, tan, dry, firm, moderate cementation, hard packed 10.0/10.0 8 10 12 (6 - 21) Clayey SAND, moist, soft to firm, weak cementation, none to low plasticity, flat, 6" SC gray fine to very fine sand lense at 10', gray and orange mottling (11'-21'), fine grained 14 10.0/10.0 16 18 20 22 24 (21 - 30) Clayey SAND, tan and orange, wet, soft to firm, low plasticity, none to weak 10.0/10.0 cementation, variation in clay content with depth, highest clay content at 21', more orange 26 and less clay (29'-30') 28 30 (30 - 33) SAND, orange and gray, fine grained, wet, soft, low plasticity, minor clay SP content, color change from tha to brown to dark gray 32 34 10.0/10.0 36 (33 - 40) Silty CLAY, dark gray, moderate sand, dry, hard, weak cementation, flat 38 40 1. This log should not be used separately from the report to which it is attached.

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

Well Materials

(0-27) Casing, 2" Sch 40 FJT PVC (27-32) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-23') Grout (23'-25') Bentonite pellets (25'-32') 20/40 sand

Luminant Log of Boring: H-29 Completion Date: 9/23/2015 Drilling Method: Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.) 6.5 Tatum, TX Driller: 60 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description USCS (ft) Materials 0 ФФÖ (0 - 2) Hard rock road bed, dry 10.0/10.0 8 (2 - 18) Clayey SAND, orange and gray mottling, very fine grained, dry to moist, firm, SC weak cementation, low to medium plasticity, increasing clay content with depth 12 10.0/10.0 16 20 (18 - 30) CLAY, orange, moist, firm, low to medium plasticity, very little sand or silt, black CL 24 striping at 22', increasing sand content with depth (28'-30') 10.0/10.0 28 32 (30 - 36) CLAY, orange, moist, soft, friable, high plasticity, minor silt 10.0/10.0 36 40 (36 - 45) Sandy CLAY/Clayey SAND, orange/gray/red mottling, friable, wet, soft to firm, CL/SC low to medium plasticity, increasing clay content with depth 44 10.0/10.0 (45 - 48) CLAY with sand, orange and gray mottling, wet, soft, high plasticity 48 (48 - 57) SAND, gray, wet, soft, one to low plasticity, some black roots/ organics, 52 SP interspersed clay lenses 10.0/10.0 56 (57 - 60) Silty CLAY, gray/brown, dry, hard, weak cementation, sharp contact 60

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446 1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-52) Casing, 2" Sch 40 FJT PVC (52-57) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-48') Grout (48'-50') Bentonite pellets (50'-57') 20/40 sand

Luminant Log of Boring: H-31 Completion Date: 9/24/2015 Drilling Method: Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.) 6.5 Tatum, TX Driller: 60 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description USCS (ft) Materials XXIXX (0 - 1) Hard, packed gravel road bed, dry 0 10.0/10.0 (1 - 12) Clayey SAND, orange, dry to moist, soft to firm, low plasticity, fine grained, SC increasing clay content with depth, gray clay ribbons at 10' 8 12 5.0/10.0 (12 - 20) SAND, orange with red and gray mottling, dry to moist, soft, none to low 16 SP plasticity, weak cementation, fine grained, very little clay 20 24 (20 - 30) Sandy CLAY, orange, dry to moist, firm, crumbly, color variation with depth, low SC/CL 10.0/10.0 plasticity, some gray sand lenses, very fine grained, color change to gray at 29' 28 32 (30 - 41) Sandy CLAY,/ Clayey SAND, gray and tan, moist, soft, fine grained, low 10.0/10.0 CL/SC plasticity, variations in clay content and firmness with depth, moisture content changes to 36 wet at 35' 40 44 10.0/10.0 48 (41 - 57) SAND, orange/tan, wet, very soft, fine grained, subrounded, increasing red SÞ color with depth starting at 52', hard iron concretion layer with some black staining at 55' 52 10.0/10.0 56 (57 - 60) Sandy CLAY, gray, dry to moist, hard, fine grained, weak cementation, low plasticity, flat 60

PBW

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446 This log should not be used separately from the report to which it is attached.

Well Materials

(0-42) Casing, 2" Sch 40 FJT PVC (42-52) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-38') Grout (38'-40') Bentonite pellets (40'-52') 20/40 sand

Luminant Log of Boring: H-32 Completion Date: 9/24/2015 Drilling Method: Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.) 6.5 Tatum, TX Driller: 60 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description USCS (ft) Materials XXXIXX (0 - 1) Hard, packed gravel road bed, dry 0 10.0/10.0 (1 - 10) Sandy CLAY/Clayey SAND, orange/tan, dry, firm, fine grained, low plasticity, SC/CL weak cementation 12 10.0/10.0 (10 - 21) CLAY with minor silt/sand, orange with some black streaks, moist, firm, high 16 plasticity, gradual contact 20 SP (21 - 23.5) SAND, gray, dry, soft to firm, friable, fine grained 24 10.0/10.0 28 (23.5 - 38) CLAY, orange/tan/gray, moist, soft to firm, unconsolidated, high plasticity, minor sand at 30', tan and gray with orange stripes (30'-38'), sharp contact 32 10.0/10.0 36 40 44 10.0/10.0 (38 - 57) SAND, orange/tan, moist to wet, very soft to soft, fine grained, subrounded, minor clay, low plasticity, no clay content at 42', gradual coarsening of sand grains SP. 48 (48'-55'), some gray streakings at 49', color change to reddish brown at 52' 52 10.0/10.0 56 (57 - 60) Sandy CLAY, dark red and brown, wet, soft, low plasticity, layer of dark red concretions at 57', weak cementation, flat 60 1. This log should not be used separately from the report to which it is attached.

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

Well Materials

(0-42) Casing, 2" Sch 40 FJT PVC (42-52) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-38') Grout (38'-40') Bentonite pellets (40'-52') 20/40 sand

Luminant Log of Boring: H-33 Completion Date: 9/14/2015 Drilling Method: Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.) 6.5 Tatum, TX Driller: 60 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description USCS (ft) Materials 0 (0 - 4) Silty CLAY, minor sand, red and orange with gray ribbons, dry, soft to firm, low to . MĽ medium plasticity, flat 10.0/10.0 (4 - 12) CLAY, red with gray concretions, moist, soft to firm, high plasticity, gradual 8 contact 12 10.0/10.0 16 (12 - 24) Sandy SILT, gray and red, dry, soft, weak cementation, sharp contact, red and MЦ gray clay lense at 19' 20 24 10.0/10.0 (24 - 28) Clay, red, moist to wet, soft to firm, high plasticity, pebbles present 28 (28 - 34) SAND, gray, wet, soft to firm, minor clay, low to medium plasticity, subrounded, SP increasing clay content with depth, sharp contact 32 10.0/10.0 36 (34 - 39) CLAY, orange and gray mottling, dry, very hard, moderate cementation, low plasticity 40 (39 - 46) Sandy CLAY, orange and gray, moist to wet, firm, medium plasticity, weak cementation, increasing sand content with depth 44 10.0/10.0 48 52 (46 - 60) Sandy SILT, dark gray, dry, hard, flat 10.0/10.0 56 60

PBW

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446 This log should not be used separately from the report to which it is attached.

Well Materials

(0-41) Casing, 2" Sch 40 FJT PVC (41-46) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-37') Grout (37'-39') Bentonite pellets (39'-46') 20/40 sand

PDP5

$\[\] \[\]$	GF	REF	EN S	STA	AR			BORING/WELL CONSTRUCTION LOG		
	EN	VIRC	NM	ENT	AL			Boring/Well Number:	MW-17/	Α
Project			08-138		F6					1, 2008
Project	Name:		Martin I	ake S	ES 8 Tatum	TV		Casing Type/Diameter:	PVC/2*	ID
Locatio				HSA	o raturi	, 11		Screen Type/Diameter:	PVC/0.0	01*
Drilling	ng Meth			CT				Gravel Pack Type:		ade Silica Sand
	Elevat			384.63	3' msl			Grout Type:	Bentoni	to Pellets
	Casing			387.53				Depth to Water/Date:		STOC/10-09-2008
Logged	d by:			T. Rip				Ground Water Elevation/Date:		msl/10-09-2008
Remar	ks:							Drilling Co./Driller:	SCI/M	. Bridges
PID (ppm)	Blow Counts	Recovery (%)	Sampling	Sample	Cepth (ft. BGL)	U.S.C.S	Graphic Log	Lithologic Description	Contact Depth	Well Diagram
NA NA	NA NA	NA	СТ	NA	30			See MW-17B boring log for Lithologic Description	10.0 20.0 40.0	Concrete Well Cover Bentonite Pellets to 25' 30' Casing 20' Screen with 2" End Cap Sand Backfill of Annular Space from 25' to 47'
					50			The boring was terminated and the well was set at 47' bgs. The well was completed with a protective stickup which requires approximately 3 feet of additional casing above grade.	50.0	

ı

ı

I

ı

Ì	EN	<u> IIRC</u>	N S NM	ENI	IR 'AL			Boring/Well Number:	W-18	3A
	Numbe Name:	r:	08-1388 Martin L	ake S	ES			Date Oniled:	Octobe	or 2, 2008
ation	N:		3850 FN	A 265E	Tatum	, TX			PVC/2° PVC/0.	
	Method ng Meth			HSA_				Gravel Pack Type:		rade Silica Sand
bnu	Elevat	on:		110.83				Death to Water/Date:	43.17	nite Pellets BTOC/10-09-2008
of (Elevati	ONI:	414.43 T. Ripl				Ground Water Elevation/Date:	371.28	i' msl/10-09-2008 M. Bridges
nari	(6 :	γ				1	D	Drilling Co./Driller;		
'indeb	Blow Counts	Recovery (%)	Sampling Method	Sample	Depth (ft. BGL)	U.S.C.S	Graphic Log	Lithologic Description	Contact	
Α	NA NA	NA	СТ	NA	10			See MW-18B boring log for Lithologic Description	10.0	Concrate W
					20				20.0	
					30				30.0	50' Cas
					40			又	40.0	
					50				50.0	20' Scr with 2"
		and the second s			60				60.0	Sand Bac of Ann Space f 45' to
						1				
					-	\dashv				
	1				L		 	The boring was terminated and the well was set at 67' bgs. The well		
	1	1	1	i		1	i	was completed with a protective stickup which requires approximately 3 feet of additional casing above grade.	1	1

n	GR	EE	$N \geq$	IA	\mathbb{R}				40		
		TRO	NMI	EIVI	AL_			Bonng/Weit Nomber:	AW-19	ber 30, 200	R
	lumbe		18-1388 Martin L		FS				VC/2		<u> </u>
-	lame:		MARTIN L	4 2858	Tatum,	TX		Casing TyperDiameter:	VC/0.		
ation	Nethod			HSA				Screen Type/Diameter	20/40 0	Grade Silica	Sand
nolin	g Meth	od:		CT				Glaver Fack 1, po.	Benton	Ite Pellets	
und	Elevati	on:		367.84	'msl			E it is the total Date:	13.89	BTOC/10-09	-2008
of C	asing	Elevation		371.23				Ground Water Elevation/Date:		' msV10-09-	2008
ged				T. Ripl	еγ			Drilling Co./Driller:	SCI/N	A. Bridges	
mark (ind)	Biow Counts	Recovery (%)	Sampling Method	Sample	Depth (ft. BGL)	U.S.C.S	Graphic Log	Lithologic Description	Contact Depth	Well	Diagram
A A	NA AV	æ	ст	NA		sc	o W	Moist, medium dense, reddish-brown, CLAYEY SAND (fine-grained SAND)			Concrete We
		90				CL		Molst, soft, reddish-brown, SANDY CLAY			Benton Pellets to
					5	SP		Moist, loose, reddish-brown, fine-gralned SAND gray	5.0		
											— 13' Cas
		60				CL		Moist to wet, soft, brown. SANDY CLAY (fine-grained SAND) -stiff	10.0		
					10	CL		-light gray ✓ Moist, very stiff, light gray, SILTY CLAY			
		100				sc		Moist, dense, gray and reddish-brown, CLAYEY SAND (fine-graine	d		
					15				15.	0	- 15' Scr
						SP		Wet, loose, light gray and reddish-brown, fine-grained SAND			with 2"
		70									
			_		20	sc		Wet, medium dense, light gray and reddish-brown, CLAYEY SAND (fine-grained SAND)	20.	o .	Sand Ba
		100						-stringer of dense -stringer of dense			Space 9' ti
						ML	\prod	Molst, very stiff, gray CLAYEY SILT with some iron staining	25		

l

$\langle I \rangle$	/ /							BORING/WELL CONSTRUCTION LOG		
\gg	GI	REE	NN S	STA	AR					
Project	Numbe	VIRC	08-138	EIV I	AL				MW-20	
	Name:	77.1	Martin I		ES			Date Drilled:	Septer	mber 30, 2008
ocatio			8850 F	M 2658	3 Tatum	, TX		Casing Type/Diameter:	PVC/2 PVC/0	
Orilling	Method	d:		HSA				Screen Type/Diameter: Gravel Pack Type:		Grade Silica Sand
	ng Meth Elevat			CT 395.95	mel	-		Grout Type:		nite Pellets
		Elevati		398.34				Depth to Water/Date:		BTOC/10-09-2008
ogged	by:	2.010		T. Ripl		70		Ground Water Elevation/Date:		5' msl/10-09-2008
Remari	ks:							Drilling Co./Driller:	SCITI	M. Bridges
PID (ppm)	Blow Counts	Recovery (%)	Sampling Method	Sample	Depth (ft. BGL)	U.S.C.S	Graphic Log	Lithologic Description	Contact	
NA	NA NA	NA	ст	NA	10			See MW-20B boring log for Lithologic Description	10.0	Cemer Concrete We Cover —— Bentoni Pellets to 1
					30			又	30.0	20' Scree with 2" Er
										Sand Back of Annul Space fro 19' to 4
					40			The boring was terminated and the well was set at 41' bgs. The well was completed with a protective stickup which requires approximately 3 feet of additional casing above grade.	40.0	

Luminant Log of Boring: PDP-22 Completion Date: 9/9/2015 **Drilling Method:** Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): 6.5 Tatum, TX Driller: Timmy Beach 60 Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description **USCS** (ft) Materials 0 SP. (0 - 3) Fine SAND, tan, dry, very soft, small iron concretions, grass roots 8.0/10.0 (3 - 10) Sandy CLAY, red/orange mottled, dry, firm, moderate cementation, flat to subrounded, sharp contact 12 (10 - 20) Silty CLAY with minor sand, dry, firm, moderate cementation, flat to СН 10.0/10.0 subrounded, medium to high plasticity, micro laminated structure, increasing sand 16 content with depth, transition from red/gray at 10' to tan at 20' 20 (20 - 28) Sandy SILT, gray and tan, dry, firm, moderate cementation, flat to subrounded, 24 grass lense (fill), transition to gray at 26' 10.0/10.d SM 28 (28 - 30) Silty SAND, iron-rich, dry, soft, weak cementation, subrounded, sharp contact 32 10.0/10.0 36 40 (30 - 53) SAND, gray with small streaks and iron at 32', moist to wet, soft, moderate SC plasticity at 30', transition to low plasticity at 40', minor clay content 44 10.0/10.0 48 52 10.0/10.0 (53 - 60) Silty CLAY, gray, dry, firm, moderate cementation, dry, flat, transition to very 56 hard gray/dark gray clay at 56' 60 1. This log should not be used separately from the report to which it is attached.

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

Well Materials

(0-35) Casing, 2" Sch 40 FJT PVC (35-60) Screen, 2" Sch 40 FJT PVC, 0.010" slot **Annular Materials** (0'-31') Grout (31'-33') Bentonite pellets (33'-60') 20/40 sand

Luminant Log of Boring: PDP-23 Completion Date: 9/10/2015 **Drilling Method:** Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): 6.5 Tatum, TX Driller: 50 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description **USCS** (ft) Materials 0 10.0/10.0 12 (0 - 30) Sandy CLAY, brown to red to tan, dry, soft to firm, weak cementation, iron rich at 5', none to moderate plasticity, black mottling and some organics present at 10', iron 10.0/10.0 banding and iron nodules with increasing sand cotent at 16', microlaminated iron rich 16 banded gray, tan, and red sandy clay (21' - 30') 20 24 10.0/10.0 28 32 (30 - 39) CLAY, gray, micro laminated, minor sand content, dry, firm to hard, weak to 10.0/10.0 moderate cementation, low plasticity 36 40 (39 - 41) Sandy CLAY, light gray, dry, firm, weak cementation, medium plasticity (41 - 44) Clayey SAND, wet, soft, weak cementation, subrounded, medium to high SC plasticity 10.0/10.0 (44 - 50) Sandy CLAY, dark gray, dry, hard, moderate cementation 48 52

PBW

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

Notes

1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-35) Casing, 2" Sch 40 FJT PVC (35-45) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-31') Grout (31'-33') Bentonite pellets (33'-45') 20/40 sand

Luminant Log of Boring: PDP-24 Completion Date: 9/11/2015 **Drilling Method:** Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): 6.5 Tatum, TX Driller: 50 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description **USCS** (ft) Materials 0 8.0/10.0 12 (0 - 30) Sandy CLAY, red and tan mottling, fine sand, dry to moist, firm, weak cementation, low to medium plasticity, occasional black inclusions, minor very fine sand 7.0/10.0 16 content in gray and orange clay and high plasticity (20'-30') 20 24 10.0/10.0 28 32 10.0/10.0 (30 - 45) Sandy CLAY/Clayey SAND, gray, moist to wet, very fine grained, firm, weak 36 cementation, medium plasticity, softens and increasing wetness with depth (35'-39'), CL/SC brown with increased iron content (39'-42'), dark gray, dry, and none to low plasticity (39'-45')40 10.0/10.0 SP (45 - 47) Clayey SAND, wet, soft, weak cementation, medium to high plasticity 48 (47 - 50) Sandy CLAY, dark gray, fine grained, dry, firm to hard, weak cementation 52

PBW

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

Notes

1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-30) Casing, 2" Sch 40 FJT PVC (30-40) Screen, 2" Sch 40 FJT PVC, 0.010" slot

Annular Materials (0'-26') Grout (26'-28') Bentonite pellets (28'-40') 20/40 sand

Luminant Log of Boring: PDP-25 Completion Date: 9/11/2015 **Drilling Method:** Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): 6.5 Tatum, TX Driller: 70 Timmy Beach Total Depth (ft): Driller's License: TOC Elevation (ft. AMSL): 5814M PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description **USCS** (ft) Materials 0 4 10.0/10.0 12 10.0/10.0 16 (0 - 44) Sandy CLAY, red to gray and tan, very fine grained, dry to moist, firm, low to 20 medium plasicity, weak to moderate cementation, micro laminated, minor organics, variable sand content with depth, high plasticity and very low sand content (22'-23'), CL higher sand content and high iron content with occasional subrounded pebbles (27'-30'), 24 10.0/10.0 red, orange, tan, and gray mottling (30'-44') 28 10.0/10.0 36 40 44 10.0/10.0 48 52 10.0/10.0 (44 - 68) Clayey SAND, gray, moist, soft to firm, minor orange streaking, low plasticity, 56 SP weak cementation, subrounded, minor wet and soft clay zone (62'-64') 60 64 10.0/10.0 68 (68 - 70) CLAY, black, minor silt, dry, very hard, moderate cementation, smooth shiny surface when fractured 72

PBW

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

Notes

1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-50) Casing, 2" Sch 40 FJT PVC (50-60) Screen, 2" Sch 40 FJT PVC, 0.010" slot

Annular Materials (0'-46') Grout (46'-48') Bentonite pellets (48'-60') 20/40 sand

Luminant Log of Boring: PDP-26 Completion Date: 9/9/2015 **Drilling Method:** Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): 6.5 Tatum, TX Driller: 50 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel Easting: Recovery (ft/ft) Depth Well Lithologic Description **USCS** (ft) Materials 0 SP. (0 - 3) SAND, tan, dry, very soft, weak cementation SC (3 - 6) Clayey SAND, dry, firm, black lignite present 10.0/10.0 (6 - 9) CLAY with minor sand, red, moist, firm, medium plasticity, smear zone black lignite 8 12 SC (9 - 16) Clayey SAND, tan, moist, soft, low plasticity, more clay content with depth 10.0/10.0 16 20 24 10.0/10.0 (16 - 40) CLAY, tan, micro laminated orange and gray, moist, soft, medium plasticity, dry and silty clay (19'-27'), micro laminated gray and dark gray (27'-36'), increasing sand 28 content (30'-36'), organics layer (36.5'-37'), high iron content (39'-40') 32 10.0/10.0 36 40 SP (40 - 48) SAND, tan, medium, moist to wet, soft, subrounded 10.0/10.0 48 (48 - 50) CLAY, gray, micro laminated, dry, firm, moderate cementation 52

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-39) Casing, 2" Sch 40 FJT PVC (39-49) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-35') Grout (35'-37') Bentonite pellets (37'-49') 20/40 sand

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

Figure 1

ASH POND AREA - GROUNDWATER ZONE B POTENTIOMETRIC SURFACE MAP - OCTOBER 21-22, 2015

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

Figure 2

ASH POND AREA - GROUNDWATER ZONE B POTENTIOMETRIC SURFACE MAP - DECEMBER 14, 2015

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

Figure 3

ASH POND AREA - GROUNDWATER ZONE B POTENTIOMETRIC SURFACE MAP - FEBRUARY 25, 2016

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

Figure 4

ASH POND AREA - GROUNDWATER ZONE B POTENTIOMETRIC SURFACE MAP - APRIL 5, 2016

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

Figure 5

ASH POND AREA - GROUNDWATER ZONE B POTENTIOMETRIC SURFACE MAP - JUNE 6, 2016

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

Figure 6

ASH POND AREA - GROUNDWATER ZONE B POTENTIOMETRIC SURFACE MAP - AUGUST 9, 2016

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

Figure 7

ASH POND AREA - GROUNDWATER ZONE B POTENTIOMETRIC SURFACE MAP - OCTOBER 17, 2016

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

Figure 8

ASH POND AREA - GROUNDWATER ZONE B POTENTIOMETRIC SURFACE MAP - DECEMBER 11, 2016

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

DOWNGRADIENT CCR MONITORING WELL

UPGRADIENT CCR MONITORING WELL

(308.70)

GROUNDWATER POTENTIOMETRIC SURFACE (FT MSL)

GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR (C.I. = 1 FT) 308

CLIENT LUMINANT

PROJECT

MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

TITLE

ASH POND AREA POTENTIOMETRIC SURFACE MAP MAY 14, 2019

CONSULTANT

YYYY-MM-DD	2019-06-24
DESIGNED	AJD
PREPARED	AJD
REVIEWED	WFV
APPROVED	WFV

PROJECT NO. REV. FIGURE 19122449 6 0

REFERENCE(S) BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 4/6/17.

CCR Monitoring Well Location

•

Non-CCR Monitoring Well Used to Further Evaluate Groundwater Flow Direction

(374.34) Groundwater Potentiometric Surface (ft. MSL)

- 360 - Groundwater Potentiometric Surface Contour (C.I. = 5 ft.)

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

PDP 5 - GROUNDWATER ZONE A POTENTIOMETRIC SURFACE MAP OCTOBER 20, 2015

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS

SOURCE:

1

CCR Monitoring Well Location

•

Non-CCR Monitoring Well Used to Further Evaluate Groundwater Flow Direction

(374.34) Groundwater Potentiometric Surface (ft. MSL)

— 360 — Groundwater Potentiometric Surface Contour (C.I. = 5 ft.)

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

PDP 5 - GROUNDWATER ZONE A POTENTIOMETRIC SURFACE MAP - DEC. 14, 2015

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS

SOURCE:

CCR Monitoring Well Location

Non Use

Non-CCR Monitoring Well Used to Further Evaluate Groundwater Flow Direction

(374.34) Groundwater Potentiometric Surface (ft. MSL)

— 360 — Groundwater Potentiometric Surface Contour (C.I. = 5 ft.)

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

PDP 5 - GROUNDWATER ZONE A POTENTIOMETRIC SURFACE MAP - FEB. 24, 2016

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS

SOURCE:

CCR Monitoring Well Location

Non-CCR Monitoring Well Used to Further Evaluate Groundwater Flow Direction

Groundwater Potentiometric Surface (ft. MSL) (374.34)

Groundwater Potentiometric Surface Contour (C.I. = 5 ft.) **—** 360 **—**

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

PDP 5 - GROUNDWATER ZONE A POTENTIOMETRIC SURFACE MAP - APRIL 5, 2016

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS

SOURCE:

1

CCR Monitoring Well Location

1

Non-CCR Monitoring Well Used to Further Evaluate Groundwater Flow Direction

(374.34) Groundwater Potentiometric Surface (ft. MSL)

— 360 — Groundwater Potentiometric Surface Contour (C.I. = 5 ft.)

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

PDP 5 - GROUNDWATER ZONE A POTENTIOMETRIC SURFACE MAP - JUNE 6, 2016

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS

SOURCE:

CCR Monitoring Well Location

1

Non-CCR Monitoring Well Used to Further Evaluate Groundwater Flow Direction

(374.34) Groundwater Potentiometric Surface (ft. MSL)

- 360 - Groundwater Potentiometric Surface Contour (C.l. = 5 ft.)

Scale in Feet

275 550

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

PDP 5 - GROUNDWATER ZONE A POTENTIOMETRIC SURFACE MAP - AUGUST 9, 2016

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT 2017	CHECKED: P.IB	

PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS

SOURCE:

1

CCR Monitoring Well Location

•

Non-CCR Monitoring Well Used to Further Evaluate Groundwater Flow Direction

(374.34) Groundwater Potentiometric Surface (ft. MSL)

— 360 — Groundwater Potentiometric Surface Contour (C.I. = 5 ft.)

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

PDP 5 - GROUNDWATER ZONE A POTENTIOMETRIC SURFACE MAP - OCTOBER 17, 2016

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS

SOURCE:

CCR Monitoring Well Location

1

Non-CCR Monitoring Well Used to Further Evaluate Groundwater Flow Direction

(374.34) Groundwater Potentiometric Surface (ft. MSL)

— 360 — Groundwater Potentiometric Surface Contour (C.I. = 5 ft.)

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

PDP 5 - GROUNDWATER ZONE A POTENTIOMETRIC SURFACE MAP - DECEMBER 11, 2016

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS

SOURCE:

APPENDIX F4 – TABLES	SUMMARIZING CONSTITUEN	
	EACH MONITORING WELL	

TABLE 1 APPENDIX III GROUNDWATER ANALYTICAL DATA MARTIN LAKE STEAM ELECTRIC STATION ASH POND AREA

Sample	Date	В	Ca	CI	FI	рН	SO ₄	TDS
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
Prediction Limit	· ·	0.602	57.2	153	0.4	4.63 7.6	365	1110
Upgradient Wells			•	•	•	•	•	•
H-26	10/21/15	0.602	24.2	69.2	<0.1	5.82	154	466
	12/14/15	0.0679	9.88	40.3	<0.1	5.91	75.8	280
	02/23/16	0.206	11.7	17.1	0.151 J	6.84	54	219
	04/05/16	0.289	11.8	27.8	0.199 J	5.89	56.8	213
	06/07/16	0.441	11.7	48.6	<0.1	5.98	72.2	278
	08/09/16	0.569	14	70	<0.1	4.63	90.9	354
	10/18/16	0.439	13.6	49.1	0.127 J	6.63	69.7	263
	12/11/16	0.537	11.9	57.6	0.161 J	6.73	68.8	236
	09/21/17	0.579	13.1	67.8	<0.100	6.88	69.6	288
	06/13/18	0.512	17	66.1	< 0.100	6.74	67	313
	09/07/18	0.606	11.3	65.1	<0.100	6.85	60.7	265
	05/14/19	0.0507	85.2	61.7	0.140 J	6.83	88.2	453
	09/10/19	0.505	12	72.1	<0.1	6.75	69.4	265
	05/13/20	0.644	30.4	71	<0.100		58.4	280
H-27	10/21/15	0.58	55.3	117	<0.1	6.24	328	800
	12/14/15	0.474	57.2	112	0.156 J	6.32	317	857
	02/23/16	0.523	53.8	113	0.101 J	5.82	344	811
	04/05/16	0.48	52.7	115	0.124 J	6.04	360	819
	06/07/16	0.319	10.6	40.5	<0.1	6.32	55	207
	08/09/16	0.462	54.3	124	<0.1	4.35	365	854
	10/18/16	0.477	56.5	114	0.144 J	6.87	336	868
	12/11/16	0.427	52.8	119	0.161 J	6.78	355	805
	09/21/17	0.48	61.1	122	<0.100	6.87	378	852
	06/13/18	0.404	57	110	0.208 J	6.52	372	850
	09/07/18	0.347	6.96	58.3	0.14 J	6.72	188	716
_	05/14/19	0.35	61.8	132	0.159 J	6.78	406	897
_	09/10/19	0.368	57.7	117	<0.1	6.77	365	841
	05/13/20	0.583	53.1	93	<0.100		274	786
H-33	10/20/15	0.0462	17.9	60.5	<0.1	5.78	120	415
_	12/14/15	0.0596	10.7	59.6	0.136 J	5.73	110	403
_	02/23/16	0.0656	11.2	56.1	0.125 J	6.92	111	625
_	04/05/16	0.0659	14.9	58.3	0.14 J	6.31	113	589
	06/07/16	0.0571	20.1	67.5	<0.1	6.04	121	515
_	08/09/16	0.0431	11.2	64.9	<0.1	5.13	120	442
-	10/18/16	0.0539	11.1	59.2	<0.1	6.86	114	398
	12/11/16 09/21/17	0.0594	12.1	63.2	0.132 J	6.85	112	395
	06/13/18	0.0452 0.114	13.7 24	67.9 65.5	<0.100 0.105 J	7.02 6.72	107 93.8	412 447
-	09/07/18	0.112	22.4	66.2	0.135 J	6.73	96.8	489
	05/14/19	0.0592	68.6	80.4	0.166 J	6.81	104	559
	09/10/19	0.0631	44.1 24	86.1	<0.1	6.75	119	495 439
Danis and Wa	05/13/20	0.103	24	84.3	<0.100		113	439
Downgradient We		T 0.05	140	100	I 0.4	I 5.00	1 040	1 4 000
H-28	10/21/15	9.25	113	109	<0.1	5.92	1,010	1,830
	12/14/15	1.02	17.3	15.5	<0.1	6.02	113	299
<u> </u>	02/23/16	10.2	123	97.4	<0.1	4.45	1,070	1,910
	04/05/16	10.3	120	94.4	<0.1	5.97	1,080	1,890
	06/07/16	3.66	45.4	62.2	<0.1	6.16	465	817
	08/09/16	9.29	116	98.4	<0.1	3.83	1,080	2,100
	10/18/16	4.96	67.3	91.4	0.165 J	6.82	643	1,460
	12/11/16	3.94	45.7	56.7	0.114 J	6.64	445	766
⊢	09/21/17	6.06	74.1	88.5	<0.100	6.77	702	1,220
	06/13/18	6.97	92.1	96.5	0.126 J	6.59	826	1,490

TABLE 1 APPENDIX III GROUNDWATER ANALYTICAL DATA MARTIN LAKE STEAM ELECTRIC STATION ASH POND AREA

Sample	Date	В	Ca	CI	FI	pН	SO ₄	TDS
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
Prediction Limit	-	0.602	57.2	153	0.4	4.63 7.6	365	1110
	09/07/18	4.54	60.5	93.4	<0.100	6.84	679	1,330
	05/14/19	8.51	99.7	98.9	<0.100	6.32	935	1,680
	09/10/19	5.69	68.9	95.9	<0.100	6.89	716	1,390
	05/13/20	7.03	88.9	86.7	<0.100		676	1,220
H-29	10/21/15	0.0788	16	65.2	<0.1	5.78	171	441
	12/14/15	0.29	165	8.68	0.56	5.92	178	990
	02/23/16	0.268	59.4	14.6	0.239 J	11.20	156	334
	04/05/16	0.361	80.8	14.2	0.363 J	6.04	181	489
	06/07/16	0.311	29.8	19.3	0.27 J	6.13	166	308
	08/09/16	0.172	64.6	53.1	<0.1	5.97	124	575
	10/18/16	0.953	150	4.33	1.15	6.63	346	607
	12/11/16	1.02	130	4.65	1.4	6.59	365	651
	09/21/17	1.4	147	42	0.304	6.78	170	782
	06/13/18	5.89	81.1	84.1	0.123 J	6.75	713	1,240
	09/07/18	3.21	46.7	78.6	<0.100	6.77	544	1,030
	05/14/19	8.12	95.9	81.8	0.104 J	6.52	780	1,400
	09/10/19	8.05	97.1	90.5	<0.1	6.62	930	1,600
	05/13/20	6.98	84.9	70.7	<0.100		769	1,340
H-31	10/20/15	17.2	194	179	0.889	6.57	1,930	3,270
	12/14/15	20.4	236	147	0.692	6.60	1,740	2,250
	02/23/16	22.3	252	199	0.921	5.33	2,510	4,180
	04/05/16	21.1	250	186	1.36	6.46	2,450	3,920
	06/07/16	22.2	244	241	0.783	6.42	2,720	4,570
	08/09/16	24.1	251	217	0.216 J	4.38	2,730	4,440
	10/18/16	20	236	187	0.298 J	6.82	1,960	3,690
	12/11/16	22.3	246	201	0.892	6.82	2,640	4,170
_	09/21/17	23.8	260	227	0.308 J	6.87	2,870	4,570
<u> </u>	06/12/18	16.6	246	205	0.646	6.61	2,390	4,100
<u> </u>	09/07/18	0.838	12.2	17.7	<0.275	6.77	136	457
<u> </u>	05/14/19	20	234	225	0.96	6.42	2,470	4,230
<u> </u>	09/10/18	19.7	234	232	2.1	6.78	2,640	4,220
11.00	05/13/20	22.9	235	223	0.231 J	0.40	2,340	4,150
H-32	10/20/15	1.22	42.2	120	0.374 J	6.18	309	797
<u> </u>	12/14/15	1.39	37.4	122	0.619	6.29	325	860
<u> </u>	02/23/16	1.48	45.3	123	0.701	4.82	323	842
<u> </u>	04/05/16	1.65	44.3	125	1.05	6.17	337	831
∥ ⊢	06/07/16 08/09/16	1.82	45.6 45.4	137	0.858	6.05	350 342	829 839
∥ ⊢	10/18/16	1.69 1.72	50.5	132 121	0.68 0.904	3.64 6.75		888
∥ ⊢	12/11/16		44.3	120	1.00	6.83	319 341	759
∥ ⊢	09/21/17	2.5 J 2.07 J	52.8	120	0.519	6.82	337	807
∥ ⊢	06/12/18	1.82 J	52.6	129	1.02	6.75	339	793
∥ ⊢	09/07/18	0.292 J	10.9	17.8	0.551	6.79	53.8	283
∥ ⊢	05/14/19	2.08	45.2	135	1.15	6.02	320	910
∥ ⊢	09/10/19	1.87	45.2	127	0.923	6.68	365	810
"	05/13/20	2.15	43.3	124	0.923	0.00	343	791
	05/15/20	۷.۱۵	43.3	124	0.041		J43	191

Notes:

- 1. Abbreviations: mg/L milligrams per liter; TDS total dissolved solids; s.u. standard units.
- 2. J concentration is below method quantitation limit; result is an estimate.

TABLE 2 APPENDIX IV GROUNDWATER ANALYTICAL DATA MARTIN LAKE STEAM ELECTRIC STATION ASH POND AREA

																		Ra
Sample Location	Date Sampled	Sb	As	Ba	Be (m. m/l.)	Cd	Cr	Co	F (***	Pb	Li	Hg	Mo	Se	TI	Ra 226	Ra 228	226/228 Comb.^
GWPS:	Sampleu	(mg/L) 0.006	(mg/L) 0.01	(mg/L)	(mg/L) 0.004	(mg/L) 0.005	(mg/L) 0.1	(mg/L) 0.0564	(mg/L)	(mg/L) 0.015	(mg/L) 0.177	(mg/L) 0.002	(mg/L) 0.1	(mg/L) 0.05	(mg/L) 0.002	(pCi/L)	(pCi/L)	(pCi/L)
Upgradient Wells		0.000	0.01		0.001	0.000	0.1	0.0001		0.010	0.111	0.002	0.1	0.00	0.002	lk.		
H-26	10/21/15	<0.0008	0.0036 J	0.0785		<0.0003	<0.002	0.0385	<0.1	<0.0003	0.0139	<0.00008	<0.002	<0.002	<0.0005	0.919	<1.64	2.56
_	12/14/15	<0.0008	<0.002	0.0401	0.000458 J	<0.0003	<0.002	0.0244	<0.1	<0.0003	0.0769	<0.00008	<0.002	<0.002	<0.0005	0.619	<1.95	2.57
<u> </u>	02/23/16 04/05/16	<0.0008	<0.002 <0.002	0.0423	<0.0003 <0.0003	<0.0003	0.0077 0.00798	0.00813 0.0125	0.151 J 0.199 J	0.000315 J <0.0003	0.0124 0.0121	<0.00008	0.00248 J <0.002	0.0022 J <0.002	<0.0005 <0.0005	0.37 <0.243	<2.06 <1.06	2.43 <1.303
	06/07/16	<0.0008	<0.002	0.0467	0.000721 J	<0.0003	<0.002	0.0123	<0.1	<0.0003	0.0121	<0.00008	<0.002	<0.002	<0.0005	0.245	1.67	1.92
-	08/09/16	<0.0008	0.0029 J	0.0431	0.00136	<0.0003	<0.002	0.0352	<0.1	<0.0003	0.0155	<0.00008	<0.002	<0.002	<0.0005	<0.2	<0.932	<1.132
	10/18/16	<0.0008	< 0.002	0.0497	0.000709 J	< 0.0003	< 0.002	0.0214	0.127 J	< 0.0003	0.0136	<0.00008	< 0.002	0.0027 J	< 0.0005	0.243	< 0.622	0.87
	12/11/16	<0.0008	<0.002	0.0468	0.00146	<0.0003	0.0031 J	0.0275	0.161 J	0.000358 J	0.014	<0.00008	<0.002	<0.002	<0.0005	0.248	1.82	2.07
	06/13/18	<0.0008	< 0.002	0.0659	0.0016	<0.0003	0.00213 J	0.0261	<0.100	<0.0003	0.032	<0.00008	<0.002	< 0.002	<0.0005	<0.297	3.72	4.017
_	09/07/18 05/14/19	NA <0.0008	<0.002 0.0041 J	0.0470	0.00155 0.00147	<0.0003	0.00319 J 0.0406	0.0247 0.0795	<0.100 0.140 J	<0.0003 0.000972 J	0.0489 0.147	NA <0.00008	NA <0.002	<0.002 0.0022 J	NA <0.0005	<0.473 1.43	<0.665 0.598	<1.138 2.028
-	9/10/2019	<0.0008 NA	<0.002	0.1900	0.00147	<0.0003	<0.0406	0.0795	<0.1	0.000972 J	0.147	<0.00008 NA	<0.002 NA	0.0022 J	<0.0005 NA	0.115	2.74	2.028
	5/13/2020	<0.0008	<0.002	0.129	0.00166	<0.0003	0.00314 J	0.0237	<0.100	0.0003133	0.0218 J	<0.00008	<0.002	0.0103	<0.0005	0.113	0.585	0.88
H-27	10/21/15	<0.0008	< 0.002	0.0378	< 0.0003	< 0.0003	< 0.002	0.0043 J	<0.1	< 0.0003	0.0607	<0.00008	< 0.002	< 0.002	< 0.0005	< 0.553	<1.67	<2.223
	12/14/15	<0.0008	0.0021 J	0.039	<0.0003	<0.0003	<0.002	0.00326 J	0.156 J	0.000339 J	0.0624	<0.00008	<0.002	<0.002	<0.0005	0.468	<1.68	2.15
	02/23/16	<0.0008	<0.002	0.0266	< 0.0003	<0.0003	<0.002	< 0.003	0.101 J	<0.0003	0.0601	<0.00008	<0.002	<0.002	<0.0005	0.921	<1.62	2.54
	04/05/16	<0.0008	<0.002	0.0245	<0.0003	<0.0003	<0.002	<0.003	0.124 J	<0.0003	0.0573	<0.00008	<0.002	<0.002	<0.0005	0.269	<2.05	2.32
_	06/07/16 08/09/16	<0.0008	<0.002 <0.002	0.0342	0.000609 J <0.0003	<0.0003	<0.002 <0.002	0.016 <0.003	<0.1 <0.1	<0.0003 <0.0003	0.0107 0.0616	<0.00008	<0.002	<0.002 <0.002	<0.0005 <0.0005	0.269 0.408	<0.658 <0.632	0.927 1.04
	10/18/16	<0.0008	<0.002	0.0241	<0.0003	<0.0003	<0.002	<0.003	0.144J	<0.0003	0.0576	<0.00008	<0.002	<0.002	<0.0005	<0.178	1.07	1.04
	12/11/16	<0.0008	< 0.002	0.0236	< 0.0003	< 0.0003	< 0.002	< 0.003	0.161 J	< 0.0003	0.0606	<0.00008	< 0.002	< 0.002	< 0.0005	0.143	1.54	1.68
	06/13/18	<0.0008	< 0.002	0.0237	< 0.0003	< 0.0003	0.00964	< 0.003	0.208 J	< 0.0003	0.108	<0.00008	< 0.002	< 0.002	< 0.0005	0.267	<1.4	1.667
	09/07/18	NA	<0.002	0.0196	<0.0003	<0.0003	0.0453	< 0.003	0.140 J	<0.0003	0.306	NA	NA	0.00773	NA	<0.285	1.43	1.715
	05/14/19	<0.0008	< 0.002	0.0208	<0.0003	<0.0003	<0.002	< 0.003	0.159 J	<0.0003	0.0678	<0.00008	<0.002	<0.002	<0.0005	1.10	0.928	2.028
_	9/10/2019 5/13/2020	<0.0008	<0.002 <0.002	0.384	<0.0003 <0.0003	<0.0003	0.00668	<0.003	<0.100	<0.0003	0.103 0.170	NA <0.00008	NA <0.002	0.0027 J 0.00671	NA <0.0005	0.185 0.166	3.57 -0.0371	3.76 0.166
H-33	10/20/15	<0.0008	0.0021 J	0.0586	0.000351 J	<0.0003	<0.002	0.0274	<0.100	<0.0003	0.0814	<0.00008	<0.002	<0.002	<0.0005	1.76	1.64	3.40
11 00	12/14/15	<0.0008	0.00215 0.00205 J	0.0473	0.000381 J	<0.0003	<0.002	0.0293	0.136 J	<0.0003	0.0903	<0.00008	<0.002	<0.002	<0.0005	1.94	<1.79	3.73
	02/23/16	<0.0008	< 0.002	0.0529	0.000311 J	< 0.0003	0.0194	0.0163	0.125 J	< 0.0003	0.182	<0.00008	< 0.002	< 0.002	< 0.0005	0.906	<2.32	3.23
	04/05/16	<0.0008	<0.002	0.0576	0.000302 J	<0.0003	0.0171	0.016	0.14 J	<0.0003	0.16	<0.00008	< 0.002	<0.002	< 0.0005	0.328	1.08	1.41
	06/07/16	<0.0008	<0.002	0.0774	0.000604 J	<0.0003	0.0153	0.0196	<0.1	<0.0003	0.163	<0.00008	<0.002	< 0.002	<0.0005	0.276	0.897	1.17
_	08/09/16 10/18/16	<0.0008	<0.002 0.0035 J	0.0424	0.000519 J 0.000617 J	<0.0003	0.0029 J 0.0309	0.0284 0.0644	<0.1 <0.1	<0.0003 0.000329 J	0.102 0.118	<0.00008	<0.002	<0.002 <0.002	<0.0005 <0.0005	<0.149 0.096	0.649 <0.517	0.80 0.61
	12/11/16	<0.0008	0.0035 J	0.0464	0.000865 J	<0.0003	0.0368	0.0408	0.132 J	0.000329 J	0.116	<0.00008	<0.002	<0.002	<0.0005	0.096	1.29	1.45
-	06/13/18	<0.0008	0.0022 J	0.0337	0.0004 J	<0.0003	0.0300	0.0466	0.105 J	0.0004933	0.113	<0.00008	<0.002	<0.002	<0.0005	0.795	<0.712	1.507
	09/07/18	NA	0.00239 J	0.0757	0.0003 J	< 0.0003	0.0105	0.0288	0.135 J	< 0.0003	0.160	NA	NA	< 0.002	NA	0.334	< 0.645	0.979
	05/14/19	<0.0008	0.00355 J	0.158	0.00114	< 0.0003	0.0342	0.0648	0.166 J	0.000772 J	0.161	<0.00008	< 0.002	<0.002	< 0.0005	0.850	1.35	2.200
_	9/10/2019	NA	< 0.002	0.111	0.000518 J	<0.0003	0.00637	0.0347	0.01	<0.0003	0.142	NA	NA	<0.002	NA	0.6	2.97	3.57
Downgradient Wells	5/13/2020	<0.0008	<0.002	0.0784	0.00053 J	<0.0003	0.00755	0.0312	<0.100	0.00191	0.173	<0.00008	<0.002	0.00243 J	<0.0005	0.395	1.9	2.29
H-28	10/21/15	<0.0008	0.0028 J	0.0396	0.00148	0.00121	<0.002	0.188	<0.1	0.000491 J	0.154	<0.00008	<0.002	0.00682	<0.0005	<0.558	<1.65	<2.208
11-20	12/14/15	<0.0008	<0.002	0.0224	<0.0003	0.000572 J	<0.002	0.0225	<0.1	< 0.0003	0.021	<0.00008	<0.002	<0.002	<0.0005	0.707	<1.18	1.89
	02/23/16	<0.0008	0.00225 J	0.0202	0.00133	0.00151	<0.002	0.201	<0.1	0.00053 J	0.159	<0.00008	<0.002	0.00222 J	< 0.0005	< 0.396	2.24	2.64
	04/05/16	<0.0008	< 0.002	0.0173	0.0011	0.00252	<0.002	0.199	<0.1	0.00087 J	0.15	<0.00008	< 0.002	0.00237 J	< 0.0005	<0.231	1.76	1.99
	06/07/16	<0.0008	<0.002	0.0468	0.000934 J	0.000664 J	<0.002	0.0944	<0.1	<0.0003	0.0959	<0.00008	<0.002	<0.002	<0.0005	0.310	1.48	1.79
<u> </u>	08/09/16	<0.0008	<0.002	0.0155	0.00275	0.0016	<0.002	0.195	<0.1	0.000774 J	0.155	<0.00008	<0.002	0.0029 J	<0.0005	<0.451	1.41	1.86
	10/18/16 12/11/16	<0.0008	0.00284J <0.002	0.0174	0.00685 0.000698 J	0.000744 J 0.000668 J	<0.002 <0.002	0.169 0.0924	0.165J 0.114 J	<0.00108	0.155 0.0869	<0.00008	<0.002 <0.002	0.0027 J <0.002	<0.0005 <0.0005	<0.228 <0.149	0.645 1.13	0.87 1.28
F	06/13/18	<0.0008	<0.002	0.0471	0.000698 3	0.0038	<0.002	0.0924	0.114 J	0.000448 J	0.0869	<0.00008	<0.002	<0.002	<0.0005	0.327	<1.56	1.887
F	09/07/18	NA NA	<0.002	0.0192	0.00704	0.00115	<0.002	0.162	<0.100	0.00118 J	0.203	NA	NA	0.00281 J	NA	<0.243	0.845	1.088
	05/14/19	<0.0008	<0.002	0.0141	0.00281	0.00212	<0.002	0.187	<0.100	0.000595 J	0.172	<0.00008	<0.002	0.00619	<0.0005	0.444	0.615	1.059
	9/10/2019	NA	<0.002	0.145	0.0058	0.000951	<0.002	0.146	<0.1	0.00132	0.169	NA	NA	0.00461	NA	0.205	4.26	4.47
11.00	5/13/2020	<0.0008	<0.002	0.0149	0.00252	0.00126	<0.002	0.159	<0.100	0.00751 J	0.171	<0.00008	<0.002	0.0032 J	<0.0005	0.151	0.984	1.13
H-29	10/21/15 12/14/15	<0.0008	<0.002	0.159	0.000359 J	<0.0003	<0.002 0.062	0.0301 <0.003	<0.1 0.56	<0.0003 0.000542 J	0.0156	<0.00008	<0.002 0.00819	<0.002	<0.0005 <0.0005	0.464 <0.53	1.82 <1.25	2.28
	02/23/16	<0.0008	<0.002 0.00203 J	0.277	<0.0003	<0.0003	0.062	<0.003	0.56 0.239 J	<0.0003	0.0202 0.0135	<0.00008	0.00819	0.0282 0.0148	<0.0005	<0.53	<1.25	<1.78 <2.594
<u> </u>	04/05/16	<0.0008	<0.002	0.167	<0.0003	<0.0003	0.042	<0.003	0.363 J	<0.0003	0.0175	<0.00008	0.00697	0.0232	<0.0005	<0.228	<0.897	<1.125
F	06/07/16	<0.0008	<0.002	0.136	<0.0003	<0.0003	0.0274	<0.003	0.27 J	<0.0003	0.0188	<0.00008	0.00551	0.0152	<0.0005	0.173	<0.834	1.01
	08/09/16	<0.0008	0.00995	0.315	<0.0003	<0.0003	0.003 J	0.0047 J	<0.1	<0.0003	0.0143	<0.00008	<0.002	<0.002	<0.0005	0.261	<0.578	0.84
	10/18/16	<0.0008	< 0.002	0.118	<0.0003	<0.0003	0.0041 J	< 0.003	1.15	0.000427J	0.0056 J	<0.00008	0.0031 J	0.0681	< 0.0005	0.155	< 0.439	0.59
<u> </u>	12/11/16	<0.0008	<0.002	0.0779	<0.0003	<0.0003	<0.002	<0.003	1.4	<0.0003	<0.005	<0.00008	0.0031 J	0.0642	<0.0005	<0.113	<0.599	<0.712
<u> </u>	06/13/18 09/07/18	<0.0008 NA	<0.002 <0.002	0.0157	0.00345 0.00513	0.00318	<0.002	0.153 0.119	0.123 J <0.100	0.000779 J 0.00172	0.153 0.145	<0.00008 NA	<0.002 NA	<0.002 0.00374 J	<0.0005 NA	<0.274 <0.371	<1.62 <0.71	<1.894 <1.081
F	5/14/2019	<0.0008	<0.002	0.0374	0.00313	0.000938	<0.002	0.119	0.104 J	0.00172 0.000543 J	0.143	<0.00008	<0.002	0.00374 3	<0.0005	<0.371	<0.71	<1.046
<u> </u>	9/10/2019	NA	<0.002	0.0135	0.00341	0.00213	<0.002	0.164	<0.1	0.000916 J	0.173	NA	NA	0.004 J	NA	0.364	4.99	5.35
	5/13/2020	<0.0008	< 0.002			0.00129	< 0.002	0.142	< 0.100	0.000684 J	0.134	<0.00008	< 0.002	0.00281 J	< 0.0005	0.246	0.545	0.791

TABLE 2 APPENDIX IV GROUNDWATER ANALYTICAL DATA MARTIN LAKE STEAM ELECTRIC STATION ASH POND AREA

																		Ra
				_	_		_	_	l _					_				226/228
Sample	Date	Sb	As	Ba	Be	Cd	Cr	Co	F	Pb	Li	Hg	Mo	Se	TI	Ra 226	Ra 228	Comb.^
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(pCi/L)	(pCi/L)
GWPS:		0.006	0.01	2	0.004	0.005	0.1	0.0564	4	0.015	0.177	0.002	0.1	0.05	0.002			5
H-31	10/20/15	<0.0008	0.0168	0.0732	0.0126	0.0032	0.00687	0.434	0.889	< 0.0003	0.137	<0.00008	< 0.002	0.116	<0.0005	0.943	<1.88	2.82
	12/14/15	<0.0008	0.00513	0.0388	0.00702	< 0.0003	0.00456 J	0.0651	0.692	< 0.0003	0.149	<0.00008	< 0.002	0.0231	<0.0005	1.61	<1.29	2.90
	02/23/16	<0.0008	0.00436 J	0.0243	0.0101	<0.0003	<0.002	0.0594	0.921	< 0.0003	0.146	<0.00008	< 0.002	0.0209	<0.0005	< 0.419	<1.64	<2.059
	04/05/16	<0.0008	0.00514	0.0241	0.00925	< 0.0003	0.00435 J	0.0685	1.36	< 0.0003	0.146	<0.00008	< 0.002	0.0226	< 0.0005	< 0.334	<0.897	<1.231
	06/07/16	<0.0008	0.0038 J	0.0242	0.00789	< 0.0003	< 0.002	0.0406	0.783	< 0.0003	0.157	<0.00008	< 0.002	0.0307	<0.0005	0.257	< 0.555	0.81
	08/09/16	<0.0008	0.00886	0.0191	0.00734	< 0.0003	< 0.002	0.286	0.216 J	< 0.0003	0.17	<0.00008	< 0.002	0.0202	< 0.0005	1.31	0.900	2.21
	10/18/16	<0.0008	0.0035 J	0.0215	0.00167 J	< 0.0003	< 0.002	0.0304 J	0.298 J	< 0.0003	0.165	<0.00008	< 0.002	0.0057 J	<0.0005	0.169	1.18	1.35
	12/11/16	<0.0008	0.0088 J	0.0189	0.0197	< 0.0003	0.0039 J	0.23 J	0.892	< 0.0003	0.198	<0.00008	< 0.002	0.0365	< 0.0005	0.195	< 0.754	0.95
	06/12/18	<0.0008	0.00532	0.0194	0.00545	< 0.0003	0.003 J	0.236	0.646	< 0.0003	0.214	<0.00008	< 0.002	0.00475 J	< 0.0005	<0.26	< 0.597	< 0.857
	09/07/18	NA	< 0.002	0.0287	< 0.0003	< 0.0003	< 0.002	0.00353 J	0.275 J	< 0.0003	0.0187	NA	NA	0.00424 J	NA	< 0.261	< 0.567	<0.828
	05/14/19	<0.0008	0.00675	0.0163	0.00928	< 0.0003	0.0032 J	0.389	0.96	< 0.0003	0.219	< 0.0004	< 0.002	0.0261	< 0.0005	2.62	<0.789	3.409
	9/10/2019	NA	0.00845	0.0158	0.0312	< 0.0003	0.0031 J	0.41	2.1	< 0.0003	0.225	NA	NA	0.0642	NA	0.247	2.92	3.17
	5/13/2020	<0.0008	0.011	0.0159	0.0331	< 0.0003	0.00367 J	0.449	0.231 J	< 0.0003	0.249	<0.00008	< 0.002	0.0792	<0.0005	0.0808	1.7	1.78
H-32	10/20/15	<0.0008	0.0028 J	0.16	0.00266	< 0.0003	< 0.002	0.163	0.374 J	< 0.0003	0.0788	<0.00008	< 0.002	0.003 J	< 0.0005	1.05	<1.90	2.95
	12/14/15	<0.0008	0.0123	0.0384	0.00313	< 0.0003	< 0.002	0.155	0.619	< 0.0003	0.0733	<0.00008	< 0.002	< 0.002	< 0.0005	0.712	<2.21	2.92
	02/23/16	<0.0008	0.00712	0.0277	0.00452	< 0.0003	< 0.002	0.188	0.701	0.000326 J	0.0821	<0.00008	< 0.002	< 0.002	< 0.0005	1.12	1.60	2.72
	04/05/16	<0.0008	0.00648	0.0237	0.00527	0.00128	< 0.002	0.208	1.05	0.00182	0.0818	<0.00008	< 0.002	< 0.002	< 0.0005	< 0.364	<1.15	<1.514
	06/07/16	<0.0008	0.0045 J	0.0238	0.00583	0.000997 J	< 0.002	0.207	0.858	0.00168	0.087	<0.00008	< 0.002	0.003 J	< 0.0005	< 0.165	0.613	0.778
	08/09/16	<0.0008	0.0034 J	0.0234	0.00548	0.000713 J	< 0.002	0.19	0.68	0.00115	0.0774	<0.00008	< 0.002	0.0028 J	< 0.0005	2.56	< 0.446	3.01
	10/18/16	<0.0008	0.0029 J	0.02	0.00567	0.00254	< 0.002	0.204	0.904	0.00332	0.0834	<0.00008	< 0.002	0.0027 J	< 0.0005	< 0.139	0.683	0.82
	12/11/16	<0.0008	0.0025 J	0.0205	0.00609	0.00108	< 0.002	0.208	1	0.00137	0.0838	<0.00008	< 0.002	0.0024 J	< 0.0005	< 0.163	< 0.753	< 0.916
	06/12/18	<0.0008	< 0.002	0.0175	0.00681	0.000586 J	< 0.002	0.215	1.02	0.000701 J	0.0957	<0.00008	< 0.002	< 0.002	< 0.0005	< 0.275	0.917	1.192
	09/07/18	NA	< 0.002	0.0404	< 0.0003	< 0.0003	< 0.002	0.00347 J	0.551	< 0.0003	0.0195	NA	NA	0.0157	NA	0.343	1.25	1.593
	05/14/19	<0.0008	0.002 J	0.0162	0.00713	0.000366 J	< 0.002	0.202	1.15	0.000574 J	0.0978	<0.00008	< 0.002	0.00675	< 0.0005	0.303	< 0.546	< 0.849
	9/10/2019	NA	< 0.002	0.016	0.00678	0.000467 J	< 0.002	0.185	0.923	0.00056 J	0.0935	NA	NA	0.0049 J	NA	0.0404	4.74	4.78
	5/13/2020	<0.0008	0.00214 J	0.0166	0.00725	0.000389 J	< 0.00200	0.195	0.641	0.000743 J	0.0978	<0.00008	< 0.002	0.00401 J	< 0.0005	-0.0142	1.15	1.15

Notes:

- 1. Abbreviations: mg/L milligrams per liter; pCi/L picocuries per liter.
 2. ^- Sum of Ra 226 and Ra 228 concentrations. Non-detect isotope results were assigned a value equal to the minimum detectable concentration.
 3. J concentration is below method quantitation limit; result is an estimate.
 4. NA = Not analyzed.

Table 3 Appendix III Groundwater Analytical Data Summary Matin Lake Steam Electric Station PDP 5

Sample	Date	В		Ca	1	CI		FI		field	pH	SO	4	TD	s
Location	Sampled	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample
Location		Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data
	09/22/17	ļ	0.402		3.1		8.3		<0.1		6.78		31.2		111
	06/14/18	ł	0.485		6.48 5.06		9.16 8.82		<0.1 0.179 J	2.5	6.87 5.03		45.9 43.1		129
MW-17A	05/13/19	0.538	0.523	6.73	4.88	10.4	9.18	0.4	<0.1793	9.19	6.79	51.9	44.7	170	145
	11/7/2019	ł	0.52		5.05		8.81		<0.100		6.44		43.9	ł	127
	5/19/2020	i i	0.521		5.09		8.74		<0.100				46.8		140
	09/21/17		0.0654		1.04		5.27		<0.1		6.94		3.23		45
	06/14/18	İ	0.102		2		6.56		<0.1		6.92		3.48		71
	09/12/18	İ	0.211		3.23		9.06		<0.1	4.88	5.69		4.82		150
MW-18A	11/07/18	0.20	0.128	3.1		10.4		0.4	-	7.92	-	9.1		157	
	05/13/19		0.117		1.01		6.17		0.138 J		6.64		3.23		73
	11/7/2019	ļ	0.127		11.5		6.34		<0.100		6.23		3.67		68
	5/19/2020		0.225		1.54		7.09		<0.100		004		5.97		86
	09/22/17	ļ	0.0677		2.74		5.36		<0.1		6.94		1.46 J		98
	06/14/18	-	0.577		133		24.4 65.1		0.216 J 0.228 J		6.78		328 166		758 597
MW-19	11/07/18	0.782	0.243	237		57.7	5.22	0.512	U.226 J	4.6 8.08	6.04	672	100	1,380	597
	05/13/19	ł	0.429		122		26.8		0.229 J	8.08	6.72		349	ł	813
	11/8/2019	t	0.529		77.8		49.3		0.189 J		6.87		310	İ	844
	5/19/2020	İ	0.0724		1.49		5.84		<0.100				1.02 J		85
	09/22/17		0.0807		17.4		12.6		0.175 J		6.71		74.2		237
	02/21/18 re-	İ			_		10.7		_		_			İ	
	sample	ł												-	
	06/13/18	ļ	0.171		24		10.9		0.672		6.72		132		250
MW-20A	09/11/18	0.213	0.141	25.7	7.16	12.3	11	0.954	0.235 J	3.06 8.76	4.70	148	39.1	381	154
	05/13/19	Ī	0.239		37.4		10.2		0.731		6.81		178	ĺ	328
	11/8/2019	ł	0.132		9.9		10.2		0.465		6.51		88	ł	205
		-									0.51				
	5/19/2020		0.22		24		10.4		0.413				133		270
	09/22/17		0.221		92.5		12.3		0.321 J		6.98		178		558
	06/14/18	Ī	0.115		7.78		11.8		0.239		6.63		186		491
PDP-22	09/12/18	0.411	0.164	306	61.1	32.7	10.9	1.07	0.216 J	4.08 8.63	5.88	216	143	1,780	476
	05/13/19	ļ	0.158		98.2		10.1		0.303 J	0.03	6.86		184		615
	11/12/2019 5/19/2020	-	0.226		34.3 54.9		12.6		0.218 J <0.100		6.93		215 5.21		482 205
	09/22/17		0.0646		2.34		4.48		0.147 J		6.77		1.47 J		111
	09/22/17 02/21/18 re-	<u> </u>											_		
	samnle	ļ	0.0357		2.37		6.21		<0.1		6.82		 1.26 J		98
	06/13/18		0.0357	_	1.96		6.21		<0.1	3.38	5.32		1.26 J		98
PDP-23	11/07/18	0.0678	0.0700	2	1.50	7.52		0.4		8.45		3.27	1.02 0	143	
	05/13/19	t	0.0628		1.89		6.98		<0.1		6.68		1.28 J	İ	103
	11/12/2019	İ	0.0675		2.14		4.98		<0.100		6.72		1.41 J		93
	5/19/2020		0.0709		2.03		6.86		<0.100				1.19 J		104
	09/22/17		3.01		25.8		17.5		0.898		6.95		231		440
	06/14/18	Ī	2.71		23.9		21.1		0.629		6.82		284		481
PDP-24	09/11/18	4.92	4.08	45.9	41.6	22.6	19.4	1.03	0.832	1.33	4.20	533	460	894	760
101-24	05/13/19	4.02	3.23	45.5	23	22.0	21	1.03	0.871	9.97	6.95	333	300	054	537
	11/12/2019	ł	3 2.97		21.9		20.6		0.751		6.87		295 300	-	520 504
	5/19/2020	ŀ	3.17		21.4		21		0.61		0.07		286		512
	09/22/17		0.133		36.8		130		0.157 J		6.81		89.1		481
	06/14/18	ł	0.119		40.4		111		<0.1		6.78		73.4		439
	09/11/18	t	0.167		36.2		135		0.115 J	4.5-	5.87		90.3		469
PDP-25	11/07/18	0.136	0.142	41.3		197		0.4		4.65 7.93	-	118		705	
	05/13/19		0.144		44.4		108		0.121 J		6.84		69		469
	11/12/2019	ļ	0.184		38.6		117		<0.100		6.82		71.4		454
	5/19/2020		0.202		53.7		105		<0.100		-		62.2		442
	09/22/17	1	0.0343		2.32		5.24		0.157 J		6.84		5.88		107
	06/14/18	1	0.0225 J		2.93		4.8		<0.1		6.89		4.27		100
PDP-26	09/12/18	0.111	0.0371	4.74	2.37	14.6	4.88 4.59	0.577	<0.1 0.217 J	5.35 7.57	6.07	64.6	2.66 J 2.7 J	438	107
	05/13/19	+	0.0528		1.9		4.59		0.217 J 0.122 J		6.86		2.7 J		106
	5/19/2020	ł	0.0622		2.25		4.52		<0.100		0.77		2.1 J		102
Notes:													<u> </u>	-	

Notes:

1. All concentrations in mg/L. pH in standard units.

2. J - concentration is below sample quantitation limit; result is an estimate.

3. Highlighted sample results exceed the prediction limit.

APPENDIX F5 - SITE HYDROGEOLOGY AND STRATIGRAPHIC CROSS-**SECTIONS OF THE SITE**

CONCEPTUAL SITE MODEL AND DESCRIPTION OF SITE HYDROGEOLOGY (ASH POND AREA)

The Martin Lake Steam Electric Station (Martin Lake) conceptual site model (CSM) and Description of Site Hydrogeology for the Ash Pond Area (APA), which includes the East Bottom Ash Pond (EAP), West Bottom Ash Pond (WAP), and New Scrubber Pond (NSP) located near Tatum, Texas are described in the following sections.

REGIONAL SETTING

The APA is located in the Martin Creek area on the west flank of the Sabine Uplift within the Sabine River Valley (Golder, 2016). Formations in the Martin Creek area mainly include continental and marine sedimentary deposits of Eocene-aged Wilcox Group (Barnes, 1965; Golder, 2016), which are overlain by sands of the Carrizo Formation at higher elevations (not present at the APA) (Golder, 2019). The Wilcox formation is approximately 650 to 700 feet thick in the Martin Creek area, and includes sandy clays, silty sands, clays, and variable amounts of lignite (Golder, 2016). The Wilcox Group was described as mostly unconsolidated to moderately consolidated clay and silt with variable degrees of interbedded sand and lignite in the area of the Site (Golder, 2019), and derived from a depositional environment associated with fluvial-deltaic processes, which may include inter-channel crevasses splays, overbank deposits, and localized channel fills (Golder, 2019). In the Martin Creek area, the Wilcox Group is underlain by the approximately 900-foot thick silty clay and clay deposits of the Paleocene Midway Group, which overlies approximately 7000 feet of Cretaceous rock (Golder, 2016).

Potable water supply wells are completed in Wilcox Group sands of the Martin Creek area, including two Martin Lake locations upgradient of the APA (screened at depths of at least 300 feet below ground surface) (Golder, 2019). In addition, to these Martin Lake potable water supply wells, other groundwater wells completed in the Wilcox Group sands include well used for domestic, oil and gas, or stock watering purposes (Golder, 2019).

Groundwater occurring within the upper 100 feet below ground surface in the Martin Creek area is typically under unconfined or semi-confined conditions, where the potentiometric surface of these shallow flow systems typically mirror that of the topographic surface (Golder, 2019). Groundwater flow is generally from the potentiometric highs that mimic the topographic highs (coincident with groundwater recharge areas, groundwater divides and surface water divides) toward potentiometric lows and valleys (coincident with groundwater discharge zones) (Golder, 2019).

SITE GEOLOGY

The APA is located in the outcrop area of the Wilcox Group described above (PBW, 2017). Surficial soils in the vicinity of the APA include the following (described in order from shallow to deep) based on soil borings (Golder, 2019):

- Upper Zone low to medium plasticity lean clay to clayey sand, occurring at thicknesses ranging from approximately 30 to 40 feet.
- Intermediate Zone (Uppermost Aquifer) poorly-graded fine sand and silty sand, occurring at thicknesses ranging from approximately 5 to 20 feet.
- Lower Confining Unit laterally-continuous silty to sandy clay.

Cross-sections showing the subsurface materials encountered at the APA are included as an attachment to this demonstration. Drilling logs used to develop the cross-sections are also included as an attachment to this demonstration.

SITE HYDROGEOLOGY

Seven monitoring wells are included in the CCR groundwater monitoring system, which includes three upgradient monitoring wells (H-26, H-27, and H-33) and four downgradient monitoring wells (H-28, H-29, H-31, and H-32) (PBW, 2017) (see Monitoring Well Location Map, and Well Construction Diagrams and Drilling Logs attached to this demonstration). All wells included in the CCR monitoring system are screened in the intermediate zone (i.e., uppermost aquifer) at the APA (PBW, 2017).

Hydraulic Conductivity

Hydraulic conductivity results from field testing (i.e., slug tests) in the upper zone (clayey sand) and intermediate zone (sand and silty sand) ranged from 3.5×10^{-6} to 3.8×10^{-4} centimeters per second (cm/s) and 1.2×10^{-4} to 7.5×10^{-3} cm/s, respectively as reported by PBW (2017).

Groundwater Elevations, Flow Direction and Velocity

Groundwater elevations adjacent to the APA for the eight CCR background monitoring events from October 2015 through December 2016 ranged from approximately 302.30 feet above mean sea level (amsl) to 310.04 feet amsl, corresponding to groundwater depths from 9.24 to 26.94 feet below ground surface (PBW, 2017). In general, groundwater elevations were highest in the west, with inferred groundwater flow direction to the east toward Martin Lake during the eight background monitoring events (PBW, 2017). These groundwater elevations and flow directions are consistent with the groundwater potentiometric map for May 2019 included as an attachment to this demonstration (Golder, 2019). Golder (2019) estimated the lateral groundwater flow velocity in the intermediate zone (i.e., uppermost aquifer) to be 27 feet per year.

REFERENCES

Barnes, Virgil E., 1965. Geologic Atlas of Texas, Tyler Sheet, Texas Bureau of Economic Geology.

Golder Associates Inc. (Golder). 2016. Safety Factor Assessment Report, Martin Lake Steam Electric Station.

Golder Associates Inc. (Golder). 2019. CCR Assessment of Corrective Measures, Martin Lake Steam Electric Station – Ash Pond Area, Rusk County, Texas.

Pastor, Behling & Wheeler (PBW). 2017. Coal Combustion Residual Rule Groundwater Monitoring System Certification, Martin Lake Steam Electric Station, Ash Pond Area, Rusk County, Texas. October 16.

DOWNGRADIENT CCR MONITORING WELL

UPGRADIENT CCR MONITORING WELL

LAKE WATER/GROUNDWATER MIXING ZONE SAMPLE

MNA SOIL SAMPLE CROSS SECTION LOCATION CLIENT LUMINANT

PROJECT

MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

CONSULTANT

DETAILED SITE PLAN - ASH POND AREA

GOLDER

YYYY-MM-DD	2019-08-28	
DESIGNED	AJD	
PREPARED	AJD	
REVIEWED	WFV	
APPROVED	WFV	

REFERENCE(S) BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 4/6/17. PROJECT NO. 19121403 FIGURE REV. 0

10x Vertical Exaggeration

CLIENT LUMINANT

PROJECT
MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

ASH POND AREA - GEOLOGIC CROSS SECTION A-A' WEST SIDE OF WEST ASH POND THROUGH PROCESS WATER POND

CONSULTANT

2	YYYY-MM-DD		2019-08-28	
	DESIGNED		AJD	
	PREPARED		AJD	
	REVIEWED		WFV	
	APPROVED		WFV	
		DE1 /		FIGURE

PROJECT NO. 19121403 FIGURE 3 REV.

10x Vertical Exaggeration

CLIENT LUMINANT

PROJECT
MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

ASH POND AREA - GEOLOGIC CROSS SECTION B-B' EAST SIDE OF ASH POND THROUGH SCRUBBER POND

CONSULTANT YYYY-MM-DD 2019-08-28 DESIGNED AJD PREPARED REVIEWED WFV APPROVED PROJECT NO. 19121403 FIGURE 4

▼— Water Level (Ft MSL)
Measured 5/14/19

10x Vertical Exaggeration

CLIENT LUMINANT

CONSULTANT

PROJECT
MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

ASH POND AREA - GEOLOGIC CROSS SECTION C-C' THROUGH WEST ASH POND AND EAST ASH POND

YYYY-MM-DD		2019-08-28	
DESIGNED		AJD	
PREPARED		AJD	
REVIEWED		WFV	
APPROVED		WFV	
	DEV		FIGURE

PROJECT NO. 19121403

CONCEPTUAL SITE MODEL AND DESCRIPTION OF SITE HYDROGEOLOGY (PERMANENT DISPOSAL POND 5)

The Martin Lake Steam Electric Station (Martin Lake) conceptual site model (CSM) and Description of Site Hydrogeology for the Permanent Disposal Pond-5 (PDP5), located near Tatum, Texas are described in the following sections.

REGIONAL SETTING

The PDP5 is located in the Martin Creek area on the west flank of the Sabine Uplift within the Sabine River Valley (Golder, 2016). Formations in the Martin Creek area mainly include continental and marine sedimentary deposits of Eocene-aged Wilcox Group (Barnes, 1965; Golder, 2016), which are overlain by sands of the Carrizo Formation at higher elevations (Golder, 2019). The Wilcox formation is approximately 650 to 700 feet thick in the Martin Creek area, and includes sandy clays, silty sands, clays, and variable amounts of lignite (Golder, 2016). The Wilcox Group was described as mostly unconsolidated to moderately consolidated clay and silt with variable degrees of interbedded sand and lignite in the area of the Site (Golder, 2019), and derived from a depositional environment associated with fluvial-deltaic processes, which may include inter-channel crevasses splays, overbank deposits, and localized channel fills (Golder, 2019). In the Martin Creek area, the Wilcox Group is underlain by the approximately 900-foot thick silty clay and clay deposits of the Paleocene Midway Group, which overlies approximately 7000 feet of Cretaceous rock (Golder, 2016).

Potable water supply wells are completed in Wilcox Group sands of the Martin Creek area, including two Martin Lake locations (screened at depths of at least 300 feet below ground surface) (Golder, 2019). In addition, to these Martin Lake potable water supply wells, other groundwater wells completed in the Wilcox Group sands include well used for domestic, oil and gas, or stock watering purposes (Golder, 2019).

Groundwater occurring within the upper 100 feet below ground surface in the Martin Creek area is typically under unconfined or semi-confined conditions, where the potentiometric surface of these shallow flow systems typically mirror that of the topographic surface (Golder, 2019). Groundwater flow is generally from the potentiometric highs that mimic the topographic highs (coincident with groundwater recharge areas, groundwater divides and surface water divides) toward potentiometric lows and valleys (coincident with groundwater discharge zones) (Golder, 2019).

SITE GEOLOGY

The PDP5 is located in the outcrop area of the Wilcox Group described above (PBW, 2017). Surficial soils in the vicinity of PDP5 include the following (described in order from shallow to deep) based on soil borings (PBW, 2017):

- Upper Sand Unit an upper sand unit is observed on hilltops and other topographically high areas.
- Intermediate Continuous Clay Unit a continuous clay unit that contains discontinuous packages of relatively thick layers of interbedded sand.
- Lower Silt and Sand Unit (Uppermost Aquifer) a silt and sand unit that contains discontinuous packages of relatively thick layers of clay.

A cross-section showing the subsurface materials encountered in the vicinity of PDP5 is included as an attachment to this demonstration. Drilling logs used to develop the cross-section are also included as an attachment to this demonstration.

SITE HYDROGEOLOGY

Nine monitoring wells (MW-17A, MW-18A, MW-19, MW-20A, PDP-22, PDP-23, PDP-24, PDP-25, and PDP-26), positioned radially around PDP5, are included in the CCR groundwater monitoring system. Groundwater flow directions around PDP5 indicate there are no upgradient areas in the vicinity of the CCR unit and all nine CCR groundwater monitoring wells are downgradient of PDP5 (PBW, 2017) (see Monitoring Well Location Map, and Well Construction Diagrams and Drilling Logs attached to this demonstration). All wells included in the CCR monitoring system are screened in the lower silt and sand unit (i.e., uppermost aquifer) at the PDP5 (PBW, 2017).

Hydraulic Conductivity

Hydraulic conductivity results from field testing (i.e., slug tests) at monitoring wells PDP-22, PDP-25, and PDP-26 in the lower sand and silt unit (uppermost aquifer) ranged from approximately 2.48×10^{-5} to 1.37×10^{-4} centimeters per second (cm/s), with a geometric mean of approximately 4.40×10^{-5} cm/s (PBW, 2017).

Groundwater Elevations and Flow Direction

Groundwater elevations adjacent to the PDP5 for the eight CCR background monitoring events from October 2015 through December 2016 ranged from approximately 352.38 feet above mean sea level (amsl) to 381.40 feet amsl, corresponding to groundwater depths from 5.14 to 37.46 feet below ground surface (PBW, 2017). In general, mounding was observed within PDP5 with an inferred radial groundwater flow outward from PDP5 (PBW, 2017). These groundwater elevations and flow directions are consistent with the groundwater potentiometric map for December 2016 included as an attachment to this demonstration (PBW, 2017).

REFERENCES

Barnes, Virgil E., 1965. Geologic Atlas of Texas, Tyler Sheet, Texas Bureau of Economic Geology.

Golder Associates Inc. (Golder). 2016. Safety Factor Assessment Report, Martin Lake Steam Electric Station.

Golder Associates Inc. (Golder). 2019. CCR Assessment of Corrective Measures, Martin Lake Steam Electric Station – Ash Pond Area, Rusk County, Texas.

Pastor, Behling & Wheeler (PBW). 2017. Coal Combustion Residual Rule Groundwater Monitoring System Certification, Martin Lake Steam Electric Station, Permanent Disposal Pond 5, Rusk County, Texas. October 16.

Base map from http://www.tnris.state.tx.us, Tatum SW DOQQ, Texas, 2010.

PDP 1, 2 AND 3 CLOSURE REPORT

Figure 3

PDP 1, 2 AND 3 POST CLOSURE SITE PLAN

PROJECT: 5058	BY: AJD	REVISIONS
DATE: NOV., 2014	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

REPORT

CCR ASSESSMENT OF CORRECTIVE MEASURES

Martin Lake Steam Electric Station - Ash Pond Area Rusk County, Texas

Submitted to:

Luminant Generation Company LLC

Submitted by:

Golder Associates Inc.

2201 Double Creek Dr, Suite 4004, Round Rock, Texas, USA 78664

+1 512 671-3434

19121403

September 2019

Table of Contents

1.0	INTRODUCTION1								
2.0	REGI	ONAL AND SITE SETTING	2						
	2.1	Regional Geology	2						
	2.2	Regional Hydrogeology	2						
	2.3	Site Hydrogeology and CCR Monitoring Well Network	2						
3.0	NATU	JRE AND EXTENT EVALUATION	4						
	3.1	Groundwater Monitoring Summary	4						
	3.2	Assessment Monitoring SSL Evaluation							
	3.3	Field Investigation							
	3.3.1	General							
	3.3.2	Soil Sample Collection							
	3.3.3	Groundwater and Surface Water Sampling	7						
	3.4	Evaluation of Groundwater Water	8						
	3.4.1	Geochemical Modeling Approach	8						
	3.4.2	Summary of Groundwater and Surface Water Data	8						
	3.5	Evaluation of Soil	10						
	3.5.1	Mineralogical Composition	10						
	3.5.2	Chemical Composition and Sequential Extraction	10						
	3.6	Summary of Site Characterization	11						
4.0	ASSE	ESSMENT OF CORRECTIVE MEASURES	13						
	4.1	Corrective Measures Objectives and Evaluation Criteria	13						
	4.2	Potential Source Control Response Technologies	13						
	4.3	Potential Groundwater Response Technologies	14						
	4.3.1	Monitored Natural Attenuation	14						
	4.3.2	Groundwater Extraction and Treatment	15						
	4.3.3	Vertical Hydraulic Barrier	16						

i

19121403 September 2019

4.3.	4 Permeable Reactive Barrier	17
4.3.	5 In-situ Chemical Treatment	18
4.3.	6 Phytoremediation	18
4.3.	7 Screening of Potential Groundwater Response Technologies	19
4.4	Potential Corrective Measures Alternatives	19
4.5	Remedy Selection	19
5.0 RE	FERENCES	20
TABLES Table 1 Table 2 Table 3	Appendix IV Groundwater Analytical Data Summary Screening of Potential Groundwater Response Technologies Evaluation of Corrective Measures Alternatives	
FIGURE		
•	Select Relative Ion Abundance in Groundwater at Monitoring Wells Historical Trends of Beryllium in Groundwater at Monitoring Wells Historical Trends of Cobalt in Groundwater at Monitoring Wells	

APPENDICES

Appendix A	Boring	000
Appendix A	Borina	∟oas

Appendix A Appendix B Boring Logs
Laboratory Analytical Reports Appendix C Groundwater Sampling Records

ii

1.0 INTRODUCTION

Golder Associates Inc. (Golder) has prepared this assessment of corrective measures (ACM) report on behalf of Luminant Generation Company LLC (Luminant) for the West Ash Pond (WAP), East Ash Pond (EAP), and New Scrubber Pond (NSP) (collectively referred to as the "Ash Pond Area") located at the Martin Lake Steam Electric Station (MLSES) in Rusk County, Texas (hereafter, the "Site"). The ACM was prepared in accordance with §257.96 of the Coal Combustion Residual (CCR) Rule and was required due to the presence of concentrations of selected Appendix IV constituents at statistically significant levels (SSLs) above the groundwater protection standards (GWPS) established for the constituents at the Site. This ACM Report will be placed in the MLSES operating record in accordance with §257.105(h)(10).

This report also incorporates the results of a site investigation conducted at the Site in May and June 2019. The objectives of the site investigation were:

- delineate the nature and extent of the selected Appendix IV constituents to their respective GWPS;
- update the statistical evaluations of the Appendix IV constituents to include data collected during 2019 to confirm that SSL exceedances continue to occur at the Site;
- collect data to evaluate potential future alternate source demonstrations (ASDs) for the Appendix IV constituents; and
- assess the potential for monitored natural attenuation (MNA) to be successful at the Site for the Appendix IV constituents.

The MLSES is located approximately 5 miles southeast of Tatum, Rusk County, Texas (Figure 1). The MLSES is expected to remain in operation for the foreseeable future, depending on future power demands.

The Ash Pond Area is located immediately east of the MLSES power units (Figure 2). The WAP is constructed with a composite liner consisting of an 18-inch thick compacted clay liner, overlain by two 60-mil HDPE geomembrane liners with a geonet drainage layer between the geomembranes. The EAP is constructed with a composite liner consisting of an 18-inch thick compacted clay liner, overlain by a geotextile, overlain by two 60-mil HDPE geomembrane liners with a geonet drainage layer between the geomembranes. A 4-inch thick concrete revetment mat is installed on top of the upper geomembrane liner in both the WAP and EAP. The WAP and EAP are considered unlined surface impoundments under §257.71(a)(1)(ii) of the CCR Rule (BM 2016).

The NSP is constructed with liner system consisting of two 60-mil HDPE geomembrane liners with a geonet drainage layer between the geomembranes, overlain by a 4-inch thick concrete revetment mat. The NSP is considered an unlined surface impoundment under §257.71(a)(1)(ii) of the CCR Rule (BM 2016).

2.0 REGIONAL AND SITE SETTING

2.1 Regional Geology

MLSES is located in the outcrop area of the Eocene-aged Wilcox Group (Barnes, 1965). The Wilcox Group in the vicinity of the Site consists mostly of unconsolidated to moderately consolidated clay and silt, with various amounts of interbedded sand and lignite. The depositional environment is associated with fluvial-deltaic processes such as inter-channel crevasse splays, overbank deposits, and localized channel fills. The Wilcox Group is overlain by sands of the Carrizo Formation, which is present only at higher elevations in the area. The Carrizo Formation is not present at the Site.

2.2 Regional Hydrogeology

Groundwater wells completed in the Wilcox Group sands in the area are typically used for domestic, oil and gas supply, or stock watering purposes. Some potable water supply wells in the region are also completed in the Wilcox Group, including two wells at the MLSES that are both located upgradient of the Ash Pond Area and are screened at depths of 300 feet bgs or greater. Groundwater within the upper 100 feet below ground surface (bgs) in the region typically flows under unconfined to semi-confined conditions. The direction and rate of groundwater movement in the Wilcox Group are affected by a number of physical features, including topography, surface drainage, and geology. The natural groundwater potentiometric surface in these shallow flow systems is generally a subdued replica of topography. In general, groundwater flow occurs from high potentiometric areas (recharge zones) toward valleys (discharge zones). Groundwater divides generally coincide with surface drainage divides.

2.3 Site Hydrogeology and CCR Monitoring Well Network

The CCR groundwater monitoring well network at the Ash Pond Area was established in 2015 using newly installed monitoring wells H-26, H-27, H-28, H-29, H-31, H-32, AND H-33 (Figure 2). Based on soil borings completed at the Site, the geology near the CCR units generally consists of an upper zone composed of an approximately 30- to 40-foot thick low- to medium-plasticity, lean clay to clayey sand unit. The upper zone is underlain by an intermediate zone composed of poorly-graded fine sand and silty sand unit that is generally about 5 to 20 feet thick. The intermediate zone is underlain by a laterally-continuous, silty to sandy confining clay unit. The uppermost aquifer occurs in the intermediate sand and silty sand unit at the Site (PBW 2017a). The CCR monitoring wells are completed in the intermediate zone. Geologic cross sections of the Ash Pond Area are presented on Figures 3, 4, and 5.

Groundwater elevations are generally highest near the western side of the Ash Pond Area with an inferred groundwater flow direction to the east toward Martin Lake. A groundwater potentiometric map constructed using groundwater elevation data collected in May 2019 from the CCR monitoring network is presented on Figure 6. Based on the inferred groundwater flow direction, the location of each CCR monitoring well relative to the Ash Pond Area is as follows:

Upgradient/Background Wells	Downgradient Wells
H-27	H-28
H-26	H-29
H-33	H-31
	H-32

Rising- and falling-head aquifer tests (i.e., slug tests) were conducted at the Site as part of a 2011 assessment for the Texas Commission on Environmental Quality (TCEQ) Texas Risk Reduction Program (TRRP) (PBW 2011). Based on the test results, the intermediate zone had an estimated hydraulic conductivity of 1.0E-03 cm/sec and an estimated lateral groundwater flow velocity of 27 feet per year.

Golder performed a survey of water supply wells located in the vicinity of the Ash Pond Area in May 2019 as part of a Texas Commission on Environmental Quality (TCEQ) Texas Risk Reduction Program (TRRP) assessment of the Site. A Drinking Water Survey Report (Golder, 2019) documenting the water well survey activities and findings was approved by the TCEQ in a letter dated August 15, 2019. No imminent threats to water wells or potentially affected drinking water wells were identified.

3.0 NATURE AND EXTENT EVALUATION

3.1 Groundwater Monitoring Summary

Background monitoring of groundwater in the vicinity of the Ash Pond Area began in October 2015 and was completed in December 2016. Samples collected during this period were analyzed for Appendix III and Appendix IV constituents to establish background concentrations pursuant to §257.94(b).

A detection monitoring program in accordance §257.94 was initiated in September 2017. The evaluation of those data was completed in 2018 using procedures described in the Statistical Analysis Plan (PBW 2017b) to identify statistically significant increases (SSIs) of Appendix III parameters above background concentrations. Based on the identification of SSIs for one or more Appendix III parameters, an assessment monitoring program was established pursuant to §257.94(e)(1).

The initial assessment monitoring event was performed in June 2018 and a subsequent semi-annual assessment monitoring event was conducted in September 2018 in accordance with §257.95(a) and §257.95(d). Using the Appendix IV data collected during the assessment monitoring period through September 2018, SSLs above GWPSs were initially identified in downgradient wells in January 2019 for beryllium (H-28, and H-29), cobalt (H-28 and H-29), and lithium (H-28); therefore, an ACM was initiated on April 8, 2019 pursuant to §257.95(g). A justification letter for a 60-day extension due to site-specific circumstances that delayed work on the ACM was certified on July 3, 2019 in accordance with §257.96(a). Based on the extension, the deadline for completing the ACM is September 5, 2019.

3.2 Assessment Monitoring SSL Evaluation

An additional assessment monitoring event was performed in May 2019. Groundwater sampling analytical results for all Appendix IV parameters from 2015 through 2019 are presented in Table 1. An updated statistical analysis of the Appendix IV results from downgradient CCR monitoring wells was conducted including the May 2019 data to evaluate if constituent concentrations detected in the samples remained at SSLs relative to the GWPSs. The updated statistical analysis was performed in accordance with the Statistical Analysis Plan for CCR Groundwater Monitoring (PBW 2017b) and the USEPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities-Unified Guidance (USEPA 2009). Confidence intervals were calculated for any Appendix IV parameter that historically has had more than one occurrence in excess of the GWPS in any well within the monitoring network. Plots of the confidence intervals for each of those Appendix IV parameters are presented below (SSLs are highlighted in red around the bars):

The previous statistical analysis using data collected during the assessment monitoring period through September 2018 indicated SSLs for beryllium (H-28 and H-29), cobalt (H-28 and H-29), and lithium (H-28) as identified in the February 2019 SSL notification; however, the updated statistical analysis only identified beryllium (H-31) and cobalt (H-28, H-31, and H-32) as having SSLs above GWPSs. The monitoring wells will continue to be monitored to confirm that lithium concentrations remain below SSLs in the future in accordance with the CCR Rule. For the purposes of this ACM evaluation, concentrations are conservatively assumed to be present at SSLs above their respective GWPSs for the following constituents in the wells indicated based on the initial and updated statistical evaluations:

- Beryllium (H-28, H-29, and H-31);
- Cobalt (H-28, H-29, H-31, and H-32); and
- Lithium (H-28).

Figure 7 shows the extent of Appendix IV constituents detected at SSLs above GWPSs based on the initial and updated statistical analysis.

3.3 Field Investigation

3.3.1 General

Field investigation activities conducted as part of the ACM included collection of soil samples for a mineralogical assessment and chemical analysis, a lake sample from Martin Lake, groundwater-level measurements, and groundwater sampling and analysis. Figure 2 presents the locations of soil borings and monitoring wells installed and sampled as part of the field investigation.

3.3.2 Soil Sample Collection

Soil borings were completed in June 2019 at soil boring locations AP-2019-1, AP-2019-2, and AP-2019-3. Soil samples were collected within the target GWBU in each of the soil borings. Soil samples were submitted under chain-of-custody for laboratory analysis of the following parameters:

- Mineralogical composition: The purpose of the mineralogical analysis was to identify and quantify the crystalline mineral phases in each sample. This information is required for geochemical modeling as the release or attenuation of constituents of interest is influenced by the mineral phase(s) present in the aquifer (Hem 1985). The mineralogical testing laboratory (SGS Minerals Services) performed the analysis using quantitative (Rietveld) X-ray diffraction (XRD) (ME-LR-MIN-MET-MN-DO5) and a Bruker AXS D8 Advance Diffractometer.
- <u>Total metals</u>: Analysis of total metals was conducted to quantify the chemical composition of soil materials. The total mass of metals, in combination with the results of sequential extraction testing, can be used to determine the provenance of metals and verify sequential extraction results.
- Sequential extraction (SEP): This test consists of a seven-step metals extraction from solids as per Tessier et al. (1979) to identify the provenance of constituents of interest (i.e. the operationally-defined fraction that contains the metal) and determine their potential environmental mobility. For instance, metals bound in the carbonate fraction, or that are exchangeable, are much more likely to become mobile due to changes in groundwater conditions than metals bound within a sulfide or silicate fraction. The total concentration of a metal measured from all seven steps can be compared to the concentration determined from the total metal analysis for compositional accountability.

3.3.3 Groundwater and Surface Water Sampling

Groundwater samples were collected from the CCR monitoring network and one surface water sample was collected from Martin Lake downgradient of the Ash Pond Area in May 2019. Laboratory analytical reports are provided in Appendix B and sampling records, which include field-measured parameters, are presented in Appendix C.

Chemical/geochemical analysis of groundwater samples included field parameters and radionuclides, nutrients, and major cations and anions. The rationale and methods used are as follows:

- <u>Field Parameters</u>: Parameters measured in the field included pH, dissolved oxygen, oxidation reduction potential (ORP), conductivity, and temperature. These parameters were used to evaluate general geochemical conditions in the groundwater and support geochemical modeling.
- Metals and Regulated COIs: Analysis of Appendix III and IV metals and uranium to better understand the geochemical composition of groundwater. Metals analysis allows for the delineation of a potential plume, evaluation of mineral saturation indices, and evaluation of background contributions from natural sources or anthropogenic sources.
- Major Cations, Anions, and Nutrients: Geochemical modeling of mineral solubility, metals attenuation and background contributions requires analysis of major cations and anions because they affect and participate in sorption and mineral dissolution or precipitation reactions.

3.4 Evaluation of Groundwater Water

3.4.1 Geochemical Modeling Approach

Geochemical modeling was conducted to evaluate general groundwater quality, determine the potential for precipitation of sorbent media, evaluate the potential for mineral precipitation or adsorption in the aquifer, and determine the speciation of metals of interest. The geochemical computer code developed by the United States Geological Survey (USGS), PHREEQC, was used for these simulations (Parkhurst and Appelo 2013). PHREEQC version 3.4 is a general-purpose geochemical modeling code used to simulate reactions in water and between water and solid mineral phases (e.g., rocks and sediments). Reactions include aqueous equilibria, mineral dissolution and precipitation, ion exchange, surface complexation, solid solutions, gas-water equilibrium, and kinetic biogeochemical reactions. The widely-accepted thermodynamic database Minteq.v4, 2017 edition, was used as a basis for the thermodynamic constants required for modeling.

The Geochemist's Workbench Version 12 (Bethke 2015) was used to generate graphical representations of geochemical modeling outputs in the form of predominance, or Pourbaix diagrams (also known as Eh-pH diagrams) for the species of interest (i.e. beryllium and cobalt) and trilinear plots (also known as Piper plots) displaying the relative abundance of major ions. The Minteq.v4 database was used as the basis for the Pourbaix diagrams.

3.4.2 Summary of Groundwater and Surface Water Data

Groundwater quality data from background wells H-26, H-27, and H-33; downgradient monitoring wells H-28, H-29, H-31, and H-32; and the surface water sample collected from Martin Lake were used for this evaluation. The water quality monitoring data are presented in Appendices B and C and can be summarized as follows:

General Chemistry Parameters

- <u>pH</u>: The pH of groundwater samples collected from CCR monitoring well network ranged from 6.01 to 6.83 in May 2019. Historically, the pH in the CCR monitoring well network has ranged from 5.8 to 7.0. Isolated values as low as 3.64 and as high as 11.20 have been recorded in some wells; however, these conditions do not persist but pH returns to circumneutral values by the next sampling round. The pH of Martin Lake was 6.79 in May 2019.
- ORP (Redox): Field-measured redox values, corrected to Eh (+200mV), ranged from +113 to +174 mV in the groundwater samples in the CCR monitoring well network.
- <u>Total Dissolved Solids (TDS)</u>: Groundwater TDS concentrations were variable in May 2019 in the CCR monitoring well network. The lowest TDS concentration (453 mg/L) occurred in groundwater at CCR monitoring well H-26 (upgradient) and the highest TDS value (4,230 mg/L) was observed at CCR monitoring well H-31 (downgradient). The TDS concentration measured in Martin Lake water was 119 mg/L.
- Major ion chemistry: A Piper plot was generated for groundwater and Martin Lake samples to facilitate the identification of water types and source contributions (Figure 8a). Two distinct groupings of wells are apparent based on their relative major ion proportions. Upgradient wells H-26 and H-33 show close similarity with the water sample from Martin Lake, indicating potential influences of Martin Lake on the groundwater in these locations. Groundwater composition in upgradient well H-27, in contrast, is more closely related to that of the downgradient wells. Based on the molar ratios of calcium, sodium, and sulfate (Figure 8b), all groundwater samples and the Martin Lake water sample generally plot as one group.

■ Iron: Oxidized iron (ferric iron - Fe⁺³) concentrations were variable, ranging from non-detect (<0.05 mg/L) to 8.81 mg/L in May 2019 (Appendix B). Reduced iron (ferrous iron - Fe⁺²) concentrations were non-detect (<0.05 mg/L) in the groundwater at all CCR monitoring wells except H-31 and H-32. The highest concentration of ferrous iron in groundwater was 49.5 mg/L observed in monitoring well H-31, over 40 times higher than any other monitoring well. This value corresponded to the highest measured beryllium, cobalt, and lithium concentrations in groundwater at the Ash Pond area. Ferric iron in water from Martin Lake was measured at 0.365 mg/L while ferrous iron was non-detect (<0.05 mg/L).</p>

Nutrients: Nitrate (nitrate as N) was present in groundwater at variable levels, ranging from non-detect (< 0.1 mg/L as N) to 272 mg/L as N at H-32 in May 2019 (Appendix B). Nitrate in CCR monitoring well H-32 at 272 mg/L as N, was orders of magnitude higher than in other monitoring wells, in which nitrate ranged from non-detect (<0.1 mg/L as N) to 0.658 mg/L as N. Nitrate was not detected in Martin Lake water. Phosphate concentrations in groundwater ranged from near non-detect (0.03 mg/L as P) to 0.126 mg/L as P in CCR monitoring wells. Phosphate was not detected in the water of Martin Lake in May 2019. No spatial trend was apparent in the nitrate or phosphate distribution in groundwater.</p>

Constituents Identified in February 2019 SSL Notification

- Beryllium: Beryllium concentrations in groundwater samples historically have exceeded the GWPS (0.004 mg/L) in CCR monitoring wells H-28, H-29, H-31, and H-32 on at least one occasion since October 2015 (Figure 9a). However, due to the variability of beryllium concentrations in groundwater at these wells, only H-31 currently has beryllium at an SSL. As of May 2019, beryllium concentrations in H-31 and H-32 were above the GWPS, at 0.00713 mg/L and 0.00928 mg/L, respectively. The highest beryllium concentration in groundwater was measured in H-31 in December 2016. Beryllium was not detected in the Martin Lake water sample (<0.0003 mg/L). Beryllium is likely present in groundwater as the divalent cation Be⁺² based on the pH and Eh of groundwater (Figure 10a).
- Cobalt: Cobalt concentrations in groundwater samples historically have exceeded the GWPS (0.0564 mg/L) in all CCR monitoring wells except H-27 on at least one occasion since October 2015 (Figure 9b). All CCR network monitoring wells have also reported groundwater cobalt concentrations below the GWPS on at least one occasion since October 2015, indicating variability in cobalt. In May 2019, all wells except H-27 had cobalt concentrations in groundwater above the GWPS. Cobalt was not detected in water from Martin Lake in May 2019 (<0.003 mg/L). Cobalt is likely present in groundwater as the divalent cation Co+2 based on the pH and Eh of groundwater (Figure 10b).
- <u>Lithium:</u> Lithium concentrations in groundwater have exceeded the GWPS (0.040 mg/L) since October 2015 in four wells: H-27 (upgradient), H-28, H-31, and H-33 (Figure 9c). In May 2019, only the sample from CCR monitoring well H-31 exceeded the GWPS for lithium. Based on an evaluation of the 95% confidence intervals, the GWPS exceedances for lithium at H-27. H-28. H-31, and H-33 are not at an SSL above the GWPS. Water from Martin Lake did not contain lithium above its detection limit (<0.005 mg/L) in May 2019.

The groundwater analytical results indicate that the Ash Pond Area may be the potential source for the cobalt and/or beryllium concentrations observed at SSLs in monitoring wells H-28, H-31 and H-32. However, the data also indicates that lithium concentrations are not present at SSLs in any of the monitoring wells at the Site.

3.5 Evaluation of Soil

3.5.1 Mineralogical Composition

Quantitative X-ray diffraction (XRD) with Rietveld refinement was used to identify and quantify minerals in three overburden samples collected during the drilling activities - one sample from each of the soil borings completed in June 2019 (AP-2019-1, AP-2019-2, and AP-2019-3). These samples were obtained to better understand the mineralogical composition of the aquifer system and identify any minerals that would potentially influence attenuation of constituents of interest. In contrast, the presence of certain minerals could also indicate a potential for naturally-occurring release of metals into groundwater, for instance due to oxidation of sulfide minerals.

The mineralogical analysis of soil from borehole samples at the Ash Pond Area identified quartz as the predominant mineral, with varying amounts of albite in all three boreholes. Soil samples from boreholes AP-2019-1 and AP-2019-2 (ranging 30' below ground surface (bgs) to 31' bgs and 35' bgs to 36' bgs) also contained small or trace amounts of the silicate minerals K-felspar, chlorite, muscovite, kaolinite, vermiculite, illite, and montmorillonite. Analytical reports for the XRD samples are provided in Appendix B. These minerals were not identified in the shallower borehole samples of AP-2019-1 (18' bgs to 19' bgs), indicating potentially a greater abundance of clay minerals (kaolinite, vermiculite, illite, montmorillonite) in deeper samples.

3.5.2 Chemical Composition and Sequential Extraction

Chemical analysis and sequential extractions were used to determine the chemical composition of the soil and the distribution of constituents of interest over various operationally-defined fractions comprising the soil. Testing was completed as described in Section 3.3.2 on soil samples obtained from three borehole locations (Figure 2) and the analytical reports for the soil analyses are provided in Appendix B.

Soil sample locations were chosen to gain a better understanding of the underlying geological conditions of the area surrounding the Ash Pond Area, mostly adjacent to or downgradient of a CCR monitoring well. In addition, this information allows for a better understanding of naturally-occurring metal contributions to groundwater or the potential for sequestration of constituents from groundwater.

A description of the individual fractions determined by sequential extraction is presented in Section 3.3.2. Metals extracted in steps 1 through 5 are considered environmentally available, whereas metals extracted in steps 6 and 7 are present in refractory fractions and are not expected to be released under conditions typically encountered in aquifers (Tessier et al. 1979). Total metal quantities from the sequential extraction are expressed as "SEP Total" in Appendix B. The sum of the sequential extraction steps is also presented for comparison but does not represent an analytically-determined value.

The results from the chemical analysis and sequential extraction presented in Appendix B are summarized as follows:

General Chemistry Parameters

Aluminum: Aluminum is not a constituent of interest (COI) at the site but it has been well studied as a sorbing medium in soils (e.g., Karamalidis and Dzombak 2011). Total aluminum in soils ranged from 14,244 to 33,160 mg/kg, and the environmentally-available fraction ranged from 1,044 (AP-2019-3) to 1,989 mg/kg (AP-2019-2). Aluminum in the soil at the site is, therefore, largely (~84% to 87%) present in the residual, or silicate-bound fraction. This fraction is likely at least partially represented by hydrous aluminum phyllosilicate

minerals or clays intermixed in the silica sand matrix. Clays can represent an important sorptive reservoir for numerous trace metals and metalloids (Uddin 2017).

■ Iron: While not a COI, iron and its minerals commonly represent one of most abundant reservoirs for metal/metalloid attenuation in soils (Dzombak and Morel 1990; Smith 1999). Iron was present in all three core samples analyzed, varying from 5,192 (AP-2019-3) to 13,933 mg/kg (AP-2019-2). In all samples, the non-environmentally available (sulfide and residual) fractions accounted for the largest proportion of total iron (54% to 64%) and, as such, most of the iron is not environmentally available. The remainder of the iron in the samples is present across the exchangeable (except AP-2019-1), carbonate (only in AP-2019-2), amorphous metal, and metal hydroxide phases. These phases, part of the labile fraction in steps 1 through 5, can generally be considered representative of the amount of iron in soil that may be available as a sorbing medium and can, therefore, be important for potential attenuation of beryllium and cobalt.

Constituents Identified in February 2019 SSL Notification

- Beryllium: Total beryllium in soil ranged from 0.23 to 0.68 mg/kg, of which 16% to 75% of the beryllium was present in the environmentally-available fraction. The non-environmentally available fraction of beryllium (25% to 84% of total) is also indicative of naturally occurring beryllium in soil at the Ash Pond Area. All of the environmentally-available beryllium resorted in the amorphous metal and metal hydroxide fractions, indicating potential attenuation of beryllium from groundwater (Smith 1999).
- Cobalt: Total cobalt in soil ranged from 1.68 to 6.29 mg/kg while the environmentally-available fraction ranged from 1.4 mg/kg in AP-2019-3 to 4.39 mg/kg in AP-2019-2, representing from 58% to 83% of total cobalt. The majority of the environmentally-available cobalt was present in the metal hydroxide fractions in soils samples AP-2019-1 and AP-2019-2, while the exchangeable fraction hosted the largest proportion of cobalt in soils sample AP-2019-3. Soil sample AP-2019-2 contained cobalt in every fraction of the sequential extraction test, indicating potential attenuation of cobalt from groundwater, and the potential presence of naturally occurring cobalt in soil.
- Lithium: Total lithium in soil ranged from 7.15 to 17.3 mg/kg, of which between only 7% (AP-2019-3) and 24% (AP-2019-2) resorted in the environmentally-available fraction. Lithium that was environmentally available (0.53 to 4.2 mg/kg) was all contained in the metal hydroxide fraction. This indicates the likelihood of the presence of naturally-occurring lithium at the site that is contained within non-environmentally available fractions while attenuation of lithium by metal hydroxide minerals also appears to be occurring.

The results of the soil analysis indicate the following:

- A naturally-occurring source of beryllium, cobalt, and lithium is present in the vicinity of the Ash Pond Area at the MLSES.
- Attenuation of beryllium, cobalt, and lithium in groundwater is likely occurring in the vicinity of the Ash Pond Area.

3.6 Summary of Site Characterization

Based on the above site characterization and nature and extent investigation, the following is concluded with respect to beryllium, cobalt, and lithium:

Beryllium: Beryllium concentrations statistically exceeded the GWPS in groundwater from only one CCR monitoring well (H-31). Beryllium concentrations in groundwater monitoring well H-31 were the highest in December 2016, followed by a stable or decreasing trend since that occurrence. Beryllium was not detected in water from Martin Lake. Sequential extraction results indicate the potential for attenuation of beryllium by amorphous metals and metal hydroxides (Smith 1999). Beryllium should, therefore, be considered for further evaluation as part of an ACM as a viable candidate for monitored natural attenuation based on the results of this initial assessment (USEPA 2007a, b).

- Cobalt: Historical data from CCR monitoring wells in which cobalt concentrations in groundwater exceeded the GWPS indicate a stable or decreasing concentrations since the highest measured cobalt in groundwater of 0.434 mg/L in October 2015. Cobalt concentrations in groundwater currently statistically exceed the GWPS in three CCR monitoring wells (H-28, H-31 and H-32). Cobalt was not detected in water from Martin Lake. Cobalt was present in nearly every fraction of soil as determined from sequential extraction, indicating the strong potential for cobalt attenuation by soils (Smith 1999). Cobalt should, therefore, be considered for further evaluation as part of an ACM as a viable candidate for monitored natural attenuation based on the results of this initial assessment (USEPA 2007a, b).
- <u>Lithium:</u> Recent data indicates that lithium concentrations in groundwater statistically no longer exceed the GWPS at any monitoring well location. Lithium was not detected in water from Martin Lake. Based on the data collected to date, lithium concentrations in groundwater are no longer considered to be present at an SSL above the GWPS; however, lithium concentrations in groundwater will continue to be monitored to confirm that lithium levels remain below the GWPS in the future. For the purposes of this ACM evaluation, lithium concentrations are conservatively assumed to be present at an SSL above the GWPS in well H-31 based on the February 2019 SSL notification.

4.0 ASSESSMENT OF CORRECTIVE MEASURES

In accordance with §257.96 and §257.97, an ACM was conducted for the Ash Ponds to address concentrations of the following Appendix IV constituents conservatively assumed to occur at SSLs above their respective GWPS based on the February 2019 SSL notification:

- cobalt concentrations in monitoring wells H-28, H-31 and H-32;
- beryllium concentrations in monitoring well H-31; and
- lithium concentrations in monitoring well H-31.

Potential response technologies were identified for Source Control (to reduce the potential for releases of constituents to groundwater) and Groundwater Response Actions (to reduce constituent concentrations below GWPS). The potential response technologies were then screened to identify options that are appropriate for further consideration in developing potential corrective measures alternatives for the Site. The results of the ACM are presented in this section.

4.1 Corrective Measures Objectives and Evaluation Criteria

As described in §257.96(a), the corrective measures must prevent further releases, remediate any releases and restore the affected area to original conditions. Potential corrective measures must meet the requirements specified in §257.97(b):

- 1) Be protective of human health and the environment;
- 2) Attain the groundwater protection standard as specified pursuant to § 257.95(h);
- 3) Control the source(s) of releases to reduce or eliminate, to the maximum extent feasible, further releases of constituents in appendix IV to this part into the environment;
- 4) Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, considering factors such as avoiding inappropriate disturbance of sensitive ecosystems;
- 5) Comply with standards for management of wastes as specified in § 257.98(d).

In accordance with §257.96(c), the assessment of potential corrective measures alternatives must include an evaluation of the following:

- The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination
- 2) The time required to begin and complete the remedy
- 3) Institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

4.2 Potential Source Control Response Technologies

One of the listed objectives in §257.97(b) for the corrective measures is to control the source of releases of Appendix IV constituents to the environment from the CCR Unit. The MLSES Ash Ponds are an integral part of

the CCR management system at the plant. As a result, any potential source control technology must keep the WAP, EAP and NSP in operation.

The WAP, EAP and NSP are considered unlined surface impoundments under the CCR Rule. As a result, the WAP, EAP and NSP will be retrofitted with new composite liner systems that comply with the requirements of §257.71(a)(1)(ii) of the CCR Rule to improve the level of source control in the ponds. The new liner systems will be installed in general accordance with the following procedures:

- The ponds will be retrofitted one at a time;
- Water will be removed from the pond being retrofitted and transferred to the other Ash Ponds;
- Solids in the ponds will be dewatered, removed and transported to the MLSES A1 Area Landfill for disposal.
- A minimum of 2 feet of compacted clay liner will be placed at the base of each pond;
- A 60-mil HDPE geomembrane liner will be installed over the 2 feet of compacted clay liner;
- A protective layer of soil, ash or other material will be placed over the geomembrane liner.

Retrofitting the WAP, EAP and NSP with new composite liner systems is assumed to serve as the source control component of the potential corrective measures for the Ash Ponds. The estimated time to retrofit the WAP, EAP and NSP is estimated to be approximately 1 to 2 years per pond, including design and construction.

4.3 Potential Groundwater Response Technologies

For the purposes of this ACM, cobalt, beryllium and lithium are conservatively assumed to be present in groundwater at the Site at SSLs above their respective GWPS based on the February 2019 SSL notification. In this section, potential groundwater response technologies to address these constituents are identified and screened for further consideration in developing potential corrective measures alternatives for the Ash Ponds.

4.3.1 Monitored Natural Attenuation

Monitored natural attenuation (MNA) refers to the reliance on natural attenuation processes (within the context of a carefully controlled and monitored site cleanup approach) to achieve site-specific groundwater remediation objectives within a time frame that is reasonable compared to that offered by more active remediation methods (USEPA 2007a). MNA relies on a range of natural processes, including dispersion, dilution, sorption, (co)precipitation, radioactive decay, and abiotic degradation/transformation to achieve remediation objectives (ITRC 2010). Routine groundwater monitoring would be required to verify MNA is occurring at the Site.

Where necessary, MNA processes can be enhanced through the use of low-energy, in-situ techniques to stimulate or increase the attenuation of contaminants or reduce contaminant loading (ITRC 2010). Enhancement options include increasing the attenuation capacity of the aquifer, decreasing the mobility of contaminants, and/or increasing the stability of immobilized contaminants by increasing the ability of aquifer solids to remove contaminants from groundwater and/or manipulating the geochemistry to reduce remobilization of contaminants by desorption or dissolution of precipitates (ITRC 2010).

MNA has been demonstrated effective in reducing cobalt and beryllium concentrations in groundwater (ITRC 2010; USEPA 2007b). Cobalt is removed through adsorption to iron hydroxides and/or amorphous metals and the level of effectiveness is dependent on iron hydroxide availability as well as pH, alkalinity, and calcium levels (ITRC 2010). Beryllium is removed through adsorption or coprecipitation (DOD 2014). The removal mechanisms for lithium are not identified in the professional literature. As described in Section 3.6 of this report, the Site is a good candidate for MNA, since natural attenuation of cobalt, lithium and beryllium is ongoing at the Site.

MNA would be effective in remediating groundwater beneath t and downgradient of the Ash Ponds. The estimated time to implement MNA is estimated to be approximately 2 to 3 years, including characterization, design, and construction. The estimated time to achieve GWPS for the target Appendix IV constituents is dependent on site-specific conditions and groundwater modelling is needed to evaluate remedial timeframes.

4.3.2 Groundwater Extraction and Treatment

Groundwater extraction and treatment is one of the most widely implemented groundwater remediation technologies and is used to provide 1) hydraulic containment and 2) treatment (USEPA 1996). A groundwater extraction and treatment system consists of the following major components:

- A series of extraction wells or trenches strategically located to modify/interrupt the natural flow of groundwater;
- Extraction pumps installed in each well/trench to pump groundwater from the subsurface;
- A treatment system to remove constituents of concern from the extracted groundwater; and
- A point of discharge for the treated groundwater (surface water, re-injection to groundwater, etc.).

For the Ash Ponds, a system of extraction wells would be installed along the downgradient edge of the ponds to provide hydraulic control of the Appendix IV constituent groundwater plumes. The extracted groundwater would be treated in an on-site treatment system and treated water would be discharged to Martin Lake or re-injected into the aquifer.

Potential groundwater treatment methods for the target Appendix IV constituents include the following:

- Cobalt ion exchange, adsorptive media, activated carbon, and chemical treatment with membrane filtration (USEPA 2019a).
- Lithium reverse osmosis, precipitation/co-precipitation, and ion exchange. (USACE, 2010).
- Beryllium activated alumina, ion exchange, lime softening, coagulation/filtration, and reverse osmosis (USEPA 2003)

Treatment methods for these constituents would need to be bench/pilot tested to evaluate their effectiveness prior to designing a full-scale system. Treatment will generate residual material (sludge, regenerate brine, etc.) containing concentrated levels of the target Appendix IV constituents that must managed.

Groundwater extraction and treatment would be effective in reducing contaminant concentrations in groundwater downgradient of the Ash Ponds through hydraulic containment, but would have little effect on groundwater conditions beneath the ponds. The estimated time to implement groundwater extraction and treatment is estimated to be approximately 3 to 4 years, including testing, design, and construction. The estimated time to achieve GWPS for the target Appendix IV constituents is dependent on site-specific conditions and groundwater modeling is needed to better evaluate remedial timeframes.

4.3.3 Vertical Hydraulic Barrier

A vertical, low permeability hydraulic barrier can be installed to provide a physical barrier to groundwater flow to contain the migration of contaminated groundwater. Vertical hydraulic barriers that have been demonstrated effective at controlling groundwater flow include the following (USEPA 1998):

- Slurry Wall. Slurry walls consist of a narrow, excavated trench that is filled with a soil-bentonite slurry mixture. The slurry shores and supports the trench walls and forms a low-permeability barrier in the trench. Key design considerations include wall depth, key depth, and material compatibility. Slurry trenches can be excavated to depths of 50 feet using standard excavators and over 80 feet using long-reach excavators or a crane mounted drag line/clamshell bucket. Geosynthetic materials can be placed in the trench in conjunction with the slurry wall to improve the hydraulic performance (decrease permeability) and chemical resistance.
- Soil-Mixed Wall. Soil-mixed walls form a hydraulic barrier through in-situ mixing of soil with amendments, such as bentonite and/or cement. Soil-mixed barrier walls can be installed to depths of over 100 feet. The walls are installed by sections or panels that overlap to achieve a continuous barrier.
- Grout Curtain. Grout curtain barriers are constructed by injecting grout into the subsurface in an overlapping injection pattern to form a continuous barrier. Grouted barriers can be installed using permeation grouting, jet grouting, or vibrating beam technologies. Grouted barriers must be designed and constructed to ensure hydrofracturing does not occur and the completed wall is effective at restricting groundwater flow.
- Sheet-pile Wall. Sheet-pile walls consist of steel, vinyl, or other materials driven into the subsurface using a hydraulic percussion hammer or vibratory hammer. Sheet-pile walls are common in civil engineering applications; however, their use in environmental applications has been more limited. One of the major concerns with sheet-walls in environmental applications is leakage through the vertical joints between piles; however, improvements in pile interlock designs have been made to improve joint sealing.

For a vertical hydraulic barrier to be effective, the bottom of the barrier must be "keyed" into a low-permeability confining layer. A detailed engineering analysis and design, likely including a bench/pilot test to identify most appropriate barrier materials, would be required for the construction of a vertical hydraulic barrier.

For the Ash Ponds, the vertical hydraulic barrier would be constructed along the downgradient edge of the ponds to provide hydraulic control of the target Appendix IV constituent groundwater plumes. A vertical hydraulic barrier physically interrupts the natural flow of groundwater; consequently, groundwater elevations upgradient of the barrier will rise, potentially to the point that groundwater could begin to flow around the edges of the barrier. To address this concern, a groundwater extraction and treatment system would be required upgradient of the barrier to control the groundwater levels. The groundwater extraction and treatment system used in conjunction with the vertical hydraulic barrier would be similar to the system described in Section 4.3.2; however, the required capacity of the system would be less since the rate of groundwater extraction would be limited to that required to control upgradient groundwater levels.

Construction of a vertical hydraulic barrier is expected to require significant effort and time. Prior to implementation of the barrier, pre-design field work, including site investigations and bench/pilot-scale barrier material testing would be required, followed by full-scale design and construction. The estimated time to

implement a vertical hydraulic barrier with groundwater extraction and treatment is estimated to be approximately 5 to 8 years, including testing, design, and construction. The estimated time to achieve GWPS for the target Appendix IV constituents is dependent on site-specific conditions and groundwater modeling is needed to better evaluate remedial timeframes.

4.3.4 Permeable Reactive Barrier

A permeable reactive barrier (PRB) is an in-situ, permeable treatment zone that contains reactive media designed to intercept impacted groundwater and either immobilize contaminants or transform the contaminants to a more desirable state (ITRC 2011). A PRB is a passive treatment system that acts as a barrier to groundwater contamination but not groundwater flow. The PRB must intercept the flow of impacted groundwater and must be designed and constructed such that impacted groundwater cannot bypass the reactive media by flowing over, under, or around the PRB. A PRB must include the appropriate reactive media and the residence time within the PRB needs to sufficient to allow for effective treatment. The effectiveness of the reactive media will be reduced over time and the media will likely have to be replaced periodically. Groundwater monitoring is used to evaluate the performance/effectiveness of a PRB system.

There are two primary PRB configurations: continuous and funnel-and-gate. A continuous PRB features permeable reactive media across the entire length of the barrier. A funnel-and -gate PRB uses sections of vertical hydraulic barriers to direct groundwater flow through permeable reactive media sections that allow the groundwater to pass through while treating contaminants. In both configurations, the permeability of the reactive media must be greater than the aquifer to ensure flow is not diverted around the PRB media. For the ash Ponds, a PRB system would be constructed along the downgradient edge of the ponds to provide control of the target Appendix IV groundwater plumes.

PRB systems are generally considered a proven technology, however, site conditions and the specific contaminants of interest affect the system performance. The potential applicability of a PRB system for the target Appendix IV constituents can be summarized as follows:

- Cobalt potentially removed using sulfate-reducing media or combination of zero-valent iron (ZVI) and organic material (Ludwig 2002; ITRC 2011);
- Lithium potentially precipitated as phosphate using appetite media, (Arnseth 2018).
- Beryllium potentially removed through in-situ biomass sorption (Goldemund and Robb 2018)

Removal of the target Appendix IV constituents using a PRB system has not been consistently demonstrated under full-scale conditions and bench/pilot-scale testing would be required to confirm the effectiveness of a PRB system at the Site. A groundwater model would be needed to evaluate the remedial timeframes.

Similar to a vertical hydraulic barrier, construction of a PRB system is expected to require significant effort and time. Prior to implementation of the PRB, pre-design field work, including site investigations, groundwater modeling, and bench-scale soil mix testing would be required, followed by full-scale design and construction. The estimated time to implement a PRB system is estimated to be approximately 5 to 8 years, including testing, design, and construction. The estimated time to achieve GWPS for the target Appendix IV constituents is dependent on site-specific conditions and groundwater modeling is needed to better evaluate remedial timeframes.

4.3.5 In-situ Chemical Treatment

In-situ Chemical Treatment (ICT) involves the injection of a chemical reagent or other material into the groundwater aquifer to adjust the geochemistry to enhance the direct precipitation, co-precipitation, or related adsorption/precipitation of the target contaminants (USEPA 2019c). Direct precipitation occurs when a constituent exceeds its solubility in water and precipitates out of solution. Co-precipitation refers to the removal of a constituent through adsorption onto the precipitate of another chemical reaction.

Cobalt has the potential to be removed through adsorption and/or coprecipitation under reducing groundwater conditions and beryllium can potentially be removed through in-situ biomass sorption (Goldemund and Robb 2018). Lithium has the potential to be precipitated as a phosphate under appropriate geochemical conditions (Arnseth 2018).

Injection wells would be installed into the aquifer along the downgradient edge of Ash Ponds and the chemical reagents would be injected to provide control of the target Appendix IV constituent groundwater plumes.

ICT is considered an emerging remediation technology for the target Appendix IV constituents and the effectiveness of the technology on most of the constituents is uncertain. Bench/pilot-scale testing would be required to confirm the effectiveness of an ICT system at the Site. The estimated time to implement an ICT system is estimated to be approximately 5 to 8 years, including testing, design, and construction. The estimated time to achieve GWPS for the target Appendix IV constituents is dependent on site-specific conditions and groundwater modeling is needed to better evaluate remedial timeframes.

4.3.6 Phytoremediation

Phytoremediation refers to the use of plants to partially or substantially remediate selected contaminants in contaminated soil, sludge, sediment, ground water, surface water, and wastewater (USEPA 2001). The process utilizes a variety of plant biological processes and plant physical characteristics to aid in remediation; however, the primary plant process potentially applicable to the target Appendix IV constituents at the Site is phytoextraction, which is the uptake and accumulation of contaminants within aboveground portions of a plant. The contaminants are removed from the Site when the plants are harvested and managed off-site.

Phytoextraction occurs in the root zone of plants, which is typically relatively shallow, with the bulk of roots at shallower rather than deeper depths. This would limit the effectiveness of phytoextraction at the Site due to the depth of groundwater. Phytoremediation for cobalt removal from groundwater has not been demonstrated under full-scale conditions and no information concerning the effectiveness of phytoremediation for lithium and beryllium removal was identified (USEPA 2001).

Implementation of a phytoremediation process at the Site would involve planting appropriate vegetation at intervals along the downgradient edge of the Ash Ponds and across the affected groundwater plume area. A comprehensive bench/pilot testing program would be required to select the most appropriate plants for removal of the target Appendix IV constituents from groundwater at the Site. Since the target Appendix IV constituents would likely accumulate in the plants, management of harvested plants in accordance with RCRA may be required. The estimated time to implement an ICT system is estimated to be approximately 15 to 20 years, based on the success and rate of vegetation growth. The estimated time to achieve GWPS for the target Appendix IV constituents is dependent on site-specific conditions and groundwater modeling is needed to better evaluate remedial timeframes.

4.3.7 Screening of Potential Groundwater Response Technologies

Following identification of potential groundwater response technologies, Golder screened the potential options for further consideration in developing potential corrective measures alternatives for the Ash Ponds. The screening results for each potential source technology are summarized in Table 3. Based on the initial screening, the following potential groundwater response technologies were retained for future evaluation as part of the corrective measures alternatives for the Ash Ponds:

- Monitored Natural Attenuation
- Groundwater Extraction and Treatment
- Vertical Hydraulic Barrier

4.4 Potential Corrective Measures Alternatives

Based on the response technology screening discussed above, Golder assembled the following potential corrective measures alternatives that could be both effective and implementable at the Site:

- Retrofit Liners in WAP, EAP and NSP with Monitored Natural Attenuation
- Retrofit Liners in WAP, EAP and NSP with Groundwater Extraction and Treatment
- Retrofit Liners in WAP, EAP and NSP with Vertical Hydraulic Barrier

A summary of the corrective measure alternatives, including an assessment of each alternative against the evaluation criteria presented in §257.96(c) is provided in Table 4.

4.5 Remedy Selection

The corrective measure alternative proposed as the remedy for the Ash Ponds will be selected in accordance with §257.97 a minimum of 30 days after the public meeting required under §257.96(e) has been completed.

It should also be noted that, for the purposes of this ACM, cobalt, beryllium and lithium concentrations were conservatively assumed to be present at SSLs above their respective GWPSs based on the February 2019 SSL notification. However, as discussed in Sections 3.4-3.6, lithium concentrations are no longer considered to be present at SSLs above the GWPS based on recent data and naturally occurring sources of cobalt, beryllium and lithium exist in the vicinity of the Ash Ponds. Cobalt, beryllium and lithium concentrations in groundwater will continue to be monitored in accordance with the CCR rule to confirm that the concentrations of these constituents remain below the GWPSs in the future. These monitoring results, along with updated statistical analysis and alternate source demonstrations (if applicable), will be considered as part of the remedy selection process.

5.0 REFERENCES

Arnseth, Richard W., 2018. Remedial Technologies to Address CCR Constituents in Groundwater, Tennessee Department of Environmental Conservation - Environmental Show of the South, May.

- Barnes, Virgil E., 1965. Geologic Atlas of Texas, Tyler Sheet. Texas Bureau of Economic Geology.
- Bethke, C., 2015. Geochemist's Workbench: Release 12.0 Aqueous Solutions, LLC.
- Burns & McDonnell Engineering Company, Inc (BM), 20166. Summary of Liner Construction Martin Lake Impoundments, Martin Lake Steam Electric Station. September.
- Code of Federal Regulations, 2015 April. Chapter 40, Part 257, Subpart D.
- Dzombak, D.A. and Morel, F., 1990. Surface complexation modeling: hydrous ferric oxide. John Wiley & Sons.
- Goldemund, H and Robb, C, 2018. Current Overview of Groundwater Remediation Options for CCR Units, Proceedings of 2018 World of Coal Ash Conference.
- Golder, 2019. Drinking Water Survey Report Revision No. 1, Martin Lake Steam Electric Station Ash Pond Area and PDP 5, Rusk County, Texas. July 25.
- Hem, J.D., 1985. Study and interpretation of the chemical characteristics of natural water (Vol. 2254). US Geological Survey.
- ITRC. 2010. A Decision Framework for Applying Monitored Natural Attenuation Processes to Metals and Radionuclides in Groundwater. Technical/Regulatory Guidance, December 2010.
- ITRC. 2011. Permeable Reactive Barrier: Technology Update. PRB-5. June 2011.
- Karamalidis, A. and Dzombak, D., 2011. Surface complexation modeling: gibbsite. John Wiley & Sons.
- Ludwig, R, et. al., 2002. A Permeable Reactive Barrier for Treatment of Heavy Metals in Ground Water 40(1):59-66, January 2002.
- Parkhurst, D. and Appelo, C., 2013. Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations (No. 6-A43). US Geological Survey.
- Pastor, Behling & Wheeler, LLC (PBW), 2011. Revised Affected Property Assessment Report, Martin Lake Steam Electric Station Ash Pond Area (TCEQ SWR No. 31277). May 3.
- PBW, 2017a. Coal Combustion Residual Rule Groundwater Monitoring System Certification, Martin Lake Steam Electric Station, Ash Pond Area, Rusk County, Texas. October 16
- PBW 2017b. Coal Combustion Residual Rule Statistical Analysis Plan, Martin Lake Steam Electric Station, Ash Pond Area, Freestone County, Texas.
- Smith, K., 1999. Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. The Environmental Geochemistry of Mineral Deposits. Part B: Case Studies and Research Topics, 6, pp.161-182.

Tessier, A., Campbell, P.G. and Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry, 51(7), pp.844-851.

- Uddin, M., 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, pp.438-462.
- US Department of Defense (DOD), 2014. Frequently Asked Questions about Monitored Natural Attenuation in Groundwater, February.
- USEPA, 1996. Pump-and-Treat Ground-Water Remediation: A Guide for Decision Makers and Practitioners. EPA/625/R-95/005. July 1996.
- USEPA. 1998. Evaluation of Subsurface Engineered Barriers at Waste Sites, EPA-542-R-98-005, July 1998.
- USEPA. 2001. Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites, EPA/540-S-01/500. February 2001.
- USEPA. 2003. Water Treatment Technology Feasibility Support Document for Chemical Contaminants, EPA 815-R-03-004, June.
- USEPA, 2007a. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water. Volume 1. Technical Basis for Assessment. EPA/600/R-07/139.
- USEPA, 2007b. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water. Volume 2.

 Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Beryllium. EPA/600/R-07/140.
- USEPA, 2009. Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, EPA 530-R-09-007, March 2009.
- USEPA, 2014. Reference Guide to Treatment Technologies for Mining-Influenced Water. March 2014.
- USEPA, 2015. 40 CFR Parts 257 and 261; Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. April 17, 2015.
- USEPA, 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Directive 9283.1-36. August 2015.
- USEPA, 2019a. Drinking Water Treatability Database Cobalt and Beryllium. Retrieved from https://oaspub.epa.gov/tdb/pages/general/home.do
- USEPA, 2019b. Permeable Reactive Barriers. CLU-IN. Retrieved from https://clu-in.org/techfocus/default.focus/sec/Permeable_Reactive_Barriers%2C_Permeable_Treatment_Zones%2C __and_Application_of_Zero-Valent_Iron/cat/Overview/
- USEPA, 2019c. In Situ Chemical Reduction. CLU-IN. Retrieved from https://clu-in.org/techfocus/default.focus/sec/In_Situ_Chemical_Reduction/cat/Overview/

Signature Page

Golder Associates Inc.

Patrick J. Behling, P.E.

Principal Engineer

William F. Vienne, P.G.

Senior Hydrogeologist

Golder and the G logo are trademarks of Golder Associates Corporation.

https://golderassociates.sharepoint.com/sites/114142/project files/5 technical work/phase 1000 - ml ash pond area/ccr acm mlses ash pond area_9-5-19.docx

TABLES

TABLE 1 APPENDIX IV GROUNDWATER ANALYTICAL DATA SUMMARY MARTIN LAKE STEAM ELECTRIC STATION ASH POND AREA

		T				I			1	1		1		1	1			Ra
																		226/228
Sample	Date	Sb	As	Ва	Be	Cd	Cr	Co	FI	Pb	Li	Hg	Мо	Se	TI	Ra 226	Ra 228	Comb.^
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(pCi/L)	(pCi/L)
GWPS:		0.006	0.01	2	0.004	0.005	0.1	0.0564	4	0.015	0.177	0.002	0.1	0.05	0.002			5
Upgradient Wells						-										(
H-26	10/21/15	<0.0008	0.00364 J	0.0785	0.000349 J	<0.0003	<0.002	0.0385	<0.1	<0.0003	0.0139	<0.00008	<0.002	<0.002	<0.0005	0.919	<1.64	2.56
	12/14/15	<0.0008	<0.002	0.0401	0.000458 J	<0.0003	<0.002	0.0244	<0.1	<0.0003	0.0769	<0.00008	<0.002	<0.002	<0.0005	0.619	<1.95	2.57
_	02/23/16	<0.0008	<0.002	0.0423	<0.0003	<0.0003	0.0077	0.00813	0.151 J	0.000315 J	0.0124	<0.00008	0.00248 J		<0.0005	0.37	<2.06	2.43
	04/05/16	<0.0008	<0.002 <0.002	0.0408	<0.0003	<0.0003	0.00798	0.0125	0.199 J	<0.0003	0.0121	<0.00008 <0.00008	<0.002 <0.002	<0.002 <0.002	<0.0005 <0.0005	<0.243 0.245	<1.06 1.67	<1.303
	06/07/16 08/09/16	<0.0008	0.0029 J	0.0487	0.000721 J 0.00136	<0.0003 <0.0003	<0.002 <0.002	0.0217 0.0352	<0.1 <0.1	<0.0003 <0.0003	0.0132 0.0155	<0.00008	<0.002	<0.002	<0.0005	<0.2	<0.932	1.92 <1.132
-	10/18/16	<0.0008	<0.0029 3	0.0431	0.00136 0.000709 J	<0.0003	<0.002	0.0352	0.127 J	<0.0003	0.0136	<0.00008	<0.002	0.00265 J	<0.0005	0.243	<0.622	0.87
	12/11/16	<0.0008	<0.002	0.0468	0.00146	<0.0003	0.00311 J	0.0214	0.127 J	0.000358 J	0.0130	<0.00008	<0.002	<0.002	<0.0005	0.248	1.82	2.07
	06/13/18	<0.0008	<0.002	0.0659	0.00140	<0.0003	0.00213 J	0.0273	<0.100	<0.0003	0.032	<0.00008	<0.002	<0.002	<0.0005	<0.297	3.72	4.017
	09/07/18	NA	<0.002	0.0470	0.00155	<0.0003	0.00319 J	0.0247	<0.100	<0.0003	0.0489	NA	NA	<0.002	NA	<0.473	<0.665	<1.138
	05/14/19	<0.0008	0.0041 J	0.1900	0.00147	<0.0003	0.0406	0.0795	0.140 J	0.000972 J	0.147	<0.00008	<0.002	0.00222 J	<0.0005	1.43	0.598	2.028
H-27	10/21/15	<0.0008	<0.002	0.0378	< 0.0003	< 0.0003	<0.002	0.00432 J	<0.1	< 0.0003	0.0607	<0.00008	<0.002	<0.002	<0.0005	<0.553	<1.67	<2.223
	12/14/15	<0.0008	0.0021 J	0.039	<0.0003	< 0.0003	<0.002	0.00326 J	0.156 J	0.000339 J	0.0624	<0.00008	<0.002	<0.002	<0.0005	0.468	<1.68	2.15
	02/23/16	<0.0008	<0.002	0.0266	<0.0003	<0.0003	<0.002	<0.003	0.101 J	<0.0003	0.0601	<0.00008	<0.002	<0.002	<0.0005	0.921	<1.62	2.54
	04/05/16	<0.0008	<0.002	0.0245	<0.0003	<0.0003	<0.002	<0.003	0.124 J	<0.0003	0.0573	<0.00008	<0.002	<0.002	<0.0005	0.269	<2.05	2.32
	06/07/16	<0.0008	<0.002	0.0342	0.000609 J	<0.0003	<0.002	0.016	<0.1	<0.0003	0.0107	<0.00008	<0.002	<0.002	<0.0005	0.269	<0.658	0.927
	08/09/16	<0.0008	<0.002	0.0241	<0.0003	<0.0003	<0.002	<0.003	<0.1	<0.0003	0.0616	<0.00008	<0.002	<0.002	<0.0005	0.408	<0.632	1.04
	10/18/16	<0.0008	<0.002	0.0248	<0.0003	<0.0003	<0.002	<0.003	0.144J	<0.0003	0.0576	<0.00008	<0.002	<0.002	<0.0005	<0.178	1.07	1.25
	12/11/16	<0.0008	<0.002	0.0236	<0.0003	<0.0003	<0.002	< 0.003	0.161 J	<0.0003	0.0606	<0.00008	<0.002	<0.002	<0.0005	0.143	1.54	1.68
	06/13/18	<0.0008	<0.002	0.0237	<0.0003	<0.0003	0.00964	<0.003	0.208 J	<0.0003	0.108	<0.00008	<0.002	<0.002	<0.0005	0.267	<1.4	1.667
_	09/07/18	NA <0.0008	<0.002	0.0196	<0.0003	<0.0003	0.0453	<0.003	0.140 J	<0.0003	0.306	NA	NA <0.002	0.00773	NA <0.000E	<0.285	1.43	1.715
H-33	05/14/19 10/20/15	<0.0008	<0.002 0.00208 J	0.0208	<0.0003 0.000351 J	<0.0003 <0.0003	<0.002 <0.002	<0.003	0.159 J <0.1	<0.0003 <0.0003	0.0678 0.0814	<0.00008	<0.002 <0.002	<0.002 <0.002	<0.0005 <0.0005	1.10 1.76	0.928 1.64	2.028 3.40
п-ээ	12/14/15	<0.0008	0.00206 J	0.0366	0.000351 J	<0.0003	<0.002	0.0274	0.136 J	<0.0003	0.0903	<0.00008	<0.002	<0.002	<0.0005	1.76	<1.79	3.73
	02/23/16	<0.0008	< 0.00205 3	0.0529	0.000382 J	<0.0003	0.0194	0.0293	0.136 J	<0.0003	0.0903	<0.00008	<0.002	<0.002	<0.0005	0.906	<2.32	3.73
	04/05/16	<0.0008	<0.002	0.0576	0.0003113	<0.0003	0.0134	0.016	0.1233 0.14 J	<0.0003	0.162	<0.00008	<0.002	<0.002	<0.0005	0.328	1.08	1.41
	06/07/16	<0.0008	<0.002	0.0774	0.000604 J	<0.0003	0.0153	0.0196	<0.1	<0.0003	0.163	<0.00008	<0.002	<0.002	<0.0005	0.276	0.897	1.17
	08/09/16	<0.0008	<0.002	0.0424	0.000519 J	<0.0003	0.00291 J	0.0284	<0.1	<0.0003	0.102	<0.00008	<0.002	<0.002	<0.0005	<0.149	0.649	0.80
	10/18/16	<0.0008	0.00347 J	0.0464	0.000617 J	< 0.0003	0.0309	0.0644	<0.1	0.000329 J	0.118	<0.00008	<0.002	<0.002	<0.0005	0.096	<0.517	0.61
	12/11/16	<0.0008	0.00218 J	0.0537	0.000865 J	< 0.0003	0.0368	0.0408	0.132 J	0.000495 J	0.115	<0.00008	<0.002	<0.002	<0.0005	0.159	1.29	1.45
	06/13/18	<0.0008	0.00283 J	0.0741	0.0004 J	< 0.0003	0.0182	0.0266	0.105 J	0.0009 J	0.183	<0.00008	<0.002	<0.002	<0.0005	0.795	<0.712	1.507
	09/07/18	NA	0.00239 J	0.0757	0.0003 J	< 0.0003	0.0105	0.0288	0.135 J	<0.0003	0.160	NA	NA	<0.002	NA	0.334	<0.645	0.979
	05/14/19	<0.0008	0.00355 J	0.158	0.00114	<0.0003	0.0342	0.0648	0.166 J	0.000772 J	0.161	<0.00008	<0.002	<0.002	<0.0005	0.850	1.35	2.200
Downgradient Wells																(
H-28	10/21/15	<0.0008	0.00278 J	0.0396	0.00148	0.00121	<0.002	0.188	<0.1	0.000491 J	0.154	<0.00008	<0.002	0.00682	<0.0005	<0.558	<1.65	<2.208
	12/14/15	<0.0008	<0.002	0.0224	<0.0003	0.000572 J	<0.002	0.0225	<0.1	<0.0003	0.021	<0.00008	<0.002	<0.002	<0.0005	0.707	<1.18	1.89
	02/23/16	<0.0008	0.00225 J	0.0202	0.00133	0.00151	<0.002	0.201	<0.1	0.00053 J	0.159	<0.00008	<0.002	0.00222 J	<0.0005	<0.396	2.24	2.64
_	04/05/16	<0.0008	<0.002	0.0173	0.0011	0.00252	<0.002	0.199	<0.1	0.00087 J	0.15	<0.00008	<0.002	0.00237 J	<0.0005	<0.231	1.76	1.99
<u> </u>	06/07/16	<0.0008	<0.002 <0.002	0.0468	0.000934 J 0.00275	0.000664 J 0.0016	<0.002 <0.002	0.0944 0.195	<0.1 <0.1	<0.0003 0.000774 J	0.0959 0.155	<0.00008	<0.002 <0.002	<0.002 0.00286 J	<0.0005 <0.0005	0.310 <0.451	1.48 1.41	1.79 1.86
	08/09/16 10/18/16	<0.0008	0.00284J	0.0174	0.00275	0.0016 0.000744 J	<0.002	0.195	0.165J	0.000774 3	0.155	<0.00008	<0.002	0.00286 J	<0.0005	<0.431	0.645	0.87
	12/11/16	<0.0008	<0.002	0.0174	0.000698 J	0.000744 J	<0.002	0.0924	0.1033 0.114 J	<0.0003	0.0869	<0.00008	<0.002	<0.002733	<0.0005	<0.220	1.13	1.28
-	06/13/18	<0.0008	<0.002	0.0471	0.00393	0.0038	<0.002	0.0324	0.114 J	0.000448 J	0.0003	<0.00008	<0.002	<0.002	<0.0005	0.327	<1.56	1.887
	09/07/18	NA	<0.002	0.0192	0.00704	0.00115	<0.002	0.162	<0.100	0.00118 J	0.203	NA	NA	0.00281 J	NA	<0.243	0.845	1.088
	05/14/19	<0.0008	<0.002	0.0141	0.00281	0.00212	<0.002	0.187	<0.100	0.000595 J	0.172	<0.00008	<0.002	0.00619	<0.0005	0.444	0.615	1.059
H-29	10/21/15	<0.0008	< 0.002	0.159	0.000359 J	< 0.0003	<0.002	0.0301	<0.1	< 0.0003	0.0156	<0.00008	<0.002	< 0.002	< 0.0005	0.464	1.82	2.28
	12/14/15	<0.0008	<0.002	0.277	<0.0003	< 0.0003	0.062	< 0.003	0.56	0.000542 J	0.0202	<0.00008	0.00819	0.0282	<0.0005	<0.53	<1.25	<1.78
	02/23/16	<0.0008	0.00203 J	0.151	<0.0003	<0.0003	0.019	<0.003	0.239 J	<0.0003	0.0135	<0.00008	0.00603	0.0148	<0.0005	< 0.374	<2.22	<2.594
	04/05/16	<0.0008	<0.002	0.167	<0.0003	<0.0003	0.042	<0.003	0.363 J	<0.0003	0.0175	<0.00008	0.00697	0.0232	<0.0005	<0.228	<0.897	<1.125
	06/07/16	<0.0008	<0.002	0.136	<0.0003	<0.0003	0.0274	<0.003	0.27 J	<0.0003	0.0188	<0.00008	0.00551	0.0152	<0.0005	0.173	<0.834	1.01
	08/09/16	<0.0008	0.00995	0.315	<0.0003	<0.0003	0.00297 J	0.00473 J	<0.1	<0.0003	0.0143	<0.00008	<0.002	<0.002	<0.0005	0.261	<0.578	0.84
<u> </u>	10/18/16	<0.0008	<0.002	0.118	<0.0003	<0.0003	0.00412 J	<0.003	1.15	0.000427J	0.0056 J	<0.00008	0.00305 J		<0.0005	0.155	<0.439	0.59
<u> </u>	12/11/16	<0.0008	<0.002	0.0779	<0.0003	<0.0003	<0.002	<0.003	1.4	<0.0003	<0.005	<0.00008	0.00307 J		<0.0005	<0.113	<0.599	<0.712
∥	06/13/18	<0.0008	<0.002	0.0157	0.00345	0.00318	<0.002	0.153	0.123 J	0.000779 J	0.153	<0.00008	<0.002	<0.002	<0.0005	<0.274	<1.62	<1.894
<u> </u>	09/07/18	NA <0.0008	<0.002	0.0374	0.00513	0.000938	<0.002	0.119	<0.100	0.00172	0.145	NA <0.00008	NA -0.002	0.00374 J	NA <0.0005	<0.371	<0.71	<1.081
	5/14/2019	<0.0008	<0.002	0.0138	0.00341	0.00219	<0.002	0.183	U. 104 J	0.000543 J	0.173	<0.00008	<0.002	0.00616	<0.0005	<0.339	<0.707	<1.046

TABLE 1 APPENDIX IV GROUNDWATER ANALYTICAL DATA SUMMARY MARTIN LAKE STEAM ELECTRIC STATION ASH POND AREA

																		Ra 226/228
Sample	Date	Sb	As	Ва	Be	Cd	Cr	Co	FI	Pb	11	Hg	Мо	Se	TI	Ra 226	Ra 228	Comb.^
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ma/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(pCi/L)	(pCi/L)
GWPS:	o annipi o a	0.006	0.01	2	0.004	0.005	0.1	0.0564	4	0.015	0.177	0.002	0.1	0.05	0.002			5
H-31	10/20/15	<0.0008	0.0168	0.0732	0.0126	0.0032	0.00687	0.434	0.889	<0.0003	0.137	<0.00008	<0.002	0.116	<0.0005	0.943	<1.88	2.82
	12/14/15	<0.0008	0.00513	0.0388	0.00702	< 0.0003	0.00456 J	0.0651	0.692	< 0.0003	0.149	<0.00008	<0.002	0.0231	< 0.0005	1.61	<1.29	2.90
	02/23/16	<0.0008	0.00436 J	0.0243	0.0101	< 0.0003	<0.002	0.0594	0.921	< 0.0003	0.146	<0.00008	<0.002	0.0209	< 0.0005	< 0.419	<1.64	<2.059
	04/05/16	<0.0008	0.00514	0.0241	0.00925	< 0.0003	0.00435 J	0.0685	1.36	< 0.0003	0.146	<0.00008	< 0.002	0.0226	<0.0005	< 0.334	<0.897	<1.231
	06/07/16	<0.0008	0.0038 J	0.0242	0.00789	< 0.0003	<0.002	0.0406	0.783	< 0.0003	0.157	<0.00008	<0.002	0.0307	< 0.0005	0.257	<0.555	0.81
	08/09/16	<0.0008	0.00886	0.0191	0.00734	< 0.0003	<0.002	0.286	0.216 J	< 0.0003	0.17	<0.00008	<0.002	0.0202	< 0.0005	1.31	0.900	2.21
	10/18/16	<0.0008	0.00351 J	0.0215	0.00167 J	< 0.0003	<0.002	0.0304 J	0.298 J	< 0.0003	0.165	<0.00008	< 0.002	0.00567 J	<0.0005	0.169	1.18	1.35
	12/11/16	<0.0008	0.00875 J	0.0189	0.0197	< 0.0003	0.00386 J	0.23 J	0.892	< 0.0003	0.198	<0.00008	<0.002	0.0365	< 0.0005	0.195	<0.754	0.95
	06/12/18	<0.0008	0.00532	0.0194	0.00545	< 0.0003	0.003 J	0.236	0.646	< 0.0003	0.214	<0.00008	<0.002	0.00475 J	< 0.0005	<0.26	<0.597	< 0.857
	09/07/18	NA	<0.002	0.0287	< 0.0003	< 0.0003	<0.002	0.00353 J	0.275 J	< 0.0003	0.0187	NA	NA	0.00424 J	NA	<0.261	<0.567	<0.828
	05/14/19	<0.0008	0.00675	0.0163	0.00928	<0.0003	0.00315 J	0.389	0.96	<0.0003	0.219	<0.0004	<0.002	0.0261	<0.0005	2.62	<0.789	3.409
H-32	10/20/15	<0.0008	0.0028 J	0.16	0.00266	< 0.0003	<0.002	0.163	0.374 J	< 0.0003	0.0788	<0.00008	<0.002	0.00303 J	<0.0005	1.05	<1.90	2.95
	12/14/15	<0.0008	0.0123	0.0384	0.00313	< 0.0003	<0.002	0.155	0.619	< 0.0003	0.0733	<0.00008	<0.002	<0.002	<0.0005	0.712	<2.21	2.92
	02/23/16	<0.0008	0.00712	0.0277	0.00452	< 0.0003	<0.002	0.188	0.701	0.000326 J	0.0821	<0.00008	<0.002	<0.002	<0.0005	1.12	1.60	2.72
	04/05/16	<0.0008	0.00648	0.0237	0.00527	0.00128	<0.002	0.208	1.05	0.00182	0.0818	<0.00008	<0.002	<0.002	<0.0005	< 0.364	<1.15	<1.514
	06/07/16	<0.0008	0.00446 J	0.0238	0.00583	0.000997 J	<0.002	0.207	0.858	0.00168	0.087	<0.00008	<0.002	0.00298 J	<0.0005	<0.165	0.613	0.778
	08/09/16	<0.0008	0.00344 J	0.0234	0.00548	0.000713 J	<0.002	0.19	0.68	0.00115	0.0774	<0.00008	<0.002	0.00281 J	<0.0005	2.56	<0.446	3.01
	10/18/16	<0.0008	0.00289 J	0.02	0.00567	0.00254	<0.002	0.204	0.904	0.00332	0.0834	<0.00008	<0.002	0.00267 J	<0.0005	<0.139	0.683	0.82
	12/11/16	<0.0008	0.00246 J	0.0205	0.00609	0.00108	<0.002	0.208	1	0.00137	0.0838	<0.00008	<0.002	0.00237 J	<0.0005	<0.163	<0.753	< 0.916
	06/12/18	<0.0008	<0.002	0.0175	0.00681	0.000586 J	<0.002	0.215	1.02	0.000701 J	0.0957	<0.00008	<0.002	<0.002	<0.0005	<0.275	0.917	1.192
	09/07/18	NA	<0.002	0.0404	<0.0003	< 0.0003	<0.002	0.00347 J	0.551	<0.0003	0.0195	NA	NA	0.0157	NA	0.343	1.25	1.593
	05/14/19	<0.0008	0.002 J	0.0162	0.00713	0.000366 J	<0.002	0.202	1.15	0.000574 J	0.0978	<0.00008	<0.002	0.00675	<0.0005	0.303	<0.546	<0.849

Notes:

- 1. Abbreviations: GWPS groundwater protection standard; mg/L milligrams per liter; pCi/L picocuries per liter.
- 2. ^ Sum of Ra 226 and Ra 228 concentrations. Non-detect isotope results were assigned a value equal to the minimum detectable concentration.
- 3. J concentration is below method quantitation limit; result is an estimate.
- 4. NA = Not analyzed.

Table 2

Screening of Potential Groundwater Response Technologies

Martin Lake Steam Electric Station

Ash Ponds

Groundwater Response Technology	Description	Protective of Human Health and Environment	Attain Groundwater Protection Standard	Control Source of Release	Remove Contaminated Material From Environment	RCRA Compliance	Screening Comments	Retained for Further Evaluation
Monitored Natural Attenuation	Natural processes (dispersion, dilution, sorption, coprecipitation, degradation/transformation, etc.) remove CCR constituents from groundwater in-situ. Groundwater monitoring to verify MNA effectiveness.	Migration of CCR constituents in groundwater controlled and CCR concentrations in groundwater reduced.	CCR constituents removed through adsorption, precipitation or coprecipitation. CCR constituents removed from groundwater and retained in aquifer soil matrix to achieve GWPS below and downgradient of CCR Unit.	CCR constituents removed from groundwater below and downgradient of CCR Unit.	CCR constituents removed from groundwater and retained in aquifer soil matrix.	Purge water from groundwater monitoring requires management in accordance with applicable RCRA requirements.	Site is good MNA candidate for CCR constituents based on field MNA evaluation. Long-term groundwater monitoring required. Easy to implement. Groundwater modelling required to assess remediation timeframe.	Yes
Groundwater Extraction and Treatment	System of extraction wells along downgradient edge of ponds to provide hydraulic control of CCR constituent groundwater plumes. Extracted groundwater treated in an on-site treatment system and discharged to Martin Lake or re-injected into aquifer. Groundwater monitoring to verify system effectiveness.	Migration of CCR constituents in groundwater controlled.	GWPS attained downgradient of CCR Unit, but limited effect on concentrations beneath unit.	CCR groundwater constituents contained at edge of ponds.	CCR constituents removed from extracted groundwater by treatment system. Treatment residuals (sludge, regenerate brine, etc.) require management.	Treatment residuals (sludge, regenerate brine, etc.) require management in accordance with applicable RCRA requirements.	Regulatory authorization for treated water discharge required. Bench/pilot testing of treatment system required. Groundwater modelling required to assess remediation timeframe.	Yes
Vertical Hydraulic Barrier	Vertical, low permeability hydraulic barrier along downgradient edge of ponds to provide hydraulic control of CCR constituent groundwater plumes. Groundwater extraction and treatment required upgradient of barrier to control groundwater elevations. Groundwater monitoring to verify system effectiveness.	Migration of CCR constituents in groundwater controlled.	GWPS attained downgradient of CCR Unit, but limited effect on concentrations beneath unit.	CCR groundwater constituents contained at edge of ponds.	CCR constituents removed from extracted groundwater by treatment system. Treatment residuals (sludge, regenerate brine, etc.) require management.	Excavated soil generated from barrier installation requires testing and management as necessary. Treatment residuals (sludge, regenerate brine, etc.) require management in accordance with applicable RCRA requirements.	Bench/pilot test of barrier materials likely required. Regulatory authorization for treated water discharge required. Bench/pilot testing of treatment system required. Groundwater modelling required to assess remediation timeframe.	Yes

Groundwater Response Technology	Description	Protective of Human Health and Environment	Attain Groundwater Protection Standard	Control Source of Release	Remove Contaminated Material From Environment	RCRA Compliance	Screening Comments	Retained for Further Evaluation
Permeable Reactive Barrier	In-situ, passive, permeable treatment zone containing reactive media designed to intercept impacted groundwater and adjust geochemistry to immobilize CCR contaminants. CCR constituents removed from groundwater through adsorption and/or coprecipitation under reducing groundwater conditions. PRB acts as a barrier to groundwater contamination but not groundwater flow. Groundwater monitoring to verify system effectiveness.	Migration of CCR constituents in groundwater controlled.	GWPS attained downgradient of CCR Unit, but limited effect on concentrations beneath unit.	CCR groundwater constituents removed from groundwater downgradient of CCR Unit.	CCR constituents removed from groundwater and retained on reactive media or aquifer soil matrix.	Excavated soil generated from PRB installation requires testing and management as necessary.	CCR constituent removal using PRB possible but full-scale performance uncertain. Reactive media effectiveness reduced over time and media likely replaced periodically. Bench/pilot testing of PRB media/system required. Groundwater modelling required to assess remediation timeframe.	No
In-Situ Chemical Treatment	Injection of chemical/material into aquifer to adjust geochemistry and enhance precipitation, coprecipitation, or indirect adsorption of CCR constituents. CCR constituents potentially removed through adsorption, precipitation and/or coprecipitation. Groundwater monitoring to verify system effectiveness.	Migration of CCR constituents in groundwater controlled.	GWPS attained downgradient of CCR Unit, but limited effect on concentrations beneath unit.	CCR groundwater constituents removed from groundwater downgradient of CCR Unit.	CCR constituents removed from groundwater and retained on aquifer soil matrix.	No significant RCRA compliance issues anticipated.	ICT considered emerging remediation technology for CCR constituents - not demonstrated under full-scale conditions. Bench/pilot-scale testing of ICT system required. Groundwater modelling required to assess remediation timeframe.	No
Phytoremediation	Use of plants to remove CCR constituents through uptake and accumulation within above ground portions of the plant. Primary plant process for CCR constituent removal is phytoextraction (uptake/accumulation of contaminants within aboveground portions of a plant). Groundwater monitoring to verify system effectiveness.	Migration of CCR constituents in groundwater controlled.	GWPS attained downgradient of CCR Unit, but limited effect on concentrations beneath unit.	CCR groundwater constituents removed from groundwater downgradient of CCR Unit.	CCR constituents removed from groundwater and accumulates in plants.	Management of harvested plants in accordance with RCRA may be required if accumulated CCR constituent concentrations are high.	Phytoextraction occurs in shallow root zone of plants, which limits the effectiveness for the groundwater depths at the Site. Phytoremediation for CCR constituent removal from groundwater has not been demonstrated under full-scale conditions Bench/pilot-scale testing of phytoremediation system required. Groundwater modelling required to assess remediation timeframe.	No

Table 3

Evaluation of Corrective Measures Alternatives
Martin Lake Steam Electric Station
Ash Ponds

Corrective Measures Alternative	Description	Performance	Reliability	Ease of Implementation	Potential Impacts	Time Requirements	Institutional Requirements
Retrofit Liners in WAP, EAP and NSP with Monitored Natural Attenuation	New Liners in WAP, EAP and NSP. MNA to remove CCR constituents from groundwater and control migration. Groundwater monitoring to verify MNA effectiveness.	New Liners in WAP, EAP and NSP isolate CCR material in pond and mitigate on-going source of CCR constituents to groundwater. Site is good MNA candidate for CCR constituents based on MNA field evaluation.	Liner construction is a common and effective source control technology. On-going attenuation of CCR constituents in groundwater demonstrated during MNA field evaluation. Groundwater monitoring used to verify long-term MNA effectiveness.	Readily implementable with common construction techniques.	Source controlled through pond liner systems. CCR constituents removed from groundwater beneath and downgradient of ponds.	Retrofit Implementation: 1-2 years per pond. MNA Implementation: 2-3 years. Groundwater modelling required to assess remediation timeframe.	Minimal regulatory requirements.
Retrofit Liners in WAP, EAP and NSP with Groundwater Extraction and Treatment	New Liners in WAP, EAP and NSP. System of extraction wells along downgradient edge of ponds to provide hydraulic control of CCR constituent groundwater plumes. Extracted groundwater treated in an on-site treatment system and discharged to Martin Lake or re-injected into aquifer. Groundwater monitoring to verify system effectiveness.	New Liners in WAP, EAP and NSP isolate CCR material in pond and mitigate on-going source of CCR constituents to groundwater. Migration of CCR constituents in groundwater controlled at pond boundaries by extraction wells.	Liner construction is a common and effective source control technology. Groundwater extraction and treatment is a common and effective hydraulic control technology. Treatment system operational reliability is key component of overall reliability.	Readily implementable with common construction techniques. Bench/pilot testing of treatment system required. Regulatory authorization for treated water discharge could be difficult to obtain.	Source controlled through pond liner systems. Control of CCR constituent migration downgradient of ponds by extraction wells. Extraction system does not address groundwater beneath ponds.	Retrofit Implementation: 1-2 years per pond. GW Ext/Treatment Implementation: 3-4 years. Groundwater modelling required to assess remediation timeframe.	Regulatory authorization for treated water discharge required. Treatment system residuals (sludge, regenerate brine, etc.) require management.
Retrofit Liners in WAP, EAP and NSP with Vertical Hydraulic Barrier and Groundwater Extraction and Treatment	New Liners in WAP, EAP and NSP. Vertical, low permeability hydraulic barrier along downgradient edge of ponds to provide hydraulic control of CCR constituent groundwater plumes. Groundwater extraction and treatment required upgradient of barrier to control groundwater elevations. Groundwater monitoring to verify system effectiveness.	New Liners in WAP, EAP and NSP isolate CCR material in pond and mitigate on-going source of CCR constituents to groundwater. Migration of CCR constituents in groundwater controlled at pond boundaries by vertical barrier. Groundwater elevations upgradient of barrier controlled by groundwater extraction.	Liner construction is a common and effective source control technology. Vertical hydraulic barrier must be keyed into lower impermeable layer. Groundwater extraction and treatment is a common and effective hydraulic control technology. Treatment system operational reliability is key component of overall reliability.	Readily implementable with common construction techniques. Bench/pilot testing of treatment system required. Regulatory authorization for treated water discharge could be difficult to obtain.	Source controlled through pond liner systems. Control of CCR constituent migration downgradient of pond by vertical barrier. Vertical barrier does not address groundwater beneath pond.	Retrofit Implementation: 1-2 years per pond. Barrier and GW Ext/Treat Implementation: 5-8 years. Groundwater modelling required to assess remediation timeframe.	Regulatory authorization for treated water discharge required. Treatment system residuals (sludge, regenerate brine, etc.) require management.

September 2019 19121403

FIGURES

Last Edited By: adiamond Date: 2019-08-28 Time:12:09:40-09-28 Time:12:09:09-08-28 Time:12:09-08-28 antml:image>data:image/s3,anthropic-data-us-east-2/u/marker_images/sfishman-markermapper-1121073115/fc64aa44343fcd271868f60b19ca0dcf.jpeg

DOWNGRADIENT CCR MONITORING WELL

UPGRADIENT CCR MONITORING WELL

LAKE WATER/GROUNDWATER MIXING ZONE SAMPLE

MNA SOIL SAMPLE

CROSS SECTION LOCATION

CLIENT LUMINANT

PROJECT

MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

CONSULTANT

DETAILED SITE PLAN - ASH POND AREA

GOLDER

YYYY-MM-DD	2019-08-28
DESIGNED	AJD
PREPARED	AJD
REVIEWED	WFV
APPROVED	WFV

PROJECT NO. REV. FIGURE 19121403 0

REFERENCE(S)

BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 4/6/17.

**▼**— Water Level (Ft MSL) Measured 5/14/19

10x Vertical Exaggeration

CLIENT LUMINANT

PROJECT
MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

ASH POND AREA - GEOLOGIC CROSS SECTION A-A'
WEST SIDE OF WEST ASH POND
THROUGH PROCESS WATER POND

	YYYY-MM-DD	2019-08-28
2	DESIGNED	AJD
	PREPARED	AJD
	REVIEWED	WFV
	APPROVED	WFV

PROJECT NO. 19121403 FIGURE 3 REV.

10x Vertical Exaggeration

CLIENT LUMINANT

PROJECT
MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

ASH POND AREA - GEOLOGIC CROSS SECTION B-B' EAST SIDE OF ASH POND THROUGH SCRUBBER POND

CONSULTANT YYYY-MM-DD 2019-08-28 DESIGNED PREPARED REVIEWED APPROVED WFV PROJECT NO. 19121403

FIGURE

**▼**- Water Level (Ft MSL)
Measured 5/14/19

10x Vertical Exaggeration

CLIENT LUMINANT

CONSULTANT

PROJECT
MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

ASH POND AREA - GEOLOGIC CROSS SECTION C-C' THROUGH WEST ASH POND AND EAST ASH POND

GOLDER

YYYY-MM-DD	2019-08-28
DESIGNED	AJD
PREPARED	AJD
REVIEWED	WFV
APPROVED	WFV

PROJECT NO. 19121403 FIGURE 5 REV.

DOWNGRADIENT CCR MONITORING WELL

UPGRADIENT CCR MONITORING WELL

(308.70)

GROUNDWATER POTENTIOMETRIC SURFACE (FT MSL)

- 308 -

GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR (C.I. = 1 FT)

CLIENT LUMINANT

PROJECT

MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

TITLE

ASH POND AREA POTENTIOMETRIC SURFACE MAP MAY 14, 2019

CONSULTANT

YYYY-MM-DD	2019-06-24
DESIGNED	AJD
PREPARED	AJD
REVIEWED	WFV
APPROVED	WFV

PROJECT NO. REV. FIGURE 19122449 6 0

REFERENCE(S)

BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 4/6/17.

DOWNGRADIENT CCR MONITORING WELL

UPGRADIENT CCR MONITORING WELL

LAKE WATER/GROUNDWATER MIXING ZONE SAMPLE

MNA SOIL SAMPLE

SSLs FOR ONE OR MORE APPENDIX IV CONSTITUENTS IN DOWNGRADIENT WELLS BASED ON INITIAL STATISTICAL EVALUATION SSLs FOR ONE OR MORE APPENDIX IV CONSTITUENTS IN DOWNGRADIENT WELLS BASED ON UPDATED STATISTICAL EVALUATION CLIENT LUMINANT

PROJECT

MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

TITLE

ASH POND AREA EXTENT OF APPENDIX IV CONSTITUENTS DETECTED AT SSLs ABOVE GWPSs

CONSULTANT

YYYY-MM-DD	2019-08-29
DESIGNED	AJD
PREPARED	AJD
REVIEWED	WFV
APPROVED	WFV

REFERENCE(S) BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 4/6/17. PROJECT NO. REV. **FIGURE** 19121403 0

% meq/kg

CLIENT
LUMINANT
MARTIN LAKE SES
ASH POND AREA
CONSULTANT

S GOLDER

PROJECT
ASSESSMENT OF CORRECTIVE MEASURES
GEOCHEMICAL ASSESSMENT

TITLE
MAJOR GROUNDWATER CEHMISTRY (A)
AND SELECT RELATIVE ION ABUNDANCE (B)
IN GROUNDWATER AT MONITORING WELLS

PROJECT NO. PHASE REV.
19122434 01 A

FIGURE 8a-b

PROJECT NO. 19122434

PHASE 01 FIGURE 9a-c

APPENDIX A

BORING LOGS

Mai	rtin Lake Stea		Station	Completion Date:		Drilling Method:	Sonic 6.5		
	Tatur	n, TX		Drilling Company:Walker-Hill EnvironmentalBorehole Diameter (in.):6.5Driller:Timmy BeachTotal Depth (ft):50					
					5814M	TOC Elevation (ft. AMSL):			
	PBW Project	No. 5164	В		Ryan Francis	Northing:	1042229019.68		
				Sampling Method:	4"x10' Core barrel	Easting:	2907068.36		
Depth (ft)	Well Materials	Recovery (ft/ft)	USCS	Lithologic Description					
0 - -				(0 - 3) Silty CLAY, d	ark brown, dry, soft to firm,	weak cementation, low pla	asticity		
4 -		10.0/10.0	43		, red/orange with gray clay m plasticity, minor rounded	ribbons, dry, soft to firm, w pebbles	eak		
8 -			SM	(7 - 11) Silty SAND,	gray, dry, soft, weak ceme	ntation, subrounded, sharp	contact		
12 -					./				
16		10.0/10.0							
20 -			sc	(11 - 30) Clayey silty cementation, mediu	y SAND, tan with red and g m plasticity	ray ribbons, moist to wet, s	soft, weak		
24 -		10.0/10.0			•				
28 –				V ·					
32 -				(00, 40) 04415					
36		10.0/10.0	SP	to soft, low to mediu	and orange, tine grained, m plasticity	higher clay content (31'-34'), wet, very soπ		
40			SW	(40 - 44) SAND, red concretions ("rocky"		e cementation, heavy iron o	content, iron		
40 -] ::: :::	1	·						
40 – 44 –		10.0/10.0	S.D.	(44 - 50) SAND, red	and gray, wet, soft, fine or	ained, subrounded, gradua	ıl color change		

PBW

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

Notes

1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-35) Casing, 2" Sch 40 FJT PVC (35-40) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-31') Grout (31'-33') Bentonite pellets (33'-40') 20/40 sand

Luminant Log of Boring: H-27 Completion Date: 9/15/2015 **Drilling Method:** Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): 6.5 Tatum, TX Driller: 50 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): 330.423 1038229615.42 PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel 2906850.991 Easting: Recovery (ft/ft) Depth Well Lithologic Description **USCS** (ft) Materials 0 10.0/10.0 (0 - 20) CLAY, orange and brown mottling, minor black streaking, blocky, moist, soft to hard, low to high plasticity, dry and variable sand content (5'-7'), wet at 20' 12 10.0/10.0 16 20 SP (20 - 21) SAND, gray, moist, soft, subrounded, sharp contact (21 - 28) CLAY, gray and orange, blocky, moist, firm to hard, moderate cementation, low 24 10.0/10.0 plasticity 28 32 (28 - 40) SAND, light gray to tan/orange, moist to wet, soft, none to low plasticity, minor SP clay content decreasing with depth 10.0/10.0 36 40 (40 - 44) Sandy CLAY, orange and gray, moist, firm, low to medium plasticity, sharp contact, very hard and little to no sand at 43' 10.0/10.0 (44 - 50) Clayey SAND, orange and gray, wet, soft, low plasticity, fine grained, SC decreasing clay content with depth, sharp contact, color change to brown at 48' 48 52

PBW

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-45) Casing, 2" Sch 40 FJT PVC (45-50) Screen, 2" Sch 40 FJT PVC, 0.010" slot **Annular Materials** (0'-41') Grout (41'-43') Bentonite pellets (43'-50') 20/40 sand

Luminant Log of Boring: H-28 Completion Date: 9/15/2015 **Drilling Method:** Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): 6.5 Tatum, TX Driller: 40 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): 316.821 1030230033.689 PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel 2907668.815 Easting: Recovery (ft/ft) Depth Well Lithologic Description **USCS** (ft) Materials 0 2 (0 - 6) Soil with SAND, tan, dry, firm, moderate cementation, hard packed, abundant organics 10.0/10.0 8 10 12 (6 - 21) Clayey SAND, moist, soft to firm, weak cementation, none to low plasticity, 6" gray fine to very fine sand lense at 10', gray and orange mottling (11'-21'), fine grained 14 10.0/10.0 SC 16 18 20 22 24 (21 - 30) Clayey SAND, tan and orange, wet, soft to firm, low plasticity, none to weak 10.0/10.0 cementation, variation in clay content with depth, highest clay content at 21', more orange 26 and less clay (29'-30') 28 30 (30 - 33) SAND, orange and gray, fine grained, wet, soft, low plasticity, minor clay SP. content, color change from tan to brown to dark gray 32 34 10.0/10.0 36 (33 - 40) Silty CLAY, dark gray, moderate sand, dry, hard, weak cementation 38 40 1. This log should not be used separately from the report to which it is attached.

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

Well Materials

(0-27) Casing, 2" Sch 40 FJT PVC (27-32) Screen, 2" Sch 40 FJT PVC, 0.010" slot **Annular Materials** (0'-23') Grout (23'-25') Bentonite pellets (25'-32') 20/40 sand

Luminant Log of Boring: H-29 Completion Date: 9/23/2015 **Drilling Method:** Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): 6.5 Tatum, TX Driller: 60 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): 329.255 1026229427.784 PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel 2907899.511 Easting: Recovery (ft/ft) Depth Well Lithologic Description **USCS** (ft) Materials 0 **FILL** (0 - 2) Hard rock road bed, dry 10.0/10.0 (2 - 18) Clayey SAND, orange and gray mottling, very fine grained, dry to moist, firm, SC weak cementation, low to medium plasticity, increasing clay content with depth 12 10.0/10.0 16 20 (18 - 30) CLAY, orange, moist, firm, low to medium plasticity, very little sand or silt, black 24 CL striping at 22', increasing sand content with depth (28'-30') 10.0/10.0 28 32 СН (30 - 36) CLAY, orange, moist, soft, friable, high plasticity, minor silt 10.0/10.0 36 (36 - 45) Sandy CLAY/Clayey SAND, orange/gray/red mottling, friable, wet, soft to firm, 40 CL/SC low to medium plasticity, increasing clay content with depth 10.0/10.0 (45 - 48) CLAY with sand, orange and gray mottling, wet, soft, high plasticity 48 (48 - 57) SAND, gray, wet, soft, no to low plasticity, some black roots/ organics, 52 SP interspersed clay lenses 10.0/10.0 56 (57 - 60) Silty CLAY, gray/brown, dry, hard, weak cementation, sharp contact 60

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-52) Casing, 2" Sch 40 FJT PVC (52-57) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-48') Grout (48'-50') Bentonite pellets (50'-57') 20/40 sand

Luminant Log of Boring: H-31 Completion Date: 9/24/2015 **Drilling Method:** Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): 6.5 Tatum, TX Driller: 60 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): 329.258 1035229262.289 PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel 2908596.681 Easting: Recovery (ft/ft) Depth Well Lithologic Description **USCS** (ft) Materials XXIKEX (0 - 1) Hard, packed gravel road bed, dry 0 10.0/10.0 (1 - 12) Clayey SAND, orange, dry to moist, soft to firm, low plasticity, fine grained, SC. increasing clay content with depth, gray clay ribbons at 10' 12 5.0/10.0 (12 - 20) SAND, orange with red and gray mottling, dry to moist, soft, none to low SP 16 plasticity, weak cementation, fine grained, very little clay 20 24 (20 - 30) Sandy CLAY, orange, dry to moist, firm, crumbly, color variation with depth, low 10.0/10.0 plasticity, some gray sand lenses, very fine grained, color change to gray at 29' 28 32 (30 - 41) Sandy CLAY/ Clayey SAND, gray and tan, moist, soft, fine grained, low 10.0/10.0 CL/SC plasticity, variations in clay content and firmness with depth, moisture content changes to 36 wet at 35' 40 44 10.0/10.0 48 (41 - 57) SAND, orange/tan, wet, very soft, fine grained, subrounded, increasing red SP color with depth starting at 52', hard iron concretion layer with some black staining at 55' 52 10.0/10.0 56 (57 - 60) Sandy CLAY, gray, dry to moist, hard, fine grained, weak cementation, low plasticity 60

PBW

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

Notes

1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-42) Casing, 2" Sch 40 FJT PVC (42-52) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-38') Grout (38'-40') Bentonite pellets (40'-52') 20/40 sand

Luminant Log of Boring: H-32 Completion Date: 9/24/2015 **Drilling Method:** Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): 6.5 Tatum, TX Driller: 60 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): 329.854 1034228728.295 PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel 2908232.588 Easting: Recovery (ft/ft) Depth Well Lithologic Description **USCS** (ft) Materials XXIXXX (0 - 1) Hard, packed gravel road bed, dry 0 10.0/10.0 (1 - 10) Sandy CLAY/Clayey SAND, orange/tan, dry, firm, fine grained, low plasticity, SC/CL weak cementation 12 (10 - 21) CLAY with minor silt/sand, orange with some black streaks, moist, firm, high 10.0/10.0 16 plasticity, gradual contact 20 SP (21 - 23.5) SAND, gray, dry, soft to firm, friable, fine grained 24 10.0/10.0 28 (23.5 - 38) CLAY, orange/tan/gray, moist, soft to firm, high plasticity, minor sand at 30', СН tan and gray with orange stripes (30'-38'), sharp contact 32 10.0/10.0 36 40 44 10.0/10.0 (38 - 57) SAND, orange/tan, moist to wet, very soft to soft, fine grained, subrounded, minor clay, low plasticity, no clay content at 42', gradual coarsening of sand grains SÞ. 48 (48'-55'), some gray streakings at 49', color change to reddish brown at 52' 52 10.0/10.0 56 (57 - 60) Sandy CLAY, dark red and brown, wet, soft, low plasticity, layer of dark red concretions at 57', weak cementation 60

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-42) Casing, 2" Sch 40 FJT PVC (42-52) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-38') Grout (38'-40') Bentonite pellets (40'-52') 20/40 sand

Luminant Log of Boring: H-33 Completion Date: 9/14/2015 **Drilling Method:** Sonic Martin Lake Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): 6.5 Tatum, TX Driller: 60 Timmy Beach Total Depth (ft): Driller's License: 5814M TOC Elevation (ft. AMSL): 323.845 1041228608.597 PBW Project No. 5164B Logged By: Ryan Francis Northing: Sampling Method: 4"x10' Core barrel 2907267.556 Easting: Recovery (ft/ft) Depth Well Lithologic Description **USCS** (ft) Materials 0 (0 - 4) Silty CLAY, minor sand, red and orange with gray ribbons, dry, soft to firm, low to medium plasticity 10.0/10.0 (4 - 12) CLAY, red with gray concretions, moist, soft to firm, high plasticity, gradual contact 12 10.0/10.0 16 (12 - 24) Sandy SILT, gray and red, dry, soft, weak cementation, sharp contact, red and gray clay lens at 19' 20 24 10.0/10.0 (24 - 28) CLAY, red, moist to wet, soft to firm, high plasticity, pebbles present 28 (28 - 34) SAND, gray, wet, soft to firm, minor clay, low to medium plasticity, subrounded, increasing clay content with depth, sharp contact 32 10.0/10.0 36 (34 - 39) CLAY, orange and gray mottling, dry, very hard, moderate cementation, low plasticity 40 (39 - 46) Sandy CLAY, orange and gray, moist to wet, firm, medium plasticity, weak cementation, increasing sand content with depth 44 10.0/10.0 48 52 (46 - 60) Sandy SILT, dark gray, dry, hard 10.0/10.0 56 60

PBW

Pastor, Behling & Wheeler, LLC 2201 Double Creek Dr., Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

Notes

1. This log should not be used separately from the report to which it is attached.

Well Materials

(0-41) Casing, 2" Sch 40 FJT PVC (41-46) Screen, 2" Sch 40 FJT PVC, 0.010" slot Annular Materials (0'-37') Grout (37'-39') Bentonite pellets (39'-46') 20/40 sand

Luminant Log of Boring: AP-2019-1 Completion Date: 6/3/2019 Drilling Method: Sonic Big Brown Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): Franklin, TX Driller: 40 Rodney Labrosse Total Depth (ft): Driller's License: 60059 TOC Elevation (ft. AMSL): Northing: 3570888 Golder Project No. 19122434E Logged By: Kelsey Worley Sampling Method: 4"x10' Core barrel Easting: 352661.3 Recovery (ft/ft) Depth Lithologic Description USCS (ft) 0 (0 - 1) Silty CLAY, brown, roots present, low plasticity, slightly moist CF. (1 - 8) Silty CLAY, brown to orange, moist, moderate plasticity, soft to hard 10.0/10.0 (8 - 12.5) Clayey SAND, orange and brown, moist, soft, clay content increases with depth, moderate 10 SC plasticity 15 10.0/10.0 CH (12.5 - 22) CLAY, gray to light brown, blocky, moist, firm to stiff, low plasticity 20 10.0/10.0 (22 - 34) SAND, light brown to gray and orange, moist, very fine to fine grained, subrounded, soft to SW firm, iron staining 22'-23.5', color change to light gray and light brown at 24', saturated at 30' 30 10.0/10.0 35 (34 - 40) Clayey SAND, gray and tan, becomes gray to dark gray at 35.5', stiff, moist, variations in clay SC content and firmness with depth 40 This log should not be used separately from the report to which it is attached.

2201 Double Creek Dr., Suite 4004 Round Rock, Texas 78664 O·512.671.3434 F·512.671.3446

Luminant Log of Boring: AP-2019-2 Completion Date: 6/3/2019 Drilling Method: Sonic Big Brown Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): Franklin, TX Driller: 40 Rodney Labrosse Total Depth (ft): Driller's License: 60059 TOC Elevation (ft. AMSL): Northing: 3570800 Golder Project No. 19122434E Logged By: Kelsey Worley Sampling Method: 4"x10' Core barrel 352739.4 Easting: Recovery (ft/ft) Depth Lithologic Description USCS (ft) 0 (0 - 6) Silty CLAY, brown to gray, soft to firm, damp, low plasticity 10.0/10.0 (6 - 11) Sandy CLAY, red and orange with gray, clay ribbons, damp, soft to firm, weak cementation, moderate plasticity 10 15 10.0/10.0 (11 - 20) Clayey Silty SAND, tan with red and gray, clay ribbons, moist, firm, weak cementation, SC moderate plasticity 20 SW (20 - 22) SAND, light brown, moist to wet, fine grained, subrounded, soft 25 10.0/10.0 (22 - 34) Clayey SAND, gray and tan, becomes gray to dark, gray at 26', stiff, moist, brown clay ribbons SC from 27'-29.5' 30 35 10.0/10.0 (34 - 40) SAND, gray, very fine to fine grained, wet, subrounded, soft to firm, saturated 35'-38', black SW organics at 38.8'-40.0' 40 This log should not be used separately from the report to which it is attached.

GOLDER
2201 Double Creek Dr., Suite 4004
Round Rock, Texas 78664
O·512.671.3434 F·512.671.3446

Luminant Log of Boring: AP-2019-3 Completion Date: 6/3/2019 **Drilling Method:** Sonic Big Brown Steam Electric Station **Drilling Company:** Walker-Hill Environmental Borehole Diameter (in.): 6 Franklin, TX Driller: 30 Rodney Labrosse Total Depth (ft): Driller's License: 60059 TOC Elevation (ft. AMSL): Northing: 352739.4 Golder Project No. 19122434E Logged By: Kelsey Worley Sampling Method: 4"x10' Core barrel 3570800 Easting: Recovery (ft/ft) Depth Lithologic Description USCS (ft) 0 SM (0 - 6) Silty SAND, light brown, firm, moderate cementation, roots present 0'-1.5' 10.0/10.0 (6 - 11) Clayey SAND, orange to brown, moist, soft to firm, no plasticity, weak cementation, gray sand lense, fine grained, at 11', fine to very fine grained 10 SC (11 - 18) Clayey SAND, wet, gray and tan to orange, soft to firm, sand content increases with depth 10.0/10.0 20 SP (18 - 25) SAND, orange and gray, saturated, fine grained, soft, no cementation 10.0/10.0 (25 - 30) Silty CLAY, dark gray, dry, hard, moderate sand content, weak cementation

30

Notes

1. This log should not be used separately from the report to which it is attached.

APPENDIX B

LABORATORY ANALYTICAL REPORTS

June 14, 2019

Will Vienne

Golder

2201 Double Creek Dr #4004

Round Rock, Texas 78664

TEL: (512) 671-3434

FAX (512) 671-3446 Order No.: 1905168

RE: Luminant-MLSES Ash Ponds

Dear Will Vienne:

DHL Analytical, Inc. received 7 sample(s) on 5/15/2019 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-19-24

Table of Contents

Miscellaneous Documents	3
CaseNarrative 1905168	8
WorkOrderSampleSummary 1905168	10
PrepDatesReport 1905168	11
AnalyticalDatesReport 1905168	14
Analytical Report 1905168	
AnalyticalQCSummaryReport 1905168	32
Subcontract Report 1905168	57

2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 FAX (512) 388-8229

Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com

№ 86479

CHAIN-OF-CUSTODY DATE: 5-14-19 PAGE OF CLIENT: GOLDER ADDRESS: 201 DOUBLE CREEK DE, ROWD ROCK, 12 78664

PHONE: 512-61-3434 FAX/E-MAIL: 512-61-3446

DATA REPORTED TO: WILL VIENNE DHL WORK ORDER #: 19 05168 PO #: PROJECT LOCATION OR NAME: LUMINANT- MLSES ASH PONDS CLENT PROJECT #: 19122262-C COLLECTOR: J. BRAYEN ADDITIONAL REPORT COPIES TO: Authorize 5% P=PAINT S=SOIL **PRESERVATION** surcharge for W=WATER SL=SLUDGE TRRP Report? A=AIR O=OTHER NaOH 🗅 L=LIOUID SO=SOLID ☐ Yes □ No SE=SEDIMENT # of Containers UNPRESERVED □ H₂SO₄[HNO Field DHI Container 모 **FIELD NOTES** Sample I.D. Lab# Date Time | Matrix Type 6740 W 5-14-19 02 0825 W 0940 W 03 04 W 05 OC W 07 1530 W RECEIVED BY: (Signature) RECEIVING TEMP: 45 13. THERM #: 78 **TURN AROUND TIME** Fel &
RECEIVED BY: (Signature) RUSH CALL FIRST 1 DAY CALL FIRST CUSTODY SEALS: ☐ BROKEN ☐ INTACT ☑ NOT USED 2 DAY 🗆 CARRIER: □ LONE STAR ☐ FEDEX □ UPS □ OTHER RECEIVED BY: (Signature) NORMAL 📞 □ COURIER DELIVERY **DHL COC Rev 1 | FEB 2010** OTHER ☐ HAND DELIVERED ☐ DHL DISPOSAL @ \$5.00 each □ Return

Eric Lau

From: John DuPont

Sent: Tuesday, May 28, 2019 11:35 AM

To: Eric Lau

Subject: FW: CCR Analysis

Appendix III Parameters:

Metals (Ca and B)

Anions (Cl, F, and SO4)

TDS

Appendix IV Parameters:

Metals (As, Ba, Be, Cd, Co, Cr, Hg, Li, Mo, Pb, Sb, Se, and Tl)

Ra-226 Ra-228

From: Vienne, Will [mailto:William_Vienne@golder.com]

Sent: Tuesday, April 09, 2019 12:48 PM

To: John DuPont <dupont@dhlanalytical.com>

Subject: CCR Analysis

ORIGIN ID:GGGA (512)
J. BRAYTON
GOLDER
2201 DOUBLE CREEK DR

BILL THIRD PARTY

ROUND ROCK TX 78664

FedEx Express

4 of 4 MP8# 7872 5506 5879 Metr# 7872 5506 5846 ~ [0201]

78664 TX-US AUS

ORIGIN ID:GGGA (512) 671-3434 J. BRAYTON GOLDER 2201 DOUBLE CREEK DR ROUND ROCK, TX 78664 UNITED STATES US

BILL THIRD PARTY

DHL 2300 DOUBLE CREEK DR

ROUND ROCK TX 78664

2.of 4 MPS# 7872 5506 5857 Metr# 7872 5506 5846 WED - 15 MAY 10:30A PRIORITY OVERNIGHT

0201],

78664 TX-UB AUS

Sample Receipt Checklist

Client Name Golder			Date Rece	ivea.	5/15/20	719	
Work Order Number 1905168			Received b	y EL			
Checklist completed by:	5/15/201 Date	19	Reviewed b	by ①)	5/15/2019 Date	
	Carrier name	FedEx 1day					
Shipping container/cooler in good conditi	on?	Yes 🗸	No 📖	Not Pre	esent 🗌		
Custody seals intact on shippping contain	ner/cooler?	Yes 🗌	No 🗔	Not Pre	esent 🗹		
Custody seals intact on sample bottles?		Yes _	No	Not Pre	esent 🗹		
Chain of custody present?		Yes 🗹	No 🛄				
Chain of custody signed when relinquish	ed and received?	Yes 🗹	No 🗀				
Chain of custody agrees with sample lab	els?	Yes 🗹	No 🗔				
Samples in proper container/bottle?		Yes 🔽	No 🗔				
Sample containers intact?		Yes 🗹	No 🔛				
Sufficient sample volume for indicated te	st?	Yes 🗹	No 🔛				
All samples received within holding time	?	Yes 🗹	No [_]				
Container/Temp Blank temperature in co	ompliance?	Yes 🗹	No 🗌	4.5 °C			
Water - VOA vials have zero headspace	?	Yes 🗹	No 🛄	No VOA	vials submit	ted 🗔	
Water - pH<2 acceptable upon receipt?		Yes 🗹	No 🗒	NA	LOT#	11837	
		Adjusted?	no	Çhed	cked by Σ	<u>ر</u>	
Water - ph>9 (S) or ph>10 (CN) accepta	ble upon receipt?	Yes []	No	NA 🗹	LOT#		
		Adjusted?	ga gamaggaran na nasar n	Che	cked by		
Any No response must be detailed in the	comments section below.	····					
Client contacted	Date contacted:		Pe	erson conta	acted		
Contacted by:	Regarding:						
Comments:							
and the second s						.,	
A MARINE THE PROPERTY OF THE P	and the second s						
Corrective Action		<u></u>					
			-, · · · · · · ·				

Page 1 of 1

CLIENT: Golder

Project: Luminant-MLSES Ash Ponds CASE NARRATIVE

Date: 14-Jun-19

Lab Order: 1905168

Samples were analyzed using the methods outlined in the following references:

Method SW6020A - Metals Analysis

Method SW7470A - Mercury Analysis

Method E300 - Anions Analysis

Method M2320 B - Alkalinity Analysis

Method M3500-Fe D - Ferrous Iron Analysis (this parameter is not NELAP certified)

Method M3500-Fe D - Ferric Iron (calculation) (this calculation is not NELAP certified).

Method M4500-P E - Orthophosphate Analysis

Method M2540C - TDS Analysis

Sub-contract - Radium-228 and Radium-226 analyses by methods E904 and SM 7500 Ra B M. Analyzed at Pace Analytical.

LOG IN

The samples were received and log-in performed on 5/15/19. A total of 7 samples were received. The samples arrived in good condition and were properly packaged.

METALS ANALYSIS

For Metals analysis performed on 5/20/19 and 5/21/19 the matrix spike and matrix spike duplicate recoveries were out of control limits for a total of four analytes. These are flagged accordingly in the QC summary report. The sample selected for the matrix spike and matrix spike duplicate was not from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis performed on 5/20/19 LCVL6-190520 was slightly above control limits for Sodium. This is flagged accordingly. The associated CCV6-190520 was within control limits for this analyte. No further corrective actions were taken.

ANIONS ANALYSIS

For Anions analysis performed on 5/15/19 (batch 90908) the matrix spike and matrix spike duplicate recoveries (1905167-02 MS/MSD) were out of control limits for Chloride and Sulfate. This was due to matrix effect. These are flagged accordingly in the QC summary report. The sample selected for the matrix spike and matrix spike duplicate was not from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

FERRIC IRON (CALCULATION)

CLIENT: Golder

Project: Luminant-MLSES Ash Ponds CASE NARRATIVE

Lab Order: 1905168

For Ferric Iron calculation the Ferrous Iron result was slightly higher than the total Iron result for sample H-31. This is within the acceptable variation limits. No further corrective actions were taken.

Date: 14-Jun-19

CLIENT: Golder

Project: Luminant-MLSES Ash Ponds Work Order Sample Summary

Lab Order: 1905168

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
1905168-01	H-31		05/14/19 07:40 AM	5/15/2019
1905168-02	H-32		05/14/19 08:25 AM	5/15/2019
1905168-03	H-27		05/14/19 09:40 AM	5/15/2019
1905168-04	H-29		05/14/19 11:25 AM	5/15/2019
1905168-05	H-28		05/14/19 12:30 PM	5/15/2019
1905168-06	H-26		05/14/19 02:25 PM	5/15/2019
1905168-07	H-33		05/14/19 03:30 PM	5/15/2019

Lab Order: 1905168 **Client:** Golder

Project: Luminant-MLSES Ash Ponds

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1905168-01A	H-31	05/14/19 07:40 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
	H-31	05/14/19 07:40 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
1905168-01B	H-31	05/14/19 07:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-31	05/14/19 07:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-31	05/14/19 07:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-31	05/14/19 07:40 AM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
	H-31	05/14/19 07:40 AM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
1905168-01C	H-31	05/14/19 07:40 AM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-31	05/14/19 07:40 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-31	05/14/19 07:40 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-31	05/14/19 07:40 AM	Aqueous	E300	Anion Preparation	05/16/19 09:16 AM	90935
	H-31	05/14/19 07:40 AM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-31	05/14/19 07:40 AM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
1905168-02A	H-32	05/14/19 08:25 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
	H-32	05/14/19 08:25 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
1905168-02B	H-32	05/14/19 08:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-32	05/14/19 08:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-32	05/14/19 08:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-32	05/14/19 08:25 AM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
1905168-02C	H-32	05/14/19 08:25 AM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-32	05/14/19 08:25 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-32	05/14/19 08:25 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-32	05/14/19 08:25 AM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-32	05/14/19 08:25 AM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
1905168-03A	H-27	05/14/19 09:40 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
1905168-03B	H-27	05/14/19 09:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-27	05/14/19 09:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-27	05/14/19 09:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959

Page 1 of 3

Lab Order: 1905168 **Client:** Golder

Project: Luminant-MLSES Ash Ponds

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
905168-03B	H-27	05/14/19 09:40 AM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
905168-03C	H-27	05/14/19 09:40 AM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-27	05/14/19 09:40 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-27	05/14/19 09:40 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-27	05/14/19 09:40 AM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-27	05/14/19 09:40 AM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
905168-04A	H-29	05/14/19 11:25 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
905168-04B	H-29	05/14/19 11:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-29	05/14/19 11:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-29	05/14/19 11:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-29	05/14/19 11:25 AM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
905168-04C	H-29	05/14/19 11:25 AM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-29	05/14/19 11:25 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-29	05/14/19 11:25 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-29	05/14/19 11:25 AM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-29	05/14/19 11:25 AM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
905168-05A	H-28	05/14/19 12:30 PM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
905168-05B	H-28	05/14/19 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-28	05/14/19 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-28	05/14/19 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-28	05/14/19 12:30 PM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
905168-05C	H-28	05/14/19 12:30 PM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-28	05/14/19 12:30 PM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-28	05/14/19 12:30 PM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-28	05/14/19 12:30 PM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-28	05/14/19 12:30 PM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
905168-06A	H-26	05/14/19 02:25 PM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
905168-06B	H-26	05/14/19 02:25 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959

Page 2 of 3

Lab Order: 1905168 **Client:** Golder

Project: Luminant-MLSES Ash Ponds

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
905168-06B	H-26	05/14/19 02:25 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-26	05/14/19 02:25 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-26	05/14/19 02:25 PM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
905168-06C	H-26	05/14/19 02:25 PM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-26	05/14/19 02:25 PM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-26	05/14/19 02:25 PM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-26	05/14/19 02:25 PM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-26	05/14/19 02:25 PM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
905168-07A	H-33	05/14/19 03:30 PM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
905168-07B	H-33	05/14/19 03:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-33	05/14/19 03:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-33	05/14/19 03:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/17/19 08:40 AM	90959
	H-33	05/14/19 03:30 PM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
905168-07C	H-33	05/14/19 03:30 PM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	H-33	05/14/19 03:30 PM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-33	05/14/19 03:30 PM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	H-33	05/14/19 03:30 PM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	H-33	05/14/19 03:30 PM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953

Lab Order: 1905168 Client: Golder

Project: Luminant-MLSES Ash Ponds

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1905168-01A	H-31	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A
	H-31	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:55 PM	UV/VIS_2_190520A
	H-31	Aqueous	M3500-Fe D	Ferrous Iron	91002	100	05/20/19 04:11 PM	UV/VIS_2_190520A
1905168-01B	H-31	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:16 AM	CETAC2_HG_190522 A
	H-31	Aqueous	SW7470A	Mercury Total: Aqueous	91017	5	05/22/19 11:21 AM	CETAC2_HG_190522 A
	H-31	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:43 PM	ICP-MS4_190520B
	H-31	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	50	05/21/19 12:54 PM	ICP-MS5_190521A
	H-31	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:51 PM	ICP-MS5_190521A
905168-01C	H-31	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:13 PM	TITRATOR_190516A
	H-31	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 02:27 PM	IC2_190515A
	H-31	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 05:55 PM	IC2_190515A
	H-31	Aqueous	E300	Anions by IC method - Water	90935	100	05/16/19 05:42 PM	IC4_190516A
	H-31	Aqueous	M4500-P E	Orthophosphate	90921	1	05/15/19 02:47 PM	UV/VIS_2_190515B
	H-31	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D
905168-02A	H-32	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A
	H-32	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:55 PM	UV/VIS_2_190520A
	H-32	Aqueous	M3500-Fe D	Ferrous Iron	91002	5	05/20/19 04:11 PM	UV/VIS_2_190520A
1905168-02B	H-32	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:27 AM	CETAC2_HG_190522 A
	H-32	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:53 PM	ICP-MS5_190521A
	H-32	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	10	05/21/19 12:56 PM	ICP-MS5_190521A
	H-32	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:45 PM	ICP-MS4_190520B
905168-02C	H-32	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:15 PM	TITRATOR_190516A
	H-32	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 02:43 PM	IC2_190515A
	H-32	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 06:11 PM	IC2_190515A
	H-32	Aqueous	M4500-P E	Orthophosphate	90921	1	05/15/19 12:49 PM	UV/VIS_2_190515B
	H-32	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D

Lab Order: 1905168 Client: Golder

Project: Luminant-MLSES Ash Ponds

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1905168-03A	H-27	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A
	H-27	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:56 PM	UV/VIS_2_190520A
1905168-03B	H-27	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:29 AM	CETAC2_HG_190522 A
	H-27	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:47 PM	ICP-MS4_190520B
	H-27	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	10	05/21/19 12:59 PM	ICP-MS5_190521A
	H-27	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:14 PM	ICP-MS5_190521A
1905168-03C	H-27	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:20 PM	TITRATOR_190516A
	H-27	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 02:59 PM	IC2_190515A
	H-27	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 06:27 PM	IC2_190515A
	H-27	Aqueous	M4500-P E	Orthophosphate	90921	1	05/15/19 12:49 PM	UV/VIS_2_190515B
	H-27	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D
1905168-04A	H-29	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A
	H-29	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:56 PM	UV/VIS_2_190520A
1905168-04B	H-29	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:31 AM	CETAC2_HG_190522 A
	H-29	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:49 PM	ICP-MS4_190520B
	H-29	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:55 PM	ICP-MS5_190521A
	H-29	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	20	05/21/19 01:01 PM	ICP-MS5_190521A
1905168-04C	H-29	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:23 PM	TITRATOR_190516A
	H-29	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 03:15 PM	IC2_190515A
	H-29	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 06:43 PM	IC2_190515A
	H-29	Aqueous	M4500-P E	Orthophosphate	90921	1	05/15/19 12:49 PM	UV/VIS_2_190515B
	H-29	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D
1905168-05A	H-28	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A
	H-28	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:57 PM	UV/VIS_2_190520A
1905168-05B	H-28	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:34 AM	CETAC2_HG_190522 A
	H-28	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	20	05/21/19 01:03 PM	ICP-MS5_190521A

Lab Order: 1905168 Client: Golder

Project: Luminant-MLSES Ash Ponds

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1905168-05B	H-28	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:57 PM	ICP-MS5_190521A
	H-28	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:51 PM	ICP-MS4_190520B
1905168-05C	H-28	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:27 PM	TITRATOR_190516A
	H-28	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 03:31 PM	IC2_190515A
	H-28	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 06:59 PM	IC2_190515A
	H-28	Aqueous	M4500-P E	Orthophosphate	90921	1	05/15/19 12:50 PM	UV/VIS_2_190515B
	H-28	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D
1905168-06A	H-26	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A
	H-26	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:57 PM	UV/VIS_2_190520A
1905168-06B	H-26	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:36 AM	CETAC2_HG_190522 A
	H-26	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:53 PM	ICP-MS4_190520B
	H-26	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	10	05/21/19 01:05 PM	ICP-MS5_190521A
	H-26	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:16 PM	ICP-MS5_190521A
1905168-06C	H-26	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:42 PM	TITRATOR_190516A
	H-26	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 03:47 PM	IC2_190515A
	H-26	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 07:15 PM	IC2_190515A
	H-26	Aqueous	M4500-P E	Orthophosphate	90921	1	05/15/19 12:50 PM	UV/VIS_2_190515B
	H-26	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D
1905168-07A	H-33	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A
	H-33	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:58 PM	UV/VIS_2_190520A
1905168-07B	H-33	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:38 AM	CETAC2_HG_190522 A
	H-33	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/20/19 03:54 PM	ICP-MS4_190520B
	H-33	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	10	05/21/19 01:08 PM	ICP-MS5_190521A
	H-33	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90959	1	05/21/19 02:19 PM	ICP-MS5_190521A
1905168-07C	H-33	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:49 PM	TITRATOR_190516A
	H-33	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 04:03 PM	IC2_190515A
	H-33	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 07:31 PM	IC2_190515A

Page 3 of 4

Lab Order: 1905168
Client: Golder

Project: Luminant-MLSES Ash Ponds

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1905168-07C	H-33	Aqueous	M4500-P E	Orthophosphate	90921	1	05/15/19 12:50 PM	UV/VIS_2_190515B
	H-33	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC 190517D

CLIENT: Golder Client Sample ID: H-31

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-01

Project No: 19122262-C **Collection Date:** 05/14/19 07:40 AM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WAT	ER	SW6	020A				Analyst: RO
Antimony	<0.000800	0.000800	0.00250		mg/L	1	05/20/19 03:43 PM
Arsenic	0.00675	0.00200	0.00500		mg/L	1	05/20/19 03:43 PM
Barium	0.0163	0.00300	0.0100		mg/L	1	05/20/19 03:43 PM
Beryllium	0.00928	0.000300	0.00100		mg/L	1	05/20/19 03:43 PM
Boron	20.0	0.500	1.50		mg/L	50	05/21/19 12:54 PM
Cadmium	< 0.000300	0.000300	0.00100		mg/L	1	05/20/19 03:43 PM
Calcium	234	5.00	15.0		mg/L	50	05/21/19 12:54 PM
Chromium	0.00315	0.00200	0.00500	J	mg/L	1	05/20/19 03:43 PM
Cobalt	0.389	0.00300	0.00500		mg/L	1	05/20/19 03:43 PM
Iron	48.7	1.50	5.00		mg/L	50	05/21/19 12:54 PM
Lead	<0.000300	0.000300	0.00100		mg/L	1	05/20/19 03:43 PM
Lithium	0.219	0.00500	0.0100		mg/L	1	05/20/19 03:43 PM
Magnesium	170	5.00	15.0		mg/L	50	05/21/19 12:54 PM
Molybdenum	<0.00200	0.00200	0.00500		mg/L	1	05/21/19 02:51 PM
Potassium	6.18	0.100	0.300		mg/L	1	05/20/19 03:43 PM
Selenium	0.0261	0.00200	0.00500		mg/L	1	05/20/19 03:43 PM
Sodium	672	5.00	15.0		mg/L	50	05/21/19 12:54 PM
Thallium	<0.000500	0.000500	0.00150		mg/L	1	05/20/19 03:43 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: BM
Mercury	<0.000400	0.000400	0.00100		mg/L	5	05/22/19 11:21 AM
ANIONS BY IC METHOD - WATE	R	E3	00				Analyst: JL
Chloride	225	3.00	10.0		mg/L	10	05/15/19 02:27 PM
Fluoride	0.960	0.100	0.400		mg/L	1	05/15/19 05:55 PM
Nitrate-N	< 0.100	0.100	0.500		mg/L	1	05/15/19 05:55 PM
Sulfate	2470	100	300		mg/L	100	05/16/19 05:42 PM
ALKALINITY		M23	20 B				Analyst: CC
Alkalinity, Bicarbonate (As CaCO3)	33.9	10.0	20.0		mg/L @ pH 4.52	1	05/16/19 04:13 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.52	1	05/16/19 04:13 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.52	1	05/16/19 04:13 PM
Alkalinity, Total (As CaCO3)	33.9	20.0	20.0		mg/L @ pH 4.52	1	05/16/19 04:13 PM
FERRIC IRON (CALCULATED)		M3500)-FE D				Analyst: CAC
Iron, Ferric	<0.0500	0.0500	0.100	N	mg/L	1	05/24/19
FERROUS IRON		M3500)-FE D				Analyst: BTJ
Iron, Ferrous	49.5	5.00	10.0	N	mg/L	100	05/20/19 04:11 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAP certified

CLIENT: Golder Client Sample ID: H-31

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-01

Project No: 19122262-C **Collection Date:** 05/14/19 07:40 AM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
ORTHOPHOSPHATE		M4500	-P E				Analyst: CC
Phosphorus, Total Orthophosphate (As P)	0.0770	0.0300	0.100	J	mg/L	1	05/15/19 02:47 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	4230	50.0	50.0		mg/L	1	05/17/19 11:40 AM

Qualifiers: * Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: H-32

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-02

Project No: 19122262-C **Collection Date:** 05/14/19 08:25 AM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATE	ER	SW6	020A				Analyst: RO
Antimony	<0.000800	0.000800	0.00250		mg/L	1	05/20/19 03:45 PM
Arsenic	0.00202	0.00200	0.00500	J	mg/L	1	05/20/19 03:45 PM
Barium	0.0162	0.00300	0.0100		mg/L	1	05/20/19 03:45 PM
Beryllium	0.00713	0.000300	0.00100		mg/L	1	05/20/19 03:45 PM
Boron	2.08	0.100	0.300		mg/L	10	05/21/19 12:56 PM
Cadmium	0.000366	0.000300	0.00100	J	mg/L	1	05/20/19 03:45 PM
Calcium	45.2	1.00	3.00		mg/L	10	05/21/19 12:56 PM
Chromium	<0.00200	0.00200	0.00500		mg/L	1	05/20/19 03:45 PM
Cobalt	0.202	0.00300	0.00500		mg/L	1	05/20/19 03:45 PM
Iron	1.81	0.0300	0.100		mg/L	1	05/20/19 03:45 PM
Lead	0.000574	0.000300	0.00100	J	mg/L	1	05/20/19 03:45 PM
Lithium	0.0978	0.00500	0.0100		mg/L	1	05/20/19 03:45 PM
Magnesium	18.5	0.100	0.300		mg/L	1	05/20/19 03:45 PM
Molybdenum	<0.00200	0.00200	0.00500		mg/L	1	05/21/19 02:53 PM
Potassium	2.57	0.100	0.300		mg/L	1	05/20/19 03:45 PM
Selenium	0.00675	0.00200	0.00500		mg/L	1	05/20/19 03:45 PM
Sodium	151	1.00	3.00		mg/L	10	05/21/19 12:56 PM
Thallium	<0.000500	0.000500	0.00150		mg/L	1	05/20/19 03:45 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: BM
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	05/22/19 10:27 AM
ANIONS BY IC METHOD - WATE	R	E3	800				Analyst: JL
Chloride	135	3.00	10.0		mg/L	10	05/15/19 02:43 PM
Fluoride	1.15	0.100	0.400		mg/L	1	05/15/19 06:11 PM
Nitrate-N	273	1.00	5.00		mg/L	10	05/15/19 02:43 PM
Sulfate	320	10.0	30.0		mg/L	10	05/15/19 02:43 PM
ALKALINITY		M23	20 B				Analyst: CC
Alkalinity, Bicarbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 1.76	1	05/16/19 04:15 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 1.76	1	05/16/19 04:15 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 1.76	1	05/16/19 04:15 PM
Alkalinity, Total (As CaCO3)	<20.0	20.0	20.0		mg/L @ pH 1.76	1	05/16/19 04:15 PM
FERRIC IRON (CALCULATED)		M3500	0-FE D				Analyst: CAC
Iron, Ferric	0.640	0.0500	0.100	N	mg/L	1	05/24/19
FERROUS IRON		M3500	0-FE D				Analyst: BTJ
Iron, Ferrous	1.17	0.250	0.500	N	mg/L	5	05/20/19 04:11 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: H-32

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-02

Project No: 19122262-C **Collection Date:** 05/14/19 08:25 AM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
ORTHOPHOSPHATE		M4500-	-P E				Analyst: CC
Phosphorus, Total Orthophosphate (As P)	0.0600	0.0300	0.100	J	mg/L	1	05/15/19 12:49 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	910	50.0	50.0		mg/L	1	05/17/19 11:40 AM

Qualifiers: * Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: H-27

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-03

Project No: 19122262-C **Collection Date:** 05/14/19 09:40 AM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW6	020A				Analyst: RO
Antimony	<0.000800	0.000800	0.00250		mg/L	1	05/20/19 03:47 PM
Arsenic	< 0.00200	0.00200	0.00500		mg/L	1	05/20/19 03:47 PM
Barium	0.0208	0.00300	0.0100		mg/L	1	05/20/19 03:47 PM
Beryllium	< 0.000300	0.000300	0.00100		mg/L	1	05/20/19 03:47 PM
Boron	0.350	0.0100	0.0300		mg/L	1	05/21/19 02:14 PM
Cadmium	< 0.000300	0.000300	0.00100		mg/L	1	05/20/19 03:47 PM
Calcium	61.8	1.00	3.00		mg/L	10	05/21/19 12:59 PM
Chromium	<0.00200	0.00200	0.00500		mg/L	1	05/20/19 03:47 PM
Cobalt	< 0.00300	0.00300	0.00500		mg/L	1	05/20/19 03:47 PM
Iron	0.0711	0.0300	0.100	J	mg/L	1	05/20/19 03:47 PM
Lead	<0.000300	0.000300	0.00100		mg/L	1	05/20/19 03:47 PM
Lithium	0.0678	0.00500	0.0100		mg/L	1	05/20/19 03:47 PM
Magnesium	47.3	1.00	3.00		mg/L	10	05/21/19 12:59 PM
Molybdenum	<0.00200	0.00200	0.00500		mg/L	1	05/21/19 02:14 PM
Potassium	3.01	0.100	0.300		mg/L	1	05/20/19 03:47 PM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	05/20/19 03:47 PM
Sodium	123	1.00	3.00		mg/L	10	05/21/19 12:59 PM
Thallium	<0.000500	0.000500	0.00150		mg/L	1	05/20/19 03:47 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: BM
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	05/22/19 10:29 AM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: JL
Chloride	132	3.00	10.0		mg/L	10	05/15/19 02:59 PM
Fluoride	0.159	0.100	0.400	J	mg/L	1	05/15/19 06:27 PM
Nitrate-N	0.658	0.100	0.500		mg/L	1	05/15/19 06:27 PM
Sulfate	406	10.0	30.0		mg/L	10	05/15/19 02:59 PM
ALKALINITY		M23	20 B				Analyst: CC
Alkalinity, Bicarbonate (As CaCO3)	49.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:20 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:20 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:20 PM
Alkalinity, Total (As CaCO3)	49.0	20.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:20 PM
FERRIC IRON (CALCULATED)		M3500)-FE D				Analyst: CAC
Iron, Ferric	0.0711	0.0500	0.100	JN	mg/L	1	05/24/19
FERROUS IRON		M3500)-FE D				Analyst: BTJ
Iron, Ferrous	<0.0500	0.0500	0.100	N	mg/L	1	05/20/19 03:56 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: H-27

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-03

Project No: 19122262-C **Collection Date:** 05/14/19 09:40 AM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
ORTHOPHOSPHATE		M4500-	P E			Analyst: CC
Phosphorus, Total Orthophosphate (As P)	0.126	0.0300	0.100	mg/L	1	05/15/19 12:49 PM
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	897	10.0	10.0	mg/L	1	05/17/19 11:40 AM

Qualifiers: * Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: H-29

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-04

Project No: 19122262-C **Collection Date:** 05/14/19 11:25 AM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATE	:R	SW6	020A				Analyst: RO
Antimony	<0.000800	0.000800	0.00250		mg/L	1	05/20/19 03:49 PM
Arsenic	< 0.00200	0.00200	0.00500		mg/L	1	05/20/19 03:49 PM
Barium	0.0138	0.00300	0.0100		mg/L	1	05/20/19 03:49 PM
Beryllium	0.00341	0.000300	0.00100		mg/L	1	05/20/19 03:49 PM
Boron	8.12	0.200	0.600		mg/L	20	05/21/19 01:01 PM
Cadmium	0.00219	0.000300	0.00100		mg/L	1	05/20/19 03:49 PM
Calcium	95.9	2.00	6.00		mg/L	20	05/21/19 01:01 PM
Chromium	<0.00200	0.00200	0.00500		mg/L	1	05/20/19 03:49 PM
Cobalt	0.183	0.00300	0.00500		mg/L	1	05/20/19 03:49 PM
Iron	0.0521	0.0300	0.100	J	mg/L	1	05/20/19 03:49 PM
Lead	0.000543	0.000300	0.00100	J	mg/L	1	05/20/19 03:49 PM
Lithium	0.173	0.00500	0.0100		mg/L	1	05/20/19 03:49 PM
Magnesium	80.5	2.00	6.00		mg/L	20	05/21/19 01:01 PM
Molybdenum	<0.00200	0.00200	0.00500		mg/L	1	05/21/19 02:55 PM
Potassium	2.01	0.100	0.300		mg/L	1	05/20/19 03:49 PM
Selenium	0.00616	0.00200	0.00500		mg/L	1	05/20/19 03:49 PM
Sodium	211	2.00	6.00		mg/L	20	05/21/19 01:01 PM
Thallium	<0.000500	0.000500	0.00150		mg/L	1	05/20/19 03:49 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: BM
Mercury	<0.000800	0.0000800	0.000200		mg/L	1	05/22/19 10:31 AM
ANIONS BY IC METHOD - WATER	3	E3	00				Analyst: JL
Chloride	81.8	3.00	10.0		mg/L	10	05/15/19 03:15 PM
Fluoride	0.104	0.100	0.400	J	mg/L	1	05/15/19 06:43 PM
Nitrate-N	0.121	0.100	0.500	J	mg/L	1	05/15/19 06:43 PM
Sulfate	780	10.0	30.0		mg/L	10	05/15/19 03:15 PM
ALKALINITY		M23	20 B				Analyst: CC
Alkalinity, Bicarbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:23 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:23 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:23 PM
Alkalinity, Total (As CaCO3)	<20.0	20.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:23 PM
FERRIC IRON (CALCULATED)		M3500)-FE D				Analyst: CAC
Iron, Ferric	0.0521	0.0500	0.100	JN	mg/L	1	05/24/19
FERROUS IRON		M3500)-FE D				Analyst: BTJ
Iron, Ferrous	<0.0500	0.0500	0.100	N	mg/L	1	05/20/19 03:56 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: H-29

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-04

Project No: 19122262-C **Collection Date:** 05/14/19 11:25 AM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
ORTHOPHOSPHATE		M4500-	-P E				Analyst: CC
Phosphorus, Total Orthophosphate (As P)	0.0570	0.0300	0.100	J	mg/L	1	05/15/19 12:49 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	1400	50.0	50.0		mg/L	1	05/17/19 11:40 AM

Qualifiers: * Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: H-28

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-05

Project No: 19122262-C **Collection Date:** 05/14/19 12:30 PM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATE	R	SW6	020A				Analyst: RO
Antimony	<0.000800	0.000800	0.00250		mg/L	1	05/20/19 03:51 PM
Arsenic	< 0.00200	0.00200	0.00500		mg/L	1	05/20/19 03:51 PM
Barium	0.0141	0.00300	0.0100		mg/L	1	05/20/19 03:51 PM
Beryllium	0.00281	0.000300	0.00100		mg/L	1	05/20/19 03:51 PM
Boron	8.51	0.200	0.600		mg/L	20	05/21/19 01:03 PM
Cadmium	0.00212	0.000300	0.00100		mg/L	1	05/20/19 03:51 PM
Calcium	99.7	2.00	6.00		mg/L	20	05/21/19 01:03 PM
Chromium	<0.00200	0.00200	0.00500		mg/L	1	05/20/19 03:51 PM
Cobalt	0.187	0.00300	0.00500		mg/L	1	05/20/19 03:51 PM
Iron	0.0715	0.0300	0.100	J	mg/L	1	05/20/19 03:51 PM
Lead	0.000595	0.000300	0.00100	J	mg/L	1	05/20/19 03:51 PM
Lithium	0.172	0.00500	0.0100		mg/L	1	05/20/19 03:51 PM
Magnesium	81.4	2.00	6.00		mg/L	20	05/21/19 01:03 PM
Molybdenum	<0.00200	0.00200	0.00500		mg/L	1	05/21/19 02:57 PM
Potassium	2.06	0.100	0.300		mg/L	1	05/20/19 03:51 PM
Selenium	0.00619	0.00200	0.00500		mg/L	1	05/20/19 03:51 PM
Sodium	210	2.00	6.00		mg/L	20	05/21/19 01:03 PM
Thallium	<0.000500	0.000500	0.00150		mg/L	1	05/20/19 03:51 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: BM
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	05/22/19 10:34 AM
ANIONS BY IC METHOD - WATER	3	E3	00				Analyst: JL
Chloride	98.9	3.00	10.0		mg/L	10	05/15/19 03:31 PM
Fluoride	< 0.100	0.100	0.400		mg/L	1	05/15/19 06:59 PM
Nitrate-N	< 0.100	0.100	0.500		mg/L	1	05/15/19 06:59 PM
Sulfate	935	10.0	30.0		mg/L	10	05/15/19 03:31 PM
ALKALINITY		M23	20 B				Analyst: CC
Alkalinity, Bicarbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:27 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:27 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:27 PM
Alkalinity, Total (As CaCO3)	<20.0	20.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:27 PM
FERRIC IRON (CALCULATED)		M3500)-FE D				Analyst: CAC
Iron, Ferric	0.0715	0.0500	0.100	JN	mg/L	1	05/24/19
FERROUS IRON		M3500)-FE D				Analyst: BTJ
Iron, Ferrous	<0.0500	0.0500	0.100	N	mg/L	1	05/20/19 03:57 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: H-28

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-05

Project No: 19122262-C **Collection Date:** 05/14/19 12:30 PM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
ORTHOPHOSPHATE Phosphorus, Total Orthophosphate (As P)	0.0460	M4500 -0.0300	P E 0.100	J	mg/L	1	Analyst: CC 05/15/19 12:50 PM
TOTAL DISSOLVED SOLIDS Total Dissolved Solids (Residue, Filterable)	1680	M254 0 50.0	0C 50.0		mg/L	1	Analyst: JS 05/17/19 11:40 AM

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: H-26

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-06

Project No: 19122262-C **Collection Date:** 05/14/19 02:25 PM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATE	R	SW6	020A				Analyst: RO
Antimony	<0.000800	0.000800	0.00250		mg/L	1	05/20/19 03:53 PM
Arsenic	0.00410	0.00200	0.00500	J	mg/L	1	05/20/19 03:53 PM
Barium	0.190	0.00300	0.0100		mg/L	1	05/20/19 03:53 PM
Beryllium	0.00147	0.000300	0.00100		mg/L	1	05/20/19 03:53 PM
Boron	0.0507	0.0100	0.0300		mg/L	1	05/21/19 02:16 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	05/20/19 03:53 PM
Calcium	85.2	1.00	3.00		mg/L	10	05/21/19 01:05 PM
Chromium	0.0406	0.00200	0.00500		mg/L	1	05/20/19 03:53 PM
Cobalt	0.0795	0.00300	0.00500		mg/L	1	05/20/19 03:53 PM
Iron	8.81	0.0300	0.100		mg/L	1	05/20/19 03:53 PM
Lead	0.000972	0.000300	0.00100	J	mg/L	1	05/20/19 03:53 PM
Lithium	0.147	0.00500	0.0100		mg/L	1	05/20/19 03:53 PM
Magnesium	9.31	0.100	0.300		mg/L	1	05/20/19 03:53 PM
Molybdenum	<0.00200	0.00200	0.00500		mg/L	1	05/21/19 02:16 PM
Potassium	11.6	0.100	0.300		mg/L	1	05/20/19 03:53 PM
Selenium	0.00222	0.00200	0.00500	J	mg/L	1	05/20/19 03:53 PM
Sodium	69.5	1.00	3.00		mg/L	10	05/21/19 01:05 PM
Thallium	<0.000500	0.000500	0.00150		mg/L	1	05/20/19 03:53 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: BM
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	05/22/19 10:36 AM
ANIONS BY IC METHOD - WATER	2	E3	800				Analyst: JL
Chloride	61.7	3.00	10.0		mg/L	10	05/15/19 03:47 PM
Fluoride	0.140	0.100	0.400	J	mg/L	1	05/15/19 07:15 PM
Nitrate-N	0.239	0.100	0.500	J	mg/L	1	05/15/19 07:15 PM
Sulfate	88.2	1.00	3.00		mg/L	1	05/15/19 07:15 PM
ALKALINITY		M23	20 B				Analyst: CC
Alkalinity, Bicarbonate (As CaCO3)	157	10.0	20.0		mg/L @ pH 4.51	1	05/16/19 04:42 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.51	1	05/16/19 04:42 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.51	1	05/16/19 04:42 PM
Alkalinity, Total (As CaCO3)	157	20.0	20.0		mg/L @ pH 4.51	1	05/16/19 04:42 PM
FERRIC IRON (CALCULATED)		M3500)-FE D				Analyst: CAC
Iron, Ferric	8.81	0.0500	0.100	N	mg/L	1	05/24/19
FERROUS IRON		M3500)-FE D				Analyst: BTJ
Iron, Ferrous	<0.0500	0.0500	0.100	N	mg/L	1	05/20/19 03:57 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder

Project: Luminant-MLSES Ash Ponds

Project No: 19122262-C

Lab Order: 1905168

Client Sample ID: H-26

Lab ID: 1905168-06

Date: 14-Jun-19

Collection Date: 05/14/19 02:25 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
ORTHOPHOSPHATE		M4500	-P E				Analyst: CC
Phosphorus, Total Orthophosphate (As P)	0.0310	0.0300	0.100	J	mg/L	1	05/15/19 12:50 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	453	10.0	10.0		mg/L	1	05/17/19 11:40 AM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: H-33

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-07

Project No: 19122262-C **Collection Date:** 05/14/19 03:30 PM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATE	R	SW6	020A				Analyst: RO
Antimony	<0.00800	0.000800	0.00250		mg/L	1	05/20/19 03:54 PM
Arsenic	0.00355	0.00200	0.00500	J	mg/L	1	05/20/19 03:54 PM
Barium	0.158	0.00300	0.0100		mg/L	1	05/20/19 03:54 PM
Beryllium	0.00114	0.000300	0.00100		mg/L	1	05/20/19 03:54 PM
Boron	0.0592	0.0100	0.0300		mg/L	1	05/21/19 02:19 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	05/20/19 03:54 PM
Calcium	68.6	1.00	3.00		mg/L	10	05/21/19 01:08 PM
Chromium	0.0342	0.00200	0.00500		mg/L	1	05/20/19 03:54 PM
Cobalt	0.0648	0.00300	0.00500		mg/L	1	05/20/19 03:54 PM
Iron	7.61	0.0300	0.100		mg/L	1	05/20/19 03:54 PM
Lead	0.000772	0.000300	0.00100	J	mg/L	1	05/20/19 03:54 PM
Lithium	0.161	0.00500	0.0100		mg/L	1	05/20/19 03:54 PM
Magnesium	10.6	0.100	0.300		mg/L	1	05/20/19 03:54 PM
Molybdenum	<0.00200	0.00200	0.00500		mg/L	1	05/21/19 02:19 PM
Potassium	13.2	0.100	0.300		mg/L	1	05/20/19 03:54 PM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	05/20/19 03:54 PM
Sodium	79.5	1.00	3.00		mg/L	10	05/21/19 01:08 PM
Thallium	<0.000500	0.000500	0.00150		mg/L	1	05/20/19 03:54 PM
MERCURY TOTAL: AQUEOUS		SW74	470A				Analyst: BM
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	05/22/19 10:38 AM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: JL
Chloride	80.4	3.00	10.0		mg/L	10	05/15/19 04:03 PM
Fluoride	0.166	0.100	0.400	J	mg/L	1	05/15/19 07:31 PM
Nitrate-N	0.287	0.100	0.500	J	mg/L	1	05/15/19 07:31 PM
Sulfate	104	10.0	30.0		mg/L	10	05/15/19 04:03 PM
ALKALINITY		M23	20 B				Analyst: CC
Alkalinity, Bicarbonate (As CaCO3)	181	10.0	20.0		mg/L @ pH 4.51	1	05/16/19 04:49 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.51	1	05/16/19 04:49 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.51	1	05/16/19 04:49 PM
Alkalinity, Total (As CaCO3)	181	20.0	20.0		mg/L @ pH 4.51	1	05/16/19 04:49 PM
FERRIC IRON (CALCULATED)		M3500	-FE D				Analyst: CAC
Iron, Ferric	7.61	0.0500	0.100	N	mg/L	1	05/24/19
FERROUS IRON		M3500	-FE D				Analyst: BTJ
Iron, Ferrous	< 0.0500	0.0500	0.100	N	mg/L	1	05/20/19 03:58 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: H-33

Project: Luminant-MLSES Ash Ponds Lab ID: 1905168-07

Project No: 19122262-C **Collection Date:** 05/14/19 03:30 PM

Lab Order: 1905168 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
ORTHOPHOSPHATE		M4500-	P E			Analyst: CC
Phosphorus, Total Orthophosphate (As P)	0.123	0.0300	0.100	mg/L	1	05/15/19 12:50 PM
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	559	10.0	10.0	mg/L	1	05/17/19 11:40 AM

Qualifiers: * Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 14-Jun-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

Date: 14-Jun-19

CLIENT: Golder Work Order: 1905168

ANALYTICAL QC SUMMARY REPORT

nt-MI SES Ach De DunID. CETAC2 HC 100522A

Project: Luminant-	MLSES A	sh Ponds				RunII): (CETAC2_I	HG_19	0522A
The QC data in batch 91017 app 06B, 1905168-07B	lies to the fo	llowing san	nples: 19051	168-01B, 19051	68-02B,	1905168-03B,	1905168	-04B, 190516	8-05B, 1	905168-
Sample ID MB-91017	Batch ID:	91017		TestNo:	S	W7470A		Units:	mg/L	
SampType: MBLK	Run ID:	CETAC2	_HG_190522	2A Analysis	Date: 5	/22/2019 10:02	2:31 AM	Prep Date:	5/21/20)19
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RI	PDLimit Qual
Mercury	<0.	008000	0.000200							
Sample ID LCS-91017	Batch ID:	91017		TestNo:	S	W7470A		Units:	mg/L	
SampType: LCS	Run ID:	CETAC2	_HG_190522	2A Analysis	Date: 5	/22/2019 10:04	:46 AM	Prep Date:	5/21/20)19
Analyte	ı	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	KPD RI	PDLimit Qual
Mercury	0	.00187	0.000200	0.00200	0	93.5	85	115		
Sample ID LCSD-91017	Batch ID:	91017		TestNo:	s	W7470A		Units:	mg/L	
SampType: LCSD	Run ID:	CETAC2	_HG_190522	2A Analysis	Date: 5	/22/2019 10:07	:02 AM	Prep Date:	5/21/20)19
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RI	PDLimit Qual
Mercury	0	.00186	0.000200	0.00200	0	93.0	85	115	0.536	15
Sample ID 1905168-01B MS	Batch ID:	91017		TestNo:	S	W7470A		Units:	mg/L	
SampType: MS	Run ID:	CETAC2	_HG_190522	2A Analysis	Date: 5	/22/2019 11:23	:23 AM	Prep Date:	5/21/20)19
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RI	PDLimit Qual
Mercury	0	.00196	0.00100	0.00200	0	97.8	80	120		
Sample ID 1905168-01B MSD	Batch ID:	91017		TestNo:	s	W7470A		Units:	mg/L	
SampType: MSD	Run ID:	CETAC2	_HG_190522	2A Analysis	Date: 5	/22/2019 11:25	:39 AM	Prep Date:	5/21/20)19
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RI	PDLimit Qual
Mercury	0	.00194	0.00100	0.00200	0	97.0	80	120	0.770	15
Sample ID 1905168-01B SD	Batch ID:	91017		TestNo:	s	W7470A		Units:	mg/L	
SampType: SD	Run ID:	CETAC2	_HG_190522	2A Analysis	Date: 5	/22/2019 11:27	:56 AM	Prep Date:	5/21/20)19
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RI	PDLimit Qual
Mercury	<(0.00200	0.00500	0	0				0	10
Sample ID 1905168-01B PDS	Batch ID:	91017		TestNo:	s	W7470A		Units:	mg/L	
SampType: PDS	Run ID:	CETAC2	_HG_190522	2A Analysis	Date: 5	/22/2019 11:30	:13 AM	Prep Date:	5/21/20)19
Analyte	·	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RI	PDLimit Qual
Mercury).0122	0.00100	0.0125	0	97.6	85	115		

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

R S Spike Recovery outside control limits Parameter not NELAP certified

Page 1 of 25

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: CETAC2_HG_190522A

Commis ID	101/ 400500	Datal ID	. D404000		TaatNla	0)4/3			I lesites.	
Sample ID	ICV-190522	Batch ID	R104223		TestNo:	5W/	470A		Units:	mg/L
SampType:	ICV	Run ID:	CETAC2_	_HG_190522	2A Analysis	Date: 5/22	/2019 9:57:	56 AM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Mercury			0.00383	0.000200	0.00400	0	95.8	90	110	
Sample ID	CCV1-190522	Batch ID	: R104223		TestNo:	SW7	′470A		Units:	mg/L
SampType:	ccv	Run ID:	CETAC2	_HG_190522	2A Analysis	Date: 5/22	/2019 10:41	1:04 AM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Mercury			0.00202	0.000200	0.00200	0	101	90	110	
Sample ID	CCV2-190522	Batch ID	R104223		TestNo:	SW7	′470A		Units:	mg/L
SampTypa										
SampType:	CCV	Run ID:	CETAC2	_HG_190522	2A Analysis	Date: 5/22	/2019 11:08	3:23 AM	Prep Date	:
Analyte	CCV	Run ID:	CETAC2_ Result	_ HG_190522 RL	2A Analysis SPK value	Date: 5/22	%REC			: %RPD RPDLimit Qual
	ccv	Run ID:								
Analyte Mercury	CCV CCV3-190522	Run ID:	Result 0.00203	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	
Analyte Mercury	CCV3-190522		Result 0.00203 : R104223	RL	SPK value 0.00200 TestNo:	Ref Val	%REC 102 7470A	LowLimi 90	t HighLimit	%RPD RPDLimit Qual
Analyte Mercury Sample ID	CCV3-190522	Batch ID	Result 0.00203 : R104223	RL 0.000200	SPK value 0.00200 TestNo:	Ref Val 0 SW7	%REC 102 7470A	LowLimi 90 11 PM	t HighLimit 110 Units: Prep Date	%RPD RPDLimit Qual

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAP certified} \end{array}$

Page 2 of 25

Sample ID LCS-90959

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: ICP-MS4_190520B

Units:

mg/L

The QC data in batch 90959 applies to the following samples: 1905168-01B, 1905168-02B, 1905168-03B, 1905168-04B, 1905168-05B, 1905168-06B, 1905168-07B

Sample ID MB-90959	Batch ID: 90959		TestNo	swe	6020A		Units:	mg/L
SampType: MBLK	Run ID: ICP-MS4	1_190520B	Analysis	s Date: 5/20	/2019 3:23:	00 PM	Prep Date:	5/17/2019
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	: HighLimit %	6RPD RPDLimit Qual
Antimony	<0.00800	0.00250						
Arsenic	< 0.00200	0.00500						
Barium	< 0.00300	0.0100						
Beryllium	< 0.000300	0.00100						
Cadmium	< 0.000300	0.00100						
Calcium	<0.100	0.300						
Chromium	<0.00200	0.00500						
Cobalt	< 0.00300	0.00500						
Iron	< 0.0300	0.100						
Lead	<0.000300	0.00100						
Lithium	< 0.00500	0.0100						
Magnesium	<0.100	0.300						
Potassium	<0.100	0.300						
Selenium	<0.00200	0.00500						
Sodium	<0.100	0.300						
Thallium	<0.000500	0.00150		*				

_ '_										
SampType: LCS	Run ID:	ICP-MS	4_190520B	Analys	is Date: 5/20	/2019 3:27:	00 PM	Prep Date	: 5/17	//2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qua
Antimony		0.190	0.00250	0.200	0	94.8	80	120		
Arsenic		0.204	0.00500	0.200	0	102	80	120		
Barium		0.190	0.0100	0.200	0	94.9	80	120		
Beryllium		0.211	0.00100	0.200	0	105	80	120		
Cadmium		0.192	0.00100	0.200	0	95.8	80	120		
Calcium		4.65	0.300	5.00	0	93.1	80	120		
Chromium		0.195	0.00500	0.200	0	97.7	80	120		
Cobalt		0.203	0.00500	0.200	0	101	80	120		
Iron		5.14	0.100	5.00	0	103	80	120		
Lead		0.187	0.00100	0.200	0	93.6	80	120		
Lithium		0.217	0.0100	0.200	0	108	80	120		
Magnesium		5.03	0.300	5.00	0	101	80	120		
Potassium		5.02	0.300	5.00	0	100	80	120		
Selenium		0.204	0.00500	0.200	0	102	80	120		
Sodium		5.07	0.300	5.00	0	101	80	120		
Thallium		0.199	0.00150	0.200	0	99.7	80	120		

TestNo:

SW6020A

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Batch ID: 90959

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 3 of 25

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RL Reporting Limit

Analyte detected between SDL and RL

RunID	ICP-MS4	190520R

rroject:		-MILSES A	.sii i Ulius				Kuiiii		C1 -1V154_	_17032	
Sample ID	LCSD-90959	Batch ID:	90959		TestN	o: SW60	20A		Units:	mg/L	
SampType:	LCSD	Run ID:	ICP-MS4	_190520B	Analys	sis Date: 5/20/2	019 3:29:	:00 PM	Prep Date:	5/17/	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD I	RPDLimit Qua
Antimony			0.195	0.00250	0.200	0	97.7	80	120	2.98	15
Arsenic			0.201	0.00500	0.200	0	100	80	120	1.34	15
Barium			0.194	0.0100	0.200	0	97.2	80	120	2.37	15
Beryllium			0.210	0.00100	0.200	0	105	80	120	0.345	15
Cadmium			0.198	0.00100	0.200	0	98.8	80	120	3.14	15
Calcium			4.68	0.300	5.00	0	93.5	80	120	0.492	15
Chromium			0.198	0.00500	0.200	0	99.1	80	120	1.40	15
Cobalt			0.200	0.00500	0.200	0	100	80	120	1.46	15
Iron			5.15	0.100	5.00	0	103	80	120	0.209	15
Lead			0.190	0.00100	0.200	0	95.0	80	120	1.54	15
Lithium			0.211	0.0100	0.200	0	106	80	120	2.37	15
Magnesium			5.15	0.300	5.00	0	103	80	120	2.30	15
Potassium			5.07	0.300	5.00	0	101	80	120	1.08	15
Selenium			0.200	0.00500	0.200	0	99.9	80	120	1.96	15
Sodium			5.10	0.300	5.00	0	102	80	120	0.502	15
Thallium			0.200	0.00150	0.200	0	100	80	120	0.279	15
Sample ID	1905178-02C SD	Batch ID:	90959		TestN	o: SW60	20A		Units:	mg/L	
SampType:	SD	Run ID:	ICP-MS4	_190520B	Analys	sis Date: 5/20/2	019 3:37:	:00 PM	Prep Date:	5/17/	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD I	RPDLimit Qua
Antimony		<	0.00400	0.0125	0	0				0	10
Arsenic			0.0115	0.0250	0	0.0113				1.19	10
Barium			0.0249	0.0500	0	0.0269				7.62	10
Beryllium		<	0.00150	0.00500	0	0				0	10
Cadmium		<	0.00150	0.00500	0	0				0	10
Chromium			0.0104	0.0250	0	0.0104				0.596	10
Cobalt		<	:0.0150	0.0250	0	0				0	10
Iron			0.313	0.500	0	0.303				3.55	10
Lead		<	0.00150	0.00500	0	0				0	10
Lithium			0.0378	0.0500	0	0.0361				4.57	10
Potassium			1.53	1.50	0	1.52				0.244	10
Selenium		<	:0.0100	0.0250	0	0				0	10
Thallium			0.00250	0.00750	0	0				0	10
Sample ID	1905178-02C PDS	Batch ID:	90959		TestN	o: SW60	20A	<u> </u>	Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS4	_190520B	Analys	sis Date: 5/20/2	019 3:56:	:00 PM	Prep Date:	5/17/	2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD I	RPDLimit Qua
Antimony			0.193	0.00250	0.200	0	96.4	80	120		
Arsenic			0.209	0.00500	0.200	0.0113	98.9	80	120		
Qualifiers:	B Analyte det	ected in the a	ssociated Me	thod Blank	DF	Dilution Factor					
	•	ected between			MDL	Method Detection	on Limit			F	Page 4 of 25
		ed at the Meth			R	RPD outside acc	cepted con	trol limits		•	
	חו ח	,		*		C 'I D	1 1 1	111			

Spike Recovery outside control limits

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

RL Reporting Limit

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds RunID: ICP-MS4_190520B

Sample ID 1905178-02C PDS	Batch ID:	90959		TestNo	: SW6	6020A		Units:	mg/L	
SampType: PDS	Run ID:	ICP-MS4	_190520B	Analys	is Date: 5/20	/2019 3:56:	00 PM	Prep Date:	5/17/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Barium		0.214	0.0100	0.200	0.0269	93.7	80	120		
Beryllium		0.184	0.00100	0.200	0	91.9	80	120		
Cadmium		0.184	0.00100	0.200	0	91.8	80	120		
Chromium		0.198	0.00500	0.200	0.0104	93.6	80	120		
Cobalt		0.193	0.00500	0.200	0	96.5	80	120		
Iron		5.19	0.100	5.00	0.303	97.7	80	120		
Lead		0.185	0.00100	0.200	0	92.4	80	120		
Lithium		0.224	0.0100	0.200	0.0361	93.9	80	120		
Potassium		6.27	0.300	5.00	1.52	94.9	80	120		
Selenium		0.195	0.00500	0.200	0	97.6	80	120		
Thallium		0.203	0.00150	0.200	0	101	80	120		
Sample ID 1905178-02C MS	Batch ID:	90959		TestNo	o: SW 6	6020A		Units:	mg/L	
SampType: MS	Run ID:	ICP-MS4	_190520B	Analys	is Date: 5/20	/2019 3:58:	00 PM	Prep Date:	5/17/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Antimony		0.197	0.00250	0.200	0	98.3	80	120		
Arsenic		0.217	0.00500	0.200	0.0113	103	80	120		
Barium		0.223	0.0100	0.200	0.0269	97.8	80	120		
Beryllium		0.187	0.00100	0.200	0	93.6	80	120		
Cadmium		0.185	0.00100	0.200	0	92.5	80	120		
Calcium		65.6	0.300	5.00	62.5	62.2	80	120		S
Chromium		0.198	0.00500	0.200	0.0104	93.7	80	120		
Cobalt		0.196	0.00500	0.200	0	98.1	80	120		
Iron		5.25	0.100	5.00	0.303	98.9	80	120		
Lead		0.188	0.00100	0.200	0	93.9	80	120		
Lithium		0.221	0.0100	0.200	0.0361	92.5	80	120		
Magnesium		65.8	0.300	5.00	63.5	45.8	80	120		S
Potassium		6.56	0.300	5.00	1.52	101	80	120		
Selenium		0.204	0.00500	0.200	0	102	80	120		
Sodium		223	0.300	5.00	229	-120	80	120		S
Thallium		0.201	0.00150	0.200	0	100	80	120		
Sample ID 1905178-02C MSD	Batch ID:	90959		TestNo	o: SW6	6020A		Units:	mg/L	
SampType: MSD	Run ID:	ICP-MS4	_190520B	Analys	is Date: 5/20	/2019 4:00:	00 PM	Prep Date:	5/17/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Antimony		0.199	0.00250	0.200	0	99.4	80	120	1.06	15
Arsenic		0.214	0.00500	0.200	0.0113	101	80	120	1.22	15
Barium		0.228	0.0100	0.200	0.0269	100	80	120	2.27	15
Beryllium		0.186	0.00100	0.200	0	92.8	80	120	0.831	15
Qualifiers: B Analyte det	ected in the a	ecociated M	ethod Blank	DF	Dilution Facto	nr.				
-					Method Detec				ъ	F - C 0 5
•	ected betwee	n NDL and			DDD outside a	uon Liiiit	mal limita		Pa	age 5 of 25

36

R

S

RPD outside accepted control limits

Spike Recovery outside control limits

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: ICP-MS4_190520B

Sample ID 1905178-02C MSD	Batch ID:	90959		TestNo	sw	/6020A		Units:	mg/l	L	
SampType: MSD	Run ID:	ICP-MS4	_190520B	Analysis	S Date: 5/20	0/2019 4:00:0	00 PM	Prep Date	5/17	/2019	
Analyte	!	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit	Qual
Cadmium		0.188	0.00100	0.200	0	94.1	80	120	1.65	15	
Calcium		65.6	0.300	5.00	62.5	61.4	80	120	0.058	15	S
Chromium		0.197	0.00500	0.200	0.0104	93.2	80	120	0.455	15	
Cobalt		0.195	0.00500	0.200	0	97.6	80	120	0.571	15	
Iron		5.20	0.100	5.00	0.303	97.9	80	120	0.922	15	
Lead		0.186	0.00100	0.200	0	93.1	80	120	0.842	15	
Lithium		0.227	0.0100	0.200	0.0361	95.5	80	120	2.65	15	
Magnesium		66.6	0.300	5.00	63.5	62.8	80	120	1.28	15	S
Potassium		6.53	0.300	5.00	1.52	100	80	120	0.365	15	
Selenium		0.201	0.00500	0.200	0	101	80	120	1.07	15	
Sodium		224	0.300	5.00	229	-105	80	120	0.347	15	S
Thallium		0.205	0.00150	0.200	0	103	80	120	2.13	15	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 6 of 25

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: ICP-MS4_190520B

Sample ID ICV-190520	Batch ID: R104182		TestNo	: SW6	6020A		Units:	mg/L
SampType: ICV	Run ID: ICP-MS4	_190520B	Analys	is Date: 5/20	/2019 11:23	3:00 AM	Prep Date	e:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Antimony	0.0968	0.00250	0.100	0	96.8	90	110	
Arsenic	0.0991	0.00500	0.100	0	99.1	90	110	
Barium	0.0948	0.0100	0.100	0	94.8	90	110	
Beryllium	0.102	0.00100	0.100	0	102	90	110	
Cadmium	0.0974	0.00100	0.100	0	97.4	90	110	
Calcium	2.44	0.300	2.50	0	97.7	90	110	
Chromium	0.102	0.00500	0.100	0	102	90	110	
Cobalt	0.101	0.00500	0.100	0	101	90	110	
Iron	2.61	0.100	2.50	0	104	90	110	
Lead	0.0932	0.00100	0.100	0	93.2	90	110	
Lithium	0.106	0.0100	0.100	0	106	90	110	
Magnesium	2.50	0.300	2.50	0	100	90	110	
Potassium	2.53	0.300	2.50	0	101	90	110	
Selenium	0.0979	0.00500	0.100	0	97.9	90	110	
Sodium	2.59	0.300	2.50	0	104	90	110	
Thallium	0.0911	0.00150	0.100	0	91.1	90	110	
Sample ID LCVL-190520	Batch ID: R104182		TestNo	SWE	6020A		Units:	mg/L
1	241011102		1000110	. 3110	,0 <u>_</u> 0,		0	
SampType: LCVL		_190520B		is Date: 5/20		9:00 AM	Prep Date	_
SampType: LCVL Analyte							Prep Date	_
	Run ID: ICP-MS4	_190520B	Analys SPK value	is Date: 5/20	/2019 11:29		Prep Date	ə:
Analyte	Run ID: ICP-MS4	RL	Analys SPK value	is Date: 5/20 Ref Val	/2019 11:29 %REC	LowLim	Prep Date	ə:
Analyte Antimony	Run ID: ICP-MS4 Result 0.00176	RL 0.00250	Analys SPK value 0.00200	Ref Val	%REC 87.9	LowLim 70	Prep Date it HighLimit 130	ə:
Analyte Antimony Arsenic	Run ID: ICP-MS4 Result 0.00176 0.00489	RL 0.00250 0.00500	Analys SPK value 0.00200 0.00500	Ref Val 0	%REC 87.9 97.7	LowLim 70 70	Prep Date it HighLimit 130 130	ə:
Analyte Antimony Arsenic Barium	Run ID: ICP-MS4 Result 0.00176 0.00489 0.00432	RL 0.00250 0.00500 0.0100	Analys SPK value 0.00200 0.00500 0.00500	Ref Val 0 0	%REC 87.9 97.7 86.5	70 70 70	Prep Date it HighLimit 130 130 130	ə:
Analyte Antimony Arsenic Barium Beryllium	Run ID: ICP-MS4 Result 0.00176 0.00489 0.00432 0.000893	RL 0.00250 0.00500 0.0100 0.00100	Analys SPK value 0.00200 0.00500 0.00500 0.00100	Ref Val 0 0 0 0	%REC 87.9 97.7 86.5 89.3	70 70 70 70 70	Prep Date it HighLimit 130 130 130 130	ə:
Analyte Antimony Arsenic Barium Beryllium Cadmium	Run ID: ICP-MS4 Result 0.00176 0.00489 0.00432 0.000893 0.000871	RL 0.00250 0.00500 0.0100 0.00100 0.00100	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.00100	Ref Val 0 0 0 0 0 0	%REC 87.9 97.7 86.5 89.3 87.1	70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130	ə:
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium	Run ID: ICP-MS4 Result 0.00176 0.00489 0.00432 0.000893 0.000871 0.0919	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100	Ref Val 0 0 0 0 0 0 0	%REC 87.9 97.7 86.5 89.3 87.1 91.9	70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130	ə:
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Run ID: ICP-MS4 Result 0.00176 0.00489 0.00432 0.000893 0.000871 0.0919 0.00481	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500	Ref Val 0 0 0 0 0 0 0 0 0	%REC 87.9 97.7 86.5 89.3 87.1 91.9 96.1	70 70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130 130	ə:
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Run ID: ICP-MS4 Result 0.00176 0.00489 0.00432 0.000893 0.000871 0.0919 0.00481 0.00485	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.00500	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500	Ref Val 0 0 0 0 0 0 0 0 0 0 0	%REC 87.9 97.7 86.5 89.3 87.1 91.9 96.1 97.0	70 70 70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 13	ə:
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron	Run ID: ICP-MS4 Result 0.00176 0.00489 0.00432 0.000893 0.000871 0.0919 0.00481 0.00485 0.107	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.00500 0.100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0	%REC 87.9 97.7 86.5 89.3 87.1 91.9 96.1 97.0 107	70 70 70 70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 13	ə:
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead	Run ID: ICP-MS4 Result 0.00176 0.00489 0.00432 0.000893 0.000871 0.0919 0.00481 0.00485 0.107 0.000831	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100 0.00100	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.00500 0.100 0.00100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 87.9 97.7 86.5 89.3 87.1 91.9 96.1 97.0 107 83.1	70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130	ə:
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium	Run ID: ICP-MS4 Result 0.00176 0.00489 0.00432 0.000893 0.000871 0.0919 0.00481 0.00485 0.107 0.000831 0.0104	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100 0.00100 0.00100 0.00100	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.00500 0.100 0.00100 0.00100 0.00100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 87.9 97.7 86.5 89.3 87.1 91.9 96.1 97.0 107 83.1 104	70 70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130	ə:
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium	Run ID: ICP-MS4 Result 0.00176 0.00489 0.00432 0.000893 0.000871 0.0919 0.00481 0.00485 0.107 0.000831 0.0104 0.0970	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100 0.00100 0.00100 0.300	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.00500 0.100 0.00100 0.0100 0.0100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 87.9 97.7 86.5 89.3 87.1 91.9 96.1 97.0 107 83.1 104 97.0	70 70 70 70 70 70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 13	ə:
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Potassium	Run ID: ICP-MS4 Result 0.00176 0.00489 0.00432 0.000893 0.000871 0.0919 0.00481 0.00485 0.107 0.000831 0.0104 0.0970 0.0964	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.100 0.00100 0.300 0.0100 0.300 0.300 0.300	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.100 0.00100 0.0100 0.100 0.100 0.100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 87.9 97.7 86.5 89.3 87.1 91.9 96.1 97.0 107 83.1 104 97.0 96.4	70 70 70 70 70 70 70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 13	ə:
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Potassium Selenium	Run ID: ICP-MS4 Result 0.00176 0.00489 0.00432 0.000893 0.000871 0.0919 0.00481 0.00485 0.107 0.000831 0.0104 0.0970 0.0964 0.00489	RL 0.00250 0.00500 0.0100 0.00100 0.00500 0.00500 0.100 0.00100 0.00100 0.300 0.00500 0.300 0.300 0.300 0.300 0.300	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.100 0.00100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 87.9 97.7 86.5 89.3 87.1 91.9 96.1 97.0 107 83.1 104 97.0 96.4 97.8	70 70 70 70 70 70 70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 13	ə:

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 7 of 25

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: ICP-MS4_190520B

Sample ID CCV5-190520	Batch ID: R104182		TestNo	SW6	6020A		Units:	mg/L
SampType: CCV	Run ID: ICP-MS4	_190520B	Analys	is Date: 5/20 /	/2019 2:53:	00 PM	Prep Date	e:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Antimony	0.195	0.00250	0.200	0	97.6	90	110	
Arsenic	0.203	0.00500	0.200	0	102	90	110	
Barium	0.193	0.0100	0.200	0	96.5	90	110	
Beryllium	0.202	0.00100	0.200	0	101	90	110	
Cadmium	0.197	0.00100	0.200	0	98.4	90	110	
Calcium	4.64	0.300	5.00	0	92.9	90	110	
Chromium	0.195	0.00500	0.200	0	97.5	90	110	
Cobalt	0.201	0.00500	0.200	0	100	90	110	
Iron	5.06	0.100	5.00	0	101	90	110	
Lead	0.192	0.00100	0.200	0	96.1	90	110	
Lithium	0.206	0.0100	0.200	0	103	90	110	
Magnesium	5.06	0.300	5.00	0	101	90	110	
Potassium	5.03	0.300	5.00	0	101	90	110	
Selenium	0.205	0.00500	0.200	0	102	90	110	
Sodium	5.17	0.300	5.00	0	103	90	110	
Thallium	0.199	0.00150	0.200	0	99.7	90	110	
Sample ID LCVL5-190520	Batch ID: R104182		TestNo	: SW6	6020A		Units:	mg/L
Sample ID LCVL5-190520 SampType: LCVL		_190520B		SW6 is Date: 5/20		00 PM	Units: Prep Date	-
							Prep Date	-
SampType: LCVL	Run ID: ICP-MS4	_190520B	Analys SPK value	is Date: 5/20 /	/2019 3:01:		Prep Date	e:
SampType: LCVL Analyte	Run ID: ICP-MS4	-190520B RL	Analys SPK value	is Date: 5/20 Ref Val	/2019 3:01 : %REC	LowLim	Prep Date	e:
SampType: LCVL Analyte Antimony	Run ID: ICP-MS4 Result 0.00174	RL 0.00250	Analys SPK value 0.00200	Ref Val	%REC 87.2	LowLim 70	Prep Date it HighLimit	e:
SampType: LCVL Analyte Antimony Arsenic	Run ID: ICP-MS4 Result 0.00174 0.00487	RL 0.00250 0.00500	Analys SPK value 0.00200 0.00500	Ref Val 0	%REC 87.2 97.5	LowLim 70 70	Prep Date it HighLimit 130 130	e:
SampType: LCVL Analyte Antimony Arsenic Barium	Run ID: ICP-MS4 Result 0.00174 0.00487 0.00423	RL 0.00250 0.00500 0.0100	Analys SPK value 0.00200 0.00500 0.00500	Ref Val 0 0	%REC 87.2 97.5 84.6	70 70 70	Prep Date it HighLimit 130 130 130	e:
SampType: LCVL Analyte Antimony Arsenic Barium Beryllium	Run ID: ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110	RL 0.00250 0.00500 0.0100 0.00100	Analys SPK value 0.00200 0.00500 0.00500 0.00100	Ref Val 0 0 0 0	%REC 87.2 97.5 84.6 110	70 70 70 70 70	Prep Date it HighLimit 130 130 130 130	e:
SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium	Run ID: ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.000921	RL 0.00250 0.00500 0.0100 0.00100 0.00100	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.00100	Ref Val 0 0 0 0 0 0	%REC 87.2 97.5 84.6 110 92.1	70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130	e:
SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium	Run ID: ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.000921 0.0952	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100	Ref Val 0 0 0 0 0 0 0	%REC 87.2 97.5 84.6 110 92.1 95.2	70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130	e:
SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Run ID: ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.000921 0.0952 0.00485	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.100 0.00500	Ref Val 0 0 0 0 0 0 0 0 0	%REC 87.2 97.5 84.6 110 92.1 95.2 97.1	70 70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130 130 130	e:
SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Run ID: ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.000921 0.0952 0.00485 0.00489	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.00500	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500	Ref Val 0 0 0 0 0 0 0 0 0 0 0	%REC 87.2 97.5 84.6 110 92.1 95.2 97.1 97.9	70 70 70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 13	e:
SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron	Run ID: ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.000921 0.0952 0.00485 0.00489 0.108	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.00500 0.100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0	%REC 87.2 97.5 84.6 110 92.1 95.2 97.1 97.9 108	70 70 70 70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 13	e:
SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead	Run ID: ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.000921 0.0952 0.00485 0.00489 0.108 0.000805	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100 0.00100	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.00500 0.100 0.00100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 87.2 97.5 84.6 110 92.1 95.2 97.1 97.9 108 80.5	70 70 70 70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 13	e:
SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium	Run ID: ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.000921 0.0952 0.00485 0.00489 0.108 0.000805 0.0108	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100 0.00100 0.00100 0.00100	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.00500 0.100 0.00100 0.00100 0.00100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 87.2 97.5 84.6 110 92.1 95.2 97.1 97.9 108 80.5 108	70 70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130	e:
SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium	Run ID: ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.000921 0.0952 0.00485 0.00489 0.108 0.000805 0.0108 0.0983	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100 0.00100 0.00100 0.300	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.00500 0.100 0.00100 0.0100 0.0100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 87.2 97.5 84.6 110 92.1 95.2 97.1 97.9 108 80.5 108 98.3	70 70 70 70 70 70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 13	ə:
SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Potassium Selenium	Run ID: ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.000921 0.0952 0.00485 0.00489 0.108 0.000805 0.0108 0.0983 0.0975 0.00517	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.100 0.00100 0.300 0.00500 0.300 0.300 0.300 0.300 0.300	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.100 0.00100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 87.2 97.5 84.6 110 92.1 95.2 97.1 97.9 108 80.5 108 98.3 97.5 103	70 70 70 70 70 70 70 70 70 70 70 70 70	Prep Date it HighLimit 130 130 130 130 130 130 130 130 130 13	ə:
SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Potassium	Run ID: ICP-MS4 Result 0.00174 0.00487 0.00423 0.00110 0.000921 0.0952 0.00485 0.00489 0.108 0.000805 0.0108 0.0983 0.0975	RL 0.00250 0.00500 0.0100 0.00100 0.00500 0.00500 0.00500 0.100 0.00100 0.300 0.300 0.300 0.300	Analys SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.00500 0.100 0.00100 0.00100 0.100 0.100 0.100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 87.2 97.5 84.6 110 92.1 95.2 97.1 97.9 108 80.5 108 98.3 97.5	70 70 70 70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130	ə:

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 8 of 25

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: ICP-MS4_190520B

Sample ID CCV6-190520	Batch ID: R104182	!	TestNo	: SW6	6020A		Units:	mg/L	
SampType: CCV	Run ID: ICP-MS4	_190520B	Analys	is Date: 5/20	/2019 4:02:	00 PM	Prep Date	e:	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	t %RPD RPDLimit	Qual
Antimony	0.194	0.00250	0.200	0	96.9	90	110		
Arsenic	0.205	0.00500	0.200	0	102	90	110		
Barium	0.192	0.0100	0.200	0	96.2	90	110		
Beryllium	0.199	0.00100	0.200	0	99.7	90	110		
Cadmium	0.193	0.00100	0.200	0	96.3	90	110		
Calcium	4.67	0.300	5.00	0	93.4	90	110		
Chromium	0.194	0.00500	0.200	0	96.8	90	110		
Cobalt	0.203	0.00500	0.200	0	101	90	110		
Iron	5.07	0.100	5.00	0	101	90	110		
Lead	0.195	0.00100	0.200	0	97.6	90	110		
Lithium	0.204	0.0100	0.200	0	102	90	110		
Magnesium	5.01	0.300	5.00	0	100	90	110		
Potassium	4.98	0.300	5.00	0	99.6	90	110		
Selenium	0.205	0.00500	0.200	0	103	90	110		
Sodium	5.14	0.300	5.00	0	103	90	110		
Thallium	0.205	0.00150	0.200	0	102	90	110		
Sample ID LCVL6-190520	Batch ID: R104182		TestNo	swe	6020A		Units:	mg/L	
SampType: LCVL	Run ID: ICP-MS4	_190520B	Analys	is Date: 5/20	/2019 4:06:	00 PM	Prep Date	e:	
SampType: LCVL Analyte	Run ID: ICP-MS4	I_190520B RL	Analys SPK value	is Date: 5/20 Ref Val	/2019 4:06: %REC		<u> </u>	e: t %RPD RPDLimit	Qual
			SPK value				<u> </u>		Qual
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit		Qual
Analyte Antimony	Result 0.00178	RL 0.00250	SPK value 0.00200	Ref Val	%REC 89.2	LowLim	it HighLimit		Qual
Analyte Antimony Arsenic	Result 0.00178 0.00492	RL 0.00250 0.00500	SPK value 0.00200 0.00500	Ref Val 0 0	%REC 89.2 98.4	LowLim 70 70	it HighLimit 130 130		Qual
Analyte Antimony Arsenic Barium	Result 0.00178 0.00492 0.00435	RL 0.00250 0.00500 0.0100	SPK value 0.00200 0.00500 0.00500	Ref Val 0 0 0	%REC 89.2 98.4 87.0	70 70 70 70	130 130 130 130		Qual
Analyte Antimony Arsenic Barium Beryllium	Result 0.00178 0.00492 0.00435 0.00105	RL 0.00250 0.00500 0.0100 0.00100	SPK value 0.00200 0.00500 0.00500 0.00100	Ref Val 0 0 0 0 0	%REC 89.2 98.4 87.0 105	70 70 70 70 70	130 130 130 130 130		Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium	Result 0.00178 0.00492 0.00435 0.00105 0.000933	RL 0.00250 0.00500 0.0100 0.00100 0.00100	SPK value 0.00200 0.00500 0.00500 0.00100 0.00100	Ref Val 0 0 0 0 0 0	%REC 89.2 98.4 87.0 105 93.3	70 70 70 70 70 70	130 130 130 130 130 130		Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium	Result 0.00178 0.00492 0.00435 0.00105 0.000933 0.0988	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300	SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100	Ref Val 0 0 0 0 0 0 0 0	%REC 89.2 98.4 87.0 105 93.3 98.8	70 70 70 70 70 70 70	130 130 130 130 130 130 130		Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Result 0.00178 0.00492 0.00435 0.00105 0.000933 0.0988 0.00475	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500	SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500	Ref Val 0 0 0 0 0 0 0 0 0 0	%REC 89.2 98.4 87.0 105 93.3 98.8 95.0	70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130		Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Result 0.00178 0.00492 0.00435 0.00105 0.000933 0.0988 0.00475 0.00485	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.00500	SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500	Ref Val 0 0 0 0 0 0 0 0 0 0 0	%REC 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1	70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130		Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron	Result 0.00178 0.00492 0.00435 0.00105 0.000933 0.0988 0.00475 0.00485 0.107	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.00500 0.100	SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500 0.100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0	%REC 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1	70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130		Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead	Result 0.00178 0.00492 0.00435 0.00105 0.000933 0.0988 0.00475 0.00485 0.107 0.000828	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100 0.00100	SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500 0.100 0.00100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1 107 82.8	70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130		Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium	Result 0.00178 0.00492 0.00435 0.00105 0.000933 0.0988 0.00475 0.00485 0.107 0.000828 0.0104	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100 0.00100 0.00100	SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500 0.100 0.00100 0.00100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1 107 82.8 104	70 70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130		Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium	Result 0.00178 0.00492 0.00435 0.00105 0.000933 0.0988 0.00475 0.00485 0.107 0.000828 0.0104 0.0986 0.0940	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100 0.00100 0.300 0.300 0.300	SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.100 0.00100 0.0100 0.100 0.100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1 107 82.8 104 98.6 94.0	70 70 70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130		Qual
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Potassium	Result 0.00178 0.00492 0.00435 0.00105 0.000933 0.0988 0.00475 0.00485 0.107 0.000828 0.0104 0.0986	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.100 0.00100 0.00100 0.300	SPK value 0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500 0.100 0.00100 0.0100 0.0100	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 89.2 98.4 87.0 105 93.3 98.8 95.0 97.1 107 82.8 104 98.6	70 70 70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130		Qual

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 9 of 25

CLIENT: Golder ANALYTICAL QC SUMMARY REPORT Work Order: 1905168

Project: Luminant-	-MLSES A	Ash Ponds				RunII): I	CP-MS5_	19052	1A
The QC data in batch 90959 app 06B, 1905168-07B	lies to the	following sar	nples: 1905	168-01B, 19051	68-02B, 19	05168-03B,	1905168	-04B, 190516	8-05B,	1905168-
Sample ID MB-90959	Batch ID	90959		TestNo:	SWe	6020A		Units:	mg/L	
SampType: MBLK	Run ID:	ICP-MS5	_190521A	Analysis	Date: 5/21	/2019 12:36	6:00 PM	Prep Date:	5/17/2	2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron		<0.0100	0.0300							
Molybdenum		<0.00200	0.00500							
Sample ID LCS-90959	Batch ID	90959		TestNo:	SW	6020A		Units:	mg/L	
SampType: LCS	Run ID:	ICP-MS5	_190521A	Analysis	Date: 5/21	/2019 12:38	3:00 PM	Prep Date:	5/17/2	2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron		0.201	0.0300	0.200	0	101	80	120		
Molybdenum		0.195	0.00500	0.200	0	97.3	80	120		
Sample ID LCSD-90959	Batch ID	90959		TestNo:	swe	6020A		Units:	mg/L	
SampType: LCSD	Run ID:	ICP-MS5	_190521A	Analysis	Date: 5/21	/2019 12:41	I:00 PM	Prep Date:	5/17/2	2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron		0.208	0.0300	0.200	0	104	80	120	3.23	15
Molybdenum		0.192	0.00500	0.200	0	96.2	80	120	1.18	15
Sample ID 1905178-02C SD	Batch ID	90959		TestNo:	swe	6020A		Units:	mg/L	
SampType: SD	Run ID:	ICP-MS5	_190521A	Analysis	Date: 5/21	/2019 12:47	7:00 PM	Prep Date:	5/17/2	2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron		<1.00	3.00	0	0.525				0	10
Calcium		70.4	30.0	0	68.2				3.15	10
Magnesium		63.5	30.0	0	63.5				0.085	10
Molybdenum		<0.200	0.500	0	0				0	10
Sodium		227	30.0	0	233				2.75	10
Sample ID 1905178-02C PDS	Batch ID	90959		TestNo:	SW	6020A		Units:	mg/L	
SampType: PDS	Run ID:	ICP-MS5	_190521A	Analysis	Date: 5/21	/2019 1:14:	00 PM	Prep Date:	5/17/2	2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron		4.53	0.600	4.00	0.525	100	80	120		
Calcium		170	6.00	100	68.2	102	80	120		
Magnesium		161	6.00	100	63.5	97.1	80	120		
Molybdenum		3.64	0.100	4.00	0	90.9	80	120		
Sodium		331	6.00	100	233	98.2	80	120		

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 10 of 25

S Spike Recovery outside control limits

Analyte

Boron

Molybdenum

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

Result

0.750

0.189

RL

0.600

0.100

RunID: ICP-MS5_190521A

LowLimit HighLimit %RPD RPDLimit Qual

14.3

1.76

15

15

120

120

Sample ID 1905178-02C MS	Batch ID:	90959		TestNo	SWe	6020A		Units:	mg/L	
SampType: MS	Run ID:	ICP-MS5	_190521A	Analysi	s Date: 5/21	/2019 1:17:	00 PM	Prep Date:	5/17/2019	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit '	%RPD RPDLimit Q	ual
Boron		0.866	0.600	0.200	0.525	170	80	120		S
Molybdenum		0.192	0.100	0.200	0	96.0	80	120		
Sample ID 1905178-02C MSD	Batch ID:	90959		TestNo	SWe	6020A		Units:	mg/L	
SampType: MSD	Run ID:	ICP-MS5	_190521A	Analysi	s Date: 5/21	/2019 1:19:	00 PM	Prep Date:	5/17/2019	

SPK value

0.200

0.200

Ref Val

0.525

0

%REC

112

94.3

80

80

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 11 of 25

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: ICP-MS5_190521A

Sample ID ICV-190521	Batch ID:	R10420	04	TestNo	: SW6	020A		Units:	mg/L
SampType: ICV	Run ID:	ICP-M	S5_190521A	Analysi	s Date: 5/21/	2019 12:10	0:00 PM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Boron		0.103	0.0300	0.100	0	103	90	110	
Calcium		2.52	0.300	2.50	0	101	90	110	
Iron		2.60	0.100	2.50	0	104	90	110	
Magnesium		2.49	0.300	2.50	0	99.7	90	110	
Molybdenum		0.0930	0.00500	0.100	0	93.0	90	110	
Sodium		2.56	0.300	2.50	0	103	90	110	
Sample ID LCVL-190521	Batch ID:	R10420	04	TestNo	: SW6	020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-M	S5_190521A	Analysi	is Date: 5/21/	2019 12:1	5:00 PM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Boron		0.0223	0.0300	0.0200	0	111	70	130	
Calcium		0.104	0.300	0.100	0	104	70	130	
Iron		0.0979	0.100	0.100	0	97.9	70	130	
Magnesium		0.0983	0.300	0.100	0	98.3	70	130	
Molybdenum		0.00464	0.00500	0.00500	0	92.8	70	130	
Sodium		0.0960	0.300	0.100	0	96.0	70	130	
Sample ID CCV1-190521	Batch ID:	R10420	04	TestNo	: SW6	020A		Units:	mg/L
SampType: CCV	Run ID:	ICP-M	S5_190521A	Analysi	is Date: 5/21/	2019 1:26:	00 PM	Prep Date):
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Boron		0.196	0.0300	0.200	0	98.1	90	110	
Calcium		4.90	0.300	5.00	0	98.0	90	110	
Iron		5.04	0.100	5.00	0	101	90	110	
Magnesium		4.94	0.300	5.00	0	98.8	90	110	
Molybdenum		0.193	0.00500	0.200	0	96.3	90	110	
Sodium		4.93	0.300	5.00	0	98.6	90	110	
Sample ID LCVL1-190521	Batch ID:	R10420	04	TestNo	: SW6	020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-M	S5_190521A	Analysi	is Date: 5/21/	2019 1:30:	:00 PM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Boron		0.0245	0.0300	0.0200	0	123	70	130	
Calcium		0.0976	0.300	0.100	0	97.6	70	130	
Iron		0.0980	0.100	0.100	0	98.0	70	130	
Magnesium		0.0940	0.300	0.100	0	94.0	70	130	
				0.00500	•	05.0	70	400	
Molybdenum		0.00478	0.00500	0.00500	0	95.6	70	130	

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 12 of 25

S Spike Recovery outside control limits

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: ICP-MS5_190521A

Sample ID CCV2-190521	Batch ID: R104204		TestNo	SW	6020A		Units:	mg/L
SampType: CCV	Run ID: ICP-MS5_	_190521A	Analysi	is Date: 5/21	/2019 2:05:	00 PM	Prep Date	ə :
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Boron	0.208	0.0300	0.200	0	104	90	110	
Molybdenum	0.201	0.00500	0.200	0	101	90	110	
Sample ID LCVL2-190521	Batch ID: R104204		TestNo	: SW	6020A		Units:	mg/L
SampType: LCVL	Run ID: ICP-MS5_	_190521A	Analysi	is Date: 5/21	/2019 2:09:	00 PM	Prep Date	e:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Boron	0.0258	0.0300	0.0200	0	129	70	130	
Molybdenum	0.00474	0.00500	0.00500	0	94.7	70	130	
Sample ID CCV3-190521	Batch ID: R104204		TestNo	: SW	6020A		Units:	mg/L
SampType: CCV	Run ID: ICP-MS5_	_190521A	Analysi	s Date: 5/21	/2019 2:34:	00 PM	Prep Date	e:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Boron	0.199	0.0300	0.200	0	99.5	90	110	
Molybdenum	0.199	0.00500	0.200	0	99.7	90	110	
Sample ID LCVL3-190521	Batch ID: R104204		TestNo	: SW	6020A		Units:	mg/L
SampType: LCVL	Run ID: ICP-MS5_	_190521A	Analysi	is Date: 5/21	/2019 2:46:	.00 PM	Prep Date	e :
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Boron	0.0227	0.0300	0.0200	0	113	70	130	
Molybdenum	0.00484	0.00500	0.00500	0	96.8	70	130	
Sample ID CCV4-190521	Batch ID: R104204	^	TestNo	: SW	6020A		Units:	mg/L
SampType: CCV	Run ID: ICP-MS5	_190521A	Analysi	s Date: 5/21	/2019 3:00:	00 PM	Prep Date	e:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Molybdenum	0.199	0.00500	0.200	0	99.7	90	110	
Sample ID LCVL4-190521	Batch ID: R104204		TestNo	: SW	6020A		Units:	mg/L
SampType: LCVL	Run ID: ICP-MS5_	_190521A	Analysi	s Date: 5/21	/2019 3:05:	00 PM	Prep Date	e:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Molybdenum	0.00483	0.00500	0.00500	0	96.6	70	130	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 13 of 25

S Spike Recovery outside control limits

CLIENT: Golder

ANALYTICAL QC SUMMARY REPORT

Work Order: 1905168

Project: Luminant-MLSES Ash Ponds RunID: IC2_190515A

The QC data in batch 90908 applies to the following samples: 1905168-01C, 1905168-02C, 1905168-03C, 1905168-04C, 1905168-05C, 1905168-	
06C, 1905168-07C	

Sample ID MB-90908	Batch ID:	90908		TestNo	: E300	0		Units:	mg/L
SampType: MBLK	Run ID:	IC2_190	515A	Analysi	s Date: 5/15	/2019 10:10):50 AM	Prep Date:	5/15/2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qua
Chloride	•	<0.300	1.00						
Fluoride		<0.100	0.400						
Nitrate-N		<0.100	0.500						
Sulfate		<1.00	3.00						

Sample ID LCS-90908	Batch ID: 909	08	Test	No: E	300		Units:	mg/L
SampType: LCS	Run ID: IC2	_190515A	Anal	ysis Date: 5/	/15/2019 10:26	6:50 AM	Prep Date	5/15/2019
Analyte	Resul	t RL	SPK value	e Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride	10.1	1.00	10.00	0	101	90	110	
Fluoride	4.00	0.400	4.000	0	99.9	90	110	
Nitrate-N	5.09	0.500	5.000	0	102	90	110	
Sulfate	30.4	3.00	30.00	0	101	90	110	

Sample ID LCSD-90908	Batch ID: 90908		TestNo		Units:	mg/L	-		
SampType: LCSD	Run ID: IC2_190515A		Analys	is Date: 5/15	/2019 10:42	2:50 AM	Prep Date	e: 5/15 /	/2019
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride	10.2	1.00	10.00	0	102	90	110	0.674	20
Fluoride	4.05	0.400	4.000	0	101	90	110	1.26	20
Nitrate-N	5.08	0.500	5.000	0	102	90	110	0.146	20
Sulfate	30.9	3.00	30.00	0	103	90	110	1.55	20

Sample ID 1905167-01CMS	Batch ID:	90908		TestNo	: E3 0	00		Units:	mg/L
SampType: MS	Run ID:	IC2_1905	515A	Analysi	s Date: 5/1	5/2019 1:07:	36 PM	Prep Date	5/15/2019
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Chloride		222	10.0	200.0	12.69	105	90	110	
Fluoride		211	4.00	200.0	0	106	90	110	
Nitrate-N		45.6	5.00	45.16	0	101	90	110	
Sulfate		239	30.0	200.0	41.32	98.7	90	110	

Sample ID 1905167-01CMSD	Batch ID:	90908		TestNo	: 1	E300		Units:	mg/l	_
SampType: MSD	Run ID:	IC2_19051	5A	Analysi	s Date: \$	5/15/2019 1:23:	36 PM	Prep Date	5/15	/2019
Analyte		Result	RL	SPK value	Ref Va	al %REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Chloride		221	10.0	200.0	12.69	104	90	110	0.308	20
Fluoride		210	4.00	200.0	0	105	90	110	0.286	20
Nitrate-N		45.8	5.00	45.16	0	101	90	110	0.495	20

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAP certified} \end{array}$

Page 14 of 25

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: IC2_190515A

Sample ID	1905167-01CMSD	Batch ID:	90908		TestNo:	E3	00		Units:	mg/L		
SampType:	MSD	Run ID:	IC2_190	515A	Analysis	Date: 5/ 1	15/2019 1:23:	36 PM	Prep Date:	5/15/2	2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD F	RPDLimit	Qual
Sulfate			237	30.0	200.0	41.32	97.7	90	110	0.821	20	
Sample ID	1905167-02CMS	Batch ID:	90908		TestNo:	E3	00		Units:	mg/L		
SampType:	MS	Run ID:	IC2_190	515A	Analysis	Date: 5/ 1	15/2019 1:55:	36 PM	Prep Date:	5/15/2	2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD F	RPDLimit	Qual
Chloride			686	10.0	200.0	528.8	78.8	90	110			S
Fluoride			229	4.00	200.0	24.26	102	90	110			
Nitrate-N			56.2	5.00	45.16	10.55	101	90	110			
Sulfate			2520	30.0	200.0	0	1260	90	110			S
Sample ID	1905167-02CMSD	Batch ID:	90908		TestNo:	E3	00		Units:	mg/L		
SampType:	MSD	Run ID:	IC2_190	515A	Analysis	Date: 5/ 1	15/2019 2:11:	36 PM	Prep Date:	5/15/2	2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD F	RPDLimit	Qual
Chloride			688	10.0	200.0	528.8	79.8	90	110	0.292	20	S
Fluoride			229	4.00	200.0	24.26	102	90	110	0.251	20	
Nitrate-N			57.3	5.00	45.16	10.55	103	90	110	1.85	20	
Sulfate			<10.0	30.0	200.0	0	0	90	110	0	20	S

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 15 of 25

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: IC2_190515A

Troject.	Lumma	III-WILDLD A	sii i olius				Kulli	, <u>,</u>	.02_17031	
Sample ID	ICV-190515	Batch ID:	R104097		TestNo:	E300	0		Units:	mg/L
SampType:	ICV	Run ID:	IC2_1905	15A	Analysis	s Date: 5/15	/2019 9:38:	50 AM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit S	%RPD RPDLimit Qual
Chloride			25.8	1.00	25.00	0	103	90	110	
Fluoride			10.3	0.400	10.00	0	103	90	110	
Nitrate-N			13.0	0.500	12.50	0	104	90	110	
Sulfate			77.8	3.00	75.00	0	104	90	110	
Sample ID	CCV1-190515	Batch ID:	R104097		TestNo:	E300	0		Units:	mg/L
SampType:	CCV	Run ID:	IC2_1905	15A	Analysis	Date: 5/15	/2019 4:51:	:36 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit S	%RPD RPDLimit Qual
Chloride			10.4	1.00	10.00	0	104	90	110	
Fluoride			4.15	0.400	4.000	0	104	90	110	
Nitrate-N			5.13	0.500	5.000	0	103	90	110	
Sulfate			30.8	3.00	30.00	0	103	90	110	
Sample ID	CCV2-190515	Batch ID:	R104097		TestNo:	E300	0		Units:	mg/L
SampType:	CCV	Run ID:	IC2_1905	15A	Analysis	Date: 5/15	/2019 8:35:	35 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ^c	%RPD RPDLimit Qual
Chloride			10.6	1.00	10.00	0	106	90	110	
Fluoride			4.20	0.400	4.000	0	105	90	110	
Nitrate-N			5.20	0.500	5.000	0	104	90	110	
Sulfate			31.5	3.00	30.00	0	105	90	110	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 16 of 25

ANALYTICAL QC SUMMARY REPORT

Duoingte Luc	minant MI CEC A	ah Donda				RunII). I	C4_19051	6 1	
	minant-MLSES A		anlas: 100	E169 016		Kullii); I	C4_190510	DA	1
The QC data in batch 90			ipies: 190			_				
Sample ID MB-90935	Batch ID:			TestNo:				Units:	mg/L	
SampType: MBLK	Run ID:	IC4_1905	516A	Analysis	S Date: 5/16	/2019 10:26	5:21 AM	Prep Date:	5/16/20	19
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	%RPD RF	DLimit Qual
Sulfate		<1.00	3.00							
Sample ID LCS-90935	Batch ID:	90935		TestNo:	E300)		Units:	mg/L	
SampType: LCS	Run ID:	IC4_1905	16A	Analysis	s Date: 5/16	/2019 10:42	2:21 AM	Prep Date:	5/16/20	19
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	%RPD RF	DLimit Qual
Sulfate		29.5	3.00	30.00	0	98.3	90	110		
Sample ID LCSD-9093	Batch ID:	90935		TestNo:	E300)		Units:	mg/L	
SampType: LCSD	Run ID:	IC4_1905	16A	Analysis	Date: 5/16	/2019 10:58	3:21 AM	Prep Date:	5/16/20	19
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	DLimit Qual
Sulfate		29.8	3.00	30.00	0	99.2	90	110	0.935	20
Sample ID 1905167-02	CMS Batch ID:	90935		TestNo:	E300)		Units:	mg/L	
SampType: MS	Run ID:	IC4_1905	16A	Analysis	Date: 5/16	/2019 5:10:	27 PM	Prep Date:	5/16/20	19
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	%RPD RF	DLimit Qual
Sulfate		4830	300	2000	2897	96.9	90	110		
Sample ID 1905167-02	CMSD Batch ID:	90935		TestNo:	E300)		Units:	mg/L	
SampType: MSD	Run ID:	IC4_1905	516A	Analysis	Date: 5/16	/2019 5:26:	27 PM	Prep Date:	5/16/20	19
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	DLimit Qual
Sulfate		4880	300	2000	2897	99.1	90	110	0.920	20
Sample ID 1905168-01	CMS Batch ID:	90935		TestNo:	E300)		Units:	mg/L	
SampType: MS	Run ID:	IC4_1905	16A	Analysis	Date: 5/16	/2019 5:58:	26 PM	Prep Date:	5/16/20	19
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	DLimit Qual
Sulfate		4380	300	2000	2468	95.6	90	110		
Sample ID 1905168-01	CMSD Batch ID:	90935		TestNo:	E300)		Units:	mg/L	
SampType: MSD	Run ID:	IC4_1905	16A	Analysis	s Date: 5/16	/2019 6:14:	27 PM	Prep Date:	5/16/20	19
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	DLimit Qual

Qualifiers: Analyte detected in the associated Method Blank

Sulfate

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

4390

300

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

2468

Page 17 of 25

110

0.273

90

96.2

R RPD outside accepted control limits

S Spike Recovery outside control limits Parameter not NELAP certified

48

2000

20

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: IC4_190516A

Sample ID ICV-190516	Batch ID	R104119)	TestNo	: E300	0		Units:	mg/L
SampType: ICV	Run ID:	IC4_190	516A	Analys	s Date: 5/16	/2019 9:54	21 AM	Prep Date	9:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD RPDLimit Qua
Sulfate		74.5	3.00	75.00	0	99.4	90	110	
Sample ID CCV1-190516	Batch ID	: R104119)	TestNo	: E300	0		Units:	mg/L
SampType: CCV	Run ID:	IC4_190	516A	Analys	s Date: 5/16	/2019 9:10	26 PM	Prep Date	: :
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPDLimit Qua
Sulfate		30.2	3.00	30.00	0	101	90	110	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 18 of 25

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

TITRATOR_190516A **RunID:**

The QC data in batch 90940 applies to the following samples: 1905168-01C	1905168-02C, 1905168-03C, 1905168-04C, 1905168-05C, 1905168-
06C, 1905168-07C	

The QC data in batch 90940 app 06C, 1905168-07C	lies to the f	ollowing samp	les: 19051	68-01C, 19051	68-02C, 19	05168-03C	1905168	-04C, 190516	8-05C,	1905168-
Sample ID MB-90940	Batch ID:	90940		TestNo:	M23	20 B		Units:	mg/L	@ pH 4.47
SampType: MBLK	Run ID:	TITRATOR	_190516A	Analysis	Date: 5/16/	/2019 2:00:	00 PM	Prep Date:	5/16/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Alkalinity, Bicarbonate (As CaCO	3)	<10.0	20.0							
Alkalinity, Carbonate (As CaCO3)	<10.0	20.0							
Alkalinity, Hydroxide (As CaCO3)		<10.0	20.0							
Alkalinity, Total (As CaCO3)		<20.0	20.0							
Sample ID LCS-90940	Batch ID:	90940		TestNo:	M23	20 B		Units:	mg/L	@ pH 4.08
SampType: LCS	Run ID:	TITRATOR	_190516A	Analysis	Date: 5/16	/2019 2:04:	00 PM	Prep Date:	5/16/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Alkalinity, Total (As CaCO3)		52.3	20.0	50.00	0	105	74	129		
Sample ID 1905134-01C DUP	Batch ID:	90940		TestNo:	M23	20 B		Units:	mg/L	@ pH 4.52
SampType: DUP	Run ID:	TITRATOR	_190516A	Analysis	Date: 5/16	/2019 2:15:	00 PM	Prep Date:	5/16/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Alkalinity, Bicarbonate (As CaCO	3)	205	20.0	0	205.8				0.536	20
Alkalinity, Carbonate (As CaCO3)	<10.0	20.0	0	0				0	20
Alkalinity, Hydroxide (As CaCO3)		<10.0	20.0	0	0				0	20
Alkalinity, Total (As CaCO3)		205	20.0	0	205.8				0.536	20
Sample ID 1905168-05C DUP	Batch ID:	90940		TestNo:	M23	20 B		Units:	mg/L	@ pH 4.51
SampType: DUP	Run ID:	TITRATOR	190516A	Analysis	Date: 5/16	/2019 4:30:	00 PM	Prep Date:	5/16/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Alkalinity, Bicarbonate (As CaCO	3)	<10.0	20.0	0	0		_		0	20
Alkalinity, Carbonate (As CaCO3)	<10.0	20.0	0	0				0	20
Alkalinity, Hydroxide (As CaCO3)		<10.0	20.0	0	0				0	20
Alkalinity, Total (As CaCO3)		<20.0	20.0	0	0				0	20

Qualifiers:	В	Analyte (detected	in the	associated	Method	Blank
-------------	---	-----------	----------	--------	------------	--------	-------

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

Page 19 of 25

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: TITRATOR 190516A

Project: Luminant-	MLSES A	Ash Ponds				KunII):	ITTRATO	R_190516A
Sample ID ICV-190516	Batch ID:	R104124		TestNo:	M23	20 B		Units:	mg/L @ pH 4.34
SampType: ICV	Run ID:	TITRATOR	_190516A	Analysis	Date: 5/16	/2019 1:58:	00 PM	Prep Date:	5/16/2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaCC	3)	8.64	20.0	0					
Alkalinity, Carbonate (As CaCO3)	89.3	20.0	0					
Alkalinity, Hydroxide (As CaCO3))	<10.0	20.0	0					
Alkalinity, Total (As CaCO3)		97.9	20.0	100.0	0	97.9	98	102	
Sample ID CCV1-190516	Batch ID:	R104124		TestNo:	M23	20 B		Units:	mg/L @ pH 4.25
SampType: CCV	Run ID:	TITRATOR	_190516A	Analysis	Date: 5/16	/2019 3:39:	00 PM	Prep Date:	5/16/2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaCC	3)	21.7	20.0	0					
Alkalinity, Carbonate (As CaCO3)	76.8	20.0	0					
Alkalinity, Hydroxide (As CaCO3))	<10.0	20.0	0					
Alkalinity, Total (As CaCO3)		98.5	20.0	100.0	0	98.5	90	110	
Sample ID CCV2-190516	Batch ID:	R104124		TestNo:	M23	20 B		Units:	mg/L @ pH 4.21
SampType: CCV	Run ID:	TITRATOR	_190516A	Analysis	Date: 5/16	/2019 4:35:	00 PM	Prep Date:	5/16/2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaCC	3)	17.7	20.0	0					
Alkalinity, Carbonate (As CaCO3)	81.3	20.0	0					
Alkalinity, Hydroxide (As CaCO3))	<10.0	20.0	0					
Alkalinity, Total (As CaCO3)		99.0	20.0	100.0	0	99.0	90	110	
Sample ID CCV3-190516	Batch ID:	R104124		TestNo:	M23	20 B		Units:	mg/L @ pH 4.39
SampType: CCV	Run ID:	TITRATOR	190516A	Analysis	Date: 5/16	/2019 4:54:	00 PM	Prep Date:	5/16/2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaCC	13)	20.3	20.0	0					
Alkalinity, Carbonate (As CaCO3)	77.1	20.0	0					
Alkalinity, Hydroxide (As CaCO3))	<10.0	20.0	0					
Alkalinity, Total (As CaCO3)		97.4	20.0	100.0	0	97.4	90	110	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 20 of 25

CLIENT: Golder

ANALYTICAL QC SUMMARY REPORT

Work Order: 1905168

Project: Luminant-MLSES Ash Ponds **RunID:** UV/VIS_2_190515B

LowLimit HighLimit %RPD RPDLimit Qual

The QC dat 06C, 19051	a in batch 90921 appl 68-07C	lies to the fo	ollowing sam	ples: 19051	168-01C, 19051	68-02C, 190	5168-03C,	1905168-	-04C, 190516	8-05C, 1905168-
Sample ID	MB-90921	Batch ID:	90921		TestNo:	M450	0-P E		Units:	mg/L
SampType:	MBLK	Run ID:	UV/VIS_2	_190515B	Analysis	Date: 5/15/2	2019 12:42	2:00 PM	Prep Date:	5/15/2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPDLimit Qual
Phosphorus	, Total Orthophospha	te (As <	<0.0300	0.100						
Sample ID	LCS-90921	Batch ID:	90921		TestNo:	M450	0-P E		Units:	mg/L
SampType:	LCS	Run ID:	UV/VIS_2	_190515B	Analysis	Date: 5/15/2	2019 12:43	3:00 PM	Prep Date:	5/15/2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPDLimit Qual
Phosphorus	, Total Orthophospha	te (As	0.513	0.100	0.5000	0	103	80	120	
Sample ID	LCSD-90921	Batch ID:	90921		TestNo:	M450	0-P E		Units:	mg/L
SampType:	LCSD	Run ID:	UV/VIS_2	_190515B	Analysis	Date: 5/15/2	2019 12:43	3:00 PM	Prep Date:	5/15/2019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPDLimit Qual
Phosphorus	, Total Orthophospha	te (As	0.504	0.100	0.5000	0	101	80	120	1.77 15
Sample ID	1905168-01CMS	Batch ID:	90921		TestNo:	M450	0-P E		Units:	mg/L
SampType:	MS	Run ID:	UV/VIS_2_	_190515B	Analysis	Date: 5/15/2	2019 12:45	:00 PM	Prep Date:	5/15/2019

Phosphorus, Total Orthophospha	ite (As	0.587	0.100	0.5000	0.07700	102	80	120		
Sample ID 1905168-01CMSD	Batch ID:	90921		TestNo	M450	00-P E		Units:	mg/L	
SampType: MSD	Run ID:	UV/VIS_2	_190515B	Analysis	s Date: 5/15/	/2019 12:45	:00 PM	Prep Date	e: 5/15/ 2	2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD F	RPDLimit Qu
Phosphorus, Total Orthophospha	ite (As	0.525	0.100	0.5000	0.07700	89.6	80	120	11.2	15

SPK value

RL

Result

Qualifiers:

Analyte

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

%REC

Ref Val

S Spike Recovery outside control limits Parameter not NELAP certified

Page 21 of 25

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: UV/VIS_2_190515B

Sample ID ICV-190515	Batch ID:	R10407	1	TestNo:	M45	00-P E		Units:	mg/L	
SampType: ICV	Run ID:	UV/VIS_	_2_190515B	Analysis	s Date: 5/15	/2019 12:4	1:00 PM	Prep Date	e:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLir	nit Qual
Phosphorus, Total Orthophosp	hate (As	0.204	0.100	0.2000	0	102	85	115		
Sample ID CCV1-190515	Batch ID:	R10407	1	TestNo:	M45	00-P E		Units:	mg/L	
SampType: CCV	Run ID:	UV/VIS_	_2_190515B	Analysis	s Date: 5/15	/2019 12:5	1:00 PM	Prep Date	e:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLir	nit Qual
Phosphorus, Total Orthophosp	hate (As	0.509	0.100	0.5000	0	102	85	115		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 22 of 25

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

UV/VIS_2_190520A **RunID:**

The QC data in batch 91002 applies to the following samples: 1905168-01A	1905168-02A, 1905168-03A	, 1905168-04A, 1905168-05A, 1905168-
06A, 1905168-07A		

Batch ID: Run ID:	UV/VIS_2_ Result 0.0888 91002	RL 0.100 190520A RL 0.100	SPK value TestNo:	Ref Val M35: Date: 5/200 Ref Val Ref Val 0	%REC	LowLimi	Units: Prep Date: it HighLimit % Units: Prep Date: it HighLimit % 115 Units:	mg/L 5/20/201	DLimit Qual
Batch ID: Run ID: Batch ID:	Result <0.0500 91002 UV/VIS_2 Result 0.0888 91002	RL 0.100 190520A RL 0.100	SPK value TestNo: Analysis SPK value 0.1000	M350 B Date: 5/200 Ref Val	%REC 00-Fe D /2019 3:53: %REC 88.8	LowLimi 00 PM LowLimi	Units: Prep Date: it HighLimit %	mg/L 5/20/201	N 9 DLimit Qual
Batch ID: Run ID: Batch ID:	91002 UV/VIS_2_ Result 0.0888 91002	0.100 190520A RL 0.100	TestNo: Analysis SPK value 0.1000	M350 s Date: 5/200 Ref Val	00-Fe D /2019 3:53: %REC 88.8	00 PM LowLimi	Units: Prep Date: it HighLimit %	mg/L 5/20/20 1	N 9 DLimit Qual
Batch ID: Run ID: Batch ID:	91002 UV/VIS_2 Result 0.0888 91002	190520A RL 0.100	Analysis SPK value 0.1000	Ref Val	%REC 88.8	LowLimi	Prep Date: it HighLimit %	5/20/20 1 6RPD RPI	9 DLimit Qual
Run ID:	UV/VIS_2_ Result 0.0888 91002	RL 0.100	Analysis SPK value 0.1000	Ref Val	%REC 88.8	LowLimi	Prep Date: it HighLimit %	5/20/20 1 6RPD RPI	DLimit Qual
Batch ID:	Result 0.0888 91002	RL 0.100	SPK value	Ref Val	%REC 88.8	LowLimi	it HighLimit %	6RPD RPI	DLimit Qual
Batch ID:	0.0888 91002	0.100	0.1000	0	88.8		115		
Batch ID:	91002					85		mg/L	N
			TestNo:	M35	00-Fe D		Units:	mg/L	
Run ID:	11////15 2								
	0 0 / 0 13_2_	_190520A	Analysis	Date: 5/20	/20 19 3:53:	00 PM	Prep Date:	5/20/201	9
	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RPI	DLimit Qual
	0.0879	0.100	0.1000	0	87.9	85	115	1.05	15 N
Batch ID:	91002		TestNo:	M35	00-Fe D		Units:	mg/L	
Run ID:	UV/VIS_2_	_190520A	Analysis	Date: 5/20	/2019 4:03:	00 PM	Prep Date:	5/20/201	9
	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPI	DLimit Qual
	0.0860	0.100	0.1000	0	86.0	85	115		N
Batch ID:	91002		TestNo:	M35	00-Fe D		Units:	mg/L	
Run ID:	UV/VIS_2	_190520A	Analysis	Date: 5/20	/2019 4:03:	00 PM	Prep Date:	5/20/201	9
	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPI	DLimit Qual
	0.0861	0.100	0.1000	0	86.1	85	115	0.116	15 N
	Batch ID: Run ID: Batch ID: Run ID:	Run ID: UV/VIS_2_ Result 0.0860 Batch ID: 91002	0.0879 0.100 Batch ID: 91002 Run ID: UV/VIS_2_190520A Result RL 0.0860 0.100 Batch ID: 91002 Run ID: UV/VIS_2_190520A Result RL	0.0879 0.100 0.1000 Batch ID: 91002 TestNo: Run ID: UV/VIS_2_190520A Analysis Result RL SPK value 0.0860 0.100 0.1000 Batch ID: 91002 TestNo: Run ID: UV/VIS_2_190520A Analysis Result RL SPK value	0.0879 0.100 0.1000 0 Batch ID: 91002 TestNo: M350 Run ID: UV/VIS_2_190520A Analysis Date: 5/200 Result RL SPK value Ref Val 0.0860 0.100 0.1000 0 Batch ID: 91002 TestNo: M350 Run ID: UV/VIS_2_190520A Analysis Date: 5/200 Result RL SPK value Ref Val	0.0879 0.100 0.1000 0 87.9 Batch ID: 91002 TestNo: M3500-Fe D Run ID: UV/VIS_2_190520A Analysis Date: 5/20/2019 4:03: Result RL SPK value Ref Val %REC 0.0860 0.100 0.1000 0 86.0 Batch ID: 91002 TestNo: M3500-Fe D Run ID: UV/VIS_2_190520A Analysis Date: 5/20/2019 4:03: Result RL SPK value Ref Val %REC	0.0879 0.100 0.1000 0 87.9 85 Batch ID: 91002 TestNo: M3500-Fe D Run ID: UV/VIS_2_190520A Analysis Date: 5/20/2019 4:03:00 PM Result RL SPK value Ref Val %REC LowLimit Batch ID: 91002 TestNo: M3500-Fe D Run ID: UV/VIS_2_190520A Analysis Date: 5/20/2019 4:03:00 PM Result RL SPK value Ref Val %REC LowLimit	0.0879 0.100 0.1000 0 87.9 85 115 Batch ID: 91002 TestNo: M3500-Fe D Units: Result RL SPK value Ref Val %REC LowLimit HighLimit % 0.0860 0.100 0.1000 0 86.0 85 115 Batch ID: 91002 TestNo: M3500-Fe D Units: Run ID: UV/VIS_2_190520A Analysis Date: 5/20/2019 4:03:00 PM Prep Date: Result R SPK value Ref Val %REC LowLimit HighLimit %	0.0879 0.100 0.1000 0 87.9 85 115 1.05 Batch ID: 91002 TestNo: M3500-Fe D Units: mg/L Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPI 0.0860 0.100 0.1000 0 86.0 85 115 Batch ID: 91002 TestNo: M3500-Fe D Units: mg/L Run ID: UV/VIS_2_190520A Analysis Date: 5/20/2019 4:03:00 PM Prep Date: 5/20/2019 Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPI

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 23 of 25 RPD outside accepted control limits

R S Spike Recovery outside control limits

CLIENT: Golder **Work Order:** 1905168

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

RunID: UV/VIS_2_190520A

Sample ID ICV-190520	Batch ID:	R104177		TestNo:	М35	500-Fe D		Units:	mg/L	
SampType: ICV	Run ID:	UV/VIS_2	2_190520A	Analysis	s Date: 5/20)/2019 3:52:	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPI	DLimit Qual
Iron, Ferrous		0.0875	0.100	0.1000	0	87.5	85	115		N
Sample ID CCV1-190520	Batch ID:	R104177		TestNo:	M35	500-Fe D		Units:	mg/L	
SampType: CCV	Run ID:	UV/VIS_2	2_190520A	Analysis	s Date: 5/20)/2019 3:59:	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPI	DLimit Qual
Iron, Ferrous		0.197	0.100	0.2000	0	98.4	85	115		N
Sample ID CCV2-190520	Batch ID:	R104177		TestNo:	M35	500-Fe D		Units:	mg/L	
SampType: CCV	Run ID:	UV/VIS_2	2_190520A	Analysis	s Date: 5/20)/2019 4:12:	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPI	DLimit Qual
Iron, Ferrous		0.183	0.100	0.2000	0	91.7	85	115		N

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 24 of 25

S Spike Recovery outside control limits

CLIENT: Golder 1905168 Work Order:

Total Dissolved Solids (Residue, Filtera

ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds

WC_190517D RunID:

The QC data in batch 90953 a 06C, 1905168-07C	ipplies to the fo	llowing samples:	1905168-01C, 1905168-02	2C, 1905168-03C, 190516	8-04C, 190516	8-05C, 1905168-
Sample ID MB-90953	Batch ID:	90953	TestNo:	M2540C	Units:	mg/L
SampType: MBLK	Run ID:	WC_190517D	Analysis Date	: 5/17/2019 11:40:00 AM	Prep Date:	5/16/2019

Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Sample ID LCS-90953 Batch ID: 90953 TestNo: M2540C Units: mg/L Run ID: Prep Date: SampType: LCS WC_190517D Analysis Date: 5/17/2019 11:40:00 AM 5/16/2019

Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids (Residue, Filtera 745 10.0 745.6 0 99.9 90 113

10.0

<10.0

Sample ID 1905167-02C-DUP M2540C Batch ID: 90953 TestNo: Units: mg/L SampType: **DUP** WC_190517D Analysis Date: 5/17/2019 11:40:00 AM Run ID: Prep Date: 5/16/2019 Analyte Result RLSPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids (Residue, Filtera 5340 50.0 0 5375 0.747 5

Sample ID 1905168-02C-DUP Batch ID: 90953 TestNo: M2540C Units: mg/L SampType: DUP Run ID: WC_190517D Analysis Date: 5/17/2019 11:40:00 AM Prep Date: 5/16/2019

RLSPK value Ref Val LowLimit HighLimit %RPD RPDLimit Qual Analyte Result %REC

0 Total Dissolved Solids (Residue, Filtera 940 50.0 910.0 3.24 5

Qualifiers: В Analyte detected in the associated Method Blank

> Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 25 of 25

S Spike Recovery outside control limits

ANALYTICAL REPORT

DHL Analytical, Inc.

Sample Delivery Group:

L1100989

Samples Received:

05/21/2019

Project Number:

1905168

Description:

Report To:

John DuPont

2300 Double Creek Drive

Round Rock, TX 78664

Entire Report Reviewed By:

Donna Eidson Project Manager

Şr

Qс

GΙ

Sc

p: Cover Page	- Control of the Cont
c: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
H-31 L1100989-01	6
H-32 L1100989-02	7
H-27 L1100989-03	8
H-29 L1100989-04	9
H-28 L1100989-05	10
H-26 L1100989-06	11
H-33 L1100989-07	12
Qc: Quality Control Summary	13
Radiochemistry by Method 904	13
Radiochemistry by Method SM7500Ra B M	14
GI: Glossary of Terms	15
Al: Accreditations & Locations	16
Sc. Sample Chain of Custody	17

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

H-31 L1100989-01 Non-Potable Water			Collected by	Collected date/time 05/14/19 07:40	Received dat 05/21/19 10:10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
H-32 L1100989-02 Non-Potable Water			Collected by	Collected date/time 05/14/19 08:25	Received dat 05/21/19 10:10	
	D - + -1-	Dilution	Dranagation	Analysis	Analyst	Location
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	LOCATION
Radiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
H-27 L1100989-03 Non-Potable Water			Collected by	Collected date/time 05/14/19 09:40	Received dat 05/21/19 10:10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
H-29 L1100989-04 Non-Potable Water		11	Collected by	Collected date/time 05/14/19 11:25	Received dat 05/21/19 10:1	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
H-28 L1100989-05 Non-Potable Water			Collected by	Collected date/time 05/14/19 12:30	Received da 05/21/19 10:1	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
H-26 L1100989-06 Non-Potable Water			Collected by	Collected date/time 05/14/19 14:25	Received da 05/21/19 10:1	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10	JMR	Mt. Juliet, TN
made anomaly by mode of t		•				

Sr

`Qc

Gl

'Sc

Mt. Juliet, TN

Mt. Juliet, TN

Radiochemistry by Method Calculation

Radiochemistry by Method SM7500Ra B M

59

WG1287234

WG1287234

05/29/19 08:27

05/29/19 08:27

RGT

RGT

06/03/19 17:48

06/03/19 17:48

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

Collected by

Collected date/time Received date/time 05/14/19 15:30

05/21/19 10:10

H-33 L1100989-07 Non-Potable Water

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Radiochemistry by Method 904	WG1285651	1	05/24/19 09:05	05/31/19 11:10	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1287234	1	05/29/19 08:27	06/03/19 17:48	RGT	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Donna Eidson Project Manager

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 05/14/19 07:40

Radiochemistry by M	ethod 904
---------------------	-----------

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/l		+/-	pCi/l	date / time	
RADIUM-228	0.531		0.515	0.789	05/31/2019 11:10	WG1285651
(T) Barium	120			62.0-143	05/31/2019 11:10	WG1285651
(T) Yttrium	93.0			79.0-136	05/31/2019 11:10	WG1285651

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
Combined Radium	3. 15	be	1.09	0,978	06/03/2019 17:48	WG1287234

Radiochemistry by Method SM7500Ra B M

<u> </u>	Result	Qualifier Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l	+/-	pCi/l	date / time		
RADIUM-226	2.62	0.578	0.189	06/03/2019 17:48	WG1287234	and the second s
(T) Rarium-133	104		30.0-143	06/03/2019 17:48	WG1287234	

ONE LAB, NATIONWIDE.

Collected date/time: 05/14/19 08:25

Radiochemistry	by Method	904
----------------	-----------	-----

, <u></u>	Result	Qualifier Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l	+/-	pCi/l	date / time	
RADIUM-228	0.147	0.380	0.546	05/31/2019 11:10	WG1285651
(T) Barium	100		62.0-143	05/31/2019 11:10	WG1285651
(T) Yttrium	109		79.0-136	05/31/2019 11:10	WG1285651

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/I	date / time	
Combined Radium	0.450		0.625	0.833	06/03/2019 17:48	WG1287234

Radiochemistry by Method SM7500Ra B M

	Result <u>Q</u> u	ualifier Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l	+/-	pCi/l	date / time	
RADIUM-226	0.303	0.245	0.287	06/03/2019 17:48	WG1287234
(T) Barium-133	105		30,0-143	06/03/2019 17:48	WG1287234

H-27 Collected date/time: 05/14/19 09:40

(T) Barium-133

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

WG1287234

06/03/2019 17:48

L110098

Radiochemistry by Method 904

	7 7				
***************************************	Result (Qualifier Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l	+/-	pCi/I	date / time	
RADIUM-228	0.928	0.365	0.563	05/31/2019 11:10	WG1285651
	96.7			05/31/2019 11:10	WG1285651
(T) Yttrium	98.1		79.0-136	05/31/2019 11:10	WG1285651

, , , , , , , , , , , , , , , , , , , ,							
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		
Combined Radium	2.03		0.814	0.854	06/03/2019 17:48	WG1287234	

Radiochemistry t	by Method SM75	500Ra B M					
>>000000000000000000000000000000000000	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		en compressors com c
RADIUM-226	1.10		0,449	0.291	06/03/2019 17:48	WG1287234	

85.4

Gl

ONE LAB. NATIONWIDE.

Collected date/time: 05/14/19 11:25

Radiochemistry by Method 904

Radiocricinistry by Met	100 90 1				
	Result <u>Qualifier</u>	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l	+/-	pCi/l	date / time	
RADIUM-228	0.352	0.428	0.707	05/31/2019 11:10	WG1285651
(T) Barium	116		62.0-143	05/31/2019 11:10	WG1285651
(T) Yttrium	96.5		79.0-136	05/31/2019 11:10	WG1285651

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
Combined Radium	0.474	300	0.641	1.05	06/03/2019 17:48	WG1287234

Radiochemistry by Method SM7500Ra B M

***************************************	Result	<u>Qualifier</u> Uncertair	nty MDA	Analysis Date	<u>Batch</u>	
Analyte	pCi/l	+/-	pCi/l	date / time		
RADIUM-226	0.122	0,213	0.339	06/03/2019 17:48	WG1287234	
(T) Barium-133	72.2		30.0-143	06/03/2019 17:48	WG1287234	

ONE LAB. NATIONWIDE.

Collected date/time: 05/14/19 12:30

Radiochemistry	by	Method	904

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
RADIUM-228	0.615	., ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.370	0.575	05/31/2019 11:10	WG1285651
(T) Barlum	106			62.0-143	05/31/2019 11:10	WG1285651
(T) Yttrium	95.5			79.0-136	05/31/2019 11:10	WG1285651

Radiochemistry by Method Calculation

***************************************	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/I	date / time	
Combined Radium	1.06		0.634	0.777	06/03/2019 17:48	WG1287234

Radiochemistry by Method SM7500Ra B M

**************************************	Result	Qualifier Uncerta	inty MDA	Analysis Date	<u>Batch</u>	
Analyte	pCi/l	+/-	pCi/l	date / time		and the second second second second second second second second second second second second second second second
RADIUM-226	0.444	0.264	0.202	06/03/2019 17:48	WG1287234	
(T) Barium-133	90.7		30.0-143	06/03/2019 17:48		

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 05/14/19 14:25

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/i		+/-	pCi/l	date / time	
RADIUM-228	0.598		0.330	0,545	05/31/2019 11:10	WG1285651
(T) Barium	98.4			62.0-143	05/31/2019 11:10	WG1285651
(T) Yttrium	113			79.0-136	05/31/2019 11:10	WG1285651

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
Combined Radium	2.03		0.761	0.783	06/03/2019 17:48	<u>WG1287234</u>

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier Uncertainty	MDA	Analysis Date	<u>Batch</u>	
Analyte	pCi/l	+/-	pCi/l	date / time		
RADIUM-226	1.43	0.431	0.238	06/03/2019 17:48	WG1287234	
(T) Barium-133	103		30.0-143	06/03/2019 17:48	WG1287234	

H-33 Collected date/time: 05/14/19 15:30

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

L110098

Radiochemistry by Method 904

tadochemistry by method 501											
	Result	<u>Qualifier</u> Uncertainty	MDA	Analysis Date	Batch						
Analyte	pCi/l	+/-	pCi/l	date / time							
RADIUM-228	1.35	0.414	0.627	05/31/2019 11:10	WG1285651						
(T) Barium	97,4		62.0-143	05/31/2019 11:10	WG1285651						
(T) Yttrium	96.3		79,0-136	05/31/2019 11:10	WG1285651						

B 15 1 1 1	r	8 8 1E 1	O 1 1 11 .
Radiochemistry	þγ	Method	Calculation

200449-7-20	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
Combined Radium	2.20	TO TO THE REAL PROPERTY.	0.764	0.846	06/03/2019 17:48	WG1287234

Radiochemistry by Method SM7500Ra B M

	Result Q	ualifier Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/l	+/-	pCi/l	date / time	
RADIUM-226	0.850	0.350	0.219	06/03/2019 17:48	WG1287234
(T) Barium-133	102		30.0-143	06/03/2019 17:48	WG1287234

WG1285651

Radiochemistry by Method 904

L1100989-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3417363-1 05/30/19 12:10 MB MDA MB Result MB Qualifier pCi/l Analyte pCi/l -0.0581 0.396 Radium-228 (T) Barium 105 110 (T) Yttrium

/OS\L1100977-01_05/30/19 12:10 • (DUP) R3417363-5_05/30/19 12:10

(03) 21100377 07 03/0071	Original Result		Dilution	DUP RPD	DUP RER	DUP Qualifier	DUP RPD Limits	DUP RER Limit
Analyte	pCi/l	pCi/l		%			%	
Radium-228	-0.0695	0.650	1	200	0.741		20	3
(T) Barlum	109	111						
(T) Yttrium	113	107					-	

fΙ	CSI	D341	7363-2	กร	/30	/19	12:10	

Laboratory Control Sample (LCS)

(LCS) R341/363	2 05/30/19 12:10				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	pCi/l	pCi/l	%	%	consecutive and approximate the
Radium-228	5.00	5.29	106	80.0-120	
(T) Barium			104		
(T) Yttrium			114		

Sc

L1100989-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1100989-01 C	(OS) L1100989-01 05/31/19 11:10 • (MS) R3417363-3 05/30/19 12:10 • (MSD) R3417363-4 05/30/19 12:10												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	MS RER	RPD Limits
Analyte	pCi/I	pCi/l	pCi/l	pCi/I	%	%		%			%		%
Radium-228	20.0	0.531	20.9	19.5	102	94.8	1	70.0-130			7.08		20
(T) Barium		120			102	115							
(T) Yttrium		93.0		-	117	114							

Radiochemistry by Method SM7500Ra B M

Method Blank (MB)

(MB) R3419580-1 06/0	3/19 17:43		
	MB Result	MB Qualifier	MB MDA
Analyte	pCi/l		pCi/l
Radium-226	0.00994	**************************************	0.0573
(T) Barium-133	67.4		

L1103100-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1103100-01	06/03/19 17:43 · (D	UP) R3419580-7	06/03/19 17:43

	Original Result	DUP Result	Dilution	DUP RPD	DUP RER	DUP Qualifier	DUP RPD Limits	DUP RER Limit
Analyte	pCi/l	pCI/I		%		6:0000	%	and the same of the same of the same of the same of the same of the same of the same of the same of the same of
Radium-226	0.267	1.33	1	133	2.21		20	3
(T) Barium-133	110	102						

Laboratory Control Sample (LCS)

(LCS) R3419580-2	06/03/19 17:43
	C 11 L

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	pCi/l	pCi/l	%	%	
Radium-226	5.02	5.10	102	80.0-120	W21
(T) Barium-133			56.0		

L1101875-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1101875-03 06	/03/19 17:43 • (MS) R	3419580-3 06	5/03/19 17:43 •	(MSD) R341958	30-6 06/03/1	19 17:43						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier RPD	MS RER	RPD Limits
Analyte	pCi/l	pCi/l	pCi/l	pCi/l	%	%		%		%	AND THE SECOND OF THE SECOND S	%
Radium-226	20.1	0.637	17.9	20.3	86.0	97.8	1	75.0-125		12.4		20
(T) Barium-133		83.3				71.3		*** ::::.**;**		and the state of t		Maria (Mina

L1101881-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1101881-03 06/03/19 17:43 • (MS) R3419580-4 06/03/19 17:43 • (MSD) R3419580-5 06/03/19 17:43													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	MS RER	RPD Limits
Analyte	pCi/l	pCi/l	pCi/l	pCi/l	%	. %		%	o- y.a. go-a	ny avangana may nama a meneraka	%	Segue Compression and American Services	%
Radium-226	20.1	0.522	21.1	19.2	102	93.1	1	75.0-125			9.23		20
(T) Barium-133		105			89.6	99.7							

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

		J
⁵ S	r	-

Abbreviations and	Abbreviations and Definitions				
MDA	Minimum Detectable Activity.				
Rec.	Recovery. The CHARLES AND AND AND AND AND AND AND AND AND AND				
RER	Replicate Error Ratio.				
RPD	Relative Percent Difference.				
SDG	Sample Delivery Group.				
	Tracer - A radioisotope of known concentration added to a solution of chemically equivalent radioisotopes at a known concentration to assist in monitoring the yield of the chemical separation.				
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.				
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.				
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.				
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.				
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.				
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.				
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.				
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.				
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.				

Sample Chain of Custody (Sc)

This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.

Sample Results (Sr)

This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.

Sample Summary (Ss)

This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier

Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

ONE LAB. NATIONWIDE.

Tc

Ss

Cn

Sr

СС

GI

'Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana 1	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina 1	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 14	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		······································
A2LA - ISO 17025	1461.01	
A2LA - ISO 17025 ⁵	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Moid ⁶ Wastewater n/a Accreditation not applicable

### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



Cooler Receip	SDG#:	11009	189
Client: DHLRITE	Temperature:	Ano	
Cooler Received/Opened On: 5/21/19			
eceived By: Brock Fariss			
lignature: AL Favier			
Receipt Check List	NV.	Yes	No.
COC Seal Present / Intact?			
OC Signed / Accurate?			14,20,19412
		1	
Bottles arrive intactr	내가 그리얼 강동교회 나는 당한 발표를 만든 본 속에서 생활한 그림을 가진 하다가는 게 하는 말은		
Bottles arrive intact? Correct bottles used?			



	HLRRTX	Date:05	Evaluated by:Kelsey 5
in#: L110098			

Non-Conformance (check applicable items)

	Sample Integrity	Chain of Custody Clarification	
	Parameter(s) past holding time	Login Clarification Needed	If Broken Container:
	Temperature not in range	Chain of custody is incomplete	Insufficient packing material around container
	Improper container type	Please specify Metals requested.	Insufficient packing material inside cooler
×	pH not in range.	Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Courie
	Insufficient sample volume.	Received additional samples not listed on coc.	Sample was frozen
	Sample is biphasic.	Sample ids on containers do not match ids on coc	Container lid not intact
	Vials received with headspace.	Trip Blank not received.	If no Chain of Custody:
	Broken container	Client did not "X" analysis.	Received by:
	Broken container:	Chain of Custody is missing	Date/Time:
	Sufficient sample remains		Temp./Cont. Rec./pH:
			Carrier:
			Tracking#

# Login Comments: 1 of 2 H-32 was received with a pH of 6. pH adj in login 1511 5/21

Client informed by:	The read of the Company of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contr	Email	Voice Mail	Date:	Time:	
TSR Initials:	Client Contact					

Login Instructions:

Noted 5/21/19 1547

# **CHAIN-OF-GUSTODY RECORD**

Requested Tests

Page 1 of 1

DHL Analytical, Inc.

2300 Double Creek Drive Round Rock, TX 78664

TEL: (512) 388-8222 Work Order 1905168

FAX: (512) 388-8229

H007

Subcontractor:

Pace Analytical 12065 Lebanon Rd Mt. Juliet, TN 37122 TEL

(615) 773-5923

FAX:

DHLRRTX Acct#:

15-May-19

***************************************			E. F. 17			Ra-228	' Ra-236 M7500 Ra B M	y a more of the majorithm of the property of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t		
	Sample Id	Matrix	DHL#	Date Collected	Bottle Type	E904.0	Milono ua o iii	Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar and Salar		OI OI	200000000000000000000000000000000000000
		Aqueous	I-01D	05/14/19 07:40 AM	1LHDPEHNO3	£			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		e de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company
	H-31	Aqueous		05/14/19 07:40 AM	1LHDPEHN03					02	Municipal Property and the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control o
	H-31	Aqueous	- Land	05/14/19 08:25 AM	1LHDPEHNO3						. and
40.00	H-32	Aqueous		05/14/19 08:25 AM	1LHDPEHNO3					05	
	H-32	Aqueous		05/14/19 09:40 AM	1LHDPEHNO3						da un soli
	H-27	Aqueous		05/14/19 09:40 AM	1LHOPEHNO3			,		04	- Transit
	14-29	Aqueous		05/14/19 11:25 AM	1LHOPEHNO3	4.	and have a famous or a	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			- Service
and the second	11-29	Aqueous		05/14/19 11:25 AM	1LHDPEHNO					95	Award Award
	H-28	Aqueous	A series see	05/14/19 12:30 PM	1LHDPEHNO:		and the second second				
	H-28	Agueous		05/14/19 12:30 PM	1LHDPEHNO	:				9	
	H-26	Aqueou:	s -06D	05/14/19 02:25 PM	1LHDPEHNO			, a game a company of the second			
	H-26	Aqueou		05/14/19 02:25 PM	1LHDPEHNO	2 Hoperson			WG 44000 ******	07	2/10/10/-
	H-33	Aqueou		05/14/19 03:30 PM	1LHDPEHNO			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			
		Anueou	s -07E	05/14/19 03 30 PM	1LHDPEHNO	a		I would be			

General Comments:

Please analyze these samples with Normal Tumaround Time.
Report RA-226. Ra-228 & Combined per Specs.
Quality Control Package Needed: Standard - NELAC Rad Test compliant

Email to cac@dhlanalytical.com & dupont@dhlanalytical.com

Relinquished by: Relinquished by:

Date/Time

5/17/19 1900

Received by:

Date/Time 5/21/19 100

Received by:

pit ad) @ 1511

TAPD SCREEN: <0.5 mil/hr



May 30, 2019

Will Vienne

Golder

2201 Double Creek Dr #4004

Round Rock, Texas 78664

TEL: (512) 671-3434

FAX (512) 671-3446 Order No.: 1905167

RE: Luminant-MLSES Ash Ponds

Dear Will Vienne:

DHL Analytical, Inc. received 2 sample(s) on 5/15/2019 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-19-24



# Table of Contents

Miscellaneous Documents	3
CaseNarrative 1905167	7
WorkOrderSampleSummary 1905167	9
PrepDatesReport 1905167	10
AnalyticalDatesReport 1905167	11
Analytical Report 1905167	
AnalyticalQCSummaryReport 1905167	
Subcontract Report 1905167	40



2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 ■ FAX (512) 388-8229 Web: www.dhlanalytical.com

Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com





# Nº86480 CHAIN-OF-CUSTOD

CLIENT: GOLDER ADDRESS: 2201 DOUBLE CREEK DR, ROUND ROCK, P. 7866 PHONE: 512-671-3434 FAX/E-MAIL: 512-671-3446 DATA REPORTED TO: WILL VIENNE ADDITIONAL REPORT, COPIES TO:								-4 - -	•	PO PRO	#: _	T (	<b>5-/</b> -0C# 0JEC	ATIO	N C	OR NA	ам <b>2</b> :	E: _	Lv	MI	NA	W	<i>T</i> :	· //	1L:	SE	19 <b>S</b>	05 A	16 5H	P	DF_ DN/ RO1	05				
Authorize 5% surcharge for TRRP Report?  Yes  No	W=W A=Al L=LIG	/ATER SI	=PAIN L=SLU )=OTH O=SO	IDGE ER		ntainers	PR		RVA				مردية																							<b>y</b>
Field Sample I.D.	DHL Lab#	Date	Time	Matrix	Container Type	# of Co	HCI	HNO³	H ₂ SO ₄ [	삘	UNPRE																				30	FIE	ELD N	IOTES		
	02	5-14-19				7,		X		×																		X								     
RELINQUI HID BY: (Signature)	7	<b>S</b>	DATE/ DATE/	TIME 19	RECEIVEI 1800 RECEIVEI	D BY: (	(Sign	ature L	) ×					- 1	RU	SH 🗆	CA	LL F	<b>TIM</b> -IRST												ERM			6 NO.	T USE	— — — —
Fella 5/15/19 0943 E SELINQUISTIED BY: (Signature)  DHL DISPOSAL @ \$5.00 each  PReturn							1 DAY CALL FIRST 2 DAY CARRIER: COSTODY SEALS: BROKEN OINTAIN CARRIER: COURSTAR DEFEDEX NORMAL COURIER DELIVERY DHLCOCI								ĒR																					

# Eric Lau

From: John DuPont

**Sent:** Tuesday, May 28, 2019 11:35 AM

To: Eric Lau

Subject: FW: CCR Analysis

# **Appendix III Parameters:**

Metals (Ca and B)

Anions (Cl, F, and SO4)

TDS

# **Appendix IV Parameters:**

Metals (As, Ba, Be, Cd, Co, Cr, Hg, Li, Mo, Pb, Sb, Se, and Tl)

Ra-226 Ra-228

From: Vienne, Will [mailto:William_Vienne@golder.com]

Sent: Tuesday, April 09, 2019 12:48 PM

To: John DuPont <dupont@dhlanalytical.com>

**Subject:** CCR Analysis

SHIP DATE: 14MAY19 ACTWGT: 50.90 LB CAD: 006994166/SSFE2002 DIMS: 23x14x14 IN

BILL THIRD PARTY

DHL 2300 DOUBLE CREEK DR

ROUND ROCK TX 78664



FedEx Express

2 of 4 MPS# 7872 5506 5857 PRIORITY OVERNIGHT

0201

78664 TX-US AUS



# Sample Receipt Checklist

Client Name Golder			Date Receiv	ed:	5/15/2019
Work Order Number 1905167			Received by	EL	
Checklist completed by: Signature	5/15/201 Date	19	Reviewed by	Initials	5/15/2019 Date
	Carrier name	FedEx 1day			
Shipping container/cooler in good condition?		Yes 🔽	No E	Not Present	: C
Custody seals intact on shippping container/cod	oler?	Yes 🗀	No 🗔	Not Present	✓
Custody seals intact on sample bottles?		Yes 📋	No 🛄	Not Present	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished and	received?	Yes 🗹	No 🗀		
Chain of custody agrees with sample labels?		Yes 🗹	No .		
Samples in proper container/bottle?		Yes 🗸	No [.]		
Sample containers intact?		Yes 🗹	No 🗀		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗀		
All samples received within holding time?		Yes 🗹	No 🔲		
Container/Temp Blank temperature in complian	ce?	Yes 🗹	No 🗆 🗳	1.5 °C	
Water - VOA vials have zero headspace?		Yes 🔽	No 🗍 🕦	No VOA viais	submitted [
Water - pH<2 acceptable upon receipt?		Yes 🔽	No " ! I	4A (□ Lo	OT# 11837
		Adjusted? n	0	Checked I	by EL
Water - ph>9 (S) or ph>10 (CN) acceptable upo	on receipt?	Yes []	No	NA 🗹 🗆 LO	OT#
		Adjusted?		Checked I	by
Any No response must be detailed in the comm	nents section below.			*** *** * **** **** *	
Client contacted	Date contacted:		Pers	on contacted	
Contacted by:	Regarding:	·			
Comments:					
					en e e
Corrective Action					
			<u></u> -		

Page 1 of 1

CLIENT: Golder

Project: Luminant-MLSES Ash Ponds CASE NARRATIVE

**Date:** 30-May-19

**Lab Order:** 1905167

Samples were analyzed using the methods outlined in the following references:

Method SW6020A - Metals Analysis

Method SW7470A - Mercury Analysis

Method E300 - Anions Analysis

Method M2320 B - Alkalinity Analysis

Method M3500-Fe D - Ferrous Iron Analysis (this parameter is not NELAP certified)

Method M3500-Fe D - Ferric Iron (calculation) (this calculation is not NELAP certified).

Method M4500-P E - Orthophosphate Analysis

Method M2540C - TDS Analysis

Sub-contract - Radium-228 and Radium-226 analyses by methods E904 and SM 7500 Ra B M. Analyzed at Pace Analytical.

### LOG IN

The samples were received and log-in performed on 5/15/19. A total of 2 samples were received. The samples arrived in good condition and were properly packaged.

# **METALS ANALYSIS**

For Metals analysis performed on 5/21/19 the matrix spike and matrix spike duplicate recoveries were below control limits for Calcium and Sodium. These are flagged accordingly in the QC summary report. The sample selected for the matrix spike and matrix spike duplicate was not from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis performed on 5/21/19 the RPD for the serial dilution was slightly above control limits for Potassium. This is flagged accordingly. The PDS was within control limits for this analyte. No further corrective actions were taken.

For Metals analysis performed on 5/21/19 the PDS recovery was out of control limits for three analytes. These are flagged accordingly. The serial dilution was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis performed on 5/21/19 three LCVLs were out of control limits for Potassium and/or Sodium. These are flagged accordingly. The associated CCVs were within control limits for these analytes. No further corrective actions were taken.

### **ANIONS ANALYSIS**

**CLIENT:** Golder

Project: Luminant-MLSES Ash Ponds CASE NARRATIVE

**Lab Order:** 1905167

For Anions analysis performed on 5/15/19 (batch 90908) the matrix spike and matrix spike duplicate recoveries (1905167-02 MS/MSD) were out of control limits for Chloride and Sulfate. These are flagged accordingly in the QC summary report. The sample selected for the matrix spike and matrix spike duplicate was from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

**Date:** 30-May-19

**CLIENT:** Golder

Project: Luminant-MLSES Ash Ponds Work Order Sample Summary

**Lab Order:** 1905167

Lab Smp ID	Client Sample ID	Tag Number	<b>Date Collected</b>	Date Recved
1905167-01	Lake Sample		05/14/19 10:05 AM	5/15/2019
1905167-02	Pond Sample		05/14/19 10:20 AM	5/15/2019

**Lab Order:** 1905167 **Client:** Golder

**Project:** Luminant-MLSES Ash Ponds

# PREP DATES REPORT

Sample ID	Client Sample ID	<b>Collection Date</b>	Matrix	Test Number	Test Name	Prep Date	Batch ID
1905167-01A	Lake Sample	05/14/19 10:05 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
1905167-01B	Lake Sample	05/14/19 10:05 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/20/19 09:34 AM	90990
	Lake Sample	05/14/19 10:05 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/20/19 09:34 AM	90990
	Lake Sample	05/14/19 10:05 AM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
1905167-01C	Lake Sample	05/14/19 10:05 AM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	Lake Sample	05/14/19 10:05 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	Lake Sample	05/14/19 10:05 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	Lake Sample	05/14/19 10:05 AM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	Lake Sample	05/14/19 10:05 AM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953
1905167-02A	Pond Sample	05/14/19 10:20 AM	Aqueous	M3500-Fe	Ferrous Iron Prep Water	05/20/19 02:56 PM	91002
1905167-02B	Pond Sample	05/14/19 10:20 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/20/19 09:34 AM	90990
	Pond Sample	05/14/19 10:20 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	05/20/19 09:34 AM	90990
	Pond Sample	05/14/19 10:20 AM	Aqueous	SW7470A	Mercury Aq Prep	05/21/19 09:56 AM	91017
1905167-02C	Pond Sample	05/14/19 10:20 AM	Aqueous	M2320 B	Alkalinity Preparation	05/16/19 10:12 AM	90940
	Pond Sample	05/14/19 10:20 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	Pond Sample	05/14/19 10:20 AM	Aqueous	E300	Anion Preparation	05/15/19 09:07 AM	90908
	Pond Sample	05/14/19 10:20 AM	Aqueous	E300	Anion Preparation	05/16/19 09:16 AM	90935
	Pond Sample	05/14/19 10:20 AM	Aqueous	M4500-P E	Orthophosphate Prep	05/15/19 12:12 PM	90921
	Pond Sample	05/14/19 10:20 AM	Aqueous	M2540C	TDS Preparation	05/16/19 03:23 PM	90953

**Lab Order:** 1905167 **Client:** Golder

**Project:** Luminant-MLSES Ash Ponds

# ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1905167-01A	Lake Sample	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A
	Lake Sample	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:54 PM	UV/VIS_2_190520A
1905167-01B	Lake Sample	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:11 AM	CETAC2_HG_190522 A
	Lake Sample	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90990	1	05/22/19 12:01 PM	ICP-MS4_190522B
	Lake Sample	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90990	1	05/21/19 03:24 PM	ICP-MS5_190521A
1905167-01C	Lake Sample	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:05 PM	TITRATOR_190516A
	Lake Sample	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 12:51 PM	IC2_190515A
	Lake Sample	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 05:23 PM	IC2_190515A
	Lake Sample	Aqueous	M4500-P E	Orthophosphate	90921	1	05/15/19 02:47 PM	UV/VIS_2_190515B
	Lake Sample	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D
1905167-02A	Pond Sample	Aqueous	M3500-Fe D	Ferric Iron (Calculated)	91002	1	05/24/19	UV/VIS_2_190524A
	Pond Sample	Aqueous	M3500-Fe D	Ferrous Iron	91002	1	05/20/19 03:54 PM	UV/VIS_2_190520A
1905167-02B	Pond Sample	Aqueous	SW7470A	Mercury Total: Aqueous	91017	1	05/22/19 10:13 AM	CETAC2_HG_190522 A
	Pond Sample	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90990	100	05/22/19 12:03 PM	ICP-MS4_190522B
	Pond Sample	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	90990	1	05/21/19 03:26 PM	ICP-MS5_190521A
1905167-02C	Pond Sample	Aqueous	M2320 B	Alkalinity	90940	1	05/16/19 04:08 PM	TITRATOR_190516A
	Pond Sample	Aqueous	E300	Anions by IC method - Water	90908	10	05/15/19 01:39 PM	IC2_190515A
	Pond Sample	Aqueous	E300	Anions by IC method - Water	90908	1	05/15/19 05:39 PM	IC2_190515A
	Pond Sample	Aqueous	E300	Anions by IC method - Water	90935	100	05/16/19 04:54 PM	IC4_190516A
	Pond Sample	Aqueous	M4500-P E	Orthophosphate	90921	1	05/15/19 02:47 PM	UV/VIS_2_190515B
	Pond Sample	Aqueous	M2540C	Total Dissolved Solids	90953	1	05/17/19 11:40 AM	WC_190517D

CLIENT: Golder Client Sample ID: Lake Sample

 Project:
 Luminant-MLSES Ash Ponds
 Lab ID:
 1905167-01

 Project No:
 19122262-C
 Collection Date:
 05/14/19 10:05 AM

Lab Order: 1905167 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATE	R	SW60	)20A				Analyst: RO
Antimony	<0.00800	0.000800	0.00250		mg/L	1	05/21/19 03:24 PM
Arsenic	< 0.00200	0.00200	0.00500		mg/L	1	05/21/19 03:24 PM
Barium	0.0535	0.00300	0.0100		mg/L	1	05/21/19 03:24 PM
Beryllium	< 0.000300	0.000300	0.00100		mg/L	1	05/21/19 03:24 PM
Boron	0.0632	0.0100	0.0300		mg/L	1	05/22/19 12:01 PM
Cadmium	< 0.000300	0.000300	0.00100		mg/L	1	05/21/19 03:24 PM
Calcium	12.5	0.100	0.300		mg/L	1	05/21/19 03:24 PM
Chromium	<0.00200	0.00200	0.00500		mg/L	1	05/21/19 03:24 PM
Cobalt	< 0.00300	0.00300	0.00500		mg/L	1	05/21/19 03:24 PM
Iron	0.365	0.0300	0.100		mg/L	1	05/21/19 03:24 PM
Lead	<0.000300	0.000300	0.00100		mg/L	1	05/21/19 03:24 PM
Lithium	< 0.00500	0.00500	0.0100		mg/L	1	05/21/19 03:24 PM
Magnesium	6.09	0.100	0.300		mg/L	1	05/21/19 03:24 PM
Molybdenum	<0.00200	0.00200	0.00500		mg/L	1	05/21/19 03:24 PM
Potassium	2.56	0.100	0.300		mg/L	1	05/21/19 03:24 PM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	05/21/19 03:24 PM
Sodium	11.9	0.100	0.300		mg/L	1	05/21/19 03:24 PM
Thallium	<0.000500	0.000500	0.00150		mg/L	1	05/21/19 03:24 PM
MERCURY TOTAL: AQUEOUS		SW74	170A				Analyst: <b>BM</b>
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	05/22/19 10:11 AM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: <b>JL</b>
Chloride	12.2	0.300	1.00		mg/L	1	05/15/19 05:23 PM
Fluoride	0.140	0.100	0.400	J	mg/L	1	05/15/19 05:23 PM
Nitrate-N	<0.100	0.100	0.500		mg/L	1	05/15/19 05:23 PM
Sulfate	37.3	1.00	3.00		mg/L	1	05/15/19 05:23 PM
ALKALINITY		M232	20 B				Analyst: CC
Alkalinity, Bicarbonate (As CaCO3)	55.4	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:05 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:05 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:05 PM
Alkalinity, Total (As CaCO3)	55.4	20.0	20.0		mg/L @ pH 4.5	1	05/16/19 04:05 PM
FERRIC IRON (CALCULATED)		M3500	-FE D				Analyst: CAC
Iron, Ferric	0.365	0.0500	0.100	N	mg/L	1	05/24/19
FERROUS IRON		M3500	-FE D				Analyst: BTJ
Iron, Ferrous	<0.0500	0.0500	0.100	N	mg/L	1	05/20/19 03:54 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

**Date:** 30-May-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: Lake Sample

Project: Luminant-MLSES Ash Ponds Lab ID: 1905167-01

**Project No:** 19122262-C **Collection Date:** 05/14/19 10:05 AM

Lab Order: 1905167 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed		
ORTHOPHOSPHATE	M4500-P E					Analyst: CC		
Phosphorus, Total Orthophosphate (As P)	<0.0300	0.0300	0.100	mg/L	1	05/15/19 02:47 PM		
TOTAL DISSOLVED SOLIDS	M2540C				Analyst: <b>JS</b>			
Total Dissolved Solids (Residue, Filterable)	119	10.0	10.0	mg/L	1	05/17/19 11:40 AM		

Qualifiers: * Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

**Date:** 30-May-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: Pond Sample

Project: Luminant-MLSES Ash Ponds Lab ID: 1905167-02

**Project No:** 19122262-C **Collection Date:** 05/14/19 10:20 AM

Lab Order: 1905167 Matrix: AQUEOUS

Analyses	Result	t MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATI	ER		Analyst: RO				
Antimony	0.00199	0.000800	0.00250	J	mg/L	1	05/21/19 03:26 PM
Arsenic	0.00305	0.00200	0.00500	J	mg/L	1	05/21/19 03:26 PM
Barium	0.0589	0.00300	0.0100		mg/L	1	05/21/19 03:26 PM
Beryllium	<0.000300	0.000300	0.00100		mg/L	1	05/21/19 03:26 PM
Boron	28.2	1.00	3.00		mg/L	100	05/22/19 12:03 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	05/21/19 03:26 PM
Calcium	319	10.0	30.0		mg/L	100	05/22/19 12:03 PM
Chromium	0.00336	0.00200	0.00500	J	mg/L	1	05/21/19 03:26 PM
Cobalt	<0.00300	0.00300	0.00500		mg/L	1	05/21/19 03:26 PM
Iron	< 0.0300	0.0300	0.100		mg/L	1	05/21/19 03:26 PM
Lead	< 0.000300	0.000300	0.00100		mg/L	1	05/21/19 03:26 PM
Lithium	0.119	0.00500	0.0100		mg/L	1	05/21/19 03:26 PM
Magnesium	553	10.0	30.0		mg/L	100	05/22/19 12:03 PM
Molybdenum	0.0550	0.00200	0.00500		mg/L	1	05/21/19 03:26 PM
Potassium	34.6	10.0	30.0		mg/L	100	05/22/19 12:03 PM
Selenium	2.96	0.200	0.500		mg/L	100	05/22/19 12:03 PM
Sodium	240	10.0	30.0		mg/L	100	05/22/19 12:03 PM
Thallium	<0.000500	0.000500	0.00150		mg/L	1	05/21/19 03:26 PM
MERCURY TOTAL: AQUEOUS		SW7		Analyst: <b>BM</b>			
Mercury	0.000119	0.0000800	0.000200	J	mg/L	1	05/22/19 10:13 AM
ANIONS BY IC METHOD - WATE	R	E	300				Analyst: <b>JL</b>
Chloride	513	30.0	100		mg/L	100	05/16/19 04:54 PM
Fluoride	24.3	1.00	4.00		mg/L	10	05/15/19 01:39 PM
Nitrate-N	11.1	0.100	0.500		mg/L	1	05/15/19 05:39 PM
Sulfate	2900	100	300		mg/L	100	05/16/19 04:54 PM
ALKALINITY			Analyst: CC				
Alkalinity, Bicarbonate (As CaCO3)	79.1	10.0	20.0		mg/L @ pH 4.52	1	05/16/19 04:08 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.52	1	05/16/19 04:08 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.52	1	05/16/19 04:08 PM
Alkalinity, Total (As CaCO3)	79.1	20.0	20.0		mg/L @ pH 4.52	1	05/16/19 04:08 PM
FERRIC IRON (CALCULATED)	Analyst: CAC						
Iron, Ferric	<0.0500	0.0500	<b>0-FE D</b> 0.100	N	mg/L	1	05/24/19
FERROUS IRON		M3500-FE D					Analyst: BTJ
Iron, Ferrous	<0.0500	0.0500	0.100	N	mg/L	1	05/20/19 03:54 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

**Date:** 30-May-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: Golder Client Sample ID: Pond Sample

Project: Luminant-MLSES Ash Ponds Lab ID: 1905167-02

**Project No:** 19122262-C **Collection Date:** 05/14/19 10:20 AM

Lab Order: 1905167 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	
ORTHOPHOSPHATE	M4500-P E					Analyst: CC	
Phosphorus, Total Orthophosphate (As P)	<0.0300	0.0300	0.100	mg/L	1	05/15/19 02:47 PM	
TOTAL DISSOLVED SOLIDS	M2540C				Analyst: <b>JS</b>		
Total Dissolved Solids (Residue, Filterable)	5380	50.0	50.0	mg/L	1	05/17/19 11:40 AM	

Qualifiers: * Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

**Date:** 30-May-19

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

**Date:** 30-May-19

**CLIENT:** Golder **Work Order:** 1905167

# ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds RunID: CETAC2_HG_190522A

J							_	_	
The QC data in batch 91017 app	olies to the following	samples: 19051	67-01B, 19051	167-02B					
Sample ID MB-91017	Batch ID: 91017		TestNo:	SW	7470A		Units:	mg/L	
SampType: MBLK	Run ID: CETA	C2_HG_190522	2A Analysis	s Date: <b>5/22</b>	/2019 10:02:3	1 AM	Prep Date:	5/21/201	9
Analyte	Result	RL	SPK value	Ref Val	%REC L	owLimi	t HighLimit %	RPD RPI	DLimit Qual
Mercury	<0.000080	0.000200							
Sample ID LCS-91017	Batch ID: 91017		TestNo:	SW	7470A		Units:	mg/L	
SampType: <b>LCS</b>	Run ID: CETA	C2_HG_190522	2A Analysis	s Date: <b>5/22</b>	/2019 10:04:4	6 AM	Prep Date:	5/21/201	9
Analyte	Result	RL	SPK value	Ref Val	%REC L	owLimi	t HighLimit %	RPD RPI	DLimit Qual
Mercury	0.00187	0.000200	0.00200	0	93.5	85	115		
Sample ID LCSD-91017	Batch ID: 91017		TestNo:	sw	7470A		Units:	mg/L	
SampType: <b>LCSD</b>	Run ID: CETA	C2_HG_190522	2A Analysis	s Date: <b>5/22</b>	/2019 10:07:0	2 AM	Prep Date:	5/21/201	9
Analyte	Result	RL	SPK value	Ref Val	%REC L	owLimi	t HighLimit %	RPD RPI	DLimit Qual
Mercury	0.00186	0.000200	0.00200	0	93.0	85	115	0.536	15
Sample ID 1905168-01B MS	Batch ID: 91017		TestNo:	sw	7470A		Units:	mg/L	
SampType: <b>MS</b>	Run ID: CETA	C2_HG_190522	2A Analysis	s Date: <b>5/22</b>	/2019 11:23:2	3 AM	Prep Date:	5/21/201	9
Analyte	Result	RL	SPK value	Ref Val	%REC L	.owLimi	t HighLimit %	RPD RPI	DLimit Qual
Mercury	0.00196	0.00100	0.00200	0	97.8	80	120		
Sample ID 1905168-01B MSD	Batch ID: 91017		TestNo:	SW	7470A		Units:	mg/L	
SampType: <b>MSD</b>	Run ID: CETA	C2_HG_190522	2A Analysis	s Date: <b>5/22</b>	/2019 11:25:3	9 AM	Prep Date:	5/21/201	9
Analyte	Result	RL	SPK value	Ref Val	%REC L	.owLimi	t HighLimit %	RPD RPI	DLimit Qual
Mercury	0.00194	0.00100	0.00200	0	97.0	80	120	0.770	15
Sample ID 1905168-01B SD	Batch ID: 91017		TestNo:	SW	7470A		Units:	mg/L	
SampType: <b>SD</b>	Run ID: CETA	C2_HG_190522	2A Analysis	s Date: <b>5/22</b>	/2019 11:27:5	6 AM	Prep Date:	5/21/201	9
Analyte	Result	RL	SPK value	Ref Val	%REC L	.owLimi	t HighLimit %	RPD RPI	DLimit Qual
Mercury	<0.00200	0.00500	0	0				0	10
Sample ID 1905168-01B PDS	Batch ID: 91017		TestNo:	SW	7470A		Units:	mg/L	
SampType: <b>PDS</b>	Run ID: CETA	C2_HG_190522	2A Analysis	s Date: <b>5/22</b>	/2019 11:30:1	3 AM	Prep Date:	5/21/201	9
Analyte	Result	RL	SPK value	Ref Val	%REC L	.owLimi	t HighLimit %	RPD RPI	OLimit Qual
Mercury	0.0122	0.00100	0.0125	0	97.6	85	115		

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$ 

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 1 of 24

S Spike Recovery outside control limits

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

RunID: CETAC2_HG_190522A

Sample ID ICV-190522	Batch ID:	R104223		TestNo	SW7	470A		Units:	mg/L
SampType: ICV	Run ID:	CETAC2	_HG_19052	<b>2A</b> Analysis	s Date: <b>5/22/</b>	2019 9:57:	56 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Mercury	(	0.00383	0.000200	0.00400	0	95.8	90	110	
Sample ID CCV1-190522	Batch ID:	R104223		TestNo	SW7	470A		Units:	mg/L
SampType: CCV	Run ID:	CETAC2	_HG_19052	<b>2A</b> Analysis	s Date: <b>5/22/</b>	<b>2019 10:4</b> 1	1:04 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Mercury	(	0.00202	0.000200	0.00200	0	101	90	110	
				0.00200					
Sample ID CCV2-190522	Batch ID:	R104223		TestNo	SW7	470A		Units:	mg/L
Sample ID CCV2-190522 SampType: CCV	Batch ID: Run ID:	R104223	_HG_19052	TestNo	SW7 s Date: 5/22/	470A	3:23 AM		_
		R104223		TestNo		470A		Units: Prep Date	_
SampType: CCV	Run ID:	R104223 CETAC2	_HG_19052	TestNo:	s Date: <b>5/22</b> /	470A /2019 11:08		Units: Prep Date	): 
SampType: <b>CCV</b> Analyte	Run ID:	R104223 CETAC2 Result	_ <b>HG_19052</b> RL 0.000200	TestNo:  2A Analysis  SPK value	Ref Val	470A (2019 11:08 %REC	LowLimi	Units: Prep Date	): 
SampType: CCV Analyte Mercury	Run ID:	R104223 CETAC2 Result 0.00203 R104223	_ <b>HG_19052</b> RL 0.000200	TestNo: 2A Analysis SPK value 0.00200 TestNo:	Ref Val	470A 2019 11:08 %REC 102 470A	LowLimi 90	Units: Prep Date it HighLimit 110	%RPD RPDLimit Qual
SampType: CCV  Analyte  Mercury  Sample ID CCV3-190522	Run ID:	R104223 CETAC2 Result 0.00203 R104223	_ <b>HG_19052</b> RL 0.000200	TestNo: 2A Analysis SPK value 0.00200 TestNo:	Ref Val	470A 2019 11:08 %REC 102 470A	LowLimi 90	Units: Prep Date it HighLimit  110  Units: Prep Date	%RPD RPDLimit Qual

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 2 of 24

S Spike Recovery outside control limits

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

**RunID:** ICP-MS4_190522B

The QC dat	a in batch 90990 appl	ies to the f	ollowing sam	nples: 1905	167-01B, 19051	67-02B					
Sample ID	MB-90990	Batch ID:	90990		TestNo:	SW	/6020A		Units:	mg/L	
SampType:	MBLK	Run ID:	ICP-MS4	_190522B	Analysis	Date: <b>5/2</b> :	2/2019 11:49	:00 AM	Prep Date:	5/20/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDI	imit Qual
Boron		•	<0.0100	0.0300							
Sample ID	LCS-90990	Batch ID:	90990		TestNo:	sw	/6020A		Units:	mg/L	
SampType:	LCS	Run ID:	ICP-MS4	_190522B	Analysis	Date: <b>5/2</b> :	2/2019 11:51	:00 AM	Prep Date:	5/20/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDL	imit Qual
Boron			0.203	0.0300	0.200	0	102	80	120		
Sample ID	LCSD-90990	Batch ID:	90990		TestNo:	SW	/6020A		Units:	mg/L	
SampType:	LCSD	Run ID:	ICP-MS4	_190522B	Analysis	Date: <b>5/2</b>	2/2019 11:53	:00 AM	Prep Date:	5/20/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDL	imit Qual
Boron			0.202	0.0300	0.200	0	101	80	120	0.579 1	5
Sample ID	1905218-06A SD	Batch ID:	90990		TestNo:	SW	/6020A		Units:	mg/L	
SampType:	SD	Run ID:	ICP-MS4	_190522B	Analysis	Date: 5/2	2/2019 11:59	:00 AM	Prep Date:	5/20/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDL	imit Qual
Boron			0.103	0.150	0	0.0953				7.85 1	0
Sample ID	1905218-06A PDS	Batch ID:	90990		TestNo:	SW	/6020A		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS4	_190522B	Analysis	Date: <b>5/2</b>	2/2019 12:23	:00 PM	Prep Date:	5/20/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDL	imit Qual
Boron			0.277	0.0300	0.200	0.0953	91.1	80	120		
Sample ID	1905218-06A MS	Batch ID:	90990		TestNo:	SW	/6020A		Units:	mg/L	
SampType:	MS	Run ID:	ICP-MS4	_190522B	Analysis	Date: <b>5/2</b>	2/2019 12:25	:00 PM	Prep Date:	5/20/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDL	imit Qual
Boron			0.288	0.0300	0.200	0.0953	96.1	80	120		
Sample ID	1905218-06A MSD	Batch ID:	90990		TestNo:	SW	/6020A		Units:	mg/L	
SampType:	MSD	Run ID:	ICP-MS4	_190522B	Analysis	Date: <b>5/2</b>	2/2019 12:27	:00 PM	Prep Date:	5/20/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDI	imit Qual
Boron			0.282	0.0300	0.200	0.0953	93.3	80	120	2.01 1	5

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$ 

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits
N Parameter not NELAP certified

Page 3 of 24

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

**RunID:** ICP-MS4_190522B

Sample ID ICV-190522	Batch ID:	R10422	0	TestNo	: SW6	6020A		Units:	mg/L
SampType: <b>ICV</b>	Run ID:	ICP-MS	64_190522B	Analys	is Date: <b>5/22</b>	/2019 11:38	B:00 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Boron		0.104	0.0300	0.100	0	104	90	110	
Calcium		2.35	0.300	2.50	0	94.2	90	110	
Magnesium		2.45	0.300	2.50	0	98.2	90	110	
Potassium		2.52	0.300	2.50	0	101	90	110	
Selenium		0.102	0.00500	0.100	0	102	90	110	
Sodium		2.53	0.300	2.50	0	101	90	110	
Sample ID LCVL-190522	Batch ID:	R10422	0	TestNo	: SW6	6020A		Units:	mg/L
SampType: <b>LCVL</b>	Run ID:	ICP-MS	64_190522B	Analys	is Date: <b>5/22</b>	/2019 11:43	3:00 AM	Prep Date	9:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Boron		0.0197	0.0300	0.0200	0	98.5	70	130	
Calcium		0.0981	0.300	0.100	0	98.1	70	130	
Magnesium		0.0967	0.300	0.100	0	96.7	70	130	
Potassium		0.0964	0.300	0.100	0	96.4	70	130	
Selenium	(	0.00494	0.00500	0.00500	0	98.8	70	130	
Sodium		0.0966	0.300	0.100	0	96.6	70	130	
Sample ID CCV1-190522	Batch ID:	R10422	:0	TestNo	: SW6	6020A		Units:	mg/L
SampType: <b>CCV</b>	Run ID:	ICP-MS	64_190522B	Analys	is Date: <b>5/22</b>	/2019 12:33	3:00 PM	Prep Date	):
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Boron		0.210	0.0300	0.200	0	105	90	110	
Calcium		4.65	0.300	5.00	0	92.9	90	110	
Magnesium		5.05	0.300	5.00	0	101	90	110	
Potassium		5.15	0.300	5.00	0	103	90	110	
Selenium		0.215	0.00500	0.200	0	107	90	110	
Sodium		5.08	0.300	5.00	0	102	90	110	
Sample ID LCVL1-190522	Batch ID:	R10422	:0	TestNo	: SW6	6020A		Units:	mg/L
SampType: <b>LCVL</b>	Run ID:	ICP-MS	64_190522B	Analys	is Date: <b>5/22</b>	/2019 12:38	8:00 PM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Boron		0.0203	0.0300	0.0200	0	102	70	130	
Calcium		0.0876	0.300	0.100	0	87.6	70	130	
Magnesium		0.0970	0.300	0.100	0	97.0	70	130	
		0.0932	0.300	0.100	0	93.2	70	130	
Potassium									
Potassium Selenium		0.00547	0.00500	0.00500	0	109	70	130	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$ 

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 4 of 24

CLIENT: Golder
Work Order: 1005167

ANALYTICAL QC SUMMARY REPORT

Work Order: 1905167
Project: Luminant-MLSES Ash Ponds

RunID: ICP-MS5_190521A

Sample ID MB-90990	Batch ID: 90990		TestNo		6020A		Units:	mg/L
SampType: <b>MBLK</b>	Run ID: ICP-MS5	5_190521A	Analysis	Date: <b>5/21</b>	1/2019 3:11:	:00 PM	Prep Date:	5/20/2019
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qua
Antimony	<0.00800	0.00250						
Arsenic	<0.00200	0.00500						
Barium	< 0.00300	0.0100						
Beryllium	< 0.000300	0.00100						
Cadmium	< 0.000300	0.00100						
Calcium	<0.100	0.300						
Chromium	<0.00200	0.00500						
Cobalt	<0.00300	0.00500						
Iron	< 0.0300	0.100						
Lead	<0.000300	0.00100						
Lithium	<0.00500	0.0100						
Magnesium	<0.100	0.300						
Molybdenum	<0.00200	0.00500						
Potassium	<0.100	0.300	7					
Selenium	<0.00200	0.00500						
Sodium	<0.100	0.300						
Thallium	< 0.000500	0.00150	4	,				

			1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
SampType: LCS	Run ID:	CP-MS	5_190521A	Analys	sis Date: <b>5/21</b>	/2019 3:13:	00 PM	Prep Date:	5/20/2019	
Analyte	Res	sult	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit C	≀ual
Antimony	0.2	209	0.00250	0.200	0	104	80	120		
Arsenic	0.2	208	0.00500	0.200	0	104	80	120		
Barium	0.2	208	0.0100	0.200	0	104	80	120		
Beryllium	0.2	200	0.00100	0.200	0	99.8	80	120		
Cadmium	0.2	211	0.00100	0.200	0	105	80	120		
Calcium	5.	18	0.300	5.00	0	104	80	120		
Chromium	0.2	209	0.00500	0.200	0	105	80	120		
Cobalt	0.2	216	0.00500	0.200	0	108	80	120		
Iron	5.	40	0.100	5.00	0	108	80	120		
Lead	0.2	203	0.00100	0.200	0	101	80	120		
Lithium	0.2	214	0.0100	0.200	0	107	80	120		
Magnesium	5.3	35	0.300	5.00	0	107	80	120		
Molybdenum	0.2	204	0.00500	0.200	0	102	80	120		
Potassium	4.9	99	0.300	5.00	0	99.9	80	120		
Selenium	0.2	208	0.00500	0.200	0	104	80	120		
Sodium	5.3	38	0.300	5.00	0	108	80	120		
Thallium	0.2	200	0.00150	0.200	0	100	80	120		

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 5 of 24

Sample ID LCSD-90990

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

Batch ID:

90990

**RunID:** ICP-MS5_190521A

Units:

mg/L

SampType: <b>LCSD</b>	Run ID: ICP-MS	5_190521A	Analysi	s Date: <b>5/21</b>	/2019 3:15:	00 PM	Prep Date	e: <b>5/20/2</b>	2019	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD F	RPDLimit	(Qual
Antimony	0.209	0.00250	0.200	0	105	80	120	0.307	15	
Arsenic	0.207	0.00500	0.200	0	104	80	120	0.318	15	
Barium	0.207	0.0100	0.200	0	103	80	120	0.392	15	
Beryllium	0.198	0.00100	0.200	0	99.0	80	120	0.810	15	
Cadmium	0.211	0.00100	0.200	0	105	80	120	0.119	15	
Calcium	5.16	0.300	5.00	0	103	80	120	0.293	15	
Chromium	0.209	0.00500	0.200	0	105	80	120	0.129	15	
Cobalt	0.215	0.00500	0.200	0	108	80	120	0.352	15	
Iron	5.41	0.100	5.00	0	108	80	120	0.077	15	
Lead	0.204	0.00100	0.200	0	102	80	120	0.722	15	
Lithium	0.211	0.0100	0.200	0	105	80	120	1.44	15	
Magnesium	5.37	0.300	5.00	0	107	80	120	0.251	15	
Molybdenum	0.202	0.00500	0.200	0	101	80	120	0.822	15	
Potassium	5.00	0.300	5.00	0	100	80	120	0.175	15	
Selenium	0.208	0.00500	0.200	0	104	80	120	0.274	15	
Sodium	5.38	0.300	5.00	0	108	80	120	0.080	15	
Thallium	0.202	0.00150	0.200	0	101	80	120	0.737	15	
Sample ID 1905218-06A SD	Batch ID: 90990		TestNo	SWe	6020A		Units:	mg/L		
SampType: <b>SD</b>	Run ID: ICP-MS	5_190521A	Analysi	s Date: <b>5/21</b>	/2019 3:22:	00 PM	Prep Date	e: <b>5/20/2</b>	2019	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD F	RPDLimit	Qual
Antimony	<0.00400	0.0125	0	0				0	10	
Arsenic	< 0.0100	0.0250	0	0				0	10	
Barium	0.0519	0.0500	0	0.0510				1.62	10	
Beryllium	< 0.00150	0.00500	0	0				0	10	
Cadmium	< 0.00150	0.00500	0	0				0	10	
Calcium	23.9	1.50	0	23.8				0.464	10	
Chromium	<0.0100	0.0250	0	0				0	10	
Cobalt	< 0.0150	0.0250	0	0				0	10	
Iron	0.185	0.500	0	0.186				0.629	10	
Lead	< 0.00150	0.00500	0	0				0	10	
Lithium	0.0477	0.0500	0	0.0462				3.27	10	
Magnesium	12.2	1.50	0	12.2				0.282	10	
Molybdenum	<0.0100	0.0250	0	0				0	10	
Potassium	1.83	1.50	0	2.08				12.6	10	R
Selenium	<0.0100	0.0250	0	0				0	10	
Sodium	53.2	1.50	0	51.9				2.54	10	
Thallium	<0.00250	0.00750	0	0				0	10	
	35.00230	1.10.00	-	-				J	. •	

TestNo:

SW6020A

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits S Spike Recovery outside control limits

Parameter not NELAP certified

Page 6 of 24

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

RunID: ICP-MS5_190521A

Sample ID 1905218-06A PDS	Batch ID:	90990		TestNo	: SW6	6020A		Units:	mg/L	
SampType: <b>PDS</b>	Run ID:	ICP-MS5	_190521A	Analys	is Date: <b>5/21</b>	/2019 3:44:	00 PM	Prep Date:	5/20/2019	
Analyte	ı	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLin	nit Qua
Antimony		0.192	0.00250	0.200	0	96.2	80	120		
Arsenic		0.183	0.00500	0.200	0	91.7	80	120		
Barium		0.237	0.0100	0.200	0.0510	92.9	80	120		
Beryllium		0.179	0.00100	0.200	0	89.3	80	120		
Cadmium		0.194	0.00100	0.200	0	97.0	80	120		
Calcium		26.2	0.300	5.00	23.8	48.1	80	120		S
Chromium		0.198	0.00500	0.200	0	98.8	80	120		
Cobalt		0.191	0.00500	0.200	0	95.6	80	120		
Iron		5.16	0.100	5.00	0.186	99.5	80	120		
Lead		0.190	0.00100	0.200	0	94.8	80	120		
Lithium		0.238	0.0100	0.200	0.0462	96.1	80	120		
Magnesium		15.8	0.300	5.00	12.2	72.5	80	120		S
Molybdenum		0.179	0.00500	0.200	0	89.4	80	120		
Potassium		6.49	0.300	5.00	2.08	88.3	80	120		
Selenium		0.178	0.00500	0.200	0	89.1	80	120		
Sodium		51.5	0.300	5.00	51.9	-7.46	80	120		S
Thallium		0.189	0.00150	0.200	0	94.5	80	120		
Sample ID 1905218-06A MS	Batch ID:	90990		TestNo	SW6	6020A		Units:	mg/L	
SampType: MS	Run ID:	ICP-MS5	190521A	Analys	is Date: <b>5/21</b>	/2019 3:46:	00 PM	Prep Date:	5/20/2019	

Sample ID 1905218-06A MS	Batch ID: 90990		TestNo	): <b>SW</b> (	6020A		Units:	mg/L	
SampType: <b>MS</b>	Run ID: ICP-MS	5_190521A	Analys	is Date: <b>5/21</b>	/2019 3:46:	00 PM	Prep Date:	5/20/2019	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RPDLim	it Qual
Antimony	0.196	0.00250	0.200	0	98.1	80	120		
Arsenic	0.189	0.00500	0.200	0	94.4	80	120		
Barium	0.244	0.0100	0.200	0.0510	96.3	80	120		
Beryllium	0.183	0.00100	0.200	0	91.6	80	120		
Cadmium	0.196	0.00100	0.200	0	98.0	80	120		
Calcium	27.3	0.300	5.00	23.8	69.1	80	120		S
Chromium	0.197	0.00500	0.200	0	98.5	80	120		
Cobalt	0.194	0.00500	0.200	0	96.9	80	120		
Iron	5.24	0.100	5.00	0.186	101	80	120		
Lead	0.193	0.00100	0.200	0	96.5	80	120		
Lithium	0.241	0.0100	0.200	0.0462	97.6	80	120		
Magnesium	16.6	0.300	5.00	12.2	89.7	80	120		
Molybdenum	0.189	0.00500	0.200	0	94.4	80	120		
Potassium	6.74	0.300	5.00	2.08	93.2	80	120		
Selenium	0.183	0.00500	0.200	0	91.3	80	120		
Sodium	53.9	0.300	5.00	51.9	39.6	80	120		S
Thallium	0.192	0.00150	0.200	0	95.8	80	120		

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 7 of 24

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

RunID: ICP-MS5_190521A

Sample ID 1905218-06A MSD	Batch ID:	90990		TestNo:	SW60	020A		Units:	mg/L	-	
SampType: <b>MSD</b>	Run ID:	ICP-MS5	_190521A	Analysis	Date: <b>5/21/</b> 2	2019 3:49:0	00 PM	Prep Date:	5/20/	2019	
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit 9	%RPD	RPDLimit	Qual
Antimony		0.199	0.00250	0.200	0	99.3	80	120	1.17	15	
Arsenic		0.189	0.00500	0.200	0	94.3	80	120	0.111	15	
Barium		0.246	0.0100	0.200	0.0510	97.3	80	120	0.778	15	
Beryllium		0.181	0.00100	0.200	0	90.4	80	120	1.36	15	
Cadmium		0.197	0.00100	0.200	0	98.7	80	120	0.775	15	
Calcium		27.4	0.300	5.00	23.8	72.7	80	120	0.665	15	S
Chromium		0.198	0.00500	0.200	0	99.1	80	120	0.607	15	
Cobalt		0.196	0.00500	0.200	0	97.8	80	120	0.893	15	
Iron		5.30	0.100	5.00	0.186	102	80	120	1.09	15	
Lead		0.192	0.00100	0.200	0	96.1	80	120	0.414	15	
Lithium		0.238	0.0100	0.200	0.0462	96.0	80	120	1.33	15	
Magnesium		16.8	0.300	5.00	12.2	92.6	80	120	0.883	15	
Molybdenum		0.191	0.00500	0.200	0	95.7	80	120	1.34	15	
Potassium		6.80	0.300	5.00	2.08	94.5	80	120	0.968	15	
Selenium		0.183	0.00500	0.200	0	91.7	80	120	0.351	15	
Sodium		54.6	0.300	5.00	51.9	54.2	80	120	1.35	15	S
Thallium	1	0.192	0.00150	0.200	0	96.0	80	120	0.248	15	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 8 of 24

Sample ID ICV-190521

SampType: ICV

Analyte

Antimony

## ANALYTICAL QC SUMMARY REPORT

90

**Project:** Luminant-MLSES Ash Ponds

Batch ID:

Run ID:

R104204

Result

0.102

ICP-MS5_190521A

RL

0.00250

RunID: ICP-MS5_190521A

Units:

Prep Date:

110

mg/L

LowLimit HighLimit %RPD RPDLimit Qual

						00	440		
Arsenic	0.103	0.00500	0.100	0	103	90	110		
Barium	0.0990	0.0100	0.100	0	99.0	90	110		
Beryllium	0.0972	0.00100	0.100	0	97.2	90	110		
Cadmium	0.102	0.00100	0.100	0	102	90	110		
Calcium	2.52	0.300	2.50	0	101	90	110		
Chromium	0.103	0.00500	0.100	0	103	90	110		
Cobalt	0.108	0.00500	0.100	0	108	90	110		
Iron	2.60	0.100	2.50	0	104	90	110		
Lead	0.0982	0.00100	0.100	0	98.2	90	110		
Lithium	0.103	0.0100	0.100	0	103	90	110		
Magnesium	2.49	0.300	2.50	0	99.7	90	110		
Molybdenum	0.0930	0.00500	0.100	0	93.0	90	110		
Potassium	2.38	0.300	2.50	0	95.3	90	110		
Selenium	0.104	0.00500	0.100	0	104	90	110		
Sodium	2.56	0.300	2.50	0	103	90	110		
Thallium	0.0977	0.00150	0.100	0	97.7	90	110		
	Batch ID: R104204	1 .	TestNo	: SW6	6020A		Units:	mg/L	
Sample ID LCVL-190521	Daton ID. <b>K 10420</b> 4	•							
Sample ID LCVL-190521 SampType: LCVL		<del>1</del> 5_190521A		is Date: <b>5/21</b>		5:00 PM	Prep Date	_	
							Prep Date	_	DLimit Qua
SampType: <b>LCVL</b> Analyte	Run ID: ICP-MS	5_190521A RL	Analys SPK value	is Date: <b>5/21</b> Ref Val	/2019 12:15	LowLim	Prep Date	e:	DLimit Qua
SampType: LCVL Analyte Antimony	Run ID: ICP-MS: Result 0.00183	5_ <b>190521A</b> RL  0.00250	Analys SPK value 0.00200	Ref Val	<b>/2019 12:15</b> %REC 91.4	LowLim 70	Prep Date it HighLimit 130	e:	DLimit Qua
SampType: LCVL Analyte Antimony Arsenic	Run ID: ICP-MS:  Result  0.00183 0.00504	5_190521A RL 0.00250 0.00500	Analys SPK value 0.00200 0.00500	Ref Val 0 0	%REC 91.4 101	70 70	Prep Date it HighLimit 130 130	e:	DLimit Qua
SampType: LCVL  Analyte  Antimony  Arsenic  Barium	Run ID: ICP-MS:  Result  0.00183 0.00504 0.00459	RL 0.00250 0.00500 0.0100	Analys  SPK value  0.00200 0.00500 0.00500	Ref Val 0 0 0	%REC 91.4 101 91.8	70 70 70	Prep Date it HighLimit 130 130 130	e:	DLimit Qua
SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium	Run ID: ICP-MS:  Result  0.00183 0.00504 0.00459 0.000968	RL 0.00250 0.00500 0.0100 0.00100	Analys  SPK value  0.00200 0.00500 0.00500 0.00100	Ref Val 0 0 0 0	%REC 91.4 101 91.8 96.8	70 70 70 70 70	Prep Date it HighLimit 130 130 130 130	e:	DLimit Qua
SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium	Run ID: ICP-MS:  Result  0.00183 0.00504 0.00459 0.000968 0.00106	RL 0.00250 0.00500 0.0100 0.00100 0.00100	Analys  SPK value  0.00200 0.00500 0.00500 0.00100 0.00100	Ref Val  0 0 0 0 0 0	%REC 91.4 101 91.8 96.8 106	70 70 70 70 70 70	Prep Date it HighLimit  130 130 130 130 130 130	e:	DLimit Qua
SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium	Run ID: ICP-MS:  Result  0.00183 0.00504 0.00459 0.000968 0.00106 0.104	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300	Analys  SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100	Ref Val  0 0 0 0 0 0 0	%REC 91.4 101 91.8 96.8 106 104	70 70 70 70 70 70 70 70	Prep Date  130 130 130 130 130 130 130 130 130	e:	DLimit Qua
SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Run ID: ICP-MS:  Result  0.00183 0.00504 0.00459 0.000968 0.00106 0.104 0.00482	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500	Analys  SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500	Ref Val  0 0 0 0 0 0 0 0 0	%REC 91.4 101 91.8 96.8 106 104 96.4	70 70 70 70 70 70 70 70	Prep Date  130 130 130 130 130 130 130 130 130 13	e:	DLimit Qua
SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Run ID: ICP-MS:  Result  0.00183 0.00504 0.00459 0.000968 0.00106 0.104 0.00482 0.00494	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.00500	Analys  SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500	Ref Val  0 0 0 0 0 0 0 0 0 0	%REC 91.4 101 91.8 96.8 106 104 96.4 98.7	70 70 70 70 70 70 70 70 70	Prep Date  it HighLimit  130  130  130  130  130  130  130  13	e:	OLimit Qua
SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron	Run ID: ICP-MS:  Result  0.00183 0.00504 0.00459 0.000968 0.00106 0.104 0.00482 0.00494 0.0979	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.100	Analys  SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500 0.100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0	%REC 91.4 101 91.8 96.8 106 104 96.4 98.7 97.9	70 70 70 70 70 70 70 70 70 70	Prep Date  it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	DLimit Qua
SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead	Run ID: ICP-MS:  Result  0.00183 0.00504 0.00459 0.000968 0.00106 0.104 0.00482 0.00494 0.0979 0.000882	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.100 0.00100	Analys  SPK value  0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.00500 0.100 0.100 0.00500 0.100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 91.4 101 91.8 96.8 106 104 96.4 98.7 97.9 88.2	70 70 70 70 70 70 70 70 70 70	Prep Date it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	OLimit Qua
SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium	Run ID: ICP-MS:  Result  0.00183 0.00504 0.00459 0.000968 0.00106 0.104 0.00482 0.00494 0.0979 0.000882 0.000996	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100 0.00100 0.00100 0.00100	Analys  SPK value  0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.100 0.00500 0.100 0.00100 0.00100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 91.4 101 91.8 96.8 106 104 96.4 98.7 97.9 88.2 99.6	70 70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130	e:	OLimit Qua
SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium	Run ID: ICP-MS:  Result  0.00183 0.00504 0.00459 0.000968 0.00106 0.104 0.00482 0.00494 0.0979 0.000882 0.00996 0.0983	5_190521A RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100 0.00100 0.0100 0.300	Analys  SPK value  0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.100 0.00100 0.0100 0.0100 0.0100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 91.4 101 91.8 96.8 106 104 96.4 98.7 97.9 88.2 99.6 98.3	70 70 70 70 70 70 70 70 70 70 70 70	Prep Date  it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	OLimit Qua
SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Molybdenum	Run ID: Result  0.00183 0.00504 0.00459 0.000968 0.00106 0.104 0.00482 0.00494 0.0979 0.000882 0.00996 0.0983 0.00464	8L 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00100 0.00100 0.300 0.00500	Analys  SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.00500 0.100 0.00100 0.0100 0.0100 0.0100 0.0100 0.00500	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 91.4 101 91.8 96.8 106 104 96.4 98.7 97.9 88.2 99.6 98.3 92.8	70 70 70 70 70 70 70 70 70 70 70 70	Prep Date  it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	
SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Molybdenum Potassium	Run ID: ICP-MS:  Result  0.00183 0.00504 0.00459 0.000968 0.00106 0.104 0.00482 0.00494 0.0979 0.000882 0.00996 0.0983 0.00464 0.0691	5_190521A  RL  0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.100 0.00100 0.300 0.00500 0.300 0.300 0.300	Analys  SPK value  0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.100 0.00100 0.0100 0.0100 0.100 0.100 0.100 0.100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 91.4 101 91.8 96.8 106 104 96.4 98.7 97.9 88.2 99.6 98.3 92.8 69.1	70 70 70 70 70 70 70 70 70 70 70 70 70	Prep Date  it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	DLimit Qua
SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Molybdenum	Run ID: Result  0.00183 0.00504 0.00459 0.000968 0.00106 0.104 0.00482 0.00494 0.0979 0.000882 0.00996 0.0983 0.00464	8L 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00100 0.00100 0.300 0.00500	Analys  SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.00500 0.100 0.00100 0.0100 0.0100 0.0100 0.0100 0.00500	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 91.4 101 91.8 96.8 106 104 96.4 98.7 97.9 88.2 99.6 98.3 92.8	70 70 70 70 70 70 70 70 70 70 70 70	Prep Date  it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	

TestNo:

SPK value

0.100

SW6020A

Analysis Date: 5/21/2019 12:10:00 PM

Ref Val

0

%REC

102

Qualifiers:

B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$ 

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 9 of 24

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

**RunID:** ICP-MS5_190521A

Sample ID CCV4-190521	Batch ID: R1042	04	TestNo	: SW6	6020A		Units:	mg/L	
SampType: CCV	Run ID: ICP-M	S5_190521A	Analys	is Date: <b>5/21</b>	/2019 3:00:	00 PM	Prep Date	:	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit (	Qua
Antimony	0.203	0.00250	0.200	0	101	90	110		
Arsenic	0.203	0.00500	0.200	0	102	90	110		
Barium	0.202	0.0100	0.200	0	101	90	110		
Beryllium	0.192	0.00100	0.200	0	95.9	90	110		
Cadmium	0.204	0.00100	0.200	0	102	90	110		
Calcium	4.96	0.300	5.00	0	99.3	90	110		
Chromium	0.203	0.00500	0.200	0	101	90	110		
Cobalt	0.213	0.00500	0.200	0	106	90	110		
Iron	5.15	0.100	5.00	0	103	90	110		
Lead	0.198	0.00100	0.200	0	98.8	90	110		
Lithium	0.205	0.0100	0.200	0	103	90	110		
Magnesium	5.15	0.300	5.00	0	103	90	110		
Molybdenum	0.199	0.00500	0.200	0	99.7	90	110		
Potassium	4.83	0.300	5.00	0	96.6	90	110		
Selenium	0.200	0.00500	0.200	0	100	90	110		
Sodium	5.26	0.300	5.00	0	105	90	110		
Thallium	0.197	0.00150	0.200	0	98.4	90	110		
Sample ID LCVL4-190521	Batch ID: R1042	04	TestNo	: SW6	6020A		Units:	mg/L	
SampType: <b>LCVL</b>	Run ID: ICP-M	S5_190521A	Analys	is Date: <b>5/21</b>	/2019 3:05:	00 PM	Prep Date	:	
	Run ID: ICP-M	<b>S5_190521A</b> RL	Analys SPK value	is Date: <b>5/21</b> Ref Val	<b>/2019 3:05</b> : %REC			: %RPD RPDLimit (	Qua
									Qua
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit		Qua
Analyte Antimony Arsenic	Result 0.00207	RL 0.00250	SPK value 0.00200	Ref Val	%REC	LowLim 70	it HighLimit		Qua
Analyte Antimony Arsenic Barium	Result 0.00207 0.00491	RL 0.00250 0.00500	SPK value 0.00200 0.00500	Ref Val 0 0	%REC 104 98.1	LowLim 70 70	it HighLimit 130 130		Qua
Analyte Antimony Arsenic Barium Beryllium	Result 0.00207 0.00491 0.00487	RL 0.00250 0.00500 0.0100	SPK value 0.00200 0.00500 0.00500	Ref Val 0 0 0	%REC 104 98.1 97.5	70 70 70	130 130 130		Qua
Analyte Antimony Arsenic Barium Beryllium Cadmium	Result 0.00207 0.00491 0.00487 0.000934	RL 0.00250 0.00500 0.0100 0.00100	SPK value 0.00200 0.00500 0.00500 0.00100	Ref Val 0 0 0 0 0 0	%REC 104 98.1 97.5 93.4	70 70 70 70 70	130 130 130 130 130		Qua
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium	Result  0.00207 0.00491 0.00487 0.000934 0.00104	RL 0.00250 0.00500 0.0100 0.00100 0.00100	SPK value  0.00200 0.00500 0.00500 0.00100 0.00100	Ref Val  0 0 0 0 0 0	%REC  104 98.1 97.5 93.4 104	70 70 70 70 70 70	130 130 130 130 130 130		Qua
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Result 0.00207 0.00491 0.00487 0.000934 0.00104 0.0913	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300	SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100	Ref Val  0 0 0 0 0 0 0	%REC 104 98.1 97.5 93.4 104 91.3	70 70 70 70 70 70 70	130 130 130 130 130 130 130		Qua
Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Result  0.00207 0.00491 0.00487 0.000934 0.00104 0.0913 0.00486 0.00525	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500	SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500	Ref Val  0 0 0 0 0 0 0 0 0	%REC  104 98.1 97.5 93.4 104 91.3 97.1 105	70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130		Qua
Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Result 0.00207 0.00491 0.00487 0.000934 0.00104 0.0913 0.00486	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500	SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500 0.100	Ref Val  0 0 0 0 0 0 0 0 0 0	%REC  104 98.1 97.5 93.4 104 91.3 97.1 105 101	70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130		Qua
Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead	Result  0.00207 0.00491 0.00487 0.000934 0.00104 0.0913 0.00486 0.00525 0.101 0.000868	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.00500 0.100 0.00100	SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.100 0.100 0.00500 0.100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0	%REC  104 98.1 97.5 93.4 104 91.3 97.1 105 101 86.8	70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130		Qua
Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium	Result  0.00207 0.00491 0.00487 0.000934 0.00104 0.0913 0.00486 0.00525 0.101	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.100 0.00100	SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500 0.00100 0.00100 0.00100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC  104 98.1 97.5 93.4 104 91.3 97.1 105 101	70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130		Qua
Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium	Result  0.00207 0.00491 0.00487 0.000934 0.00104 0.0913 0.00486 0.00525 0.101 0.000868 0.0102 0.104	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.100 0.00100 0.0100 0.300	SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500 0.100 0.00100 0.0100 0.0100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC  104 98.1 97.5 93.4 104 91.3 97.1 105 101 86.8 102 104	70 70 70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130		Qua
Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Molybdenum	Result  0.00207 0.00491 0.00487 0.000934 0.00104 0.0913 0.00486 0.00525 0.101 0.000868 0.0102 0.104 0.00483	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.100 0.00100 0.0100 0.300 0.00500	SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.100 0.00100 0.0100 0.100 0.0100 0.0100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC  104 98.1 97.5 93.4 104 91.3 97.1 105 101 86.8 102 104 96.6	70 70 70 70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130		
Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Molybdenum Potassium	Result  0.00207 0.00491 0.00487 0.000934 0.00104 0.0913 0.00486 0.00525 0.101 0.000868 0.0102 0.104 0.00483 0.0524	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500 0.100 0.00100 0.00100 0.300 0.00500 0.300 0.300	SPK value  0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.100 0.00100 0.0100 0.0100 0.100 0.100 0.100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC  104 98.1 97.5 93.4 104 91.3 97.1 105 101 86.8 102 104 96.6 52.4	70 70 70 70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130		Qua
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead	Result  0.00207 0.00491 0.00487 0.000934 0.00104 0.0913 0.00486 0.00525 0.101 0.000868 0.0102 0.104 0.00483	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.100 0.00100 0.0100 0.300 0.00500	SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.100 0.00100 0.0100 0.100 0.0100 0.0100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC  104 98.1 97.5 93.4 104 91.3 97.1 105 101 86.8 102 104 96.6	70 70 70 70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130 130 130		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 10 of 24

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

**RunID:** ICP-MS5_190521A

Sample ID CCV5-190521	Batch ID:	R10420	4	TestNo	SW	6020A		Units:	mg/L	
SampType: <b>CCV</b>	Run ID:	ICP-MS	5_190521A	Analysis	s Date: <b>5/21</b>	/2019 3:51:	00 PM	Prep Date	э:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RP	DLimit Qua
Antimony		0.197	0.00250	0.200	0	98.5	90	110		
Arsenic		0.199	0.00500	0.200	0	99.7	90	110		
Barium		0.194	0.0100	0.200	0	96.8	90	110		
Beryllium		0.181	0.00100	0.200	0	90.6	90	110		
Cadmium		0.197	0.00100	0.200	0	98.4	90	110		
Calcium		4.83	0.300	5.00	0	96.7	90	110		
Chromium		0.199	0.00500	0.200	0	99.4	90	110		
Cobalt		0.207	0.00500	0.200	0	104	90	110		
Iron		5.09	0.100	5.00	0	102	90	110		
Lead		0.192	0.00100	0.200	0	96.2	90	110		
Lithium		0.198	0.0100	0.200	0	99.0	90	110		
Magnesium		5.01	0.300	5.00	0	100	90	110		
Molybdenum		0.192	0.00500	0.200	0	95.8	90	110		
Potassium		4.71	0.300	5.00	0	94.2	90	110		
Selenium		0.200	0.00500	0.200	0	99.8	90	110		
Sodium		5.09	0.300	5.00	0	102	90	110		
Oddiaiii					0	95.8	90	110		
		0.192	0.00150	0.200	U	00.0	30	110		
Thallium	Batch ID:	0.192 <b>R10420</b>		0.200 TestNo:		6020A		Units:	mg/L	
Thallium Sample ID LCVL5-190521		R10420		TestNo	SW				_	
Thallium Sample ID LCVL5-190521 SampType: LCVL	Batch ID: Run ID:	R10420	4	TestNo	SW	6020A	00 PM	Units: Prep Date	_	DLimit Qua
Thallium  Sample ID LCVL5-190521  SampType: LCVL  Analyte	Batch ID: Run ID:	R10420	4 65_190521A	TestNo: Analysis	SW s Date: 5/21	6020A /2019 3:55:	00 PM	Units: Prep Date	e:	DLimit Qua
Thallium  Sample ID LCVL5-190521  SampType: LCVL  Analyte  Antimony	Batch ID: Run ID:	R10420 ICP-MS Result	4 55_190521A RL	TestNo: Analysis SPK value	s Date: <b>5/21</b> Ref Val	6020A /2019 3:55: %REC	00 PM LowLim	Units: Prep Date	e:	DLimit Qua
Thallium  Sample ID LCVL5-190521  SampType: LCVL  Analyte  Antimony Arsenic	Batch ID: Run ID:	R10420 ICP-MS Result	4 65_190521A RL 0.00250	TestNo: Analysis SPK value 0.00200	SWest Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution Substitution	6020A /2019 3:55: %REC	<b>00 PM</b> LowLim	Units: Prep Date it HighLimit	e:	DLimit Qua
Thallium  Sample ID LCVL5-190521  SampType: LCVL  Analyte  Antimony Arsenic Barium	Batch ID: Run ID:	R10420 ICP-MS Result 0.00208 0.00481	RL 0.00250 0.00500	TestNo: Analysis SPK value 0.00200 0.00500	SWes Date: 5/21  Ref Val  0 0	6020A /2019 3:55: %REC 104 96.1	00 PM  LowLim  70 70	Units: Prep Date it HighLimit 130 130	e:	DLimit Qua
Thallium  Sample ID LCVL5-190521  SampType: LCVL  Analyte  Antimony  Arsenic  Barium  Beryllium	Batch ID: Run ID: 0 0	R10420 ICP-MS Result 0.00208 0.00481 0.00469	RL 0.00250 0.00500 0.0100	TestNo:     Analysis     SPK value     0.00200     0.00500     0.00500	SWes Date: 5/21  Ref Val  0 0 0	6020A /2019 3:55: %REC 104 96.1 93.8	00 PM  LowLim  70 70 70 70	Units: Prep Date it HighLimit 130 130 130	e:	DLimit Qu
Thallium  Sample ID LCVL5-190521  SampType: LCVL  Analyte  Antimony  Arsenic Barium  Beryllium  Cadmium	Batch ID: Run ID: 0 0 0	R10420 ICP-MS Result 0.00208 0.00481 0.00469 0.00861	RL 0.00250 0.00500 0.0100 0.00100	TestNo: Analysis SPK value  0.00200 0.00500 0.00500 0.00100	SWes Date: 5/21  Ref Val  0 0 0 0	6020A /2019 3:55: %REC 104 96.1 93.8 86.1	00 PM  LowLim  70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130	e:	DLimit Qua
Thallium  Sample ID LCVL5-190521  SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium	Batch ID: Run ID:  0 0 0 0 0 0	R10420 ICP-MS Result 0.00208 0.00481 0.00469 0.00861 0.00998	RL 0.00250 0.00500 0.0100 0.00100 0.00100	TestNo: Analysis SPK value  0.00200 0.00500 0.00500 0.00100 0.00100	S SWes Date: 5/21  Ref Val  0 0 0 0 0 0	6020A /2019 3:55: %REC 104 96.1 93.8 86.1 99.8	00 PM  LowLim  70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130 130	e:	DLimit Qua
Thallium  Sample ID LCVL5-190521  SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Batch ID: Run ID:  0 0 0 0 0 0 0	R10420 ICP-MS Result 0.00208 0.00481 0.00469 0.00861 0.00998 0.102	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300	TestNo: Analysis SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100	Ref Val  0 0 0 0 0 0 0	6020A /2019 3:55: %REC 104 96.1 93.8 86.1 99.8 102	00 PM  LowLim  70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit 130 130 130 130 130 130 130	e:	DLimit Qu
Thallium  Sample ID LCVL5-190521  SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Batch ID: Run ID:  0 0 0 0 0 0 0 0 0	R10420 ICP-MS Result 0.00208 0.00481 0.00469 0.00861 000998 0.102 0.00463	RL 0.00250 0.00500 0.0100 0.00100 0.300 0.00500	TestNo: Analysis SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500	S SWest S Date: 5/21  Ref Val  0 0 0 0 0 0 0 0	6020A /2019 3:55: %REC 104 96.1 93.8 86.1 99.8 102 92.5	00 PM  LowLim  70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit  130 130 130 130 130 130 130 130	e:	DLimit Qu
Sample ID LCVL5-190521 SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Batch ID: Run ID: 0 0 0 0 0 0 0 0	R10420 ICP-MS Result 0.00208 0.00481 0.00469 000861 000998 0.102 0.00463	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00500	TestNo: Analysis SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500	Ref Val  0 0 0 0 0 0 0 0 0 0	6020A /2019 3:55: %REC 104 96.1 93.8 86.1 99.8 102 92.5 102	00 PM  LowLim  70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	DLimit Qua
Sample ID LCVL5-190521 SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead	Batch ID: Run ID:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R10420 ICP-MS Result 0.00208 0.00481 0.00469 0.00861 0.00998 0.102 0.00463 0.00508 0.00508	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.00500 0.00500 0.100	TestNo: Analysis SPK value  0.00200 0.00500 0.00500 0.00100 0.00100 0.100 0.00500 0.00500 0.100	S SWes Date: 5/21  Ref Val  0 0 0 0 0 0 0 0 0 0 0	6020A /2019 3:55: %REC 104 96.1 93.8 86.1 99.8 102 92.5 102 98.7	70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	DLimit Qu
Sample ID LCVL5-190521 SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium	Batch ID: Run ID: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R10420 ICP-MS Result 0.00208 0.00481 0.00469 0.00861 0.00998 0.102 0.00463 0.00508 0.0987 0.00837	RL 0.00250 0.00500 0.0100 0.00100 0.00500 0.00500 0.00500 0.00500 0.00500 0.100 0.00100	TestNo: Analysis SPK value  0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.100 0.100 0.100 0.00100	S SWes Date: 5/21  Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6020A /2019 3:55: %REC 104 96.1 93.8 86.1 99.8 102 92.5 102 98.7 83.7	70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	DLimit Qu
Sample ID LCVL5-190521 SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium	Batch ID: Run ID:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R10420 ICP-MS Result 0.00208 0.00481 0.00469 0.00861 0.00998 0.102 0.00463 0.00508 0.0987 0.00837 0.00978	RL 0.00250 0.00500 0.0100 0.00100 0.00500 0.00500 0.00500 0.00500 0.100 0.00100 0.00100	TestNo: Analysis SPK value  0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.100 0.100 0.00100 0.00100	S SWes Date: 5/21  Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6020A /2019 3:55: %REC 104 96.1 93.8 86.1 99.8 102 92.5 102 98.7 83.7 97.8	70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	DLimit Qu
Sample ID LCVL5-190521 SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Molybdenum	Batch ID: Run ID:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R10420 ICP-MS Result 0.00208 0.00481 0.00469 0.00861 0.00998 0.102 0.00463 0.00508 0.0987 0.00987 0.00978	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.300 0.00500 0.00500 0.00500 0.00100 0.00100 0.300	TestNo: Analysis SPK value  0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.00500 0.00500 0.100 0.00100 0.00100 0.0100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6020A /2019 3:55: %REC 104 96.1 93.8 86.1 99.8 102 92.5 102 98.7 83.7 97.8 98.9	70 70 70 70 70 70 70 70 70 70 70 70 70	Units: Prep Date it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	DLimit Qua
Sample ID LCVL5-190521 SampType: LCVL Analyte Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Molybdenum Potassium	Batch ID: Run ID: 00 00 00 00 00 00 00 00 00 00 00 00 00	R10420 ICP-MS Result 0.00208 0.00481 0.00469 0.00861 0.00998 0.102 0.00463 0.00508 0.0987 0.00987 0.00978 0.00978 0.00989 0.00479 0.00352	RL 0.00250 0.00500 0.0100 0.00100 0.00500 0.00500 0.00500 0.100 0.00100 0.300 0.00500 0.300 0.300 0.300	TestNo: Analysis SPK value  0.00200 0.00500 0.00500 0.00100 0.100 0.00500 0.100 0.00100 0.100 0.100 0.100 0.100 0.100	Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6020A /2019 3:55: %REC 104 96.1 93.8 86.1 99.8 102 92.5 102 98.7 83.7 97.8 98.9 95.8 35.2	70 70 70 70 70 70 70 70 70 70 70 70 70 7	Units: Prep Date it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	
Thallium  Sample ID LCVL5-190521  SampType: LCVL  Analyte  Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Iron Lead Lithium Magnesium Molybdenum Potassium Selenium Sodium	Batch ID: Run ID: 00 00 00 00 00 00 00 00 00 00 00 00 00	R10420- ICP-MS Result 0.00208 0.00481 0.00469 0.00861 0.00998 0.102 0.00463 0.00508 0.00987 0.00987 0.00989 0.00479	RL 0.00250 0.00500 0.0100 0.00100 0.00100 0.00500 0.00500 0.100 0.00100 0.300 0.00500 0.100 0.300 0.00500	TestNo: Analysis SPK value  0.00200 0.00500 0.00500 0.00100 0.00500 0.00500 0.100 0.00100 0.0100 0.0100 0.100 0.100 0.100	S SWes Date: 5/21  Ref Val  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6020A /2019 3:55: %REC 104 96.1 93.8 86.1 99.8 102 92.5 102 98.7 83.7 97.8 98.9 95.8	70 70 70 70 70 70 70 70 70 70 70 70 70 7	Units: Prep Date it HighLimit  130 130 130 130 130 130 130 130 130 13	e:	

Qualifiers:

B Analyte detected in the associated Method Blank

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 11 of 24

**CLIENT:** Golder ANALYTICAL QC SUMMARY REPORT

Work Order: 1905167

IC2_190515A **RunID: Project:** Luminant-MLSES Ash Ponds

Sample ID MB-90908	Batch ID:	90908		TestNo	D: <b>E30</b>	0		Units:	mg/L	
SampType: <b>MBLK</b>	Run ID:		90515A		is Date: <b>5/15</b>		D:50 AM	Prep Date:	5/15/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Chloride		<0.300	1.00							
Fluoride		<0.100	0.400							
Nitrate-N		<0.100	0.500							
Sulfate		<1.00	3.00							
Sample ID LCS-90908	Batch ID:	90908		TestNo	o: <b>E30</b>	0		Units:	mg/L	
SampType: <b>LCS</b>	Run ID:	IC2_1	90515A	Analys	is Date: <b>5/15</b>	5/2019 10:26	6:50 AM	Prep Date:	5/15/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Chloride		10.1	1.00	10.00	0	101	90	110		
Fluoride		4.00	0.400	4.000	0	99.9	90	110		
Nitrate-N		5.09	0.500	5.000	0	102	90	110		
Sulfate		30.4	3.00	30.00	0	101	90	110		
Sample ID LCSD-90908	Batch ID:	90908		TestNo	): <b>E30</b>	0		Units:	mg/L	
SampType: <b>LCSD</b>	Run ID:	IC2_1	90515A	Analys	is Date: <b>5/15</b>	5/2019 10:42	2:50 AM	Prep Date:	5/15/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Chloride		10.2	1.00	10.00	0	102	90	110	0.674	20
Fluoride		4.05	0.400	4.000	0	101	90	110	1.26	20
Nitrate-N		5.08	0.500	5.000	0	102	90	110	0.146	20
Sulfate		30.9	3.00	30.00	0	103	90	110	1.55	20
Sample ID 1905167-01CMS	Batch ID:	90908		TestNo	p: <b>E30</b>	0		Units:	mg/L	
SampType: <b>MS</b>	Run ID:	IC2_1	90515A	Analys	is Date: <b>5/15</b>	5/2019 1:07:	36 PM	Prep Date:	5/15/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Chloride		222	10.0	200.0	12.69	105	90	110		
Fluoride		211	4.00	200.0	0	106	90	110		
Nitrate-N		45.6	5.00	45.16	0	101	90	110		
Sulfate		239	30.0	200.0	41.32	98.7	90	110		
Sample ID 1905167-01CMSD	Batch ID:	90908		TestNo	o: <b>E30</b>	0		Units:	mg/L	
SampType: <b>MSD</b>	Run ID:	IC2_1	90515A	Analys	is Date: <b>5/15</b>	5/2019 1:23:	36 PM	Prep Date:	5/15/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Chloride		221	10.0	200.0	12.69	104	90	110	0.308	20
Fluoride		210	4.00	200.0	0	105	90	110	0.286	20
Nitrate-N		45.8	5.00	45.16	0	101	90	110	0.495	20
Sulfate		237	30.0	200.0	41.32	97.7	90	110	0.821	20
Qualifiers: B Analyte de	tected in the	ssociated	Method Blank	DF	Dilution Facto	or				
-	tected in the a				Method Detec				Do	ge 12 of 24
·	ed at the Metl					accepted cont	trol limite		1 48	50 12 01 24

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

RPD outside accepted control limits

Spike Recovery outside control limits

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

210jecti Edilinani	THESES T	ion i ondo									
Sample ID 1905167-02CMS	Batch ID:	90908		TestNo	: E30	00		Units:	mg/L		
SampType: MS	Run ID:	IC2_190	)515A	Analysi	s Date: <b>5/1</b>	5/2019 1:55:	36 PM	Prep Date:	5/15/2	2019	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD F	₹PDLimi	t Qual
Chloride		686	10.0	200.0	528.8	78.8	90	110			S
Fluoride		229	4.00	200.0	24.26	102	90	110			
Nitrate-N		56.2	5.00	45.16	10.55	101	90	110			
Sulfate		2520	30.0	200.0	0	1260	90	110			S
Sample ID 1905167-02CMSD	Batch ID:	90908		TestNo	: E30	00		Units:	mg/L		
SampType: <b>MSD</b>	Run ID:	IC2_190	)515A	Analysi	s Date: <b>5/1</b>	5/2019 2:11:	36 PM	Prep Date:	5/15/2	2019	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD F	RPDLimi	t Qual
Chloride		688	10.0	200.0	528.8	79.8	90	110	0.292	20	S
Fluoride		229	4.00	200.0	24.26	102	90	110	0.251	20	
Nitrate-N		57.3	5.00	45.16	10.55	103	90	110	1.85	20	
Sulfate		<10.0	30.0	200.0	0	0	90	110	0	20	S

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 13 of 24

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

RunID:	IC2 190515A	
KulliD.	1C4_170313A	

Project: Lum	ninant-MLSES Ash Ponds				Kullii	); I	C2_19051	ISA
Sample ID ICV-190515	Batch ID: R104097		TestNo:	E30	0		Units:	mg/L
SampType: ICV	Run ID: IC2_1905	15A	Analysis	Date: <b>5/15</b>	/2019 9:38:	:50 AM	Prep Date:	:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride	25.8	1.00	25.00	0	103	90	110	
Fluoride	10.3	0.400	10.00	0	103	90	110	
Nitrate-N	13.0	0.500	12.50	0	104	90	110	
Sulfate	77.8	3.00	75.00	0	104	90	110	
Sample ID CCV1-19051	5 Batch ID: R104097		TestNo:	E30	0		Units:	mg/L
SampType: <b>CCV</b>	Run ID: IC2_1905	15A	Analysis	Date: <b>5/15</b>	/2019 4:51:	:36 PM	Prep Date:	:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride	10.4	1.00	10.00	0	104	90	110	
Fluoride	4.15	0.400	4.000	0	104	90	110	
Nitrate-N	5.13	0.500	5.000	0	103	90	110	
Sulfate	30.8	3.00	30.00	0	103	90	110	
Sample ID CCV2-19051	5 Batch ID: R104097		TestNo:	E30	0		Units:	mg/L
SampType: CCV	Run ID: IC2_1905	15A	Analysis	Date: 5/15	/2019 8:35:	:35 PM	Prep Date:	:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride	10.6	1.00	10.00	0	106	90	110	
Fluoride	4.20	0.400	4.000	0	105	90	110	
Nitrate-N	5.20	0.500	5.000	0	104	90	110	
Sulfate	31.5	3.00	30.00	0	105	90	110	

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 14 of 24

R

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

**RunID:** IC4_190516A

== 00 · · ·											
The QC data	in batch 90935 app	lies to the f	ollowing sa	mples: 1905	5167-02C						
Sample ID I	MB-90935	Batch ID:	90935		TestNo	E30	0		Units:	mg/L	
SampType: I	MBLK	Run ID:	IC4_190	516A	Analysi	s Date: 5/16	6/2019 10:26	6:21 AM	Prep Date:	5/16/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Chloride			<0.300	1.00							
Sulfate			<1.00	3.00							
Sample ID I	LCS-90935	Batch ID:	90935		TestNo	E30	0		Units:	mg/L	
SampType: I	LCS	Run ID:	IC4_190	516A	Analysi	s Date: 5/16	6/2019 10:42	2:21 AM	Prep Date:	5/16/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Chloride			9.61	1.00	10.00	0	96.1	90	110		
Sulfate			29.5	3.00	30.00	0	98.3	90	110		
Sample ID I	LCSD-90935	Batch ID:	90935		TestNo	E30	0		Units:	mg/L	
SampType: I	LCSD	Run ID:	IC4_190	516A	Analysi	s Date: <b>5/16</b>	5/2019 10:58	3:21 AM	Prep Date:	5/16/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Chloride			9.68	1.00	10.00	0	96.8	90	110	0.745	20
Sulfate			29.8	3.00	30.00	0	99.2	90	110	0.935	20
Sample ID '	1905167-02CMS	Batch ID:	90935		TestNo	E30	0		Units:	mg/L	
SampType: I	MS	Run ID:	IC4_190	516A	Analysi	s Date: <b>5/16</b>	6/2019 5:10:	27 PM	Prep Date:	5/16/2	019
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Chloride			2490	100	2000	512.8	98.6	90	110		
Sulfate			4830	300	2000	2897	96.9	90	110		
Sample ID '	1905167-02CMSD	Batch ID:	90935		TestNo	E30	0		Units:	mg/L	
SampType: I	MSD										
		Run ID:	IC4_190	516A	Analysi	s Date: <b>5/16</b>	6/2019 5:26:	27 PM	Prep Date:	5/16/2	019
Analyte		Run ID:	IC4_190	<b>516A</b> RL	Analysi SPK value		%REC		Prep Date: t HighLimit %		
Analyte Chloride		Run ID:				s Date: <b>5/16</b>					
		Run ID:	Result	RL	SPK value	s Date: <b>5/16</b> Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Chloride Sulfate	1905168-01CMS	Run ID:  Batch ID:	Result 2500	RL 100	SPK value	s Date: <b>5/16</b> Ref Val  512.8  2897	%REC 99.4 99.1	LowLimi	t HighLimit %	6RPD R 0.622	PDLimit Qual
Chloride Sulfate	1905168-01CMS		Result 2500 4880	RL 100 300	SPK value 2000 2000 TestNo	s Date: <b>5/16</b> Ref Val  512.8  2897	%REC 99.4 99.1	LowLimi 90 90	t HighLimit % 110 110	6RPD R 0.622 0.920 mg/L	PDLimit Qual 20 20
Chloride Sulfate	1905168-01CMS	Batch ID:	Result 2500 4880 90935	RL 100 300	SPK value 2000 2000 TestNo	S Date: <b>5/16</b> Ref Val  512.8  2897	%REC 99.4 99.1	90 90 26 PM	t HighLimit % 110 110 Units:	6RPD R 0.622 0.920 mg/L 5/16/26	PDLimit Qual 20 20 20 <b>019</b>
Chloride Sulfate Sample ID SampType: I	1905168-01CMS	Batch ID:	Result 2500 4880 90935 IC4_190	RL 100 300 516A	SPK value  2000 2000  TestNo Analysi	S Date: 5/16  Ref Val  512.8 2897  E 300 S Date: 5/16	%REC 99.4 99.1 0 6/2019 5:58:	90 90 26 PM	t HighLimit % 110 110 Units: Prep Date:	6RPD R 0.622 0.920 mg/L 5/16/26	PDLimit Qual 20 20 20 <b>019</b>

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 15 of 24

S Spike Recovery outside control limits

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

**RunID:** IC4_190516A

Sample ID 1905168-01CMSD	Batch ID:	90935		TestNo	: <b>E30</b>	0		Units:	mg/L	-
SampType: <b>MSD</b>	Run ID:	IC4_190	)516A	Analys	is Date: <b>5/16</b>	6/2019 6:14:	27 PM	Prep Date	e: <b>5/16</b> /	/2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride		2170	100	2000	212.8	97.8	90	110	0.235	20
Sulfate		4390	300	2000	2468	96.2	90	110	0.273	20



B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 16 of 24

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

**RunID:** IC4_190516A

•										
Sample ID ICV-190516	Batch ID:	R104119	)	TestNo	: E300	0		Units:	mg/L	
SampType: <b>ICV</b>	Run ID: IC4_190516A			Analysis Date: 5/16/2019 9:54:21 AM				Prep Date:		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua	
Chloride		24.7	1.00	25.00	0	99.0	90	110		
Sulfate		74.5	3.00	75.00	0	99.4	90	110		
Sample ID CCV1-190516	Batch ID:	R104119	)	TestNo	: E30	0		Units:	mg/L	
SampType: <b>CCV</b>	Run ID:	IC4_190	516A	Analysi	s Date: <b>5/16</b>	/2019 9:10	:26 PM	Prep Date	<b>:</b> :	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua	
Chloride		9.75	1.00	10.00	0	97.5	90	110		
Sulfate		30.2	3.00	30.00	0	101	90	110		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 17 of 24

**CLIENT:** Golder ANALYTICAL QC SUMMARY REPORT

Work Order: 1905167

**RunID: TITRATOR 190516A Project:** Luminant-MLSES Ash Ponds

<b>Project:</b> Luminant-	MLSES A	ash Ponds				Kunn	J:	IIIKATUI	<b>K_19</b> 0	510A
The QC data in batch 90940 app	lies to the fo	ollowing sam	oles: 19051	67-01C, 19051	67-02C					
Sample ID MB-90940	Batch ID:	90940		TestNo:	M232	0 B		Units:	mg/L	@ pH 4.47
SampType: <b>MBLK</b>	Run ID:	TITRATOR	R_190516A	Analysis	Date: 5/16/2	2019 2:00:	00 PM	Prep Date:	5/16/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD R	PDLimit Qua
Alkalinity, Bicarbonate (As CaCC	3)	<10.0	20.0							
Alkalinity, Carbonate (As CaCO3	)	<10.0	20.0							
Alkalinity, Hydroxide (As CaCO3)	)	<10.0	20.0							
Alkalinity, Total (As CaCO3)		<20.0	20.0							
Sample ID LCS-90940	Batch ID:	90940		TestNo:	M232	0 B		Units:	mg/L	@ pH 4.08
SampType: <b>LCS</b>	Run ID:	TITRATOR	2_190516A	Analysis	Date: 5/16/2	2019 2:04:	00 PM	Prep Date:	5/16/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD R	PDLimit Qua
Alkalinity, Total (As CaCO3)		52.3	20.0	50.00	0	105	74	129		_
Sample ID 1905134-01C DUP	Batch ID:	90940		TestNo:	M232	0 B		Units:	mg/L	@ pH 4.52
SampType: <b>DUP</b>	Run ID:	TITRATOR	R_190516A	Analysis	Date: 5/16/2	2019 2:15:	:00 PM	Prep Date:	5/16/2	2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	RPD R	PDLimit Qua
Alkalinity, Bicarbonate (As CaCC	3)	205	20.0	0	205.8				0.536	20
Alkalinity, Carbonate (As CaCO3	)	<10.0	20.0	0	0				0	20
Alkalinity, Hydroxide (As CaCO3)	)	<10.0	20.0	0	0				0	20
Alkalinity, Total (As CaCO3)		205	20.0	0	205.8				0.536	20
Sample ID 1905168-05C DUP	Batch ID:	90940		TestNo:	M232	0 B		Units:	mg/L	@ pH 4.51
SampType: <b>DUP</b>	Run ID:	TITRATOR	2_190516A	Analysis	Date: 5/16/2	2019 4:30:	00 PM	Prep Date:	5/16/2	019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	RPD R	PDLimit Qua
Alkalinity, Bicarbonate (As CaCC	93)	<10.0	20.0	0	0				0	20
Alkalinity, Carbonate (As CaCO3	)	<10.0	20.0	0	0				0	20
Alkalinity, Hydroxide (As CaCO3)	)	<10.0	20.0	0	0				0	20
Alkalinity, Total (As CaCO3)		<20.0	20.0	0	0				0	20

Qualifiers: Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

R Spike Recovery outside control limits

Parameter not NELAP certified

Page 18 of 24

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

RunID: TITRATOR 190516A

Project: Luminant	-MLSES A	Asn Ponds				Kullii	<b>)</b> ;	IIIKAIU	K_190510A
Sample ID ICV-190516	Batch ID:	R104124		TestNo:	M232	20 B		Units:	mg/L @ pH 4.34
SampType: <b>ICV</b>	Run ID:	TITRATOR	_190516A	Analysis	Date: <b>5/16/</b>	/2019 1:58:	00 PM	Prep Date:	5/16/2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	SRPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaCo	O3)	8.64	20.0	0					
Alkalinity, Carbonate (As CaCO	3)	89.3	20.0	0					
Alkalinity, Hydroxide (As CaCO3	3)	<10.0	20.0	0					
Alkalinity, Total (As CaCO3)		97.9	20.0	100.0	0	97.9	98	102	
Sample ID CCV1-190516	Batch ID:	R104124		TestNo:	M232	20 B		Units:	mg/L @ pH 4.25
SampType: <b>CCV</b>	Run ID:	TITRATOR	_190516A	Analysis	Date: <b>5/16/</b>	/2019 3:39:	:00 PM	Prep Date:	5/16/2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	SRPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaCo	O3)	21.7	20.0	0					
Alkalinity, Carbonate (As CaCO:	3)	76.8	20.0	0					
Alkalinity, Hydroxide (As CaCO3	3)	<10.0	20.0	0					
Alkalinity, Total (As CaCO3)		98.5	20.0	100.0	0	98.5	90	110	
Sample ID CCV2-190516	Batch ID:	R104124		TestNo:	M232	20 B		Units:	mg/L @ pH 4.21
SampType: <b>CCV</b>	Run ID:	TITRATOR	_190516A	Analysis	Date: 5/16/	/2019 4:35:	:00 PM	Prep Date:	5/16/2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaCo	O3)	17.7	20.0	0					
Alkalinity, Carbonate (As CaCO:	3)	81.3	20.0	0					
Alkalinity, Hydroxide (As CaCO3	3)	<10.0	20.0	0					
Alkalinity, Total (As CaCO3)		99.0	20.0	100.0	0	99.0	90	110	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 19 of 24

R RPD outside accepted control limits

S Spike Recovery outside control limits

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

UV/VIS_2_190515B **RunID:** 

Troject. Lammani	WILDLD I	isii i oilas				Ituiiii	•	· · · · • • • • • • • • • • • • • • • •		
The QC data in batch 90921 app	lies to the	following sam	ples: 1905	167-01C, 19051	67-02C					
Sample ID MB-90921	Batch ID:	90921		TestNo:	M450	00-P E		Units:	mg/L	
SampType: <b>MBLK</b>	Run ID:	UV/VIS_2	_190515B	Analysis	Date: <b>5/15/</b>	2019 12:42	2:00 PM	Prep Date:	5/15/2019	)
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RPD	Limit Qual
Phosphorus, Total Orthophospha	ate (As	<0.0300	0.100							
Sample ID LCS-90921	Batch ID:	90921		TestNo:	M450	00-P E		Units:	mg/L	
SampType: <b>LCS</b>	Run ID:	UV/VIS_2	_190515B	Analysis	Date: <b>5/15/</b>	2019 12:43	3:00 PM	Prep Date:	5/15/2019	)
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RPD	Limit Qual
Phosphorus, Total Orthophospha	ate (As	0.513	0.100	0.5000	0	103	80	120		
Sample ID LCSD-90921	Batch ID:	90921		TestNo:	M450	00-P E		Units:	mg/L	
SampType: <b>LCSD</b>	Run ID:	UV/VIS_2	_190515B	Analysis	Date: <b>5/15/</b>	2019 12:43	3:00 PM	Prep Date:	5/15/2019	)
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RPD	Limit Qual
Phosphorus, Total Orthophospha	ate (As	0.504	0.100	0.5000	0	101	80	120	1.77	15
Sample ID 1905168-01CMS	Batch ID:	90921		TestNo:	M450	00-P E		Units:	mg/L	
SampType: <b>MS</b>	Run ID:	UV/VIS_2	_190515B	Analysis	Date: <b>5/15/</b>	2019 12:45	5:00 PM	Prep Date:	5/15/2019	)
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPD	Limit Qual
Phosphorus, Total Orthophospha	ate (As	0.587	0.100	0.5000	0.07700	102	80	120		
Sample ID 1905168-01CMSD	Batch ID:	90921		TestNo:	M450	00-P E		Units:	mg/L	
SampType: <b>MSD</b>	Run ID:	UV/VIS_2	_190515B	Analysis	Date: <b>5/15/</b>	2019 12:45	5:00 PM	Prep Date:	5/15/2019	)
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RPD	Limit Qual
Phosphorus, Total Orthophospha	ate (As	0.525	0.100	0.5000	0.07700	89.6	80	120	11.2	15

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits Parameter not NELAP certified

Page 20 of 24

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

**RunID:** UV/VIS_2_190515B

Sample ID ICV-190515	Batch ID:	R10407	1	TestNo:	M45	00-P E		Units:	mg/L	
SampType: ICV	Run ID:	UV/VIS_	_2_190515B	Analysis	s Date: <b>5/15</b>	/2019 12:4	1:00 PM	Prep Date	e:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLir	nit Qual
Phosphorus, Total Orthophosp	hate (As	0.204	0.100	0.2000	0	102	85	115		
Sample ID CCV1-190515	Batch ID:	R10407	1	TestNo:	M45	00-P E		Units:	mg/L	
SampType: CCV	Run ID:	UV/VIS_	_2_190515B	Analysis	s Date: <b>5/15</b>	/2019 12:5	1:00 PM	Prep Date	e:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLir	nit Qual
Phosphorus, Total Orthophosp	hate (As	0.509	0.100	0.5000	0	102	85	115		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 21 of 24

R

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

**RunID:** UV/VIS_2_190520A

	2011 2 011010								
lies to the f	ollowing sam	ples: 1905	167-01A, 19051	67-02A					
Batch ID:	91002		TestNo:	M35	600-Fe D		Units:	mg/L	
Run ID:	UV/VIS_2_	_190520A	Analysis	Date: 5/20	/2019 3:53:	00 PM	Prep Date:	5/20/2019	
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLin	nit Qual
	<0.0500	0.100							N
Batch ID:	91002		TestNo:	M35	600-Fe D		Units:	mg/L	
Run ID:	UV/VIS_2_	_190520A	Analysis	Date: 5/20	/2019 3:53:	00 PM	Prep Date:	5/20/2019	
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLin	nit Qual
	0.0888	0.100	0.1000	0	88.8	85	115		N
Batch ID:	91002		TestNo:	M35	600-Fe D		Units:	mg/L	
Run ID:	UV/VIS_2_	_190520A	Analysis	Date: 5/20	/2019 3:53:	00 PM	Prep Date:	5/20/2019	
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLin	nit Qual
	0.0879	0.100	0.1000	0	87.9	85	115	1.05 15	N
Batch ID:	91002		TestNo:	M35	600-Fe D		Units:	mg/L	
Run ID:	UV/VIS_2_	_190520A	Analysis	Date: 5/20	/2019 4:03:	00 PM	Prep Date:	5/20/2019	
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLin	nit Qual
	0.0860	0.100	0.1000	0	86.0	85	115		N
Batch ID:	91002		TestNo:	M35	600-Fe D		Units:	mg/L	
				Doto: <b>F/20</b>	/2040 4.02.	OO DM	Prep Date:	5/20/2019	
Run ID:	UV/VIS_2_	_190520A	Analysis	Date: <b>5/20</b>	/2019 4:03:	OO F IVI	i lep bate.	3/20/2019	
Run ID:	Result	_ <b>190520A</b> RL	SPK value	Ref Val	%REC		•	%RPD RPDLin	nit Qual
	Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID: Batch ID: Batch ID: Batch ID:	Batch ID: 91002 Run ID: UV/VIS_2 Result  <0.0500  Batch ID: 91002 Run ID: UV/VIS_2 Result  0.0888  Batch ID: 91002 Run ID: UV/VIS_2 Run ID: UV/VIS_2 Result  0.0879  Batch ID: 91002 Run ID: UV/VIS_2 Result  0.0879  Batch ID: 91002 Run ID: UV/VIS_2 Run ID: UV/VIS_2 Result  0.0860  Batch ID: 91002	Batch ID:       91002         Run ID:       QV/VIS_2_190520A         Batch ID:       91002         Run ID:       91002         Run ID:       91002         Run ID:       UV/VIS_2_190520A         Batch ID:       Result       RL         Batch ID:       91002         Run ID:       UV/VIS_2_190520A         Result       RL         Batch ID:       0.0860       0.100         Batch ID:       91002         Batch ID:       91002	Batch ID:       91002       TestNo:         Result       RL       SPK value         <0.0500	Run ID:         UV/VIS_2_190520A         Analysis Date: 5/20           Result         RL         SPK value         Ref Val           <0.0500	Batch ID:       91002       TestNo:       M3500-Fe D         Run ID:       UV/VIS_2_190520A       Analysis Date: 5/20/2019 3:53:         Batch ID:       91002       TestNo:       M3500-Fe D         Result       RL       SPK value       Ref Val       %REC         0.0888       0.100       0.1000       0       88.8         Batch ID:       91002       TestNo:       M3500-Fe D         Run ID:       UV/VIS_2_190520A       Analysis Date: 5/20/2019 3:53:         Result       RL       SPK value       Ref Val       %REC         0.0879       0.100       0.1000       0       87.9         Batch ID:       91002       TestNo:       M3500-Fe D         Run ID:       UV/VIS_2_190520A       Analysis Date: 5/20/2019 4:03:         Result       RL       SPK value       Ref Val       %REC         0.0860       0.100       0.1000       0       86.0         Batch ID:       91002       TestNo:       M3500-Fe D	Batch ID:       91002       TestNo:       M3500-Fe D         Result       RL       SPK value       Ref Val       %REC       LowLim         Batch ID:       91002       TestNo:       M3500-Fe D         Result       RL       SPK value       Ref Val       %REC       LowLim         Batch ID:       91002       TestNo:       M3500-Fe D       M3500-Fe D         Result       RL       SPK value       Ref Val       %REC       LowLim         0.0879       0.100       0.1000       0       87.9       85         Batch ID:       91002       TestNo:       M3500-Fe D       Result         Result       RL       SPK value       Ref Val       %REC       LowLim         Analysis       Date:       5/20/2019 3:53:00 PM         Batch ID:       91002       TestNo:       M3500-Fe D         Result       RL       SPK value       Ref Val       %REC       LowLim         Analysis       Date:       5/20/2019 4:03:00 PM       Dextraction       Dextraction       Dextraction </td <td>Batch ID:         91002         TestNo:         M3500-Fe D         Units:           Run ID:         UV/VIS_2_190520A         Analysis Date: 5/20/2019 3:53:00 PM         Prep Date:           Result         RL         SPK value         Ref Val         %REC         LowLimit HighLimit %           -0.0500         0.100        </td> <td>Batch ID:         91002         TestNo:         M3500-Fe D         Units:         mg/L           Run ID:         UV/VIS_2_190520A         Analysis Date: 5/20/2019 3:53:00 PM         Prep Date: 5/20/2019         5/20/2019           Result         RL         SPK value         Ref Val         %REC         LowLimit HighLimit HighLimit WRPD RPDLing           Batch ID:         91002         TestNo:         M3500-Fe D         Units:         mg/L           Run ID:         UV/VIS_2_190520A         Analysis Date: 5/20/2019 3:53:00 PM         Prep Date: 5/20/2019         5/20/2019           Result         RL         SPK value         Ref Val         %REC         LowLimit HighLimit WRPD RPDLing           Batch ID:         91002         TestNo:         M3500-Fe D         Units:         mg/L           Run ID:         UV/VIS_2_190520A         Analysis Date: 5/20/2019 3:53:00 PM         Prep Date: 5/20/2019         5/20/2019           Result         RL         SPK value         Ref Val         %REC         LowLimit HighLimit %RPD RPDLing           Batch ID:         91002         TestNo:         M3500-Fe D         Units:         mg/L           Batch ID:         91002         TestNo:         M3500-Fe D         Units:         mg/L           Result         RL</td>	Batch ID:         91002         TestNo:         M3500-Fe D         Units:           Run ID:         UV/VIS_2_190520A         Analysis Date: 5/20/2019 3:53:00 PM         Prep Date:           Result         RL         SPK value         Ref Val         %REC         LowLimit HighLimit %           -0.0500         0.100	Batch ID:         91002         TestNo:         M3500-Fe D         Units:         mg/L           Run ID:         UV/VIS_2_190520A         Analysis Date: 5/20/2019 3:53:00 PM         Prep Date: 5/20/2019         5/20/2019           Result         RL         SPK value         Ref Val         %REC         LowLimit HighLimit HighLimit WRPD RPDLing           Batch ID:         91002         TestNo:         M3500-Fe D         Units:         mg/L           Run ID:         UV/VIS_2_190520A         Analysis Date: 5/20/2019 3:53:00 PM         Prep Date: 5/20/2019         5/20/2019           Result         RL         SPK value         Ref Val         %REC         LowLimit HighLimit WRPD RPDLing           Batch ID:         91002         TestNo:         M3500-Fe D         Units:         mg/L           Run ID:         UV/VIS_2_190520A         Analysis Date: 5/20/2019 3:53:00 PM         Prep Date: 5/20/2019         5/20/2019           Result         RL         SPK value         Ref Val         %REC         LowLimit HighLimit %RPD RPDLing           Batch ID:         91002         TestNo:         M3500-Fe D         Units:         mg/L           Batch ID:         91002         TestNo:         M3500-Fe D         Units:         mg/L           Result         RL

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$ 

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 22 of 24

S Spike Recovery outside control limits

# ANALYTICAL QC SUMMARY REPORT

**Project:** Luminant-MLSES Ash Ponds

NIIIIII): UV/VIS 2 190520A	RunID:	UV/VIS	2 190520A
----------------------------	--------	--------	-----------

Sample ID ICV-190520	Batch ID	: R104177		TestNo:	M35	00-Fe D		Units:	mg/L	
SampType: ICV	Run ID:	UV/VIS_2	_190520A	Analysis	Date: <b>5/20</b> /	/2019 3:52:	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDI	imit Qual
Iron, Ferrous		0.0875	0.100	0.1000	0	87.5	85	115		N
Sample ID CCV1-190520	Batch ID	: R104177		TestNo:	M35	00-Fe D		Units:	mg/L	
SampType: CCV	Run ID:	UV/VIS_2	_190520A	Analysis	Date: <b>5/20</b> /	/2019 3:59:	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDI	imit Qual
Iron, Ferrous		0.197	0.100	0.2000	0	98.4	85	115		N
Sample ID CCV2-190520	Batch ID	: R104177		TestNo:	M35	00-Fe D		Units:	mg/L	
SampType: <b>CCV</b>	Run ID:	UV/VIS_2	_190520A	Analysis	Date: <b>5/20</b>	/2019 4:12:	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDI	imit Qual
Iron, Ferrous		0.183	0.100	0.2000	0	91.7	85	115		N

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 23 of 24

R RPD outside accepted control limits

S Spike Recovery outside control limits

# ANALYTICAL QC SUMMARY REPORT

Project: Luminant-MLSES Ash Ponds RunID: WC_190517D

r rojecu.	241111111111	TILDED T	BII I OIIG					,	. 0_1, 001		
The QC dat	a in batch 90953 app	lies to the fo	ollowing samp	les: 19	05167-01C, 19051	67-02C					
Sample ID	MB-90953	Batch ID:	90953		TestNo:	M2	540C		Units:	mg/L	
SampType:	MBLK	Run ID:	WC_19051	7D	Analysis	Date: <b>5/1</b>	7/2019 11:40	0:00 AM	Prep Date:	5/16/201	•
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPD	Limit Qua
Total Dissol	ved Solids (Residue,	Filtera	<10.0	10.0							
Sample ID	LCS-90953	Batch ID:	90953		TestNo:	M2	540C		Units:	mg/L	
SampType:	LCS	Run ID:	WC_19051	7D	Analysis	Date: <b>5/1</b>	7/2019 11:40	0:00 AM	Prep Date:	5/16/201	•
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPD	Limit Qua
Total Dissol	ved Solids (Residue,	Filtera	745	10.0	745.6	0	99.9	90	113		
Sample ID	1905167-02C-DUP	Batch ID:	90953		TestNo:	M2	540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_19051	7D	Analysis	Date: <b>5/1</b>	7/2019 11:40	0:00 AM	Prep Date:	5/16/201	•
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPD	Limit Qua
Total Dissol	ved Solids (Residue,	Filtera	5340	50.0	0	5375				0.747	5
Sample ID	1905168-02C-DUP	Batch ID:	90953		TestNo:	M2:	540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_19051	7D	Analysis	Date: <b>5/1</b>	7/2019 11:40	0:00 AM	Prep Date:	5/16/2019	•
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPD	Limit Qua
Total Dissol	ved Solids (Residue,	Filtera	940	50.0	0	910.0				3.24	5

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$ 

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 24 of 24

S Spike Recovery outside control limits



# ANALYTICAL REPORT

### DHL Analytical, Inc.

Sample Delivery Group:

L1100947

Samples Received:

05/21/2019

Project Number:

1905167

Description:

Report To:

John DuPont

2300 Double Creek Drive

Round Rock, TX 78664

Entire Report Reviewed By:

Donna Eidson



ACCOUNT: DHL Analytical, Inc. PROJECT: 1905167

40

SDG: L1100947

DATE/TIME: 05/29/19 14:15 PAGE: 1 of 12 `Ss

Cn

'Sr

'Qc

GI

'Sc

# TABLE OF CONTENTS

ONE LAB. NATIONWIDE.



Cp: Cover Page	4	
Tc: Table of Contents	2	
Ss: Sample Summary	3	
Cn: Case Narrative	4	
Sr: Sample Results	5	
LAKE SAMPLE L1100947-01	5	
LAKE SAMPLE L1100947-02	6	
Qc: Quality Control Summary	7	
Radiochemistry by Method 904	7	
Radiochemistry by Method SM7500Ra B M	8	
GI: Glossary of Terms	9	
Al: Accreditations & Locations	10	
Sc: Sample Chain of Custody	11	





















41

# SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

má.

LAKE SAMPLE L1100947-01 Non-Potable Water			Collected by	Collected date/time 05/14/19 10:05	Received date 05/21/19 10:10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1284744	1	05/22/19 08:25	05/28/19 10:55	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1284773	1	05/23/19 15:02	05/28/19 10:55	RRE	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1284773	1	05/23/19 15:02	05/24/19 17:05	RRE	Mt. Juliet, TN
LAKE SAMPLE L1100947-02 Non-Potable Water			Collected by	Collected date/time 05/14/19 10:20	Received date 05/21/19 10:10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1284744	1	05/22/19 08:25	05/28/19 10:55	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1284773	1	05/23/19 15:02	05/28/19 10:55	RRE	Mt. Juliet, TN

WG1284773

05/23/19 15:02

05/24/19 17:05

RRE

Mt. Juliet, TN























Radiochemistry by Method SM7500Ra B M



All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Donna Eidson Project Manager [']Cp

²Tc

















### LAKE SAMPLE Collected date/time: 05/14/19 10:05

# SAMPLE RESULTS - 01

### Radiochemistry by Method 904

	Result	Qualifier Unce	ertainty <b>M</b> DA	Analysis Date	<u>Batch</u>	
Analyte	pCi/l	+/-	pCi/I	date / time		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
RADIUM-228	0.369	0.44				
(T) Barlum	102		62.0	143 05/28/2019 10:55	WG1284744	
(T) Yttrium	118		79.0-	136 05/28/2019 10:55	WG1284744	

### Radiochemistry by Method Calculation

http://www.com/com/com/com/com/com/com/com/com/com/	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCI/I		+/-	pCi/l	date / time	
Combined Radium	0.772		0.734	1.08	05/28/2019 10:55	<u>WG1284773</u>

### Radiochemistry by Method SM7500Ra B M

March Commence and the State of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence o	Result	Qualifier Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l	+ / -	pCi/l	date / time	controls of agreement was place as a control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the
RADIUM-226	0.403	0.285	0.311	05/24/2019 17:05	WG1284773
(T) Barlum-133	92.1		30.0-143	05/24/2019 17:05	WG1284773





















44

LAKE SAMPLE

# SAMPLE RESULTS - 02

Collected date/time: 05/14/19 10:20

Radiochemistry	by Method	904
----------------	-----------	-----

	Result	Qualifier Und	certainty M	DΑ	Analysis Date	<u>Batch</u>
Analyte	pCi/l	+/-	- p0	Ci/I	date / time .	
RADIUM-228	-0.0402	+		.599	05/28/2019 10:55	WG1284744
(T) Barium	113		62	2.0-143	05/28/2019 10:55	WG1284744
(T) Yttrium	114			9.0-136	05/28/2019 10:55	WG1284744





	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	,
Analyte	pCi/l		+/-	pCi/l	date / time		
Combined Radium	0,853		0.752	0.895	05/28/2019 10:55	WG1284773	



Ss

### Radiochemistry by Method SM7500Ra B M

**************************************	Result	Qualifier Un	certainty MDA	Analysis Date	Batch
Analyte [.]	pCi/l	+/	- pCi/l	date / time	
RADIUM-226	0.853		03 0.29		<u> WG1284773</u>
(T) Barium-133				143 05/24/2019 17:05	









45

### WG1284744

## QUALITY CONTROL SUMMARY

L1100947-01,02

### Method Blank (MB)

Radiochemistry by Method 904

(MB) R341564	11-1 05/28/19 10:55	
	MB Result MB Qu	alifier MB MDA
Analyte	pCi/l	pCi/l
Radium-228	-0.164	0.413
(T) Barium	108	
(T) Yttrium	115	



















### L1100192-01 Original Sample (OS) • Duplicate (DUP) (OC) L1100102 01 0E/29/10 10:E5 - (D) ID) D2/156/1 5 05/29/10 10:55

(03) [1100132-01	03/26/19 10.33 • (DOF) 1	73413041-3	03/20/13 10	.55
	Original Result	DUP Result	Dilution	DUP

	Original Result	DUP Result	Dilution	DUP RPD	DUP RER	DUP Qualifier	DUP RPD Limits	DUP RER Limit
Analyte	pCi/l	pCi/l		%		a managaran ang atau atau atau atau atau atau atau ata	%	Province Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Conference Co
Radium-228	0.157	-0.0367	1	200	0.366		20	3
(1) Barium	91.7	10.2						
(T) Yttrium	110	107						

# Laboratory Control Sample (LCS)

(LCS) R3415641-2	05/28/19 10:55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	pCi/l	pCi/l	%	%	
Radium-228	5.00	4.47	89.4	80.0-120	
(T) Barium			103		
(T) Yttrium			107		4 11

### L1100922-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1100922-01 05/2	.8/19 10:55 • (MS) R3415641-3	05/28/19 10:55 • (	(MSD) R3415641-4	05/28/19 10:55

(03) [1003]22-01	03/20/13 10:33 - (1113) 1	(3+130 (13 03)	120/15 10:55	(11.00) 100 1	. 1 55/25/15 1	0.00								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	MS RER	RPD Limits	
Analyte	pCi/I	pCi/I	pCi/l	pCi/l	%	%		%		-	%		%	
Radium-228	7.14	-0.136	7.62	7.50	107	105 -	1	70.0-130			1.50		20	
(T) Barium		111			107	110	# 1016 C. C.							
(T) Yttrium		114			107	110								

SDG:

L1100947

### WG1284773

ONE LAB. NATIONWIDE.



Radiochemistry by Method SM7500Ra B M

(MB) R3415635-1 05/	24/19 17:04		
	MB Result	MB Qualifier	MB MDA
Analyte	pCi/l		pCi/l
Radium-226	0.459		0.209
(T) Barium-133	84.6		









(OS) L1100844-01 05/24/	(OS) L1100844-01 05/24/19 17:04 • (DUP) R3415635-5 05/24/19 17:04										
	Original Result	DUP Result	Dilution	DUP RPD	DUP RER	DUP Qualifier	DUP RPD Limits	DUP RER Limit			
Analyte	pCi/l	pCi/I		%			%				
Radium-226	0.495	0.573	1	14.6	0.182		20	3			
(T) Barium-133	90.4	88.8									









(LCS) R3415635-2	05/24/19 17:04	***************************************			
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	pCi/l	pCi/l	%	%	
Radium-226	20.1	19.1	95.0	80.0-120	
			79.1		







(OS) L1100433-01 05/24/19 17:04 • (MS) R3415635-3 05/24/19 17:04 • (MSD) R3415635-4 05/24/19 17:04													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	MS RER	RPD Limits
Analyte	pCi/l	pCi/l	pCî/l	pCi/l	%	%		%			%	The Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co	%
Radium-226	20.1	1.16	19.9	20.9	93.2	98.0	1	75.0-125	.,		4.71		20
(T) Barium-133		83.2			.81.1								

47



Ss

St

### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

### Abbreviations and Definitions

MDA	Minimum Detectable Activity.
Rec.	Recovery. 1994 (1997) 1994 (1997) 1994 (1997) 1994 (1997) 1994 (1997) 1994 (1997) 1994 (1997) 1994 (1997) 1995
RER	Replicate Error Ratio.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(T)	Tracer - A radioisotope of known concentration added to a solution of chemically equivalent radioisotopes at a known concentration to assist in monitoring the yield of the chemical separation.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
	This is the document created in the field when your samples were initially collected. This is used to verify the time and

Sample Chain of Custody (Sc) This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.

Sample Results (Sr)

This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.

Sample Summary (Ss)

This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier

Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

### **ACCREDITATIONS & LOCATIONS**

ONE LAB. NATIONWIDE.



Tc

Ss

Cn

Sr

Qc

Gl

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

### State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	 Nevada	TN-03-2002-34
Arizona	AZ0612	 New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
lorida	E87487	 North Carolina ¹	DW21704
Seorgia	NELAP	North Carolina ³	41
Seorgla ¹	923	North Dakota	R-140
daho	TN00003	 Onto-VAP	CL0069
linois	200008	Oklahoma	9915
ndiana	C-TN-01	 Oregon	TN200002
owa	364	Pennsylvania	68-02979
ansas	E-10277	Rhode Island	LAO00356
lentucky ¹⁶	90010	 South Carolina	84004
entucky ²	16	South Dakota	n/a
ouisiana	Al30792	Tennessee 1 4	2006
ouisiana ¹	LA180010	Texas	T104704245-18-15
laine	TN0002	Texas ⁵	LAB0152
laryland	324	 Utah	TN00003
lassachusetts	M-TN003	Vermont	VT2006
lichigan	9958	- Virginia	460132
linnesota	047-999-395	 Washington	C847
lississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

### Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EML	AP 100789
A2LA - ISO 17025 5	1461.02	. DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



ACCOUNT:

PROJECT:

49

SDG: L1100947

DATE/TIME: 05/29/19 14:15

PAGE 10 of 12

DILL OF TY	SDG#:	1100947		
ooler Received/Opened On: 5/2 /19	Temperature:	Amb		
eceived By: Brock Fariss				
gnature: Mr. Parins				
Receipt Check List	NP	Yes	No	
OC Seal Present / Intact?				
OC Signed / Accurate?				
sottles arrive intact?				
Correct bottles used?				
oufficient volume sent?				

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

H004

DHL Analytical, Inc.

2300 Double Creek Drive Round Rock, TX 78664

TEL: (512) 388-8222

FAX: (512) 388-8229

Work Order: 1905167

Subcontractor:

Pace Analytical 12065 Lebanon Rd

(615) 773-5923 TEL:

FAX:

DHLRRTX Acct#:

15-May-19

*** * *** TN 27492		ACCL#: DEILING	1177			Anna Casarra (Cara	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	1
Mt. Juliet, TN 37122				Ra-23 F	and the second section of the second section is	Requested Tests	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	
	sector D	DHL# Date Collect	ed Bottle Type	E904.0 M7	7500 Ra B M	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		-01
Sample Id	Mannx	1 2200 404	The same and the same	<b>I</b>	1	the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa		01
Lake Sample	Adresso	-01D  05/14/19 10:0 -01E  05/14/19 10:0						02
Lake Sample	Lidacoso	nemama 10	20 AM   1LHDPEHNUS	3				OL-
Pond Sample	Magacass	ARE 05/14/10 10	20 AM 1LHDPEHNO:	3 1	an game and			100
Pond Sample	Aqueous							

General Comments:

Please analyze these samples with Normal Turnaround Time.
Report RA-226, Ra-228 & Combined per Specs.
Quality Control Package Needed: Standard - NELAC Rad Test compliant.

Email to cac@dhlanalytical.com & dupont@dhlanalytical.com

Date/Time

5/17/19 1200 Received by: M. Fam

Date/Time 5/21/19 1010

Relinquished by:

Relinquished by:

Received by:

Anvo



### **Quantitative X-Ray Diffraction by Rietveld Refinement**

Report Prepared for: Golder Associates - Will Vienne

Project Number/LIMS No. 17431-01 / MI7012-JUN19

Batch: Martin Lake Ash Ponds

Sample Receipt: June 13, 2019

Sample Analysis: June 28, 2019

Reporting Date: July 19, 2019

Instrument: Panalytical X'pert Pro Diffractometer

Test Conditions: Co radiation, 40 kV, 45 mA

Regular Scanning: Step: 0.033°, Step time:0.15s, 2θ range: 6-70°

Interpretations: HighScore Plus software using Crystallography Open Database (COD) and

Joint Committee on Powder Diffraction Standards -International Center for

Diffraction Data (JCPDS-ICDD).

**Detection Limit**: 0.5-2%. Strongly dependent on crystallinity.

Contents: 1) Method Summary

2) Summary of Mineral Assemblages

3) Quantitative XRD Results

4) XRD Pattern(s)

Ben Eaton

Junior Mineralogist

Lain Glossop H.B.Sc Senior Mineralogist



### **Method Summary**

#### Mineral Identification and Interpretation:

Mineral identification and interpretation involve matching the diffraction pattern of a test sample material to patterns of single-phase reference materials. The reference patterns from the Crystallography Open Database (COD) and the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

#### Quantitative Rietveld Analysis:

Panalytical HighScore Plus software was used to perform the quantitative Rietveld Analysis. This software uses a graphics based profile analysis program built around a non-linear least squares fitting system, to quantitatively determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile (shown as a blue pattern in the analyses plots) until it matches the obtained experimental patterns (shown as the coloured pattern in the analyses plots).

Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.5 wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

**DISCLAIMER:** This document is issued by the Company under its General Conditions of Service accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

**WARNING:** The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.



### Summary of Rietveld Quantitative Analysis X-ray Diffraction Results

### **Quantitative X-ray Diffraction Results**

	1	2	3		
Mineral/Compound	AP-2019-1 (30-31")	AP-2019-2 (35-36")	AP-2019-3 (18-19")		
	(wt %)	(wt %)	(wt %)		
Quartz	60.8	66.0	99.2		
Albite	22.3	16.2	0.8		
K-Feldspar	1.3	1.4			
Chlorite	1.3	2.7			
Muscovite	1.4	3.2			
*Vermiculite	0.9	0.7			
*Kaolinite	3.0	3.4			
Illite	8.3	6.1			
*Montmorillonite	0.7	0.4			
TOTAL	100	100	100		

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

^{*} Tentative identification of clays only, further clay XRD analysis will be required for positive identification

Mineral/Compound	Formula
Quartz	SiO ₂
Albite	NaAlSi ₃ O ₈
K-Feldspar	KAISi ₃ O ₈
Chlorite	$(Mg_3,Fe_2)AI(AISi_3)O_{10}(OH)_8$
Muscovite	$KAI_2(AlSi_3O_{10})(OH)_2$
Vermiculite	$(Mg,Fe,Al)_2(Al,Si)_4O_{10}(OH)_2\cdot 4(H_2O)$
Kaolinite	$Al_2Si_2O_5(OH)_4$
Illite	$(K,H_3O)(AI,Mg,Fe)_2(Si,AI)_4O_{10}[(OH)_2,(H_2O)]$
Montmorillonite	$Na_{0.2}Ca_{0.1}Al_{1.5}Mg_{0.5}Si_4O_{10}(OH)_2\cdot4(H_2O)$



#### Counts



X-ray diffractogram. The upper pattern is the measured diffractogram, the blue curve is the calculated pattern from the Rietveld Refinement and the lower red curve is the difference plot.







X-ray diffractogram. The upper pattern is the measured diffractogram, the blue curve is the calculated pattern from the Rietveld Refinement and the lower red curve is the difference plot.





X-ray diffractogram. The upper pattern is the measured diffractogram, the blue curve is the calculated pattern from the Rietveld Refinement and the lower red curve is the difference plot.

# **ANALYTICAL REPORT**

Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike Knoxville, TN 37921 Tel: (865)291-3000

Laboratory Job ID: 140-15490-1

Client Project/Site: Martin Lake Ash Ponds - SEP + Totals

For:

Golder Associates Inc. 2201 Double Creek Dr Suite 4004 Round Rock, Texas 78664

Attn: Will Vienne

Crerry Walker Warmund

Authorized for release by: 7/18/2019 5:51:37 PM

Terry Walker Wasmund, Project Manager II (865)291-3000 terry.wasmund@testamericainc.com

LINKS

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Table of Contents**

Cover Page	1
Table of Contents	
Definitions/Glossary	3
Case Narrative	
Detection Summary	6
Client Sample Results	11
Default Detection Limits	20
QC Sample Results	24
QC Association Summary	37
Lab Chronicle	43
Method Summary	55
Sample Summary	56
Chain of Custody	57

3

5

7

9

10

12

# **Definitions/Glossary**

Client: Golder Associates Inc.

Job ID: 140-15490-1

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

**Quality Control** 

### **Qualifiers**

PQL

QC

RER

RL RPD

TEF

TEQ

Metals Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
*	RPD of the LCS and LCSD exceeds the control limits
В	Compound was found in the blank and sample.
F1	MS and/or MSD Recovery is outside acceptance limits.
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the absolute difference is less than the RL.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)

Eurofins TestAmerica, Knoxville

7/18/2019

Page 3 of 58

9

A

5

6

0

9

10

15

### **Case Narrative**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Job ID: 140-15490-1

Laboratory: Eurofins TestAmerica, Knoxville

**Narrative** 

Job Narrative 140-15490-1

#### Receipt

The samples were received on 6/5/2019 at 9:20 AM. The samples arrived in good condition, properly preserved, and on ice. The temperature of the cooler at receipt was 1.2° C.

#### Metals

#### 7 Step Sequential Extraction Procedure

These soil samples were prepared and analyzed using Eurofins TestAmerica Knoxville standard operating procedure KNOX-MT-0008, "7 Step Sequential Extraction Procedure". SW-846 Method 6010B as incorporated in Eurofins TestAmerica Knoxville standard operating procedure KNOX-MT-0007 was used to perform the final instrument analyses.

An aliquot of each sample was sequentially extracted using the steps listed below:

- Step 1 Exchangeable Fraction: A 5 gram aliquot of sample was extracted with 25 mL of 1M magnesium sulfate (MgSO4), centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 2 Carbonate Fraction: The sample residue from step 1 was extracted with 25 mL of 1M sodium acetate/acetic acid (NaOAc/HOAc) at pH 5, centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 3 Non-crystalline Materials Fraction: The sample residue from step 2 was extracted with 25 mL of 0.2M ammonium oxalate (pH 3), centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 4 Metal Hydroxide Fraction: The sample residue from step 3 was extracted with 25 mL of 1M hydroxylamine hydrochloride solution in 25% v/v acetic acid, centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 5 Organic-bound Fraction: The sample residue from step 4 was extracted three times with 25 mL of 5% sodium hypochlorite (NaClO) at pH 9.5, centrifuged and filtered. The resulting leachates were combined and 5 mL were digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 6 Acid/Sulfide Fraction: The sample residue from step 5 was extracted with 25 mL of a 3:1:2 v/v solution of HCI-HNO3-H2O, centrifuged and filtered. 5 mL of the resulting leachate was diluted to 50 mL with reagent water and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 7 Residual Fraction: A 1.0 g aliquot of the sample residue from step 6 was digested using HF, HNO3, HCl and H3BO3. The digestate was analyzed by ICP using method 6010B. Results are reported in mg/kg on a dry weight basis.

In addition, a 1.0 g aliquot of the original sample was digested using HF, HNO3, HCl and H3BO3. The digestate was analyzed by ICP using method 6010B. Total metal results are reported in mg/kg on a dry weight basis.

Results were calculated using the following equation:

Result,  $\mu$ g/g or mg/Kg, dry weight = (C × V × V1 × D) / (W × S × V2)

#### Where:

C = Concentration from instrument readout, μg/mL

V = Final volume of digestate, mL

D = Instrument dilution factor

V1 = Total volume of leachate, mL

V2 = Volume of leachate digested, mL

W = Wet weight of sample, g

S = Percent solids/100

A method blank, laboratory control sample and laboratory control sample duplicate were prepared and analyzed with each SEP step in order to provide information about both the presence of elements of interest in the extraction solutions, and the recovery of elements of

4

Job ID: 140-15490-1

4

J

6

8

9

11

12

Ш

### **Case Narrative**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

### Job ID: 140-15490-1

### Job ID: 140-15490-1 (Continued)

#### Laboratory: Eurofins TestAmerica, Knoxville (Continued)

interest from the extraction solutions. Results outside of laboratory QC limits do not reflect out of control performance, but rather the effect of the extraction solution upon the analyte.

A laboratory sample duplicate was prepared and analyzed with each batch of samples in order to provide information regarding the reproducibility of the procedure.

#### **SEP Report Notes**

The final report lists the results for each step, the result for the total digestion of the sample, and a sum of the results of steps 1 through 7 by element.

Magnesium was not reported for step 1 because the extraction solution for this step (magnesium sulfate) contains high levels of magnesium. Sodium was not reported for steps 2 and 5 since the extraction solutions for these steps contain high levels of sodium. The sum of steps 1 through 7 is much higher than the total result for sodium and magnesium due to the magnesium and sodium introduced by the extraction solutions.

The step 1 digestates were reanalyzed for vanadium at a 1/10 dilution due to positive interelement interferences resulting from the high magnesium results. The reporting limits were adjusted accordingly.

The digestates for steps 1, 2 and 5 were analyzed at a dilution due to instrument problems caused by the high solids content of the digestates. The reporting limits were adjusted accordingly.

The serial dilution performed for samples (140-15490-A-1-A SD ^5) and (140-15490-A-1-AD SD ^50) associated with batch 140-31713 was outside control limits.

Samples AP-2019-1 (30-31) (140-15490-1), AP-2019-2 (35-36) (140-15490-2), AP-2019-3 (18-19) (140-15490-3), (140-15490-A-1-AE DU) and (140-15490-A-1-B DU) were diluted due to the presence of Silicon or Titanium which interferes with Arsenic, Cobalt, Selenium and Thallium. Elevated reporting limits (RLs) are provided.

Samples AP-2019-1 (30-31) (140-15490-1), AP-2019-2 (35-36) (140-15490-2), AP-2019-3 (18-19) (140-15490-3), (140-15490-A-1-AE DU) and (140-15490-A-1-B DU) were diluted for Aluminum and Barium due to the nature of the sample matrix. Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **General Chemistry - % Moisture**

The samples were analyzed for percent moisture using SOP number KNOX-WC-0012 (based on Modified MCAWW 160.3 and SM2540B and on the percent moisture determinations described in methods 3540C and 3550B).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Comments

No additional comments.

Eurofins TestAmerica, Knoxville 7/18/2019

4

6

8

9

11

# **Detection Summary**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-1 (30-31)

Lab Sample ID: 140-15490-1

Analyte		Qualifier	RL	MDL		Dil Fac		Method	Prep Type
Barium	0.88	J	13		mg/Kg	4	₩	6010B SEP	Step 1
Cobalt	0.54	J	13	0.24	mg/Kg	4	₩	6010B SEP	Step 1
Manganese	3.1	J	3.9	0.16	mg/Kg	4	₩	6010B SEP	Step 1
Aluminum	9.7	J *	39	6.3	mg/Kg	3	₩	6010B SEP	Step 2
Barium	0.76	J *	9.9	0.47	mg/Kg	3	₩	6010B SEP	Step 2
Selenium	0.76	JB	2.0	0.67	mg/Kg	3	₩	6010B SEP	Step 2
Aluminum	88		13	2.8	mg/Kg	1	₩	6010B SEP	Step 3
Arsenic	1.8		0.66	0.17	mg/Kg	1	₩	6010B SEP	Step 3
Barium	4.3	В	3.3		mg/Kg	1	₩	6010B SEP	Step 3
Beryllium	0.067		0.33		mg/Kg			6010B SEP	Step 3
Cobalt	0.34	J	3.3		mg/Kg	1	☆	6010B SEP	Step 3
Iron	580		6.6		mg/Kg	1	₩	6010B SEP	Step 3
Manganese	2.4	В	0.99		mg/Kg	· · · · · · · · · · · · · · · · · · ·	₩.	6010B SEP	Step 3
Selenium	0.22		0.66		mg/Kg	1		6010B SEP	Step 3
Aluminum	1700	0.5	13	2.1	mg/Kg	1		6010B SEP	Step 4
Arsenic	2.8	R	0.66		mg/Kg			6010B SEP	Step 4
Barium	16	5	3.3		mg/Kg	1		6010B SEP	Step 4
Beryllium	0.13	1	0.33		mg/Kg	•	₩	6010B SEP	Step 4
Cobalt	1.5		3.3		mg/Kg		 	6010B SEP	
	3900	J							Step 4
Iron			6.6		mg/Kg	1		6010B SEP	Step 4
Li	3.0	J 	3.3		mg/Kg			6010B SEP	Step 4
Manganese	18		0.99		mg/Kg		<b>*</b>	6010B SEP	Step 4
Aluminum -		J *	200	31	0 0	5		6010B SEP	Step 5
Barium	7.0	J * 	49		mg/Kg	5		6010B SEP	Step 5
Aluminum	2300		13		mg/Kg		<b>‡</b>	6010B SEP	Step 6
Arsenic	0.94		0.66		mg/Kg	1		6010B SEP	Step 6
Barium	18		3.3		mg/Kg	1	<b>\</b>	6010B SEP	Step 6
Beryllium	0.067	J	0.33		mg/Kg	1	₽	6010B SEP	Step 6
Cobalt	0.90	J	3.3		mg/Kg	1	₩	6010B SEP	Step 6
Iron	2500		6.6	3.8	mg/Kg	1	₩	6010B SEP	Step 6
Li	2.1	J	3.3	0.20	mg/Kg	1	₩	6010B SEP	Step 6
Manganese	16		0.99		mg/Kg	1	₩	6010B SEP	Step 6
Aluminum	29000		130	21	mg/Kg	10	₩	6010B SEP	Step 7
Arsenic	1.2		0.66	0.17	mg/Kg	1	₽	6010B SEP	Step 7
Barium	390		33	1.6	mg/Kg	10	₩	6010B SEP	Step 7
Beryllium	0.56		0.33	0.0099	mg/Kg	1	₩	6010B SEP	Step 7
Cobalt	0.79	J	6.6	0.39	mg/Kg	2	₩	6010B SEP	Step 7
Iron	5200		6.6	5.4	mg/Kg	1	₩	6010B SEP	Step 7
Li	9.6		3.3	0.20	mg/Kg	1	₩	6010B SEP	Step 7
Manganese	26		0.99		mg/Kg	1		6010B SEP	Step 7
Mo	0.19	J	2.6		mg/Kg		☆	6010B SEP	Step 7
Thallium	0.48		4.6		mg/Kg		☆	6010B SEP	Step 7
Aluminum	33000		10		mg/Kg	1		6010B SEP	Sum of
Arsenic	6.9		0.50	0.13	mg/Kg	1		6010B SEP	Steps 1-7 Sum of Steps 1-7
Barium	440		2.5	0.12	mg/Kg	1		6010B SEP	Sum of Steps 1-7
Beryllium	0.83		0.25	0.0075	mg/Kg	1		6010B SEP	Sum of Steps 1-7
Cobalt	4.0		2.5	0.023	mg/Kg	1		6010B SEP	Sum of Steps 1-7

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Knoxville

7/18/2019

Job ID: 140-15490-1

3

4

J

8

3

11

12

Ц

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-1 (30-31) (Continued)

Lab Sample ID: 140-15490-1

Job ID: 140-15490-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	12000		5.0	4.1	mg/Kg		_	6010B SEP	Sum of
									Steps 1-7
Li	15		2.5	0.15	mg/Kg	1		6010B SEP	Sum of
									Steps 1-7
Manganese	66		0.75	0.052	mg/Kg	1		6010B SEP	Sum of
14.	0.40		0.0	0.000		4		00400 050	Steps 1-7
Мо	0.19	J	2.0	0.082	mg/Kg	1		6010B SEP	Sum of
Selenium	0.98		0.50	0.17	malka			6010B SEP	Steps 1-7
Seleriium	0.90		0.50	0.17	mg/Kg	1		00 10B SEP	Sum of
Thallium	0.48	1	1.8	0.18	mg/Kg	1		6010B SEP	Steps 1-7 Sum of
mamam	0.40	3	1.0	0.10	mg/rtg			0010D OLI	Steps 1-7
Chromium	13	F1	1.8	0.27	mg/Kg	1	₩	6010B	Total/NA
Lead	6.4		1.8	0.34	mg/Kg	1	₩.	6010B	Total/NA
Aluminum	60000		130	21	mg/Kg	10	₩	6010B	Total/NA
Arsenic	6.8		0.66	0.17	mg/Kg	1	₩	6010B	Total/NA
Barium	680		33	1.6	mg/Kg	10	₩	6010B	Total/NA
Beryllium	0.89		0.33	0.0099	mg/Kg	1	✡	6010B	Total/NA
Cobalt	3.8	J	6.6	0.39	mg/Kg	2	₩	6010B	Total/NA
Iron	11000		6.6	5.4	mg/Kg	1	₩	6010B	Total/NA
Lithium	18		3.3	0.20	mg/Kg	1	₩	6010B	Total/NA
Manganese	66		0.99	0.068	mg/Kg	1	₩	6010B	Total/NA
Molybdenum	0.40	J	2.6	0.11	mg/Kg	1	₩	6010B	Total/NA
Hg	0.081	J	0.13	0.053	mg/Kg	1	₩	7470A	Total/NA

Client Sample ID: AP-2019-2 (35-36)

Lab Sample ID: 140-15490-2

onone oampio ibi / i	<i>'</i>								
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum		J	51	8.2	mg/Kg	4	☼	6010B SEP	Step 1
Barium	0.88	J	13	0.61	mg/Kg	4	₩	6010B SEP	Step 1
Cobalt	1.6	J	13	0.23	mg/Kg	4	₩	6010B SEP	Step 1
Iron	23	J	25	15	mg/Kg	4	₩	6010B SEP	Step 1
Manganese	33		3.8	0.16	mg/Kg	4	₩	6010B SEP	Step 1
Aluminum	18	J *	38	6.1	mg/Kg	3	₩	6010B SEP	Step 2
Barium	0.67	J*	9.6	0.46	mg/Kg	3	₩	6010B SEP	Step 2
Cobalt	0.27	J	9.6	0.24	mg/Kg	3	₩	6010B SEP	Step 2
Iron	110	*	19	11	mg/Kg	3	₩	6010B SEP	Step 2
Manganese	4.2		2.9	1.1	mg/Kg	3	₩	6010B SEP	Step 2
Selenium	0.90	JB	1.9	0.65	mg/Kg	3	₩	6010B SEP	Step 2
Aluminum	97		13	2.7	mg/Kg	1	₩	6010B SEP	Step 3
Arsenic	0.97		0.64	0.17	mg/Kg	1	₩	6010B SEP	Step 3
Barium	4.1	В	3.2	0.15	mg/Kg	1	₩	6010B SEP	Step 3
Beryllium	0.028	J	0.32	0.019	mg/Kg	1	₩	6010B SEP	Step 3
Cobalt	0.17	J	3.2	0.057	mg/Kg	1	₩	6010B SEP	Step 3
Iron	1100		6.4	3.7	mg/Kg	1	₩	6010B SEP	Step 3
Manganese	1.5	В	0.96	0.034	mg/Kg	1	₩	6010B SEP	Step 3
Aluminum	1800		13	2.0	mg/Kg	1	₩	6010B SEP	Step 4
Arsenic	0.78	В	0.64	0.28	mg/Kg	1	₩	6010B SEP	Step 4
Barium	23		3.2	0.15	mg/Kg	1	₩	6010B SEP	Step 4
Beryllium	0.078	J	0.32	0.020	mg/Kg	1	₩	6010B SEP	Step 4
Cobalt	1.5	J	3.2	0.068	mg/Kg	1	₩	6010B SEP	Step 4
Iron	3800		6.4	3.7	mg/Kg	1	₩	6010B SEP	Step 4
Li	4.2		3.2	0.19	mg/Kg	1	₩.	6010B SEP	Step 4

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Knoxville

3

5

8

46

11

12

Н

Project/Site: Martin Lake Ash Ponds - SEP + Totals

# Client Sample ID: AP-2019-2 (35-36) (Continued)

# Lab Sample ID: 140-15490-2

Job ID: 140-15490-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Manganese	31		0.96	0.17	mg/Kg		₩	6010B SEP	Step 4
Aluminum	55	J *	190	30	mg/Kg	5	₽	6010B SEP	Step 5
Barium	11	J *	48	2.3	mg/Kg	5	₩	6010B SEP	Step 5
Cobalt	0.85	J *	48	0.76	mg/Kg	5	₩	6010B SEP	Step 5
Manganese	3.9	J *	14	2.4	mg/Kg	5	₽	6010B SEP	Step 5
Aluminum	2000		13		mg/Kg	1		6010B SEP	Step 6
Arsenic	0.74		0.64	0.19	mg/Kg	1	₽	6010B SEP	Step 6
Barium	16		3.2		mg/Kg	1	₽	6010B SEP	Step 6
Beryllium	0.061		0.32		mg/Kg	1	₩	6010B SEP	Step 6
Cobalt	0.80		3.2	0.059	mg/Kg	1	₽	6010B SEP	Step 6
Iron	3300		6.4		mg/Kg		₩	6010B SEP	Step 6
Li	2.1		3.2	0.19	mg/Kg	······································		6010B SEP	Step 6
Manganese	19	0	0.96	0.32	mg/Kg	1	₩	6010B SEP	Step 6
Aluminum	26000		130	20	mg/Kg	10	₩	6010B SEP	Step 7
Arsenic	0.71		0.64	0.17			;: -:;;:	6010B SEP	Step 7
					0 0		☼		
Barium	330		32		mg/Kg	10		6010B SEP	Step 7
Beryllium	0.51		0.32	0.0096	mg/Kg	1	- <del>∴</del> -	6010B SEP	Step 7
Cobalt	1.1	J	6.4		mg/Kg	2	<b>☆</b>	6010B SEP	Step 7
Iron	5600		6.4		mg/Kg	1	<b>☆</b>	6010B SEP	Step 7
Li	11		3.2		mg/Kg		.;; ;	6010B SEP	Step 7
Manganese	34		0.96		mg/Kg	1		6010B SEP	Step 7
Мо	0.17		2.5		mg/Kg	1	₩	6010B SEP	Step 7
Thallium	0.70	J	4.5		mg/Kg	2		6010B SEP	Step 7
Aluminum	30000		10	1.6	mg/Kg	1		6010B SEP	Sum of Steps 1-7
Arsenic	3.2	•	0.50	0.13	mg/Kg	1		6010B SEP	Sum of Steps 1-7
Barium	390		2.5	0.12	mg/Kg	1		6010B SEP	Sum of Steps 1-7
Beryllium	0.68		0.25	0.0075	mg/Kg	1		6010B SEP	Sum of
Cobalt	6.3		2.5	0.023	mg/Kg	1		6010B SEP	Steps 1-7 Sum of
Iron	14000		5.0	4.1	mg/Kg	1		6010B SEP	Steps 1-7 Sum of
Li	18		2.5	0.15	mg/Kg	1		6010B SEP	Steps 1-7 Sum of
Manganese	130		0.75	0.052	mg/Kg	1		6010B SEP	Steps 1-7 Sum of
Мо	0.17	J	2.0	0.082	mg/Kg	1		6010B SEP	Steps 1-7 Sum of
Selenium	0.90		0.50	0.17	mg/Kg	1		6010B SEP	Steps 1-7 Sum of
Thallium	0.70	J	1.8	0.18	mg/Kg	1		6010B SEP	Steps 1-7 Sum of
Chromium	12		1.8	0.27	mg/Kg	1	₩	6010B	Steps 1-7 Total/NA
Lead	6.2		1.8		mg/Kg			6010B	Total/NA
Aluminum	62000		130		mg/Kg			6010B	Total/NA
Arsenic	3.0		0.64		mg/Kg			6010B	Total/NA
Barium	560		32		mg/Kg			6010B	Total/NA
Beryllium	0.72		0.32	0.0096				6010B	Total/NA
Cobalt	6.2	1	16		mg/Kg			6010B	Total/NA
Copail	13000		6.4		mg/Kg			6010B	Total/NA
Iron									

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Knoxville

7/18/2019

Page 8 of 58

2

3

4

6

e S

9

10

12

# **Detection Summary**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-2 (35-36) (Continued)

### Lab Sample ID: 140-15490-2

Job ID: 140-15490-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Mangane	se 150		0.96	0.066	mg/Kg	1	₩	6010B	Total/NA
Molybden	um 0.41	J	2.5	0.10	mg/Kg	1	₩.	6010B	Total/NA
Hg	0.12	J	0.13	0.051	mg/Kg	1	₩	7470A	Total/NA

# Client Sample ID: AP-2019-3 (18-19)

# Lab Sample ID: 140-15490-3

	o				<b></b>	_		
								Prep Typ
								Step 1
								Step 1
								Step 1
								Step 1
	JB							Step 2
								Step 3
					1			Step 3
	J				1			Step 3
					1	₩		Step 3
			0.034	mg/Kg	1	₩	6010B SEP	Step 3
	JB	0.63	0.21	mg/Kg	1	₩	6010B SEP	Step 3
880		13			1	₩	6010B SEP	Step 4
	В	0.63	0.28	mg/Kg	1	₽	6010B SEP	Step 4
6.9		3.1	0.15	mg/Kg	1	₩	6010B SEP	Step 4
0.069	J	0.31	0.020	mg/Kg	1	₩	6010B SEP	Step 4
0.53	J	3.1	0.066	mg/Kg	1	₩	6010B SEP	Step 4
2300		6.3	3.6	mg/Kg	1	₩	6010B SEP	Step 4
0.53	J	3.1	0.19	mg/Kg	1	₩	6010B SEP	Step 4
4.2		0.94	0.16	mg/Kg	1	₩	6010B SEP	Step 4
0.65	B *	0.63	0.59	mg/Kg	1	₩	6010B SEP	Step 4
120	J*	190	29	mg/Kg	5	₩	6010B SEP	Step 5
1200		13	2.0	mg/Kg	1	₩.	6010B SEP	Step 6
0.24	J	0.63	0.19	mg/Kg	1	₩	6010B SEP	Step 6
		3.1	0.15		1	₩	6010B SEP	Step 6
0.026	J	0.31	0.015		1		6010B SEP	Step 6
0.28	J	3.1			1	₩	6010B SEP	Step 6
		6.3			1	₩	6010B SEP	Step 6
	J	3.1			1	₩.		Step 6
					1	₩		Step 6
					10	₩		Step 7
								Step 7
						₩		Step 7
	J							Step 7
								Step 7
						₩		Step 7
								Step 7
	<u>.</u>							Step 7
	-							Sum of
1-3000		10	1.0	9,1.9			33.02.021	Steps 1-7
1.7		0.50	0.13	mg/Kg	1		6010B SEP	Sum of
								Steps 1-7
190		2.5	0.12	mg/Kg	1		6010B SEP	Sum of
_								Steps 1-7
0.23	J	0.25	0.0075	mg/Kg	1		6010B SEP	Sum of Steps 1-7
	14 0.87 15 1.2 0.68 30 2.3 0.025 57 0.11 0.23 880 0.63 6.9 0.069 0.53 2300 0.53 2300 0.53 4.2 0.65 120 1200 0.24 2.1 0.026 0.28 820 0.62 2.9 12000 0.79 180 0.11 2000 6.0 26 0.12 14000 1.7	2.3 JB 0.025 J 57 0.11 JB 0.23 JB 880 0.63 B 6.9 0.069 J 0.53 J 2300 0.53 J 4.2 0.65 B* 1200 J* 1200 0.24 J 2.1 J 0.026 J 0.28 J 820 0.62 J 2.9 12000 0.79 J 180 0.11 J 2000 6.0 26 0.12 J 14000 1.7	14       J       50         0.87       J       13         15       J       25         1.2       J       3.8         0.68       JB       1.9         30       13         2.3       JB       1.9         30       13         0.025       J       0.31         0.70       JB       0.63         880       13       0.63         880       13       0.63         880       13       0.63         880       13       0.63         880       13       0.63         880       13       0.63         880       3.1       0.63         880       3.1       0.63         880       3.1       0.63         880       3.1       0.63         880       3.1       0.63         880       3.1       0.63         880       3.1       0.63         880       3.1       0.63         880       3.1       0.63         880       3.1       0.63         880       0.63       3.1         90 <td>14       J       50       8.0         0.87       J       13       0.23         15       J       25       15         1.2       J       3.8       0.16         0.68       JB       1.9       0.64         30       13       2.6         2.3       JB       3.1       0.15         0.025       J       0.31       0.019         57       6.3       3.6         0.11       JB       0.94       0.034         0.23       JB       0.63       0.21         880       13       2.0         0.63       B       0.63       0.28         6.9       3.1       0.15         0.069       J       0.31       0.020         0.53       J       3.1       0.15         0.069       J       0.31       0.020         0.53       J       3.1       0.19         4.2       0.94       0.16         0.65       B*       0.63       0.59         120       J*       3.1       0.15         0.024       J       0.63       0.19         2.1</td> <td>14 J 50 8.0 mg/Kg 0.87 J 13 0.23 mg/Kg 15 J 25 15 mg/Kg 1.2 J 3.8 0.16 mg/Kg 0.68 JB 1.9 0.64 mg/Kg 30 13 2.6 mg/Kg 0.025 J 0.31 0.019 mg/Kg 0.025 J 0.31 0.019 mg/Kg 0.03 JB 0.63 0.21 mg/Kg 0.03 B 0.63 0.21 mg/Kg 0.03 J 0.31 0.05 mg/Kg 0.69 J 0.31 0.05 mg/Kg 0.53 J 3.1 0.15 mg/Kg 0.53 J 3.1 0.16 mg/Kg 0.69 J 0.31 0.000 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.54 0.55 B* 0.63 0.59 mg/Kg 120 J* 190 29 mg/Kg 120 13 2.0 mg/Kg 0.24 J 0.63 0.19 mg/Kg 0.24 J 0.63 0.19 mg/Kg 0.26 J 0.31 0.015 mg/Kg 0.28 J 3.1 0.15 mg/Kg 0.28 J 3.1 0.15 mg/Kg 0.29 0.94 0.31 mg/Kg 0.29 0.94 0.31 mg/Kg 0.026 J 0.31 0.015 mg/Kg 0.026 J 0.31 0.015 mg/Kg 0.026 J 0.31 0.058 mg/Kg 0.027 J 1.3 0.33 mg/Kg 0.028 J 3.1 0.19 mg/Kg 0.028 J 3.1 0.19 mg/Kg 0.029 0.94 0.31 mg/Kg 0.020 6.3 5.1 mg/Kg 0.011 J 0.31 0.004 mg/Kg 0.011 J 0.31 0.0094 mg/Kg 0.012 J 0.50 0.13 mg/Kg 0.12 J 0.50 0.13 mg/Kg 14000 10 1.6 mg/Kg</td> <td>14 J 50 8.0 mg/Kg 4 0.87 J 13 0.23 mg/Kg 4 15 J 25 15 mg/Kg 4 1.2 J 3.8 0.16 mg/Kg 3 30 13 2.6 mg/Kg 1 0.025 J 0.31 0.019 mg/Kg 1 0.025 J 0.31 0.019 mg/Kg 1 0.11 JB 0.94 0.034 mg/Kg 1 0.23 JB 0.63 0.21 mg/Kg 1 0.03 B 0.63 0.21 mg/Kg 1 0.63 B 0.63 0.21 mg/Kg 1 0.63 B 0.63 0.28 mg/Kg 1 0.53 J 3.1 0.15 mg/Kg 1 0.53 J 3.1 0.15 mg/Kg 1 0.53 J 3.1 0.99 mg/Kg 1 0.53 J 3.1 0.99 mg/Kg 1 0.53 J 3.1 0.99 mg/Kg 1 0.53 J 3.1 0.99 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.99 mg/Kg 1 0.53 J 3.1 0.99 mg/Kg 1 0.54 D 0.94 0.16 mg/Kg 1 0.55 B* 0.63 0.59 mg/Kg 1 1200 13 2.0 mg/Kg 1 0.24 J 0.63 0.19 mg/Kg 1 0.24 J 0.63 0.19 mg/Kg 1 0.24 J 0.63 0.19 mg/Kg 1 0.25 J 3.1 0.015 mg/Kg 1 0.26 J 3.1 0.015 mg/Kg 1 0.29 0.94 0.31 mg/Kg 1 0.29 0.94 0.31 mg/Kg 1 1 0.026 J 3.1 0.09 mg/Kg 1 0.026 J 3.1 0.09 mg/Kg 1 0.027 J 3.3 0.33 mg/Kg 1 0.028 J 3.1 0.99 mg/Kg 1 0.029 0.94 0.31 mg/Kg 1 0.020 13 0.33 mg/Kg 1 0.020 13 0.33 mg/Kg 1 0.020 13 0.33 mg/Kg 1 0.020 13 0.33 mg/Kg 1 0.020 6.3 5.1 mg/Kg 1 0.020 6.3 5.1 mg/Kg 1 0.020 6.3 5.1 mg/Kg 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1</td> <td>14 J 50 8.0 mg/Kg 4 7  0.87 J 13 0.23 mg/Kg 4 6  15 J 25 15 mg/Kg 4 6  12 J 3.8 0.16 mg/Kg 3 6  0.68 JB 1.9 0.64 mg/Kg 1 6  0.68 JB 3.1 0.15 mg/Kg 1 6  0.025 J 0.31 0.019 mg/Kg 1 6  57 6.3 3.6 mg/Kg 1 6  0.11 JB 0.94 0.034 mg/Kg 1 6  0.23 JB 0.63 0.21 mg/Kg 1 6  880 13 2.0 mg/Kg 1 6  880 13 2.0 mg/Kg 1 6  0.63 B 0.63 0.21 mg/Kg 1 6  6.9 3.1 0.15 mg/Kg 1 6  0.65 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.19 mg/Kg 1 6  0.55 J 3.1 0.19 mg/Kg 1 6  0.55 J 3.1 0.19 mg/Kg 1 6  0.55 J 3.1 0.19 mg/Kg 1 6  0.55 J 3.1 0.19 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.5</td> <td>14 J 50 8.0 mg/Kg 4 6010B SEP 0.87 J 13 0.23 mg/Kg 4 6010B SEP 15 J 25 15 mg/Kg 4 6010B SEP 15 J 25 15 mg/Kg 4 6010B SEP 1.2 J 3.8 0.16 mg/Kg 4 6010B SEP 0.68 JB 1.9 0.64 mg/Kg 3 6010B SEP 30 13 2.6 mg/Kg 1 6010B SEP 2.3 JB 3.1 0.15 mg/Kg 1 6010B SEP 0.025 J 0.31 0.019 mg/Kg 1 6010B SEP 0.025 J 0.31 0.019 mg/Kg 1 6010B SEP 0.11 JB 0.94 0.034 mg/Kg 1 6010B SEP 0.13 JB 0.63 0.21 mg/Kg 1 6010B SEP 0.023 JB 0.63 0.21 mg/Kg 1 6010B SEP 0.030 JB 0.63 0.21 mg/Kg 1 6010B SEP 0.063 B 0.63 0.28 mg/Kg 1 6010B SEP 0.069 J 0.31 0.020 mg/Kg 1 6010B SEP 0.050 J 0.31 0.020 mg/Kg 1 6010B SEP 0.053 J 3.1 0.066 mg/Kg 1 6010B SEP 2300 6.3 3.6 mg/Kg 1 6010B SEP 0.53 J 3.1 0.066 mg/Kg 1 6010B SEP 0.53 J 3.1 0.066 mg/Kg 1 6010B SEP 0.53 J 3.1 0.090 mg/Kg 1 6010B SEP 0.53 J 3.1 0.090 mg/Kg 1 6010B SEP 0.53 J 3.1 0.090 mg/Kg 1 6010B SEP 0.53 J 3.1 0.090 mg/Kg 1 6010B SEP 0.53 J 3.1 0.090 mg/Kg 1 6010B SEP 0.54 0.63 0.59 mg/Kg 1 6010B SEP 0.55 J 3.1 0.19 mg/Kg 1 6010B SEP 0.24 J 0.63 0.59 mg/Kg 1 6010B SEP 0.24 J 0.63 0.59 mg/Kg 1 6010B SEP 0.24 J 0.63 0.19 mg/Kg 1 6010B SEP 0.24 J 0.63 0.19 mg/Kg 1 6010B SEP 0.24 J 0.63 0.19 mg/Kg 1 6010B SEP 0.25 J 3.1 0.050 mg/Kg 1 6010B SEP 0.26 J 3.1 0.15 mg/Kg 1 6010B SEP 0.27 J 3.1 0.050 mg/Kg 1 6010B SEP 0.28 J 3.1 0.15 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.34 0.065 mg/Kg 1 6010B SEP 0.027 J 1.3 0.33 mg/Kg 1 6010B SEP 0.038 0.038 0.008 mg/Kg 1 6010B SEP 0.040 0.040 mg/Kg 1 6010B SEP 0.040 0.040 mg/Kg 1 6010B SEP</td>	14       J       50       8.0         0.87       J       13       0.23         15       J       25       15         1.2       J       3.8       0.16         0.68       JB       1.9       0.64         30       13       2.6         2.3       JB       3.1       0.15         0.025       J       0.31       0.019         57       6.3       3.6         0.11       JB       0.94       0.034         0.23       JB       0.63       0.21         880       13       2.0         0.63       B       0.63       0.28         6.9       3.1       0.15         0.069       J       0.31       0.020         0.53       J       3.1       0.15         0.069       J       0.31       0.020         0.53       J       3.1       0.19         4.2       0.94       0.16         0.65       B*       0.63       0.59         120       J*       3.1       0.15         0.024       J       0.63       0.19         2.1	14 J 50 8.0 mg/Kg 0.87 J 13 0.23 mg/Kg 15 J 25 15 mg/Kg 1.2 J 3.8 0.16 mg/Kg 0.68 JB 1.9 0.64 mg/Kg 30 13 2.6 mg/Kg 0.025 J 0.31 0.019 mg/Kg 0.025 J 0.31 0.019 mg/Kg 0.03 JB 0.63 0.21 mg/Kg 0.03 B 0.63 0.21 mg/Kg 0.03 J 0.31 0.05 mg/Kg 0.69 J 0.31 0.05 mg/Kg 0.53 J 3.1 0.15 mg/Kg 0.53 J 3.1 0.16 mg/Kg 0.69 J 0.31 0.000 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.53 J 3.1 0.90 mg/Kg 0.54 0.55 B* 0.63 0.59 mg/Kg 120 J* 190 29 mg/Kg 120 13 2.0 mg/Kg 0.24 J 0.63 0.19 mg/Kg 0.24 J 0.63 0.19 mg/Kg 0.26 J 0.31 0.015 mg/Kg 0.28 J 3.1 0.15 mg/Kg 0.28 J 3.1 0.15 mg/Kg 0.29 0.94 0.31 mg/Kg 0.29 0.94 0.31 mg/Kg 0.026 J 0.31 0.015 mg/Kg 0.026 J 0.31 0.015 mg/Kg 0.026 J 0.31 0.058 mg/Kg 0.027 J 1.3 0.33 mg/Kg 0.028 J 3.1 0.19 mg/Kg 0.028 J 3.1 0.19 mg/Kg 0.029 0.94 0.31 mg/Kg 0.020 6.3 5.1 mg/Kg 0.011 J 0.31 0.004 mg/Kg 0.011 J 0.31 0.0094 mg/Kg 0.012 J 0.50 0.13 mg/Kg 0.12 J 0.50 0.13 mg/Kg 14000 10 1.6 mg/Kg	14 J 50 8.0 mg/Kg 4 0.87 J 13 0.23 mg/Kg 4 15 J 25 15 mg/Kg 4 1.2 J 3.8 0.16 mg/Kg 3 30 13 2.6 mg/Kg 1 0.025 J 0.31 0.019 mg/Kg 1 0.025 J 0.31 0.019 mg/Kg 1 0.11 JB 0.94 0.034 mg/Kg 1 0.23 JB 0.63 0.21 mg/Kg 1 0.03 B 0.63 0.21 mg/Kg 1 0.63 B 0.63 0.21 mg/Kg 1 0.63 B 0.63 0.28 mg/Kg 1 0.53 J 3.1 0.15 mg/Kg 1 0.53 J 3.1 0.15 mg/Kg 1 0.53 J 3.1 0.99 mg/Kg 1 0.53 J 3.1 0.99 mg/Kg 1 0.53 J 3.1 0.99 mg/Kg 1 0.53 J 3.1 0.99 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.90 mg/Kg 1 0.53 J 3.1 0.99 mg/Kg 1 0.53 J 3.1 0.99 mg/Kg 1 0.54 D 0.94 0.16 mg/Kg 1 0.55 B* 0.63 0.59 mg/Kg 1 1200 13 2.0 mg/Kg 1 0.24 J 0.63 0.19 mg/Kg 1 0.24 J 0.63 0.19 mg/Kg 1 0.24 J 0.63 0.19 mg/Kg 1 0.25 J 3.1 0.015 mg/Kg 1 0.26 J 3.1 0.015 mg/Kg 1 0.29 0.94 0.31 mg/Kg 1 0.29 0.94 0.31 mg/Kg 1 1 0.026 J 3.1 0.09 mg/Kg 1 0.026 J 3.1 0.09 mg/Kg 1 0.027 J 3.3 0.33 mg/Kg 1 0.028 J 3.1 0.99 mg/Kg 1 0.029 0.94 0.31 mg/Kg 1 0.020 13 0.33 mg/Kg 1 0.020 13 0.33 mg/Kg 1 0.020 13 0.33 mg/Kg 1 0.020 13 0.33 mg/Kg 1 0.020 6.3 5.1 mg/Kg 1 0.020 6.3 5.1 mg/Kg 1 0.020 6.3 5.1 mg/Kg 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1 1 0.020 6.3 5.1 mg/Kg 1	14 J 50 8.0 mg/Kg 4 7  0.87 J 13 0.23 mg/Kg 4 6  15 J 25 15 mg/Kg 4 6  12 J 3.8 0.16 mg/Kg 3 6  0.68 JB 1.9 0.64 mg/Kg 1 6  0.68 JB 3.1 0.15 mg/Kg 1 6  0.025 J 0.31 0.019 mg/Kg 1 6  57 6.3 3.6 mg/Kg 1 6  0.11 JB 0.94 0.034 mg/Kg 1 6  0.23 JB 0.63 0.21 mg/Kg 1 6  880 13 2.0 mg/Kg 1 6  880 13 2.0 mg/Kg 1 6  0.63 B 0.63 0.21 mg/Kg 1 6  6.9 3.1 0.15 mg/Kg 1 6  0.65 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.066 mg/Kg 1 6  0.55 J 3.1 0.19 mg/Kg 1 6  0.55 J 3.1 0.19 mg/Kg 1 6  0.55 J 3.1 0.19 mg/Kg 1 6  0.55 J 3.1 0.19 mg/Kg 1 6  0.55 J 3.1 0.19 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.55 J 3.1 0.15 mg/Kg 1 6  0.5	14 J 50 8.0 mg/Kg 4 6010B SEP 0.87 J 13 0.23 mg/Kg 4 6010B SEP 15 J 25 15 mg/Kg 4 6010B SEP 15 J 25 15 mg/Kg 4 6010B SEP 1.2 J 3.8 0.16 mg/Kg 4 6010B SEP 0.68 JB 1.9 0.64 mg/Kg 3 6010B SEP 30 13 2.6 mg/Kg 1 6010B SEP 2.3 JB 3.1 0.15 mg/Kg 1 6010B SEP 0.025 J 0.31 0.019 mg/Kg 1 6010B SEP 0.025 J 0.31 0.019 mg/Kg 1 6010B SEP 0.11 JB 0.94 0.034 mg/Kg 1 6010B SEP 0.13 JB 0.63 0.21 mg/Kg 1 6010B SEP 0.023 JB 0.63 0.21 mg/Kg 1 6010B SEP 0.030 JB 0.63 0.21 mg/Kg 1 6010B SEP 0.063 B 0.63 0.28 mg/Kg 1 6010B SEP 0.069 J 0.31 0.020 mg/Kg 1 6010B SEP 0.050 J 0.31 0.020 mg/Kg 1 6010B SEP 0.053 J 3.1 0.066 mg/Kg 1 6010B SEP 2300 6.3 3.6 mg/Kg 1 6010B SEP 0.53 J 3.1 0.066 mg/Kg 1 6010B SEP 0.53 J 3.1 0.066 mg/Kg 1 6010B SEP 0.53 J 3.1 0.090 mg/Kg 1 6010B SEP 0.53 J 3.1 0.090 mg/Kg 1 6010B SEP 0.53 J 3.1 0.090 mg/Kg 1 6010B SEP 0.53 J 3.1 0.090 mg/Kg 1 6010B SEP 0.53 J 3.1 0.090 mg/Kg 1 6010B SEP 0.54 0.63 0.59 mg/Kg 1 6010B SEP 0.55 J 3.1 0.19 mg/Kg 1 6010B SEP 0.24 J 0.63 0.59 mg/Kg 1 6010B SEP 0.24 J 0.63 0.59 mg/Kg 1 6010B SEP 0.24 J 0.63 0.19 mg/Kg 1 6010B SEP 0.24 J 0.63 0.19 mg/Kg 1 6010B SEP 0.24 J 0.63 0.19 mg/Kg 1 6010B SEP 0.25 J 3.1 0.050 mg/Kg 1 6010B SEP 0.26 J 3.1 0.15 mg/Kg 1 6010B SEP 0.27 J 3.1 0.050 mg/Kg 1 6010B SEP 0.28 J 3.1 0.15 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.31 0.015 mg/Kg 1 6010B SEP 0.026 J 0.34 0.065 mg/Kg 1 6010B SEP 0.027 J 1.3 0.33 mg/Kg 1 6010B SEP 0.038 0.038 0.008 mg/Kg 1 6010B SEP 0.040 0.040 mg/Kg 1 6010B SEP 0.040 0.040 mg/Kg 1 6010B SEP

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Knoxville

7/18/2019

Page 9 of 58

6

3

10

12

Н

# **Detection Summary**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-3 (18-19) (Continued)

# Lab Sample ID: 140-15490-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	1.7	J	2.5	0.023	mg/Kg		_	6010B SEP	Sum of
									Steps 1-7
Iron	5200		5.0	4.1	mg/Kg	1		6010B SEP	Sum of
									Steps 1-7
Li	7.2		2.5	0.15	mg/Kg	1		6010B SEP	Sum of
									Steps 1-7
Manganese	35		0.75	0.052	mg/Kg	1		6010B SEP	Sum of
									Steps 1-7
Мо	0.12	J	2.0	0.082	mg/Kg	1		6010B SEP	Sum of
Oalariana	4.0		0.50	0.47		4		00400 050	Steps 1-7
Selenium	1.6		0.50	0.17	mg/Kg	1		6010B SEP	Sum of
Chromium	4.4		1.8	0.26	ma/Ka	1	₩	6010B	Steps 1-7 Total/NA
					mg/Kg				
Lead	3.9		1.8		mg/Kg	1	₩	6010B	Total/NA
Aluminum	20000		130	20	mg/Kg	10	₩	6010B	Total/NA
Arsenic	2.9	J	3.1	0.81	mg/Kg	5	₽	6010B	Total/NA
Barium	240		31	1.5	mg/Kg	10	₩	6010B	Total/NA
Beryllium	0.42		0.31	0.0094	mg/Kg	1	₩	6010B	Total/NA
Cobalt	3.3	J	16	0.94	mg/Kg	5	✡	6010B	Total/NA
Iron	8000		6.3	5.1		1		6010B	Total/NA
Lithium	9.6		3.1	0.19	mg/Kg	1	₩	6010B	Total/NA
Manganese	47		0.94		mg/Kg	1	₩	6010B	Total/NA
Molybdenum	0.28		2.5		mg/Kg			6010B	Total/NA

Job ID: 140-15490-1

^

R

9

1 4

12

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-1 (30-31)

Date Collected: 06/03/19 11:36 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-1

Matrix: Solid

Percent Solids: 76.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		53	8.4	mg/Kg	<u> </u>	06/29/19 08:00	07/11/19 12:49	4
Antimony	ND		16	1.5	mg/Kg	₩	06/29/19 08:00	07/11/19 12:49	4
Arsenic	ND		2.6	0.68	mg/Kg	₩	06/29/19 08:00	07/11/19 12:49	4
Barium	0.88	J	13	0.63	mg/Kg	₩.	06/29/19 08:00	07/11/19 12:49	4
Beryllium	ND		1.3	0.41	mg/Kg	₩	06/29/19 08:00	07/11/19 12:49	4
Cobalt	0.54	J	13	0.24	mg/Kg	₩	06/29/19 08:00	07/11/19 12:49	4
Iron	ND		26	15	mg/Kg	₩.	06/29/19 08:00	07/11/19 12:49	4
Li	ND		13	0.79	mg/Kg	₩	06/29/19 08:00	07/11/19 12:49	4
Manganese	3.1	J	3.9	0.16	mg/Kg	₩	06/29/19 08:00	07/11/19 12:49	4
Mo	ND		11	0.43	mg/Kg	₽	06/29/19 08:00	07/11/19 12:49	4
Selenium	ND		2.6	0.89	mg/Kg	₩	06/29/19 08:00	07/11/19 12:49	4
Thallium	ND		9.2	1.1	mg/Kg	≎	06/29/19 08:00	07/11/19 12:49	4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9.7	J *	39	6.3	mg/Kg	<u> </u>	06/30/19 08:00	07/11/19 14:21	3
Antimony	ND		12	1.1	mg/Kg	₩	06/30/19 08:00	07/11/19 14:21	3
Arsenic	ND		2.0	0.51	mg/Kg	₩	06/30/19 08:00	07/11/19 14:21	3
Barium	0.76	J *	9.9	0.47	mg/Kg	₩.	06/30/19 08:00	07/11/19 14:21	3
Beryllium	ND	*	0.99	0.063	mg/Kg	₩	06/30/19 08:00	07/11/19 14:21	3
Cobalt	ND		9.9	0.25	mg/Kg	₩	06/30/19 08:00	07/11/19 14:21	3
Iron	ND	*	20	11	mg/Kg	₽	06/30/19 08:00	07/11/19 14:21	3
Li	ND		9.9	0.59	mg/Kg	☼	06/30/19 08:00	07/11/19 14:21	3
Manganese	ND		3.0	1.1	mg/Kg	☼	06/30/19 08:00	07/11/19 14:21	3
Mo	ND		7.9	0.32	mg/Kg	₽	06/30/19 08:00	07/11/19 14:21	3
Selenium	0.76	JB	2.0	0.67	mg/Kg	₩	06/30/19 08:00	07/11/19 14:21	3
Thallium	ND	<b>,</b> , , ,	6.9	0.83	mg/Kg	₩	06/30/19 08:00	07/11/19 14:21	3

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	88		13	2.8	mg/Kg	<u> </u>	07/02/19 08:00	07/11/19 16:06	1
Antimony	ND		3.9	0.37	mg/Kg	₩	07/02/19 08:00	07/11/19 16:06	1
Arsenic	1.8		0.66	0.17	mg/Kg	₩	07/02/19 08:00	07/11/19 16:06	1
Barium	4.3 B	3	3.3	0.16	mg/Kg	₩	07/02/19 08:00	07/11/19 16:06	1
Beryllium	0.067 J		0.33	0.020	mg/Kg	☆	07/02/19 08:00	07/11/19 16:06	1
Cobalt	0.34 J		3.3	0.059	mg/Kg	₩	07/02/19 08:00	07/11/19 16:06	1
Iron	580		6.6	3.8	mg/Kg	₩	07/02/19 08:00	07/11/19 16:06	1
Li	ND		3.3	0.20	mg/Kg	☆	07/02/19 08:00	07/11/19 16:06	1
Manganese	2.4 B	3	0.99	0.036	mg/Kg	₩	07/02/19 08:00	07/11/19 16:06	1
Mo	ND		2.6	0.11	mg/Kg	₩	07/02/19 08:00	07/11/19 16:06	1
Selenium	0.22 J	В	0.66	0.22	mg/Kg	₩	07/02/19 08:00	07/11/19 16:06	1
Thallium	ND		2.3	0.28	mg/Kg	₩	07/02/19 08:00	07/11/19 16:06	1

Method: 6010B SEP - 9	SEP Metals (ICP) - S	Step 4							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1700		13	2.1	mg/Kg	₽	07/03/19 08:00	07/11/19 17:49	1
Antimony	ND		3.9	0.59	mg/Kg	☼	07/03/19 08:00	07/11/19 17:49	1
Arsenic	2.8	В	0.66	0.29	mg/Kg	₩	07/03/19 08:00	07/11/19 17:49	1
Barium	16		3.3	0.16	mg/Kg	₽	07/03/19 08:00	07/11/19 17:49	1
Beryllium	0.13	J	0.33	0.021	mg/Kg	₩	07/03/19 08:00	07/11/19 17:49	1

Eurofins TestAmerica, Knoxville

Page 11 of 58

2

4

6

8

3

11

12

L

Method: 6010B SEP - SEP Metals (ICP) - Step 4 (Continued)

ND

ND

ND

ND *

Client Sample ID: AP-2019-1 (30-31)

Date Collected: 06/03/19 11:36 Date Received: 06/05/19 09:20

Manganese

Selenium

Thallium

Мо

Lab Sample ID: 140-15490-1

© 07/10/19 08:00 07/12/19 11:54 © 07/10/19 08:00 07/12/19 11:54

☼ 07/10/19 08:00 07/12/19 11:54

© 07/10/19 08:00 07/12/19 11:54

Matrix: Solid

Percent Solids: 76.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	1.5	J	3.3	0.070	mg/Kg	<u> </u>	07/03/19 08:00	07/11/19 17:49	1
Iron	3900		6.6	3.8	mg/Kg	φ.	07/03/19 08:00	07/11/19 17:49	1
Li	3.0	J	3.3	0.20	mg/Kg	₩	07/03/19 08:00	07/11/19 17:49	1
Manganese	18		0.99	0.17	mg/Kg	₩	07/03/19 08:00	07/11/19 17:49	1
Mo	ND		2.6	0.11	mg/Kg	₩.	07/03/19 08:00	07/11/19 17:49	1
Selenium	ND	*	0.66	0.62	mg/Kg	₩	07/03/19 08:00	07/11/19 17:49	1
Thallium	ND		2.3	0.38	mg/Kg	≎	07/03/19 08:00	07/11/19 17:49	1
Method: 6010B SEP -	· · · · · · · · · · · · · · · · · · ·	•	DI	MDI	11-4	ъ.	Durmanad	Anahmad	Dil F
	· · · · · · · · · · · · · · · · · · ·	•	RI	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL		Unit mg/Kg	D ङ	Prepared	Analyzed	Dil Fac
Analyte Aluminum	Result 62	•	200	31	mg/Kg		07/10/19 08:00	07/12/19 11:54	5
Analyte	Result 62 ND	Qualifier	200 59	31 5.5	mg/Kg mg/Kg		07/10/19 08:00 07/10/19 08:00	07/12/19 11:54 07/12/19 11:54	5
Analyte Aluminum	Result 62	Qualifier	200	31 5.5	mg/Kg		07/10/19 08:00 07/10/19 08:00	07/12/19 11:54	5
Analyte Aluminum Antimony	Result 62 ND	Qualifier / J *	200 59	31 5.5 2.5	mg/Kg mg/Kg		07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 11:54 07/12/19 11:54	5
Analyte Aluminum Antimony Arsenic	Result 62 ND ND	Qualifier J*	200 59 9.9	31 5.5 2.5 2.4	mg/Kg mg/Kg mg/Kg		07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 11:54 07/12/19 11:54 07/12/19 11:54	5 5 5
Analyte Aluminum Antimony Arsenic Barium	Result 62 ND ND 7.0	Qualifier  J *	200 59 9.9 49	31 5.5 2.5 2.4 0.41	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 11:54 07/12/19 11:54 07/12/19 11:54 07/12/19 11:54	5 5 5 5
Analyte Aluminum Antimony Arsenic Barium Beryllium	Result 62 ND ND ND 7.0 ND	Qualifier  J *	200 59 9.9 49 4.9	31 5.5 2.5 2.4 0.41 0.79	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 11:54 07/12/19 11:54 07/12/19 11:54 07/12/19 11:54 07/12/19 11:54	5 5 5 5 5
Analyte Aluminum Antimony Arsenic Barium Beryllium Cobalt	Result 62 ND ND ND 7.0 ND ND ND	Qualifier  J *	200 59 9.9 49 4.9	31 5.5 2.5 2.4 0.41 0.79 58	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 11:54 07/12/19 11:54 07/12/19 11:54 07/12/19 11:54 07/12/19 11:54 07/12/19 11:54	5 5 5 5 5 5

15

39

9.9

35

2.4 mg/Kg

1.6 mg/Kg

3.4 mg/Kg

4.6 mg/Kg

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2300		13	2.1	mg/Kg	<u> </u>	07/10/19 08:00	07/12/19 13:29	1
Antimony	ND	1 1 1	3.9	0.37	mg/Kg	₩	07/10/19 08:00	07/12/19 13:29	1
Arsenic	0.94		0.66	0.20	mg/Kg	₩	07/10/19 08:00	07/12/19 13:29	1
Barium	18		3.3	0.16	mg/Kg	φ.	07/10/19 08:00	07/12/19 13:29	1
Beryllium	0.067	J	0.33	0.016	mg/Kg	₩	07/10/19 08:00	07/12/19 13:29	1
Cobalt	0.90	J	3.3	0.061	mg/Kg	₩	07/10/19 08:00	07/12/19 13:29	1
Iron	2500		6.6	3.8	mg/Kg	₩.	07/10/19 08:00	07/12/19 13:29	1
Li	2.1	J	3.3	0.20	mg/Kg	₩	07/10/19 08:00	07/12/19 13:29	1
Manganese	16		0.99	0.33	mg/Kg	₩	07/10/19 08:00	07/12/19 13:29	1
Mo	ND		2.6	0.13	mg/Kg	₩.	07/10/19 08:00	07/12/19 13:29	1
Selenium	ND		0.66	0.22	mg/Kg	₩	07/10/19 08:00	07/12/19 13:29	1
Thallium	ND		2.3	0.28	mg/Kg	≎	07/10/19 08:00	07/12/19 13:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	29000		130	21	mg/Kg	₩	07/12/19 09:08	07/15/19 13:08	10
Antimony	ND		3.9	0.18	mg/Kg	☼	07/12/19 09:08	07/15/19 11:39	1
Arsenic	1.2		0.66	0.17	mg/Kg	☼	07/12/19 09:08	07/15/19 11:39	1
Barium	390		33	1.6	mg/Kg	₽	07/12/19 09:08	07/15/19 13:08	10
Beryllium	0.56		0.33	0.0099	mg/Kg	☼	07/12/19 09:08	07/15/19 11:39	1
Cobalt	0.79	J	6.6	0.39	mg/Kg	☼	07/12/19 09:08	07/15/19 17:11	2
Iron	5200		6.6	5.4	mg/Kg	₽	07/12/19 09:08	07/15/19 11:39	1
Li	9.6		3.3	0.20	mg/Kg	☼	07/12/19 09:08	07/15/19 11:39	1
Manganese	26		0.99	0.068	mg/Kg	☼	07/12/19 09:08	07/15/19 11:39	1
Mo	0.19	J	2.6	0.11	mg/Kg	\$	07/12/19 09:08	07/15/19 11:39	1

Eurofins TestAmerica, Knoxville

Page 12 of 58

2

4

6

8

9

11

12

1:

5

5

7/18/2019

# **Client Sample Results**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-1 (30-31)

Date Collected: 06/03/19 11:36 Date Received: 06/05/19 09:20

Lab Sample ID: 140-15490-1

**Matrix: Solid** 

Percent Solids: 76.0

Job ID: 140-15490-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.66	0.22	mg/Kg	<u> </u>	07/12/19 09:08	07/15/19 11:39	
Thallium	0.48	J	4.6	0.47	mg/Kg	₩	07/12/19 09:08	07/15/19 17:11	:
Method: 6010B SEP - S	SEP Metals (ICP) - S	Sum of Step	s 1-7						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	33000		10	1.6	mg/Kg			07/16/19 17:31	
Antimony	ND		3.0	0.14	mg/Kg			07/16/19 17:31	
Arsenic	6.9		0.50	0.13	mg/Kg			07/16/19 17:31	
Barium	440		2.5	0.12	mg/Kg			07/16/19 17:31	
Beryllium	0.83		0.25	0.0075	mg/Kg			07/16/19 17:31	
Cobalt	4.0		2.5	0.023	mg/Kg			07/16/19 17:31	
Iron	12000		5.0	4.1	mg/Kg			07/16/19 17:31	
Li	15		2.5	0.15	mg/Kg			07/16/19 17:31	
Manganese	66		0.75	0.052	mg/Kg			07/16/19 17:31	
VIO	0.19	J	2.0	0.082	mg/Kg			07/16/19 17:31	
Selenium	0.98		0.50	0.17	mg/Kg			07/16/19 17:31	
Γhallium	0.48	J	1.8	0.18	mg/Kg			07/16/19 17:31	
Method: 6010B - Metal	s (ICP)		•						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Boron	ND		25	12	mg/Kg	<u> </u>	06/26/19 08:00	07/10/19 12:59	
Chromium	13	F1	1.8	0.27	mg/Kg	☆	06/26/19 08:00	07/10/19 12:59	
_ead	6.4		1.8	0.34	mg/Kg	₩	06/26/19 08:00	07/10/19 12:59	
Method: 6010B - SEP I	• •					_	_		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Aluminum	60000	1 11	130	21	mg/Kg	₩.	06/11/19 08:00	07/15/19 15:45	•
Antimony	ND		3.9	0.18	mg/Kg	₩	06/11/19 08:00	07/15/19 14:24	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	60000		130	21	mg/Kg	<u> </u>	06/11/19 08:00	07/15/19 15:45	10
Antimony	ND		3.9	0.18	mg/Kg	₩	06/11/19 08:00	07/15/19 14:24	1
Arsenic	6.8		0.66	0.17	mg/Kg	₩	06/11/19 08:00	07/15/19 14:24	1
Barium	680		33	1.6	mg/Kg	₩.	06/11/19 08:00	07/15/19 15:45	10
Beryllium	0.89		0.33	0.0099	mg/Kg	₩	06/11/19 08:00	07/15/19 14:24	1
Cobalt	3.8	J	6.6	0.39	mg/Kg	₩	06/11/19 08:00	07/15/19 18:28	2
Iron	11000		6.6	5.4	mg/Kg	₩.	06/11/19 08:00	07/15/19 14:24	1
Lithium	18		3.3	0.20	mg/Kg	₩	06/11/19 08:00	07/15/19 14:24	1
Manganese	66		0.99	0.068	mg/Kg	₩	06/11/19 08:00	07/15/19 14:24	1
Molybdenum	0.40	J	2.6	0.11	mg/Kg	₩.	06/11/19 08:00	07/15/19 14:24	1
Selenium	ND		0.66	0.22	mg/Kg	₩	06/11/19 08:00	07/15/19 14:24	1
Thallium	ND		4.6	0.47	mg/Kg	≎	06/11/19 08:00	07/15/19 18:28	2

ı	Method: 7470A - SEP Mercury (	CVAA) - T	otal							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	0.081	J	0.13	0.053	mg/Kg	<u>∓</u>	06/11/19 08:00	06/16/19 14:04	1

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-2 (35-36)

Date Collected: 06/03/19 13:20 Date Received: 06/05/19 09:20

Selenium

Thallium

Lab Sample ID: 140-15490-2

© 06/29/19 08:00 07/11/19 12:59

© 06/29/19 08:00 07/11/19 12:59

**Matrix: Solid Percent Solids: 78.5** 

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	19	J	51	8.2	mg/Kg	<u>₩</u>	06/29/19 08:00	07/11/19 12:59	4
Antimony	ND		15	1.4	mg/Kg	₩	06/29/19 08:00	07/11/19 12:59	4
Arsenic	ND		2.5	0.66	mg/Kg	☼	06/29/19 08:00	07/11/19 12:59	4
Barium	0.88	J	13	0.61	mg/Kg	₩.	06/29/19 08:00	07/11/19 12:59	4
Beryllium	ND		1.3	0.39	mg/Kg	₩	06/29/19 08:00	07/11/19 12:59	4
Cobalt	1.6	J	13	0.23	mg/Kg	₩	06/29/19 08:00	07/11/19 12:59	4
Iron	23	J	25	15	mg/Kg	φ.	06/29/19 08:00	07/11/19 12:59	4
Li	ND		13	0.76	mg/Kg	₩	06/29/19 08:00	07/11/19 12:59	4
Manganese	33		3.8	0.16	mg/Kg	₩	06/29/19 08:00	07/11/19 12:59	4
Mo	ND		10	0.42	mg/Kg		06/29/19 08:00	07/11/19 12:59	4

2.5

8.9

0.87 mg/Kg

1.1 mg/Kg

ND

ND

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	18	J *	38	6.1	mg/Kg	<u> </u>	06/30/19 08:00	07/11/19 14:42	3
Antimony	ND		11	1.1	mg/Kg	₩	06/30/19 08:00	07/11/19 14:42	3
Arsenic	ND		1.9	0.50	mg/Kg	☼	06/30/19 08:00	07/11/19 14:42	3
Barium	0.67	J *	9.6	0.46	mg/Kg	φ.	06/30/19 08:00	07/11/19 14:42	3
Beryllium	ND	*	0.96	0.061	mg/Kg	☼	06/30/19 08:00	07/11/19 14:42	3
Cobalt	0.27	J	9.6	0.24	mg/Kg	☼	06/30/19 08:00	07/11/19 14:42	3
Iron	110	*	19	11	mg/Kg	₩.	06/30/19 08:00	07/11/19 14:42	3
Li	ND		9.6	0.57	mg/Kg	₩	06/30/19 08:00	07/11/19 14:42	3
Manganese	4.2		2.9	1.1	mg/Kg	₩	06/30/19 08:00	07/11/19 14:42	3
Mo	ND		7.6	0.31	mg/Kg	₩	06/30/19 08:00	07/11/19 14:42	3
Selenium	0.90	JB	1.9	0.65	mg/Kg	☼	06/30/19 08:00	07/11/19 14:42	3
Thallium	ND		6.7	0.80	mg/Kg	≎	06/30/19 08:00	07/11/19 14:42	3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	97		13	2.7	mg/Kg	<u> </u>	07/02/19 08:00	07/11/19 16:16	1
Antimony	ND		3.8	0.36	mg/Kg	₩	07/02/19 08:00	07/11/19 16:16	1
Arsenic	0.97		0.64	0.17	mg/Kg	₩	07/02/19 08:00	07/11/19 16:16	1
Barium	4.1	В	3.2	0.15	mg/Kg	₩.	07/02/19 08:00	07/11/19 16:16	1
Beryllium	0.028	J	0.32	0.019	mg/Kg	₩	07/02/19 08:00	07/11/19 16:16	1
Cobalt	0.17	J	3.2	0.057	mg/Kg	₩	07/02/19 08:00	07/11/19 16:16	1
Iron	1100		6.4	3.7	mg/Kg	₩.	07/02/19 08:00	07/11/19 16:16	1
Li	ND		3.2	0.19	mg/Kg	₩	07/02/19 08:00	07/11/19 16:16	1
Manganese	1.5	В	0.96	0.034	mg/Kg	₩	07/02/19 08:00	07/11/19 16:16	1
Mo	ND		2.5	0.10	mg/Kg	₩.	07/02/19 08:00	07/11/19 16:16	1
Selenium	ND		0.64	0.22	mg/Kg	₩	07/02/19 08:00	07/11/19 16:16	1
Thallium	ND		2.2	0.27	mg/Kg	₩	07/02/19 08:00	07/11/19 16:16	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1800		13	2.0	mg/Kg	<u> </u>	07/03/19 08:00	07/11/19 17:59	1
Antimony	ND		3.8	0.57	mg/Kg	₩	07/03/19 08:00	07/11/19 17:59	1
Arsenic	0.78	В	0.64	0.28	mg/Kg	₩	07/03/19 08:00	07/11/19 17:59	1
Barium	23		3.2	0.15	mg/Kg	₽	07/03/19 08:00	07/11/19 17:59	1
Beryllium	0.078	J	0.32	0.020	mg/Kg	≎	07/03/19 08:00	07/11/19 17:59	1

Eurofins TestAmerica, Knoxville

Page 14 of 58

7/18/2019

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-2 (35-36)

Date Collected: 06/03/19 13:20 Date Received: 06/05/19 09:20

Selenium

Thallium

Lab Sample ID: 140-15490-2

© 07/10/19 08:00 07/12/19 12:05

© 07/10/19 08:00 07/12/19 12:05

**Matrix: Solid** 

**Percent Solids: 78.5** 

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	1.5	J	3.2	0.068	mg/Kg	<u> </u>	07/03/19 08:00	07/11/19 17:59	1
Iron	3800		6.4	3.7	mg/Kg		07/03/19 08:00	07/11/19 17:59	1
Li	4.2		3.2	0.19	mg/Kg	☼	07/03/19 08:00	07/11/19 17:59	1
Manganese	31		0.96	0.17	mg/Kg	☼	07/03/19 08:00	07/11/19 17:59	1
Mo	ND		2.5	0.10	mg/Kg	φ.	07/03/19 08:00	07/11/19 17:59	1
Selenium	ND	*	0.64	0.60	mg/Kg	☼	07/03/19 08:00	07/11/19 17:59	1
Thallium	ND		2.2	0.37	mg/Kg	☼	07/03/19 08:00	07/11/19 17:59	1
Method: 6010B SEP - S Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	
	Result	•	RL 190		Unit mg/Kg	D 变	Prepared 07/10/19 08:00	Analyzed 07/12/19 12:05	
Analyte	Result	Qualifier		30			<u> </u>	07/12/19 12:05	Dil Fac
Analyte Aluminum	Result 55	Qualifier	190	30 5.4	mg/Kg		07/10/19 08:00	07/12/19 12:05 07/12/19 12:05	5
Analyte Aluminum Antimony	Result 55 ND ND	Qualifier	190 57	30 5.4 2.4	mg/Kg mg/Kg		07/10/19 08:00 07/10/19 08:00	07/12/19 12:05 07/12/19 12:05	5
Analyte Aluminum Antimony Arsenic	Result 55 ND ND	Qualifier J*	190 57 9.6	30 5.4 2.4 2.3	mg/Kg mg/Kg mg/Kg		07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 12:05 07/12/19 12:05 07/12/19 12:05 07/12/19 12:05	5 5 5
Analyte Aluminum Antimony Arsenic Barium	Result 55 ND ND 11	Qualifier  J *	190 57 9.6 48	30 5.4 2.4 2.3 0.40	mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$	07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 12:05 07/12/19 12:05 07/12/19 12:05 07/12/19 12:05	5 5 5 5
Analyte Aluminum Antimony Arsenic Barium Beryllium	Result 55 ND ND 11 ND	Qualifier  J *  J *	190 57 9.6 48 4.8	30 5.4 2.4 2.3 0.40 0.76	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$	07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 12:05 07/12/19 12:05 07/12/19 12:05 07/12/19 12:05 07/12/19 12:05	5 5 5 5 5
Analyte Aluminum Antimony Arsenic Barium Beryllium Cobalt	Result 55 ND ND 11 ND 0.85	Qualifier  J *  J *	190 57 9.6 48 4.8 4.8	30 5.4 2.4 2.3 0.40 0.76 56	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$	07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 12:05 07/12/19 12:05 07/12/19 12:05 07/12/19 12:05 07/12/19 12:05 07/12/19 12:05 07/12/19 12:05	5 5 5 5 5 5
Analyte Aluminum Antimony Arsenic Barium Beryllium Cobalt	Result	Qualifier  J *  J *	190 57 9.6 48 4.8 48	30 5.4 2.4 2.3 0.40 0.76 56 2.8	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$	07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 12:05 07/12/19 12:05 07/12/19 12:05 07/12/19 12:05 07/12/19 12:05 07/12/19 12:05 07/12/19 12:05	5 5 5 5 5 5 5

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2000	13	2.0	mg/Kg	<u> </u>	07/10/19 08:00	07/12/19 13:49	1
Antimony	ND	3.8	0.36	mg/Kg	₩	07/10/19 08:00	07/12/19 13:49	1
Arsenic	0.74	0.64	0.19	mg/Kg	₩	07/10/19 08:00	07/12/19 13:49	1
Barium	16	3.2	0.15	mg/Kg	φ.	07/10/19 08:00	07/12/19 13:49	1
Beryllium	0.061 J	0.32	0.015	mg/Kg	₩	07/10/19 08:00	07/12/19 13:49	1
Cobalt	0.80 J	3.2	0.059	mg/Kg	₩	07/10/19 08:00	07/12/19 13:49	1
Iron	3300	6.4	3.7	mg/Kg	₩.	07/10/19 08:00	07/12/19 13:49	1
Li	2.1 J	3.2	0.19	mg/Kg	₩	07/10/19 08:00	07/12/19 13:49	1
Manganese	19	0.96	0.32	mg/Kg	₩	07/10/19 08:00	07/12/19 13:49	1
Mo	ND	2.5	0.13	mg/Kg	₩.	07/10/19 08:00	07/12/19 13:49	1
Selenium	ND	0.64	0.22	mg/Kg	₩	07/10/19 08:00	07/12/19 13:49	1
Thallium	ND	2.2	0.27	mg/Kg	≎	07/10/19 08:00	07/12/19 13:49	1

9.6

3.3 mg/Kg

4.5 mg/Kg

ND

ND *

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	26000	130	20	mg/Kg	<del></del>	07/12/19 09:08	07/15/19 13:19	10
Antimony	ND	3.8	0.18	mg/Kg	₩	07/12/19 09:08	07/15/19 12:05	1
Arsenic	0.71	0.64	0.17	mg/Kg	☼	07/12/19 09:08	07/15/19 12:05	1
Barium	330	32	1.5	mg/Kg	₽	07/12/19 09:08	07/15/19 13:19	10
Beryllium	0.51	0.32	0.0096	mg/Kg	☼	07/12/19 09:08	07/15/19 12:05	1
Cobalt	1.1 J	6.4	0.38	mg/Kg	☼	07/12/19 09:08	07/15/19 17:21	2
Iron	5600	6.4	5.2	mg/Kg	₩.	07/12/19 09:08	07/15/19 12:05	1
Li	11	3.2	0.19	mg/Kg	₩	07/12/19 09:08	07/15/19 12:05	1
Manganese	34	0.96	0.066	mg/Kg	☼	07/12/19 09:08	07/15/19 12:05	1
Мо	0.17 J	2.5	0.10	mg/Kg		07/12/19 09:08	07/15/19 12:05	1

Eurofins TestAmerica, Knoxville

Page 15 of 58

# **Client Sample Results**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-2 (35-36)

Date Collected: 06/03/19 13:20 Date Received: 06/05/19 09:20

Thallium

Analyte

Hg

Lab Sample ID: 140-15490-2

Matrix: Solid

Percent Solids: 78.5

Job ID: 140-15490-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.64	0.22	mg/Kg	<u> </u>	07/12/19 09:08	07/15/19 12:05	1
Thallium	0.70	J	4.5	0.46	mg/Kg	₩	07/12/19 09:08	07/15/19 17:21	2
Method: 6010B SEP - S	SEP Metals (ICP) - S	Sum of Step	s 1-7						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	30000		10	1.6	mg/Kg			07/16/19 17:31	1
Antimony	ND		3.0	0.14	mg/Kg			07/16/19 17:31	1
Arsenic	3.2		0.50	0.13	mg/Kg			07/16/19 17:31	1
Barium	390		2.5	0.12	mg/Kg			07/16/19 17:31	1
Beryllium	0.68		0.25	0.0075	mg/Kg			07/16/19 17:31	1
Cobalt	6.3		2.5	0.023	mg/Kg			07/16/19 17:31	1
Iron	14000		5.0	4.1	mg/Kg			07/16/19 17:31	1
Li	18		2.5	0.15	mg/Kg			07/16/19 17:31	1
Manganese	130		0.75	0.052	mg/Kg			07/16/19 17:31	1
Mo	0.17	J	2.0	0.082	mg/Kg			07/16/19 17:31	1
Selenium	0.90		0.50	0.17	mg/Kg			07/16/19 17:31	1
Thallium	0.70	J	1.8	0.18	mg/Kg			07/16/19 17:31	1
· ·									
Method: 6010B - Metals		0	<b>D</b> .	RADI	1114	_	B	A l	D'I F
Analyte		Qualifier	RL		Unit	— D <u>₩</u>	Prepared	Analyzed	Dil Fac
Boron	ND		24		mg/Kg		06/26/19 08:00	07/10/19 13:13	1
Chromium	12		1.8		mg/Kg	<b>*</b>		07/10/19 13:13	1
Lead	6.2		1.8	0.34	mg/Kg	☼	06/26/19 08:00	07/10/19 13:13	1
Method: 6010B - SEP N	Metals (ICP) - Total								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	62000		130	20	mg/Kg	<u> </u>	06/11/19 08:00	07/15/19 16:10	10
Antimony	ND		3.8	0.18	mg/Kg	☼	06/11/19 08:00	07/15/19 14:36	1
Arsenic	3.0		0.64	0.17	mg/Kg	☼	06/11/19 08:00	07/15/19 14:36	1
Barium	560		32	1.5	mg/Kg	₩	06/11/19 08:00	07/15/19 16:10	10
Beryllium	0.72		0.32	0.0096	mg/Kg	☼	06/11/19 08:00	07/15/19 14:36	1
Cobalt	6.2	J	16	0.96	mg/Kg	☼	06/11/19 08:00	07/15/19 18:38	5
Iron	13000		6.4	5.2	mg/Kg	<del>.</del>	06/11/19 08:00	07/15/19 14:36	1
Lithium	26		3.2	0.19	mg/Kg	☼	06/11/19 08:00	07/15/19 14:36	1
Manganese	150		0.96	0.066	mg/Kg	☼	06/11/19 08:00	07/15/19 14:36	1
Molybdenum	0.41	J	2.5		mg/Kg		06/11/19 08:00	07/15/19 14:36	1
Selenium	ND		0.64		mg/Kg	₽	06/11/19 08:00	07/15/19 14:36	1
Ocionialii									

Analyzed

☼ 06/11/19 08:00 07/15/19 18:38

Prepared

11

RL

0.13

1.1 mg/Kg

MDL Unit

0.051 mg/Kg

ND

Result Qualifier

0.12 J

Method: 7470A - SEP Mercury (CVAA) - Total

**Client Sample ID: AP-2019-3 (18-19)** 

Date Collected: 06/03/19 15:20 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-3

Matrix: Solid

Percent Solids: 80.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	14	J	50	8.0	mg/Kg	<u> </u>	06/29/19 08:00	07/11/19 13:04	4
Antimony	ND		15	1.4	mg/Kg	₩	06/29/19 08:00	07/11/19 13:04	4
Arsenic	ND		2.5	0.65	mg/Kg	₩	06/29/19 08:00	07/11/19 13:04	4
Barium	ND		13	0.60	mg/Kg	₩.	06/29/19 08:00	07/11/19 13:04	4
Beryllium	ND		1.3	0.39	mg/Kg	₩	06/29/19 08:00	07/11/19 13:04	4
Cobalt	0.87	J	13	0.23	mg/Kg	₩	06/29/19 08:00	07/11/19 13:04	4
Iron	15	J	25	15	mg/Kg	φ.	06/29/19 08:00	07/11/19 13:04	4
Li	ND		13	0.75	mg/Kg	₩	06/29/19 08:00	07/11/19 13:04	4
Manganese	1.2	J	3.8	0.16	mg/Kg	₩	06/29/19 08:00	07/11/19 13:04	4
Mo	ND		10	0.41	mg/Kg	₩	06/29/19 08:00	07/11/19 13:04	4
Selenium	ND		2.5	0.85	mg/Kg	☼	06/29/19 08:00	07/11/19 13:04	4
Thallium	ND		8.8	1.1	mg/Kg	≎	06/29/19 08:00	07/11/19 13:04	4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND	*	38	6.0	mg/Kg	<u> </u>	06/30/19 08:00	07/11/19 14:47	3
Antimony	ND		11	1.1	mg/Kg	₩	06/30/19 08:00	07/11/19 14:47	3
Arsenic	ND		1.9	0.49	mg/Kg	₩	06/30/19 08:00	07/11/19 14:47	3
Barium	ND	*	9.4	0.45	mg/Kg	₩.	06/30/19 08:00	07/11/19 14:47	3
Beryllium	ND	*	0.94	0.060	mg/Kg	₩	06/30/19 08:00	07/11/19 14:47	3
Cobalt	ND		9.4	0.24	mg/Kg	₩	06/30/19 08:00	07/11/19 14:47	3
Iron	ND	*	19	11	mg/Kg		06/30/19 08:00	07/11/19 14:47	3
Li	ND		9.4	0.56	mg/Kg	☼	06/30/19 08:00	07/11/19 14:47	3
Manganese	ND		2.8	1.1	mg/Kg	₩	06/30/19 08:00	07/11/19 14:47	3
Mo	ND		7.5	0.31	mg/Kg	☼	06/30/19 08:00	07/11/19 14:47	3
Selenium	0.68	JB	1.9	0.64	mg/Kg	☼	06/30/19 08:00	07/11/19 14:47	3
Thallium	ND		6.6	0.79	mg/Kg	☆	06/30/19 08:00	07/11/19 14:47	3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	30		13	2.6	mg/Kg	₩	07/02/19 08:00	07/11/19 16:21	1
Antimony	ND		3.8	0.35	mg/Kg	☼	07/02/19 08:00	07/11/19 16:21	1
Arsenic	ND		0.63	0.16	mg/Kg	☼	07/02/19 08:00	07/11/19 16:21	1
Barium	2.3	JB	3.1	0.15	mg/Kg	₽	07/02/19 08:00	07/11/19 16:21	1
Beryllium	0.025	J	0.31	0.019	mg/Kg	☼	07/02/19 08:00	07/11/19 16:21	1
Cobalt	ND		3.1	0.056	mg/Kg	☼	07/02/19 08:00	07/11/19 16:21	1
Iron	57		6.3	3.6	mg/Kg	₩	07/02/19 08:00	07/11/19 16:21	1
Li	ND		3.1	0.19	mg/Kg	☼	07/02/19 08:00	07/11/19 16:21	1
Manganese	0.11	JB	0.94	0.034	mg/Kg	☼	07/02/19 08:00	07/11/19 16:21	1
Mo	ND		2.5	0.10	mg/Kg	₩	07/02/19 08:00	07/11/19 16:21	1
Selenium	0.23	JB	0.63	0.21	mg/Kg	☼	07/02/19 08:00	07/11/19 16:21	1
Thallium	ND		2.2	0.26	mg/Kg	₽	07/02/19 08:00	07/11/19 16:21	1

Method: 6010B SEP - S	SEP Metals (ICP) - S	Step 4							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	880		13	2.0	mg/Kg	₽	07/03/19 08:00	07/11/19 18:04	1
Antimony	ND		3.8	0.56	mg/Kg	☼	07/03/19 08:00	07/11/19 18:04	1
Arsenic	0.63	В	0.63	0.28	mg/Kg	☼	07/03/19 08:00	07/11/19 18:04	1
Barium	6.9		3.1	0.15	mg/Kg	₽	07/03/19 08:00	07/11/19 18:04	1
Beryllium	0.069	J	0.31	0.020	mg/Kg	₩	07/03/19 08:00	07/11/19 18:04	1

Eurofins TestAmerica, Knoxville

Page 17 of 58

3

5

7

a

10

12

13

7/18/2019

Project/Site: Martin Lake Ash Ponds - SEP + Totals

**Client Sample ID: AP-2019-3 (18-19)** 

Date Collected: 06/03/19 15:20 Date Received: 06/05/19 09:20

Mo Selenium

Thallium

Lab Sample ID: 140-15490-3

© 07/10/19 08:00 07/12/19 12:10

☼ 07/10/19 08:00 07/12/19 12:10

☼ 07/10/19 08:00 07/12/19 12:10

Matrix: Solid

Percent Solids: 80.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	0.53	J	3.1	0.066	mg/Kg	<u> </u>	07/03/19 08:00	07/11/19 18:04	1
Iron	2300		6.3	3.6	mg/Kg	<b></b>	07/03/19 08:00	07/11/19 18:04	1
Li	0.53	J	3.1	0.19	mg/Kg	₩	07/03/19 08:00	07/11/19 18:04	1
Manganese	4.2		0.94	0.16	mg/Kg	₩	07/03/19 08:00	07/11/19 18:04	1
Mo	ND		2.5	0.10	mg/Kg	₩	07/03/19 08:00	07/11/19 18:04	1
Selenium	0.65	B *	0.63	0.59	mg/Kg	☼	07/03/19 08:00	07/11/19 18:04	1
Thallium	ND		2.2	0.36	mg/Kg	₩	07/03/19 08:00	07/11/19 18:04	1
Method: 6010B SEP - S	· ,	•	RI	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	
Analyte	Result 120	Qualifier	RL			— <del>D</del>	07/10/19 08:00	07/12/19 12:10	
Analyte Aluminum	Result	Qualifier		29			07/10/19 08:00		Dil Fac
Analyte Aluminum Antimony	Result 120	Qualifier	190	29 5.3	mg/Kg		07/10/19 08:00 07/10/19 08:00	07/12/19 12:10	5
Analyte Aluminum Antimony Arsenic	Result 120 ND	Qualifier	190 56	29 5.3 2.4	mg/Kg mg/Kg	— <del>≅</del>	07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 12:10 07/12/19 12:10	5 5 5
Analyte Aluminum Antimony Arsenic Barium	Result 120 ND ND	Qualifier J*	190 56 9.4	29 5.3 2.4 2.3	mg/Kg mg/Kg mg/Kg	— <del>≅</del>	07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 12:10 07/12/19 12:10 07/12/19 12:10	5 5 5 5
Analyte Aluminum Antimony Arsenic Barium Beryllium	Result   120   ND   ND   ND   ND	Qualifier  J *	190 56 9.4 47	29 5.3 2.4 2.3 0.39	mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 12:10 07/12/19 12:10 07/12/19 12:10 07/12/19 12:10	5
Analyte Aluminum Antimony Arsenic Barium Beryllium Cobalt	Result   120   ND   ND   ND   ND   ND   ND   ND   N	Qualifier  J *	190 56 9.4 47 4.7	29 5.3 2.4 2.3 0.39 0.75	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 12:10 07/12/19 12:10 07/12/19 12:10 07/12/19 12:10 07/12/19 12:10	5 5 5 5
Method: 6010B SEP - SAnalyte Aluminum Antimony Arsenic Barium Beryllium Cobalt Iron Li	Result 120 ND ND ND ND ND ND ND	Qualifier  J *	190 56 9.4 47 4.7 4.7	29 5.3 2.4 2.3 0.39 0.75	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00 07/10/19 08:00	07/12/19 12:10 07/12/19 12:10 07/12/19 12:10 07/12/19 12:10 07/12/19 12:10 07/12/19 12:10	5 5 5 5 5

ND

ND

ND *

Analyte	Result (	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1200	11/2	13	2.0	mg/Kg	<u> </u>	07/10/19 08:00	07/12/19 13:55	1
Antimony	ND		3.8	0.35	mg/Kg	₩	07/10/19 08:00	07/12/19 13:55	1
Arsenic	0.24	J	0.63	0.19	mg/Kg	₩	07/10/19 08:00	07/12/19 13:55	1
Barium	2.1 、	J	3.1	0.15	mg/Kg	φ.	07/10/19 08:00	07/12/19 13:55	1
Beryllium	0.026	J	0.31	0.015	mg/Kg	₩	07/10/19 08:00	07/12/19 13:55	1
Cobalt	0.28	J	3.1	0.058	mg/Kg	₩	07/10/19 08:00	07/12/19 13:55	1
Iron	820		6.3	3.6	mg/Kg	₩.	07/10/19 08:00	07/12/19 13:55	1
Li	0.62	J	3.1	0.19	mg/Kg	₩	07/10/19 08:00	07/12/19 13:55	1
Manganese	2.9		0.94	0.31	mg/Kg	₩	07/10/19 08:00	07/12/19 13:55	1
Mo	ND		2.5	0.12	mg/Kg	₩.	07/10/19 08:00	07/12/19 13:55	1
Selenium	ND		0.63	0.21	mg/Kg	₩	07/10/19 08:00	07/12/19 13:55	1
Thallium	ND		2.2	0.26	mg/Kg	≎	07/10/19 08:00	07/12/19 13:55	1

38

9.4

33

1.6 mg/Kg

3.3 mg/Kg

4.4 mg/Kg

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	12000		130	20	mg/Kg	<del>\</del>	07/12/19 09:08	07/15/19 13:24	10
Antimony	ND		3.8	0.18	mg/Kg	₩	07/12/19 09:08	07/15/19 12:11	1
Arsenic	0.79	J	1.3	0.33	mg/Kg	₩	07/12/19 09:08	07/15/19 17:27	2
Barium	180		31	1.5	mg/Kg	₩.	07/12/19 09:08	07/15/19 13:24	10
Beryllium	0.11	J	0.31	0.0094	mg/Kg	₩	07/12/19 09:08	07/15/19 12:11	1
Cobalt	ND		6.3	0.38	mg/Kg	₩	07/12/19 09:08	07/15/19 17:27	2
Iron	2000		6.3	5.1	mg/Kg	₩.	07/12/19 09:08	07/15/19 12:11	1
Li	6.0		3.1	0.19	mg/Kg	₩	07/12/19 09:08	07/15/19 12:11	1
Manganese	26		0.94	0.065	mg/Kg	☼	07/12/19 09:08	07/15/19 12:11	1
Mo	0.12	J	2.5	0.10	mg/Kg		07/12/19 09:08	07/15/19 12:11	1

Eurofins TestAmerica, Knoxville

Page 18 of 58

2

J

6

8

9

11

12

L

5

5

7/18/2019

# **Client Sample Results**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

**Client Sample ID: AP-2019-3 (18-19)** 

Date Collected: 06/03/19 15:20 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-3

**Matrix: Solid** 

**Percent Solids: 80.0** 

Job ID: 140-15490-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		1.3	0.43	mg/Kg	<u> </u>	07/12/19 09:08	07/15/19 17:27	2
Thallium	ND		4.4	0.45	mg/Kg	₩	07/12/19 09:08	07/15/19 17:27	2
Method: 6010B SEP - S	SEP Metals (ICP) - S	Sum of Step	s 1-7						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	14000		10	1.6	mg/Kg			07/16/19 17:31	1
Antimony	ND		3.0	0.14	mg/Kg			07/16/19 17:31	1
Arsenic	1.7		0.50	0.13	mg/Kg			07/16/19 17:31	1
Barium	190		2.5	0.12	mg/Kg			07/16/19 17:31	1
Beryllium	0.23	J	0.25	0.0075	mg/Kg			07/16/19 17:31	1
Cobalt	1.7	J	2.5	0.023	mg/Kg			07/16/19 17:31	1
Iron	5200		5.0	4.1	mg/Kg			07/16/19 17:31	1
Li	7.2		2.5	0.15	mg/Kg			07/16/19 17:31	1
Manganese	35		0.75	0.052	mg/Kg			07/16/19 17:31	1
Mo	0.12	J	2.0	0.082	mg/Kg			07/16/19 17:31	1
Selenium	1.6		0.50	0.17	mg/Kg			07/16/19 17:31	1
Thallium	ND		1.8	0.18	mg/Kg			07/16/19 17:31	1
Method: 6010B - Metal	s (ICP)		•						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	ND		24	12	mg/Kg	<u> </u>	06/26/19 08:00	07/10/19 13:18	1
Chromium	4.4		1.8	0.26	mg/Kg	₩	06/26/19 08:00	07/10/19 13:18	1
Lead	3.9		1.8	0.33	mg/Kg	☼	06/26/19 08:00	07/10/19 13:18	1
Method: 6010B - SEP	Metals (ICP) - Total								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	20000		130	20	mg/Kg	₩	06/11/19 08:00	07/15/19 16:15	10
Antimony	ND		3.8	0.18	mg/Kg	₩	06/11/19 08:00	07/15/19 14:41	1
Arsenic	2.9	J	3.1	0.81	mg/Kg	₩	06/11/19 08:00	07/15/19 18:43	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	20000		130	20	mg/Kg	<u> </u>	06/11/19 08:00	07/15/19 16:15	10
Antimony	ND		3.8	0.18	mg/Kg	₩	06/11/19 08:00	07/15/19 14:41	1
Arsenic	2.9	J	3.1	0.81	mg/Kg	₩	06/11/19 08:00	07/15/19 18:43	5
Barium	240		31	1.5	mg/Kg	₩	06/11/19 08:00	07/15/19 16:15	10
Beryllium	0.42		0.31	0.0094	mg/Kg	₩	06/11/19 08:00	07/15/19 14:41	1
Cobalt	3.3	J	16	0.94	mg/Kg	₩	06/11/19 08:00	07/15/19 18:43	5
Iron	8000		6.3	5.1	mg/Kg	₩	06/11/19 08:00	07/15/19 14:41	1
Lithium	9.6		3.1	0.19	mg/Kg	☆	06/11/19 08:00	07/15/19 14:41	1
Manganese	47		0.94	0.065	mg/Kg	₩	06/11/19 08:00	07/15/19 14:41	1
Molybdenum	0.28	J	2.5	0.10	mg/Kg	₩	06/11/19 08:00	07/15/19 14:41	1
Selenium	ND		3.1	1.1	mg/Kg	☆	06/11/19 08:00	07/15/19 18:43	5
Thallium	ND		11	1.1	mg/Kg	☼	06/11/19 08:00	07/15/19 18:43	5

ı	Method: 7470A - SEP Mercury (	CVAA) - To	otal							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Hg	ND		0.13	0.050	mg/Kg	<del></del>	06/11/19 08:00	06/16/19 14:17	1

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Method: 6010B SEP - SEP Metals (ICP) - Step 1

Prep: 3010A

SEP: Exchangeable

Analyte	RL	MDL	Units
Aluminum		1.6	mg/Kg
Antimony	3.0	0.28	mg/Kg
Arsenic	0.50	0.13	mg/Kg
Barium	2.5	0.12	mg/Kg
Beryllium	0.25	0.077	mg/Kg
Cobalt	2.5	0.045	mg/Kg
Iron	5.0	2.9	mg/Kg
Li	2.5	0.15	mg/Kg
Manganese	0.75	0.031	mg/Kg
Mo	2.0	0.082	mg/Kg
Selenium	0.50	0.17	mg/Kg
Thallium	1.8	0.21	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 2

Prep: 3010A **SEP: Carbonate** 

- Analyte	RL	. MDL	Units
Aluminum	10	1.6	mg/Kg
Antimony	3.0	0.28	mg/Kg
Arsenic	0.50	0.13	mg/Kg
Barium	2.5	0.12	mg/Kg
Beryllium	0.25	0.016	mg/Kg
Cobalt	2.5	0.063	mg/Kg
Iron	5.0	2.9	mg/Kg
Li	2.5	0.15	mg/Kg
Manganese	0.75	0.28	mg/Kg
Мо	2.0	0.082	mg/Kg
Selenium	0.50	0.17	mg/Kg
Thallium	1.8	0.21	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 3

Prep: 3010A

SEP: Non-Crystalline

Analyte	RL	MDL	Units
Aluminum	10	2.1	mg/Kg
Antimony	3.0	0.28	mg/Kg
Arsenic	0.50	0.13	mg/Kg
Barium	2.5	0.12	mg/Kg
Beryllium	0.25	0.015	mg/Kg
Cobalt	2.5	0.045	mg/Kg
Iron	5.0	2.9	mg/Kg
Li	2.5	0.15	mg/Kg
Manganese	0.75	0.027	mg/Kg
Мо	2.0	0.082	mg/Kg
Selenium	0.50	0.17	mg/Kg
Thallium	1.8	0.21	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 4

Prep: 3010A

**SEP: Metal Hydroxide** 

Page 20 of 58

Job ID: 140-15490-1

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Method: 6010B SEP - SEP Metals (ICP) - Step 4

Prep: 3010A

**SEP**: Metal Hydroxide

Analyte	RL	MDL	Units
Aluminum		1.6	mg/Kg
Antimony	3.0	0.45	mg/Kg
Arsenic	0.50	0.22	mg/Kg
Barium	2.5	0.12	mg/Kg
Beryllium	0.25	0.016	mg/Kg
Cobalt	2.5	0.053	mg/Kg
Iron	5.0	2.9	mg/Kg
Li	2.5	0.15	mg/Kg
Manganese	0.75	0.13	mg/Kg
Mo	2.0	0.082	mg/Kg
Selenium	0.50	0.47	mg/Kg
Thallium	1.8	0.29	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 5

Prep: 3010A

SEP: Organic-Bound

· · · · · · · · · · · · · · · · · ·					
_ Analyte	RL	MDL	Units		
Aluminum	 30	4.7	mg/Kg		
Antimony	9.0	0.84	mg/Kg		
Arsenic	1.5	0.38	mg/Kg		
Barium	7.5	0.36	mg/Kg		
Beryllium	0.75	0.063	mg/Kg		
Cobalt	7.5	0.12	mg/Kg		
Iron	15	8.8	mg/Kg		
Li	7.5	0.44	mg/Kg		
Manganese	2.3	0.37	mg/Kg		
Мо	6.0	0.25	mg/Kg		
Selenium	1.5	0.52	mg/Kg		
Thallium	5.3	0.70	mg/Kg		

# Method: 6010B SEP - SEP Metals (ICP) - Step 6

SEP: Acid/Sulfide

Analyte	RL	MDL	Units
Aluminum		1.6	mg/Kg
Antimony	3.0	0.28	mg/Kg
Arsenic	0.50	0.15	mg/Kg
Barium	2.5	0.12	mg/Kg
Beryllium	0.25	0.012	mg/Kg
Cobalt	2.5	0.046	mg/Kg
Iron	5.0	2.9	mg/Kg
Li	2.5	0.15	mg/Kg
Manganese	0.75	0.25	mg/Kg
Mo	2.0	0.099	mg/Kg
Selenium	0.50	0.17	mg/Kg
Thallium	1.8	0.21	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 7

Prep: Residual

Analyte	RL	MDL	Units	
Aluminum	10	1.6	ma/Ka	

Eurofins TestAmerica, Knoxville

Page 21 of 58 7/18/2019

2

Job ID: 140-15490-1

3

4

9

10

111

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Method: 6010B SEP - SEP Metals (ICP) - Step 7 (Continued)

**Prep: Residual** 

Analyte	RL	MDL	Units	
Antimony	3.0	0.14	mg/Kg	
Arsenic	0.50	0.13	mg/Kg	
Barium	2.5	0.12	mg/Kg	
Beryllium	0.25	0.0075	mg/Kg	
Cobalt	2.5	0.15	mg/Kg	
Iron	5.0	4.1	mg/Kg	
Li	2.5	0.15	mg/Kg	
Manganese	0.75	0.052	mg/Kg	
Mo	2.0	0.082	mg/Kg	
Selenium	0.50	0.17	mg/Kg	
Thallium	1.8	0.18	mg/Kg	

Method: 6010B SEP - SEP Metals (ICP) - Sum of Steps 1-7

Analyte	RL	MDL	Units
Aluminum		1.6	mg/Kg
Antimony	3.0	0.14	mg/Kg
Arsenic	0.50	0.13	mg/Kg
Barium	2.5	0.12	mg/Kg
Beryllium	0.25	0.0075	mg/Kg
Cobalt	2.5	0.023	mg/Kg
Iron	5.0	4.1	mg/Kg
Li	2.5	0.15	mg/Kg
Manganese	0.75	0.052	mg/Kg
Мо	2.0	0.082	mg/Kg
Selenium	0.50	0.17	mg/Kg
Thallium	1.8	0.18	mg/Kg

Method: 6010B - Metals (ICP)

Prep: 3050B

Analyte	RL	MDL	Units	
Boron	20	10	mg/Kg	
Chromium	1.5	0.22	mg/Kg	
Lead	1.5	0.28	mg/Kg	

Method: 6010B - SEP Metals (ICP) - Total

**Prep: Total** 

Analyte	RL	MDL	Units	
Aluminum		1.6	mg/Kg	
Antimony	3.0	0.14	mg/Kg	
Arsenic	0.50	0.13	mg/Kg	
Barium	2.5	0.12	mg/Kg	
Beryllium	0.25	0.0075	mg/Kg	
Cobalt	2.5	0.15	mg/Kg	
Iron	5.0	4.1	mg/Kg	
Lithium	2.5	0.15	mg/Kg	
Manganese	0.75	0.052	mg/Kg	
Molybdenum	2.0	0.082	mg/Kg	
Selenium	0.50	0.17	mg/Kg	
Thallium	1.8	0.18	mg/Kg	

Method: 7470A - SEP Mercury (CVAA) - Total

Job ID: 140-15490-1

3

4

7

9

10

12

1

Eurofins TestAmerica, Knoxville

### **Default Detection Limits**

Client: Golder Associates Inc.

Job ID: 140-15490-1

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Method: 7470A - SEP Mercury (CVAA) - Total

**Prep: Total** 

Analyte	RL	MDL	Units	
Hg	0.10	0.040	mg/Kg	

5

8

40

11

Lab Sample ID: MB 140-31128/14-A

**Matrix: Solid** 

**Analysis Batch: 31553** 

**Client Sample ID: Method Blank** 

**Prep Type: Total/NA** 

Prep Batch: 31128

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	ND		20	10	mg/Kg		06/26/19 08:00	07/10/19 11:42	1
Chromium	ND		1.5	0.22	mg/Kg		06/26/19 08:00	07/10/19 11:42	1
Lead	ND		1.5	0.28	mg/Kg		06/26/19 08:00	07/10/19 11:42	1

MR MR

Lab Sample ID: LCS 140-31128/15-A

**Matrix: Solid** 

**Analysis Batch: 31553** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA Prep Batch: 31128

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec Boron 100 101 mg/Kg 101 80 - 120 Chromium 20.0 20.3 mg/Kg 101 90 - 110 10.0 10.1 mg/Kg Lead 101 90 - 110

Lab Sample ID: 140-15490-1 MS

**Matrix: Solid** 

**Analysis Batch: 31553** 

Client Sample ID: AP-2019-1 (30-31)

Prep Type: Total/NA

Prep Batch: 31128

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	ND		124	124		mg/Kg	₩	100	75 - 125	
Chromium	13	F1	24.8	45.6	F1	mg/Kg	₩	131	75 - 125	
Lead	6.4		12.4	17.4		mg/Kg	☼	89	75 - 125	

Lab Sample ID: 140-15490-1 MSD

**Matrix: Solid** 

**Analysis Batch: 31553** 

Client Sample ID: AP-2019-1 (30-31)

Prep Type: Total/NA

Prep Batch: 31128

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Limits RPD Limit Unit D %Rec ₩ 122 123 Boron ND mg/Kg 101 75 - 125 0 20 13 F1 24.4 45.6 F1 mg/Kg ₩ 20 Chromium 133 75 - 125 0 ☼ Lead 6.4 mg/Kg 12.2 17.5 91 75 - 125 0 20

Method: 6010B - SEP Metals (ICP) - Total

Lab Sample ID: MB 140-30683/13-A

**Matrix: Solid** 

**Analysis Batch: 31713** 

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 30683

-	MB	MB										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Aluminum	ND		10	1.6	mg/Kg		06/11/19 08:00	07/15/19 11:13	1			
Antimony	ND		3.0	0.14	mg/Kg		06/11/19 08:00	07/15/19 11:13	1			
Arsenic	ND		0.50	0.13	mg/Kg		06/11/19 08:00	07/15/19 11:13	1			
Barium	ND		2.5	0.12	mg/Kg		06/11/19 08:00	07/15/19 11:13	1			
Beryllium	ND		0.25	0.0075	mg/Kg		06/11/19 08:00	07/15/19 11:13	1			
Cobalt	ND		2.5	0.15	mg/Kg		06/11/19 08:00	07/15/19 11:13	1			
Iron	ND		5.0	4.1	mg/Kg		06/11/19 08:00	07/15/19 11:13	1			
Lithium	ND		2.5	0.15	mg/Kg		06/11/19 08:00	07/15/19 11:13	1			
Manganese	ND		0.75	0.052	mg/Kg		06/11/19 08:00	07/15/19 11:13	1			
Molybdenum	ND		2.0	0.082	mg/Kg		06/11/19 08:00	07/15/19 11:13	1			
Selenium	ND		0.50	0.17	mg/Kg		06/11/19 08:00	07/15/19 11:13	1			
Thallium	ND		1.8	0.18	mg/Kg		06/11/19 08:00	07/15/19 11:13	1			
_												

Eurofins TestAmerica, Knoxville

7/18/2019

Page 24 of 58

Job ID: 140-15490-1

### Method: 6010B - SEP Metals (ICP) - Total

Lab Sample ID: LCS 140-30683/14-A

**Matrix: Solid** 

**Analysis Batch: 31713** 

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

Prep Batch: 30683

•	Spike	LCS I	LCS				%Rec.	
Analyte	Added	Result (	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	97.6		mg/Kg		98	75 - 125	
Antimony	25.0	25.9		mg/Kg		103	75 - 125	
Arsenic	5.00	5.29		mg/Kg		106	75 - 125	
Barium	5.00	4.99		mg/Kg		100	75 - 125	
Beryllium	2.50	2.51		mg/Kg		100	75 - 125	
Cobalt	5.00	5.20		mg/Kg		104	75 - 125	
Iron	50.0	51.1		mg/Kg		102	75 - 125	
Lithium	5.00	5.12		mg/Kg		102	75 - 125	
Manganese	5.00	5.21		mg/Kg		104	75 - 125	
Molybdenum	25.0	26.6		mg/Kg		106	75 - 125	
Selenium	7.50	7.55		mg/Kg		101	75 - 125	
Thallium	20.0	21.2		mg/Kg		106	75 - 125	

Lab Sample ID: LCSD 140-30683/15-A

**Matrix: Solid** 

**Analysis Batch: 31713** 

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 30683

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier RPD Analyte Unit %Rec Limits Limit 100 97.0 97 75 - 125 30 Aluminum mg/Kg mg/Kg Antimony 25.0 25.9 104 75 - 125 30 0 5.00 mg/Kg Arsenic 5.24 105 75 - 125 30 Barium 5.00 4.95 mg/Kg 99 75 - 125 30 Beryllium 2.50 2.48 mg/Kg 99 75 - 125 30 Cobalt 5.00 5.16 mg/Kg 103 75 - 125 30 Iron 50.0 30 50.4 mg/Kg 101 75 - 125 5.00 Lithium 5.04 mg/Kg 101 75 - 125 30 Manganese 5.00 5.16 103 75 - 125 30 mg/Kg 25.0 26.5 Molybdenum mg/Kg 106 75 - 125 30 Selenium 7.50 7.47 mg/Kg 100 75 - 125 30 Thallium 20.0 mg/Kg 106 75 - 125 30 21.2

Lab Sample ID: 140-15490-1 DU

**Matrix: Solid** 

Analysis Batch: 31713

Client Sample ID: AP-2019-1 (30-31) Prep Type: Total/NA

Prep Batch: 30683

Analysis batch: 3171	•						Prep Batch:	<b>30003</b>
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Antimony	ND		ND		mg/Kg	<del>\tilde{\pi}</del>	NC	30
Arsenic	6.8		7.11		mg/Kg	₩	5	30
Beryllium	0.89		0.959		mg/Kg	☼	7	30
Iron	11000		12200		mg/Kg	₩	7	30
Lithium	18		19.7		mg/Kg	₩	7	30
Manganese	66		71.7		mg/Kg	☼	8	30
Molybdenum	0.40	J	0.434	j	mg/Kg		7	30
Selenium	ND		ND		ma/Ka	₩	NC	30

7/18/2019

### Method: 6010B - SEP Metals (ICP) - Total (Continued)

Lab Sample ID: 140-15490-1 DU

**Matrix: Solid** 

**Analysis Batch: 31713** 

Client Sample ID: AP-2019-1 (30-31)

Prep Type: Total/NA Prep Batch: 30683

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier D RPD Limit Unit ₩ Aluminum 60000 30 64600 mg/Kg ₩ Barium 680 733 mg/Kg 7 30

Lab Sample ID: 140-15490-1 DU

**Matrix: Solid** 

**Analysis Batch: 31713** 

Client Sample ID: AP-2019-1 (30-31)

Prep Type: Total/NA

Prep Batch: 30683

	Sample	Sample	DU	טט				KPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Cobalt	3.8	J	4.35	J	mg/Kg	<del>-</del>	 13	30
Thallium	ND		0.657	J	mg/Kg	₩	NC	30

### Method: 6010B SEP - SEP Metals (ICP)

Lab Sample ID: MB 140-31148/13-B ^4

**Matrix: Solid** 

**Analysis Batch: 31604** 

Client Sample ID: Method Blank

Prep Type: Step 1 Prep Batch: 31252

MB MB MDL Unit Analyte Result Qualifier RL **Prepared** Analyzed Dil Fac Aluminum ND 40 6.4 mg/Kg 06/29/19 08:00 07/11/19 12:33 Antimony ND 12 1.1 mg/Kg 06/29/19 08:00 07/11/19 12:33 ND 0.52 mg/Kg Arsenic 2.0 06/29/19 08:00 07/11/19 12:33 Barium ND 10 0.48 mg/Kg 06/29/19 08:00 07/11/19 12:33 Beryllium ND 1.0 06/29/19 08:00 07/11/19 12:33 0.31 mg/Kg Cobalt ND 10 0.18 mg/Kg 06/29/19 08:00 07/11/19 12:33 Iron ND 20 12 mg/Kg 06/29/19 08:00 07/11/19 12:33 Li ND 10 0.60 mg/Kg 06/29/19 08:00 07/11/19 12:33 Manganese ND 3.0 0.12 mg/Kg 06/29/19 08:00 07/11/19 12:33 Мо ND 8.0 0.33 mg/Kg 06/29/19 08:00 07/11/19 12:33 Selenium ND 2.0 0.68 mg/Kg 06/29/19 08:00 07/11/19 12:33 Thallium ND 7.0 0.84 mg/Kg 06/29/19 08:00 07/11/19 12:33

Lab Sample ID: LCS 140-31148/14-B ^5

**Matrix: Solid** 

**Client Sample ID: Lab Control Sample** Prep Type: Step 1

Spike	LCS	LCS				Prep Batch: 31252 %Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
100	97.0		mg/Kg		97	75 - 125
25.0	24.5		mg/Kg		98	75 - 125
5.00	4.89		mg/Kg		98	75 - 125
5.00	4.35	J	mg/Kg		87	75 - 125
2.50	2.58		mg/Kg		103	75 - 125
5.00	4.93	J	mg/Kg		99	75 - 125
50.0	49.6		mg/Kg		99	75 - 125
5.00	4.72	J	mg/Kg		94	75 - 125
5.00	5.09		mg/Kg		102	75 - 125
25.0	25.0		mg/Kg		100	75 - 125
7.50	7.82		mg/Kg		104	75 - 125
20.0	19.7		mg/Kg		98	75 - 125
	Added 100 25.0 5.00 5.00 2.50 5.00 50.0 50.0 50	Added         Result           100         97.0           25.0         24.5           5.00         4.89           5.00         4.35           2.50         2.58           5.00         4.93           50.0         49.6           5.00         4.72           5.00         5.09           25.0         25.0           7.50         7.82	Added         Result         Qualifier           100         97.0           25.0         24.5           5.00         4.89           5.00         4.35         J           2.50         2.58           5.00         4.93         J           50.0         49.6           5.00         4.72         J           5.00         5.09           25.0         25.0           7.50         7.82	Added         Result         Qualifier         Unit           100         97.0         mg/Kg           25.0         24.5         mg/Kg           5.00         4.89         mg/Kg           5.00         4.35         J         mg/Kg           2.50         2.58         mg/Kg           5.00         4.93         J         mg/Kg           50.0         49.6         mg/Kg           5.00         4.72         J         mg/Kg           5.00         5.09         mg/Kg           25.0         25.0         mg/Kg           7.50         7.82         mg/Kg	Added         Result         Qualifier         Unit         D           100         97.0         mg/Kg         mg/Kg           25.0         24.5         mg/Kg           5.00         4.89         mg/Kg           5.00         4.35         J         mg/Kg           2.50         2.58         mg/Kg           5.00         4.93         J         mg/Kg           50.0         49.6         mg/Kg           5.00         4.72         J         mg/Kg           5.00         5.09         mg/Kg           25.0         25.0         mg/Kg           7.50         7.82         mg/Kg	Added         Result         Qualifier         Unit         D         %Rec           100         97.0         mg/Kg         97           25.0         24.5         mg/Kg         98           5.00         4.89         mg/Kg         98           5.00         4.35         J         mg/Kg         87           2.50         2.58         mg/Kg         103           5.00         4.93         J         mg/Kg         99           50.0         49.6         mg/Kg         99           5.00         4.72         J         mg/Kg         94           5.00         5.09         mg/Kg         102           25.0         25.0         mg/Kg         100           7.50         7.82         mg/Kg         104

Project/Site: Martin Lake Ash Ponds - SEP + Totals

# Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: LCSD 140-31148/15-B ^5

**Matrix: Solid** 

Analysis Batch: 31604

**Client Sample ID: Lab Control Sample Dup** Prep Type: Step 1

Prep Batch: 31252

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	99.5		mg/Kg		100	75 - 125	3	30
Antimony	25.0	24.7		mg/Kg		99	75 - 125	1	30
Arsenic	5.00	4.78		mg/Kg		96	75 - 125	2	30
Barium	5.00	4.30	J	mg/Kg		86	75 - 125	1	30
Beryllium	2.50	2.59		mg/Kg		104	75 - 125	0	30
Cobalt	5.00	4.89	J	mg/Kg		98	75 - 125	1	30
Iron	50.0	49.5		mg/Kg		99	75 - 125	0	30
Li	5.00	4.84	J	mg/Kg		97	75 - 125	3	30
Manganese	5.00	5.06		mg/Kg		101	75 - 125	1	30
Mo	25.0	25.1		mg/Kg		100	75 - 125	0	30
Selenium	7.50	8.06		mg/Kg		108	75 - 125	3	30
Thallium	20.0	20.1		mg/Kg		101	75 - 125	2	30

Lab Sample ID: 140-15490-1 DU

**Matrix: Solid** 

Client Sample ID: AP-2019-1 (30-31)

**Prep Type: Step 1** 

Analysis Batch: 31604							Prep Batch: 3	31252
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Aluminum	ND		ND.		mg/Kg	<del>-</del> <del>-</del>	NC	30
Antimony	ND		ND		mg/Kg	₩	NC	30
Arsenic	ND		ND		mg/Kg	₩	NC	30
Barium	0.88	J	0.934	J	mg/Kg	₩	5	30
Beryllium	ND		ND		mg/Kg	₩	NC	30
Cobalt	0.54	J	0.626	J	mg/Kg	₩	15	30
Iron	ND		ND		mg/Kg	₩	NC	30
Li	ND		ND		mg/Kg	₩	NC	30
Manganese	3.1	J	3.66	J	mg/Kg	₩	16	30
Mo	ND		ND		mg/Kg	₩	NC	30
Selenium	ND		ND		mg/Kg	₩	NC	30
Thallium	ND	▼	ND		mg/Kg	₩	NC	30

Lab Sample ID: MB 140-31253/13-B ^3

**Matrix: Solid** 

**Analysis Batch: 31604** 

**Client Sample ID: Method Blank** Prep Type: Step 2 Prep Batch: 31256

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		30	4.8	mg/Kg		06/30/19 08:00	07/11/19 14:06	3
Antimony	ND		9.0	0.84	mg/Kg		06/30/19 08:00	07/11/19 14:06	3
Arsenic	ND		1.5	0.39	mg/Kg		06/30/19 08:00	07/11/19 14:06	3
Barium	ND		7.5	0.36	mg/Kg		06/30/19 08:00	07/11/19 14:06	3
Beryllium	ND		0.75	0.048	mg/Kg		06/30/19 08:00	07/11/19 14:06	3
Cobalt	ND		7.5	0.19	mg/Kg		06/30/19 08:00	07/11/19 14:06	3
Iron	ND		15	8.7	mg/Kg		06/30/19 08:00	07/11/19 14:06	3
Li	ND		7.5	0.45	mg/Kg		06/30/19 08:00	07/11/19 14:06	3
Manganese	ND		2.3	0.84	mg/Kg		06/30/19 08:00	07/11/19 14:06	3
Mo	ND		6.0	0.25	mg/Kg		06/30/19 08:00	07/11/19 14:06	3
Selenium	0.587	J	1.5	0.51	mg/Kg		06/30/19 08:00	07/11/19 14:06	3
Thallium	ND		5.3	0.63	mg/Kg		06/30/19 08:00	07/11/19 14:06	3

**Analysis Batch: 31604** 

**Matrix: Solid** 

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Lab Sample ID: LCS 140-31253/14-B ^5

Method: 6010B SEP - SEP Metals (ICP) (Continued)

**Client Sample ID: Lab Control Sample** 

Prep Type: Step 2

Job ID: 140-15490-1

Prep Batch: 31256

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	100	ND	*	mg/Kg		1	75 - 125
Antimony	25.0	21.1		mg/Kg		84	75 ₋ 125
Arsenic	5.00	3.95		mg/Kg		79	75 ₋ 125
Barium	5.00	2.28	J *	mg/Kg		46	75 ₋ 125
Beryllium	2.50	1.35	*	mg/Kg		54	75 ₋ 125
Cobalt	5.00	4.62	J	mg/Kg		92	75 - 125
Iron	50.0	ND	*	mg/Kg		2	75 - 125
Li	5.00	4.14	J	mg/Kg		83	75 - 125
Manganese	5.00	4.79		mg/Kg		96	75 ₋ 125
Mo	25.0	20.7		mg/Kg		83	75 - 125
Selenium	7.50	7.34		mg/Kg		98	75 - 125
Thallium	20.0	18.4		mg/Kg		92	75 - 125

Lab Sample ID: LCSD 140-31253/15-B ^5

**Matrix: Solid** 

Analysis Ratch: 31604

Client Sample ID: Lab Control Sample Dup Prep Type: Step 2

Pren Batch: 31256

Analysis Batch: 31604							Prep E	satch: 3	31256
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	ND	*	mg/Kg		-0.3	75 - 125	289	30
Antimony	25.0	21.4		mg/Kg		86	75 - 125	1	30
Arsenic	5.00	4.00		mg/Kg		80	75 - 125	1	30
Barium	5.00	2.28	J *	mg/Kg		46	75 - 125	0	30
Beryllium	2.50	1.32	*	mg/Kg		53	75 - 125	2	30
Cobalt	5.00	4.62	J	mg/Kg		92	75 - 125	0	30
Iron	50.0	ND	*	mg/Kg		3	75 - 125	28	30
Li	5.00	4.15	J	mg/Kg		83	75 - 125	0	30
Manganese	5.00	4.76		mg/Kg		95	75 - 125	1	30
Mo	25.0	20.9		mg/Kg		84	75 - 125	1	30
Selenium	7.50	6.68		mg/Kg		89	75 - 125	10	30
Thallium	20.0	18.6		mg/Kg		93	75 ₋ 125	1	30

Lab Sample ID: 140-15490-1 DU

**Matrix: Solid** 

Analysis Batch: 31604

Client Sample ID: AP-2019-1 (30-31) Prep Type: Step 2

Prep Batch: 31256

Analysis Batch: 31604							Prep Batch: .	<i>5</i> 1256
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Aluminum	9.7	J *	11.8	J *	mg/Kg	<del>-</del>		30
Antimony	ND		ND		mg/Kg	₩	NC	30
Arsenic	ND		ND		mg/Kg	☼	NC	30
Barium	0.76	J *	0.792	J *	mg/Kg	₩	4	30
Beryllium	ND	*	ND	*	mg/Kg	₩	NC	30
Cobalt	ND		ND		mg/Kg	☼	NC	30
Iron	ND	*	ND	*	mg/Kg	₩	NC	30
Li	ND		ND		mg/Kg	☼	NC	30
Manganese	ND		ND		mg/Kg	☼	NC	30
Mo	ND		ND		mg/Kg	₩	NC	30
Selenium	0.76	JB	0.794	J	mg/Kg	₩	4	30
Thallium	ND		ND		mg/Kg	₩	NC	30

Eurofins TestAmerica, Knoxville

7/18/2019

Page 28 of 58

Client: Golder Associates Inc. Job ID: 140-15490-1 Project/Site: Martin Lake Ash Ponds - SEP + Totals

Method: 6010B SEP - SEP Metals (ICP) (Continued)

MB MB

Lab Sample ID: MB 140-31257/13-B

**Matrix: Solid** 

**Analysis Batch: 31604** 

**Client Sample ID: Method Blank Prep Type: Step 3** 

Prep Batch: 31338

1									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		10	2.1	mg/Kg		07/02/19 08:00	07/11/19 15:50	1
Antimony	ND		3.0	0.28	mg/Kg		07/02/19 08:00	07/11/19 15:50	1
Arsenic	ND		0.50	0.13	mg/Kg		07/02/19 08:00	07/11/19 15:50	1
Barium	0.151	J	2.5	0.12	mg/Kg		07/02/19 08:00	07/11/19 15:50	1
Beryllium	ND		0.25	0.015	mg/Kg		07/02/19 08:00	07/11/19 15:50	1
Cobalt	ND		2.5	0.045	mg/Kg		07/02/19 08:00	07/11/19 15:50	1
Iron	ND		5.0	2.9	mg/Kg		07/02/19 08:00	07/11/19 15:50	1
Li	ND		2.5	0.15	mg/Kg		07/02/19 08:00	07/11/19 15:50	1
Manganese	0.0515	J	0.75	0.027	mg/Kg		07/02/19 08:00	07/11/19 15:50	1
Mo	ND		2.0	0.082	mg/Kg		07/02/19 08:00	07/11/19 15:50	1
Selenium	0.197	J	0.50	0.17	mg/Kg		07/02/19 08:00	07/11/19 15:50	1
Thallium	ND		1.8	0.21	mg/Kg		07/02/19 08:00	07/11/19 15:50	1
<u> </u>									

Lab Sample ID: LCS 140-31257/14-B

**Matrix: Solid** 

**Analysis Batch: 31604** 

**Client Sample ID: Lab Control Sample Prep Type: Step 3** 

Prep Batch: 31338

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits 95.8 Aluminum 100 96 75 - 125 mg/Kg Antimony 25.0 24.3 mg/Kg 97 75 - 125 5.00 mg/Kg Arsenic 4.90 98 75 - 125 Barium 5.00 4.34 mg/Kg 87 75 - 125 Beryllium 2.50 2.56 mg/Kg 102 75 - 125 Cobalt 5.00 4.90 mg/Kg 98 75 - 125 50.0 54.0 108 75 - 125 Iron mg/Kg 5.00 Li 4.87 mg/Kg 97 75 - 125 5.00 5.03 mg/Kg 101 75 - 125 Manganese 25.0 24.8 75 - 125 Мо mg/Kg 99 Selenium 7.50 7.37 mg/Kg 98 75 - 125 Thallium 20.0 20.2 mg/Kg 101 75 - 125

Lab Sample ID: LCSD 140-31257/15-B

**Matrix: Solid** 

Analysis Batch: 31604

**Client Sample ID: Lab Control Sample Dup Prep Type: Step 3** Prep Batch: 31338

Alialysis Dalcil. 31004							LIED F	oaton. c	1000
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	98.1		mg/Kg		98	75 - 125	2	30
Antimony	25.0	24.6		mg/Kg		98	75 - 125	1	30
Arsenic	5.00	5.06		mg/Kg		101	75 - 125	3	30
Barium	5.00	4.49		mg/Kg		90	75 - 125	3	30
Beryllium	2.50	2.61		mg/Kg		104	75 - 125	2	30
Cobalt	5.00	4.97		mg/Kg		99	75 - 125	1	30
Iron	50.0	51.0		mg/Kg		102	75 - 125	6	30
Li	5.00	4.95		mg/Kg		99	75 - 125	2	30
Manganese	5.00	5.06		mg/Kg		101	75 - 125	1	30
Mo	25.0	24.9		mg/Kg		100	75 - 125	0	30
Selenium	7.50	7.63		mg/Kg		102	75 - 125	3	30
Thallium	20.0	20.5		mg/Kg		103	75 - 125	2	30

Eurofins TestAmerica, Knoxville

Page 29 of 58

7/18/2019

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: 140-15490-1 DU

**Matrix: Solid** 

Analysis Batch: 31604

Client Sample ID: AP-2019-1 (30-31)

**Prep Type: Step 3** 

Job ID: 140-15490-1

Prep Batch: 31338

Alialysis balcil. 310	104						Frep Batch.	31330
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Aluminum	88		90.2		mg/Kg	<del>\overline{\pi}</del>		30
Antimony	ND		ND		mg/Kg	₩	NC	30
Arsenic	1.8		1.75		mg/Kg	₩	5	30
Barium	4.3	В	4.58		mg/Kg	₩	7	30
Beryllium	0.067	J	0.0665	J	mg/Kg	₩	1	30
Cobalt	0.34	J	0.478	JF5	mg/Kg	₩	32	30
Iron	580		553		mg/Kg	₩	4	30
Li	ND		ND		mg/Kg	₽	NC	30
Manganese	2.4	В	2.99		mg/Kg	₩	20	30
Mo	ND		ND		mg/Kg	\$	NC	30
Selenium	0.22	JB	0.249	J	mg/Kg	₩	14	30
Thallium	ND		ND		ma/Ka	₽	NC	30

Lab Sample ID: MB 140-31341/13-B

**Matrix: Solid** 

**Analysis Batch: 31604** 

**Client Sample ID: Method Blank** Prep Type: Step 4

Prep Batch: 31360

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		10	1.6	mg/Kg		07/03/19 08:00	07/11/19 17:24	1
Antimony	ND		3.0	0.45	mg/Kg		07/03/19 08:00	07/11/19 17:24	1
Arsenic	0.260	J	0.50	0.22	mg/Kg		07/03/19 08:00	07/11/19 17:24	1
Barium	ND		2.5	0.12	mg/Kg		07/03/19 08:00	07/11/19 17:24	1
Beryllium	ND		0.25	0.016	mg/Kg		07/03/19 08:00	07/11/19 17:24	1
Cobalt	ND		2.5	0.053	mg/Kg		07/03/19 08:00	07/11/19 17:24	1
Iron	ND		5.0	2.9	mg/Kg		07/03/19 08:00	07/11/19 17:24	1
Li	ND		2.5	0.15	mg/Kg		07/03/19 08:00	07/11/19 17:24	1
Manganese	ND		0.75	0.13	mg/Kg		07/03/19 08:00	07/11/19 17:24	1
Mo	ND		2.0	0.082	mg/Kg		07/03/19 08:00	07/11/19 17:24	1
Selenium	0.561		0.50	0.47	mg/Kg		07/03/19 08:00	07/11/19 17:24	1
Thallium	ND	¥	1.8	0.29	mg/Kg		07/03/19 08:00	07/11/19 17:24	1

Lab Sample ID: LCS 140-31341/14-B

**Matrix: Solid** 

Analysis Batch: 31604

**Client Sample ID: Lab Control Sample** Prep Type: Step 4 Prep Batch: 31360

Analysis Batch: 31604	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	100	98.4		mg/Kg		98	75 - 125
Antimony	25.0	25.6		mg/Kg		102	75 - 125
Arsenic	5.00	5.48		mg/Kg		110	75 - 125
Barium	5.00	4.90		mg/Kg		98	75 - 125
Beryllium	2.50	2.66		mg/Kg		106	75 - 125
Cobalt	5.00	4.92		mg/Kg		98	75 - 125
Iron	50.0	50.0		mg/Kg		100	75 - 125
Li	5.00	4.92		mg/Kg		98	75 - 125
Manganese	5.00	4.98		mg/Kg		100	75 - 125
Mo	25.0	25.7		mg/Kg		103	75 - 125
Selenium	7.50	0.762	*	mg/Kg		10	75 - 125
Thallium	20.0	17.2		mg/Kg		86	75 - 125
	50.0 5.00 5.00 25.0 7.50	50.0 4.92 4.98 25.7 0.762	*	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		100 98 100 103 10	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125

Eurofins TestAmerica, Knoxville

Page 30 of 58

Project/Site: Martin Lake Ash Ponds - SEP + Totals

#### Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: LCSD 140-31341/15-B

**Matrix: Solid** 

Analysis Batch: 31604

Client: Golder Associates Inc.

**Client Sample ID: Lab Control Sample Dup** Prep Type: Step 4

Prep Batch: 31360

Alialysis Dalcil. 31004							LIEPL	Jaicii.	71300
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	101		mg/Kg		101	75 - 125	3	30
Antimony	25.0	25.9		mg/Kg		103	75 - 125	1	30
Arsenic	5.00	5.55		mg/Kg		111	75 - 125	1	30
Barium	5.00	5.04		mg/Kg		101	75 - 125	3	30
Beryllium	2.50	2.74		mg/Kg		109	75 - 125	3	30
Cobalt	5.00	5.07		mg/Kg		101	75 - 125	3	30
Iron	50.0	51.5		mg/Kg		103	75 - 125	3	30
Li	5.00	5.09		mg/Kg		102	75 - 125	3	30
Manganese	5.00	5.13		mg/Kg		103	75 - 125	3	30
Mo	25.0	25.9		mg/Kg		104	75 - 125	1	30
Selenium	7.50	0.631	*	mg/Kg		8	75 - 125	19	30
Thallium	20.0	17.9		mg/Kg		89	75 - 125	4	30

Lab Sample ID: 140-15490-1 DU

**Matrix: Solid** 

Client Sample ID: AP-2019-1 (30-31)

Prep Type: Step 4

Analysis Batch: 31604					·		Prep Batch: 3	31360
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Aluminum	1700		1740		mg/Kg	<del>-</del>	0.1	30
Antimony	ND		ND		mg/Kg	₩	NC	30
Arsenic	2.8	В	2.56		mg/Kg	₩	10	30
Barium	16		18.8		mg/Kg	₩	15	30
Beryllium	0.13	J	0.135	J	mg/Kg	₩	1	30
Cobalt	1.5	J	1.59	J	mg/Kg	₩	8	30
Iron	3900		3860		mg/Kg	₩	2	30
Li	3.0	J	3.10	J	mg/Kg	₩	2	30
Manganese	18		18.2		mg/Kg	₩	0.4	30
Mo	ND		ND		mg/Kg	₩	NC	30
Selenium	ND	*	0.624	J *	mg/Kg	₩	NC	30
Thallium	ND	*	ND		mg/Kg	₩	NC	30

Lab Sample ID: MB 140-31436/13-B ^5

**Matrix: Solid** 

**Analysis Batch: 31651** 

**Client Sample ID: Method Blank Prep Type: Step 5** Prep Batch: 31500

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		150	24	mg/Kg		07/10/19 08:00	07/12/19 11:39	5
Antimony	ND		45	4.2	mg/Kg		07/10/19 08:00	07/12/19 11:39	5
Arsenic	ND		7.5	1.9	mg/Kg		07/10/19 08:00	07/12/19 11:39	5
Barium	ND		38	1.8	mg/Kg		07/10/19 08:00	07/12/19 11:39	5
Beryllium	ND		3.8	0.32	mg/Kg		07/10/19 08:00	07/12/19 11:39	5
Cobalt	ND		38	0.60	mg/Kg		07/10/19 08:00	07/12/19 11:39	5
Iron	ND		75	44	mg/Kg		07/10/19 08:00	07/12/19 11:39	5
Li	ND		38	2.2	mg/Kg		07/10/19 08:00	07/12/19 11:39	5
Manganese	ND		11	1.9	mg/Kg		07/10/19 08:00	07/12/19 11:39	5
Mo	ND		30	1.3	mg/Kg		07/10/19 08:00	07/12/19 11:39	5
Selenium	ND		7.5	2.6	mg/Kg		07/10/19 08:00	07/12/19 11:39	5
Thallium	ND		26	3.5	mg/Kg		07/10/19 08:00	07/12/19 11:39	5

Job ID: 140-15490-1 Project/Site: Martin Lake Ash Ponds - SEP + Totals

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: LCS 140-31436/14-B ^5

**Matrix: Solid** 

Client Sample ID: Lab Control Sample Prep Type: Step 5

Analysis Batch: 31651	Spike	LCS	LCS				Prep Batch: 31500 %Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Aluminum	300	ND	*	mg/Kg		6	75 - 125
Antimony	75.0	81.2		mg/Kg		108	75 - 125
Arsenic	15.0	12.3		mg/Kg		82	75 - 125
Barium	15.0	7.80	J *	mg/Kg		52	75 - 125
Beryllium	7.50	4.23	*	mg/Kg		56	75 - 125
Cobalt	15.0	4.86	J *	mg/Kg		32	75 - 125
Iron	150	ND	*	mg/Kg		2	75 - 125
Li	15.0	16.4	J	mg/Kg		109	75 - 125
Manganese	15.0	4.82	J *	mg/Kg		32	75 - 125
Mo	75.0	64.7		mg/Kg		86	75 - 125
Selenium	22.5	24.8		mg/Kg		110	75 - 125
Thallium	60.0	ND	*	mg/Kg		2	75 - 125

Lab Sample ID: LCSD 140-31436/15-B ^5

**Matrix: Solid** 

**Analysis Batch: 31651** 

Client Sample ID: Lab Control Sample Dup **Prep Type: Step 5** 

Prep Batch: 31500

Spike LCSD LCSD %Rec. **RPD** Result Qualifier Analyte Added Unit %Rec Limits RPD Limit ND 300 75 - 125 30 Aluminum mg/Kg 14 Antimony 75.0 82.5 110 75 - 125 2 30 mg/Kg Arsenic 15.0 12.5 75 - 125 30 mg/Kg 83 2 Barium 15.0 7.73 J* mg/Kg 52 75 - 125 30 Beryllium 7.50 4.34 * 58 75 - 125 2 30 mg/Kg Cobalt 15.0 5.05 J* mg/Kg 34 75 - 125 30 150 ND 30 Iron mg/Kg 3 75 - 125 55 Li 15.0 16.1 J mg/Kg 107 75 - 125 2 30 75 - 125 15.0 4.97 J* 33 30 Manganese mg/Kg 3 75.0 Мо 64.0 mg/Kg 85 75 - 125 30 Selenium 22.5 26.2 mg/Kg 116 75 - 125 6 30 Thallium 60.0 ND * mg/Kg 75 - 125 0.930

Lab Sample ID: 140-15490-1 DU

**Matrix: Solid** 

**Analysis Batch: 31651** 

Client Sample ID: AP-2019-1 (30-31) **Prep Type: Step 5** 

Prep Batch: 31500

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Limit **Analyte** Unit D ₩ Aluminum 62 J * 54.9 J* mg/Kg 12 30 ☼ Antimony ND ND NC 30 mg/Kg Ö Arsenic ND ND mg/Kg NC 30 ₩ Barium 7.0 8.10 J* 30 mg/Kg 15 ₩ ND Beryllium ND mg/Kg NC 30 Cobalt ND ND mg/Kg ά NC 30 ND ND NC Iron mg/Kg 30 Li ₿ NC 30 ND ND mg/Kg ND 30 ND mg/Kg NC Manganese ď ND ND NC 30 Mo mg/Kg ₿ ND Selenium ND mg/Kg NC 30 ά Thallium ND * ND * mg/Kg NC 30

Eurofins TestAmerica, Knoxville

Page 32 of 58

Project/Site: Martin Lake Ash Ponds - SEP + Totals

#### Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: MB 140-31502/13-A

**Matrix: Solid** 

**Analysis Batch: 31651** 

**Client Sample ID: Method Blank Prep Type: Step 6** Prep Batch: 31502

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1.6 mg/Kg Aluminum 10 07/10/19 08:00 07/12/19 13:14  $\overline{\mathsf{ND}}$ Antimony ND 3.0 0.28 mg/Kg 07/10/19 08:00 07/12/19 13:14 Arsenic ND 0.50 0.15 mg/Kg 07/10/19 08:00 07/12/19 13:14 Barium ND 2.5 0.12 mg/Kg 07/10/19 08:00 07/12/19 13:14 Beryllium ND 0.25 0.012 mg/Kg 07/10/19 08:00 07/12/19 13:14 0.046 mg/Kg Cobalt ND 2.5 07/10/19 08:00 07/12/19 13:14 ND 07/10/19 08:00 07/12/19 13:14 Iron 5.0 2.9 mg/Kg Li ND 0.15 mg/Kg 07/10/19 08:00 07/12/19 13:14 2.5 ND 0.75 0.25 mg/Kg 07/10/19 08:00 07/12/19 13:14 Manganese ND Мо 2.0 0.099 mg/Kg 07/10/19 08:00 07/12/19 13:14 Selenium ND 0.50 0.17 mg/Kg 07/10/19 08:00 07/12/19 13:14 Thallium ND 0.21 mg/Kg 07/10/19 08:00 07/12/19 13:14 1.8

Lab Sample ID: LCS 140-31502/14-A

**Matrix: Solid** 

**Analysis Batch: 31651** 

Client Sample ID: Lab Control Sample Prep Type: Step 6

Prep Batch: 31502

7 maryoro Zatom 01001	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	95.4		mg/Kg		95	75 - 125	
Antimony	25.0	24.8		mg/Kg		99	75 - 125	
Arsenic	5.00	4.94		mg/Kg		99	75 - 125	
Barium	5.00	4.58		mg/Kg		92	75 - 125	
Beryllium	2.50	2.57		mg/Kg		103	75 - 125	
Cobalt	5.00	4.78		mg/Kg		96	75 - 125	
Iron	50.0	47.4		mg/Kg		95	75 - 125	
Li	5.00	4.71		mg/Kg		94	75 - 125	
Manganese	5.00	4.83		mg/Kg		97	75 - 125	
Mo	25.0	24.7		mg/Kg		99	75 - 125	
Selenium	7.50	7.32		mg/Kg		98	75 - 125	
Thallium	20.0	19.8		mg/Kg		99	75 - 125	

Lab Sample ID: LCSD 140-31502/15-A

**Matrix: Solid** 

**Analysis Batch: 31651** 

Client Sample ID: Lab Control Sample Dup **Prep Type: Step 6** Prep Batch: 31502

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	98.8		mg/Kg		99	75 - 125	4	30
Antimony	25.0	25.5		mg/Kg		102	75 - 125	3	30
Arsenic	5.00	5.16		mg/Kg		103	75 - 125	4	30
Barium	5.00	4.77		mg/Kg		95	75 - 125	4	30
Beryllium	2.50	2.67		mg/Kg		107	75 - 125	4	30
Cobalt	5.00	4.97		mg/Kg		99	75 - 125	4	30
Iron	50.0	49.5		mg/Kg		99	75 - 125	4	30
Li	5.00	4.90		mg/Kg		98	75 - 125	4	30
Manganese	5.00	5.02		mg/Kg		100	75 - 125	4	30
Mo	25.0	25.2		mg/Kg		101	75 - 125	2	30
Selenium	7.50	7.50		mg/Kg		100	75 - 125	2	30
Thallium	20.0	20.6		mg/Kg		103	75 - 125	4	30

Eurofins TestAmerica, Knoxville

Page 33 of 58

Project/Site: Martin Lake Ash Ponds - SEP + Totals

#### Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: 140-15490-1 DU

**Matrix: Solid** 

**Analysis Batch: 31651** 

Client Sample ID: AP-2019-1 (30-31)

**Prep Type: Step 6** 

Job ID: 140-15490-1

Prep Batch: 31502

•	Sample	Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Aluminum	2300		2370		mg/Kg	<del>-</del> <del>-</del>	2	30
Antimony	ND		ND		mg/Kg	₩	NC	30
Arsenic	0.94		0.869		mg/Kg	<b>⇔</b>	8	30
Barium	18		18.6		mg/Kg	₩	6	30
Beryllium	0.067	J	0.0691	J	mg/Kg	₩	3	30
Cobalt	0.90	J	0.940	J	mg/Kg	₩	5	30
Iron	2500		2510		mg/Kg	₩	0.4	30
Li	2.1	J	2.17	J	mg/Kg	₩	3	30
Manganese	16		16.1		mg/Kg	₩.	0.6	30
Mo	ND		ND		mg/Kg	*	NC	30
Selenium	ND		ND		mg/Kg	<b>⇔</b>	NC	30
Thallium	ND		ND		mg/Kg	₩.	NC	30

Lab Sample ID: MB 140-31615/13-A

**Matrix: Solid** 

**Analysis Batch: 31713** 

Client Sample ID: Method Blank

**Prep Type: Step 7** 

Prep Batch: 31615

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		10	1.6	mg/Kg		07/12/19 09:08	07/15/19 10:58	1
Antimony	ND		3.0	0.14	mg/Kg		07/12/19 09:08	07/15/19 10:58	1
Arsenic	ND		0.50	0.13	mg/Kg		07/12/19 09:08	07/15/19 10:58	1
Barium	ND		2.5	0.12	mg/Kg		07/12/19 09:08	07/15/19 10:58	1
Beryllium	ND		0.25	0.0075	mg/Kg		07/12/19 09:08	07/15/19 10:58	1
Cobalt	ND		2.5	0.15	mg/Kg		07/12/19 09:08	07/15/19 10:58	1
Iron	ND		5.0	4.1	mg/Kg		07/12/19 09:08	07/15/19 10:58	1
Li	ND	1 ) '	2.5	0.15	mg/Kg		07/12/19 09:08	07/15/19 10:58	1
Manganese	ND		0.75	0.052	mg/Kg		07/12/19 09:08	07/15/19 10:58	1
Mo	ND		2.0	0.082	mg/Kg		07/12/19 09:08	07/15/19 10:58	1
Selenium	ND		0.50	0.17	mg/Kg		07/12/19 09:08	07/15/19 10:58	1
Thallium	ND	*	1.8	0.18	mg/Kg		07/12/19 09:08	07/15/19 10:58	1

Lab Sample ID: LCS 140-31615/14-A

**Matrix: Solid** 

**Analysis Batch: 31713** 

**Client Sample ID: Lab Control Sample Prep Type: Step 7** Prep Batch: 31615

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	96.8		mg/Kg		97	75 - 125	
Antimony	25.0	25.7		mg/Kg		103	75 - 125	
Arsenic	5.00	5.23		mg/Kg		105	75 - 125	
Barium	5.00	4.99		mg/Kg		100	75 - 125	
Beryllium	2.50	2.52		mg/Kg		101	75 - 125	
Cobalt	5.00	5.20		mg/Kg		104	75 - 125	
Iron	50.0	51.7		mg/Kg		103	75 - 125	
Li	5.00	5.15		mg/Kg		103	75 - 125	
Manganese	5.00	5.21		mg/Kg		104	75 - 125	
Mo	25.0	26.5		mg/Kg		106	75 - 125	
Selenium	7.50	7.52		mg/Kg		100	75 - 125	
Thallium	20.0	21.2		mg/Kg		106	75 - 125	

Eurofins TestAmerica, Knoxville

Page 34 of 58

#### Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: LCSD 140-31615/15-A

**Matrix: Solid** 

**Analysis Batch: 31713** 

Client Sample ID: Lab Control Sample Dup Prep Type: Step 7

Prep Batch: 31615

Alialysis Dalcil. 31713							Liehr	Jaicii.	21013
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	98.0		mg/Kg		98	75 - 125	1	30
Antimony	25.0	25.8		mg/Kg		103	75 - 125	0	30
Arsenic	5.00	5.30		mg/Kg		106	75 - 125	1	30
Barium	5.00	4.99		mg/Kg		100	75 - 125	0	30
Beryllium	2.50	2.50		mg/Kg		100	75 - 125	1	30
Cobalt	5.00	5.21		mg/Kg		104	75 - 125	0	30
Iron	50.0	51.5		mg/Kg		103	75 - 125	0	30
Li	5.00	5.18		mg/Kg		104	75 - 125	1	30
Manganese	5.00	5.21		mg/Kg		104	75 - 125	0	30
Mo	25.0	26.7		mg/Kg		107	75 - 125	1	30
Selenium	7.50	7.55		mg/Kg		101	75 - 125	0	30
Thallium	20.0	21.3		mg/Kg		107	75 - 125	1	30

Lab Sample ID: 140-15490-1 DU

**Matrix: Solid** 

**Analysis Batch: 31713** 

Client Sample ID: AP-2019-1 (30-31)

Prep Type: Step 7

Prep Batch: 31615

Sample Sample DU DU **RPD** Result Qualifier RPD Analyte Result Qualifier Unit D Limit ₩ ND **Antimony** ND mg/Kg NC 30 Ö Arsenic 1.2 1.16 mg/Kg 6 30 0.56 0.602 ₩ Beryllium mg/Kg 7 30 ď Iron 5200 5740 mg/Kg 11 30 Li 9.6 10.9 mg/Kg 13 30 Manganese 26 29.0 mg/Kg 9 30 0.19 0.209 J mg/Kg 10 30 Мо

ND

mg/Kg

Lab Sample ID: 140-15490-1 DU

ND

**Matrix: Solid** 

Selenium

**Analysis Batch: 31713** 

Client Sample ID: AP-2019-1 (30-31) Prep Type: Step 7

Prep Batch: 31615

NC

30

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier RPD Analyte Unit D Limit ₩ Aluminum 29000 35900 mg/Kg 23 30 Barium 390 447 mg/Kg 14 30

Lab Sample ID: 140-15490-1 DU

**Matrix: Solid** 

**Analysis Batch: 31713** 

Client Sample ID: AP-2019-1 (30-31) **Prep Type: Step 7** 

Prep Batch: 31615

	Sample	Sample	DU	DU			•		RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Cobalt	0.79	J	0.899	J	mg/Kg	₩		12	30
Thallium	0.48	J	ND		mg/Kg	₩		NC	30

RL

0.10

Spike

Added

2.50

Spike

2.50

Added

**MDL** Unit

0.040 mg/Kg

LCS LCS

LCSD LCSD

DU DU

0.102 J

Result Qualifier

2.71

Result Qualifier

2.70

Result Qualifier

Unit

Unit

Unit

mg/Kg

D

₩

mg/Kg

mg/Kg

Job ID: 140-15490-1

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Method: 7470A - SEP Mercury (CVAA) - Total

Lab Sample ID: MB 140-30683/13-B

**Matrix: Solid** 

**Analysis Batch: 30868** 

Client: Golder Associates Inc.

MB MB

Analyte Result Qualifier

Hg ND

Lab Sample ID: LCS 140-30683/14-B

**Matrix: Solid Analysis Batch: 30868** 

Analyte

Lab Sample ID: LCSD 140-30683/15-B

**Matrix: Solid** 

Hg

**Analysis Batch: 30868** 

Analyte

Hg

Lab Sample ID: 140-15490-1 DU

**Matrix: Solid** 

**Analysis Batch: 30868** 

Sample Sample Analyte

Result Qualifier Hg 0.081 J

Client Sample ID: Method Blank

**Prep Type: Total/NA** 

Prep Batch: 30683

Prepared Analyzed Dil Fac 06/11/19 08:00 06/16/19 13:56

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Batch: 30683 %Rec.

D %Rec Limits 75 - 125 108

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 30683

%Rec. **RPD** 

Limits RPD Limit %Rec 108 75 - 125 0 30

Client Sample ID: AP-2019-1 (30-31)

Prep Type: Total/NA

Prep Batch: 30683

**RPD** 

Limit RPD

23 30

Project/Site: Martin Lake Ash Ponds - SEP + Totals

#### **Metals**

#### Prep Batch: 30683

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Total/NA	Solid	Total	
140-15490-2	AP-2019-2 (35-36)	Total/NA	Solid	Total	
140-15490-3	AP-2019-3 (18-19)	Total/NA	Solid	Total	
MB 140-30683/13-A	Method Blank	Total/NA	Solid	Total	
MB 140-30683/13-B	Method Blank	Total/NA	Solid	Total	
LCS 140-30683/14-A	Lab Control Sample	Total/NA	Solid	Total	
LCS 140-30683/14-B	Lab Control Sample	Total/NA	Solid	Total	
LCSD 140-30683/15-A	Lab Control Sample Dup	Total/NA	Solid	Total	
LCSD 140-30683/15-B	Lab Control Sample Dup	Total/NA	Solid	Total	
140-15490-1 DU	AP-2019-1 (30-31)	Total/NA	Solid	Total	

#### Prep Batch: 30859

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Total/NA	Solid	7470A	30683
140-15490-2	AP-2019-2 (35-36)	Total/NA	Solid	7470A	30683
140-15490-3	AP-2019-3 (18-19)	Total/NA	Solid	7470A	30683
MB 140-30683/13-B	Method Blank	Total/NA	Solid	7470A	30683
LCS 140-30683/14-B	Lab Control Sample	Total/NA	Solid	7470A	30683
LCSD 140-30683/15-B	Lab Control Sample Dup	Total/NA	Solid	7470A	30683
140-15490-1 DU	AP-2019-1 (30-31)	Total/NA	Solid	7470A	30683

#### **Analysis Batch: 30868**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Total/NA	Solid	7470A	30859
140-15490-2	AP-2019-2 (35-36)	Total/NA	Solid	7470A	30859
140-15490-3	AP-2019-3 (18-19)	Total/NA	Solid	7470A	30859
MB 140-30683/13-B	Method Blank	Total/NA	Solid	7470A	30859
LCS 140-30683/14-B	Lab Control Sample	Total/NA	Solid	7470A	30859
LCSD 140-30683/15-B	Lab Control Sample Dup	Total/NA	Solid	7470A	30859
140-15490-1 DU	AP-2019-1 (30-31)	Total/NA	Solid	7470A	30859

#### Prep Batch: 31128

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Total/NA	Solid	3050B	_
140-15490-2	AP-2019-2 (35-36)	Total/NA	Solid	3050B	
140-15490-3	AP-2019-3 (18-19)	Total/NA	Solid	3050B	
MB 140-31128/14-A	Method Blank	Total/NA	Solid	3050B	
LCS 140-31128/15-A	Lab Control Sample	Total/NA	Solid	3050B	
140-15490-1 MS	AP-2019-1 (30-31)	Total/NA	Solid	3050B	
140-15490-1 MSD	AP-2019-1 (30-31)	Total/NA	Solid	3050B	

#### **SEP Batch: 31148**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 1	Solid	Exchangeable	
140-15490-2	AP-2019-2 (35-36)	Step 1	Solid	Exchangeable	
140-15490-3	AP-2019-3 (18-19)	Step 1	Solid	Exchangeable	
MB 140-31148/13-B ^4	Method Blank	Step 1	Solid	Exchangeable	
LCS 140-31148/14-B ^5	Lab Control Sample	Step 1	Solid	Exchangeable	
LCSD 140-31148/15-B ^5	Lab Control Sample Dup	Step 1	Solid	Exchangeable	
140-15490-1 DU	AP-2019-1 (30-31)	Step 1	Solid	Exchangeable	

Eurofins TestAmerica, Knoxville

7/18/2019

Page 37 of 58

2

Job ID: 140-15490-1

3

4

6

_

10

12

Project/Site: Martin Lake Ash Ponds - SEP + Totals

#### **Metals**

#### Prep Batch: 31252

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 1	Solid	3010A	31148
140-15490-2	AP-2019-2 (35-36)	Step 1	Solid	3010A	31148
140-15490-3	AP-2019-3 (18-19)	Step 1	Solid	3010A	31148
MB 140-31148/13-B ^4	Method Blank	Step 1	Solid	3010A	31148
LCS 140-31148/14-B ^5	Lab Control Sample	Step 1	Solid	3010A	31148
LCSD 140-31148/15-B ^5	Lab Control Sample Dup	Step 1	Solid	3010A	31148
140-15490-1 DU	AP-2019-1 (30-31)	Step 1	Solid	3010A	31148

#### **SEP Batch: 31253**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 2	Solid	Carbonate	
140-15490-2	AP-2019-2 (35-36)	Step 2	Solid	Carbonate	
140-15490-3	AP-2019-3 (18-19)	Step 2	Solid	Carbonate	
MB 140-31253/13-B ^3	Method Blank	Step 2	Solid	Carbonate	
LCS 140-31253/14-B ^5	Lab Control Sample	Step 2	Solid	Carbonate	
LCSD 140-31253/15-B ^5	Lab Control Sample Dup	Step 2	Solid	Carbonate	
140-15490-1 DU	AP-2019-1 (30-31)	Step 2	Solid	Carbonate	

#### Prep Batch: 31256

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 2	Solid	3010A	31253
140-15490-2	AP-2019-2 (35-36)	Step 2	Solid	3010A	31253
140-15490-3	AP-2019-3 (18-19)	Step 2	Solid	3010A	31253
MB 140-31253/13-B ^3	Method Blank	Step 2	Solid	3010A	31253
LCS 140-31253/14-B ^5	Lab Control Sample	Step 2	Solid	3010A	31253
LCSD 140-31253/15-B ^5	Lab Control Sample Dup	Step 2	Solid	3010A	31253
140-15490-1 DU	AP-2019-1 (30-31)	Step 2	Solid	3010A	31253

#### **SEP Batch: 31257**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 3	Solid	Non-Crystalline	
140-15490-2	AP-2019-2 (35-36)	Step 3	Solid	Non-Crystalline	
140-15490-3	AP-2019-3 (18-19)	Step 3	Solid	Non-Crystalline	
MB 140-31257/13-B	Method Blank	Step 3	Solid	Non-Crystalline	
LCS 140-31257/14-B	Lab Control Sample	Step 3	Solid	Non-Crystalline	
LCSD 140-31257/15-B	Lab Control Sample Dup	Step 3	Solid	Non-Crystalline	
140-15490-1 DU	AP-2019-1 (30-31)	Step 3	Solid	Non-Crystalline	

#### Prep Batch: 31338

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 3	Solid	3010A	31257
140-15490-2	AP-2019-2 (35-36)	Step 3	Solid	3010A	31257
140-15490-3	AP-2019-3 (18-19)	Step 3	Solid	3010A	31257
MB 140-31257/13-B	Method Blank	Step 3	Solid	3010A	31257
LCS 140-31257/14-B	Lab Control Sample	Step 3	Solid	3010A	31257
LCSD 140-31257/15-B	Lab Control Sample Dup	Step 3	Solid	3010A	31257
140-15490-1 DU	AP-2019-1 (30-31)	Step 3	Solid	3010A	31257

#### **SEP Batch: 31341**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 4	Solid	Metal Hydroxide	

Eurofins TestAmerica, Knoxville

Page 38 of 58 7/18/2019

2

Job ID: 140-15490-1

<u>5</u>

6

9

10

4.6

#### **QC Association Summary**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

#### **Metals (Continued)**

#### SEP Batch: 31341 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
140-15490-2	AP-2019-2 (35-36)	Step 4	Solid	Metal Hydroxide
140-15490-3	AP-2019-3 (18-19)	Step 4	Solid	Metal Hydroxide
MB 140-31341/13-B	Method Blank	Step 4	Solid	Metal Hydroxide
LCS 140-31341/14-B	Lab Control Sample	Step 4	Solid	Metal Hydroxide
LCSD 140-31341/15-B	Lab Control Sample Dup	Step 4	Solid	Metal Hydroxide
140-15490-1 DU	AP-2019-1 (30-31)	Step 4	Solid	Metal Hydroxide

#### Prep Batch: 31360

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 4	Solid	3010A	31341
140-15490-2	AP-2019-2 (35-36)	Step 4	Solid	3010A	31341
140-15490-3	AP-2019-3 (18-19)	Step 4	Solid	3010A	31341
MB 140-31341/13-B	Method Blank	Step 4	Solid	3010A	31341
LCS 140-31341/14-B	Lab Control Sample	Step 4	Solid	3010A	31341
LCSD 140-31341/15-B	Lab Control Sample Dup	Step 4	Solid	3010A	31341
140-15490-1 DU	AP-2019-1 (30-31)	Step 4	Solid	3010A	31341

#### **SEP Batch: 31436**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 5	Solid	Organic-Bound	
140-15490-2	AP-2019-2 (35-36)	Step 5	Solid	Organic-Bound	
140-15490-3	AP-2019-3 (18-19)	Step 5	Solid	Organic-Bound	
MB 140-31436/13-B ^5	Method Blank	Step 5	Solid	Organic-Bound	
LCS 140-31436/14-B ^5	Lab Control Sample	Step 5	Solid	Organic-Bound	
LCSD 140-31436/15-B ^5	Lab Control Sample Dup	Step 5	Solid	Organic-Bound	
140-15490-1 DU	AP-2019-1 (30-31)	Step 5	Solid	Organic-Bound	

#### Prep Batch: 31500

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 5	Solid	3010A	31436
140-15490-2	AP-2019-2 (35-36)	Step 5	Solid	3010A	31436
140-15490-3	AP-2019-3 (18-19)	Step 5	Solid	3010A	31436
MB 140-31436/13-B ^5	Method Blank	Step 5	Solid	3010A	31436
LCS 140-31436/14-B ^5	Lab Control Sample	Step 5	Solid	3010A	31436
LCSD 140-31436/15-B ^5	Lab Control Sample Dup	Step 5	Solid	3010A	31436
140-15490-1 DU	AP-2019-1 (30-31)	Step 5	Solid	3010A	31436

#### **SEP Batch: 31502**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 6	Solid	Acid/Sulfide	
140-15490-2	AP-2019-2 (35-36)	Step 6	Solid	Acid/Sulfide	
140-15490-3	AP-2019-3 (18-19)	Step 6	Solid	Acid/Sulfide	
MB 140-31502/13-A	Method Blank	Step 6	Solid	Acid/Sulfide	
LCS 140-31502/14-A	Lab Control Sample	Step 6	Solid	Acid/Sulfide	
LCSD 140-31502/15-A	Lab Control Sample Dup	Step 6	Solid	Acid/Sulfide	
140-15490-1 DU	AP-2019-1 (30-31)	Step 6	Solid	Acid/Sulfide	

#### **Analysis Batch: 31553**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Total/NA	Solid	6010B	31128
140-15490-2	AP-2019-2 (35-36)	Total/NA	Solid	6010B	31128

Eurofins TestAmerica, Knoxville

_____

Job ID: 140-15490-1

5

6

<u>۾</u>

11

12

L

Project/Site: Martin Lake Ash Ponds - SEP + Totals

#### **Metals (Continued)**

#### **Analysis Batch: 31553 (Continued)**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-3	AP-2019-3 (18-19)	Total/NA	Solid	6010B	31128
MB 140-31128/14-A	Method Blank	Total/NA	Solid	6010B	31128
LCS 140-31128/15-A	Lab Control Sample	Total/NA	Solid	6010B	31128
140-15490-1 MS	AP-2019-1 (30-31)	Total/NA	Solid	6010B	31128
140-15490-1 MSD	AP-2019-1 (30-31)	Total/NA	Solid	6010B	31128

#### **Analysis Batch: 31604**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 1	Solid	6010B SEP	31252
140-15490-1	AP-2019-1 (30-31)	Step 2	Solid	6010B SEP	31256
140-15490-1	AP-2019-1 (30-31)	Step 3	Solid	6010B SEP	31338
140-15490-1	AP-2019-1 (30-31)	Step 4	Solid	6010B SEP	31360
140-15490-2	AP-2019-2 (35-36)	Step 1	Solid	6010B SEP	31252
140-15490-2	AP-2019-2 (35-36)	Step 2	Solid	6010B SEP	31256
140-15490-2	AP-2019-2 (35-36)	Step 3	Solid	6010B SEP	31338
140-15490-2	AP-2019-2 (35-36)	Step 4	Solid	6010B SEP	31360
140-15490-3	AP-2019-3 (18-19)	Step 1	Solid	6010B SEP	31252
140-15490-3	AP-2019-3 (18-19)	Step 2	Solid	6010B SEP	31256
140-15490-3	AP-2019-3 (18-19)	Step 3	Solid	6010B SEP	31338
140-15490-3	AP-2019-3 (18-19)	Step 4	Solid	6010B SEP	31360
MB 140-31148/13-B ^4	Method Blank	Step 1	Solid	6010B SEP	31252
MB 140-31253/13-B ^3	Method Blank	Step 2	Solid	6010B SEP	31256
MB 140-31257/13-B	Method Blank	Step 3	Solid	6010B SEP	31338
MB 140-31341/13-B	Method Blank	Step 4	Solid	6010B SEP	31360
LCS 140-31148/14-B ^5	Lab Control Sample	Step 1	Solid	6010B SEP	31252
LCS 140-31253/14-B ^5	Lab Control Sample	Step 2	Solid	6010B SEP	31256
LCS 140-31257/14-B	Lab Control Sample	Step 3	Solid	6010B SEP	31338
LCS 140-31341/14-B	Lab Control Sample	Step 4	Solid	6010B SEP	31360
LCSD 140-31148/15-B ^5	Lab Control Sample Dup	Step 1	Solid	6010B SEP	31252
LCSD 140-31253/15-B ^5	Lab Control Sample Dup	Step 2	Solid	6010B SEP	31256
LCSD 140-31257/15-B	Lab Control Sample Dup	Step 3	Solid	6010B SEP	31338
LCSD 140-31341/15-B	Lab Control Sample Dup	Step 4	Solid	6010B SEP	31360
140-15490-1 DU	AP-2019-1 (30-31)	Step 1	Solid	6010B SEP	31252
140-15490-1 DU	AP-2019-1 (30-31)	Step 2	Solid	6010B SEP	31256
140-15490-1 DU	AP-2019-1 (30-31)	Step 3	Solid	6010B SEP	31338
140-15490-1 DU	AP-2019-1 (30-31)	Step 4	Solid	6010B SEP	31360

#### Prep Batch: 31615

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 7	Solid	Residual	_
140-15490-2	AP-2019-2 (35-36)	Step 7	Solid	Residual	
140-15490-3	AP-2019-3 (18-19)	Step 7	Solid	Residual	
MB 140-31615/13-A	Method Blank	Step 7	Solid	Residual	
LCS 140-31615/14-A	Lab Control Sample	Step 7	Solid	Residual	
LCSD 140-31615/15-A	Lab Control Sample Dup	Step 7	Solid	Residual	
140-15490-1 DU	AP-2019-1 (30-31)	Step 7	Solid	Residual	

#### **Analysis Batch: 31651**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 5	Solid	6010B SEP	31500
140-15490-1	AP-2019-1 (30-31)	Step 6	Solid	6010B SEP	31502

Eurofins TestAmerica, Knoxville

7/18/2019

Page 40 of 58

2

Job ID: 140-15490-1

3

4

6

8

3

11

12

Ш

Project/Site: Martin Lake Ash Ponds - SEP + Totals

#### **Metals (Continued)**

#### **Analysis Batch: 31651 (Continued)**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-2	AP-2019-2 (35-36)	Step 5	Solid	6010B SEP	31500
140-15490-2	AP-2019-2 (35-36)	Step 6	Solid	6010B SEP	31502
140-15490-3	AP-2019-3 (18-19)	Step 5	Solid	6010B SEP	31500
140-15490-3	AP-2019-3 (18-19)	Step 6	Solid	6010B SEP	31502
MB 140-31436/13-B ^5	Method Blank	Step 5	Solid	6010B SEP	31500
MB 140-31502/13-A	Method Blank	Step 6	Solid	6010B SEP	31502
LCS 140-31436/14-B ^5	Lab Control Sample	Step 5	Solid	6010B SEP	31500
LCS 140-31502/14-A	Lab Control Sample	Step 6	Solid	6010B SEP	31502
LCSD 140-31436/15-B ^5	Lab Control Sample Dup	Step 5	Solid	6010B SEP	31500
LCSD 140-31502/15-A	Lab Control Sample Dup	Step 6	Solid	6010B SEP	31502
140-15490-1 DU	AP-2019-1 (30-31)	Step 5	Solid	6010B SEP	31500
140-15490-1 DU	AP-2019-1 (30-31)	Step 6	Solid	6010B SEP	31502

#### **Analysis Batch: 31713**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Step 7	Solid	6010B SEP	31615
140-15490-1	AP-2019-1 (30-31)	Step 7	Solid	6010B SEP	31615
140-15490-1	AP-2019-1 (30-31)	Step 7	Solid	6010B SEP	31615
140-15490-1	AP-2019-1 (30-31)	Total/NA	Solid	6010B	30683
140-15490-1	AP-2019-1 (30-31)	Total/NA	Solid	6010B	30683
140-15490-1	AP-2019-1 (30-31)	Total/NA	Solid	6010B	30683
140-15490-2	AP-2019-2 (35-36)	Step 7	Solid	6010B SEP	31615
140-15490-2	AP-2019-2 (35-36)	Step 7	Solid	6010B SEP	31615
140-15490-2	AP-2019-2 (35-36)	Step 7	Solid	6010B SEP	31615
140-15490-2	AP-2019-2 (35-36)	Total/NA	Solid	6010B	30683
140-15490-2	AP-2019-2 (35-36)	Total/NA	Solid	6010B	30683
140-15490-2	AP-2019-2 (35-36)	Total/NA	Solid	6010B	30683
140-15490-3	AP-2019-3 (18-19)	Step 7	Solid	6010B SEP	31615
140-15490-3	AP-2019-3 (18-19)	Step 7	Solid	6010B SEP	31615
140-15490-3	AP-2019-3 (18-19)	Step 7	Solid	6010B SEP	31615
140-15490-3	AP-2019-3 (18-19)	Total/NA	Solid	6010B	30683
140-15490-3	AP-2019-3 (18-19)	Total/NA	Solid	6010B	30683
140-15490-3	AP-2019-3 (18-19)	Total/NA	Solid	6010B	30683
MB 140-30683/13-A	Method Blank	Total/NA	Solid	6010B	30683
MB 140-31615/13-A	Method Blank	Step 7	Solid	6010B SEP	31615
LCS 140-30683/14-A	Lab Control Sample	Total/NA	Solid	6010B	30683
LCS 140-31615/14-A	Lab Control Sample	Step 7	Solid	6010B SEP	31615
LCSD 140-30683/15-A	Lab Control Sample Dup	Total/NA	Solid	6010B	30683
LCSD 140-31615/15-A	Lab Control Sample Dup	Step 7	Solid	6010B SEP	31615
140-15490-1 DU	AP-2019-1 (30-31)	Step 7	Solid	6010B SEP	31615
140-15490-1 DU	AP-2019-1 (30-31)	Step 7	Solid	6010B SEP	31618
140-15490-1 DU	AP-2019-1 (30-31)	Step 7	Solid	6010B SEP	31615
140-15490-1 DU	AP-2019-1 (30-31)	Total/NA	Solid	6010B	30683
140-15490-1 DU	AP-2019-1 (30-31)	Total/NA	Solid	6010B	30683
140-15490-1 DU	AP-2019-1 (30-31)	Total/NA	Solid	6010B	30683

#### **Analysis Batch: 31744**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Sum of Steps 1-7	Solid	6010B SEP	
140-15490-2	AP-2019-2 (35-36)	Sum of Steps 1-7	Solid	6010B SEP	
140-15490-3	AP-2019-3 (18-19)	Sum of Steps 1-7	Solid	6010B SEP	

Eurofins TestAmerica, Knoxville

7/18/2019

Page 41 of 58

2

Job ID: 140-15490-1

3

4

6

8

11

12

#### **QC Association Summary**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Job ID: 140-15490-1

#### **General Chemistry**

#### **Analysis Batch: 30602**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15490-1	AP-2019-1 (30-31)	Total/NA	Solid	Moisture	
140-15490-2	AP-2019-2 (35-36)	Total/NA	Solid	Moisture	
140-15490-3	AP-2019-3 (18-19)	Total/NA	Solid	Moisture	
140-15490-1 DU	AP-2019-1 (30-31)	Total/NA	Solid	Moisture	

3

4

8

9

11

12

1:

#### **Lab Chronicle**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-1 (30-31)

Date Collected: 06/03/19 11:36

Lab Sample ID: 140-15490-1

**Matrix: Solid** 

Job ID: 140-15490-1

Date Received: 06/05/19 09:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Sum of Steps 1-7	Analysis Instrumen	6010B SEP at ID: NOEQUIP		1			31744	07/16/19 17:31	CLJ	TAL KNX
Total/NA	Analysis Instrumen	Moisture at ID: W3		1			30602	06/06/19 14:52	BKD	TAL KNX

Client Sample ID: AP-2019-1 (30-31)

Date Collected: 06/03/19 11:36

Date Received: 06/05/19 09:20

Lab Sample ID: 140-15490-1

**Matrix: Solid** Percent Solids: 76.0

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			0.536 g	50 mL	31128	06/26/19 08:00	KNC	TAL KN
Total/NA	Analysis	6010B		1			31553	07/10/19 12:59	KNC	TAL KN
	Instrumer	nt ID: DUO								
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KN
Total/NA	Analysis Instrumer	6010B nt ID: DUO		1			31713	07/15/19 14:24	KNC	TAL KN
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KN
Total/NA	Analysis	6010B		10			31713	07/15/19 15:45		TAL KN
	•	nt ID: DUO								
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KN
Total/NA	Analysis	6010B		2			31713	07/15/19 18:28	KNC	TAL KN
	Instrumer	nt ID: DUO								
Step 1	SEP	Exchangeable			5.000 g	25 mL	31148	06/26/19 09:47	KNC	TAL KN
Step 1	Prep	3010A			5 mL	50 mL	31252	06/29/19 08:00	KNC	TAL KN
Step 1	Analysis	6010B SEP		4			31604	07/11/19 12:49	KNC	TAL KN
	Instrumer	nt ID: DUO								
Step 2	SEP	Carbonate			5.000 g	25 mL	31253	06/29/19 08:00	KNC	TAL KN
Step 2	Prep	3010A			5 mL	50 mL	31256	06/30/19 08:00	KNC	TAL KN
Step 2	Analysis	6010B SEP		3			31604	07/11/19 14:21	KNC	TAL KN
	Instrumer	nt ID: DUO								
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	31257	06/30/19 08:00	KNC	TAL KN
Step 3	Prep	3010A			5 mL	50 mL	31338	07/02/19 08:00	KNC	TAL KN
Step 3	Analysis	6010B SEP		1			31604	07/11/19 16:06	KNC	TAL KN
	Instrumer	nt ID: DUO								
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	31341	07/02/19 09:00	KNC	TAL KN
Step 4	Prep	3010A			5 mL	50 mL	31360	07/03/19 08:00	KNC	TAL KN
Step 4	Analysis	6010B SEP		1			31604	07/11/19 17:49	KNC	TAL KN
	Instrumer	nt ID: DUO								
Step 5	SEP	Organic-Bound			5.000 g	75 mL	31436	07/08/19 07:00	KNC	TAL KN
Step 5	Prep	3010A			5 mL	50 mL	31500	07/10/19 08:00		TAL KN
Step 5	Analysis	6010B SEP		5			31651	07/12/19 11:54	KNC	TAL KN
	Instrumer	nt ID: DUO								
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	31502	07/10/19 08:00	KNC	TAL KN
Step 6	Analysis	6010B SEP		1			31651	07/12/19 13:29	KNC	TAL KN
	Instrumer	nt ID: DUO								

Eurofins TestAmerica, Knoxville

Page 43 of 58

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-1 (30-31)

Date Collected: 06/03/19 11:36 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-1

Matrix: Solid

Percent Solids: 76.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis	6010B SEP		1			31713	07/15/19 11:39	KNC	TAL KNX
	Instrumer	it ID: DUO								
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis	6010B SEP		10			31713	07/15/19 13:08	KNC	TAL KNX
	Instrumer	it ID: DUO								
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis	6010B SEP		2			31713	07/15/19 17:11	KNC	TAL KNX
	Instrumer	it ID: DUO								
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Prep	7470A			5.0 mL	50.0 mL	30859	06/16/19 08:00	DKW	TAL KNX
Total/NA	Analysis	7470A		1			30868	06/16/19 14:04	DKW	TAL KNX
_	Instrumer	t ID: HG								

Client Sample ID: AP-2019-2 (35-36)

Date Collected: 06/03/19 13:20 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-2

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Sum of Steps 1-7	Analysis	6010B SEP		1			31744	07/16/19 17:31	CLJ	TAL KNX
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	Moisture		1			30602	06/06/19 14:52	BKD	TAL KNX
	Instrumen	t ID: W3								

Client Sample ID: AP-2019-2 (35-36)

Date Collected: 06/03/19 13:20 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-2 Matrix: Solid

Percent Solids: 78.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			0.527 g	50 mL	31128	06/26/19 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			31553	07/10/19 13:13	KNC	TAL KNX
	Instrumer	t ID: DUO								
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			31713	07/15/19 14:36	KNC	TAL KNX
	Instrumer	t ID: DUO								
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		10			31713	07/15/19 16:10	KNC	TAL KNX
	Instrumer	t ID: DUO								
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		5			31713	07/15/19 18:38	KNC	TAL KNX
	Instrumer	t ID: DUO								
Step 1	SEP	Exchangeable			5.000 g	25 mL	31148	06/26/19 09:47	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	31252	06/29/19 08:00	KNC	TAL KNX
Step 1	Analysis	6010B SEP		4			31604	07/11/19 12:59	KNC	TAL KNX
	Instrumer	t ID: DUO								

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-2 (35-36)

Date Collected: 06/03/19 13:20 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-2

Matrix: Solid

Percent Solids: 78.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.000 g	25 mL	31253	06/29/19 08:00		TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	31256	06/30/19 08:00		TAL KNX
Step 2	Analysis Instrumen	6010B SEP It ID: DUO		3			31604	07/11/19 14:42	KNC	TAL KNX
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	31257	06/30/19 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	31338	07/02/19 08:00	KNC	TAL KNX
Step 3	Analysis Instrumen	6010B SEP at ID: DUO		1			31604	07/11/19 16:16	KNC	TAL KNX
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	31341	07/02/19 09:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	31360	07/03/19 08:00	KNC	TAL KNX
Step 4	Analysis Instrumen	6010B SEP at ID: DUO		1			31604	07/11/19 17:59	KNC	TAL KNX
Step 5	SEP	Organic-Bound			5.000 g	75 mL	31436	07/08/19 07:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	31500	07/10/19 08:00	KNC	TAL KNX
Step 5	Analysis Instrumen	6010B SEP at ID: DUO		5			31651	07/12/19 12:05	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	31502	07/10/19 08:00	KNC	TAL KNX
Step 6	Analysis Instrumen	6010B SEP at ID: DUO		1			31651	07/12/19 13:49	KNC	TAL KNX
Step 7	Prep	Residual		•	1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis Instrumen	6010B SEP at ID: DUO		9			31713	07/15/19 12:05	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis Instrumen	6010B SEP at ID: DUO		10	, and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second		31713	07/15/19 13:19		TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis Instrumen	6010B SEP at ID: DUO		2	-		31713	07/15/19 17:21	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Prep	7470A			5.0 mL	50.0 mL	30859	06/16/19 08:00	DKW	TAL KNX
Total/NA	Analysis Instrumen	7470A it ID: HG		1			30868	06/16/19 14:09	DKW	TAL KNX

**Client Sample ID: AP-2019-3 (18-19)** 

Date Collected: 06/03/19 15:20

Date Received: 06/05/19 09:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Sum of Steps 1-7	Analysis Instrument	6010B SEP ID: NOEQUIP		1			31744	07/16/19 17:31	CLJ	TAL KNX
Total/NA	Analysis Instrument	Moisture ID: W3		1			30602	06/06/19 14:52	BKD	TAL KNX

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-15490-3

**Matrix: Solid** 

#### **Lab Chronicle**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-3 (18-19)

Date Collected: 06/03/19 15:20 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-3

Matrix: Solid

Percent Solids: 80.0

Job ID: 140-15490-1

Dron Tuno	Batch	Batch Method	Dus	Dil	Initial	Final	Batch	Prepared	Analyst	Lah
Prep Type	Type	_	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B		1	0.527 g	50 mL	31128	06/26/19 08:00		TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		ı			31553	07/10/19 13:18	KINC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		1			31713	07/15/19 14:41	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		10			31713	07/15/19 16:15	KNC	TAL KNX
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Analysis Instrumer	6010B nt ID: DUO		5			31713	07/15/19 18:43	KNC	TAL KNX
Step 1	SEP	Exchangeable			5.000 g	25 mL	31148	06/26/19 09:47	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	31252	06/29/19 08:00	KNC	TAL KNX
Step 1	Analysis Instrumer	6010B SEP nt ID: DUO		4			31604	07/11/19 13:04	KNC	TAL KNX
Step 2	SEP	Carbonate			5.000 g	25 mL	31253	06/29/19 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	31256	06/30/19 08:00		TAL KNX
Step 2	Analysis Instrumer	6010B SEP nt ID: DUO		3	71		31604	07/11/19 14:47	KNC	TAL KNX
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	31257	06/30/19 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	31338	07/02/19 08:00	KNC	TAL KNX
Step 3	Analysis Instrumer	6010B SEP nt ID: DUO		1			31604	07/11/19 16:21	KNC	TAL KNX
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	31341	07/02/19 09:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	31360	07/03/19 08:00	KNC	TAL KNX
Step 4	Analysis Instrumer	6010B SEP nt ID: DUO		1			31604	07/11/19 18:04	KNC	TAL KNX
Step 5	SEP	Organic-Bound			5.000 g	75 mL	31436	07/08/19 07:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	31500	07/10/19 08:00	KNC	TAL KNX
Step 5	Analysis Instrumer	6010B SEP nt ID: DUO		5			31651	07/12/19 12:10	KNC	TAL KNX
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	31502	07/10/19 08:00	KNC	TAL KNX
Step 6	Analysis Instrumer	6010B SEP nt ID: DUO		1			31651	07/12/19 13:55	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis Instrumer	6010B SEP nt ID: DUO		1			31713	07/15/19 12:11	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis Instrumer	6010B SEP nt ID: DUO		10			31713	07/15/19 13:24	KNC	TAL KNX
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis	6010B SEP		2	-		31713	07/15/19 17:27	KNC	TAL KNX

Eurofins TestAmerica, Knoxville

7/18/2019

Δ

6

8

10

12

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

**Client Sample ID: AP-2019-3 (18-19)** 

Date Collected: 06/03/19 15:20 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-3

Matrix: Solid

Percent Solids: 80.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Prep	7470A			5.0 mL	50.0 mL	30859	06/16/19 08:00	DKW	TAL KNX
Total/NA	Analysis	7470A		1			30868	06/16/19 14:17	DKW	TAL KNX
	Instrumer	nt ID: HG								

**Client Sample ID: Method Blank** 

Date Collected: N/A
Date Received: N/A

Lab Sample ID: MB 140-30683/13-A

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			31713	07/15/19 11:13	KNC	TAL KNX
	Instrumen	t ID: DUO								

Client Sample ID: Method Blank

Date Collected: N/A

Date Received: N/A

Lab Sample ID: MB 140-30683/13-B

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Prep	7470A			5.0 mL	50.0 mL	30859	06/16/19 08:00	DKW	TAL KNX
Total/NA	Analysis	7470A		1			30868	06/16/19 13:56	DKW	TAL KNX
	Instrumer	nt ID: HG		_ //						

**Client Sample ID: Method Blank** 

Date Collected: N/A

Date Received: N/A

Lab Sample ID: MB 140-31128/14-A

Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			0.500 g	50 mL	31128	06/26/19 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			31553	07/10/19 11:42	KNC	TAL KNX
	Instrumer	nt ID: DUO								

**Client Sample ID: Method Blank** 

Date Collected: N/A

Date Received: N/A

Lab Sample	ID: MB	140-311	48/13-B ^4
------------	--------	---------	------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 1	SEP	Exchangeable			5.000 g	25 mL	31148	06/26/19 09:47	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	31252	06/29/19 08:00	KNC	TAL KNX
Step 1	Analysis	6010B SEP		4			31604	07/11/19 12:33	KNC	TAL KNX
Step 1	,	6010B SEP		4			31604	07/11/19 12:33	KNC	

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: Method Blank

Lab Sample ID: MB 140-31253/13-B ^3

**Matrix: Solid** 

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.000 g	25 mL	31253	06/29/19 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	31256	06/30/19 08:00	KNC	TAL KNX
Step 2	Analysis	6010B SEP		3			31604	07/11/19 14:06	KNC	TAL KNX
	Instrumer	nt ID: DUO								

**Client Sample ID: Method Blank** 

Lab Sample ID: MB 140-31257/13-B Date Collected: N/A Matrix: Solid

Date Received: N/A

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	31257	06/30/19 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	31338	07/02/19 08:00	KNC	TAL KNX
Step 3	Analysis	6010B SEP		1			31604	07/11/19 15:50	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Method Blank

Lab Sample ID: MB 140-31341/13-B Date Collected: N/A Matrix: Solid

Date Received: N/A

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	31341	07/02/19 09:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	31360	07/03/19 08:00	KNC	TAL KNX
Step 4	Analysis	6010B SEP		1			31604	07/11/19 17:24	KNC	TAL KNX
	Instrumer	nt ID: DUO								

**Client Sample ID: Method Blank** 

Lab Sample ID: MB 140-31436/13-B ^5

Date Collected: N/A

Date Received: N/A

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 5	SEP	Organic-Bound			5.000 g	75 mL	31436	07/08/19 07:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	31500	07/10/19 08:00	KNC	TAL KNX
Step 5	Analysis	6010B SEP		5			31651	07/12/19 11:39	KNC	TAL KNX
	Instrumer	nt ID: DUO								

**Client Sample ID: Method Blank** Lab Sample ID: MB 140-31502/13-A Matrix: Solid

Date Collected: N/A

Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	31502	07/10/19 08:00	KNC	TAL KNX
Step 6	Analysis	6010B SEP		1			31651	07/12/19 13:14	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Eurofins TestAmerica, Knoxville

**Matrix: Solid** 

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: Method Blank

Lab Sample ID: MB 140-31615/13-A Date Collected: N/A

**Matrix: Solid** 

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis	6010B SEP		1			31713	07/15/19 10:58	KNC	TAL KNX
	Instrumer	nt ID: DUO								

**Client Sample ID: Lab Control Sample** 

Lab Sample ID: LCS 140-30683/14-A

Matrix: Solid

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			31713	07/15/19 11:19	KNC	TAL KNX
	Instrument	ID: DHO								

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-30683/14-B

Date Collected: N/A Date Received: N/A

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Prep	7470A			5.0 mL	50.0 mL	30859	06/16/19 08:00	DKW	TAL KNX
Total/NA	Analysis	7470A		1			30868	06/16/19 13:59	DKW	TAL KNX
	Instrumer	nt ID: HG								

**Client Sample ID: Lab Control Sample** 

Lab Sample ID: LCS 140-31128/15-A

Matrix: Solid

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			0.500 g	50 mL	31128	06/26/19 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			31553	07/10/19 11:47	KNC	TAL KNX
	Instrumer	t ID: DUO								

**Client Sample ID: Lab Control Sample** 

Lab Sample ID: LCS 140-31148/14-B ^5

Matrix: Solid

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 1	SEP	Exchangeable			5.000 g	25 mL	31148	06/26/19 09:47	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	31252	06/29/19 08:00	KNC	TAL KNX
Step 1	Analysis	6010B SEP		5			31604	07/11/19 12:38	KNC	TAL KNX
•	Instrumer	nt ID: DUO								

**Client Sample ID: Lab Control Sample** 

Lab Sample ID: LCS 140-31253/14-B ^5 Date Collected: N/A **Matrix: Solid** 

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.000 g	25 mL	31253	06/29/19 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	31256	06/30/19 08:00	KNC	TAL KNX
Step 2	Analysis	6010B SEP		5			31604	07/11/19 14:11	KNC	TAL KNX
	Instrumer	nt ID: DUO								

**Client Sample ID: Lab Control Sample** 

Date Collected: N/A

Date Received: N/A

Lab Sample ID: LCS 140-31257/14-B

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	31257	06/30/19 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	31338	07/02/19 08:00	KNC	TAL KNX
Step 3	Analysis	6010B SEP		1			31604	07/11/19 15:56	KNC	TAL KNX
	Instrumer	nt ID: DUO								

**Client Sample ID: Lab Control Sample** 

Date Collected: N/A Date Received: N/A

Lab Sample ID: LCS 140-31341/14-B

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	31341	07/02/19 09:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	31360	07/03/19 08:00	KNC	TAL KNX
Step 4	Analysis	6010B SEP		1			31604	07/11/19 17:29	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample

Date Collected: N/A

Date Received: N/A

Lab Sample ID: LCS 140-31436/14-B ^5

**Matrix: Solid** 

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 5	SEP	Organic-Bound			5.000 g	75 mL	31436	07/08/19 07:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	31500	07/10/19 08:00	KNC	TAL KNX
Step 5	Analysis	6010B SEP		5			31651	07/12/19 11:44	KNC	TAL KNX
	Instrumer	nt ID: DUO								

**Client Sample ID: Lab Control Sample** 

Date Collected: N/A

Date Received: N/A

Lab Sample ID: LCS 140-31502/14-A Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	31502	07/10/19 08:00	KNC	TAL KNX
Step 6	Analysis	6010B SEP		1			31651	07/12/19 13:19	KNC	TAL KNX
	Instrumer	nt ID: DUO								

2

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: Lab Control Sample Date Collected: N/A

Lab Sample ID: LCS 140-31615/14-A

Matrix: Solid

Job ID: 140-15490-1

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis	6010B SEP		1			31713	07/15/19 11:03	KNC	TAL KNX
	Instrumer	nt ID: DUO								

**Client Sample ID: Lab Control Sample Dup** 

Lab Sample ID: LCSD 140-30683/15-A

Matrix: Solid

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			31713	07/15/19 11:24	KNC	TAL KNX
	Instrument	ID: DUO								

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-30683/15-B

Matrix: Solid

Date Collected: N/A

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Prep	7470A			5.0 mL	50.0 mL	30859	06/16/19 08:00	DKW	TAL KNX
Total/NA	Analysis	7470A		1			30868	06/16/19 14:02	DKW	TAL KNX
	Instrumer	nt ID: HG								

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-31148/15-B ^5

Matrix: Solid

Date Collected: N/A
Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 1	SEP	Exchangeable			5.000 g	25 mL	31148	06/26/19 09:47	KNC	TAL KNX
Step 1	Prep	3010A			5 mL	50 mL	31252	06/29/19 08:00	KNC	TAL KNX
Step 1	Analysis	6010B SEP		5			31604	07/11/19 12:43	KNC	TAL KNX

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-31253/15-B ^5

Matrix: Solid

Date Collected: N/A
Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.000 g	25 mL	31253	06/29/19 08:00	KNC	TAL KNX
Step 2	Prep	3010A			5 mL	50 mL	31256	06/30/19 08:00	KNC	TAL KNX
Step 2	Analysis	6010B SEP		5			31604	07/11/19 14:16	KNC	TAL KNX

7/18/2019

3

5

7

4.0

12

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-31257/15-B

Lab Sample ID: LCSD 140-31502/15-A

**Matrix: Solid** 

Batch Batch Dil Initial Final **Batch** Prepared Method Number **Prep Type** Type Run **Factor** Amount Amount or Analyzed Analyst Lab Step 3 SEP 31257 TAL KNX Non-Crystalline 5.000 g 25 mL 06/30/19 08:00 KNC Step 3 31338 TAL KNX Prep 3010A 5 mL 50 mL 07/02/19 08:00 KNC 6010B SEP 31604 TAL KNX Step 3 Analysis 07/11/19 16:01 KNC 1 Instrument ID: DUO

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-31341/15-B Date Collected: N/A Matrix: Solid

Date Received: N/A

Date Collected: N/A

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 4	SEP	Metal Hydroxide	-		5.000 g	25 mL	31341	07/02/19 09:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	31360	07/03/19 08:00	KNC	TAL KNX
Step 4	Analysis	6010B SEP		1			31604	07/11/19 17:44	KNC	TAL KNX
	Instrumer	nt ID: DUO								

**Client Sample ID: Lab Control Sample Dup** 

Lab Sample ID: LCSD 140-31436/15-B ^5 Date Collected: N/A Matrix: Solid

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 5	SEP	Organic-Bound			5.000 g	75 mL	31436	07/08/19 07:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	31500	07/10/19 08:00	KNC	TAL KNX
Step 5	Analysis	6010B SEP		5			31651	07/12/19 11:49	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Dup

Date Collected: N/A

Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	31502	07/10/19 08:00	KNC	TAL KNX
Step 6	Analysis	6010B SEP		1			31651	07/12/19 13:24	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-31615/15-A Date Collected: N/A **Matrix: Solid** 

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 7	Prep	Residual	<del></del>		1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis	6010B SEP		1			31713	07/15/19 11:08	KNC	TAL KNX

Eurofins TestAmerica, Knoxville

**Matrix: Solid** 

2

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-1 (30-31)

Date Collected: 06/03/19 11:36 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-1 MS

Matrix: Solid

Percent Solids: 76.0

Job ID: 140-15490-1

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			0.530 g	50 mL	31128	06/26/19 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			31553	07/10/19 13:04	KNC	TAL KNX
	Instrumer	nt ID: DUO								

Client Sample ID: AP-2019-1 (30-31)

Date Collected: 06/03/19 11:36 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-1 MSD

Matrix: Solid Percent Solids: 76.0

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			0.539 g	50 mL	31128	06/26/19 08:00	KNC	TAL KNX
Total/NA	Analysis	6010B		1			31553	07/10/19 13:08	KNC	TAL KNX
	Instrumer	t ID: DUO								

Client Sample ID: AP-2019-1 (30-31)

Date Collected: 06/03/19 11:36

Lab Sample ID: 140-15490-1 DU

Matrix: Solid

Date Received: 06/05/19 09:20

Batch Batch Dil Initial Final **Batch** Prepared Method Amount Amount Number or Analyzed **Analyst Prep Type** Type Run Factor Lab 30602 06/06/19 14:52 BKD Total/NA Moisture TAL KNX Analysis Instrument ID: W3

Client Sample ID: AP-2019-1 (30-31)

Date Collected: 06/03/19 11:36 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-1 DU

Matrix: Solid Percent Solids: 76.0

Dil Initial Batch Batch Final Batch **Prepared** Type **Prep Type** Method Run Factor **Amount** Amount Number or Analyzed Analyst I ah Total/NA Prep Total 1.000 g 50 mL 30683 06/11/19 08:00 KNC TAL KNX Total/NA Analysis 6010B 31713 07/15/19 14:30 KNC TAL KNX 1 Instrument ID: DUO Total/NA 1.000 g 06/11/19 08:00 KNC TAL KNX Prep Total 50 mL 30683 Total/NA Analysis 6010B 10 31713 07/15/19 15:50 KNC TAL KNX Instrument ID: DUO Total/NA Total 1.000 g 50 mL 30683 06/11/19 08:00 KNC TAL KNX Prep Total/NA 6010B TAL KNX Analysis 2 31713 07/15/19 18:33 KNC Instrument ID: DUO Step 1 SEP Exchangeable 5.000 g 25 mL 31148 06/26/19 09:47 KNC TAL KNX Step 1 Prep 3010A 5 mL 50 mL 31252 06/29/19 08:00 KNC TAL KNX 6010B SEP 31604 07/11/19 12:54 KNC TAL KNX Step 1 Analysis 4 Instrument ID: DUO SEP Step 2 5.000 g 31253 06/29/19 08:00 KNC Carbonate 25 mL TAL KNX 5 mL Step 2 Prep 3010A 50 mL 31256 06/30/19 08:00 KNC TAL KNX Step 2 Analysis 6010B SEP 3 31604 07/11/19 14:37 KNC TAL KNX Instrument ID: DUO

5

6

8

10 11

#### **Lab Chronicle**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Client Sample ID: AP-2019-1 (30-31)

Date Collected: 06/03/19 11:36 Date Received: 06/05/19 09:20 Lab Sample ID: 140-15490-1 DU

Matrix: Solid

Percent Solids: 76.0

Job ID: 140-15490-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 3	SEP	Non-Crystalline			5.000 g	25 mL	31257	06/30/19 08:00	KNC	TAL KNX
Step 3	Prep	3010A			5 mL	50 mL	31338	07/02/19 08:00	KNC	TAL KNX
Step 3	Analysis	6010B SEP		1			31604	07/11/19 16:11	KNC	TAL KNX
	Instrumer	it ID: DUO								
Step 4	SEP	Metal Hydroxide			5.000 g	25 mL	31341	07/02/19 09:00	KNC	TAL KNX
Step 4	Prep	3010A			5 mL	50 mL	31360	07/03/19 08:00	KNC	TAL KNX
Step 4	Analysis	6010B SEP		1			31604	07/11/19 17:54	KNC	TAL KNX
	Instrumer	it ID: DUO								
Step 5	SEP	Organic-Bound			5.000 g	75 mL	31436	07/08/19 07:00	KNC	TAL KNX
Step 5	Prep	3010A			5 mL	50 mL	31500	07/10/19 08:00	KNC	TAL KNX
Step 5	Analysis	6010B SEP		5			31651	07/12/19 12:00	KNC	TAL KNX
	Instrumer	it ID: DUO								
Step 6	SEP	Acid/Sulfide			5.000 g	250 mL	31502	07/10/19 08:00	KNC	TAL KNX
Step 6	Analysis	6010B SEP		1			31651	07/12/19 13:44	KNC	TAL KNX
	Instrumer	it ID: DUO								
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis	6010B SEP		1			31713	07/15/19 12:00	KNC	TAL KNX
	Instrumer	it ID: DUO								
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis	6010B SEP		10			31713	07/15/19 13:14	KNC	TAL KNX
	Instrumer	it ID: DUO								
Step 7	Prep	Residual			1.000 g	50 mL	31615	07/12/19 09:08	KNC	TAL KNX
Step 7	Analysis	6010B SEP		2			31713	07/15/19 17:16	KNC	TAL KNX
	Instrumer	it ID: DUO		13						
Total/NA	Prep	Total		<b>7</b>	1.000 g	50 mL	30683	06/11/19 08:00	KNC	TAL KNX
Total/NA	Prep	7470A			5.0 mL	50.0 mL	30859	06/16/19 08:00		TAL KNX
Total/NA	Analysis	7470A		1			30868	06/16/19 14:06		TAL KNX
	Instrumer	it ID: HG								

#### **Laboratory References:**

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

2

4

6

8

10

11

12

a, Kiloxville

#### **Method Summary**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL KNX
6010B	SEP Metals (ICP) - Total	SW846	TAL KNX
6010B SEP	SEP Metals (ICP)	SW846	TAL KNX
7470A	SEP Mercury (CVAA) - Total	SW846	TAL KNX
Moisture	Percent Moisture	EPA	TAL KNX
3010A	Preparation, Total Metals	SW846	TAL KNX
3050B	Preparation, Metals	SW846	TAL KNX
7470A	Preparation, Mercury	SW846	TAL KNX
Acid/Sulfide	Sequential Extraction Procedure, Acid/Sulfide Fraction	TAL-KNOX	TAL KNX
Carbonate	Sequential Extraction Procedure, Carbonate Fraction	TAL-KNOX	TAL KNX
Exchangeable	Sequential Extraction Procedure, Exchangeable Fraction	TAL-KNOX	TAL KNX
Metal Hydroxide	Sequential Extraction Procedure, Metal Hydroxide Fraction	TAL-KNOX	TAL KNX
Non-Crystalline	Sequential Extraction Procedure, Non-crystalline Materials	TAL-KNOX	TAL KNX
Organic-Bound	Sequential Extraction Procedure, Organic Bound Fraction	TAL-KNOX	TAL KNX
Residual	Sequential Extraction Procedure, Residual Fraction	TAL-KNOX	TAL KNX
Total	Preparation, Total Material	TAL-KNOX	TAL KNX

#### **Protocol References:**

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-KNOX = TestAmerica Laboratories, Knoxville, Facility Standard Operating Procedure.

#### Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

6

Job ID: 140-15490-1

2

4

5

7

Ö

10

11

#### **Sample Summary**

Client: Golder Associates Inc.

Project/Site: Martin Lake Ash Ponds - SEP + Totals

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
0-15490-1	AP-2019-1 (30-31)	Solid	06/03/19 11:36	06/05/19 09:20	
0-15490-2	AP-2019-2 (35-36)	Solid	06/03/19 13:20	06/05/19 09:20	
40-15490-3	AP-2019-3 (18-19)	Solid	06/03/19 15:20	06/05/19 09:20	

Job ID: 140-15490-1

3

4

5

7

8

46

11

12

1:

## **Chain of Custody Record**

Eurofins TestAmerica, Knoxville

5815 Middlebrook Pike Knoxville, TN 37921 Phone (865) 291-3000 Fax (865) 584-4315

ुँ eurofins Environment Testing TestAmerica

	Sampler:	Lab PM:		Carrier Tracking No(s):	COC No:
ormation	Kelsey Worten	Walker W	asmund, Terry		140-6683-2229.1
Client Contact: Will Vienne	Phone: 781-750-2734		E-Mail: terry.wasmund@testamericainc.com		Page: Page 1 of 1
Company: Golder Associates Inc.			Analysis Requested	quested	# qo∩
Address: 2201 Double Creak Dr. Suite 4004	Due Date Requested:				ļš.
City:	TAT Requested (days):				
Kound Kock State, Zp:	Stoneland	20/407			C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S
TX, 78664	# CC				
Phone: 512-671-3434(Tel)	PO#: 19122434-C	20 3 m 40	WEED TO SE	f Custody	.0
Email: William_Vienne@golder.com	WO#: 1922434-C				1-loe U - Acetone J - DI Water V - MCAA
Project Name: Martin Lake Ash Ponds - SEP + Totals	Project#: 14005268		SI) 43	eŭjeji	K-EDTA L-EDA
Site:	SSOW#:		S dejS	ioo jó	Other:
	Sample Type	Matrix 600	7 - 922.	<b>Anmper</b>	
Sample Identification	Sample Date Time G=grab)	O-waste/oll, O-BT=Tlesue, A-Air) II	E0108	IEIO]	Special Instructions/Note:
	Prese	Preservation Code:		X	
AP-2019-1 (30-31)	06/03/19 1136 C	2	× ×		ûn Ice
AP-2019-2 (35-36)	06/03/19 1320 C	S	×		<i>11</i> 14
AP-2019-3 (18-19)	06/03/19 1520 C	N			
ľ					
RT: 1,2° (7:1,2°	1, 1 Cop 1 pr				
Follox Jo Collos	istact				
Cho C, 8022, 9282, 734					
K/2) 6/5/19					
	-				
Possible Hazard Identification	legipolejped microdal   a ac		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are retain	ed longer than 1 month)
ested: I, II, III, IV, Other (specify)	THAT IN THE		Special Instructions/QC Requirements:	ants:	STRIPPIN TO LOW
Empty Kit Relinquished by:	Date:	Time:		Method of Shipment	
	1	Company	Received by	DateTime	Company
ma	56/04/19 12 45 Date/Time:	Company	Received by:		Company Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Infact. Custody Seal No.:	:		Cooler Temperature(s) °C and Other Remarks:	emarks:	
			11 12 13	7 8 9	Ver. 01/16/2019
			2		

Review Items	Yes	No	NA	If No, what was the problem?	Comments/Actions Taken	
1. Are the shipping containers intact?	\		•	□ Containers, Broken		
2. Were ambient air containers received intact?				☐ Checked in lab		
3. The coolers/containers custody seal if present, is it	\			□ Yes		
intact?	<u> </u>	-	-	□ NA		
4. Is the cooler temperature within limits? (> freezing				☐ Cooler Out of Temp, Client		
temp. of water to 6°C, VOST: 10°C)				Contacted, Proceed/Cancel		
$rak{h}$	<u>\</u>			☐ Cooler Out of Temp, Same Day		
Correction factor: $+0.0$	/			Receipt		
5. Were all of the sample containers received intact?				□ Containers, Broken		
6. Were samples received in appropriate containers?				☐ Containers, Improper; Client		
				Contacted; Proceed/Cancel		
7. Do sample container labels match COC?				☐ COC & Samples Do Not Match		
(IDs, Dates, Times)	<u> </u>			☐ COC Incorrect/Incomplete		
				☐ COC Not Received		
8. Were all of the samples listed on the COC received?	_	_		☐ Sample Received, Not on COC		
	\		7	☐ Sample on COC, Not Received		
9. Is the date/time of sample collection noted?	_			☐ COC; No Date/Time; Client		
	,			Contacted	Labeling Verified by: Date:	
10. Was the sampler identified on the COC?	\			☐ Sampler Not Listed on COC		
11. Is the client and project name/# identified?				□ COC Incorrect/Incomplete	pH test strip lot number:	
12. Are tests/parameters listed for each sample?				☐ COC No tests on COC		
13. Is the matrix of the samples noted?	/			□ COC Incorrect/Incomplete		
14. Was COC relinquished? (Signed/Dated/Timed)	\			☐ COC Incorrect/Incomplete	Box 16A: pH Box 18A Preservation Ch	Box 18A: Residual Chlorine
15. Were samples received within holding time?				☐ Holding Time - Receipt	Preservative:	
16. Were samples received with correct chemical	-			☐ pH Adjusted, pH Included	Lot Number:	
preservative (excluding Encore)?			`	(See box 16A)	Exp Date:	
				☐ Incorrect Preservative	Analyst:	
17. Were VOA samples received without headspace?			/	☐ Headspace (VOA only)	Date:	
18. Did you check for residual chlorine, if necessary?			•	☐ Residual Chlorine	Time:	
(e.g. 1613B, 1668)			\			
Chlorine test strip lot number:				-		
19. For 1613B water samples is pH<9?			\	☐ If no, notify lab to adjust		•
20. For rad samples was sample activity info. Provided?			$ egin{array}{c} $	☐ Project missing info		
Project #: $\int \phi_0 S 2 \rho \rho$ PM Instructions:						
				/ = 1/-		
Sample Receiving Associate:			Date:_	6/2/18	QA026R31.doc, 112618	12618

Loc: 140 15490

Log In Number:

TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST

#### **APPENDIX C**

### GROUNDWATER SAMPLING RECORDS

# RECORD OF WATER LEVEL READINGS

GOLDER

Project Name: LUMINANT - MLSES - PONDS Location: THUM, TA

Project No.: 19122262-C

						7			T	Т	T	1	T	T	T	1								
Comments																								
By	TIB	JILB	JIB	-J18-	1118	MR	118								1									
Water Level Elevation																								
Survey Mark Elevation																								
Correction To Survey Mark																								
Water Level Below M.P.	22.73	23.16	22.02	22.61	7.12	13.21	18,42																	
Measurement Point (M.P)	10C	400	TOC	nc	Dec	Toc	Toc																	
Measuring Device / Serial No.	SOUNST	SOUNST	SPLINST	SOLINST	TENINOS	SOLIMST	SOUNST												*					
Time	20104	0759	2010	1050	1155	1350	1444																	
Date	5-14-19	8-14-19		5-(4-19	61-41-5	161-11-5	8-1414													,				
Borehole No.	H-3!	2		H-29																/			ż	

Sheet of

GRO	UNDWA	TER SAM	PLING	REC	ORD		F	AGEo	f
Project N	Number: 191	22262 (	Project I	Vame Lu	MINAUT	MUSES		Date: 5-14	19
Sample		-26				Starting Water	Level (ft. BMP)		13.21
	g Location (we		-26			Casing Stickup	(ft.):	-	
Sampled	i by: 18'					Starting Water	Level (ft. BGL):		13.21
Measurin	ng Point (MP)	of Well: 10C	PUC			Total Depth (ft.	BGL)		-
-	d Interval (ft. B					Casing Diamete		-	2.0
	ck Interval (ft. )	Viete III	_			Casing Volume	(gal.):		
	ITY ASSU								
METHO	DDS (describe)	<u> </u>			1 01	•			
II.	ng Equipment:	1.11.	1000	con	ox i DI		04.0		
Purging	1	potaltic		den	Sampling:	_	Dame	-	
	al of Discharge			n oid	2				
		te make, mode	I. I.d.)		Thermometer:	· i	WEIBA		-
Water I		PIBA	_		Field Calibration		7-4		
	ctivity Meter:	HOEB	A		Field Calibration		1413		
	Filter Size:	110			Other:				
SAMP	LING MEA	SUREME	NTS			TAKE			
1352 Time	Cum, Vol.	Purge Rate (gal. or L /m)	Temp.	pH	Spec. Cond. (mmhos/cm)	D.O	Redox (mV)	Turbidity & Color	Water Depth (ft BMP)
1401	- (gai. G. L)	.2	23.1	4.81	1730	0.86	-29	8.1	13.44
1406		Ī	22,7	6.82	1760	0.63	-31	7.1	13.46
1413		4	22.8	6.83	1760	0.64	-31	7.7	13.47
								,	
			T	7					
Water Lev	/el (ft. BMP) at	End of Purge:	13.4	7		Sample Intake	Depth (ft. BMP)	):	
	LE INVEN		11				April 1997		
-	Bot	tles Collected			Filtration			Remark	
Time	Volume	Composition	(G, P)	No.	(Y/N)	Preservation		ity control san	nple, other)
1425	250ML	P			N	_	GEN C		
1425	SOUNC	<u> </u>			N	HNO3	METAL	<u>S</u>	
Commont	<u> </u>							- 1-0	
Comment	S						stor, Behlin	_	
					-	420	Double Cr Round Ro	ck, TX 786	
						(512) 6	71-3434		671-3446
						(======================================			

GRO	UNDWA	TER SAM	PLING	REC	ORD		F	AGEo	f <b>L</b>
					MINAUT	MUSES		Date: \$-/	4-19
Sample		-27				Starting Water	Level (ft. BMP)		22.02
		1 (D. etc.): H-	27			Casing Stickup			
Sampled	by: 178					Starting Water	Level (ft. BGL):		22.02
Measurir	ng Point (MP)	of Well: TOC	PUS			Total Depth (ft.	BGL)		
	d Interval (ft. B					Casing Diamete	er (In ID):		2.0
	ck Interval (ft. I		_			Casing Volume	(gal.):		
QUAL	ITY ASSU	RANCE							
METHO	DDS (describe)						-		
Cleanin	ng Equipment:		1000	lan	ox i DI	inee			
Purging	= pn	colollic	blog	da	Sampling	_	Dane		
Dispos	al of Discharge	ed Water:	. 0	n oid	2				
		ite make, mode	l, l.d.)				100.00		
Water	-	KECK			Thermometer:		weiß/4	_	
pH Met	ter <b>pu</b> ctivity Meter:	HOEB	4		Field Calibration		1415		
	Filter Size:	HUDIO	,		Other:	11.	11/2		1
		SUREME	VTS		-				
090L	Cum. Vol.	Purge Rate (gal. or L/m)	Temp.	рН	Spec. Cond. (mmhos/cm)	D.0	Redox (mV)	Turbidity & Color	Water Depth (ft BMP)
0916	_	,2	22.1	6.74	1610	0.49	-79	7.7	22.23
0921			22.4	6.77	1640	0.51	-81	7.9	22.24
0927			22.4	6.72	1630	0.52	-82	7.9	22.23
					1				
	-								
		1							
				1.7					
				1					
Water Lev	rel (ft BMP) at	End of Purge:	22.2	3		Sample Intake	Depth (ft. BMP)	) <u>-</u>	
	LE INVEN					Outriple interior	- vp - 1 ()		
	Bot	tles Collected			Filtration			Remark	5
Time	Volume	Composition	(G, P)	No.	(Y/N)	Preservation		ity control san	nple, other)
	250ML	P			N		GEN C		
0940	SOUNC	P			N	HMO3	METAL	<u>S</u>	
			(9)						
		W							
`oro						-	lu-		
Comments	S					1	stor, Behlin	-	
						220	1 Double Cr	eek Dr., Su ck, TX 786	
						(512) 6	71-3434		671-3446
						(3.2,			

GROUNDWATER SAMPLING RECORD									of		
_	-				MINAUT	MUSES		Date: 5-1	4-19		
Sample		1-28				Starting Water	Level (ft. BMP)	:	7,12		
		I ID, etc.): H -	28		Casing Stickup (ft.):						
	by: 18				Starting Water	Level (ft. BGL):		7.12			
		of Well: TOC	PUC		Total Depth (ft. BGL)						
Screened	d Interval (ft. B	GL):	_		Casing Diameter (In ID):						
	ck Interval (ft. f		_			Casing Volume	(gal.):				
QUAL	ITY ASSU	RANCE									
METHO	DDS (describe)										
Cleanir	ng Equipment:			lam	mee						
Purging		establic	blog	da	Sampling:		Dame				
Disposi	al of Discharge	ed Water:	0	n od	0						
INSTRUM		ite make, mode	I. I.d.)						40		
Water l		Keck			Thermometer:	HOEIBA					
pH Met		PIBH	1		Field Calibration		7-4				
	ctivity Meter:	HOEB	H		Field Calibration	n:	14/3				
	Filter Size:				Other:						
	-	SUREME	-		Seco Cond			Turbidity &	Water Depth		
1157 Time	Cum. Vol.	Purge Rate (gal. or L/m)	Temp (oC)	рН	Spec. Cond. (mmhos/cm)	D.O	Redox (mV)	Color	(ft BMP)		
1201	-	.2	22.6	6.29	1580	0.39	- 34	3.8	7.29		
1211			229	6,31	1520	0.31	-39	4.6	731		
1218		-h	22.9	6.32	1510	0.32	-39	4.8	7.32		
					100						
			-					THE STATE			
1											
		-									
			-								
			-					-			
			- 3	-							
		End of Purge:	7.3	2		Sample Intake Depth (ft. BMP):					
SAIMPL	LE INVEN	tles Collected									
Time	Volume	Composition	(G.P)	No.	Filtration (Y / N)	Preservation	(qual	Remark lity control san	•		
230	250AL	D	(0,17	1	N			-			
1230	SOUNL	P									
1200	2000				N	HNO3	1.76 1710				
Comments	s:					Pa	stor, Behlin	g & Wheels	er. LLC		
					1	1 Double Cr	-				
							ck, TX 786				
				_	(512) 671-3434 Fax (512) 671-3446						

GRO	UNDWA	TER SAM	PLING	REC		F	PAGEc	of		
Project Number: 19122262-C Project Name CUMINAUT MCSES Date: 5-14-19										
Sample		-29				Starting Water	Level (ft. BMP)	:	22.6	
		IIID etc.): H -	29			Casing Stickup	(ft.):		-,.	
Sample	by: 18				Starting Water Level (ft. BGL):					
Measurii	ng Point (MP)	of Well: 10C	1PUC		Total Depth (ft. BGL)					
	d Interval (ft. B					Casing Diameter (In ID):				
-	ck Interval (ft.					Casing Volume	(gal.):			
	ITY ASSU									
METHO	DDS (describe)				1	•			-	
Cleanin	ng Equipment:	4.14 .	1000	leon	ine	04.0				
Purging	= pn	adaltic	liko	de	Sampling:	-	Dane			
	al of Discharge			n out	2					
		KEUC make, mode	l. l.d.)		T		DOIR A		-	
Water I		RIBA			Thermometer: Field Calibration		10e1B/1			
1 2	ctivity Meter:	HOEB	A		Field Calibration		14/3			
	Filter Size:	110-5			Other:		1-1-1-			
SAMP	LING MEA	SUREME	NTS							
los3	Cum. Vol.	Purge Rate (gal. or L /m)	Temp	рН	Spec. Cond. (mmhos/cm)	D.O.	Redox (mV)	Turbidity & Color	Water Depth (ft BMP)	
1102		.2	21.9	6.46	1710	0.71	-86	7.2	22.88	
1107			22.6	6.51	1730	0,62	-87	6.2	22.89	
1114		4	22.7	6.52	1730	0.63	-87	6.1	22.89	
				EER						
								,		
Water Lev	/ei (ft. BMP) at	End of Purge:	22.	29		Sample Intake	Depth (ft. BMP	):		
	LE INVEN							-	5	
	Во	ttles Collected			Filtration			Remark	5	
Time	Volume	Composition	(G, P)	No.	(Y/N)	Preservation		lity control sar	nple, other)	
1125	250ML	<u> </u>			N		GEN CHEM			
1125	SOUNC	P			N	HNO3	METALS			
Comment	p.							0.160		
Jonanie III.	3.					stor, Behlin	-			
-				_		220	Double Cr Round Ro	еек Dr., Su ck, TX 786		
					(512) 671-3434 Fax (512) 671-3446					
					(0.2/ 5// 0.5/					

GRC	UNDWA	TER SAN	IPLIN	REC	ORD		F	AGE	of		
Project I	Number: 191	22262-6	Project	Name: Lu	MINAUT	- MLSES		Date: 5-19	4-19		
		4-31				1	Level (ft. BMP)	:	22.73		
		ell ID, etc.): H	31			Casing Stickup	(ft.):		-		
Sample	d by: 18					Starting Water Level (ft. BGL): 22.73					
Measuri	ng Point (MP)	of Well: 10C	PUC	0 =	Total Depth (ft. 8GL)						
	d Interval (ft. E		<u>-</u>			Casing Diameter (In ID): 2.0					
	ick Interval (ft.		_			Casing Volume	(gal.):				
QUAL	ITY ASSU	IRANCE									
METHO	ODS (describe)										
Cleani	ng Equipment:	. 11 .	1000	lan	ox i D	mee					
Purgin	g: pn	adolluc	blo	da	Sampling	g: Dane					
Dispos	al of Discharge	ed Water:	. 0	m od	2						
		ate make, mode	el, l.d.)				100.00				
Water		KECK			Thermometer:	- 1/					
pH Me		HOEB	4		Field Calibratio		7-4				
N .	ctivity Meter: Filter Size:	HULW	- T		Field Calibratio Other:	n:	13/7				
		ASUREME	NTC		Otilei.						
0101 Time	Cum. Vol.	Purge Rate	Temp	рН	Spec. Cond. (mmhos/cm)	D.0	Redox (mV)	Turbidity & Color	Water Depth (ft BMP)		
0117	I igai. d	2	22.6	6.49	1270	0.71	-76	4.6	22.92		
0722		16	22.5	6.41	1630	0.61	-77	5.8	21.93		
0126			22.4	6.42	1620		-77	516	22.93		
4 (20		4	22.9	0. [2	1020	0.60	11	210	~		
	-		1				-				
	-	-		1		-					
						<b>†</b>		-			
			-	-							
			-								
	-		-								
			000								
		End of Purge:	122	1.3		Sample Intake	Depth (ft. BMP	):			
SAMP	LE INVEN	ttles Collected			entra at			t			
Time	Volume	Composition	1 (G, P)	No.	Filtration (Y / N)	Preservation	Remarks (quality control sample, other)				
0240	250ML	P		1	N	_	GEN C				
0740					N	HMO?	METALS				
			1.0			RMU	1., - 1., 0	-			
		- The	·			menn -					
				L							
Comment	S:					Pa	stor, Behlin	g & Wheele	r, LLC		
					4	1	1 Double Cr	-			
						1		ck, TX 786			
						(512) 6	71-3434	Fax (512)	671-3446		

GRO	UNDWA	TER SAN	PLIN	REC	ORD		F	AGE	of		
Project N	Number: 191	22262 (	Project	Name: LU	MINAUT	MLSES		Date: 51	4-19		
Sample		-32				Starting Water	Level (ft. BMP)		23.16		
		II (D. etc.); H	-32	Casing Stickup							
II.	by: 18				Starting Water Level (ft. BGL): 23. 1L						
Measurin	ng Point (MP)	of Well: 10C	Puc		Total Depth (ft. BGL)						
Screene	d Interval (ft. B	GL):	-	-	Casing Diameter (In ID):						
	ck Interval (ft. I		_			Casing Volume	(gal.):				
QUAL	ITY ASSU	RANCE									
METHO	DDS (describe)										
Cleanin	ng Equipment:	4 44 .	1000	lam	ox i D	juee					
Purging	g: ph	adolphic	blog	dda,	Sampling	Dame					
Dispos	al of Discharge	ed Water:	. 0	m od	2						
		ite make, mode	l. l.d.)				120,01		in .		
Water		RECK RIBA			Thermometer:	HOEIBA					
pH Met	ctivity Meter:	HOEB	4		Field Calibration		14/18				
	Filter Size:	HUDIO	,,		Other:	11.	1117				
		SUREME	NTS		Odior.						
0157 Time	Cum. Vol	Purge Rate	Temp	T	Spec. Cond.			Turbidity &	Water Depth		
	(gal. of L)	(gal. o L/m)		pH	(mmhos/cm)	0.0	Redox (mV)	Color	(ft BMP)		
0867	-	.2	22.4	5.99	1510	0.41	-71	9.2	23.34		
0812	-		22.7	6.01	1540	0.31	-76	8.7	23.35		
0818		-	22.6	6.02	1540	0.32	-11	211	~3.75		
	-		-								
	<b></b>										
								-			
							-				
-	-		-								
-			-	-							
			ļ								
			-								
		End of Purge:	23.3	5		Sample Intake Depth (ft. BMP):					
SAMP	LE INVEN										
Time	Volume	tles Collected Composition	(G P)	No.	Filtration (Y / N)	Preservation	(dural	Remark	-		
0825	250AL	D	1 (G, P)	140.	N	F16361 VALIOII	(quality control sample, other)				
	SOUNL	0	0 1			11110-	METALS				
2825	30011				M	HMO3	146 176	7			
				L							
Comments	s:					Pa	stor, Behlin	a & Wheele	er. LLC		
						1	Double Cr	_			
							Round Ro				
						(512) 671-3434 Fax (512) 671-3446					
					distribution of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of th						

GRO	UNDWA	TER SAM	PLING	REC	ORD		P	AGEc	of
Project N	lumber: 191	22262 C	Project N	lame Lu	MINAUT	MLSES		Date: 5-14	1-19
Sample	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	-33					Level (ft. BMP)		13.42
		II (D, etc.): H-	33	-		Casing Stickup			
	by: 178					7	Level (ft. BGL):		13.42
		of Well: 10C	18UC			Total Depth (ft.			
17	d Interval (ft. B					Casing Diamet	er (In ID):	-	2.0
Filter Pac	ck Interval (ft. I	BGL):	_			Casing Volume	(gal.);		
QUAL	ITY ASSU	RANCE							
METHO	DS (describe)								l l
Cleanin	ng Equipment.		0	leon	ox i DI	ine			
Purging	1967.125.5	cotaltic	blog	de	Sampling		Dane		
Disposa	at of Discharge	ed Water:	O	n oid	2				
		ite make, mode	i, l.d.)						
Water L	_evel:	Keck			Thermometer:	+	toe 1814		
pH Met	er H	PIBA	0		Field Calibration	n:	7-4		
	tivity Meter:	HOEB	H		Field Calibration	n:	14/3		
7.7	Filter Size:				Other:				
		SUREME	The same of the last		0 0 1	1		Turbidity &	Water Depth
IUSI Time	(gal. of L)	Purge Rate (gal. or L/m)	Temp.	рН	Spec. Cond. (mmhos/cm)	D.O.	Redox (mV)	Color	(ft BMP)
1501	10-10-	,2	23.4	18.4	1420	0.77	-29	5.9	13.67
1906		T	23.6	6.82	1640	0.63	-26	7.8	13. lelo
15/2			23.6		1650	0.62	-26	7.4	13.66
121-			7						
V									
					-				
	-								
					-	<b></b>			
				-					-
-			-						
			121						
		End of Purge:	13.6	6		Sample Intake	Depth (ft. BMP)	):	
SAMPI	LE INVEN	ttles Collected				Т		D	
Time	Volume	Composition	(G. P)	No.	Filtration (Y / N)	Preservation	(qual	Remark lity control sar	
1530	250AL	D	(0,17	1	N		GEN C		
1530	SOUNC	P			X	14/0-	METAL		
1,000	20011				N	HNO3	1.12 1.10		
-							-		
							1		
Comments	S:					Pa	stor, Behlin	a & Wheels	er. LLC
						1	1 Double Cr	_	
					- International		Round Ro		
						(512) 8	71-3434	Fax (512	) 671-3446
					25-1-1-1				



golder.com

APPENDIX F7 - SEMI-ANNUAL REMEDY SELECTION PROGRESS REPORTS (MARCH 4, 2020 AND SEPTEMBER 3, 2020)



March 4, 2020

## SEMIANNUAL REMEDY SELECTION PROGRESS REPORT MARTIN LAKE STEAM ELECTRIC STATION – ASH POND AREA

In accordance with Title 40 Code of Federal Regulations (C.F.R.) § 257.97(a), the owner or operator of a coal combustion residuals (CCR) unit must prepare a semiannual report describing the progress in selecting and designing a remedy for statistically significant levels (SSLs) of constituents listed in Appendix IV of 40 C.F.R. Part 257 over the groundwater protection standards established in accordance with 40 C.F.R. § 257.95(h).

This report is for the Ash Pond Area at the Martin Lake Steam Electric Station.

As stated in the notifications dated February 6, 2019 and October 7, 2019, SSLs for beryllium and cobalt were identified at the Ash Pond Area during assessment monitoring completed in accordance with 40 C.F.R. § 257.95.

In response to the SSLs, an Assessment of Corrective Measures (ACM) report was completed for the Ash Pond Area in September 2019 as required by 40 C.F.R. § 257.96. The ACM report evaluated retrofitting the Ash Ponds liner systems for purposes of source control. Further evaluation of monitored natural attenuation, groundwater extraction and treatment or a vertical hydraulic barrier is ongoing for purposes of selecting a remedy under 40 C.F.R. § 257.97

A public meeting was held on November 13, 2019 at the Henderson Chamber of Commerce in Henderson, Texas to discuss the results of the ACM in accordance with 40 C.F.R. § 257.96(e).

Design of the Ash Pond liner system is in progress and the Retrofit Plan has been posted to the Operating Record. Selection of the groundwater remedy for the Ash Pond Area is currently in the feasibility study phase.



September 3, 2020

## SEMI-ANNUAL REMEDY SELECTION PROGRESS REPORT MARTIN LAKE STEAM ELECTRIC STATION – ASH POND AREA

In accordance with Title 40 Code of Federal Regulations (C.F.R.) § 257.97(a), the owner or operator of a coal combustion residuals (CCR) unit must prepare a semiannual report describing the progress in selecting and designing a remedy for statistically significant levels (SSLs) of constituents listed in Appendix IV of 40 C.F.R. Part 257 over the groundwater protection standards established in accordance with 40 C.F.R. § 257.95(h).

This report is for the Ash Pond Area at the Martin Lake Steam Electric Station.

As stated in the notification dated February 6, 2019, SSLs for beryllium, cobalt and lithium were identified at the Ash Ponds during 2018 assessment monitoring completed in accordance with 40 C.F.R. § 257.95. However, no SSLs for lithium were identified in subsequent semi-annual assessment monitoring events completed in 2019 and 2020. As stated in the notifications dated October 7, 2019, February 7, 2020 and August 21, 2020, SSLs for beryllium and cobalt were identified at the Ash Pond Area during 2019 and 2020 assessment monitoring completed in accordance with 40 C.F.R. § 257.95.

In response to the SSLs, an Assessment of Corrective Measures (ACM) report was completed for the Ash Pond Area in September 2019 as required by 40 C.F.R. § 257.96. The ACM report concluded that the source control remedy would be retrofitting the liner system in the Ash Ponds and the groundwater remedy would be monitored natural attenuation (MNA), groundwater extraction and treatment or a vertical hydraulic barrier.

A public meeting was held on November 13, 2019 at the Henderson Chamber of Commerce in Henderson, Texas to discuss the results of the ACM in accordance with 40 C.F.R. § 257.96(e).

A notification of intent to retrofit the Ash Pond Area liner system was posted on June 29, 2020. Design of the Ash Pond Area liner system retrofit has been completed and construction is underway.

A feasibility study to evaluate MNA as a potential groundwater remedy for the Ash Pond Area is currently being performed. Feasibility study activities completed since March 4, 2020 include collection of additional groundwater samples to supplement previous soil and groundwater data and development of site-specific geochemical and groundwater models in order to understand the natural attenuation mechanisms occurring at the Ash Pond Area and evaluate the effectiveness of natural attenuation in meeting applicable groundwater protection standards.





# STRUCTURAL STABILITY ASSESSMENT REPORT

**Martin Lake Steam Electric Station** 

**Submitted To:** Luminant

1601 Bryan Street Dallas, TX 75201

Submitted By: Golder Associates Inc.

500 Century Plaza Drive, Suite 190

Houston, TX 77073 USA

JEFFREY B. FASSEIT

Professional Engineering Firm Registration Number F-2578

October 2016 Project No. 164816402





### **Table of Contents**

1.0	INTRODUCTION	1
1.1	Purpose	1
1.2	Site Background	1
1.3	2.1 The Bottom Ash Ponds (BAPs)	1
1.3	2.2 New Scrubber Pond (NSP)	1
1.3	2.3 Permanent Disposal Pond-5 (PDP-5)	2
1.3	Previous Slope Stability Evaluations	2
2.0	SUBSURFACE CONDITIONS	3
2.1	Site Geology	3
2.	1.1 Bottom Ash Ponds and Scrubber Pond	3
	2.1.1.1 Subsurface Investigations and Laboratory Testing	3
	2.1.1.2 Subsurface Site Conditions	4
2.	1.2 Permanent Disposal Pond - 5	4
	2.1.2.1 Subsurface Investigations and Laboratory Testing	4
3.0	STRUCTURAL STABILITY ASSESSMENT - §257.73(d)(1)(i)-(vii)	6
3.1	Foundations and Abutments - §257.73(d)(1)(i)	6
3.2	Slope Protection - §257.73(d)(1)(ii)	6
3.3	Dikes (Embankment) - §257.73(d)(1)(iii)	6
3.	3.1 Bottom Ash Ponds and Scrubber Pond	6
3.	3.2 Permanent Disposal Pond – 5	7
3.4	Vegetated Slopes - §257.73(d)(1)(iv)	7
3.5	Spillways - §257.73(d)(1)(v)	7
3.6	Hydraulic Structures - §257.73(d)(1)(vi)	7
3.7	Downstream Slopes Adjacent to Water Body - §257.73(d)(1)(vii)	8
3.8	Structural Stability Deficiencies - §257.73(d)(2)	8
4.0	CONCLUSION	9
5.0	CERTIFICATION	10
6.0	REFERENCES	11

i

#### **List of Figures**

Figure 1 General Site Map

#### **List of Appendices**

Appendix A Appendix B Boring Location Map & Boring Logs Laboratory Test Results





#### 1.0 INTRODUCTION

#### 1.1 Purpose

The "Disposal of Coal Combustion Residuals (CCR) from Electric Utilities rule" (40 Code of Federal Regulations (40 CFR) Part 257), effective October 19, 2015, requires that existing CCR surface impoundments meeting the requirements of §257.73(b) conduct initial and periodic structural stability assessments in accordance with §257.73(d). This report provides the structural stability assessment for the Martin Lake Steam Electric Station's (MLSES's) CCR Impoundments, identified as the Bottom Ash Ponds (BAPs) – the West Ash Pond (WAP) and the East Ash Pond (EAP) – the New Scrubber Pond (NSP), and the Permanent Disposal Pond-5 (PDP-5).

#### 1.2 Site Background

The MLSES generates bottom ash, fly ash, and flue gas desulfurization (FGD) material during electricity generation. The following surface impoundments, shown on Figure 1, are in operation at the MLSES and subject to the CCR rule.

#### 1.2.1 The Bottom Ash Ponds (BAPs)

The BAPs include the West Ash Pond (WAP) and the East Ash Pond (EAP). The WAP and EAP receive sluice water from bottom ash dewatering bins and other process wastewater sources that typically include bottom ash fines. The BAPs were originally constructed in 1977 with a 2-feet thick compacted clay liner. In 1989, the WAP was relined with a 60-mil high density polyethylene (HDPE) geomembrane over 3 feet of clay on the sideslopes, and the floor with a double 60-mil HDPE geomembrane with a geonet leak detection layer overlying an 18-inch thick clay liner. Both the sideslopes and floor are overlain with a 4-inch thick concrete revetment mat. In 2010 the sideslopes and floor of the EAP were relined with a double 60-mil HDPE geomembrane with a geonet leak detection layer overlying an 18-inch thick clay layer. A geotextile layer was placed between the lower geomembrane and the clay. The liner system on the sideslopes and floor of the EAP are overlain with a 4-inch thick concrete revetment mat.

#### 1.2.2 New Scrubber Pond (NSP)

The NSP, abutting the southeastern portion of the WAP and the southern portion of the EAP, is used to manage FGD wastes and discharge from the sludge thickener sumps, the plant yard sumps, and stormwater management areas. Water collecting in the NSP serves as wet-well make-up water as well as emergency make-up water in the scrubber area. The NSP was originally constructed with the BAPs and lined with clay liner. In 1989, the NSP was relined with a double 60-mil HDPE geomembrane with a geonet leak detection layer. A geotextile layer was placed between the lower geomembrane and the subgrade and a 4-inch thick concrete revetment mat covers the upper geomembrane.





#### 1.2.3 Permanent Disposal Pond-5 (PDP-5)

PDP-5 is primarily used to manage excess liquids including stormwater and excess process wastewater from both the New Scrubber Pond and Bottom Ash Ponds. Recovered CCR wastewaters are received in PDP-5 during cleaning cycles. PDP-5 was constructed in 2010/2011, above PDP-1, PDP-2, and PDP-3, which were previously closed as landfills. PDP-5 is lined with a 3-foot thick clay liner on the sideslopes and a 2-foot thick clay liner on the floor, both overlain with a 0.5-foot thick protective cover soil layer.

#### 1.3 Previous Slope Stability Evaluations

Golder and ETTL Engineers and Consultants (ETTL) have previously performed evaluations on the BAPs, the NSP and PDP-5 as part of the following reports submitted to Luminant:

- Ash and Scrubber Ponds and Permanent Disposal Pond #4, Stability Investigation Report, Luminant Martin Lake SES, Rusk County, Texas, Golder, dated December 2012.
- Geotechnical Investigation, Luminant Martin Lake SES, Reline East Ash Disposal Pond, Tatum, Texas, ETTL, dated December 2008.

The studies found the BAPs and NSP slopes to be adequately stable.

ETTL performed stability evaluations on PDP-5 in 2009, as presented in the following report:

- Geotechnical Investigation, Luminant Martin Lake SES, Vertical Expansion of Permanent Disposal Ponds 1, 2, and 3, Tatum, Texas. ETTL Engineers and Consultants Inc. Tyler, Texas, dated July 2008.
- Geotechnical Investigation, Luminant Martin Lake SES, Vertical Expansion of Permanent Disposal Ponds 1, 2, and 3, Tatum, Texas – Supplemental Seepage and Slope Stability. ETTL Engineers and Consultants Inc., dated October 2009.

The above reports found the design slopes of PDP-5 to be stable as long as drainage is functional, preventing the embankments from saturating.





#### 2.0 SUBSURFACE CONDITIONS

The MLSES site is located in the Martin Creek area which is situated in the Sabine River Valley and lies on the west flank of the Sabine Uplift. The formations in the region comprise sedimentary deposits of continental and marine origin, mainly the lower Wilcox Group flanked by younger beds like the Carrizo Sand. In the Martin Creek area, the Wilcox formation is estimated to be about 650- to 700-feet thick and consists of sandy clays, silty sands, clays, and lignite in varying amounts. The Rockdale formation is the major component in the area among the sediments of the Wilcox group occupying approximately the middle four-fifths of the Wilcox Section. The Wilcox Group is underlain by the Paleocene Midway Group (containing Upper Willis and Lower Kincaid), which is estimated to be 900-feet thick around the site, and is composed mainly of silty clay and clay. The Midway Group overlies a section of Cretaceous Rocks that are approximately 7000-feet thick (Rone Engineers, 1984).

#### 2.1 Site Geology

#### 2.1.1 Bottom Ash Ponds and Scrubber Pond

#### 2.1.1.1 Subsurface Investigations and Laboratory Testing

Information from previous subsurface investigations was used to characterize the subsurface site conditions. In 2008, ETTL conducted a subsurface investigation for the EAP as part of an effort to reline the pond. ETTL drilled twelve borings along the crest of the EAP embankment at approximate elevation 330 feet – mean sea level (ft-msl). All borings were 40-feet deep except one which was 100-feet deep. The boring map and boring logs are presented in Appendix A. Geotechnical laboratory testing – moisture contents, Atterberg limits, grain size distribution, and consolidated-undrained (CU) triaxial compression tests - was conducted on selected samples. The soil index testing results presented as part of the boring logs, while the CU test results from ETTL are summarized in Appendix B.

Golder conducted a subsurface investigation for the WAP and NSP in December 2012. Golder completed eight, 50- to 60-foot deep borings along the crest of the pond embankments at approximate elevation 330 ft-msl. The boring map and boring logs are presented in Appendix A. As part of the investigation, laboratory testing was performed on selected samples in accordance with commonly accepted methods and practices. Undisturbed and disturbed soil samples were tested to determine water content, Atterberg limits, grain size distribution, and shear strength. Water content determination was performed in accordance with ASTM D2216; Atterberg limits were determined in accordance with ASTM D4318; and grain size distribution was performed in accordance with ASTM D422. Shear strength testing consisted of unconsolidated-undrained (UU) triaxial compression in general accordance with ASTM D2850. Laboratory test results are presented in Appendix B.





The findings from the above subsurface investigations were reviewed for their applicability to this study, and are summarized in the following sections.

#### 2.1.1.2 Subsurface Site Conditions

The above borings consisted of fill and native soils. The soils encountered in the borings generally consisted of stiff to hard sandy clays and firm to very dense sands. The subsurface stratigraphy generally consisted of interchanging layers of clays, sandy clays, clayey sands and non-plastic sands. The clayey sand layers ranged in thickness from 2 to 16 feet where encountered. The sandy clay and clay layers are described as firm to hard, low to high plasticity clays and vary in thickness from 2 to 38 feet. Loose to very dense, silty or poorly graded sand was typically encountered beneath or interlayered with the sandy clay/clayey sand strata. The 100-foot boring by ETTL showed deeper layers of very dense silty sand with intermittent layers of hard low plasticity clay.

Water was encountered in each of the eight borings performed by Golder, ranging between El. 296.1 to 303.3 ft-msl. The average water elevation measured in the Golder boreholes, during drilling, was at El. 300.3 ft-msl. The ETTL borings measured the water level to range between El. 304 to 309 ft-msl, with an average water level of El. 306 ft-msl, coinciding with the normal pool elevation of the adjacent Martin Lake (a man-made reservoir).

Groundwater levels measured in 2015, from wells surrounding the BAPs, varied from approximately El. 304 ft-msl in the southeast corner to El. 307 ft-msl in the northwest corner.

#### 2.1.2 Permanent Disposal Pond - 5

#### 2.1.2.1 Subsurface Investigations and Laboratory Testing

In 2008, ETTL performed a pre-construction subsurface investigation for PDP-5 that included a total of eleven borings within the PDP-5 footprint. In addition, three cone penetrometer tests (CPTs) were performed. As part of a supplemental investigation in 2009, ETTL drilled a further three borings within the pond footprint. The map of the borings, and boring and CPT logs are presented in Appendix A.

ETTL performed laboratory tests including natural moisture contents (ASTM D2216), Atterberg limits (ASTM D4318), particle size distributions (ASTM D 1140 and ASTM D422). Unconsolidated-undrained (UU) triaxial compression tests (ASTM D2850) were performed to determine the strength characteristics of cohesive substrata. Direct shear tests (ASTM D3080) were performed on coarser materials including remolded bulk ash samples. Consolidation tests (ASTM D2435) and permeability tests (ASTM D5084) were also performed but are not relevant to the current study. The results of the laboratory tests performed by ETTL are presented in Appendix B.





#### 2.1.2.2 Subsurface Site Conditions

Most of the above borings were drilled through the bottom ash within closed PDP-1, 2, and 3. Based on particle size, the ash classifies as very loose to medium dense poorly graded sands in some locations, to silts in other locations and depths. The borings passing through existing embankments of PDP-1, 2, and 3 contained medium stiff to very stiff clay of low plasticity and/or high plasticity clay with clayey sand. Native soils were identified in deeper borings as very dense silt with hard low plasticity clay seams.

Two borings located outside of the ash encountered groundwater approximately between El. 355 to 368 ft-msl. Groundwater levels measured in 2015, from wells surrounding PDP-5, indicate that the groundwater level varies from approximately El. 355 ft-msl in the north to El. 375 ft-msl in the south.



164816402



#### 3.0 STRUCTURAL STABILITY ASSESSMENT - §257.73(d)(1)(i)-(vii)

The CCR rules require conducting periodic structural stability assessments by a qualified professional engineer to document whether the design, construction, operation and maintenance is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater that can be impounded therein.

#### 3.1 Foundations and Abutments - §257.73(d)(1)(i)

As noted above, the foundation soils for the BAPs and NSP generally consist of stiff to hard sandy clays and compact to dense sand. As discussed below, the embankment fill appears to be well-compacted. The foundation soils and abutments of the BAPs and NSP are stable.

Parts of the foundation soils for PDP-5 embankments are founded on the existing bottom ash of underlying PDP-1, 2, and 3 which were previously closed as landfills. Based on particle size, the bottom ash classifies as very loose to medium dense, poorly graded sand at some locations and silts at other locations and depths. Based on the above mentioned ETTL reports and the preparation of foundation materials during construction, the foundations and abutments are generally considered to be stable. The possibility of liquefaction of bottom ash in the foundation is considered in the Safety Factor Assessment report (Golder, 2016).

#### 3.2 Slope Protection - §257.73(d)(1)(ii)

The downstream slopes of the BAPs, NSP and PDP-5 embankments are protected from erosion and deterioration by the establishment of a vegetative cover. Portions of the EAP and the NSP adjacent to Martin Lake are protected from wave action with roller compacted concrete. The vegetative cover is inspected weekly for erosion, signs of seepage, animal burrows, sloughing, and plants that could negatively impact the embankment. For the BAPs and NSP, the interior slopes are protected from wave action by concrete revetment mats or riprap. The interior slopes of PDP-5 are covered with vegetative cover for erosion protection.

#### 3.3 Dikes (Embankment) - §257.73(d)(1)(iii)

#### 3.3.1 Bottom Ash Ponds and Scrubber Pond

No construction documentation or testing details of the original BAPs and NSP embankment fills are available. Based on the borings, the embankments were constructed using a clayey fill likely from an on-site borrow source. Golder's subsurface investigation of 2012 and ETTL's investigation of the EAP in 2008 comprised boreholes drilled into the embankment. These borings found the embankment soils to generally consist of stiff to hard sandy clay, clayey sand, and clay, consistent with well-compacted fill. No significant repairs have been performed to the BAPs and NSP embankments since their initial construction, except the relining of the WAP and NSP in 1989, and the relining of the EAP in 2010. Based on a review of past





inspection reports and on recent observations, the BAPs and NSP embankments are sufficient to withstand the range of loading conditions they are subjected to.

#### 3.3.2 Permanent Disposal Pond – 5

PDP-5 was constructed with on-site soils in 2010/2011. A 3-foot thick clay layer was placed over PDP-1, PDP-2 and PDP-3, beneath the new PDP-5 embankment. Sections of the embankment overlie the bottom ash from the closed ponds.

The clay liner was specified to be installed and compacted in 6-inch lifts, to at least 95% Standard Proctor maximum dry density at optimum moisture content to 4% above. The embankment was specified to be constructed in loose lifts of 8-inch maximum thickness, followed by compaction to 95% standard Proctor maximum dry density.

Based on a review of past inspection reports and on recent observations, each of the embankments are sufficient to withstand the range of loading conditions they are subjected to.

#### 3.4 Vegetated Slopes - §257.73(d)(1)(iv)

As of June 14, 2016 the US Court of Appeals for the District of Columbia Circuit issued an Order that remanded and vacated the CCR rule requirement that vegetation on the exterior portions of dikes on CCR surface impoundments be maintained not to exceed six inches in height. EPA will issue a new rulemaking in the future to address this issue.

Each of the surface impoundments at the MLSES are inspected weekly. Luminant maintains the vegetation in a manner that ensures adequate inspections can be conducted.

#### 3.5 Spillways - §257.73(d)(1)(v)

There are no spillways on any of the surface impoundments.

#### 3.6 Hydraulic Structures - §257.73(d)(1)(vi)

The only subsurface penetrations in the BAPs and NSP are 24-inch dewatering lines that pass through the WAP and the NSP embankments, which are used for decanting process wastewater from within the ponds. These dewatering lines connect to a collection sump at the low pressure ash water pump station located to the south of the NSP. All other piping passes above the crest of the embankments.

According to as-built drawings prepared by HDR Engineering, Inc., a 14-inch diameter HDPE overflow pipe, encased in a 20-inch diameter HDPE pipe passes through the southern embankment. Flow through this pipe is controlled with a valve located near the toe of the embankment. Discharge from PDP-5 is accomplished using a submersible pump suspended from a pump platform adjacent to the overflow pipe along the southern embankment. All other piping passes above the crest of the embankment.





No significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, or debris were observed that may negatively affect the operation of the surface impoundments.

#### 3.7 Downstream Slopes Adjacent to Water Body - §257.73(d)(1)(vii)

The east slope of the EAP and the south slope of the NSP are adjacent to Martin Lake. The normal pool elevation of Martin Lake is at El. 306 ft-msl. This water level is relatively shallow against the exterior slope. Moreover, the exterior slopes of both the east side of the EAP and the south side of the NSP are lined with roller compacted concrete to protect these slopes from erosion, as well as seepage. Nevertheless, the impact of drawdown of Martin Lake on the stability of the BAP and NSP embankments is considered in the Safety Factor Assessment report (Golder, 2016). The results of stability analysis indicate that the factor of safety for rapid drawdown conditions is approximately 1.6, which exceeds the typically required value of 1.30.

#### 3.8 Structural Stability Deficiencies - §257.73(d)(2)

No structural stability deficiencies were identified during this assessment.



Jeffrey B. Fassett, PE

Associate Geotechnical Engineer



#### 4.0 CONCLUSION

Based on our review of the information provided by Luminant, on information prepared by Golder Associates Inc., and on our on-site observations, no structural stability deficiencies were identified in the surface impoundments during this assessment.

Golder appreciates the opportunity to assist Luminant with this project. If you have any questions, or require further assistance from Golder, please contact the undersigned at (281) 821-6868.

**GOLDER ASSOCIATES INC.** 

Varenya Kumar Staff Engineer

VK/JBF/kc

#### 5.0 CERTIFICATION

I hereby certify that this report has been prepared in general accordance with normally accepted civil engineering practices and in accordance with the requirements of 40 CFR 257.73(d).

10



Jeffrey B. Fassett, PE Golder Associates Inc.

Firm Registration Number F-2578

#### 6.0 REFERENCES

ETTL Engineers and Consultants Inc. 2008. Geotechnical Investigation, Luminant Martin Lake SES, Vertical Expansion of Permanent Disposal Ponds 1, 2, and 3, Tatum, Texas.

11

- ETTL Engineers and Consultants Inc. 2009. Geotechnical Investigation, Luminant Martin Lake SES, Vertical Expansion of Permanent Disposal Ponds 1, 2, and 3, Tatum, Texas Supplemental Seepage.
- Golder Associates Inc. 2012. Ash and Scrubber Ponds and Permanent Disposal Pond #4 Stability Investigation Report, Luminant Martin Lake Power Plant, Rusk County, Texas.
- Golder Associates Inc. 2016. Safety Factor Assessment Report, Luminant Martin Lake Steam Electric Station.
- HDR Engineering Inc. 2011. Martin Lake Steam Electric Station, Rusk County, Texas Permanent Disposal Pond #5 As Recorded Drawings.
- Pastor, Behling & Wheeler Inc. 2016. Annual CCR Inspection Report. Luminant Martin Lake Steam Electric Station, Ash Pond Area, Permanent Disposal Pond No. 5 & A1 Area Landfill, Rusk & Panola County, Texas





CLIENT LUMINANT POWER MARTIN LAKE

CONSULTANT



YYYY-MM-DD	2016-09-22
PREPARED	VK
DESIGNED	TNB
REVIEWED	MX
APPROVED	JBF

PROJECT
2016 COAL COMBUSTION RESIDUALS
ENGINEERING SERVICES

**GENERAL SITE MAP** 

PROJECT NO.	REV.	FIGURE
164816402		11

# APPENDIX A BORING LOCATION MAP & BORING LOGS

**BOTTOM ASH PONDS AND SCRUBBER POND** 



Fax: (281) 821-6870

500 Century Plaza Drive, Suite 190
Houston, Texas 77073
Telephone: (281) 821-6868
Fax: (281) 821-6870

### **BORING NUMBER BH-201**

PAGE 1 OF 2

	CLIEN	<b>IT</b> Lu	minant PROJE	CT NAME	Pond	Slope Sta	bility		
						Martin Lake			
- 1								HOLE	SIZE 8 inches
- 1				ID WATER					
						LING 28.3	30 ft / E	Elev 30	01.70 ft
			· · · · · · · · · · · · · · · · · · ·						
- 1									
ŀ									▲ SPT N VALUE ▲
ARTINLAKE.GPJ	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	20 40 60 80  PL MC LL  20 40 60 80  FINES CONTENT (%)  20 40 60 80
128N			Remove 8" sandy gravel as road base	- SH	44		5.0		
IG\94	_		(CL) SILTY CLAY, low plasticity, some sand, trace gravels, red, dry, hard	1	44		3.0		
B TESTIN			(SC) CLAYEY SAND, non-plastic, some silt, tan and gray, dry, compact	SS 2	58	15-10-7 (17)	-		•
N LAKE\LA	5		(CL) SANDY CLAY, low plasticity, some silt, red, tan, and gray, mottled, dry, stiff	SH 3	44		3.5		
TYMARTI			(SC) CLAYEY SAND, fine, subangular, non-plastic, little silt, tan and gray, mottled, dry	SH 4	38		1.5		<b>●</b>  -
PE STABILI	10		(CL) SANDY CLAY, low plasticity, little silt and gravel, red, tan, and gray, mottled, dry, hard	SH 5	42		4.5		
GEOTECH BH PLOTS - GINT STD US LAB GDT - 12/4/12 15:58 - P.\. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE/LAB TESTING/94/128/MARTINLAKE.GFJ	   15		some silt, no gravel, very stiff at 13.0'	SH 6	58		3.5		
012 PROJECT FOLDERS	  - 20		some sand veins at 18.0'	SH 7	38		3.0		
DT - 12/4/12 15:58 - P:_2	  - 25		gray, moist at 23.0'	SH 8	58		2.5		<b>+</b>
OTS - GINT STD US LAB.G	30		(SC) CLAYEY SAND, fine, subangular, low plasticity, some to little silt	SH 9	71		2.0		
<b>GEOTECH BH PL</b> (	   35		some silt, tan and gray, mottled, moist at 33.0'	SS 10	100	9-7-9 (16)			

## BORING NUMBER BH-201 PAGE 2 OF 2

CL	JEN	IT Lu	minant PRO	JECT N	IAME	Pond	Slope Sta	bility		
PF	OJ	ECT N	UMBER <u>123-94128</u> PRO	JECT L	OCA	TION _	Martin Lak	е		
2 ОЕРТН		GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE 17PE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
-	1 1 1 1		some silty sand veins at 38.0'		SH 11	50		2.0		
AB TE	-	ŽÍ	(SM) SILTY SAND, fine, subangular, non-plastic, little clay, tan and red, wet, compact	X	SS 12	100	11-11-11 (22)			
TIN LAKE\L	5 _		(SP) SAND, medium to fine, subangular, poorly graded, some stan, wet, compact	silt,	SS 13	100	5-9-11 (20)			<u> </u>
PROJECT FOLDERS'123-94128 LUMINANT POND SLOPE STABILIT	0		Bottom of borehole at 50.0 feet.							
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P._2012 PROJECT FOLDERS\123-94128 LUMINANT POND SLOPE STABILITYMARTIN LAKE\LAB TESTING\94128MARTINLAKE.GPJ										

## BORING NUMBER BH-202 PAGE 1 OF 2

- 1										
			UMBER 123-94128				Martin Lak			0.75
			TED 10/29/12						HOLE	SIZE 8 inches
			ONTRACTOR WEST Drilling  IETHOD Hollow Stem Auger				LS: LING <u>26.7</u>	70 ft / [	Elov 30	13 30 ft
			/ FW CHECKED BY MP							J3.30 II
- 1							.ING <u></u>			
Ľ	NOIE	.s		Ar	I EK DKI	LLING				
ARTINLAKE.GPJ	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
NG\94128M	-	Remove 6" sandy gravel from road bed  (CH) CLAY, medium to high plasticity, some silt, trace fine tan and gray, dry, very stiff to hard		e sand,	SH 1	50		4.5		
AB TESTII	-		some sand at 2.0'		SH 2	63		3.5		1
TIN LAKE\	5_				SH 3	50		5.0		
ILITY/MAR	-		(CL) CANDY CLAY lower estable, come to little cit top or	M	SH 4	63		3.75		
OPE STAB	10		(CL) SANDY CLAY, low plasticity, some to little silt, tan ar mottled, moist, firm	iu gray,	SH 5	42		4.0		
DERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE/LAB TESTING)94128MARTINLAKE.GPJ	- - - 15		some sand seams, very stiff at 13.0'		SH 6	42		3.0		
	- - - 20		(CL) SILTY CLAY, medium to high plasticity, little find san brown, moist, firm	d,	SH 7	58		1.0		<b>I</b> ●I
- 12/4/12 15:58 - P:_201	- - 25		low plasticity, gray, moist at 23.0'		SH 8	71		5.0		
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P:\. 2012 PROJECT FOL	30		☑  (SM) SILTY SAND, fine, subangular, non-plastic, some cla and tan, wet, compact	ay, gray	SS 9	83	7-7-9 (16)			• □
GEOTECH BH F	- - 35		(SC) CLAYEY SAND, fine, subangular, low plasticity, som tan and gray, wet, compact	e silt,	SS 10	100	3-5-6 (11)	-		<b>A0</b>

## BORING NUMBER BH-202 PAGE 2 OF 2

			minant 400 04400				Slope Sta						
ļ	PROJ	ECIN	UMBER _123-94128	PROJEC	LOCAI	ION _	Martin Lak	e -	Ι				
	(#) 35	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SI 20 PL 20 □ FINES 20	40 M 40	60	80 LL -I 80
ŀ	-									<u>:</u>		<u>.</u>	
(E.GPJ	· -									<u></u>			
TINLA	- 40		interbedded clay and sand seams at 38.0'		SS 11	100	8-7-8 (15)			<b>A</b> •		:	
128MAF	40_												
TING/94	-												
AB TES	· -		no seams at 43.0'		SS 12	89	4-4-4 (8)	1		A •			
LAKEIL	45				/ 12		(0)	1		<u>:</u> :			
MARTIN												· · · · · · · · · · · · · · · · · · ·	
ξ													
SLOPE STABILITY/MARTIN LAKE\LAB TESTING\94128MARTINLAKE.GPJ	- 50		(SP) SAND, medium to fine, poorly graded, subangular, non-plastic, some silt and clay, wet, loose		SS 13	100	2-3-4 (7)			<b>A</b> •		<u>:</u> :	
SLOP		12	Bottom of borehole at 50.0 feet.							Į.			

GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P¹. 2012 PROJECT FOLDERS\123-94128 LUMINANT POND SI

Fax: (281) 821-6870

500 Century Plaza Drive, Suite 190
Houston, Texas 77073
Telephone: (281) 821-6868
Fax: (281) 821-6870

### **BORING NUMBER BH-203**

PAGE 1 OF 2

	LIEN	NT Lu	minant	PROJEC	T NAME	_Pond	Slope Sta	<u>bili</u> ty		
							Martin Lak	-		
	ATE	STAR	TED 10/30/12 COMPLETED 10/30/12	GROUNE	ELEVA	TION _	330 ft		HOLE	SIZE 8 inches
	RILI	ING C	ONTRACTOR WEST Drilling	GROUNE	WATER	LEVE	LS:			
	RILI	ING N	ETHOD Hollow Stem Auger	$ar{oxtimes}$ at	TIME OF	DRIL	L <b>ING</b> _28.8	30 ft / E	Elev 30	01.20 ft
L	.ogc	SED B	FW CHECKED BY MP	AT	END OF	DRILL	.ING			
N	IOTE	S		AF	TER DRI	LLING				
ARTINLAKE.GPJ	O UEPIN	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
1128M		10 0°	remove 14" sandy GRAVEL as roadbed		SH	44		2.75		
STING/94	-		(CL) SILTY CLAY, low plasticity, little sand, gray and tan, i		1 SH					
<u> </u>	-		(CL) SANDY CLAY, low plasticity, some silt, gray and tan, dry, stiff	mottled,	2	50		1.5		
N LAKE\L	5		low plasticity, some sand veins, soft		SH 3	42		1.25		•
TYMARTI	-		(CL-CH) CLAY, low plasticity to medium plasticity, some s to light gray, dry, stiff	ilt, dark	SH 4	67		1.75		<b>D</b>
STABILI	10		very stiff at 8.0'		SH 5	50		3.25		
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P.Y. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE/LAB TESTING/94/128MARTINLAKE.GPJ	- - 15 -		low plasticity, some silt and fine sand, little coarse sand ar gravels, subrounded, red and tan, stiff at 13.0'		SH 6	38		1.5		
8 - P:_2012 PROJECT FO	20 - -		(CL) SANDY CLAY, low plasticity, some silt, tan and gray, dry, stiff		SH 7	44		2.0		
T - 12/4/12 15:5	- 25 -		(SC) CLAYEY SAND, low plasticity, some silt, tan and gra mottled, compact, moist	у,	SS 8	94	3-7-7 (14)	-		
BH PLOTS - GINT STD US LAB.GD	- 30 -		$_{\ensuremath{\underline{\bigvee}}}$ low plasticity, with grey silty clay, some sand, tan at 28.0'		SS 9	94	4-7-8 (15)			<b>.</b>
GEOTECH	- 35		(SM) SILTY SAND, non-plastic, grading to sand, some silt trace clay, gray, wet, compact	, little to	SS 10	100	3-8-9 (17)			<b>A</b> •

# BORING NUMBER BH-203 PAGE 2 OF 2

	CLIEN	<b>NT</b> _Lu	minant PROJE	CT NAM	E Pond	d Slope Sta	bility		
	PROJ	IECT N	UMBER _123-94128 PROJE	CT LOC	ATION _	Martin Lak	e		
•	(ft) (25)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
TING\94128MARTINLAKE.GPJ	DEPTH (ft) GRAPHIC LOG		some clay and silt veins, tan at 38.0'	SS 1	S 100	3-6-6 (12)	-		<b>A</b> •
MARTIN LAKE\LAB TES	45 		(SC) CLAYEY SAND, low plasticity, some silt, tan and brown, wet, compact	SS 12	5 100	4-8-10 (18)			
E STABILIT	  50		(SM) SILTY SAND, non-plastic, trace clay, tan and gray, wet, dense	SS 13	3 100	8-14-20 (34)	_		
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P.\ 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKELAB TESTING/94128MARTINLAKE.GPJ			Bottom of borehole at 50.0 feet.						

### **BORING NUMBER BH-204**

PAGE 1 OF 2

	CLIEN	NT Lu	<u>iminant</u> PROJ	ECT NA	ME	Pond	Slope Sta	bility		
	PROJ	IECT N	IUMBER	ECT LO	CAT	ION _	Martin Lak	е		
	DATE	STAR	TED _10/30/12	JND ELI	EVA	TION _	330 ft		HOLE	SIZE 8 inches
	DRILL	LING C	CONTRACTOR WEST Drilling GROU	JND WA	TER	LEVE	LS:			
	DRILL	LING N	<b>IETHOD</b> Hollow Stem Auger   □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	AT TIM	E OF	DRIL	LING 31.8	30 ft / E	Elev 29	98.20 ft
	LOGO	SED B	Y _FW CHECKED BY _MP	AT END	OF	DRILL	.ING			
	NOTE	S		AFTER	DRII	LLING				
IARTINLAKE.GPJ	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
4128N			removed SANDY GRAVEL from roadbed		SH	67		4.25		
NG/92			(CL) SILTY CLAY, low plasticity, some sand, tan and gray, mottled, dry, hard		1	ļ		0		
AB TESTI			(CL) LEAN CLAY, low plasticity, some silt, sand, and sand veins red and gray, dry, very stiff	,	SH 2	50		3.0		•
N LAKE\L	5		(SC) CLAYEY SAND, low plasticity, some silt and black sandy gravel veins, tan and gray, dry		SH 3	33		5.0		•
LY/MARTI			(CL) SANDY CLAY, low plasticity, little silt, tan and gray, dry, stif	f	SH 4	58		2.0		•
STABILI	  10		(SC) CLAYEY SAND, non-plastic to low plasticity, little silty clay seam, tan, brown, with little gray, dry		SH 5	44		2.5		•
GEOTECH BH PLOTS - GINT STD US LAB GDT - 12/4/12 15:58 - P. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITYMARTIN LAKELAB TESTING94/128MARTINLAKE. GPJ	15		(CL) LEAN CLAY, low to medium plasticity, some silt, trace fine sand, tan, brown, and gray, mottled, dry, stiff		SH 6	67		2.0		
- P:_2012 PROJECT FOL			some sand, little silt		SH 7	67		1.5		
LAB.GDT - 12/4/12 15:58			(CL) SANDY CLAY, low plasticity, little silt, tan and gray, moist, very stiff		SH 8	46		3.0		
PLOTS - GINT STD US	30		(ML) SANDY SILT, low plasticity to non-plastic, fine, subangular, some clay, tan and gray, moist, soft		SS 9	100	2-1-3 (4)			A • □
<b>GEOTECH BH</b>	  35		(SM) SILTY SAND, low plasticity to non-plastic, fine, subangular, gray with little brown, dense	М	SS 10	94	11-14-18 (32)			• •

# BORING NUMBER BH-204 PAGE 2 OF 2

CLIENT L		123-94128				Slope Sta					
GRAPHIC GRAPHIC		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	20 40 PL 20 40 □ FINES Co 20 40	60 MC 60 ONTEN	80 LL -1 80
40	(SC) sand,	CLAYEY SAND, fine, subangular, interbedde some clay, tan, wet, compact	ed with gray, silty	SS 11	94	4-5-6 (11)			<b>A</b> •		
	(CH) stiff	CLAY, medium plasticity, little silt, trace fine	sand, gray, wet,	SS 12	100	3-5-7 (12)			<b>A</b>   •		
  50		Bottom of borehole at 50.0 feet.	1	SH 13	75		2.0		•		

### **BORING NUMBER BH-205**

PAGE 1 OF 2

						_										
	PROJECT NUMBER 123-94128         PROJECT           DATE STARTED 10/30/12         COMPLETED 10/30/12         GROUND DRILLING CONTRACTOR WEST Drilling    PROJECT  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORDUND  ORD					T NAME Pond Slope Stability										
						GROUND WATER LEVELS:										
DR	ILLIN	G M	ETHOD Hollow Stem Auger	$\overline{Y}$ AT TIME OF DRILLING 29.40 ft / Elev 301.10 ft												
LO	GGEE	BY	Y FW CHECKED BY MP	AT E	ND OF	DRILL	ING									
NO	TES			AFTER DRILLING												
RTINLAKE.GPJ DEPTH		FOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT 20 4 PL	MC 10 60 CONTE	0 80 LL 1 0 80 ENT (%)				
194128MAH	-//		(CL) LEAN CLAY, medium plasticity, some silt, trace sand and gray, mottled, dry, hard	, tan	SH 1	50		4.0		20 2	10 60	) 6U :				
3 TESTING	-//		with silty sand seams, very stiff at 2.0'		SH 2	60		3.5		•						
LAKE/LAB			stiff at 4.0'		SH 3	40		1.25		•						
TY/MARTII			very stiff at 6.0'		SH 4	58		3.75								
	)				SH 5	44		3.5			: :					
44128 LUMINANI POND SLO	-		some to little silt at 13.0'		SH 6	42		3.0		1	-1					
2012 PROJECT FOLDERS/1235	-		some clayey sand seams, stiff at 18.0'		SH 7	40		1.5								
12/4/12 15:58 - P.	5		(CL) SILTY CLAY, low plasticity, some sand, dark gray, me	oist, stiff	SH 8	67		1.75		•-1						
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 16:58 - P.y. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITYMARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94128MARTING-94128MARTIN LAKEILAB TESTING-94128MARTIN LAKEILAB TESTING-94	)		(CL) SANDY SILTY CLAY, low plasticity, little clay, light gr $_{\slashed Z}$ little brown, moist, stiff	ay with	SS 9	67	2-5-7 (12)			•		. 🗆				
3EOTECH - 1	+ <del>                                     </del>		(CL) SANDY CLAY, low plasticity, some silt, tan and gray, very stiff	moist,	SH 10	60		3.0		•						

## **BORING NUMBER BH-205**

PAGE 2 OF 2

CLIENT Luminant PROJECT NAME Pond Slope Stability									
- 1				JECT LOCA					
-	(#) (#)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
STING\94128MARTINLAKE.GPJ	40		(SC) CLAYEY SAND, interbedded with gray silty SAND, fine, subangular, little clay, compact, wet	SS 11	100	3-6-8 (14)			<b>A</b> •
MARTIN LAKE\LAB TE	45		(SP) SAND, fine, subangular, non-plastic, some clay, little silt, to and brown, wet, compact	an SS 12	100	4-9-12 (21)	-		
OND SLOPE STABILITY	50		medium to fine, tan at 48.0'	SS 13	100	3-6-11 (17)	_		<b>A •</b>
ERS/123-94128 LUMINANT P	55		very loose at 53.0'	SS 14	33				
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P.\. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE/RPT TESTING/94/128MARTINLAKE/GPJ	60		Bottom of borehole at 60.0 feet.						
SEOTECH BH PLOTS - GINT STD US LAE									

# BORING NUMBER BH-206 PAGE 1 OF 2

	CLIEN	JT 1	minont PPO	IECT NAME	Dond	Slone Sta	hility							
				GROUND ELEVATION 330.5 ft HOLE SIZE 8 inches										
			ONTRACTOR WEST Drilling GROU											
				AFTER DRILLING										
ł														
RTINLAKE.GPJ	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%  20 40 60 80	) ) ) [				
4128M/			(CL) SANDY CLAY, low plasticity, some silt, tan and gray, mottle dry, stiff	ed, SH	44		2.25		- 25 45 56 56					
STING/9			decreased sand content, very stiff at 2.0'	SH										
AB TES				2	67		3.5		<u> </u>					
IN LAKE\L	5		interbedded with silty clay layers, very stiff at 4.0'	SH 3	50		2.25		•					
TYMARI			some silty sand veins, very stiff at 6.0'	SH 4	67		3.5		•					
E STABILI	  10			SH 5	52		3.5							
ND SLOPE														
ANT PO	 													
28 LUMIN	 _ 15 _		trace organics, hard at 13.0'	SH 6	54		4.5							
3/123-941														
OLDER			with clayey sand veins, hard at 18.0'	-										
PROJECT F	20			SH 7	50		5.0							
2012 PF														
:58 - P:\			some red, moist at 23.0'											
/4/12 15	 25			SH 8	50		4.5							
GDT - 12														
JS LAB.	 													
NT STD	 30		(CH) SANDY CLAY, medium to high plasticity, some silt, tan and gray, very stiff	SH 9	52		3.25							
DTS - GINT			$ar{\Lambda}$											
1BH PL(														
3EOTECH	 35		increased sand and silt content, dark gray, stiff at 33.0'	SH 10	56		1.5							

### **BORING NUMBER BH-206**

PAGE 2 OF 2

		NT Lun				l Slope Sta	-				
	PROJ	ECT NU	JMBER 123-94128 PROJEC	PROJECT LOCATION Martin Lake							
	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □		
STING/94128MARTINLAKE.GPJ	35 40		(SC) CLAYEY SAND, fine, subangular, low plasticity, some to little silt, gray, tan, and red, mottled, wet, compact	SS 11	100	5-6-6 (12)			20 40 60 80		
I YIMAKIIN LAKE\LAB I ES	 - 45 		(SM) SILTY SAND, fine, subangular, non-plastic, some clay, wet, loose	SS 12	100	3-4-5 (9)			•		
AT POND SLOPE STABILI	 50 		(SP) SAND, medium to fine, trace coarse, poorly graded, subangular, non-plastic, some silt, tan, wet, compact	SS 13	100	2-6-12 (18)					
JERS/123-94128 LUMINAL	 - 55 		no coarse, trace clay at 53.0'	SS 14	100	5-8-13 (21)					
JECT FOLL	  60		dense at 58.0'	SS 15	100	9-18-23 (41)			<b>.</b>		
JTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P.:_2012 PROJECT FC			Bottom of borehole at 60.0 feet.								

### **BORING NUMBER BH-207**

PAGE 1 OF 2

	CLIENT _Luminant PROJECT NAME _Pond Slope Stability														
							T LOCATION Martin Lake								
- 1			TED _10/31/12												
- 1		DRILLING CONTRACTOR WEST Drilling GROUND													
							AT TIME OF DRILLING 34.40 ft / Elev 296.10 ft								
					AT END OF DRILLING										
}									▲ SPT N VALUE ▲						
TINLAKE.GPJ	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	☐ FINES CONTENT (%) ☐					
3MAR	0	60(	remove 8" of SANDY GRAVEL from roadbed							20 40 60 80					
94128			(CL) SILTY CLAY, low plasticity, trace fine sand, gray, dry, hard		SH 1	33		5.0		• • • • • • • • • • • • • • • • • • •					
JNG/K	-		(CL) SANDY CLAY, low plasticity, some silt and interbedded sar	nd	•										
AB TEST			seams, tan and gray, mottled, dry, firm		SH 2	58		3.0		•					
N LAKE\L	5_		(SP) SAND, poorly graded, non-plastic, some silt, clay, and grav black and tan, dry	/el,	SH 3	38		0.0							
TYMARTI			(CL) SANDY CLAY, low plasticity, some silt, gray and tan, dry, firm		SH 4	54		3.0							
STABILIT			hard at 8.0'		SH 5	50		5.0							
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P.\ 2012 PROJECT FOLDERS\123-94128 LUMINANT POND SLOPE STABILITYMARTIN LAKE\LAB TESTING\94128MARTINLAKE.GPJ			decrease sand content, stiff at 13.0'		SH 6	56		3.75							
P:_2012 PROJECT FOLDE	 20 		some sand seams at 18.0'		SH 7	52		2.5		•					
NB.GDT - 12/4/12 15:58 -			(SM) SILTY SAND, non-plastic, fine, subangular, little clay, gray moist	,	SH 8	33									
BH PLOTS - GINT STD US LA	30		(CL) SILTY CLAY, non-plastic, some sand, gray, moist, hard		SH 9	60		5.0		• •					
GEOTECH	35		(SM) SILTY SAND, non-plastic, fine, subangular, little clay, gray with little tan, moist, compact		SS 10	89	6-7-7 (14)								

## **BORING NUMBER BH-207**

PAGE 2 OF 2

- 1					ROJECT NAME Pond Slope Stability ROJECT LOCATION Martin Lake							
	H (#) 35	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPI E TYPE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80		
INLAKE.GPJ	 		(SC) CLAYEY SAND, non-plastic, fine, subangular, some silt, gray and tan, wet, loose	M	SS 11	67	2-3-4 (7)			<b>A</b> •		
TESTING\94128MART	40		compact at 43.0'		SS		3-5-5	_				
TYMARTIN LAKELAB	 45 			X	12	100	(10)					
POND SLOPE STABILI	 - 50 				SS 13	100	3-5-6 (11)			<b>A</b> •		
S\123-94128 LUMINANT	  _ 55 		(SP) SAND, medium to fine, non-plastic, some silt and clay, gray and tan, wet, loose		SS 14	89	2-2-5 (7)			<b>A</b> •		
JECT FOLDER	  		(CL) SILTY CLAY, low plasticity, trace fine sand, gray, wet, very stiff	M	SS 15	100	3-7-12 (19)	-		<b>A</b> •		
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P.\ 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITYMARTIN LAKELAB TESTING/94128MARTINLAKE.GPJ			Bottom of borehole at 60.0 feet.									

## **BORING NUMBER BH-208**

PAGE 1 OF 2

	CLIEN	NT Lu	ıminant PROJEC	CT NAME Pond Slope Stability											
				GROUND WATER LEVELS:											
				AT END OF DRILLING AFTER DRILLING											
ł															
		ပ		Y PE	% >	w iii	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80						
GP.	DEPTH (ft)	PH OG	MATERIAL DESCRIPTION	E T	WER QD)	NO. JNT.	Sf)	E (S	PL MC LL						
LAKE	DE )	GRAPHIC LOG		SAMPLE TYF NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	S T	≿  ⊃&	20 40 60 80						
¥	0			SA	H		Δ	占	☐ FINES CONTENT (%) ☐ 20 40 60 80						
128M/		000	remove 12" of SANDY GRAVEL from roadbed	SH	44		3.5								
(G/94			(CL) SANDY CLAY, low plasticity, some silt, tan and gray, dry, stiff	1	44		3.5								
ESI			stiff to very stiff at 2.0'	SH	50		4.0								
B B			hand at 4.01	2											
AKE.	5		hard at 4.0'	SH 3	54		5.0								
Ž			SILTY SAND, nonplastic, some clay, dry	3											
Y MA			SIETT OF WEE, HORIPIAGUE, SOITHO SIAY, ATY	SH 4	31		1.5								
			(CL) SANDY CLAY, low plasticity, some silt, tan, gray, and red,	CLI											
SIA	 10		dry, soft to firm	SH 5	50		2.0		••••••••••••••••••••••••••••••••••••••						
S COP	10														
N N															
MIN				SH	40		2.5								
78 LL	_ 15 _			6	40		2.5								
3-941															
RS/12															
			very stiff at 18.0'		-										
<u>၂</u>			very sun at 10.0	SH 7	50		3.5								
8	_ 20 _														
2012 F															
5:58			hard at 23.0'	SH	1.0										
4/12	_ 25 _			8	46		5.0								
1-12,				_											
B.GD															
NS LA					1										
SID			some sand seams, moist, very stiff at 28.0'	SH 9	54		3.0								
	30		abla	9	-										
- 51															
밁															
HB HB			(SC) CLAYEY SAND, fine, subangular, some silt, tan, gray, and	011	+										
EOLE	 25		red, moist	SH 10	60		2.5								
اك	35	17/2/	<u>I</u>		1	L			I to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second						

### **BORING NUMBER BH-208**

PAGE 2 OF 2

**CLIENT** Luminant PROJECT NAME Pond Slope Stability PROJECT NUMBER 123-94128 **PROJECT LOCATION** Martin Lake ▲ SPT N VALUE ▲ SAMPLE TYPE NUMBER POCKET PEN. (tsf) ' UNIT WT. (pcf) GRAPHIC LOG RECOVERY 9 (RQD) BLOW COUNTS (N VALUE) 40 60 DEPTH (ft) LL 1 80 MATERIAL DESCRIPTION 40 60 20 DRYI ☐ FINES CONTENT (%) ☐ 35 40 60 GEOTECH BH PLOTS - GINT STD US LAB, GDT - 12/4/12 15:58 - P.\. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKELAB TESTING/94/128MARTINLAKE.GPJ wet at 38.0' SH 50 11 40 loose at 43.0' SS 3-2-3 100 12 (5) 45 (SP) SAND, fine, little medium, non-plastic, subangular, little clay, SS 1-6-8 72 tan, compact 13 (14)50 SS 3-6-7 100 (13)(SC) CLAYEY SAND, medium, some silt, brown 55 (SM) SILTY SAND, fine, subangular, non-plastic, little clay, gray, compact SS 15 7-43-50 (CL) SILTY CLAY, low plasticity, dark gray, dense 100 (93)SANDY GRAVEL, non-plastic, planar, lignite coal seam, black, hard Bottom of borehole at 60.0 feet.

## BORING NUMBER BH-209 PAGE 1 OF 2

CLIENT Luminant			PROJECT NAME Pond Slope Stability												
PROJ	ECT N														
DATE	STAR	TED <u>11/1/12</u>	GROUND ELEVATION 360 ft HOLE SIZE 8 inches												
DRILL	ING C	ONTRACTOR WEST Drilling	GROUND	WATER	RLEVE	LS:									
		IETHOD Hollow Stem Auger	AT TIME OF DRILLING _46.20 ft / Elev 313.80 ft no reading, cave in at												
		CHECKED BY MP													
			AFTER DRILLING												
										DT 111/411					
	O		2	%	w iii	POCKET PEN. (tsf)	UNIT WT. (pcf)	S 20	PT N VALU 40 60						
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYF NUMBER	RECOVERY (RQD)	NAM	  E €	F E	PL	MC	LL				
	RAF	MATERIAL DESCRIPTION		1₽ M	SS SS	BLOW COUNTS (N VALUE		5 g	20	40 60	⊣ 80				
	Ö			SAN	REC	02	PQ(	DRY	□FINE	S CONTEN	T (%) 🗆				
0	77.	(CO) OLAVEY CAND fine subsequies modium pleatisity.		•					20	40 60	80				
. -		(SC) CLAYEY SAND, fine, subangular, medium plasticity, s fine rounded gravel, red and brown, dry	some	SH	33		5.0								
				1											
L _		trace fine rounded gravel, tan and gray, mottled at 2.0'		SH	38		5.0								
L _				2	55		0.0								
5		little silt, no gravel at 4.0'		SH	38		5.0				<u>.</u>				
				3	36		3.0								
		some silt at 6.0'		SH	00		4.5								
				4	29		4.5								
-		(CL) SANDY CLAY, low plasticity, some silt, tan and gray, of	dry,	√ ss	33	2-2-5			1 . 1		1				
10		firm	/	√ 5	33	(7)	_		1	- i - i	:				
									:		:				
-									1						
-															
-		some red, hard at 13.0'													
-		551115 1533, Halfa di 1515		SH 6	21		5.0								
15															
-															
-		array magist year, stiff at 40 Ol													
-		gray, moist, very stiff at 18.0'		SH 7	29		2.5								
20				/											
L _															
									:						
L		(CL) LEAN CLAY, low plasticity, some silt, trace fine sand, and tan, moist, stiff	gray	ss	67	4-6-8									
25		anu tan, must, sun	/	8	67	(14)					:				
				1			1				:				
-											·····				
-											:				
<u> </u>		little silt, hard, gray at 28.0'		SH											
				9	50		5.0		····I	<del>- ]</del>					
_ 30 _															
									:						
-		grading to clayey sand, very stiff at 33.0'													
		grading to dayby saild, very still at 55.0		SH 10	42		3.0								
35				10					-	: :	:				

## BORING NUMBER BH-209 PAGE 2 OF 2

	Luminant CT NUMBER 123-94128		PROJECT NAME Pond Slope Stability PROJECT LOCATION Martin Lake								
S DEPTH (ft) GRAPHIC	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80				
	some silt and sand, gray, tan, and brown, hard at 3	3.0' SS 11	100	7-13-14 (27)	-		• •				
- 45 	(CL) SILTY CLAY, low plasticity, dark gray, moist,	ard SS 12	100	12-20-26 (46)			• •				
  50	(SM) SILTY SAND, fine, subangular, non-plastic, s and gray, moist, very dense	ome clay, tan	100	14-27-36 (63)	-		•				
40 45 - 50											

#### **BORING NUMBER BH-210** 500 Century Plaza Drive, Suite 190 Golder Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870 **CLIENT** Luminant PROJECT NAME Pond Slope Stability PROJECT NUMBER 123-94128 **PROJECT LOCATION** Martin Lake DATE STARTED 11/1/12 **COMPLETED** 11/1/12 GROUND ELEVATION 360 ft HOLE SIZE 8 inches **DRILLING CONTRACTOR** WEST Drilling **GROUND WATER LEVELS:** AT TIME OF DRILLING 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / Elev 313.00 ft no reading, cave in at 47.00 ft / DRILLING METHOD Hollow Stem Auger LOGGED BY FW CHECKED BY MP AT END OF DRILLING _---AFTER DRILLING _---NOTES ▲ SPT N VALUE ▲ SAMPLE TYPE NUMBER (pcf) POCKET PEN. (tsf) GRAPHIC LOG 60 RECOVERY (RQD) BLOW COUNTS (N VALUE) 40 80 DEPTH (ft) MC LL MATERIAL DESCRIPTION 80 40 DRY 60 (SC) CLAYEY SAND, fine, subangular, some silt, little fine SH rounded gravel, red, dry 25 trace roots at 1.0' tan, gray, and red, mottled at 2.0' SH 21 5.0 2 compact at 4.0' SS 4-7-10 5 67 3 (17)SS 3-6-6 39 4 (12)3-4-6 5 (10)10



## **BORING NUMBER BH-210**

PAGE 2 OF 2

1				OJECT NAME Pond Slope Stability  OJECT LOCATION Martin Lake						
HT(#) 35		MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80		
40		(SM) SILTY SAND, fine, subangular, non-plastic, little clay, dark gray, moist, compact  (CL) SILTY CLAY, low plasticity, little fine sand, gray, moist, stiff	SS 11	50	4-5-5 (10)			<b>A</b>		
45			SS   12	100	(9) 4-7-8 (15)					
55			SS 14	89	5-9-9 (18)					
60		little tan, dense at 58.0'	SS 15	100	7-14-17 (31) 11-15-19 (34)					
65		some dark brown clay seams at 68.0'  Bottom of borehole at 70.0 feet.	SS 17	100	10-15-25 (40)	-		• •		

### **BORING NUMBER BH-211** 500 Century Plaza Drive, Suite 190 Golder Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870 **CLIENT** Luminant PROJECT NAME Pond Slope Stability PROJECT NUMBER 123-94128 **PROJECT LOCATION** Martin Lake DATE STARTED 11/2/12 **COMPLETED** 11/2/12 **GROUND ELEVATION** 360 ft HOLE SIZE 8 inches **DRILLING CONTRACTOR** WEST Drilling **GROUND WATER LEVELS:** $\supseteq$ AT TIME OF DRILLING 60.20 ft / Elev 299.80 ft no reading, cave in at \$0 DRILLING METHOD Hollow Stem Auger LOGGED BY FW CHECKED BY MP AT END OF DRILLING _---NOTES AFTER DRILLING ---▲ SPT N VALUE ▲ SAMPLE TYPE NUMBER (pcf) POCKET PEN. (tsf) GRAPHIC LOG 60 RECOVERY (RQD) BLOW COUNTS (N VALUE) 40 DEPTH (ft) MC LL MATERIAL DESCRIPTION 40 DRY ☐ FINES CONTENT (%) ☐ 60 (SC) CLAYEY SAND, some silt and fine rounded gravel, red, dry SH 29 fine, subangular, gray, tan, and red at 2.0' SH 29 3.5 2 trace fine gravels and coarse sand, loose at 4.0' SS 2-3-6 5 50 3 (9)some sandy clay seams, compact at 6.0' SS 4-5-8 39 4 (13)increase clay and silt content at 8.0' 4-8-8 SS 5 (16)10 (CL-CH) SANDY CLAY, low to medium plasticity, little silt, gray, SS 2-5-6 33 tan, and red, dry, stiff (11)some silt at 18.0' SH 50 3.25



## **BORING NUMBER BH-211**

PAGE 2 OF 2

CLIENT L	JECT NAME Pond Slope Stability							
PROJECT I	NUMBER 123-94128 PRO	PROJECT LOCATION Martin Lake						
95 DEPTH (ft) (R) GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80	
40		SS 11	89	9-17-25 (42)	-			
45		SS 12	100	10-14-18 (32)	-		• •	
50	(SC) CLAYEY SAND, low plasticity, fine, subangular, some silt and lean clay, gray and tan, wet, dense  (SP) SAND, fine, subangular, non-plastic, some silt, little to train	13	89	9-14-18 (32) 17-29-38	_			
55	clay, tan, wet, very dense	14	100	(67)			<b>A</b>	
60	little medium at 58.0'	SS 15	70	14-28-33 (61)				
65		SS 16	100	17-29-34 (63)	-			
70	(SM) SILTY SAND, fine, subangular, non-plastic, little to trace clay, gray and tan, wet, very dense  Bottom of borehole at 70.0 feet.	SS 17	72	18-27-37 (64)			• •	































**PERMANENT DISPOSAL POND - 5** 





























# **JUGRO**

Client

# **CPT Data**

Job Number 04.1908-0020

CPT Number

Location

Tatum-Tx

Operator GLENN JOHNSON Date and T 16-Apr-2008

Date and T 16-Apr-2008 13:47:38
Elevation

B-02

Cone Number F7.5CKEW2/B 1866

Water Table



# **TUGRO**

# **CPT Data**

CPT Number B-07

Job Number_ 04.1908-0020

Date and T 16-Apr-2008 12:40:51

Location

Tatum-Tx

Operator

Client

**GLENN JOHNSON** 

Date and 1 10-Api-20

Elevation

Cone Number F7.5CKEW2/B 1866

Water Table



# **CPT Data**

Job Number 04.1908-0020

Operator **GLENN JOHNSON** 

Client

CPT Number B-12 Date and T 16-Apr-2008

Elevation

10:58:47

Location

Tatum-Tx

Cone Number F7.5CKEW2/B 1866

Water Table





			LOG OF BORING B-14	F B0	RING	B-1,		DATE			8	8/18/09
	ETTL ENGINEERS &	PROJECT:	<ul><li>I: Luminant Martin Lake PDP 1-3 Supplemental Tatum. Texas</li></ul>	PDP 1-	3 Suppl	ement	Te.	SURF	SURFACE ELEVATION	ELEV	ATIO	Z
	CONSULTANTS	PROJECT	ECT NO.: G3219-09	BOR	ING TY	PE: R	BORING TYPE: Rotary Wash		ATTERBERG LIMITS(%)	SERG S(%)		
	MAIN OFFICE 1717 East Erwin Tyler, Texas 75702	нтэи	● BLOW COUNT ● 20 40 60 80  ▲ Qu (tsf) ▲ 1 2 3 4 ■ PPR (tsf) ■	(lod) YTIBNE	ESSIVE OTH (tsf) E STRAIN (%)		Natural Moisture Content and Atterberg Limits Plastic Moisture Liquid	) TNE CONTENT (	STIC LIMIT	гісіту імрех	#200 SIEVE (%)	
DEPTI SAMPI GEOLG	MATERIAL DESCRIPTION	FIELD STRE ATAG	1.0 2.0 3.0 4.0  Torvane (tsf)  Torvane (tsf)  Torvane (tsf)  Torvane (tsf)	ם אאם	STREN	CONFIN	Content   Content				SUNIM	OTHER PERFOI Page R
, I	ASH SEDIMENT black;dark gray; with silty clay						<b>.</b>	29	1		83	+40 Sieve=3%, +4 Sieve=0%
7.4.4.4.4 F	black, with sand gray							119	111 47	26	88	+40 Sieve=1%, +4 Sieve=0%
	black; with silt											
47474						······································	Ī	98	65 51	4	92	+40 Sieve=1%, +4 Sieve=0%
7.4.7.4.7.4.												
8	Bottom of Boring @ 30'				100000000000000000000000000000000000000	***						
					<u> </u>							
Water Level Est. Water Observations:	: 文 Messured: 文 Perched: 文 Seepage @ 5' while drilling.	Key to Abbrevations: N - SPT Data (BI P - Pocket Pene T - Torvane (tsf)	y to Abbrevations:  N - SPT Data (Blows/Ft)  P - Pocket Penetrometer (Isf)  T - Torvane (Isf)  L - Lab Vane Shear (Isf)	Notes:	Coordi	nates:	GPS Coordinates: N 32° 15.549', W 94°34.971'	÷				

					LOG OF BORING B-16	: BO	RING	B-1	9	DATE			"	8/18/00
¥			ETTL ENGINEERS &	PROJECT:	T: Luminant Martin Lake PDP 1-3 Supplemental	PDP 1-:	3 Supple	ment	al	SUR	FACE	SURFACE ELEVATION	VATIC	NC
			CONSULTANTS	PROJEC	ECT NO.: G3219-09	BOR	ING TYP	<b>ři</b> R	BORING TYPE: Rotary Wash		ATTERBER LIMITS(%)	ATTERBERG LIMITS(%)		
				H	● BLOW COUNT ● 20 40 60 80 ■ Qu (tsf) ■	TY (pcf)			Natural Moisture Content and Atterberg Limits	CONTENT (		TIVINDEX	(%) SIEVE (%)	<b>a</b> :
(#) HT9 83J9M	OSC	OLOGIC ATER LE	1 yet, 1 exas 7 57 02 (903) 595-4421	CLD RENGTI	PPR (tsf)		RESSAN HTƏNƏ. FR BAU.	SSURE	Plastic Limit	BAUTS	ומטום ב	OITSAJ 		ER TES FORME
		MA OE	MATERIAL DESCRIPTION	EIE ITS 'AQ	◆ Torvane (tsf) ◆ 1.0 2.0 3.0 4.0		ятѕ	COV	20 40 60 80		+	+	$\overline{}$	ьев
o I	ರ 	mm	SANDY LEAN CLAY(CL) orange and tan	P=1.2										
1			tan and gray	P=1.5 P=4.3					J	13	29 1	14 15	34	+40 Sieve=1%, +4 Sieve=0%
			orange and tan	P=1.25 P=3.6										
- Ç	SC   []. .	15. Z. Z.	CLAYEY SAND(SC) gray and orange	P=1.5					<b>T</b>	16	32 1	16 16	37	+40 Sieve=0%, +4 Sieve=0%
2		11.7.7.1		N=40	•		•							
	!!!!!!	<i></i>												
→ <del>&gt;</del>	₹ 5		SANDY CLAYEY SILT(ML) orange and light	N=21		7				· · · · · · · · · · · · · · · · · · ·				
<del>                                     </del>	3		LEAN CLAY(CL) gray and reddish tan							T .				
				N=33	•				I	56	46_2	23 23	82	+40 Sieve=4%, +4 Sieve=1%
30			orange and tan; with trace of lignite	N=26							ş - N . , , - NO - NO -			
	8	1116.7:17.1	CLAYEY SAND(SC) tan and brown	P=1.0					Ţ	58	48	22 26	82	+40 Sieve=5%, +4 Sieve=0%
	g.	(Z.ž	SAND(SP) gray	N=49	•						<u> </u>			
0 <del>4</del>			n of Boring @ 40'											
Water Level		Est	∑ Measured: ▼ Perched: ♀	Key to Abbrevations: N - SPT Data (Bi	tions: ta (Błows/Ft)	Notes: GPS	Coordin	lates:	otes: GPS Coordinates: N 32° 15.484', W 94°34.965'	35'				
Water Observations:	ervations:			P - Pocket Pene T - Torvane (tsf)	P - Pocket Penetrometer (tsf) T - Towane (tsf)									
				L - Lab Var	L - Lab Vane Shear (tsf)								l	

			LOG OF BORING B-17	80	RING	B-1		DATE			~	8/18/09
	ETTL ENGINEERS &	PROJEC	ECT: Luminant Martin Lake PDP 1-3 Supplemental Tatum. Texas	PDP 1-	3 Supple	emeni	a	SUR	SURFACE ELEVATION	ELE	VATIC	N
	CONSULTANTS	PROJEC	ECT NO.: G3219-09	BOR	ING TYF	Ä	BORING TYPE: Rotary Wash	(%)	ATTERBERG LIMITS(%)	RBERG S(%)		
TINU	MAIN OFFICE 1717 East Erwin 1717 Tange 78702	Н	● BLOW COUNT ● 20 40 60 80 ■ Qu (tsf) ▲ 1 2 3 4	TY (pcf)			Natural Moisture Content and Atterberg Limits	CONTENT		CILL INDEX	(%) SIEVE (%)	O:
TH (#)	31 A3T.	LD RENGTI		DENSI	RESERGE HTDNE TRE ERU.	SSURE	Plastic Moisture Liquid Limit Content Limit	STURE	וסטום ו. חנבים	OITSAJ OITSAJ		IER TES FORME
Œ S∀I	MATERIAL DESCRIPTION	IIS	<ul><li>◆ Torvane (tsf) ◆</li><li>1.0 2.0 3.0 4.0</li></ul>	ספא	ятг	COV	20 40 60 60	IOM	+-	+		PER
تا ا	SANDY LEAN CLAY(CL) orange and tan	P=4.5+					<b>T</b>	12	39 1	15 24	09 1	+40 Sieve=7%
	orange and brown	P=4.0										++ SIEVE
	red, tan, and yellow	P=4.5						5	53 1	18 35	5	+40 Sieve=7%, +4 Sieve=1%
5	tan and gray	P=4.5+										
S 2 2	CLAYEY SAND(SC) tan	N=40					I	50	36	24 12	- 52	+40 Sieve=0%, +4 Sieve=0%
,	tan and brown	N=22										
3	tan and gray; laminated	N 119	•									
8	gray and orange	N=20			***************************************		Ť	55	31	13 18	39	+40 Sieve=0%, +4 Sieve=0%
	tan	N=30										
	tan and orange	N=24	•									
- 40	Bottom of Boring @ 40'				.,							
	Est: Q Measured: T Perched: Q	Key to Abbrevations:	tions: ita (Blows/Ft)	Notes:	Coordir	ates	lotes: GPS Coordinates: N 32° 15 566' W 94°34 736'	<u></u>				
Water Observations:	bailed to 20' and open upon completion.	P - Pocket T - Torvan	P - Pocket Penetrometer (Isf) T - Torvane (Isf)	, ,				<u> </u>				
		L-Lab Va	Vane Shear (tsf)							İ		

# APPENDIX B LABORATORY TEST RESULTS

**BOTTOM ASH PONDS AND SCRUBBER POND** 



500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

# **SUMMARY OF LABORATORY RESULTS**

PAGE 1 OF 4

CLIENT Luminant

PROJECT NAME Pond Slope Stability

PROJECT NUMBER 12	23-94128	PROJECT LOCATION	Martin Lake
-------------------	----------	------------------	-------------

PROJECT NUMBI	ER 123-9412	28			PRU	JECT LOCA	IION Marti	п саке			
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
BH-201	0.0							19.2			
BH-201	2.0							13.7			
BH-201	6.0	26	14	12				9.4			
BH-201	8.0							15.1			
BH-201	13.0							16.3			
BH-201	18.0							20.8			
BH-201	23.0	36	14	22				19.9			
BH-201	28.0							18.2			
BH-201	33.0							15.0			
BH-201	38.0				0.85	40		14.9			
BH-201	43.0							21.4			
BH-201	48.0							23.5			
BH-202	0.0							20.8			
BH-202	2.0	55	19	36				17.1			
BH-202	4.0							20.5			
BH-202	6.0							26.7			
BH-202	8.0							15.3			
BH-202	13.0							14.9			
BH-202	18.0	29	13	16				17.1			
BH-202	23.0	20	10	10				17.6			
BH-202	28.0				0.85	49		18.1			
BH-202	33.0				0.00	70		17.0			
BH-202	38.0							20.8			
BH-202	43.0							23.0			
BH-202	48.0							26.2			
BH-203	0.0							12.6			
BH-203	2.0							14.6			
BH-203	4.0							16.1			
BH-203	6.0	50	19	31				21.5			
BH-203	8.0	30	19	31				22.3			
BH-203	13.0							18.0			
BH-203	18.0							14.6			
BH-203	23.0							17.3			
BH-203	25.0							19.9			
BH-203	28.0				2	17		23.6			
DH 202	_					17					
BH-203	30.0							27.7			
BH-203								29.1 29.4			
BH-203	38.0										
BH-204	0.0							13.9			
BH-204	2.0							21.1			
BH-204	4.0			-	-			15.0			
BH-201 BH-201 BH-201 BH-201 BH-201 BH-202 BH-202 BH-202 BH-202 BH-202 BH-202 BH-202 BH-202 BH-202 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-204 BH-204	6.0							16.6			
BH-204	8.0							13.5			



Golder Associates 500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

# **SUMMARY OF LABORATORY RESULTS**

PAGE 2 OF 4

CLIENT Luminant

PROJECT NAME Pond Slope Stability

PROJECT NUMBER 123-94128 PRO	JECT LOCATION Martin Lake
------------------------------	---------------------------

Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
BH-204	28.0				4.75	58		19.1			
BH-204	33.0							13.8			
BH-204	38.0							21.0			
BH-204	43.0	51	20	31				26.6			
BH-204	48.0							23.8			
BH-205	0.0							17.5			
BH-205	2.0							15.6			
BH-205	4.0							15.5			
BH-205	6.0							20.7			
BH-205	8.0							17.4			
BH-205	13.0	47	15	32				23.0			
BH-205	18.0							22.9			
BH-205	23.0	28	17	11				16.3			
BH-205 BH-205 BH-205 BH-205 BH-205 BH-205 BH-205 BH-205 BH-205 BH-205 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206	28.0				4.75	69		16.4			
BH-205	33.0							14.7			
BH-205	38.0							25.4			
BH-205	43.0					1		26.7			
BH-205	48.0							25.0			
BH-205	53.0				9.5	11		25.9			
BH-206	0.0							17.1			
BH-206	2.0	44	15	29				15.6			
BH-206	4.0							14.0			
BH-206	6.0							16.2			
BH-206	8.0							21.7			
BH-206	13.0							18.1			
BH-206	18.0							12.2			
BH-206	23.0							15.9			
BH-206	28.0	59	17	42				20.3			
	33.0							19.8			
BH-206	38.0							18.2			
BH-206	43.0							22.1			
BH-206	48.0							23.3			
BH-206	53.0							23.0			
BH-206	58.0							22.1			
BH-207	0.0							15.6			
BH-207	2.0							15.3			
BH-207	4.0							14.9			
BH-207	6.0							18.2			
BH-207	13.0							18.9			
BH-207	18.0							13.0			
BH-207	23.0							16.9			
BH-206 BH-206 BH-206 BH-206 BH-207 BH-207 BH-207 BH-207 BH-207 BH-207 BH-207 BH-207 BH-207 BH-207	28.0	31	16	15				16.7			
BH-207	33.0							17.4			



500 Century Plaza Drive, Suite 190 Golder Associates Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

# **SUMMARY OF LABORATORY RESULTS**

PAGE 3 OF 4

CLIENT Luminant

PROJECT NAME Pond Slope Stability

PROJECT NUMBER	123-94128	PROJECT LOCATION	Martin Lake
----------------	-----------	------------------	-------------

PROJECT NUMBI	LIX 123-3412	1			PRO	JECT LOCA	Marti	птаке	T .		
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
BH-207	38.0							19.0			
BH-207	43.0							21.8			
BH-207	48.0							22.2			
BH-207	53.0							25.2			
BH-207	58.0							29.8			
BH-208	0.0							20.2			
BH-208	2.0							16.2			
BH-208	4.0							12.9			
BH-208	6.0							11.5			
BH-208	8.0	28	15	13				15.2			
BH-208	13.0							15.9			
BH-208	18.0							20.2			
BH-208	23.0							18.0			
BH-208	28.0							21.3			
BH-208	33.0							18.1			
BH-208	38.0							19.1			
BH-208	43.0							23.7			
BH-208	48.0				4.75	11		24.5			
BH-208	53.0							27.1			
BH-208	58.0							26.1			
BH-209	0.0							9.0			
BH-209	2.0							11.8			
BH-209	4.0	62	21	41				11.8			
BH-209	6.0	_						12.1			
BH-209	8.0							19.2			
BH-209	13.0							12.3			
BH-209	18.0							21.0			
BH-209	28.0	41	15	26				23.3			
BH-209	33.0							20.0			
BH-209	35.0							21.2			
BH-209	38.0							17.9			
BH-209	43.0							24.0			
BH-209	48.0							21.2			
BH-210	0.0							8.2			
BH-210	2.0							10.7			
BH-210	4.0							13.4			
BH-210	6.0							14.4			
BH-210	8.0							15.7			
BH-210	13.0							21.3			
BH-210	18.0	36	14	22				22.9			
BH-210	23.0	- 50	17					25.0			
BH-210	28.0							18.5			
BH-210	33.0							19.3			



500 Century Plaza Drive, Suite 190 Golder Associates Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

# **SUMMARY OF LABORATORY RESULTS**

PAGE 4 OF 4

**CLIENT** Luminant

PROJECT NAME Pond Slope Stability

PROJECT NUMBER 123-94128 PROJECT LOCATION Martin Lake

	Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
	BH-210	38.0							17.2			
	BH-210	43.0							25.6			
	BH-210	48.0				9.5	33		33.4			
	BH-210	53.0							29.3			
	BH-210	58.0							29.3			
	BH-210	63.0							26.6			
	BH-210	68.0							31.1			
	BH-211	0.0							8.7			
3	BH-211	2.0							13.3			
ÄE	BH-211	4.0							15.0			
N N	BH-211	6.0							14.5			
MAR	BH-211	8.0							13.2			
4128	BH-211	13.0							17.6			
SLOPE STABILITYMARTIN LAKE;94128MARTINLAKE.GPJ	BH-211	18.0	50	17	33				15.0			
N.	BH-211	23.0				2			11.6			
MARI	BH-211	28.0				9.5	52		11.6			
1	BH-211	33.0							22.5			
TABIL	BH-211	38.0							21.1			
PE S	BH-211	43.0							24.3			
SLO	BH-211	48.0							24.3			
ONE	BH-211	53.0				ŀ			24.9			
ANT	BH-211	58.0							22.9			
Ž V	BH-211	63.0							29.5			
28 LL	BH-211	68.0							26.6			
23-94128 LUMINANT POND												

500 Century Plaza Drive, Suite 190 Golder Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

# **ATTERBERG LIMITS' RESULTS**



# Golder

•

**BH-202** 

**BH-203** 

**BH-204** 

**BH-205** 

28

28

28

28

0.85

2

4.75

4.75

0.096

0.189

0.078

0.034

0.125

0.018

0.005

0.0

0.0

0.0

0.0

51.3

83.5

41.7

30.5

38.4

39.8

16.5

69.5

10.2

18.5

500 Century Plaza Drive, Suite 190 Houston, Texas 77073 **Golder** Telephone: (281) 821-6868 Fax: (281) 821-6870

### **GRAIN SIZE DISTRIBUTION**



# Golder

*

**BH-208** 

**BH-210** 

**BH-211** 

48

48

28

4.75

9.5

9.5

500 Century Plaza Drive, Suite 190 Houston, Texas 77073 **Golder** Telephone: (281) 821-6868 Fax: (281) 821-6870

### **GRAIN SIZE DISTRIBUTION**



0.0

0.2

1.1

89.3

67.2

46.5

10.7

32.5

52.4

0.213

0.105

0.084

0.163



Specimen Descriptio	Reddish Yellow Clay (visua	l classification)		
LL	PI	LI	USCS	

Depth (ft)	4.0	Confining Pressure (psf)	617
Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	6732
Initial Specimen Weight (g)	1263.7	Axial Strain at Peak Stress (%)	14.3
Moist Unit Weight (pcf)	131.9		
Initial Water Content (%)	15	] ,	
Initial Dry Unit Weight (pcf)	114.6		

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-201 TO-3
Comments	



Golder
Associates

Performed by	PN
Date	12-Nov-12
Check	HR
Review	SBK



Specimen Description	Reddish Yellow Clay (visua	l classification)		
LL	PI	LI	USCS	

Depth (ft)	18.0	Confining Pressure (psf)	2371
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	3035
Initial Specimen Weight (g)	1232.8	Axial Strain at Peak Stress (%)	14.8
Moist Unit Weight (pcf)	132.4		
Initial Water Content (%)	19		
Initial Dry Unit Weight (pcf)	111.7		

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-202 TO-7
Comments	





Performed by	PN
Date	13-Nov-12
Check	HR
Review	SBK



Specimen Descrip	otion Reddish Gray Clay (vi	sual classification)	
LL	PI	LI	USCS

Depth (ft)	6.0	Confining Pressure (psf)	
Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	
Initial Specimen Weight (g)	1199.6	Axial Strain at Peak Stress (%)	14.8
Moist Unit Weight (pcf)	124.7		
Initial Water Content (%)	21	] ,	<del></del> ,
Initial Dry Unit Weight (pcf)	102.7		\

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-203 TO-4
Comments	



(A)
Golder
Associates

Performed by	PN
Date	13-Nov-12
Check	HR
Review	SBK



Specimen Description Reddish Gray Clay (visual classification)				
LL	PI	LI	USCS	

_				
	Depth (ft)	23.0	Confining Pressure (psf)	3008
	Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
	Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	5139
	Initial Specimen Weight (g)	1192.8	Axial Strain at Peak Stress (%)	11.3
	Moist Unit Weight (pcf)	126.6		
ı	Initial Water Content (%)	26		

100.9

Project Title	Luminant - Martin Lake Slope Stability			
Project Number	123-94128			
Sample Type	Shelby Tube			
Sample ID	BH-204 TO-8			
Comments				



Golder
Associates

Performed by	PN
Date	13-Nov-12
Check	HR
Review	SBK



Specimen Description Reddish Yellow Clay (visual classification)					
LL	PI	LI		USCS	

Depth (ft)	13.0	Confining Pressure (psf) 17		
Specimen Height (inch)	5.9	Strain Rate (%/min)		
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)		
Initial Specimen Weight (g)	1252.5	Axial Strain at Peak Stress (%)	14.8	
Moist Unit Weight (pcf)	131.9			
Initial Water Content (%)	27		ı	
Initial Dry Unit Weight (pcf)	104.1			

Project Title	Luminant - Martin Lake Slope Stability		
Project Number	123-94128		
Sample Type	Shelby Tube		
Sample ID	BH-205 TO-6		
Comments			



Performed by	PN
Date	13-Nov-12
Check	HR
Review	SBK



Specime	n Description	Grayish Brown	Fat Clay				
LL	59	PI	42	LI	0.1	USCS	СН

Depth (ft)	28.0	Confining Pressure (psf)	3627
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	6110
Initial Specimen Weight (g)	1219.7	Axial Strain at Peak Stress (%)	14.8
Moist Unit Weight (pcf)	127.5		
Initial Water Content (%)	20	]	

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-206 TO-9
Comments	



Golder
ASSOCIATES

Performed by	PN
Date	15-Nov-12
Check	HR
Review	JF



Specime	n Description	Grayish Brown	Lean Clay				
LL	31	PI	15	LI	0.0	USCS	CL

Depth (ft)	28.0	Confining Pressure (psf)	3620
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	11735
Initial Specimen Weight (g)	1251.9	Axial Strain at Peak Stress (%)	10.1
Moist Unit Weight (pcf)	127.7		
Initial Water Content (%)	16		

109.9

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-207 TO-9
Comments	





Performed by	PN
Date	15-Nov-12
Check	HR
Review	JF



Specime	n Description	Reddish Yellov	w Lean Clay				
LL	28	PI	13	LI	0.0	USCS	CL

Depth (ft)	8.0	Confining Pressure (psf)	1046
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	7118
Initial Specimen Weight (g)	1287.7	Axial Strain at Peak Stress (%)	13.8
Moist Unit Weight (pcf)	138.1		
Initial Water Content (%)	14		

120.7

lity





Performed by	PN
Date	16-Nov-12
Check	HR
Review	JF



Specimen Description Grayish Brown Lean Clay							
LL	41	PI	26	LI	0.3	USCS	CL

_				
	Depth (ft)	28.0	Confining Pressure (psf)	3624
	Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
	Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	6566
	Initial Specimen Weight (g)	1202.8	Axial Strain at Peak Stress (%)	7.1
	Moist Unit Weight (pcf)	128.0		
ı	Initial Water Content (%)	22		A

104.7

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-209 TO-9
Comments	



CN COLL
Golder Associates
- ILDBOCKREED

Performed by	PN
Date	16-Nov-12
Check	HR
Review	JF



Specimen Description Reddish Gray Lean Clay							
LL	36	PI	22	LI	0.5	USCS	CL

Depth (ft)	18.0	Confining Pressure (psf)	2375
Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	5691
Initial Specimen Weight (g)	1192.0	Axial Strain at Peak Stress (%)	12.8
Moist Unit Weight (pcf)	126.7		
Initial Water Content (%)	24		<del></del> ı
Initial Dry Unit Weight (pcf)	102.2		

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-210 TO-7
Comments	



Performed by	PN
Date	16-Nov-12
Check	HR
Review	JF

### **PROJECT INFORMATION**

PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08 CLIENT.

Movember 2008

### TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO: ETTL ENGINEERS AND CONSULTANTS, INC. 1717 East Erwin Tyler, TX 75702

### **TEST DESCRIPTION**

TYPE OF TEST 8 NO: CU With PP SAMPLE TYPE: Possible Fill Sample DESCRIPTION: Tan, Brown & Red Sandy Lean Clay Sampled on Site, B-13 3' to 10' deep ASSUMED SPECIFIC GRAVITY, 2.7 + 40 Sleve

LL: PL: PL Percent -200:

REMARKS: Both Ends & Diameter Trimmed

PLATE: B.1

PLATE, B.2

PLATE: B.3

Number of Specimens = 3

SPECIMEN DATA SPECIMEN NO. 1							
	initial	final		meter	He	eight	
3.00	522.40 g	621.30 g	top	2.04 in	Ht 1	4.44 in	
***	468.70 g	544,40 g	mid	2.04 in	Ht 2	4.44 in	j
	129.80 g	119.40 g	bot	2.04 in	Ht 3	4.44 in	Í
Moisture content :	15.55 %	14.00 %	Avg	2 34 in	Ht4	4.44 in	
***	496.1 Q	***************************************	19	and the second second	Avg Ht	# 44 in	İ
Change in Ht due to satura		-0.02	in	Initial specime		X#.SI CC	
Change in Ht due to conso		-0.018	44	At test specim		cc cc	
Change in pipet vol due to		***********		Initial dry dens		113.02 pc	f
Saturation Parameter "B	***********	WARRANCE CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART	-	At test dry der	-	J JJ pc	f
<u> </u>	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	Failure Strain % =	2.7	Effective Cell		psi) =	10.0
σ₁' FaiÌure (pśi) =		σ ₁ Failure (psi) =		ĺ		ated v =	0.35
σ₃' Failure (psi) =	5.41	σ ₃ Failure (psi) =	10.00	Back Pressu	ure (psi) =	50.0	(Statesopher)
∆U =	4,4 Tota	al Pore Pressure =	54.6	Cell Pressu	ıre (psi) =	60.0	
		SPECIMEN	NO. 2				
i	nitial	final		meter	Hei	ght	
Moist soil & Tare :	549.80 g	636.40 g	top	2.01 in	Ht 1	4.44 in	
Dry soil and Tare :	489.20. g	560.20 g	mid	2.01 in	Ht 2	4 44 in	
	123.20 g	139.10 g	bot	2,01 in	Ht 3	4.44 in	1
Moisture content :	15 95 %	MA. 101 %	Avg	2.33 in	Ht4	4.44 in	
Weight:	496 0 g	· · · · · · · · · · · · · · · · · · ·			Avg Ht	4.44 in	
Change in Ht due to satura	ition :	-0.006	in	Initial specime		cc	
Change in Ht due to conso		-0.034	in	At test specime		700 CC	
Change in pipet vol due to	consolidation	n: 3.9	cc	Initial dry dens	ity:	pcf	
Saturation Parameter " B '	"= 0.97			At test dry den	sity:	pcf	

Saturation Parameter B =	0.97	At test ary density:	pci
Strain Rate (in/min) = 0.0005	Failure Strain % = 3.9	Effective Cell Pressure	(psi) =
σ ₁ ' Failure (psi) = 37.62	$\sigma_1$ Failure (psi) = 45.80	8	mated $v = 0.3$
σ ₃ ' Failure (psi) =12.02	σ₃ Failure (psi) =	Back Pressure (psi)	= 50.0
∆U = <b>8.</b> 0	Total Pore Pressure = 58.0	Cell Pressure (psi)	70.0

### SPECIMEN NO. 3

SPECIIVIEN NO. 3								
	initial	final		Diameter		Height		
Moist soil & Tare :	594.50 g	656,50	g	top	2.06 in	Ht 1	4.54	in
Dry soil and Tare :	530.10 g	579.20	g	mid	2.06 in	Ht 2	4.54	in
Tare:	126.30 g	139,30	g	bot	2.06 /sin	Ht 3	4.54	in
Moisture content :	165 of %	17 57	%	Avg	# 00 in	Ht4	4.54	in
Weight:	5180 g					Avg Ht		in
Change in Ht due to sat	uration :		-0.001	in	Initial specime	en vol :	2000	СС
Change in Ht due to cor	nsolidation :		-0.052	in	At test specim	nen vol :		cc
Change in pipet vol due	to consolidat	ion :	5.6	cc	Initial dry den	sity:		pcf
Saturation Parameter "	B"= 0.	97			At test dry der		116	pcf
Strain Rate (in/min) =	0.0005	Failure Str	ain % =	8.5	Effective Cell	Pressure	(psi) =	40.0
σ ₁ ' Failure (psl) =	100.17	σ₁ Failure	e (psi) =	60.60		Estim	ated $v =$	0.35
σ ₃ ' Failure (psi) =	54.77	σ₃ Failure	e (psi) =	40 Di	Back Press	ure (psi) =	50.0	
∆U =	145 To	otal Pore Pre	ssure =	35.2	Cell Press	ure (psi) =	90.0	

# TRIAXIAL SHEAR TEST REPORT

70

80

90

100

110

120

 $\phi' =$ **EFFECTIVE STRESS PARAMETERS** c' = 12.8 deg 6.0 psi SPECIMEN NO. 2 3 4 1 60.00 INITIAL Moisture Content - % 15.8 16.6 15.9 Dry Density - pcf 113.0 115.0 112.5 50.00 2.04 2.06 S Diameter - inches 2.01 Height - Inches 4.44 4.44 4.54 DEVIATOR STRESS 40.00 AT TEST Final Moisture - % 18.1 18.1 17.6 30.00 Dry Density - pcf 114.0 116.9 115.1 Calculated Diameter (in.) 2.02 2.00 2.04 20.00 Height - Inches 4.40 4.40 4.49 40.0 Effect. Cell Pressure - psi 10.0 20.0 10.00 Fallure Stress - psi 15.00 25.60 45.40

Total Pore Pressure - psi

Strain Rate - inches/min.

Failure Strain - %

σ₁' Failure - psi

σ₃' Fallure - psi

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Tan, Brown & Red Sandy Lean Clay

Sampled on Site, B-13 3' to 10' deep

0.00

0.0

60

50

10

0

0

10

20

30

40

50

60

PRINCIPAL STRESS - PSI

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve Percent -200: REMARKS: Both Ends & Diameter Trimmed

10.0

AXIAL STRAIN - %

**TEST DESCRIPTION** 

+ # 4 Sieve

20.0

PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08

54.6

2.7

20.41

5.41

0.00050

CLIENT:

Movember 2008

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.1

35.2

8.5

0.00050

100.17

54.77

58.0

3.9

37.62

12.02

**PROJECT INFORMATION** 

0.00050





TOTAL STRESS PARAMETERS					
	60.00 -		<u> </u>		
DEVIATOR STRESS - PSI	50.00 -		!		
	40.00 -	/-			
	30.00 -				
	20.00	1		1	
	10.00 -				
	0.00	·		i_	
	0.0		10	.0	20.0
		A	(IAL ST	RAIN - %	

$\phi = 19.6$	φ = 19.6 deg		1.8	psi				
SPECIMEN NO.	1	2	3	4				
	INITIAL							
Moisture Content - %	15.8	16.6	15.9					
Dry Density - pcf	113.0	115.0	112.5					
Diameter - inches	2.04	2.01	2.06					
Height - Inches	4.44	4.44	4.54					
	AT TEST							
Flnal Moisture - %	18.1	18.1	17.6					
Dry Density - pcf	114.0	116.9	115.1					
Calculated Diameter (In.)	2.02	2.00	2.04					
Height - Inches	4.40	4.40	4.49					
Effect. Cell Pressure - psi	10.0	20.0	40.0					
Failure Stress - psl	15.00	25.60	45.40					
Total Pore Pressure - psi	54.6	58.0	35.2					
Strain Rate - Inches/mln.	0.00050	0.00050	0.00050					
Failure Strain - %	2.7	3.9	8.5					
σ ₁ Fallure - psi	25.00	45.60	85.40					
$\sigma_3$ Fallure - psi	10.00	20.00	40.00					

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Tan, Brown & Red Sandy Lean Clay

**TEST DESCRIPTION** 

Sampled on Site, B-13 3' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 +

REMARKS: Both Ends & Diameter Trimmed

+ 40 Sieve Percent -200:

+#4 Sieve

### PROJECT INFORMATION

PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08

CLIENT: Movember 2008

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.3

### **PROJECT INFORMATION**

PROJECT: Luminani Fest Ash Disposal LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08 CLIENT:

Movember 2008

### TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO: ETTL ENGINEERS AND CONSULTANTS, INC. 1717 East Erwin Tyler, TX 75702

### **TEST DESCRIPTION**

TYPE OF TEST & NO: GU with PP SAMPLE TYPE: Native Sample

DESCRIPTION: Gray Tan & Redd. Br Sandy Clay w/ some Gravel

Sampled on Site, B-2 8' to 20' deep

ASSUMED SPECIFIC GRAVITY, 2.7 + 40 Sieve

PL: PI. Percent -200:

REMARKS: Both Ends & Diameter Trimmed

PLATE: B.1

PLATE: B.2

PLATE: B.3

Number of Specimens = 3

## **SPECIMEN DATA**

SPECIMEN NO. 1

		SPECIMEN				
	initial	final	Di	ameter	Heigl	nt
Moist soil & Tare :	479.30 g	630.20 g	top	2.08 in	Ht 1	4.25 in
Dry soil and Tare:	429.60 g	548.70 g	mid	2.08 in	Ht 2	4.25 in
Tare:	129.70 g	128.00 g	bot	2.08 in	Ht 3	4.25 in
Moisture content :	10.57 %		Avg	2 08 in		4.25 in
Weight:	496.8 Q	No. 100 100 100 100 100 100 100 100 100 10	" "	200000000000000000000000000000000000000	Avg Ht	4.23 in
Change in Ht due to sa	- Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Cont	-0.014	in	Initial specim		CC
Change in Ht due to co		ACADEST CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY		At test specin	SAME AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O	CC CC
Change in pipet vol du		E-00-21/44 000 00000	and the second	Initial dry der	NAME OF TAXABLE PARTY.	pcf
Saturation Parameter		0.96	200	At test dry de	2000	pcf
Strain Rate (in/min) =		Failure Strain % =		4 Effective Cel		
σ ₁ ' Failure (psi)		σ₁ Failure (psi) =		Lifective Cel	Estimate	v = 0.35
σ ₃ ' Failure (psi)	2,5000000000000000000000000000000000000	$\sigma_3$ Failure (psi) =	000000000000000000000000000000000000000	Rack Pres	sure (psl) =	1,000,000,000,000
ΔU:	*************	Total Pore Pressure =	191700000000000000000000000000000000000		sure (psi) =	
ΔΟ		Total Fole Flessule -		o Cell Fles	sure (psi) –	00,0
		SPECIMEN	NO. 2			
	initial	final		meter	Heigh	t
Moist soil & Tare :	505.50 g	616.20 g	top	2.08 in	Ht 1	4.40 in
Dry soil and Tare:	451.40 g	537.60 g	mid	2.08 in	Ht 2	4.40 in
Tare :	114.00 g	102.60 g	bot	2.08 in	Ht 3	4.40 in
Moisture content :	16.05 %	18.07 %	Avg	2 08 in	60000	4.40 in
Weight:	511.6 g	***************************************		minimum	Avg Ht	40 in
Change in Ht due to sat		0.01	in	Initial specim		cc
Change in Ht due to co		-0.048		At test specin	200.000	CC CC
Change in pipet vol due		**************		Initial dry den	SOMMA	pcf
Saturation Parameter		98		At test dry de	500600	pcf
Strain Rate (in/min) =	PARTY DESCRIPTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY	MORPH CO.	34	Effective Cell		STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY
σ ₁ ' Failure (psi) =	500000000000000000000000000000000000000	σ ₁ Failure (psi) =	1.4 1.1		Estimate	- Andread Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Co
σ ₃ ' Failure (psi) =	960503400863000386			Dook Dunes		200000000000000000000000000000000000000
	************	$\sigma_3$ Failure (psi) =	100		sure (psi) =	
ΔU =		Total Pore Pressure =	20.	Cell Press	sure (psi) =	70.0
		SPECIMEN N	VO. 3			
	initial	final		meter	Height	
Moist soil & Tare :	414.70 g	721.50 g	top	2.11 in	454444	.62 in
Dry soil and Tare :	381.70 g	THE REAL PROPERTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PART	mid	2,11 in	21111111	62 in
Tare:	102.50 g		bot	2.11 in		.62 in
Moisture content :	11 52 %	*****************	Avg	in	*********	62 in
Weight:	579.6 g	,,,			Avg Ht	N2 in
Change in Ht due to sat	- Marie Control - Total	-0.021	in	Initial specime		cc cc
Change in Ht due to cor		-0.018		At test specim	Service Co.	cc
Change in pipet vol due		***************************************		Initial dry dens	90000000	pcf
Saturation Parameter "	20222000	.99	00	At test dry den	NAMES OF BRIDE	pcf
	The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa	Failure Strain % =	AR	Effective Cell		
σ ₁ ' Failure (psi) =	0.0000000000000000000000000000000000000		4,0	Ellective Cell	Estimated	
	C000000050000000000	σ ₁ Failure (psi) =	1 3.76			CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE
σ ₃ ' Failure (psi) =	******	σ₃ Failure (psi) =			ure (psi) = 🧗	CONTROL 1
ΔU =	19.5 T	otal Pore Pressure =	64.6	Cell Pressu	ıre (psi) = 🌉	90.0



EFFECTIVE STRESS PARAMETERS	φ'= 34.4	deg	c' =	0.8	psi	
	SPECIMEN NO.	1	2	3	4	
180.00		INITIAL				
160.00	Moisture Content - %	16.6	16.0	11.8		
	Dry Density - pcf	112.3	112.1	122.3		
<u>8</u> 140.00	Diameter - inches	2.08	2.08	2.11		
g 120.00 + + - + - + - + - + - + - + - +	Height - inches	4.25	4.40	4.62		
9 120.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00		AT TE	EST			
	Final Moisture - %	19.4	18.1	13.5		
60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00	Dry Density - pcf	112.6	115.3	124.9		
60.00	Calculated Diameter (in.)	2.08	2.07	2.10		
	Height - inches	4.24	4.37	4.58		
40.00	Effect. Celi Pressure - psi	10.0	20.0	40.0		
20.00	Failure Stress - psi	28.02	34.65	70.28		
0.00	Total Pore Pressure - psi	51.8	56.1	64.6		
0.0 10.0 20.0	Strain Rate - inches/min.	0.00050	0.00050	0.00050		
	Failure Strain - %	2.4	3.4	4.6		
AXIAL STRAIN - %	σ ₁ ' Failure - psi	36.26	48.53	95.68		
	σ ₃ ' Failure - psi	8.24	13.88	25.40		
TEST DESCRIPTION		PROJECT	INFORM	MATION		

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Native Sample

DESCRIPTION: Gray, Tan & Redd. Br Sandy Clay w/ some Gravei

Sampled on Site, B-2 8' to 20' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve
LL: PL: PI; Percent -200:

REMARKS: Both Ends & Diameter Trimmed + # 4 Sieve

PROJECT INFORMATION

PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas

PROJECT NO: G 2972 - 08 CLIENT:

Movember 2008

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.1





TOTAL STRESS PARAMETERS  SPECI  180.00  160.00  140.00  120.00  100.00  Section 200.00  100.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00
180.00  160.00  140.00  120.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00
0.0 10.0 20.0 Failure Str AXIAL STRAIN - $\%$ $\sigma_1$ Failure

SPECIMEN NO.	1	2	3	4
	INIT	IAL		
Moisture Content - %	16.6	16.0	11.8	
Dry Density - pcf	112.3	112.1	122.3	
Diameter - inches	2.08	2.08	2.11	
Height - Inches	4.25	4.40	4.62	
	AT T	EST		
Final Moisture - %	19.4	18.1	13.5	
Dry Density - pcf	112.6	115.3	124.9	
Calculated Diameter (in.)	2.08	2.07	2.10	
Height - inches	4.24	4.37	4.58	
Effect. Cell Pressure - psi	10.0	20.0	40.0	
Fallure Stress - psi	28.02	34.65	70.28	
Total Pore Pressure - psi	51.8	56.1	64.6	
Strain Rate - Inches/min.	0.00050	0.00050	0.00050	
Failure Strain - %	2.4	3.4	4.6	
$\sigma_1$ Failure - psi	38.02	54.65	110.28	
$\sigma_{\scriptscriptstyle 3}$ Failure - psi	10.00	20.00	40.00	
1				

c =

## **TEST DESCRIPTION**

## **PROJECT INFORMATION**

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Native Sample

DESCRIPTION: Gray, Tan & Redd. Br Sandy Clay w/ some Gravel

Sampled on Site, B-2 8' to 20' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve LL: PL: Pi:

REMARKS: Both Ends & Diameter Trimmed

Percent -200:

+ # 4 Sieve

PROJECT: Luminant East Ash Disposal

LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08

25.2 deg

CLIENT:

Movember 2008

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.3

3.1 psi

#### **PROJECT INFORMATION**

PROJECT Luminant East Ash Disposal LOCATION: Rusk County Texas PROJECT NO: G 2972 - 08 CLIENT:

Movember 2008

#### TEST DESCRIPTION

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Yen & Red Sendy Lean Clay w/ Roots

Sampled on Site, B-1: 3' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL: PI: Procent -200:

REMARKS: Both Ends & Diameter Trimmed + # 4 Sieve

PLATE: B.1

PLATE, B.2

PLATE: B.3

#### TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO: ETTL ENGINEERS AND CONSULTANTS, INC. 1717 East Erwin Tyler, TX 75702

Number of Specimens = 3

## **SPECIMEN DATA**

SPECIMEN NO. 1

SPECIMEN NO. 1									
	initial	final	Dia	ameter	Heig	ht			
Moist soil & Tare :	539.30 g	625.10 g	top	2.07 in	Ht 1	4.23 In			
Dry soil and Tare :	462.00 g	548.00 g	mid	2.07 in	Ht 2	4.23 in			
Tare:	127.40 g	126.90 g	bot	2,07 in	Ht 3	4.23 in			
Moisture content :	10.10 %	12.31 %	Avg	ZOZ	Ht4	4.23 in			
Weight:	493.2 g	27500000000000	1	Management of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the	Avg Ht	4 2 3 in			
Change in Ht due to sa	000000000000000000000000000000000000000	0.02	in	Initial specim		cc cc			
Change in Ht due to co		-0.000	et de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de	At test specin	****	CC			
Change in pipet vol du			-	Initial dry den		taet pcf			
Saturation Parameter		97		At test dry de	- 1	b 19 pcf			
Strain Rate (in/min) =		Failure Strain % :	- 30 Oct						
σ ₁ ' Failure (psi)		σ ₁ Failure (psi) =		Ellective Cell	Estimate				
σ ₃ ' Failure (psi)		$\sigma_3$ Failure (psi) =	000000000000000000000000000000000000000	Book Proce					
			900000000000000000000000000000000000000		sure (psi) =				
ΔU	-	otal Pore Pressure =	- 03.	Cell Press	sure (psi) =	60.0			
		CDECIMEN	NO 2						
	initial	SPECIMEN final		meter	Lloigh	.4			
Moist sail & Tara	The state and and a standard address to	tide de de maria de desdadas -	1	5000555055555050000	Heigh	Seestelessees .			
Moist soil & Tare :	548.00 g	<u>591.00</u> g	top	2.01 in	144694	4.25 in			
Dry soil and Tare :	<u>492.70</u> g	<u>519.10</u> g	mid	in	******	<u>4 25</u> in			
Tare :	136.50 g	124.60 g	bot	2.01 in	100000	4.25 in			
Moisture content :	15.73. %	<u> </u>	Avg	in	******	4 25 in			
Weight:	462.2 g				Avg Ht	in in			
Change in Ht due to sa		-0.009	**	Initial specime	83030	cc			
Change in Ht due to co		-0.033		At test specim	THE REAL PROPERTY.	cc			
Change in pipet vol due	101101010101	Mariana Mariana	cc	Initial dry den		pcf			
Saturation Parameter '		COLORODA		At test dry der		pcf			
Strain Rate (in/min) =	0.0005	Failure Strain % =	3.0	Effective Cell	Pressure (psi	) = (10.0)			
σ ₁ ' Failure (psi) =	40.52	σ ₁ Failure (psi) =	46.90		Estimate	d v = 0.35			
σ ₃ ' Failure (psi) =	= 14.53	σ ₃ Failure (psi) =	201.00	Back Press	ure (psi) = 🎆	50.0			
ΔÚ =	CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	tal Pore Pressure =	\$5000000000000000000000000000000000000	009	ure (psi) =	00000000000000			
10		rtai i oi o i i coodi c	2002	001111000	uro (por) –				
		SPECIMEN	NO. 3						
	initial	final		neter	Heigh	t			
Moist soil & Tare:	.431.00 g	528.40 g	top	2.10 in	85,65502	1.28 in			
Dry soil and Tare :	385.90 g	558.80 g	mid	2.10 in	*******	1.28 in			
Tare:	105.00 g	119.40 g	bot	2.10 in	f-000000	1.28 in			
Moisture content :	10.00 %	15.54	Avg	3.10 in	*******	1 28 in			
Weight:	510.5 g	/0	,		Avg Ht	in			
Change in Ht due to sat		-0.017	in	Initial specime		cc			
Change in Ht due to sat		-0.039		At test specime	1000000	000000000			
_		*************			5500000	cc			
Change in pipet vol due	43.434.6433344		CC	Initial dry dens	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	pcf			
Saturation Parameter "	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COL	A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA		At test dry den		pcf			
Strain Rate (in/min) =	6.63076200307503602007	Failure Strain % =		Effective Cell I	,, ,	550000000000000000000000000000000000000			
σ ₁ ' Failure (psi) =	121-020-020-020-020-020-020-020-020-020-	$\sigma_1$ Failure (psi) =	301.42		Estimated	arrange (100 and 1000)			
σ₃' Failure (psi) =	42.71	$\sigma_3$ Failure (psi) =	4010	Back Pressu	ıre (psi) = 🦳	50.0			
ΔU =	-27 To	tal Pore Pressure =	47 3	Cell Pressu	ıre (psi) =	90 0			



EFFECTIVE STRESS PARAMETERS	φ'= 21.0	0 deg	c' =	4.5	psi
	SPECIMEN NO.	1	2	3	4
120.00		INI	TIAL		-
	Moisture Content - %	16.2	15.5	16.1	[
100.00	Dry Density - pcf	113.6	113.1	113.3	1
8	Dlameter - Inches	2.07	2.01	2.10	1
• hara-#ara-hara-hara-hara-hara-hara-hara-	Height - Inches	4.23	4.25	4.28	<u>í</u>
80.00 80.00 WHEN THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY		AT T	EST		
60.00	Final Molsture - %	18.3	18.2	15.8	i
	Dry Density - pcf	115.2	115.3	115.5	į
40.00	Calculated Diameter (in.)	2.08	1.99	2.08	į.
4-1	Height - inches	4.24	4.21	4.22	
20.00	Effect. Cell Pressure - psi	10.0	20.0	40.0	1
20.00	Failure Stress - psi	22.94	25.99	61.42	į
0.00	Total Pore Pressure - psi	53.7	55.5	47.3	Į.
0.00 10.0 20.0	Strain Rate - Inches/min.	0.00050	0.00050	0.00050	ı
	Failure Strain - %	1.4	3.0	3.0	
AXIAL STRAIN - %	σ ₁ ' Failure - psl	29.29	40.52	104.13	
	σ ₃ ' Failure - psl	6.35	14.53	42.71	
TEST DESCRIPTION	PROJEC	T INFORM	MATION		

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Tan & Red Sandy Lean Clay w/ Roots

Sampled on Site, B-1 3' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL: Pi: Percent -200:

REMARKS: Both Ends & Diameter Trimmed

+ # 4 Sieve

PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas

PROJECT NO: G 2972 - 08

CLIENT:

Movember 2008

ETTL ENGINEERS & CONSULTANTS

PLATE: B.1





TOTAL STRESS PARAMETERS	φ =	24.2	deg	c =	1.4	psi			
	SPECIME	N NO.	1	2	3	4			
120.00		<b>)</b>	INIT	ΓIAL					
	Moisture Con	tent - %	16.2	15.5	16.1				
100.00	Dry Density -	pcf	113.6	113.1	113.3	İ			
8	Diameter - inc	hes	2.07	2.01	2.10				
φ 80.00	Height - inche	s	4.23	4.25	4.28	ļ <u>.</u>			
00.00 ST RESS 40.00			AT T	EST					
60.00	Final Moisture	· - %	18.3	18.2	15.8				
α 00.00	Dry Density -	pcf	115.2	115.3	115.5				
₹ 40.00	Calculated Diameter (in.)		2.08	1.99	2.08				
\$ 40.00	Height - Inches		4.24	4.21	4.22				
	Effect. Celi Pr	essure - psl	10.0	20.0	40.0				
20.00	Failure Stress	- psl	22.94	25.99	61.42				
	Total Pore Pre	essure - psi	53.7	55.5	47.3	İ			
	Strain Rate - I	nches/mln.	0.00050	0.00050	0.00050				
1	Failure Strain	- %	1.4	3.0	3.0				
AXIAL STRAIN - %	σ₁ Failure - psi		32.94	45.99	101.42				
	σ ₃ Fallure - ps	<u>i                                     </u>	10.00	20.00	40.00				
TEST DESCRIPTION			<b>PROJEC</b>	T INFORI	PROJECT INFORMATION				

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Tan & Red Sandy Lean Clay w/ Roots

Sampled on Site, B-1 3' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL: PI: Percent -200:

REMARKS: Both Ends & Diameter Trimmed

PROJECT: Luminant East Ash Disposal

LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08

CLIENT:

+ # 4 Sieve

Movember 2008

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.3

**PERMANENT DISPOSAL POND - 5** 

PROJECT: Luminant Martin Lake, PDP 1-3

CLIENT: TXU CONTRACTOR: not given JOB No.: G 2810 - 08

REPORT No.:

**RESULTS** 

Grain Diameter

DATE SAMPLED: February 2008

SAMPLED BY: ETTL Drill Crew % Retain +2.0 mm 47.69 LOCATION: MLSES % Retain +0.05 mm 99.26 SAMPLE No.: % Passing 0.05 to 2.0 mm 51.57

**DESCRIPTION:** Gray & Dark Gray Bottom Ash % Passing 0.002 to 0.05 mm 0.72 **TECHNICIAN:** M. Thompson % Passing 0.02

> 0.002 mm DATE: 04/15/08

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
			Mc Hydrom	40	54.66	76.31	0.425	23.69
WEIGHT OF SAMPLE (AIR DRY)	100.00	Tare Wt	29.89	60	71.63	85.20	0.250	14.80
WEIGHT OF SAMPLE (OVEN DRY)	99.90	Wet Wt.	68.94	100	84.45	91.91	0.150	8.09
PERCENT RETAINED ON # 10	47.69	Dry Wt	68.90	140	90.93	95.30	0.105	4.70
SPECIFIC GRAVITY	2.563	мс	0.1025%	200	93.54	96.67	0.075	3.33

TEMP (C)	HIDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
21.5	5.7	11.0	5.3	15.5	0.0141	1.02	0.5	0.0787	2.82
21.5	5.7	8.0	2.3	16	0.0141	1.02	1	0.0566	1.21
21.5	5.7	6.8	1.1	16.1	0.0141	1.02	2	0.0401	0.57
21.5	5.7	6.2	0.5	16.3	0.0141	1.02	5	0.0255	0.25
21.5	5.7	6.0	0.3	16.3	0.0141	1.02	15	0.0147	0.15
21.5	5.7	5.8	0.1	16.3	0.0141	1.02	30	0.0104	0.04
21.5	5.7	5.8	0.1	16.3	0.0141	1.02	60	0.0074	0.04
21.5	5.7	5.8	0.1	16.3	0.0141	1.02	250	0.0036	0.04
22.0	5.6	5.6	0.0	16.3	0.0140	1.02	1440	0.0015	0.02

SPECIFIC GRAVIT	ΓY	BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	100	10	188.06	686.13	22.5	99.90	747.18	21.5	2.563

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	2"	0.00	100.00
	1-1/2"	89.00	98.47
Air Dry Start Wt.:	1"	215.04	96.31
5836.8	3/4"	288.14	95.06
Dry Start Wt.:	3/8"	709.78	87.83
5830.82	No 4	1510.97	74.09
	No 10	2780.46	52.31



PROJECT: Luminant Martin Lake, PDP 1-3

 CLIENT:
 TXU

 CONTRACTOR:
 not given

 JOB No.:
 G 2810 - 08

REPORT No.:

**DATE SAMPLED:** February 2008 Grain Diameter

 SAMPLED BY:
 ETTL Drill Crew
 % Retain
 +2.0 mm
 0.08

 LOCATION:
 B-9, 1'-3'
 % Retain
 +0.05 mm
 41.35

 SAMPLE No.:
 % Passing
 0.05 to 2.0 mm
 41.27

 DESCRIPTION:
 Gray Ash (Cementing)
 % Passing
 0.002 to 0.05 mm
 56.63

 DESCRIPTION:
 Gray Ash (Cementing )
 % Passing
 0.002 to 0.05 mm
 56.63

 TECHNICIAN:
 H. Walka
 % Passing
 > 0.002 mm
 2.02

 DATE:
 03/14/08

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
			Mc Hydrom	40	0.92	1.00	0.425	99.00
WEIGHT OF SAMPLE (AIR DRY)	100.00	Tare Wt	29.50	60	1.92	2.00	0.250	98.00
WEIGHT OF SAMPLE (OVEN DRY)	99.73	Wet Wt.	62.41	100	3.90	3.99	0.150	96.01
PERCENT RETAINED ON # 10	0.08	Dry Wt	62.32	140	7.07	7.16	0.105	92.84
SPECIFIC GRAVITY	2.761	MC	0.2742%	200	10.67	10.77	0.075	89.23

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Dlam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
23.0	5.2	65.0	59.8	6.6	0.0138	0.98	0.5	0.0502	58.67
23.0	5.2	63.0	57.8	7	0.0138	0.98	1	0.0365	56.71
23.0	5.2	53.0	47.8	8.6	0.0138	0.98	2	0.0286	46.89
23.0	5.2	32.0	26.8	12	0.0138	0.98	5	0.0214	26.27
22.5	5.4	10.0	4.6	15.6	0.0140	0.98	15	0.0142	4.51
22.5	5.4	8.5	3.1	15.8	0.0140	0.98	30	0.0101	3.04
22.5	5.4	8.0	2.6	16	0.0140	0.98	60	0.0072	2.55
22.0	5.6	8.0	2.4	16	0.0140	0.98	250	0.0035	2.39
22.0	5.6	7.5	1.9	16.1	0.0140	0.98	1440	0.0015	1.90

SPECIFIC GRAVIT	Y	BOTTLE #	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	50	7	179.97	678.12	22.5	49.86	709.93	22.5	2.761

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
334.9	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	0.00	100.00
333.98	No 4	0.00	100.00
	No 10	0.26	99.92



PROJECT: Luminant Martin Lake, PDP 1-3

**CLIENT:** TXU CONTRACTOR: not given JOB No.: G 2810 - 08

REPORT No.: **RESULTS** 

DATE SAMPLED: February 2008 Grain Diameter

SAMPLED BY: ETTL Drill Crew % Retain +2.0 mm 59.89 LOCATION: B-7, 13'-15' % Retain +0.05 mm 92.28 0.05 to 2.0 mm SAMPLE No.: % Passing 32.39 **DESCRIPTION:** Gray Ash % Passing 0.002 to 0.05 mm

4.63 TECHNICIAN: H. Walka % Passing > 0.002 mm 3.09

DATE: 03/14/08

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
			Mc Hydrom	40	25.25	80.22	0.425	19.78
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt	30.03	60	29.25	83.44	0.250	16.56
WEIGHT OF SAMPLE (OVEN DRY)	49.81	Wet Wt.	45.86	100	32.74	86.25	0.150	13.75
PERCENT RETAINED ON # 10	59.89	Dry Wt	45.80	140	35.11	88.16	0.105	11.84
SPECIFIC GRAVITY	2.655	мс	0.3805%	200	36.67	89.42	0.075	10.58

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
22.0	5.6	17.5	11.9	14.5	0.0140	1.00	0.5	0.0752	9.61
22.0	5.6	15.5	9.9	14.8	0.0140	1.00	1	0.0537	8.00
22.0	5.6	14.0	8.4	15	0.0140	1.00	2	0.0383	6.79
22.0	5.6	13.5	7.9	15.2	0.0140	1.00	5	0.0244	6.39
22.0	5.6	13.0	7.4	15.2	0.0140	1.00	15	0.0141	5.99
21.5	5.7	12.5	6.8	15.3	0.0141	1.00	30	0.0101	5.46
21.5	5.7	12.0	6.3	15.3	0.0141	1.00	60	0.0071	5.05
22.0	5.6	10.5	4.9	15.6	0.0140	1.00	250	0.0035	3.97
22.0	5.6	9.0	3.4	15.8	0.0140	1.00	1440	0.0015	2.77

SPECIFIC GRAVI	TY	BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	25	4	179.25	677.26	22.5	24.91	692.79	22.5	2.655

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
243.3	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	13.45	94.47
242.38	No 4	77.42	68.18
	No 10	145.71	40.11



PROJECT: Luminant Martin Lake, PDP 1-3

 CLIENT:
 TXU

 CONTRACTOR:
 not given

 JOB No.:
 G 2810 - 08

REPORT No.: RESULTS

**DATE SAMPLED:** February 2008 Grain Diameter

 SAMPLED BY:
 ETTL Drill Crew
 % Retain
 +2.0 mm
 10.97

 LOCATION:
 B-6, 18'-20'
 % Retain
 +0.05 mm
 18.74

 SAMPLE No.:
 % Passing
 0.05 to 2.0 mm
 7.77

 DESCRIPTION:
 Tan Ash
 % Passing
 0.05 to 2.0 mm
 77.79

 TECHNICIAN:
 H. Walka
 % Passing
 > 0.002 to 0.05 mm
 77.39

 DATE:
 03/14/08
 % Passing
 > 0.002 mm
 3.87

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
			Mc Hydrom	40	0.26	11.44	0.425	88.56
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt	29.86	60	0.42	11.72	0.250	88.28
WEIGHT OF SAMPLE (OVEN DRY)	49.81	Wet Wt.	51.33	100	0.78	12.36	0.150	87.64
PERCENT RETAINED ON # 10	10.97	Dry Wt	51.25	140	1.61	13.85	0.105	86.15
SPECIFIC GRAVITY	2.732	MC	0.3740%	200	2.62	15.65	0.075	84.35

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
22.0	5.6	52.0	46.4	8.8	0.0140	0.99	0.5	0.0586	82.16
22.0	5.6	51.0	45.4	8.9	0.0140	0.99	1	0.0417	80.39
22.0	5.6	48.5	42.9	9.4	0.0140	0.99	2	0.0303	75.97
22.0	5.6	47.0	41.4	9.6	0.0140	0.99	5	0.0194	73.31
22.0	5.6	35.0	29.4	11.5	0.0140	0.99	15	0.0122	52.08
22.0	5.6	13.0	7.4	15.2	0.0140	0.99	30	0.0099	13.15
22.0	5.6	9.5	3.9	15.8	0.0140	0.99	60	0.0072	6.96
22.0	5.6	8.5	2.9	16	0.0140	0.99	250	0.0035	5.19
22.0	5.6	7.5	1.9	16.1	0.0140	0.99	1440	0.0015	3.42

SPECIFIC GRAVIT	Υ	BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	50	3	179.93	678.11	22.5	49.81	709.70	22.5	2.732

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	28.83	89.03
262.8	3/4"	28.83	89.03
Dry Start Wt.:	3/8"	28.83	89.03
261.82	No 4	28.83	89.03
	No 10	28.83	89.03



PROJECT: Luminant Martin Lake, PDP 1-3

 CLIENT:
 TXU

 CONTRACTOR:
 not given

 JOB No.:
 G 2810 - 08

REPORT No.:

**DATE SAMPLED:** February 2008 Grain Diameter

 SAMPLED BY:
 ETTL Drill Crew
 % Retain
 +2.0 mm
 11.60

 LOCATION:
 B-3, 5'-7'
 % Retain
 +0.05 mm
 76.50

 SAMPLE No.:
 % Passing
 0.05 to 2.0 mm
 64.91

 DESCRIPTION:
 Black Ash
 % Passing
 0.002 to 0.05 mm
 21.88

 DESCRIPTION:
 Black Ash
 % Fassing
 0.03 to 2.0 min
 64.91

 DESCRIPTION:
 Black Ash
 % Passing
 0.002 to 0.05 mm
 21.88

 TECHNICIAN:
 H. Walka
 % Passing
 > 0.002 mm
 1.62

 DATE:
 03/06/08

			L	SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
		Mc Hyd	irom	40	7.81	25.54	0.425	74.46
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt 29.4	3	60	11.21	31.61	0.250	68.39
WEIGHT OF SAMPLE (OVEN DRY)	49.53	Wet Wt. 65.4	.1	100	17.82	43.41	0.150	56.59
PERCENT RETAINED ON # 10	11.60	Dry Wt 65.0	7	140	22.64	52.01	0.105	47.99
SPECIFIC GRAVITY	2.561	MC 0.954	0%	200	26.25	58.45	0.075	41.55

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Dlam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
20.0	6.2	24.5	18.3	13.3	0.0143	1.02	0.5	0.0738	33.31
20.0	6.2	20.0	13.8	14.2	0.0143	1.02	1	0.0539	25.11
20.0	6.2	16.5	10.3	14.7	0.0143	1.02	2	0.0388	18.74
20.0	6.2	14.5	8.3	15	0.0143	1.02	5	0.0248	15.10
20.0	6.2	12.0	5.8	15.5	0.0143	1.02	15	0.0145	10.55
19.5	6.4	11.0	4.6	15.6	0.0145	1.02	30	0.0104	8.44
19.5	6.4	10.0	3.6	15.8	0.0145	1.02	60	0.0074	6.62
20.0	6.2	8.0	1.8	16.1	0.0143	1.02	250	0.0036	3.27
19.5	6.4	7.0	0.6	16.3	0.0145	1.02	1440	0.0015	1.15
						1			

SPECIFIC GRAVITY		BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	100	7	179.97	678.12	22.5	99.06	738.67	21.0	2.561

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
335.3	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	3.42	98.98
332.13	No 4	17.17	94.88
	No 10	38.89	88.40



PROJECT: Luminant Martin Lake, PDP 1-3

CLIENT: TXU CONTRACTOR: not given JOB No.: G 2810 - 08

REPORT No.:

**RESULTS** 

0.76

16.00

15.24

83.90

0.09

93.04

+2.0 mm

+0.05 mm

0.05 to 2.0 mm

> 0.002 mm

0.075

0.002 to 0.05 mm

Grain Diameter

DATE SAMPLED: February 2008

SAMPLED BY: ETTL Drill Crew LOCATION: B-2, 23'-25'

SAMPLE No.:

**DESCRIPTION:** Light Gray & Black Ash

**TECHNICIAN:** H. Walka DATE: 03/06/08

		SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
	Mc Hydrom	40	0.89	2.56	0.425	97.44
Tare Wt	29.91	60	1.22	3.22	0.250	96.78
Wet Wt.	55.02	100	2.01	4.82	0.150	95.18
Dry Wt	54.60	140	2.67	6.15	0.105	93.85

6.96

% Retain

% Retain

% Passing

% Passing

% Passing

3.07

WEIGHT OF SAMPLE (AIR DRY) 50.00 WEIGHT OF SAMPLE (OVEN DRY) 49.16 PERCENT RETAINED ON # 10 0.76 SPECIFIC GRAVITY 2.675

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
20.0	6.2	48.5	42.3	9.4	0.0143	1.00	0.5	0.0620	85.37
20.0	6.2	47.5	41.3	9.6	0.0143	1.00	1	0.0443	83.35
20.0	6.2	46.5	40.3	9.7	0.0143	1.00	2	0.0315	81.33
20.0	6.2	44.5	38.3	10.1	0.0143	1.00	5	0.0203	77.30
20.0	6.2	35.0	28.8	11.7	0.0143	1.00	15	0.0126	58.12
20.0	6.2	19.0	12.8	14.3	0.0143	1.00	30	0.0099	25.83
20.0	6.2	6.5	0.3	16.3	0.0143	1.00	60	0.0075	0.59
20.0	6.2	6.3	0.1	16.3	0.0143	1.00	250	0.0037	0.19
19.5	6.4	6.4	0.0	16.3	0.0145	1.00	1440	0.0015	0.07

1.7011%

200

MC

SPECIFIC GRAVIT	ſΥ	BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	50	4	179.25	677.26	22.5	49.16	708.22	21.0	2.675

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
144.3	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	0.00	100.00
141.89	No 4	0.10	99.93
	No 10	1.10	99.24



PROJECT: Luminant Martin Lake, PDP 1-3

 CLIENT:
 TXU

 CONTRACTOR:
 not given

 JOB No.:
 G 2810 - 08

REPORT No.: RESULTS

**DATE SAMPLED:** February 2008 Grain Diameter

SAMPLED BY: ETTL Drill Crew % Retain +2.0 mm 14.96 LOCATION: B-1, 18'-20' % Retain +0.05 mm 64.42 SAMPLE No. : 0.05 to 2.0 mm % Passing 49.46 **DESCRIPTION:** Black, Tan & Gray Ash

 DESCRIPTION:
 Black, Tan & Gray Ash
 % Passing
 0.002 to 0.05 mm
 35.29

 TECHNICIAN:
 H. Walka
 % Passing
 > 0.002 mm
 0.29

 DATE:
 03/06/08
 03/06/08
 0.002 mm
 0.29

SIEVE WEIGHT %RETAIN GRAIN DIA %PASSING Mc Hydrom 40 5.76 24.90 0.425 75.10 WEIGHT OF SAMPLE (AIR DRY) 50.00 Tare Wt 29.29 60 8.38 29.42 0.250 70.58 WEIGHT OF SAMPLE (OVEN DRY) 49.29 Wet Wt. 59.40 36.20 100 12.31 0.150 63.80 PERCENT RETAINED ON # 10 14.96 Dry Wt 58.97 140 15.78 42.19 0.105 57.81 SPECIFIC GRAVITY 2.608 MC 1.4488% 200 18.60 47.05 0.075 52.95

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
20.0	6.2	31.5	25.3	12.2	0.0143	1.01	0.5	0.0707	44.08
20.0	6.2	27.0	20.8	13	0.0143	1.01	1	0.0516	36.24
20.0	6.2	24.5	18.3	13.3	0.0143	1.01	2	0.0369	31.88
20.0	6.2	23.5	17.3	13.5	0.0143	1.01	5	0.0235	30.14
20.0	6.2	18.5	12.3	14.3	0.0143	1.01	15	0.0140	21.43
20.0	6.2	10.0	3.8	15.8	0.0143	1.01	30	0.0104	6.61
20.0	6.2	7.0	0.8	16.3	0.0143	1.01	60	0.0075	1.38
20.0	6.2	6.5	0.3	16.3	0.0143	1.01	250	0.0037	0.51
19.5	6.4	6.5	0.1	16.3	0.0145	1.01	1440	0.0015	0.23
	<u> </u>								

SPECIFIC GRAVITY		BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr) 10	0	3	179.93	678.11	22.5	98.57	739.11	20.5	2.608

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
268.4	3/4"	15.10	94.37
Dry Start Wt.:	3/8"	15.10	94.37
264.57	No 4	25.58	90.47
	No 10	40.15	85.04



PROJECT: Luminant Martin Lake, PDP 1-3

**CLIENT:** TXU CONTRACTOR: not given JOB No.: G 2810 - 08

REPORT No.: **RESULTS** 

DATE SAMPLED: February 2008 Grain Diameter

SAMPLED BY: ETTL Drill Crew % Retain +2.0 mm 41.02 LOCATION: MLSES % Retain +0.05 mm 95.89 SAMPLE No.: 0.05 to 2.0 mm % Passing 54.87 DESCRIPTION: Tan & Gray Econimizet Ash % Passing 0.002 to 0.05 mm 3.55

**TECHNICIAN:** M. Thompson % Passing > 0.002 mm 0.55

DATE: 04/15/08

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
		M	1c Hydrom	40	13.34	56.76	0.425	43.24
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt	30.27	60	22.12	67.12	0.250	32.88
WEIGHT OF SAMPLE (OVEN DRY)	49.98	Wet Wt.	62.43	100	32.26	79.09	0.150	20.91
PERCENT RETAINED ON # 10	41.02	Dry Wt	62.42	140	38.01	85.87	0.105	14.13
SPECIFIC GRAVITY	2.670	MC	0.0311%	200	42.66	91.36	0.075	8.64

ΓEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
21.5	5.7	13.0	7.3	15.2	0.0141	1.00	0.5	0.0780	8.58
21.5	5.7	10.0	4.3	15.6	0.0141	1.00	1	0.0558	5.04
21.5	5.7	9.0	3.3	15.8	0.0141	1.00	2	0.0397	3.86
21.5	5.7	7.5	1.8	16.1	0.0141	1.00	5	0.0254	2.09
21.5	5.7	7.0	1.3	16.1	0.0141	1.00	15	0.0146	1.50
21.5	5.7	6.8	1.1	16.1	0.0141	1.00	30	0.0104	1.27
21.5	5.7	6.5	0.8	16.3	0.0141	1.00	60	0.0074	0.91
21.5	5.7	6.3	0.6	16.3	0.0141	1.00	250	0.0036	0.68
22.0	5.6	6.0	0.4	16.3	0.0140	1.00	1440	0.0015	0.51

SPECIFIC GRAVITY		BOTTLE#	BOTTLE # Bottle Wt Bott & W		Bott & Water WaterTemp Corr.Soil		Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	100	7	179.97	678.12	22.5	99.97	740.78	21.5	2.670

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
2182.9	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	12.53	99.43
2182.22	No 4	200.01	90.83
	No 10	895.12	58.98



Project:

Luminant Martin Lake: PDP 1-3



1/2 Stress (KSF)		2.321
Strain at 1/2 Stress (%)		0.99
Type of Specimen:	Native	
Remarks:		

Project No.:	G 2810-08	
Boring No.:	B-7	
Depth, ft.:	5'-7'	
Material: Black Ash w	rith Gravel	
Initial Height	5.706	Inches
Initial Diameter	2.767	Inches
Moisture Content:	22.9%	%
Dry Density:	97.5	lbs/cu ft
Specific Gravity ( Assumed )	2.670	
Volume of Solids:	0.585	
Volume of Voids	<u>0.415</u>	
Void Ratio:	0.709	
Confining Pressure:	6.1	PSI
Pocket Penetr. Reading:	4.5	
Torvane (T)		
Rate of Strain: (%/ min)	1.0%	
Peak Strain:	2.1	%
Max Stress:	2.32	TSF
Date:	3/11/2008	

 RQD Value:
 100%

Angle of Fracture in Degrees: 65

Project: TXU PDP: Martin Lake, TX



 1/2 Stress (KSF)
 2.416

 Strain at 1/2 Stress (%)
 3.94

 Type of Specimen:
 Native

Remarks: undefined fracture

Project No.:	G 2810-08	
Boring No.:	B-4	
Depth, ft.:	13'-15'	-
Material: Red & Gray Lan	ninated Lean C	lay
Initial Height	3.613	Inches
Initial Diameter	2.667	Inches
Moisture Content:	22.3%	%
Dry Density:	99.4	lbs/cu ft
Specific Gravity ( Assumed )	2.670	
Volume of Solids:	0.596	
Volume of Voids	0.404	
Void Ratio:	0.677	
Confining Pressure:	13	PSI
Pocket Penetr. Reading:	3.5	
Torvane (T)		
Rate of Strain: (%/ min)	1.0%	
Peak Strain:	10.3	%
Max Stress:	2.42	TSF
Date:	5/12/2008	

Secant Modulus (KSF) @ 1/2 Peak Stress 61

RQD Value: 100%

Angle of Fracture in Degrees: N/A

Project: Luminant Martin Lake: PDP 1-3



 1/2 Stress (KSF)
 2.552

 Strain at 1/2 Stress (%)
 2.54

 Type of Specimen:
 Native

 Remarks:
 Native

Project No.: G 2810-08 Boring No.: B-4 13'-15' Depth, ft.: Material: Light Gray & Red Slity Clayey Sand w/ Ferric seams Initial Height 5.688 Inches 2.75 Initial Diameter Inches **Moisture Content:** 21.5% % 104.6 Dry Density: lbs/cu ft Specific Gravity (Assumed) 2.670 Volume of Solids: 0.628 Volume of Voids 0.372 0.593 Void Ratio: Confining Pressure: 13 **PSI** Pocket Penetr. Reading: 3.9 Torvane (T) 1.138 Rate of Strain: (%/ min) 1.0% Peak Strain: 8.6 % Max Stress: 2.55 **TSF** Date: 4/11/2008

Secant Modulus (KSF) @ 1/2 Peak Stress 100

RQD Value: 100%

Angle of Break in Degrees: 60

Project:

Luminant Martin Lake: PDP 1-3



1/2 Stress (KSF)	0.510	_
Strain at 1/2 Stress (%)	1.20	_
Type of Specimen:	Native	_

Remarks: Not able to find a well defined fracture

Project No.:		G 2810-0	8
Boring No.:		B-7	
Depth, ft.:		23'-25'	
Material: Bla	ack, Red, ⁻	Гап, & Gray	Clay w/ gravel
Initial Height		5.686	Inches
Initial Diameter		2.717	Inches
Moisture Content:		21.0%	%
Dry Density:		103.9	lbs/cu ft
Specific Gravity ( Assumed	l)	2.670	
Volume of Solids:		0.624	
Volume of Voids		0.376	
Void Ratio:		0.603	
Confining Pressure:		21.7	PSI
Pocket Penetr. Reading:			
Torvane (T)			
Rate of Strain: (%/ min)		1.0%	
Peak Strain:		12.8	%
Max Stress:		0.51	TSF
Date:		3/11/2008	

Secant Modulus (KS	Secant Modulus (KSF) @ 1/2 Peak Stress					
	RQD Value:	100%				
	Angle of Brea	ak in Degrees:_	53			

# CONSOLIDATION TEST REPORT ASTM D 2435



C _c =	0.381	C _r =	0.033	<b>e</b> ₀ = 2.0191	<b>Pc (tsf) =</b> 1.79	OCR = 10.2
LOAD	c _v	k				
tsf	in²/min	in/min	_ 0.020 ⊤			
Seating	NA	NA	0.015 – 0.010 –			
0.50	9.34E-03	9.85E-07	<u>2</u> 0.010 +			
1.00	5.36E-03	4.89E-07	0.005 ج			
2.00	5.03E-03	2.65E-07	0.000			
4.00	5.04E-03	1.73E-07	0.1	0 1.0	0 10.00	100.00
8.00	5.03E-03	1.18E-07			Applied Stress - tsf	100.00
16.00	5.03E-03	7.08E-08		•	Applied Stress - Isi	
	c _v values calculated by Sivaram and Swamee's Method					

SAMPLE AND TEST DATA			ATA	PROJECT INFORMATION			
SAMPLE LO	CATION: B-6	3, 3-5'		PROJECT:	Luminant Martin Lake P	DP 1-3	
DESCRIPTIO	DESCRIPTION: Ash, black and dark gray				LOCATION: Rusk, TX.		
				PROJECT NO.:	ETT08002-07		
LL: NA	PL: NA	PI: NA	-200:NA	CLIENT:	ETTL Engineers & Cons	ultants, Inc.	
ASSUMED S	PECIFIC GF	RAVITY:	2.70	CLIENT NO.:	G2810-08		
MC Initial:	58.1%	MC Final:	47.2%	DATE:	4/24/2008		
Dia. (in.) :	2.50	Height (in.):	1.000	REMARKS: OCR calculated based on Pc and vertical overburden			
Initial Sat %:	70.2	Final Sat %:	100.0	CRECORY	GEOTECHNICAL	DIATE D CN 4	
DRY DENSIT	Y (pcf):	55.8		GREGURY	GEOTECHNICAL	PLATE B-CN.1	

# CONSOLIDATION TEST REPORT ASTM D 2435



C _c =	0.146	C _r =	0.012	$e_0 = 0.5597$	<b>Pc (tsf) =</b> 1.93	<b>OCR =</b> 3.5	
LOAD	c _v	k					
tsf	in²/min	in/min	<b>_</b> 0.	).025			
Seating	NA	NA	in2/min	0.020			
0.50	1.67E-02	2.82E-06	n2				
1.00	1.51E-02	1.33E-06	, U.	0.015	<del>┝╶╌╇╶┼</del> ╋┼┼ <del>┩</del>	+	
2.00	1.55E-02	8.75E-07	رد	0.010			
4.00	1.54E-02	5.00E-07	0.		00 40.00	400.00	
8.00	1.51E-02	2.67E-07		0.10	00 10.00	100.00	
16.00	1.39E-02	1.50E-07		,	Applied Stress - tsf		
			c _v values calculated by Sivaram and Swamee's Method				

SAMPLE AND TEST DATA			ATA		PROJECT INFORMATION	ON
SAMPLE LO	CATION: B-4	, 8-10'		PROJECT: Luminant Martin Lake PDP 1-3		
DESCRIPTIO	DN: Clayey Sa	and , reddish bro	own with gray	V LOCATION: Rusk, TX.		
				PROJECT NO.:	ETT08002-07	
LL: NA	PL: NA	PI: NA	-200: NA	CLIENT:	ETTL Engineers & Cons	ultants, Inc.
ASSUMED S	PECIFIC GR	AVITY:	2.70	CLIENT NO.:	G2810-08	
MC Initial:	13.0%	MC Final:	19.6%	DATE:	4/24/2008	
Dia. (in.) :	2.50	Height (in.):	1.000	REMARKS: OCR calculated based on Pc and vertical overburden		
Initial Sat %:	70.2	Final Sat %:	100.0	CPECORY	GEOTECHNICAL	PLATE B-CN.2
DRY DENSIT	Y (pcf):	108.0		GREGORT	GEOTECHNICAL	PLATE B-UN.2



PEAK STRENGTH PARAMETERS	$\phi = 39.8$	deg	c =	0.5	psi
POST PEAK STRENGTH PARAMETERS	φ = 37.5	deg	c=	0.0	psi
	SPECIMEN NO.	1	2	3	4
40.0		INIT	TAL		
	Moisture Content - %	52.1	29.3	21.2	
35.0	Dry Density - pcf	50.2	71.7	95.2	
30.0	Diameter - inches	2.50	2.50	2.50	
	Height - inches	1.13	1.13	1.13	
25.0		AT T	EST		
15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15	Final Moisture - %	64.3	25.0	31.6	
ق ع ع ع الم	Dry Density - pcf	55.8	79.1	117.3	
15.0 + 17	Height-End of Consol. (in.)	1.02	1.03	0.92	
	Height-End of Shear (in.)	0.97	0.99	0.89	
10.0	Normal Stress - psi	10.0	20.0	40.0	
5.0	Peak Failure Stress-psi	9.2	16.5	34.0	
	Post Peak Failure Stress-psi	7.9	14.9	30.8	
0.0	Strain Rate - inches/min.	0.00300	0.00300	0.00300	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	16.2	15.6	15.6	
Deformation (in)	Post Peak Failure Strain %	8.4	7.2	9.6	
	Dry Density at test based on	initial moisture	and height at	end of consolid	dation.

TYPE OF TEST & NO: CD-DS-1
SAMPLE TYPE: Shelby Tube
DESCRIPTION: Ash, black and gray
SAMPLE LOCATION: B-6, 3-5 ft
ASSUMED SPECIFIC GRAVITY: 2.65
LL: 35 PL: 19 PI: 16

TEST DESCRIPTION

REMARKS: Multi-Specimen

Percent -200: 61

PROJECT: Luminant Martin Lake PDP 1-3 LOCATION: Rusk , TX

PROJECT NO: ETT08002-07 (G2810-08)
CLIENT: ETTL Engineers & Consultants, Inc

PROJECT INFORMATION

DATE:4/25/08

GREGORY GEOTECHNICAL

PLATE: B-DS.1



TE IN OTHER OTHER OWNER TENO	Ψ 71.7	ueg	U -	۷.۷	μοι
POST PEAK STRENGTH PARAMETERS	φ = 40.3	deg	c=	2.2	psi
	SPECIMEN NO.	1	2	3	4
40.0		INI	TIAL		
	Moisture Content - %	13.1	13.1	13.1	
35.0	Dry Density - pcf	71.8	71.7	71.7	
30.0	Diameter - inches	2.50	2.50	2.50	
	Height - inches	1.00	1.00	1.00	
8 25.0		AT T	EST		
20.0 15.0 15.0	Final Moisture - %	38.5	37.4	31.6	
\$ 2000 <b> </b>	Dry Density - pcf	73.6	73.7	75.8	
15.0	Height-End of Consol. (in.)	0.98	0.97	0.95	
	Height-End of Shear (in.)	1.00	0.96	0.92	
10.0	Normal Stress - psi	10.0	20.0	40.0	
5.0	Peak Failure Stress-psi	11.4	19.3	37.7	
	Post Peak Failure Stress-psi	11.2	18.3	36.4	
0.0	Strain Rate - inches/min.	0.00300	0.00300	0.00300	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	15.6	15.6	13.2	
Deformation (In)	Post Peak Failure Strain %	13.8	12.0	15.0	
	Dry Density at test based on	initial moisture	and height at	end of consolic	dation.

TYPE OF TEST & NO: CD-DS-2 SAMPLE TYPE: Re-Compacted DESCRIPTION: Ash, black and dark gray SAMPLE LOCATION: MLSES (Bulk)

**TEST DESCRIPTION** 

SPECIFIC GRAVITY: 2.56

LL: NP PL: NP PI: NP REMARKS: Multi-Specimen

Percent -200: 3.33

## PROJECT INFORMATION

PROJECT: Luminant Martin Lake PDP 1-3 LOCATION: Rusk, TX

PROJECT NO: ETT08002-07 (G2810-08)

CLIENT: ETTL Engineers & Consultants, Inc.

DATE:5/6/08

**GREGORY GEOTECHNICAL** 

PLATE: B-DS.2



	iz.i dog		0.1	POI	
POST PEAK STRENGTH PARAMETERS	$\phi = 37.4$	deg	c =	0.3	psi
	SPECIMEN NO.	1	2	3	4
45.0		INI	TAL		
40.0	Moisture Content - %	0.1	0.1	0.1	
40.0	Dry Density - pcf	71.7	71.7	71.7	
35.0	Diameter - inches	2.50	2.50	2.50	
<b>30.0</b> + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Height - inches	1.00	1.00	1.00	
8		AT T	EST		
20.0 25.0 25.0 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	Final Moisture - %	50.3	37.4	31.6	
20.0	Dry Density - pcf	73.4	73.1	73.1	
head 150	Height-End of Consol. (in.)	0.98	0.98	0.98	
<b>5</b> 15.0	Height-End of Shear (in.)	1.01	1.01	0.99	
10.0	Normal Stress - psi	10.0	20.0	40.0	
5.0	Peak Failure Stress-psi	15.4	22.8	42.2	
3.0	Post Peak Failure Stress-psi	8.5	14.8	31.2	
0.0	Strain Rate - inches/min.	0.00300	0.00300	0.00300	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	17.6	3.0	3.6	
Deformation (in)	Post Peak Failure Strain %	15.0	15.6	13.8	
	Dry Density at test based on	initial moisture	and height at	end of consolid	dation.

## **TEST DESCRIPTION**

Percent -200: 8.64

PROJECT INFORMATION PROJECT: Luminant Martin Lake PDP 1-3

TYPE OF TEST & NO: CD-DS-2 SAMPLE TYPE: Re-Compacted

LOCATION: Rusk, TX

DESCRIPTION: Economized Ash, tan and gray

PROJECT NO: ETT08002-07 (G2810-08) CLIENT: ETTL Engineers & Consultants, Inc.

SAMPLE LOCATION: MLSES (Bulk)

DATE:5/20/08

SPECIFIC GRAVITY: 2.67

LL: NP PL: NP PI: NP

**GREGORY GEOTECHNICAL** 

REMARKS: Multi-Specimen

PLATE: B-DS.3

## **PROJECT INFORMATION**

PROJECT: Martin Lake PDP 1 - 3 Supplemental

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

#### TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO: ETTL ENGINEERS AND CONSULTANTS, INC. 1717 East Erwin Tyler, TX 75702

#### **TEST DESCRIPTION**

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample DESCRIPTION: Tan w/ Red & Gray Clayey Sand

Sampled on Site, B-16 8' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL: Pt:

REMARKS: Diameter and Both Ends Trimmed +# 4 Sleve

Percent -200:

PLATE: B.1

PLATE: B.2

PLATE: B.3

Number of Specimens = 3



EFFECTIVE STRESS PARAMETERS	φ'=	31.9	deg	c' =	1.3	psi		
	SPECIMEN	N NO.	1	2	3	4		
100.00			INIT	'IAL				
	Moisture Cont	ent - %	17.2	16.8	16.3			
	Dry Density - p	pcf	112.6	114.4	115.0			
$_{\overline{o}}$	Diameter - inc	hes	2.47	2.46	2.48			
<u>8</u>	Height - inche	s	4.98	4.97	5.00			
DEVIATOR STRESS	AT TEST							
50.00	Final Moisture	- %	18.4	16.5	16.0			
g 80.00   <b>/</b>	Dry Density - _I	pcf	113.1	115.3	116.9			
Ĭ Į	Calculated Dia	ameter (in.)	2.47	2.46	2.50			
	Height - inche	s	5.00	5.00 4.97 5.0				
	Effect. Cell Pr	essure - psi	10.0	20.0	40.0			
<u> </u>	Failure Stress	- psi	18.88	28.83	63.14			
	Total Pore Pre	essure - psi	54.3	58.2	64.1			
0.00	Strain Rate - i	nches/min.	0.00050	0.00050	0.00050			
0.0 10.0 20.0	Failure Strain	- %	1.8	3.0	5.2			
AXIAL STRAIN - % σ ₁ ' Failure -		si	24.54	40.64	89.01			
	σ ₃ ' Failure - p	si	5.66	11.81	25.87			
TEST DESCRIPTION PROJECT INFORMATION			MATION	· ·				

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample
DESCRIPTION: Tan w/ Red & Gray Clayey Sand

Sampled on Site, B-16 8' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL: PI: Percent -200:

REMARKS: Diameter and Both Ends Trimmed

PROJECT: Martin Lake PDP 1-3 Supplemental

LOCATION:

+ # 4 Sieve

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

ETTL ENGINEERS & CONSULTANTS

PLATE: B.1











EFFECTIVE STRESS PARAMETERS R ² = 1.00	$\alpha (deg) = 27.9$ a (psi) =	= 1.1
PROJECT: Martin Lake PDP 1 - 3 Supplemental	TYPE OF TEST & NO: CU with PP	
PROJECT NO: G 3219 - 09	ETTL ENGINEERS & CONSULTANTS	PLATE: B.2
DESCRIPTION: Tan w/ Red & Gray Clayey Sand	ETTE ENGINEERS & CONSULTANTS	PLATE, D.Z



TOTAL STRESS PARAMETERS	$\phi = 25.6$	deg	c =	0.5 բ			
	SPECIMEN NO.	1	2	3			
100.00		INIT	IAL.				
	Moisture Content - %	17.2	16.8	16.3			
	Dry Density - pcf	112.6	114.4	115.0			
<u>s</u>	Diameter - inches	2.47	2.46	2.48			
, , , , , , , , , , , , , , , , , , , ,	Height - inches	4.98	4.97	5.00			
SS.	AT TEST						
DEVIATOR STRESS	Final Moisture - %	18.4	16.5	16.0			
	Dry Density - pcf	113.1	115.3	116.9			
ğ T	Calculated Diameter (in.)	2.47	2.46	2.50			
¥	Height - inches	5.00	4.97	5.06			
ű V	Effect. Cell Pressure - psi	10.0	20.0	40.0			
	Failure Stress - psi	18.88	28.83	63.14			
0.00	Total Pore Pressure - psi	54.3	58.2	64.1			
0.00	Strain Rate - inches/min.	0.00050	0.00050	0.00050			
0.0 10.0 20.0	Failure Strain - %	1.8	3.0	5.2			
AXIAL STRAIN - %	σ₁ Failure - psi	28.88	48.83	103.14			
	σ ₃ Failure - psi	10.00	20.00	40.00			
TEST DESCRIPTION		PROJEC	T INFOR	MATION			

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample

DESCRIPTION: Tan w/ Red & Gray Clayey Sand

Sampled on Site, B-16 8' to 10' deep

PL:

LL:

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

PI:

REMARKS: Diameter and Both Ends Trimmed

Percent -200:

+ # 4 Sieve

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

**ETTL ENGINEERS & CONSULTANTS** 

PROJECT: Martin Lake PDP 1-3 Supplemental

PLATE: B.3

0.5 psi

4

#### **PROJECT INFORMATION**

PROJECT: Martin Lake PDP 1 - 3 Supplemental

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009 TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO:

ETTL ENGINEERS AND CONSULTANTS, INC.

1717 East Erwin Tyler, TX 75702

#### **TEST DESCRIPTION**

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample DESCRIPTION: Tan & Red Sandy Lean Clay

Sampled on Site, B-17 3' to 7' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sleve

Pl:

Percent -200: REMARKS: Diameter and Both Ends Trimmed

PLATE: B.1

PLATE: B.2

PLATE: B.3

Number of Specimens = 3



E	EFFE	ECTIVE	STR	ESS	PA	RA	ME	TEI	RS	
		150.00								S
		100.00			-		_	H		M
										D
	$\bar{\mathbf{v}}$							Ш		D
	DEVIATOR STRESS - PSI	100.00	++/			$\parallel$	+			브
	SES.						.	H		<u> </u>
	ST				~			П		Fi
	OR						•			D
	ĬĀΤ	50.00	IV		$\setminus$					C
	Ä	00.00	$\parallel / \parallel \downarrow$			Ш		Ш		Н
	_		#/			1-1				H E
			<b>//</b>	+	-	++	+	-		F
					_	$\vdash$	+	Н		ĮΤ
		0.00	<del>                                      </del>		-	<u> </u>				s
		(	0.0		10.0			20.0	)	IF.
			A)	KIAL	STR	AIN -	- %			σ
										٥

φ'= 31.4	c' =	4.6	psi	
SPECIMEN NO.	1	2	3	4
	INIT	IAL		
Moisture Content - %	16.2	13.3	13.9	
Dry Density - pcf	113.5	121.6	115.5	
Diameter - inches	2.49	2.49	2.50	
Height - inches	5.08	5.00	5.16	
	AT T	EST		
Final Moisture - %	18.1	14.7	16.3	
Dry Density - pcf	114.1	123.3	117.2	
Calculated Diameter (in.)	2.50	2.50	2.52	
Height - inches	5.10	5.04	5.22	
Effect. Cell Pressure - psi	10.0	20.0	40.0	
Failure Stress - psi	28.40	36.54	74.24	
Total Pore Pressure - psi	53.7	61.5	63.2	
Strain Rate - inches/min.	0.00050	0.00050	0.00050	
Failure Strain - %	0.8	3.5	1.8	
σ ₁ ' Failure - psi	34.71	45.04	101.03	
σ ₃ ' Failure - psi	6.31	8.50	26.79	

## TEST DESCRIPTION

PROJECT INFORMATION
PROJECT: Martin Lake PDP 1 - 3 Supplemental

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample

DESCRIPTION: Tan & Red Sandy Lean Clay

Sampled on Site, B-17 3' to 7' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL:

PI:

Percent -200:

REMARKS: Diameter and Both Ends Trimmed +#4 Sieve

ETTL ENGINEERS & CONSULTANTS

September 2009

CLIENT: HDR

PROJECT NO: G 3219 - 09

LOCATION:

PLATE: B.1





TOTAL STRESS PARAMETERS	φ =	26.4	deg	c =	2.8	psi			
	SPECIMEN NO. 1		2	3	4				
150.00		INITIAL							
	Moisture Conte	ent - %	16.2	13.3	13.9				
	Dry Density - p	cf	113.5	121.6	115.5				
<u>s</u>	Diameter - inch	nes	2.49	2.49	2.50				
100.00	Height - inches	3	5.08	5.00	5.16				
20.00 STRESS	AT TEST								
	Final Moisture	- %	18.1	14.7	16.3	}			
8	Dry Density - p	cf	114.1	123.3	117.2				
50.00	Calculated Dia	Diameter (in.) 2.50 2.50			2.52				
\$ 55.55	Height - inches		5.10	5.04	5.22				
₩/ H	Effect. Cell Pre	essure - psi	10.0	20.0	40.0				
	Failure Stress	- psi	28.40	36.54	74.24				
0.00	Total Pore Pres	ssure - psi	53.7	61.5	63.2	i			
0.00	Strain Rate - in	ches/min.	0.00050	0.00050	0.00050				
0.0 10.0 20.0	Failure Strain -	%	0.8	3.5	1.8				
AXIAL STRAIN - %	σ₁ Failure - psi		38.40	56.54	114.24				
	σ ₃ Failure - psi	i	10.00	20.00	40.00	j			
TEST DESCRIPTION			PROJEC	T INFOR	MATION				

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample DESCRIPTION: Tan & Red Sandy Lean Clay

Sampled on Site, B-17 3' to 7' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve LL: PL: PI: Percent -200:

REMARKS: Diameter and Both Ends Trimmed

PROJECT: Martin Lake PDP 1 - 3 Supplemental

LOCATION:

+#4 Sieve

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.3

## **PROJECT INFORMATION**

PROJECT: Martin Lake PDP 1 - 3 Supplemental

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009 TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO:

ETTL ENGINEERS AND CONSULTANTS, INC.

1717 East Erwin Tyler, TX 75702

#### **TEST DESCRIPTION**

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Lab Molded

DESCRIPTION: Tan & Reddish Tan Silty Sand

Sampled on Site, TP- 31 0' to 5' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve 2%

LL: 20 PL: 17 PL 3 Percent -200: 27%

**REMARKS: Both Ends Trimmed** +#4 Sleve 1%

PLATE: B.1

PLATE: B.2

PLATE: B.3

Number of Specimens = 3

#### TRIAXIAL SHEAR TEST REPORT



EFFECTIVE STRESS PARAMETERS	φ'=	34.7	deg	c' =	-0.4	psi
	SPECIMEN N	10.	1	2	3	4
150.00			INIT	IAL		
	Moisture Content	- %	17.3	17.2	17.4	
	Dry Density - pcf	İ	110.3	110.5	110.4	
₹	Diameter - inches	;	2.87	2.87	2.85	
100.00	Height - inches		5.57	5.59	5.61	
20.00 SS 100.00			AT T	EST		
	Final Moisture - %	6	17.2	16.7	16.5	
ğ HIII	Dry Density - pcf		110.6	111.6	112.0	
₹ 50.00	Calculated Diame	eter (in.)	2.87	2.88	2.87	
30.00	Height - inches	-	5.58	5.62	5.66	
-   <del>                                  </del>	Effect. Cell Press	ure - psi	10.0	20.0	40.0	
	Failure Stress - ps	si	15.65	28.63	43.17	
	Total Pore Pressu	ure - psi	54.3	56.7	74.3	
0.00	Strain Rate - inch	es/min.	0.00050	0.00050	0.00050	
0.0 10.0 20.0	Failure Strain - %	İ	2.4	3.5	4.6	
AXIAL STRAIN - % σ₁' Failure - p		į	21.35	41.97	58.90	
	σ ₃ ' Failure - psi	ŀ	5.70	13.34	15.73	
TEST DESCRIPTION PROJECT INFORMATION						

LOCATION:

CLIENT: HDR

September 2009

PROJECT NO: G 3219 - 09

PROJECT: Martin Lake PDP 1 - 3 Supplemental

PLATE: B.1

**ETTL ENGINEERS & CONSULTANTS** 

TYPE OF TEST & NO: CU with PP

Sampled on Site, TP- 31 0' to 5' deep

ASSUMED SPECIFIC GRAVITY: 2.7

PL: 17

DESCRIPTION: Tan & Reddish Tan Silty Sand

+ 40 Sieve 2%

+ # 4 Sieve 1%

Percent -200: 27%

SAMPLE TYPE: Lab Molded











EFFECTIVE STRESS PARAMETERS	$R^2 = 0.98$	$\alpha (deg) = 29.7$	a (psi) =	-0.3	
PROJECT: Martin Lake PDP 1 - 3 Supple	mental	TYPE OF TEST & NO: CU	with PP		
PROJECT NO: G 3219 - 09		ETTL ENGINEERS & CONSULTANTS PLATE			
DESCRIPTION: Tan & Reddish Tan Silty S	and	ETTLENGINEERS & CO	NGOLIANIS	PLATE: B.2	





TOTAL STRESS PARAMETERS	φ = 1	8.0 deg	c =	3.0	psi
	SPECIMEN NO.	1	2	3	4
150.00		INI ⁻	ΓIAL		
	Moisture Content - %	17.3	17.2	17.4	
	Dry Density - pcf	110.3	110.5	110.4	
<u>S</u>	Diameter - inches	2.87	2.87	2.85	
100.00	Height - inches	5.57	5.59	5.61	
		AT 1	EST		
¥	Final Moisture - %	17.2	16.7	16.5	
200	Dry Density - pcf	110.6	111.6	112.0	
50.00	Calculated Diameter (in	.) 2.87	2.88	2.87	
20.00 STRESS	Height - inches	5.58	5.62	5.66	
ű ///	Effect. Cell Pressure - p	osi 10.0	20.0	40.0	
	Failure Stress - psi	15.65	28.63	43.17	
	Total Pore Pressure - p	si 54.3	56.7	74.3	
0.00	Strain Rate - inches/mir	n. 0.00050	0.00050	0.00050	
0.0 10.0 20.0	Failure Strain - %	2.4	3.5	4.6	
AXIAL STRAIN - %	σ₁ Failure - psi	25.65	48.63	83.17	
	$\sigma_3$ Failure - psi	10.00	20.00	40.00	
TEST DESCRIPTION		PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Lab Molded

DESCRIPTION: Tan & Reddish Tan Silty Sand

Sampled on Site, TP- 31 0' to 5' deep

ASSUMED SPECIFIC GRAVITY: 2.7

LL: 20

PL: 17 PI: 3

REMARKS: Both Ends Trimmed

+ 40 Sieve 2% Percent -200: 27%

+ # 4 Sieve 1%

PROJECT: Martin Lake PDP 1 - 3 Supplemental

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.3

#### TRIAXIAL SHEAR TEST REPORT



EFFECTIVE STRESS PARAMETERS	φ' = 20.4	deg	C, =	0.0	psi
	SPECIMEN NO.	1	2	3	4
30 + + + + + + + + + + + + + + + + + + +		INIT	AL		
	Moisture Content - %	26.1	24.6	21.3	
	Dry Density - pcf	94.3	95.8	101.6	
<b>7</b>	Diameter - inches	1.40	1.40	1.40	
<u> </u>	Height - inches	2.81	2.85	3.20	
		AT TE	EST		
	Final Moisture - %	26.1	24.6	21.3	
[ S	Dry Density - pcf	94.3	97.0	101.6	
E 10	Calculated Diameter (in.)	1.40	1.40	1.40	
DEVIATOR STRESS	Height - inches	2.81	2.85	3.20	
	Effect. Cell Pressure - psi	5.0	10.0	20.0	
	Failure Stress - psi	5.21	10.25	21.03	
	Total Pore Pressure - psi	20.0	20.0	20.0	
0	Strain Rate - inches/min.	0.00050	0.00050	0.00050	
0 5 10 15 20	Failure Strain - %	15.6	14.2	15.9	
AXIAL STRAIN - %	σ ₁ ' Failure - psi	10.11	19.85	40.73	
	σ ₃ ' Failure - psi	4.90	9.60	19.70	
TEST DESCRIPTION		<b>PROJEC</b>	T INFORI	MATION	

TYPE OF TEST & NO: CD Triaxial - CD-1

SAMPLE TYPE: SHELBY TUBE

DESCRIPTION:SANDY LEAN CLAY(CL), tan br w/ red br and gray

SAMPLE LOCATION: B-16, 3-5'
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 43 PL: 14 PI: 29 Percent -200: 56 REMARKS: Tested in a fully softened remolded state

PROJECT: Luminant Martin Lake PDP 1-3 Vertical Expansion

LOCATION: Tatum, TX PROJECT NO: ETT08002-11

CLIENT: ETTL Engineers & Consultants, Inc.

DATE: 9/15/09

GREGORY GEOTECHNICAL PLATE: B-CD.1



## **DIRECT SHEAR TEST REPORT** y = 0.815x + 1.35 $R^2 = 0.980$ 50.0 40.0 Shear Stress - psi Peak Post Peak Linear (Peak) ----- Linear (Post Peak) 10.0

PEAK STRENGTH PARAMETERS	φ = 39.2	deg	c =	1.4	psi
POST PEAK STRENGTH PARAMETERS	φ = 34.6	deg	c =	0.0	psi
	SPECIMEN NO.	1	2	3	4
20.0 1		INI	TIAL		
18.0	Moisture Content - %	41.3	42.3	48.4	
	Dry Density - pcf	78.9	72.5	72.9	
16.0	Diameter - inches	2.50	2.50	2.50	
≘ 14.0	Height - inches	1.00	1.00	1.00	
<u>a</u> 12.0		AT T	EST		
	Final Moisture - %	46.6	59.5	31.6	
10.0	Dry Density - pcf	81.0	74.2	73.0	
Shear	Height-End of Consol. (in.)	1.03	1.02	1.00	
6.0	Height-End of Shear (in.)	1.03	1.03	1.01	
	Normal Stress - psi	5.0	10.0	20.0	
4.0	Peak Failure Stress-psi	6.1	8.5	18.0	
2.0	Post Peak Failure Stress-psi	4.1	6.9	13.6	
0.0	Strain Rate - inches/min.	0.00030	0.00030	0.00030	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	1.6	1.9	3.1	
Deformation (in)	Post Peak Failure Strain %	4.3	12.7	11.8	

30

40

50

#### **TEST DESCRIPTION**

10

20

Normal Stress - psi

#### PROJECT INFORMATION

PROJECT: Luminant Martin Lake PDP 1-3 Vertical Expansion

Dry Density at test based on initial moisture and height at end of consolidation.

PROJECT NO: ETT08002-11 (G3219-09) CLIENT : ETTL Engineers & Consultants, Inc.

TYPE OF TEST & NO: CD-DS-1 SAMPLE TYPE: Shelby Tube

0.0

y = 0.688x $R^2 = 0.990$ 

DESCRIPTION: SILT(MH), black (classification tests from 13-15 ft)

SAMPLE LOCATION: B-15, 18-20 ft ASSUMED SPECIFIC GRAVITY: 2.65

LL: NP PL: NP PI: NP REMARKS: Tested at natural MC

Percent -200: 95

DATE: 9/25/09

LOCATION: Tatum, TX

PLATE: B-DS. 1 **GREGORY GEOTECHNICAL** 

### **DIRECT SHEAR TEST REPORT** y = 0.788x + 1.4 $R^2 = 0.99$ 50 40 Shear Stress - psi 30 Peak Post Peak Linear (Peak) ----- Linear (Post Peak) 20 10 0 10 20 40 50 y = 0.748x $R^2 = 0.987$ Normal Stress - psi

PEAK STRENGTH PARAMETERS	$\phi = 38.3$	deg	c =	1.4	psi
POST PEAK STRENGTH PARAMETERS	φ = 36.8	deg	c =	0.0	psi
	SPECIMEN NO.	1	2	3	4
20.0		INIT	IAL		
18.0	Moisture Content - %	47.2	47.5	46.5	
	Dry Density - pcf	77.0	73.3	72.6	
16.0	Diameter - inches	2.50	2.50	2.50	•
<b>≘</b> 14.0	Height - inches	1.00	1.00	1.00	
(s) 12.0		AT T	EST		
	Final Moisture - %	47.2	47.5	31.6	
	Dry Density - pcf	77.0	73.3	72.6	
8.0 Spear	Height-End of Consol. (in.)	1.00	1.00	1.00	
6.0	Height-End of Shear (in.)	0.98	0.98	0.99	
4.0	Normal Stress - psi	5.0	10.0	20.0	
4.0	Peak Failure Stress-psi	5.8	8.6	17.4	
2.0	Post Peak Failure Stress-psi	4.4	6.9	15.1	
0.0	Strain Rate - inches/min.	0.00030	0.00030	0.00030	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	3.1	15.0	3.1	
Deformation (in)	Post Peak Failure Strain %	7.8			
	Dry Density at test based on initial moisture and height at end of consolidation.				

#### **TEST DESCRIPTION**

#### **PROJECT INFORMATION**

TYPE OF TEST & NO: CD-DS-2 SAMPLE TYPE: Shelby Tube

DESCRIPTION: SILT(MH), black (classification tests from 13-15 ft)

SAMPLE LOCATION: B-15, 18-20 ft ASSUMED SPECIFIC GRAVITY: 2.65

LL: NP PL: NP PI: NP Percent -200: 95 REMARKS: Tested in a fully softened remolded state PROJECT: Luminant Martin Lake PDP 1-3 Vertical Expansion

LOCATION: Tatum, TX

PROJECT NO: ETT08002-11 (G3219-09)
CLIENT: ETTL Engineers & Consultants, Inc

DATE: 9/23/09

**GREGORY GEOTECHNICAL** 

PLATE: B-DS. 2



## ETTL Engineers & Consultants Inc. GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

#### **HYDRAULIC CONDUCTIVITY DETERMINATION** FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :	Martin Lake	FUF 1-3				P1; ASTM	D 5094		
Date: Project No. :	8/26/2009 G 3219-09	Da	rmometer Da	anel Number	•	FI, ASIMI	3004		
•					2 2	Set Mercury to	T	4.0	0
Boring No.:	<u>B - 14</u>		ap =	0.03141		Dinat Dn at	Equilibrium	1.8	cm3
Sample:	01 to E1		aa =	0.76712		0.000444104	Pipet Rp	6.7	cm3
Depth (ft):	3' to 5'		M1 =	0.03018		0.000414194		1.5	. cm3
Other Location:	orintian :	Dark Gray	M2 =	1.04095	3 1 =	0.203859738			
Material Des	cription .	Dark Gray	ASII						
				SAMPL	E DATA				
Wet Wt. sam	iple + ring or t	are:	502.16	g					
Tare or ring				g		Before	e Test	After	Test
Wet Wt: of S				g		Tare No.:	T 20	Tare No.:	T 22
Diameter :	2.85	in	7.24	cm2		Wet Wt.+tare:	522.84	Wet Wt.+tare	625.9
Length:	2.80	in	7.12	cm		Dry Wt.+tare:	393.34	Dry Wt.+tare:	480.79
Area:	6.38	in^2	41.16	cm2	<u> </u>	Tare Wt:	160.27	Tare Wt:	140.4
Volume :	17.88	in^3	292.92	cm3		Dry Wt.:	233.07	Dry Wt.:	340.32
Unit Wt.(wet):	106.97	pcf		g/cm^3		Water Wt.:	129.5	Weter Wt.:	145.10
Unit Wt.(dry):	68.77	_pcf	1.10	g/cm^3		% moist.:	55.6	% moist∴	42.7
Specific Gravity:		2.60	Max Dry De	ensity(pcf) =	68.7952	OMC =	55.5627065		
				% of max		+/- OMC =	0.00	•	
Calculated 9	% saturation:	81.52	Void r	atio (e) =	1.36	Porosity (n)=	0.58	•	
			•			• ' ' '		•	
				TEST R	EADINGS				
Z1(Mercury H	Height Differei	nce @ t1):	5.1	cm	Hydraulic (	Gradient =	9.04		
Date	elapsed t	Z	$\Delta Z\pi$	temp	α	k	k		
	(seconds)	(pipet @ t)	(cm )	(deg C)	(temp corr)	(cm/sec)	(ft./day)	Reset = *	
8/26/2009		4.5	2.1553335	25	0.889	2.66E-05	7.55E-02		
8/26/2009		4.05	2.6053335	25	0.889	2.79E-05	7.91E-02		
8/26/2009		3.6	3.0553335	25	0.889	2.99E-05	8.48E-02		
8/26/2009	14	3.25	3.4053335	25	0.889	3.12E-05	8.84E-02		
				SUMI	MARY				
		ka =	2.89E-05	cm/sec	1/	Acceptance cr	itena =	25	%
		<u>ki</u> k1 =	2.66E-05	cm/sec	<u>Vm</u> 7.8	%	Vm =	ka-ki	v 100
		k1 = k2 =	2.79E-05		7.6 3.5	%	VIII -	ka-ki j	× 100
		k3 =	2.79E-05		3.5	%		Na	
		k4 =	3.12E-05		7.8	%			
		K-4 -	3. IZE-03	GII/SEC	7.0	70			
	Hydraulic co	nductivity	k =	2.89E-05	cm/sec	8.19E-02	ft/day		
	Void Ratio		e =	1.36					
	Porosity		n =	0.58					
	Bulk Density		γ =	1.71	g/cm3	107.0	pcf		
	Water Conte		W =	0.61	cm3/cm3	( at 20 deg C)			
	Intrinsic Perr	neability	kint =	2.96E-10	cm2	( at 20 deg C)		J	
	Liquid Limit	LL							
	Plastic Limit	PL				Respectfully Su	ubmitted		
	Plasticity Inc	lex Pl				0			
	- 200 Sieve			%			121/11		
	+ No 40 Siev	⁄e		%		Kalot,	Mh		
	+ No 4 Sieve	<b>:</b>		%		Robert M. Duk	e, P.E.		-

210 Beech Street Texarkana, AR 71854 870-772-0013 Phone 870-216-2413 Fax

1717 East Erwin Tyler, Texas 75702 903-595-4421 Phone 903-595-6113 Fax www.ettlinc.com

707 West Cotton Street Longview, Texas 75604-5505 903-758-0915 Phone 903-758-8245 Fax



## ETTL Engineers & Consultants Inc. GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

#### **HYDRAULIC CONDUCTIVITY DETERMINATION** FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

			(,,,,,			,			
Project :	Martin Lake 8/26/2009	PDP 1-3		tal, Tatum, Te		DO: ACTA	D 5004		
Date:	G 3219-09	Do	-	Panel Number	:	P2; ASTM	D 5084		
Project No. :		F	ermometer D			Set Mercury to	T		
Boring No.:	B - 14		ap=	0.03141		Dinat Dn at	Equilibrium	1.8	cm3
Sample:	401 ( 471		aa =	0.76712		0.00044440	_Pipet Rp	6.7	cm3
Depth (ft):	16' to 17'		M1 =	0.03018				1.5	_ cm3
Other Location:		Darl O	M2 =	1.04095	3 T =	0.203859738	3		
Material Des	cription :	Dark Gray	ASN						
				SAMPL	E DATA				
	nple + ring or t	are:	457.47	9					
Tare or ring			0.0	9			e Test		r Test
Wet Wt: of S	•		457.47	g	_	Tare No.:	T 18	Tare No.:	T 16
Diameter :	2.85	_in	7.24	.cm2		Wet Wt.+tare:	711.07	Wet Wt.+tare	
Length:	2.80	_in	7.12	cm	_	Dry Wt.+tare:	478.92	_Dry Wt.+tare:	
Area:	6.38	_in^2	41.16	cm2		Tare Wt:	146.73	_Tare Wt:	151.98
Volume :	17.88	_in^3	292.92	cm3		Dry Wt.:	332.19	_Dry Wt.:	260.4
Unit Wt.(wet):	97.45	_pcf	1.56	g/cm^3		Water Wt.:	232.15	Water Wt.:	157.59
Unit Wt.(dry):	57.36	_pcf	0.92	g/cm^3		% moist.:	69.9	_% moist.:	60.5
Specific Gravity:	:	2.50	Max Drv Do	ensity(pcf) =	57.38916	OMC =	= 69.8847045		
				% of max		+/- OMC =		-	
Calculated 9	% saturation:	87.92	Void i	ratio (e) =	1.72	Porosity (n)=	0.63	-	
Jaioaiaioa	70 Galaranorn	- 01.02	-	(0)	<del></del> _	_ (r)		-	
				TEST RE	EADINGS				
Z1(Mercury I	Height Differer	nce @ t1):	5.1	cm	Hydraulic (	Gradient =	9.04		
` .	J	• ,	-						
Date	elapsed t	Z	$\Delta Z\pi$	temp	α	k	k		
	(seconds)	(pipet @ t)	(cm )	(deg C)	(temp corr)	(cm/sec)	(ft./day)	Reset = *	
8/26/2009		4.2	2.4553335	25	0.889	3.20E-06	9.06E-03	-	
8/26/2009	***************************************	4.05	2.6053335	25	0.889	3.10E-06	8.79E-03	-	
8/26/2009		3.9	2.7553335	25	0.889	3.04E-06	8.61E-03	-	
8/26/2009		3.75	2.9053335	25	0.889	3.00E-06	8.52E-03		
						***************************************		•	
		ka =	3.08E-06		MARY	Accontance	ritorio –	25	%
		ка <u>ki</u>	3.00⊏-00	G11/360	<u>Vm</u>	Acceptance co	<del>.</del>	20	/0
		<u>N</u> k1 =	3.20E-06	cm/sec	3.6	%	Vm =	ka-ki	x 100
		k2 =	3.10E-06		0.5	% %	VIII -	ka	X 100
		k2 – k3 =	3.04E-06			% %		Ka	
					1.5				
		k4 =	3.00E-06	GII/SeC	2.6	%			
	Hydraulic cor	nductivity	k =	3.08E-06	cm/sec	8.74E-03	ft/day	]	
	Void Ratio		e =					1	
	Porosity		n =	0.63					
	Bulk Density		γ =		g/cm3	97.5	pcf		
	Water Conte		W =		cm3/cm3	( at 20 deg C	•		
	Intrinsic Pern	neability	kint =	3.16E-11	cm2	( at 20 deg C	)	j	
	Liquid Limit	LL							
	Plastic Limit	PL				Respectfully S	ubmitted		
	Plasticity Ind	lex PI							
	- 200 Sieve			%		111	ann.		
	+ No 40 Siev	e		%		Kalist	MAL		
	+ No 4 Sieve			%		Robert M. Dul	CP P F		-
	5.646		1	l ′°		NODELL IVI. DUI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

210 Beech Street Texarkana, AR 71854 870-772-0013 Phone 870-216-2413 Fax

1717 East Erwin Tyler, Texas 75702 903-595-4421 Phone 903-595-6113 Fax www.ettlinc.com

707 West Cotton Street Longview, Texas 75604-5505 903-758-0915 Phone 903-758-8245 Fax



# ETTL Engineers & Consultants Inc. GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

#### HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :		artin Lake Su	pplemental	, TP-31, Tatur	n, Texas				
Date:	9/9/2009		•	Panel Number	:	P1; ASTM	D 5084		
Project No.:	G 3219-09	Pe	rmometer D	ata					
Bonng No.:	TP- 31		ap =	0.031416	cm2	Set Mercury to	Equilibrium	1.8	cm3
Sample:	9228		aa =	0.767120	cm2		Pipet Rp	6.7	cm3
Depth (ft):	0' to 5'		M1 =	0.030180	) C=	0.000414162	2 Annulus Ra	1.5	cm3
Other Location:			M2 =	1.040953	3 T =	0.203870442	2		-
Material Des	cription :	Tan & Red	dish Tan Sil	ty Sand					
				SAMPL	E DATA				
\A/a+\A/+ aam			607.00	_					
Tare or ring	nple + ring or t	are:	627.20	9		Defe			. T
			0.0	.9			e Test		r Test
Wet Wt: of S	•		627.20	g	_	Tare No.:	T6	Tare No.:	T 1
Diameter :	2.89	_in	7.33	.cm2		Wet Wt.+tare:	841.20	Wet Wt.+tare	
Length:	2.88	_in	7.30	cm	_	Dry Wt.+tare:	749.54	Dry Wt.+tare:	
Area	6.55	_in^2	42.23	cm2		Tare Wt:	217.39	Tare Wt:	217.29
Volume :	18.82	_in^3	308.41	cm3		Dry Wt.:	532.15	Dry Wt.:	524.43
Unit Wt.(wet):	126.90	_pcf	2.03	g/cm^3		Water Wt.:	91.66	Water Wt.:	99.99
Unit Wt.(dry):	108.26	_pcf	1.73	g/cm^3		% moist.:	17.2	_% moist∴	19.1
Specific Gravity:		2.65	Max Dry D	ensity(pcf) =	108.3018	OMC =	17.2244668		
				% of max =		+/- OMC =	_	-	
Calculated 9	% saturation:	95.65	Void	ratio (e) =	0.53	Porosity (n)=	0.35	-	
				ìí		•		-	
			**	TEST RE					
Z1(Mercury F	Height Differer	nce @ t1):	5.1	cm	Hydraulic (	Gradient =	8.81		
Date	elapsed t	Z	$\Delta Z\pi$	temp	α	k	k		
	(seconds)	(pipet @ t)	(cm )	(deg C)	(temp corr)	(cm/sec)	(ft./day)	_ Reset = *	
7/31/2009		5.3	1.3550759	25	0.889	1.98E-07	5.63E-04		
7/31/2009		5.1	1.5550759	25	0.889	1.95E-07	5.53E-04		
7/31/2009		5	1.6550759	25	0.889	1.80E-07	5.12E-04		
7/31/2009	960	4.8	1.8550759	25	0.889	1.82E-07	5.17E-04		
				SUMM	IARY				
		ka =	1.89E-07	cm/sec		Acceptance cr	iteria =	25	%
		<u>ki</u>			<u>Vm</u>	·			
		k1 =	1.98E-07	cm/sec	5.0	%	Vm =	<u>  ka-ki  </u>	x 100
		k2 =	1.95E-07		3.2	%		ka	-
		k3 =	1.80E-07		4.5	%			
		k4 =	1.82E-07	cm/sec	3.6	%			
			•						
	Hydraulic cor	nductivity	k =	1.89E-07	cm/sec	5.36E-04	ft/day		
	Void Ratio		e =	0.53					
	Porosity		n =	0.35					
	Bulk Density		γ =	2.03	g/cm3	126.9	pcf		
	Water Conte		w =	0.30	cm3/cm3	( at 20 deg C)			
	Intrinsic Pem	neability	kint =	1.94E-12	cm2	( at 20 deg C)			
	Liquid Limit	LL [	20						
	Plastic Limit	PL	17			Respectfully S	ubmitted		
	Plasticity Ind		3				·· <del>·</del>		
	- 200 Sieve	ł	27	%		11/	Man.		
		_			•	Kilot			
	+ No 40 Siev	ا ا	2	%		/ VARVII	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th		
	+ No 4 Sieve	1	1	%		Robert M. Duk			•



### ETTL Engineers & Consultants Inc.

GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

Project:	Luminant Martin Lake Supplementa	al, Tatum, Texas	
Client:	HDR		
Contractor:		•	
Job No.	G 3219 - 09		
Sample No.:	9228	Date Sample	ed: 8/26/2009
Material Origin:	TP- 31		
Sampling Info. provided By:	Jacob LeNoir		
Location Sampled:	TP- 31		
Material Description:	Tan & Reddish Tan Silty Sand		
Sampled By:	Jacob LeNoir		
Technician:	T. Sliger	Date:	8/28/2009

Maximum Dry Density: (ASTM D 698)	115.9	(lb/ft ³ )
Optimum Moisture Content:	13.2	(%)

Optimum Moisture Content:	13.2	(%)
	 	1

Classification	LL	20	
	PL	17	
	PI	3	

+40 Sieve	2%
1.40 01040	Z70
+4 Sieve	1%

Procto	r Points
% Moisture	Dry Density (lb/ft ³ )
9.6%	111.1
11.9%	114.9
14.3%	115.1
16.3%	110.9
18.6%	105.7



Respectfully Submitted

Robert M. Duke, P.E.

210 Beech Street Texarkana, AR 71854 870-772-0013 Phone 870-216-2413 Fax

1717 East Erwin Tyler, Texas 75702 903-595-4421 Phone 903-595-6113 Fax www.ettlinc.com

707 West Cotton Street Longview, Texas 75604-5505 903-758-0915 Phone 903-758-8245 Fax

Established in 1960, Golder Associates is a global, employee-owned organization that helps clients find sustainable solutions to the challenges of finite resources, energy and water supply and management, waste management, urbanization, and climate change. We provide a wide range of independent consulting, design, and construction services in our specialist areas of earth, environment, and energy. By building strong relationships and meeting the needs of clients, our people have created one of the most trusted professional services organizations in the world.

Africa + 27 11 254 4800 Asia + 852 2562 3658 Australasia + 61 3 8862 3500 Europe + 356 21 42 30 20 North America + 1 800 275 3281 South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Inc. 500 Century Plaza Drive, Suite 190 Houston, TX 77073 USA

Tel: (281) 821-6868 Fax: (281) 821-6870







# SAFETY FACTOR ASSESSMENT REPORT

#### **Martin Lake Steam Electric Station**

**Submitted To:** Luminant

1601 Bryan Street Dallas, TX 75201

Submitted By: Golder Associates Inc.

500 Century Plaza Drive, Suite 190

Houston, TX 77073 USA

JEFFREY B. FASSETT 85675

Professional Engineering Firm Registration Number F-2578

October 2016 Project No. 164816402





### **Table of Contents**

1.0	INT	RODUCTION	1
1.1	P	Purpose	1
1.2	S	ite Background	1
1	.2.1	The Bottom Ash Ponds (BAPs)	1
1	.2.2	New Scrubber Pond (NSP)	1
1	.2.3	Permanent Disposal Pond-5 (PDP-5)	2
1.3	P	Previous Slope Stability Evaluations	2
2.0	SUI	BSURFACE CONDITIONS	3
2.1	S	ite Geology	3
2	.1.1	Bottom Ash Ponds and New Scrubber Pond	3
	2.1.	1.1 Subsurface Investigations and Laboratory Testing	3
	2.1.	1.2 Subsurface Site Conditions	
2	.1.2	Permanent Disposal Pond - 5	4
	2.1.2	2.1 Subsurface Investigations and Laboratory Testing	4
	2.1.2	2.2 Subsurface Site Conditions	5
3.0	STA	ABILITY ANALYSIS - §257.73(e)	6
3.1		Safety Factor Assessment	
3.2	C	Cross-Sections Analyzed	6
3	.2.1	Bottom Ash Ponds and New Scrubber Pond	6
3	.2.2	Permanent Disposal Pond – 5	7
3.3	N	Naterial Properties	7
3	.3.1	Bottom Ash Ponds and New Scrubber Pond – Cross Section A-A'	7
3	.3.2	Permanent Disposal Pond – 5 – Cross Section B-B'	7
3.4	P	Phreatic Surface	8
3	.4.1	Bottom Ash Ponds and New Scrubber Pond	8
3	.4.2	Permanent Disposal Pond – 5	8
3.5	S	Seismic Loading	9
3.6	L	iquefaction Potential	9
3	.6.1	Bottom Ash Ponds and New Scrubber Pond	9
3	.6.2	Permanent Disposal Pond - 5	9
3.7	S	stability Analysis Results	10
4.0	CO	NCLUSION	12
5.0	CEI	RTIFICATION	13
6.0	RFI	FERENCES	14

i



#### **List of Tables**

Table 1 Soil Properties for Section A-A'
 Table 2 Soil Properties for Section B-B'
 Table 3 Slope Stability Analysis Results

#### **List of Figures**

Figure 1 General Site Map

#### **List of Appendices**

Appendix A Boring Location Map & Boring Logs

Appendix B Laboratory Test Results

Appendix C CPT-Based Liquefaction Potential Analysis

Appendix D Slope Stability Analysis Results





#### 1.0 INTRODUCTION

#### 1.1 Purpose

The "Disposal of Coal Combustion Residuals (CCR) from Electric Utilities rule" (40 Code of Federal Regulations (40 CFR) Part 257), effective October 19, 2015, requires that existing CCR surface impoundments meeting the requirements of §257.73(b) conduct initial and periodic safety factor assessments in accordance with §257.73(e). This report provides the safety factor assessments for the Martin Lake Steam Electric Station's (MLSES's) CCR Impoundments, identified as the Bottom Ash Ponds (BAPs) – the West Ash Pond (WAP) and the East Ash Pond (EAP) – the New Scrubber Pond (NSP), and the Permanent Disposal Pond-5 (PDP-5).

#### 1.2 Site Background

The MLSES generates bottom ash, fly ash, and flue gas desulfurization (FGD) material during electricity generation. The following surface impoundments, shown on Figure 1, are in operation at the MLSES and subject to the CCR rule.

#### 1.2.1 The Bottom Ash Ponds (BAPs)

The BAPs include the West Ash Pond (WAP) and the East Ash Pond (EAP). The WAP and EAP receive sluice water from bottom ash dewatering bins and other process wastewater sources that typically include bottom ash fines. The BAPs were originally constructed in 1977 with a 2-feet thick compacted clay liner. In 1989, the WAP was relined with a 60-mil high density polyethylene (HDPE) geomembrane over 3 feet of clay on the sideslopes, and the floor with a double 60-mil HDPE geomembrane with a geonet leak detection layer overlying an 18-inch thick clay liner. Both the sideslopes and floor are overlain with a 4-inch thick concrete revetment mat. In 2010, the sideslopes and floor of the EAP were relined with a double 60-mil HDPE geomembrane with a geonet leak detection layer overlying an 18-inch thick clay layer. A geotextile layer was placed between the lower geomembrane and the clay. The liner system on the sideslopes and floor of the EAP are overlain with a 4-inch thick concrete revetment mat.

#### 1.2.2 New Scrubber Pond (NSP)

The NSP, abutting the southeastern portion of the WAP and the southern portion of the EAP, is used to manage FGD wastes and discharge from the sludge thickener sumps, the plant yard sumps, and stormwater management areas. Water collecting in the NSP serves as wet-well make-up water as well as emergency make-up water in the scrubber area. The NSP was originally constructed with the BAPs and lined with clay liner. In 1989, the NSP was relined with a double 60-mil HDPE geomembrane with a geonet leak detection layer. A geotextile layer was placed between the lower geomembrane and the subgrade and a 4-inch thick concrete revetment mat covers the upper geomembrane.





#### 1.2.3 Permanent Disposal Pond-5 (PDP-5)

PDP-5 is primarily used to manage excess liquids including stormwater and excess process wastewater from both the New Scrubber Pond and Bottom Ash Ponds. Recovered CCR wastewaters are received in PDP-5 during cleaning cycles. PDP-5 was constructed in 2010/2011, above PDP-1, PDP-2, and PDP-3, which were previously closed as landfills. PDF-5 is lined with a 3-foot thick clay liner on the sideslopes and a 2-foot thick clay liner on the floor, both overlain with a 0.5-foot thick protective cover soil layer.

#### 1.3 Previous Slope Stability Evaluations

Golder and ETTL Engineers and Consultants (ETTL) have previously performed evaluations on the BAPs, the NSP and PDP-5 as part of the following reports submitted to Luminant:

- Ash and Scrubber Ponds and Permanent Disposal Pond #4, Stability Investigation Report, Luminant Martin Lake SES, Rusk County, Texas, Golder, dated December 2012.
- Geotechnical Investigation, Luminant Martin Lake SES, Reline East Ash Disposal Pond, Tatum, Texas, ETTL, dated December 2008.

The studies found the BAPs and NSP slopes to be adequately stable.

ETTL performed stability evaluations on PDP-5 in 2009, as presented in the following report:

- Geotechnical Investigation, Luminant Martin Lake SES, Vertical Expansion of Permanent Disposal Ponds 1, 2, and 3, Tatum, Texas. ETTL Engineers and Consultants Inc. Tyler, Texas, dated July 2008.
- Geotechnical Investigation, Luminant Martin Lake SES, Vertical Expansion of Permanent Disposal Ponds 1, 2, and 3, Tatum, Texas Supplemental Seepage and Slope Stability. ETTL Engineers and Consultants Inc., dated October 2009.

The above reports found the design slopes of PDP-5 to be stable as long as drainage is functional, preventing the embankments from saturating.





#### 2.0 SUBSURFACE CONDITIONS

The MLSES site is located in the Martin Creek area which is situated in the Sabine River Valley and lies on the west flank of the Sabine Uplift. The formations in the region comprise sedimentary deposits of continental and marine origin, mainly the lower Wilcox Group flanked by younger beds like the Carrizo Sand. In the Martin Creek area, the Wilcox formation is estimated to be about 650- to 700-feet thick and consists of sandy clays, silty sands, clays, and lignite in varying amounts. The Rockdale formation is the major component in the area among the sediments of the Wilcox group occupying approximately the middle four-fifths of the Wilcox Section. The Wilcox Group is underlain by the Paleocene Midway Group (containing Upper Willis and Lower Kincaid), which is estimated to be 900-feet thick around the site, and is composed mainly of silty clay and clay. The Midway Group overlies a section of Cretaceous Rocks that are approximately 7000-feet thick (Rone Engineers, 1984).

#### 2.1 Site Geology

#### 2.1.1 Bottom Ash Ponds and New Scrubber Pond

#### 2.1.1.1 Subsurface Investigations and Laboratory Testing

Information from previous subsurface investigations was used to characterize the subsurface site conditions. In 2008, ETTL conducted a subsurface investigation for the EAP as part of an effort to reline the pond. ETTL drilled twelve borings along the crest of the EAP embankment at approximate elevation 330 feet – mean sea level (ft-msl). All borings were 40-feet deep except one which was 100-feet deep. The boring map and boring logs are presented in Appendix A. Geotechnical laboratory testing – moisture contents, Atterberg limits, grain size distribution, and consolidated-undrained (CU) triaxial compression tests - was conducted on selected samples. The soil index testing results presented as part of the boring logs, while the CU test results from ETTL are summarized in Appendix B.

Golder conducted a subsurface investigation for the WAP and NSP in December 2012. Golder completed eight, 50- to 60-foot deep borings along the crest of the pond embankments at approximate elevation 330 ft-msl. The boring map and boring logs are presented in Appendix A. As part of the investigation, laboratory testing was performed on selected samples in accordance with commonly accepted methods and practices. Undisturbed and disturbed soil samples were tested to determine water content, Atterberg limits, grain size distribution, and shear strength. Water content determination was performed in accordance with ASTM D2216; Atterberg limits were determined in accordance with ASTM D4318; and grain size distribution was performed in accordance with ASTM D422. Shear strength testing consisted of unconsolidated-undrained (UU) triaxial compression in general accordance with ASTM D2850. Laboratory test results are presented in Appendix B.





The findings from the above subsurface investigations were reviewed for their applicability to this study, and are summarized in the following sections.

#### 2.1.1.2 Subsurface Site Conditions

The above borings consisted of fill and native soils. The soils encountered in the borings generally consisted of stiff to hard sandy clays and firm to very dense sands. The subsurface stratigraphy generally consisted of interchanging layers of clays, sandy clays, clayey sands and non-plastic sands. The clayey sand layers ranged in thickness from 2 to 16 feet where encountered. The sandy clay and clay layers are described as firm to hard, low to high plasticity clays and vary in thickness from 2 to 38 feet. Loose to very dense, silty or poorly graded sand was typically encountered beneath or interlayered with the sandy clay/clayey sand strata. The 100-foot boring by ETTL showed deeper layers of very dense silty sand with intermittent layers of hard low plasticity clay.

Water was encountered in each of the eight borings performed by Golder, ranging between El. 296.1 to 303.3 ft-msl. The average water elevation measured in the Golder boreholes, during drilling, was at El. 300.3 ft-msl. The ETTL borings measured the water level to range between El. 304 to 309 ft-msl, with an average water level of El. 306 ft-msl.

Groundwater levels measured in 2015, from wells surrounding the BAPs vary from approximately El. 304 ft-msl in the southeast corner to El. 307 ft-msl in the northwest corner.

#### 2.1.2 Permanent Disposal Pond - 5

#### 2.1.2.1 Subsurface Investigations and Laboratory Testing

In 2008, ETTL performed a pre-construction subsurface investigation for PDP-5 that included a total of eleven borings within the PDP-5 footprint. In addition, three cone penetrometer tests (CPTs) were performed. As part of a supplemental investigation in 2009, ETTL drilled four additional borings within the pond footprint. A map of borings, and boring and CPT logs are presented in Appendix A.

ETTL performed laboratory tests including natural moisture contents (ASTM D2216), Atterberg limits (ASTM D4318), particle size distributions (ASTM D 1140 and ASTM D422). Unconsolidated-undrained (UU) triaxial compression tests (ASTM D2850) were performed to determine the strength characteristics of cohesive substrata. Direct shear tests (ASTM D3080) were performed on coarser materials including remolded bulk ash samples. Consolidation tests (ASTM D2435) and permeability tests (ASTM D5084) were also performed but are not relevant to the current study. The results of the laboratory tests performed by ETTL are presented in Appendix B.





#### 2.1.2.2 Subsurface Site Conditions

Most of the above borings were drilled through the bottom ash within closed PDP-1, 2, and 3. Based on particle size, the ash classifies as very loose to medium dense poorly graded sands in some locations, to silts in other locations and depths. The borings passing through existing embankments of PDP-1, 2, and 3 contained medium stiff to very stiff clay of low plasticity and/or high plasticity clay with clayey sand. Native soils were identified in deeper borings as very dense silt with hard low plasticity clay seams.

Since the subsurface investigations for the PDP-5 area were performed prior to construction of the PDP-5 embankment, there are no borings that pass through the embankment. However, ETTL (ETTL 2009) identified a site borrow source (characterized as sandy materials), soils from which were to be used in the construction of the embankment. Triaxial strength testing (CU tests) were also performed on these site soils, and hence, the embankment strength has been estimated.

Two borings located outside of the ash encountered water approximately between El. 355 to 368 ft-msl. Groundwater levels measured in 2015, from wells surrounding PDP-5, indicate that the groundwater level varies from approximately El. 355 ft-msl in the north to El. 375 ft-msl in the south.





#### 3.0 STABILITY ANALYSIS - §257.73(e)

#### 3.1 Safety Factor Assessment

According to the CCR rules, structural stability factors of safety need to be evaluated for the critical cross-section of each CCR facility under static and seismic loading for "Maximum Storage Pool" (2 feet of freeboard for this facility) and "Maximum Surcharge Pool" (no freeboard)conditions. Liquefaction potential analysis is only necessary when soil sampling, construction documentation or anecdotal evidence from personnel with knowledge about the facility, indicates that soils of the embankment are susceptible to liquefaction. Since ash classifying as sandy soil is present below portions of the PDP-5 embankment, liquefaction potential is considered for PDP-5 foundation soils.

The safety factor assessment [§257.73(e)] does not require evaluation of rapid-drawdown loading conditions; however, if the CCR unit has downstream slopes that can be inundated by an adjacent water body, the structural stability assessment requirements [§257.73(d)(1)(viii)] state that these slopes must be assessed. Since one of the cross-sections analyzed in this Safety Factor Assessment may be subjected to rapid draw-drawdown conditions, this condition was evaluated and presented herein. The results of the analysis are also reported in the Structural Stability Assessment Report (Golder, 2016).

Slope stability analyses were performed using a limit-equilibrium-based commercial computer program, Slide v7.0 by Rocscience. The analyses used a searching routine to identify the potential failure surface with minimum factor of safety for a given set of geometry, ground and groundwater conditions. The Spencer method of analysis was used in the analyses, while the Morgenstern Price method was used for verification. The factors of safety of numerous potential failure surfaces were computed to establish minimum factors of safety. Circular failure surfaces were considered for all cases. Stability analyses were performed for "Maximum Storage Pool" (freeboard of 2 feet) and "Maximum Surcharge Pool" (no freeboard) conditions for both the interior and exterior slopes of the ponds. In addition, the interior slopes were analyzed while the pond is empty. For each case, respective slopes were analyzed for both static and seismic loading conditions. The interior berms separating individual ponds were not analyzed since the failure of the interior berms will not result in any release of CCR materials beyond the embankment surrounding the BAPs and NSP.

#### 3.2 Cross-Sections Analyzed

#### 3.2.1 Bottom Ash Ponds and New Scrubber Pond

The BAPs and NSP are contiguous ponds surrounded by a continuous embankment that was built using the same site soils. Hence, the embankment is considered as one structure and a critical cross-section was identified after considering multiple cross-sections across the entire embankment. The geometry of the slopes, soil profile, loading conditions, and phreatic surface of each segment of the embankment were





evaluated in identifying the critical cross-section. Cross-section (A-A'), located on the eastern slope of the EAP as shown on Figure 1, was identified as the critical cross-section for the BAPs and NSP and was selected for evaluation of factors of safety under the loading conditions identified in §257.74(e)(1)(i) - (iv).

#### 3.2.2 Permanent Disposal Pond – 5

The geometry of the slopes, soil profile, loading conditions and phreatic surface of each segment of the embankment surrounding the PDP-5 was evaluated. Cross-Section B-B', located on the south side of PDP-5 as shown on Figure 1, was identified as the critical cross-section and was selected for evaluation of factors of safety under the loading conditions identified in §257.74(e)(1)(i) - (iv).

#### 3.3 Material Properties

#### 3.3.1 Bottom Ash Ponds and New Scrubber Pond – Cross Section A-A'

Based on the previous subsurface investigations, appropriate material properties were selected for use in the stability analysis. CU triaxial testing was performed on three samples on the BAP embankments, by ETTL (2008). The effective stress parameters from these three tests are averaged and used in the analysis. For the subsequent foundation soil layers, values of shear strength are chosen either based on testing of deeper samples by ETTL or by assuming typical, conservative values for sandy soils. Table 1 summarizes the material properties used in the stability analysis of Section A-A'.

Table 1: Soil Properties for Section A-A'

			Saturated	Drained Soil Properties				
Soil Material	Description	Moist Unit Weight (lb/ft³)	Unit Weight (lb/ft³)	Cohesion, c' (lb/ft²)	Friction Angle, φ' (°)			
I	Fat Clay	120	125	542	23			
II	Silty Sand	127	132	0	30			
III	Clayey Sand	127	132	0	32			
IV	Sand/Silty Sand	127	132	0	34			

#### 3.3.2 Permanent Disposal Pond – 5 – Cross Section B-B'

Based on the borings and CU tests performed as part of the 2009 investigation by ETTL, shear strength parameters were chosen for the soil layers for cross-section B-B'. For the deep sand layer, a conservative friction angle of 34° and zero cohesion was assumed. Table 2 summarizes the material properties used in the stability analysis of cross-section B-B'.





Table 2: Soil Properties for Section B-B'

		Moist	Saturated	Drained Soil Properties				
Soil Material	Description	Unit Weight (lb/ft³)	Unit Weight (lb/ft³)	Cohesion, c' (lb/ft²)	Friction Angle, φ' (°)			
I	New embankment	125	130	0	34.7			
II	Clay liner	127	132	650	31.4			
III	Old ash	90	90 95 0 3		34.6			
IV	Native clay	127	132	175	31.9			
V	Sandy Clay/Clayey Sand	127	132	650	31.4			
VI	Deep sand	127	132	0	34			

#### 3.4 Phreatic Surface

#### 3.4.1 Bottom Ash Ponds and New Scrubber Pond

For the purpose of this report, the phreatic surface is defined as the potential saturated zone within the embankment that could exist due to infiltration of water from the ponded CCR. As discussed earlier, measurements within the monitoring wells indicate groundwater levels across the BAPs and NSP vary between El. 304 to 307 ft-msl. At cross-section A-A', the groundwater level is assumed to be El. 306 ft-msl. The interior slopes of the ponds have a clay liner, a double HDPE geomembrane layer, overlain by a concrete revetment. Hence, it is unlikely that the phreatic surface will extend into the embankment, or into the ground below on the floor of the ponds.

Drawdown of the water level in Martin Lake can potentially affect the stability of Section A-A'. Based on the historic water level data available from the Texas Water Development Board (TWDB 2016), the maximum drawdown was observed to be about 10 feet. This drawdown, however, was not instant but spread across a period of approximately one year. Hence, effective stress-transient drawdown analyses were conducted for the exterior slope at Section A-A', for a 10-foot drawdown in water level at a uniform rate, over one year.

#### 3.4.2 Permanent Disposal Pond – 5

As mentioned previously, groundwater levels measured in 2015, from wells surrounding PDP-5, indicate that the groundwater level around the pond varies from approximately El. 355 ft-msl in the north to El. 375 ft-msl in the south. Underlying PDP-5, the ash in PDP-1, 2 and 3 is at least partially saturated. A toe drain system keeps the water level within the ash below El. 380 feet. Therefore, the saturated zone within the ash is assumed to be at El. 380 ft-msl for cross-section B-B' on the upstream side.





For the stability analysis of the exterior embankment slope, the location of the phreatic surface is estimated by allowing steady state seepage conditions to develop based on the water level within PDP-5 and the elevation of the saturated ash in PDP-1, 2 and 3.

Note that the phreatic surface elevations were conservatively assumed for stability analysis purposes -- they do not represent the elevation of the uppermost aquifer.

#### 3.5 Seismic Loading

Based on the "US Seismic Hazard 2014 Map" prepared by the United States Geologic Survey (USGS) and the "2008 Interactive Deaggregations" (USGS), the peak ground acceleration (PGA) for a 2% probability of exceedance in 50 years (return period of 2,475 years) is 0.09g for the site location (including amplification factors for site soil conditions). Hence, a horizontal seismic load coefficient of 0.09g was used in the pseudostatic analysis.

#### 3.6 Liquefaction Potential

Soil liquefaction describes a phenomenon whereby a saturated or partially saturated soil substantially loses strength and stiffness in response to an applied stress, usually earthquake shaking or other sudden change in stress condition, causing it to behave like a liquid. The phenomenon is most often observed in saturated, loose (low density or uncompacted), sandy soils.

#### 3.6.1 Bottom Ash Ponds and New Scrubber Pond

The embankment soils of the BAPs and NSP are composed of clayey materials with significant fines content. The immediate foundation materials are composed of sandy clay and compact to dense sand. The subsurface investigations do not indicate the presence of any soils in the embankment or its foundation that are susceptible to liquefaction. Hence, failure of the pond slopes due to liquefaction is considered unlikely for the BAPs and NSP.

#### 3.6.2 Permanent Disposal Pond - 5

Based on particle size, the bottom ash within PDP-1, 2, and 3 classifies as very loose to medium dense, poorly graded sand at some locations and silts at other locations and depths. Therefore, portions of the foundation soils for PDP-5 embankments are founded above potentially liquefiable material. Based on the above mentioned ETTL reports and the preparation of foundation materials during construction, the foundations and abutments are generally considered to be stable. Nevertheless, due to the classification of the some of the underlying ash as poorly graded sand, the potential for cyclic liquefaction of the ash was evaluated.

As part of the 2008 investigation by ETTL, CPTs were conducted within the ash underlying PDP-5. Golder conducted a liquefaction analysis based on this CPT data using the commercially available program, CLiq





v.2.0.6.85 released by GeoLogismiki. The method prescribed by Robertson (2009) was adopted in the cyclic liquefaction analysis. The site earthquake information (magnitude and PGA) was estimated using the seismic hazard tool developed by USGS (USGS 2008).

The analysis showed that all three CPT locations showed a low likelihood for cyclic liquefaction with a factor of safety greater than the minimum factor of safety of 1.20 specified in §257.73(e)(iv). The results from the cyclic liquefaction analysis are presented in Appendix C.

#### 3.7 Stability Analysis Results

Slope stability analyses were performed for long-term conditions for each of the critical cross-sections considered under static and seismic loading conditions. Both interior and exterior slopes were analyzed for "Maximum Storage Pool" (2 feet of freeboard) and "Maximum Surcharge Pool" (no freeboard) conditions. The interior slopes were analyzed for the condition where the pond is empty.

The results of the slope stability analyses cases are presented in Table 3 and Appendix D. The results indicate that the BAP, NSP, and PDP-5 pond slopes are sufficiently stable under all considered loading scenarios.





**Table 3: Slope Stability Analysis Results** 

Pond(s)	Cross- Section			Req'd Safety Factor ⁽¹⁾	Calculated Safety Factor		
		1a			Static	Static 1.50	
		1b		Storage	Pseudostatic	1.00	1.45
		1c	Exterior		Rapid Drawdown	1.30 ⁽²⁾	1.61
		2a		Surabarga	Static	1.40	1.94
		2b		Surcharge	Pseudostatic	1.00	1.45
BAP and NSP	A-A'	3a		Storage	Static	1.50	6.43
1101	3b		Siorage	Pseudostatic	1.00	4.22	
		4a	Interior	Surcharge	Static	1.40	7.21
		4b	IIILETIOI	Suicharge	Pseudostatic	1.00	4.60
		5a		Empty	Static	1.50	2.54
		5b		Lilipty	Pseudostatic	1.00	1.91
		1a		Storage	Static	1.50	1.67
		1b	Exterior	Storage	Pseudostatic	1.00	1.13
		2a	LAGIIOI	Surcharge	Static	1.40	1.67
		2b	Surcharge		Pseudostatic	Pseudostatic 1.00	
PDP-5	B-B'	3a		Storage	Static	1.50	2.05
FDF-5	D-D	3b		Storage	Pseudostatic	1.00	1.31
		4a	Interior	Surcharge	Static	1.40	2.43
		4b	IIILETIOI	Suicharge	Pseudostatic	1.00	1.45
		5a		Empty	Static	1.50	2.31
		5b		Епрц	Pseudostatic	1.00	1.73

11

Note:

⁽¹⁾ Required safety factors per §257.73(e)(i)-(iii) (2) Required factor safety per EM 1110–2–1902 (USACE 2003)



#### 4.0 CONCLUSION

Based on our review of the information provided by Luminant, on information prepared by Golder Associates Inc., and on our analyses, the calculated factors of safety through the critical cross sections in the surface impoundments exceed the values listed in §257.73(e)(1)(i)-(iv).

Golder appreciates the opportunity to assist Luminant with this project. If you have any questions, or require further assistance from Golder, please contact the undersigned at (281) 821-6868.

**GOLDER ASSOCIATES INC.** 

Varenya Kumar Staff Engineer

VK/JBF

Jeffrey B. Fassett, PE Associate Geotechnical Engineer



#### 5.0 CERTIFICATION

I hereby certify that this report has been prepared in general accordance with normally accepted civil engineering practices and in accordance with the requirements of 40 CFR 257.73(e).

13



Jeffrey B. Fassett, PE Golder Associates Inc.

Firm Registration Number F-2578



#### 6.0 REFERENCES

- ETTL Engineers and Consultants Inc. 2008, Geotechnical Investigation, Luminant Martin Lake SES, Reline East Ash Disposal Pond, Tatum, Texas
- ETTL Engineers and Consultants Inc. 2008. Geotechnical Investigation, Luminant Martin Lake SES, Vertical Expansion of Permanent Disposal Ponds 1, 2, and 3, Tatum, Texas.
- ETTL Engineers and Consultants Inc. 2009. Geotechnical Investigation, Luminant Martin Lake SES, Vertical Expansion of Permanent Disposal Ponds 1, 2, and 3, Tatum, Texas Supplemental Seepage.
- Golder Associates Inc. 2012. Ash and Scrubber Ponds and Permanent Disposal Pond #4 Stability Investigation Report, Luminant Martin Lake Power Plant, Rusk County, Texas.
- Golder Associates Inc. 2016. Structural Stability Assessment Report, Luminant Martin Lake Steam Electric Station.
- Robertson, P.K. 2009. Performance based earthquake design using the CPT. In Proceedings of IS-Tokyo 2009: International Conference on Performance-Based Design in Earthquake Geotechnical Engineering From Case History to Practice, Tokyo, Japan, 15–18 June 2009. Edited by T. Kokusho, Y. Tsukamoto, and M. Yoshimine. CRC Press/Balkema, Leiden, the Netherlands. pp. 3–20.
- Rone Engineers, 1984, Geotechnical Investigation, Solid Waste Disposal Facility No. 5, Martin Lake Steam Electric Station, Rusk County, Texas.
- Texas Water Development Board, 2016. Water data for Texas Martin Lake Reservoir. (http://www.waterdatafortexas.org/reservoirs/individual/martin)
- United States Army Corps of Engineers, 2003. Slope Stability Engineering Manual. EM 1110–2–1902.
- United States Department of Agriculture, Soil Conservation Service, 1990. Soil Survey of Camp, Franklin, Morris and Titus Counties, Texas.
- United States Geologic Survey, 2008. Interactive Deaggregations Tool. Geologic Hazards Science Center. (http://geohazards.usgs.gov/deaggint/2008/)







Professional Engineering Firm Registration Number F-2578



CLIENT LUMINANT POWER MARTIN LAKE

CONSULTANT



YYYY-MM-DD	2016-09-22
PREPARED	VK
DESIGNED	TNB
REVIEWED	MX
APPROVED	JBF

PROJECT
2016 COAL COMBUSTION RESIDUALS
ENGINEERING SERVICES

**GENERAL SITE MAP** 

PROJECT NO.	REV.	FIGURE
164816402		11_

# APPENDIX A BORING LOCATION MAP & BORING LOGS

**BOTTOM ASH PONDS AND SCRUBBER POND** 



# Golder Sociates 500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

## BORING NUMBER BH-201 PAGE 1 OF 2

0.15			PROJECT NAME _Pond Slope Stability							
			DDG IFOT LOCATION AND COLUMN							
									CIZE O inches	
			GROUND ELEVATION 330 ft HOLE SIZE 8 inches							
		CONTRACTOR WEST Drilling G								
		METHOD Hollow Stem Auger								
		Y _FW CHECKED BY _MP							_	
NOTE	<u> </u>		AFI	ER DRII	LLING			Ι		
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80	
		Remove 8" sandy gravel as road base		SH	44		5.0			
		(CL) SILTY CLAY, low plasticity, some sand, trace gravels, r dry, hard	ea,	1	44		3.0			
		(SC) CLAYEY SAND, non-plastic, some silt, tan and gray, dr	ry,	SS 2	58	15-10-7 (17)				
		compact		/\ 2		(17)	-			
5		(CL) SANDY CLAY, low plasticity, some silt, red, tan, and gramottled, dry, stiff	ay,	SH 3	44		3.5			
		(SC) CLAYEY SAND, fine, subangular, non-plastic, little silt, and gray, mottled, dry	tan	SH 4	38		1.5		•1 1	
10		(CL) SANDY CLAY, low plasticity, little silt and gravel, red, ta and gray, mottled, dry, hard	an,	SH 5	42		4.5			
15		some silt, no gravel, very stiff at 13.0'		SH 6	58		3.5		•	
20		some sand veins at 18.0'		SH 7	38		3.0			
25		gray, moist at 23.0'		SH 8	58		2.5		1-	
		$^{rac{ au}{2}}$ (SC) CLAYEY SAND, fine, subangular, low plasticity, some t	to little	SH						
30		silt		9	71		2.0			
35		some silt, tan and gray, mottled, moist at 33.0'	5	SS 10	100	9-7-9 (16)	_			

500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

## BORING NUMBER BH-201 PAGE 2 OF 2

	CLIE	NT Lu	minant PROJE	CT NAME	Ponc	l Slope Sta	bility		
	PROJ	IECT N	UMBER 123-94128 PROJE	CT LOCAT	LION _	Martin Lak	е		
	S DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
94128MARTINLAKE.GPJ	  - 40		some silty sand veins at 38.0'	SH 11	50		2.0		
KE\LAB TESTING	  - 45		(SM) SILTY SAND, fine, subangular, non-plastic, little clay, tan and red, wet, compact	SS 12	100	11-11-11 (22)	-		
STABILITY/MARTIN LA	   50		(SP) SAND, medium to fine, subangular, poorly graded, some silt, tan, wet, compact	SS 13	100	5-9-11 (20)	-		
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P?_2012 PROJECT FOLDERS\123-94128 LUMINANT POND SLOPE STABILITYMARTIN LAKE\LAB TESTING\94128MARTINLAKE.GPJ			Bottom of borehole at 50.0 feet.						

Golder Associates 500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

## BORING NUMBER BH-202 PAGE 1 OF 2

CLIEN	NT Lu	minant F	PROJECT NAME Pond Slope Stability								
1						Martin Lak					
		TED 10/29/12 COMPLETED 10/29/12 (						HOLE	SIZE 8 inches		
		CONTRACTOR WEST Drilling					-06/1		00.00 %		
		IETHOD Hollow Stem Auger				LING _26.7					
		Y _FW CHECKED BY _MP									
NOTE	. <u> </u>		AFI	EK DKII	LLING						
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80		
		Remove 6" sandy gravel from road bed  (CH) CLAY, medium to high plasticity, some silt, trace fine stan and gray, dry, very stiff to hard	sand,	SH 1	50		4.5				
		some sand at 2.0'		SH 2	63		3.5		4		
5				SH 3	50		5.0		•		
- - -			6	SH 4	63		3.75		•		
10		(CL) SANDY CLAY, low plasticity, some to little silt, tan and mottled, moist, firm	l gray,	SH 5	42		4.0		•		
15		some sand seams, very stiff at 13.0'	>	SH 6	42		3.0				
20		(CL) SILTY CLAY, medium to high plasticity, little find sand brown, moist, firm	,	SH 7	58		1.0				
25		low plasticity, gray, moist at 23.0'		SH 8	71		5.0				
30			/, gray	SS 9	83	7-7-9 (16)	-				
35		(SC) CLAYEY SAND, fine, subangular, low plasticity, some tan and gray, wet, compact	silt,	SS 10	100	3-5-6 (11)	_		<b>A</b> 9		

#### **BORING NUMBER BH-202**

**CLIENT** Luminant PROJECT NAME Pond Slope Stability PROJECT NUMBER 123-94128 **PROJECT LOCATION** Martin Lake ▲ SPT N VALUE ▲ SAMPLE TYPE NUMBER DRY UNIT WT. (pcf) POCKET PEN. (tsf) RECOVERY 9 (RQD) GRAPHIC LOG BLOW COUNTS (N VALUE) 40 60 ____8 ____80__ DEPTH (ft) MATERIAL DESCRIPTION 40 60 ☐ FINES CONTENT (%) ☐ 35 40 60 interbedded clay and sand seams at 38.0' SS 8-7-8 100 11 (15)40 no seams at 43.0' SS 4-4-4 89 12 (8) 45 (SP) SAND, medium to fine, poorly graded, subangular, non-plastic, some silt and clay, wet, loose 2-3-4 100 13 (7) 50 Bottom of borehole at 50.0 feet.

GEOTECH BH PLOTS - GINT STD US LAB. GDT - 12/4/12 15:58 - P?_2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE/LAB TESTING/94128MARTINLAKE. GPJ

### **BORING NUMBER BH-203**

	aı :=:				<b>-</b>		01 0:						
- 1							Slope Sta						
- 1			UMBER 123-94128 I							0.75			
			TED _10/30/12						HOLE	SIZE 8 inches			
- 1			ONTRACTOR WEST Drilling										
- 1			ETHOD Hollow Stem Auger							01.20 ft			
- 1			CHECKED BY MP	AT	END OF	DRILL	.ING						
	NOTE	s		AF.	AFTER DRILLING								
ARTINLAKE.GPJ	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80			
128M		000	remove 14" sandy GRAVEL as roadbed		SH	11		2.75					
G/94,	_		(CL) SILTY CLAY, low plasticity, little sand, gray and tan, m	ottled,	1	44		2.75					
AB TESTIN	· -		dry, very stiff (CL) SANDY CLAY, low plasticity, some silt, gray and tan, r dry, stiff		SH 2	50		1.5		•			
N LAKE\L	5_		low plasticity, some sand veins, soft		SH 3	42		1.25					
ITY/MART	_		(CL-CH) CLAY, low plasticity to medium plasticity, some sil to light gray, dry, stiff	t, dark	SH 4	67		1.75					
PE STABIL	 10		very stiff at 8.0'		SH 5	50		3.25					
DERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE/LAB TESTING/94128MARTINLAKE.GPJ	   - 15 _		low plasticity, some silt and fine sand, little coarse sand and gravels, subrounded, red and tan, stiff at 13.0'	d fine	SH 6	38		1.5		•			
	20		(CL) SANDY CLAY, low plasticity, some silt, tan and gray, r dry, stiff	mottled,	SH 7	44		2.0					
5:58 -			(SC) CLAYEY SAND, low plasticity, some silt, tan and gray	,	√ ss	04	3-7-7						
/12 1			mottled, compact, moist		SS 8	94	(14)						
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P._2012 PROJECT FOL	25 30		$_{\underline{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ilde{ ii}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	,	SS 9	94	4-7-8 (15)						
SEOTECH BH PLO	  		(SM) SILTY SAND, non-plastic, grading to sand, some silt, trace clay, gray, wet, compact	little to	SS 10	100	3-8-9 (17)	_		<b>A</b> •			

## BORING NUMBER BH-203 PAGE 2 OF 2

		NT Lur		PROJECT NAME Pond Slope Stability PROJECT LOCATION Martin Lake									
<u>-</u>	(#) (#) 35	GRAPHIC LOG	MATERIAL DESCRIPTION	L	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SF 20 PL 20 □ FINES 20	40 M 40	60	80 LL -I 80
SLOPE STABILITYMARTIN LAKE\LAB TESTING\94128MARTINLAKE.GPJ	40		some clay and silt veins, tan at 38.0'		SS 11	100	3-6-6 (12)						
ITY/MARTIN LAKE/LAB TE			(SC) CLAYEY SAND, low plasticity, some silt, tan and brown, wet compact	X	SS 12	100	4-8-10 (18)						
OPE STABIL	 50		(SM) SILTY SAND, non-plastic, trace clay, tan and gray, wet, dense  Bottom of borehole at 50.0 feet.	X	SS 13	100	8-14-20 (34)				<b>\</b>		

GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P^{.,}_2012 PROJECT FOLDERS\123-94128 LUMINANT POND SI

Golder Associates 500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

# BORING NUMBER BH-204 PAGE 1 OF 2

	NT <u>Lu</u>					Slope Sta	-					
								HOLE	SIZE 8 in	ches		
				WATER	_							
		ETHOD Hollow Stem Auger	$\overline{igspace}$ at	TIME OF	DRIL	LING 31.8	0 ft / E	Elev 2	98.20 ft			
LOG	GED BY	CHECKED BY MP	AT	END OF	DRILL	.ING						
NOTI	ES		AFTER DRILLING									
ARTINLAKE.GPJ O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SP 20 4 PL 20 4 FINES 20 4	•	80 LL -I 80	
128M	000	removed SANDY GRAVEL from roadbed		SH	67		4.25					
ING/94		(CL) SILTY CLAY, low plasticity, some sand, tan and gray, mottled, dry, hard		1	07		4.25					
AB TES		(CL) LEAN CLAY, low plasticity, some silt, sand, and sand vered and gray, dry, very stiff	eins,	SH 2	50		3.0					
5 S		(SC) CLAYEY SAND, low plasticity, some silt and black sand gravel veins, tan and gray, dry	ly	SH 3	33		5.0		•			
TY/MAKI		(CL) SANDY CLAY, low plasticity, little silt, tan and gray, dry,	stiff	SH 4	58		2.0		•			
D SLOPE STABIL		(SC) CLAYEY SAND, non-plastic to low plasticity, little silty c seam, tan, brown, with little gray, dry	lay	SH 5	44		2.5					
128 LUMINANI PON	-	(CL) LEAN CLAY, low to medium plasticity, some silt, trace fi sand, tan, brown, and gray, mottled, dry, stiff	ine	SH 6	67		2.0					
GEOTIECH BH PLOTS - GINTS ID US LAB.GDT - 12/4/12 15:58 - P.Y. 2012 PROJECT FOLDERS/133-94128 LUMINANI POND SLOPE SI ABILITYMARKIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MARTIIN LAKELLAB TESTING-94128MA		some sand, little silt		SH 7	67		1.5				:	
AB.GDI - 12/4/12/15:38 - 1		(CL) SANDY CLAY, low plasticity, little silt, tan and gray, moi very stiff	st,	SH 8	46		3.0					
30	- 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(ML) SANDY SILT, low plasticity to non-plastic, fine, subangusome clay, tan and gray, moist, soft	ılar,	SS 9	100	2-1-3 (4)			<b>A</b> •			
35 35		(SM) SILTY SAND, low plasticity to non-plastic, fine, subangular gray with little brown, dense	ular,	SS 10	94	11-14-18 (32)			•			

# BORING NUMBER BH-204 PAGE 2 OF 2

PROJECT N	ninant JMBER _123-94128	PROJECT NAME PROJECT LOCA					
GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)		POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
0094128MARTINILAKE.GPJ	(SC) CLAYEY SAND, fine, subangular, interbedded with sand, some clay, tan, wet, compact	gray, silty SS	94	4-5-6 (11)			<b>A</b> •
BILITYMARTIN LAKELAB TESTI	(CH) CLAY, medium plasticity, little silt, trace fine sand, stiff	gray, wet, SS 12	100	3-5-7 (12)			<b>A</b> F• 1
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 16:58 - P.\. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE.LAB TESTING/94128MARTINLAKE.GPJ	Bottom of borehole at 50.0 feet.						

### **BORING NUMBER BH-205**

				_									
	ENT Lu				•								
		UMBER 123-94128											
		TED _10/30/12					HOLE	SIZE 8 inc	hes				
		ONTRACTOR WEST Drilling											
DRI	LLING N	ETHOD Hollow Stem Auger											
LOC	GED BY	FW CHECKED BY MP	AT END OF DRILLING										
NO	TES		AFTER DRILLING										
RTINLAKE.GPJ DEPTH (#)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT 20 4 PL 1 20 4	MC 10 60 CONTEI	80 LL 			
194128MAF	-	(CL) LEAN CLAY, medium plasticity, some silt, trace sar and gray, mottled, dry, hard	od, tan SH	50		4.0		20 4	10 60	60			
B TESTING	-	with silty sand seams, very stiff at 2.0'	SH 2	60		3.5		•					
- TAKE/LAE		stiff at 4.0'	SH 3	40		1.25		•					
TYMARTII	-	very stiff at 6.0'	SH 4	58		3.75		  					
TABILI STABILI TO	-		SH 5	44		3.5		<u> </u>					
128 LUMINAN I POND SLO	-	some to little silt at 13.0'	SH 6	42		3.0		1	-1				
2012 PROJECT FOLDERSVIZA-		some clayey sand seams, stiff at 18.0'	SH 7	40		1.5							
75 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -	-	(CL) SILTY CLAY, low plasticity, some sand, dark gray, r	moist, stiff SH 8	67		1.75		•-1					
GEOLECH BH PLOIS - GNI SID US LAB.GDI - 12/4/12 15:58 - P./. 2012 PROJECT FOLDERS/123-94/128 LUMINANI POND SLOPE SI ABILITYMARK IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128MAR IIN LAKEILAB TESTING/94/128		(CL) SANDY SILTY CLAY, low plasticity, little clay, light $\ensuremath{\underline{\nabla}}$ little brown, moist, stiff	gray with SS 9	67	2-5-7 (12)								
35		(CL) SANDY CLAY, low plasticity, some silt, tan and gray very stiff	y, moist, SH 10	60		3.0		•					

## **BORING NUMBER BH-205**

	LIEN	IT Lui	minant PRO	JECT NAM	E Pon	d Slope Sta	bility		
- 1						Martin Lak			
111111111111111111111111111111111111111	(H) 35	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER			POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
F	40		(SC) CLAYEY SAND, interbedded with gray silty SAND, fine, subangular, little clay, compact, wet	St 1	3 100	3-6-8 (14)	-		<b>A</b> •
/MARTIN LAKE\LAB TE:	- 45 - -		(SP) SAND, fine, subangular, non-plastic, some clay, little silt, t and brown, wet, compact	an St	100	4-9-12 (21)	-		
POND SLOPE STABILITY	- 50 -		medium to fine, tan at 48.0'	S:	3 100	3-6-11 (17)	-		
FOLDERS/123-94128 LUMINANT F	- 55 _ - -		very loose at 53.0'	SS 12	33	_			
	- 60								
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P._2012 PROJECT FOLDERS\123-94128 LUMINANT POND SLOPE STABILITY\MARTIN LAKELAB TESTING\94128MARTINLAKE.GPJ			Bottom of borehole at 60.0 feet.						

## **BORING NUMBER BH-206**

	CLIEN	NT <u>Lur</u>	minant PROJE	ECT NAME	Pond	Slope Sta	bility					
	PROJ	ECT N		ECT LOCAT	TION _	Martin Lak	е					
	DATE	STAR	TED _10/30/12         COMPLETED _10/30/12         GROUP	ND ELEVA	TION	330.5 ft		HOLE	<b>SIZE</b> <u>8 in</u>	ches		
	DRILL	ING C	ONTRACTOR WEST Drilling GROU									
	DRILL	ING M	ETHOD Hollow Stem Auger	AT TIME O	FDRIL	LING 30.2	20 ft / E	Elev 30	00.30 ft			
	LOGG	SED BY	FW CHECKED BY MP	AT END OF	DRILL	.ING						
	NOTE	s		AFTER DRI	LLING							
NLAKE.GPJ	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SP 20 PL 1 20 □ FINES	T N VAL 40 60 MC 40 60 CONTE	) 80 LL I ) 80	)
JAK	0	//////			I'E		п.		20			
4128			(CL) SANDY CLAY, low plasticity, some silt, tan and gray, mottled dry, stiff	d, SH 1	44		2.25		•			
6/SNI			decreased and content year stiff at 2.0	<u>'</u>								
B TEST			decreased sand content, very stiff at 2.0'	SH 2	67		3.5		•	<del> </del>		
AKE/LA	5		interbedded with silty clay layers, very stiff at 4.0'	SH	50		2.25		•			
KIINL			some silty sand veins, very stiff at 6.0'	3 SH					:			
-ITY/M/	 			4	67		3.5		•			
STABI				SH 5	52		3.5		•			
SLOPE	_ 10 _								:			
POND												
NAN			trace organics, hard at 13.0'						:			
28 LUMI	 15			SH 6	54		4.5		•			
23-9412									:			
ERS/1												
FOLD			with clayey sand veins, hard at 18.0'	011					<u>i</u>		:	
ECL	 20			SH 7	50		5.0		• • • • • • • • • • • • • • • • • • • •			
PRO												
2012									:			
8- P:												
. 15:58			some red, moist at 23.0'	SH	50		4.5					
2/4/12	25			8	50							
- [												
AB.G									:			
J SN C			(CH) SANDY CLAY, medium to high plasticity, some silt, tan and						:			
I SIL			gray, very stiff	SH 9	52		3.25					
N .	_ 30 _		<u> </u>									
SIO									· · · · · · · · · · · · · · · · · · ·	:	:	
BH PI												
ECH			increased sand and silt content, dark gray, stiff at 33.0'	SH	56		1.5		:			
	35			10			1.5		:	: :	:	

## **BORING NUMBER BH-206**

	NT Lun		PROJECT NAME Pond Slope Stability PROJECT LOCATION Martin Lake						
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □	
35   40 		(SC) CLAYEY SAND, fine, subangular, low plasticity, some to little silt, gray, tan, and red, mottled, wet, compact	SS 11	100	5-6-6 (12)	-		20 40 60 80	
45 		(SM) SILTY SAND, fine, subangular, non-plastic, some clay, wet, loose	SS 12	100	3-4-5 (9)	-		<b>A</b> •	
50		(SP) SAND, medium to fine, trace coarse, poorly graded, subangular, non-plastic, some silt, tan, wet, compact	SS 13	100	2-6-12 (18)	-		<b>***</b>	
55 		no coarse, trace clay at 53.0'	SS 14	100	5-8-13 (21)	-			
60		dense at 58.0'  Bottom of borehole at 60.0 feet.	SS 15	100	9-18-23 (41)			• •	

### **BORING NUMBER BH-207**

	CLIEN	NT Lui	minant PROJ	JECT NA	AME	_Pond	Slope Sta	<u>bili</u> ty							
							Martin Lake	-							
- 1			TED _10/31/12						HOLE	SIZE 8 inches					
- 1				UND WA											
							_ING _34.4	10 ft / E	Elev 29	96.10 ft					
					FTER DRILLING										
}										▲ SPT N VALUE ▲					
TINLAKE.GPJ	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	☐ FINES CONTENT (%) ☐					
3MAR	0	60(	remove 8" of SANDY GRAVEL from roadbed							20 40 60 80					
94128			(CL) SILTY CLAY, low plasticity, trace fine sand, gray, dry, hard		SH 1	33		5.0		•					
JNG/K	-		(CL) SANDY CLAY, low plasticity, some silt and interbedded sar	nd	•										
AB TEST			seams, tan and gray, mottled, dry, firm		SH 2	58		3.0		•					
N LAKE\L	5_		(SP) SAND, poorly graded, non-plastic, some silt, clay, and grav black and tan, dry	/el,	SH 3	38		0.0		•					
TYMARTI			(CL) SANDY CLAY, low plasticity, some silt, gray and tan, dry, firm		SH 4	54		3.0							
STABILIT			hard at 8.0'		SH 5	50		5.0							
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P.\ 2012 PROJECT FOLDERS\123-94128 LUMINANT POND SLOPE STABILITYMARTIN LAKE\LAB TESTING\94128MARTINLAKE.GPJ			decrease sand content, stiff at 13.0'		SH 6	56		3.75							
P:_2012 PROJECT FOLDE	 20 		some sand seams at 18.0'		SH 7	52		2.5		•					
NB.GDT - 12/4/12 15:58 -			(SM) SILTY SAND, non-plastic, fine, subangular, little clay, gray moist	,	SH 8	33									
BH PLOTS - GINT STD US LA	30		(CL) SILTY CLAY, non-plastic, some sand, gray, moist, hard		SH 9	60		5.0		•					
GEOTECH	35		(SM) SILTY SAND, non-plastic, fine, subangular, little clay, gray with little tan, moist, compact		SS 10	89	6-7-7 (14)			<b></b>					

## **BORING NUMBER BH-207**

- 1				PROJECT NAME Pond Slope Stability PROJECT LOCATION Martin Lake						
-	PKOJ	ECIN	UMBER 123-94128 PROJEC			IUN _	iviartin Lak	e 		
	DEPTH (#)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
94128MARTINLAKE.GPJ	40		(SC) CLAYEY SAND, non-plastic, fine, subangular, some silt, gray and tan, wet, loose		SS 11	67	2-3-4 (7)			<b>A</b> •
RTIN LAKE\LAB TESTING	  - 45		compact at 43.0'	X	SS 12	100	3-5-5 (10)			
OND SLOPE STABILITY/MA	  50			X	SS 13	100	3-5-6 (11)	-		<b>.</b>
S\123-94128 LUMINANT PC	  <u>55</u>		(SP) SAND, medium to fine, non-plastic, some silt and clay, gray and tan, wet, loose	M	SS 14	89	2-2-5 (7)	-		<b>A</b> •
JECT FOLDER	  		(CL) SILTY CLAY, low plasticity, trace fine sand, gray, wet, very stiff	M	SS 15	100	3-7-12 (19)	-		<b>A</b> •
2 PRC		<u> / V / I</u>	Bottom of borehole at 60.0 feet.	•				•		
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P.\ 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE/LAB TESTING/94/128MARTINLAKE.GPJ										

### **BORING NUMBER BH-208**

CL	.IENT Lu	minant PROJE	CT NAME	Pond	l Slope Sta	bility						
PR	OJECT N		CT LOCA	TION _	Martin Lak	е						
DA	TE STAR	TED 10/31/12 COMPLETED 10/31/12 GROUP	ND ELEVA	TION	330.5 ft		HOLE	SIZE 8 inches				
DF	RILLING C	ONTRACTOR WEST Drilling GROUI										
DF	RILLING M	ETHOD Hollow Stem Auger										
LC	GGED BY	Y FW CHECKED BY MP										
NC	OTES		AFTER DRILLING									
ARTINLAKE.GPJ DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80				
128M	000	remove 12" of SANDY GRAVEL from roadbed	SH	44		3.5						
1G/94		(CL) SANDY CLAY, low plasticity, some silt, tan and gray, dry, still	ff 1	44		3.5						
AB TESTIN		stiff to very stiff at 2.0'	SH 2	50		4.0						
N LAKEIL	5	hard at 4.0'	SH 3	54		5.0		•				
TYMART		SILTY SAND, nonplastic, some clay, dry	SH 4	31		1.5		•				
E STABIL	0	(CL) SANDY CLAY, low plasticity, some silt, tan, gray, and red, dry, soft to firm	SH 5	50		2.0		•				
S/123-94128 LUMINANT POND SLO	5		SH 6	40		2.5						
2012 PROJECT FOLDER	0	very stiff at 18.0'	SH 7	50		3.5		•				
12/4/12 15:58 - P:\	5	hard at 23.0'	SH 8	46		5.0						
GEOTECH BH PLOTS - GINT STD US LAB GDT - 12/4/12 15:58 - P.Y. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKEILAB TESTING/94/128MARTINLAKE.GFJ CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTRO	0	some sand seams, moist, very stiff at 28.0' $\ensuremath{\underline{\nabla}}$	SH 9	54		3.0						
GEOTECH!	5	(SC) CLAYEY SAND, fine, subangular, some silt, tan, gray, and red, moist	SH 10	60		2.5						

#### **BORING NUMBER BH-208**

PAGE 2 OF 2

**CLIENT** Luminant PROJECT NAME Pond Slope Stability PROJECT NUMBER 123-94128 **PROJECT LOCATION** Martin Lake ▲ SPT N VALUE ▲ SAMPLE TYPE NUMBER POCKET PEN. (tsf) ' UNIT WT. (pcf) GRAPHIC LOG RECOVERY 9 (RQD) BLOW COUNTS (N VALUE) 40 60 DEPTH (ft) LL Ĭ 80 MATERIAL DESCRIPTION 40 60 20 DRYI ☐ FINES CONTENT (%) ☐ 35 40 60 GEOTECH BH PLOTS - GINT STD US LAB, GDT - 12/4/12 15:58 - P.\. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKELAB TESTING/94/128MARTINLAKE.GPJ wet at 38.0' SH 50 11 40 loose at 43.0' SS 3-2-3 100 12 (5) 45 (SP) SAND, fine, little medium, non-plastic, subangular, little clay, SS 1-6-8 72 tan, compact 13 (14)50 SS 3-6-7 100 (13)(SC) CLAYEY SAND, medium, some silt, brown 55 (SM) SILTY SAND, fine, subangular, non-plastic, little clay, gray, compact SS 15 7-43-50 (CL) SILTY CLAY, low plasticity, dark gray, dense 100 (93)SANDY GRAVEL, non-plastic, planar, lignite coal seam, black, hard Bottom of borehole at 60.0 feet.

## BORING NUMBER BH-209 PAGE 1 OF 2

CLIE	NT Lu	minant PRO	JECT NA	ME .	Pond	Slope Sta	bility				
1						Martin Lak					
1		TED 11/1/12 COMPLETED 11/1/12 GRO						HOLE	SIZE 8	inches	
1			UND WA								
											cave in at
		CHECKED BY MP				ING					
NOTE	:S		AFTER	DRIL	LING				<u> </u>		
			出		%		z	DRY UNIT WT. (pcf)	▲ S	PT N VAL	
	GRAPHIC LOG			NUMBER	RECOVERY (RQD)	NTS LUE	POCKET PEN. (tsf)	   	20 PL		80 LL
DEPTH (ft)	RAF	MATERIAL DESCRIPTION	IPLE	Ĭ ⊇	SS/	BLOW COUNTS (N VALUE	KE SE	158	20	40 60	80
	9		SAN	_	RE(	02	PQ	DR	☐ FINE	S CONTE	NT (%) 🗆
0	7.7.3	(SC) CLAYEY SAND, fine, subangular, medium plasticity, some							20	40 60	80
-		fine rounded gravel, red and brown, dry		SH   1	33		5.0		•••		
-		trace fine rounded gravel, tan and gray, mottled at 2.0'		011							
				SH 2	38		5.0		• • • • • • • • • • • • • • • • • • • •		
5		little silt, no gravel at 4.0'		SH							
				3	38		5.0		• • • • • • • • • • • • • • • • • • •		:
- -		some silt at 6.0'		SH							
-				4	29		4.5		•		
<u>-</u>		(CL) SANDY CLAY, low plasticity, some silt, tan and gray, dry,		ss	33	2-2-5			<b>A</b> •		:
10		firm		5		(7)	-		:		
									:		
									:		1
		some red, hard at 13.0'		SH	21		5.0				
15				6			0.0				
5											
<u> </u>											
		gray maint yang stiff at 10 0									
<u>-</u> 		gray, moist, very stiff at 18.0		SH 7	29		2.5				
20				-					<u>i</u>		
-											
<u> </u>		(CL) LEAN CLAY, low plasticity, some silt, trace fine sand, gray	+			400					
		and tan, moist, stiff	X	SS 8	67	4-6-8 (14)			<b>-</b>		
25			<u> </u>			-	1				
<u>-</u>									:		
i											
3		little silt, hard, gray at 28.0'		SH							
30				9	50		5.0				
									:		
									:		:
									:		
		grading to clayey sand, very stiff at 33.0'		SH	42		3.0				
35				10	42		3.0				

## BORING NUMBER BH-209 PAGE 2 OF 2

		<u>IMINANT</u> IUMBER _123-94128	PROJECT NAME PROJECT LOCA					
(#) (#)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)		POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
   - 40		some silt and sand, gray, tan, and brown, hard at 38.0'	SS 11	100	7-13-14 (27)	-		• •
  45		(CL) SILTY CLAY, low plasticity, dark gray, moist, hard $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	SS 12	100	12-20-26 (46)	_		• •
50		(SM) SILTY SAND, fine, subangular, non-plastic, some c and gray, moist, very dense  Bottom of borehole at 50.0 feet.	lay, tan	100	14-27-36 (63)	-		

# BORING NUMBER BH-210 PAGE 1 OF 2

1						Slope Sta					
1						Martin Lak			0.77		
		RTED 11/1/12 COMPLETED 11/1/12						HOLE	SIZE 8 ir	nches	
		CONTRACTOR WEST Drilling  METHOD Hollow Stem Auger				LING <u>47.(</u>	)() ft / F	= ev 3	13 00 ft no	reading o	ave in at A
		BY FW CHECKED BY MP				ING					
1											
	$\top$								1	T N VALU	F A
DEPTH		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	20 PL I— 20	40 60 MC 40 60 CONTEN	80 LL -I 80 T (%) □
0 AA	7.7	(SC) CLAYEY SAND, fine, subangular, some silt, little fine	!	CLI					20	40 60	
- 18412	-//	rounded gravel, red, dry trace roots at 1.0'		SH 1	25		5.0		• • • • • • • • • • • • • • • • • • • •		
B I E O I I I O		tan, gray, and red, mottled at 2.0'		SH 2	21		5.0		•		
4 5 5	_//	compact at 4.0'		SS 3	67	4-7-10 (17)			•		
Z -				√ ss		3-6-6					
- -	-//			4	39	(12)					
				√ ss	33	3-4-6			A.		
	, 1//			<u> </u>	33	(10)					
											: I
									:		
	1										
		(CL) SANDY CLAY, low to medium plasticity, little silt, red gray, dry, very stiff	and	SH 6	21		3.0				
15											
-52-											
Ž V									:		
		some silt and sand seams, gray and tan, moist, very stiff a	t 18.0'	SH	89		3.5		<b>⊢</b>	4	
하 20				7	00		0.5			•	
Z Z											
107											
× -		little and hand at 20 Cl									
7 12:		little red, hard at 23.0'		SH 8	50		4.5				
25	5 ////			J							
<u>-</u>									:		
ğ -											
S -		trace subrounded fine gravels and coarse sand at 28.0'		SH							
⊼ ≥ 30				9	29		4.0				
5									:		
		(SC) CLAYEY SAND, fine, subangular, some silt, brown at moist	nd tan,	SH	35		4.0				
35	5 //			10					<u> </u>		



## **BORING NUMBER BH-210**

1				Slope Sta			
HT(#) 35	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
40	(SM) SILTY SAND, fine, subangular, non-plastic, little clay, dark gray, moist, compact  (CL) SILTY CLAY, low plasticity, little fine sand, gray, moist, stiff	SS 11	50	4-5-5 (10)			<b>A</b>
45	(SM) SILTY SAND, fine, subangular, non-plastic, some clay, gray and tan, mottled, wet, compact	SS 12	100	(9) 4-7-8 (15)			<b>A D</b>
55		SS 14	89	5-9-9 (18)			A •
60	little tan, dense at 58.0'	SS 15	100	7-14-17 (31) 11-15-19 (34)			•
65	some dark brown clay seams at 68.0'  Bottom of borehole at 70.0 feet.	SS 17	100	10-15-25 (40)	-		• •

## BORING NUMBER BH-211 PAGE 1 OF 2

MATERIAL DESCRIPTION    Converse of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properti	8 inches no reading, cave in at
DATE STARTED 11/2/12 COMPLETED 11/2/12 GROUND ELEVATION 360 ft HOLE SIZE DRILLING CONTRACTOR WEST Drilling GROUND WATER LEVELS:  DRILLING METHOD Hollow Stem Auger  LOGGED BY FW CHECKED BY MP AT END OF DRILLING WORD WATER LEVELS:  AFTER DRILLING FOR DRILLING 60.20 ft / Elev 299.80 ft AT END OF DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING FOR DRILLING F	no reading, cave in at  SPT N VALUE ▲  0 40 60 80  PL MC LL  1 40 60 80  IES CONTENT (%) □  0 40 60 80
DRILLING CONTRACTOR WEST Drilling  DRILLING METHOD Hollow Stem Auger  LOGGED BY FW CHECKED BY MP AT END OF DRILLING 60.20 ft / Elev 299.80 ft  NOTES  MATERIAL DESCRIPTION  GROUND WATER LEVELS:  AT TIME OF DRILLING 60.20 ft / Elev 299.80 ft  AT END OF DRILLING  AFTER DRILLING  WATERIAL DESCRIPTION  MATERIAL DESCRIPTION  (SC) CLAYEY SAND, some silt and fine rounded gravel, red, dry  GROUND WATER LEVELS:  AT TIME OF DRILLING 60.20 ft / Elev 299.80 ft  AT END OF DRILLING  AFTER DRILLING  (SC) CLAYEY SAND, some silt and fine rounded gravel, red, dry	no reading, cave in at  SPT N VALUE ▲  0 40 60 80  PL MC LL  1 40 60 80  IES CONTENT (%) □  0 40 60 80
DRILLING METHOD Hollow Stem Auger  LOGGED BY FW CHECKED BY MP AT END OF DRILLING  NOTES AT TIME OF DRILLING 60.20 ft / Elev 299.80 ft  AT END OF DRILLING  AFTER DRILLING  MATERIAL DESCRIPTION  MATERIAL DESCRIPTION  (SC) CLAYEY SAND, some silt and fine rounded gravel, red, dry  AT TIME OF DRILLING 60.20 ft / Elev 299.80 ft  AT END OF DRILLING  AFTER DRILLING  20  20  51  60.20 ft / Elev 299.80 ft  AT END OF DRILLING  AFTER DRILLING  (SC) CLAYEY SAND, some silt and fine rounded gravel, red, dry	SPT N VALUE A  0 40 60 80  PL MC LL  1 0 60 80  NES CONTENT (%)  0 40 60 80
LOGGED BY FW CHECKED BY MP AT END OF DRILLING  NOTES AFTER DRILLING  WATER DRILLING  MATERIAL DESCRIPTION  MATERIAL DESCRIPTION  (SC) CLAYEY SAND, some silt and fine rounded gravel, red, dry  (SC) CLAYEY SAND, some silt and fine rounded gravel, red, dry  (SC) CLAYEY SAND, some silt and fine rounded gravel, red, dry	SPT N VALUE A  0 40 60 80  PL MC LL  1 0 60 80  NES CONTENT (%)  0 40 60 80
NOTES AFTER DRILLING	SPT N VALUE   0 40 60 80  PL MC LL  40 60 80  NES CONTENT (%)  0 40 60 80
(#)  O  O  O  O  O  O  O  O  O  O  O  O  O	40 60 80   C
O (SC) CLAYEY SAND, some silt and fine rounded gravel, red, dry	40 60 80   C
(SC) CLAYEY SAND, some silt and fine rounded gravel, red, dry	
-   -	
fine, subangular, gray, tan, and red at 2.0'	
SH 2 29 3.5	
trace fine gravels and coarse sand, loose at 4.0'  SS 3 50 2-3-6 (9)	
some sandy clay seams, compact at 6.0'  SS 4 39 4-5-8 (13)	
increase clay and silt content at 8.0'  SS 72 4-8-8 (16)	
(CL-CH) SANDY CLAY, low to medium plasticity, little silt, gray, SS 33 2-5-6	
tall, alluleu, dry, still	
some silt at 18.0'	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<del></del>
brown and tan at 23.0'	
SH 8 44 5.0	
25	
(ML) SANDY SILT, little clay, tan, moist	
(SM) SILTY SAND, fine, subangular, some clay, tan and gray, SS 67 7-15-19	
dense (34)	r <del></del>



## **BORING NUMBER BH-211**

CLIENT L	uminant PRC	DJECT NAME	Pond	l Slope Sta	bility		
PROJECT I	NUMBER 123-94128 PRO	DJECT LOCA	TION _	Martin Lak	е		
95 DEPTH (ft) (R) GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A  20 40 60 80  PL MC LL  20 40 60 80  □ FINES CONTENT (%) □  20 40 60 80
40		SS 11	89	9-17-25 (42)	-		
45		SS 12	100	10-14-18 (32)	_		• •
50	(SC) CLAYEY SAND, low plasticity, fine, subangular, some silt and lean clay, gray and tan, wet, dense  (SP) SAND, fine, subangular, non-plastic, some silt, little to train	13	89	9-14-18 (32) 17-29-38	_		
55	clay, tan, wet, very dense	14	100	(67)			<b>A</b>
60	little medium at 58.0'	SS 15	70	14-28-33 (61)			
65		SS 16	100	17-29-34 (63)	-		
70	(SM) SILTY SAND, fine, subangular, non-plastic, little to trace clay, gray and tan, wet, very dense  Bottom of borehole at 70.0 feet.	SS 17	72	18-27-37 (64)			• •









且		ETTL ENGINEERS &	PROJECT:		F BO	RING sh Disp	E 6		SURF	30RFACE ELEVATION	3	VA	10 N	10/7/08 ON
		CONSULTANTS	PROJECT NO.:	TNO.: G 2972-08	BOR	BORING TYPE:	ü	Flight Auger	(%	ATTE	ATTERBERG LIMITS(%)	2 -	-	
SELM!	TBAST NB.	MAIN OFFICE 1717 East Erwin Tyler, Texas 75702 (903) 545-4421	ENGIH	● BLOW COUNT ● 20 40 60 80  ▲ Ou(1st) ▲ 1 2 3 4  ■ FPR (1st) ■	(pod) ALUSNED	MCTH (M)	INING ME STRAIN (%)	Natural Moisture Content and Attentional Limits Plassic Moisture Liquid Child Content Limit	тият соитеит (	тими ани	TIMILIORE	KECKTY INDEX	(%) BABIS 00Z#	3 TESTS 09MPD (#.198
-	LWW.	MATERIAL DESCRIPTION	HEL HTS TAD	me (tst)		BHT2	CONE	F	TEION		nd ā		SOMIN	DERFC
d d	Page Page	SANDY LEAN CLAY(CL) very stiff; tan, gray, and red; motiled LEAN CLAY WITH SAND(CL) very self; tan, gray, and rest, motiled —tan and brown	P=3.25 P=3.0					1-4-4-4	15					1 8
88	34	CLAYEY SAND(SC) dense; tan, brown, and red; with grave!	P=3.25						2	9	9	*	74	+40 Sieve n36%, +4 Sieve
d	273111111111111111111111111111111111111	LEAN CLAY WITH SAND(CL) very stiff, fan, brown, and red; with lignite	P=2.75											%E6=
20	¥	-enf and tan	P=2.0	(110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130 (110) -130				Ţ	1,	88	9	8	*	+40 Sieve =3%. +4 Sieve =0%
			P=2.25											
P4 8	Į.	-fan, red, and gray; mottled	\$ \$											
8	3 B	CLAYEY SANDISC) kuse; tan, red, and gray; with trace gravel and fertic malerial	602						25	g	4	6	6	+40 Sleve =36%, +4 Sleve
	(2)(Z)	-medium dense	N=18										_	e d
		Bottom of Boring @ 40"							_					
Water Level Wase Characters @ 36' and op open to 26' o	from Countries. Se @ 36" and open to 38" open to 26" on 10/8/08.	Vener Level 64 V Meaure T Perties T Perties T Perties T Perties T Transcrenations Seepage @ 37 white drilling, Water level @ 25' and open to 38' upon completion, Water level @ 25' and open to 26' on 10/8/08.	Key In Addressioners: N - Sert Data (B P - Pocket Pense T - Torvana (Bd)	intervalents TT Data (Blave-F1) colat Personnellar (bif); events (bif)	GPS	Coordi	rates	GPS Coordinates: N 32"15.713", W 94"33.777"			1		-	















Ħ		ETTL ENGINEERS &	PROJEC	LOG OF BORING B-7 JECT: Martin Lake - Luminant East Ash Disposal	F B	ORIN Ash Dis	G B	-7	DATE 100 SURFACE ELEVATION	ACE	E	ATIC	10/8/08 NV	
		CONSULTANTS	PROJEC	Rusk County, Texas JECT NO.: G 2972-08	8	RING T	(PE	BORING TYPE: Flight Auger	-	ATTEMBERG	BERG	-	L	
28J9	ER LEVEL O	MAIN OFFICE 1717 East Erwin Tyler, Texas 75702 (903) 595-4421	HIDNE	a.cow count 40 60 8 2 3 3 2 3 3 PPR (ssf) ■	ENRILLA (bot)	HESSIVE MOTH (NS)	(%) NIVELES 36	Natural Meisture Content and Affantery Limbs Meisture Liquid Passic Meisture Liquid	DRE CONTENT (	TIMIL GILL	STICITY INDEX	#500 SIEVE (%)	21231	CEMP
	TAW	MATERIAL DESCRIPTION	LIBIH BRT2 ATAG	• Torsane (1st) •	a vaa		RAILUF	55304		-	-		язнис	
ರ ರ≅		SANDY LEAN CLAY(CL) hard; Ian, red, and gray, motified SANDY SILTY CLAY(CL-ML) very stiff, Ian, red, and gray, motified	P=4.0 P=3.0							2 2		-	<b> 54</b>	ewa =
ರ		LEAN GLAY WITH SAND(CL) very stift, lan, red, and gray, mother	P=3.25						6	35	\$	72	着 益	Sieve =1% Sieve =0%
- T.		- stiff	P±1.5											
30			P=1.5					T	15	36 15	Fi	22	3.4	Sieve =0%
, <b>-</b> , -	•	EAT GLAY(CH) stiff; gray, red, and tan; modfed	\$				7		4	\$				
M 7 . ▷~7 . 8	IIIII	SILTY SAND(SM) medium dense; tan, red, gray, mothed	N=10								8	8	7	Steve = Digital
\$ 5 5		SANDY LEAN GLAYIGL) very stiff, red, tan, and gray, motified Bottom of Boring @ 40*	N=20	11-20-14 11-20-14 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-16 11-20-										
Water Level See (@ 32' and open to 35' t. open to 27' on 10/9/08.	on 10	Water three Ear 12 Measuret 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12 Prestore 12	Ney to Address educates N - SPT Date (F P - Processe (Ne) T - Tokrame (M	to Adequations. N - SPT Data (BowelP) P- Pocket Peretomenie (M) T - Torone (M) A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Month Committee A - Mon	₫ G	S Coon	linate	GPS Coordinates: N 32*15.775, W 94*33.875*			-	4		





**PERMANENT DISPOSAL POND - 5** 





























## **JUGRO**

Client

#### **CPT Data**

Job Number 04.1908-0020

CPT Number

Location

Tatum-Tx

Operator GLENN JOHNSON Date and T 16-Apr-2008

Date and T 16-Apr-2008 13:47:38
Elevation

B-02

Cone Number F7.5CKEW2/B 1866

Water Table



# **TUGRO**

### **CPT Data**

CPT Number B-07

Job Number_ 04.1908-0020

Date and T 16-Apr-2008 12:40:51

Location

Tatum-Tx

Operator

Client

**GLENN JOHNSON** 

Date and 1 10-Api-20

Elevation

Cone Number F7.5CKEW2/B 1866

Water Table



### **CPT Data**

Job Number 04.1908-0020

Operator **GLENN JOHNSON** 

Client

CPT Number B-12 Date and T 16-Apr-2008

Elevation

10:58:47

Location

Tatum-Tx

Cone Number F7.5CKEW2/B 1866

Water Table





			LOG OF BORING B-14	F B0	RING	B-1,		DATE			8	8/18/09
	ETTL ENGINEERS &	PROJECT:	<ul><li>I: Luminant Martin Lake PDP 1-3 Supplemental Tatum. Texas</li></ul>	PDP 1-	3 Suppl	ement	Te.	SURF	SURFACE ELEVATION	ELEV	ATIO	z
	CONSULTANTS	PROJECT	ECT NO.: G3219-09	BOR	ING TY	PE: R	BORING TYPE: Rotary Wash		ATTERBERG LIMITS(%)	SERG S(%)		
	MAIN OFFICE 1717 East Erwin Tyler, Texas 75702	нтэи	● BLOW COUNT ● 20 40 60 80  ▲ Qu (tsf) ▲ 1 2 3 4 ■ PPR (tsf) ■	(lod) YTIBNE	ESSIVE OTH (tsf) E STRAIN (%)		Natural Moisture Content and Atterberg Limits Plastic Moisture Liquid	) TNE CONTENT (	STIC LIMIT	зтісіту імрех	#200 SIEVE (%)	
DEPTI SAMPI GEOLG	MATERIAL DESCRIPTION	FIELD STRE ATAG	1.0 2.0 3.0 4.0  Torvane (tsf)  Torvane (tsf)  Torvane (tsf)  Torvane (tsf)	ם אאם	STREN	CONFIN	Content   Content				SUNIM	OTHER PERFOI Page R
, I	ASH SEDIMENT black;dark gray; with silty clay						<b>.</b>	26	1		83	+40 Sieve=3%, +4 Sieve=0%
7.4.4.4.4 F	black, with sand gray							119	111 47	26	88	+40 Sieve=1%, +4 Sieve=0%
	black; with silt											
47474						······································	Ī	98	65 51	4	92	+40 Sieve=1%, +4 Sieve=0%
7.4.7.4.7.4.												
8	Bottom of Boring @ 30'				100000000000000000000000000000000000000	***						
					<u> </u>							
Water Level Est. Water Observations:	: 文 Messured: 文 Perched: 文 Seepage @ 5' while drilling.	Key to Abbrevations: N - SPT Data (BI P - Pocket Pene T - Torvane (tsf)	y to Abbrevations:  N - SPT Data (Blows/Ft)  P - Pocket Penetrometer (Isf)  T - Torvane (Isf)  L - Lab Vane Shear (Isf)	Notes:	Coordi	nates∶	GPS Coordinates: N 32° 15.549', W 94°34.971'	÷				

					LOG OF BORING B-16	: BO	RING	B-1	9	DATE			"	8/18/00
¥			ETTL ENGINEERS &	PROJECT:	T: Luminant Martin Lake PDP 1-3 Supplemental	PDP 1-:	3 Supple	ment	al	SUR	FACE	SURFACE ELEVATION	VATIC	NC
			CONSULTANTS	PROJEC	ECT NO.: G3219-09	BOR	ING TYP	<b>ři</b> R	BORING TYPE: Rotary Wash		ATTERBER LIMITS(%)	ATTERBERG LIMITS(%)		
				H	● BLOW COUNT ● 20 40 60 80 ■ Qu (tsf) ■	TY (pcf)			Natural Moisture Content and Atterberg Limits	CONTENT (		TIVINDEX	(%) SIEVE (%)	<b>a</b> :
(#) HT9 83J9M	OSC	OLOGIC ATER LE	1 yet, 1 exas 7 57 02 (903) 595-4421	CLD RENGTI	PPR (tsf)		RESSAN HTƏNƏ. FR BAU.	SSURE	Plastic Limit	STURE	ומטום ו	OITSAJ 		ER TES FORME
		MA OE	MATERIAL DESCRIPTION	EIF ITS 'AQ	◆ Torvane (tsf) ◆ 1.0 2.0 3.0 4.0		ятѕ	COV	20 40 60 80		+	+	$\overline{}$	ьев
Þ	ರ 	mm	SANDY LEAN CLAY(CL) orange and tan	P=1.2										
1			tan and gray	P=1.5 P=4.3					J	13	29 1	14 15	34	+40 Sieve=1%, +4 Sieve=0%
			orange and tan	P=1.25 P=3.6										
- Ç	SC   []. .	15. Z. Z.	CLAYEY SAND(SC) gray and orange	P=1.5					<b>T</b>	16	32 1	16 16	37	+40 Sieve=0%, +4 Sieve=0%
2		11.7.7.1		N=40	•		•							
	!!!!!!	<i></i>					<del></del>							
→ <del>&gt;</del>	₹ 5		SANDY CLAYEY SILT(ML) orange and light	N=21		7				· · · · · · · · · · · · · · · · · · ·				
<del>                                     </del>	3		LEAN CLAY(CL) gray and reddish tan							T .				
				N=33	•				I	56	46_2	23 23	82	+40 Sieve=4%, +4 Sieve=1%
30			orange and tan; with trace of lignite	N=26							ş - N . , , - NO - NO -			
	8	1116.7:17.1	CLAYEY SAND(SC) tan and brown	P=1.0					Ţ	58	48	22 26	82	+40 Sieve=5%, +4 Sieve=0%
	g.	(Z.ž	SAND(SP) gray	N=49	•						<u> </u>			
0 <del>4</del>			n of Boring @ 40'											
Water Level		Est	∑ Measured: ▼ Perched: ♀	Key to Abbrevations: N - SPT Data (Bi	tions: ta (Błows/Ft)	Notes: GPS	Coordin	lates:	otes: GPS Coordinates: N 32° 15.484', W 94°34.965'	35'				
Water Observations:	ervations:			P - Pocket Pene T - Torvane (tsf)	P - Pocket Penetrometer (tsf) T - Towane (tsf)									
				L - Lab Var	L - Lab Vane Shear (tsf)								l	

			LOG OF BORING B-17	80	RING	B-1		DATE			~	8/18/09
	ETTL ENGINEERS &	PROJEC	ECT: Luminant Martin Lake PDP 1-3 Supplemental Tatum. Texas	PDP 1-	3 Supple	emeni	a	SUR	SURFACE ELEVATION	ELE	VATIC	NC
	CONSULTANTS	PROJEC	ECT NO.: G3219-09	BOR	ING TYF	Ä	BORING TYPE: Rotary Wash	(%)	ATTERBERG LIMITS(%)	RBERG S(%)		
TINU	MAIN OFFICE 1717 East Erwin 1717 Tange 78702	Н	● BLOW COUNT ● 20 40 60 80 ■ Qu (tsf) ■	TY (pcf)			Natural Moisture Content and Atterberg Limits	CONTENT		CILL INDEX	(%) SIEVE (%)	O:
TH (#)	31 A317	LD RENGTI		DENSI	RESERGE HTDNE TRE ERU.	SSURE	Plastic Moisture Liquid Limit Content Limit	STURE	וסטום ו. חודפע ונ	OITSAJ OITSAJ		IER TES FORME
Œ S∀I	MATERIAL DESCRIPTION	IIS	<ul><li>◆ Torvane (tsf) ◆</li><li>1.0 2.0 3.0 4.0</li></ul>	ספא	ятг	COV	20 40 60 60	IOM	+-	+		PER
تا ا	SANDY LEAN CLAY(CL) orange and tan	P=4.5+					<b>T</b>	12	39 1	15 24	09 1	+40 Sieve=7%
	orange and brown	P=4.0										++ SIEVE
	red, tan, and yellow	P=4.5						5	53 1	18 35	5	+40 Sieve=7%, +4 Sieve=1%
5	tan and gray	P=4.5+										
S 2 2	CLAYEY SAND(SC) tan	N=40					I	50	36	24 12	- 52	+40 Sieve=0%, +4 Sieve=0%
,	tan and brown	N=22										
3	tan and gray; laminated	N 119	•									
8	gray and orange	N=20			***************************************		Ť	55	31	13 18	39	+40 Sieve=0%, +4 Sieve=0%
	tan	N=30										
	tan and orange	N=24	•									
- 40	Bottom of Boring @ 40'				.,							
	Est: Q Measured: T Perched: Q	Key to Abbrevations:	tions: ita (Blows/Ft)	Notes:	Coordir	ates	lotes: GPS Coordinates: N 32° 15 566' W 94°34 736'	<u></u>				
Water Observations:	bailed to 20' and open upon completion.	P - Pocket T - Torvan	P - Pocket Penetrometer (Isf) T - Torvane (Isf)	, ,				<u> </u>				
		L-Lab Va	Vane Shear (tsf)							İ		

# APPENDIX B LABORATORY TEST RESULTS

**BOTTOM ASH PONDS AND SCRUBBER POND** 



500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

#### **SUMMARY OF LABORATORY RESULTS**

PAGE 1 OF 4

CLIENT Luminant

PROJECT NAME Pond Slope Stability

PROJECT NUMBER 123-94128	PROJECT LOCATION	Martin Lake

	<u> </u>	Liquid	Plastic	Plasticity	Maximum	%<#200	Class-	Water	Dry	Satur-	Void
Borehole	Depth	Limit	Limit	Index	Size (mm)	Sieve	ification	Content (%)	Density (pcf)	ation (%)	Ratio
BH-201	0.0							19.2			
BH-201	2.0							13.7			
BH-201	6.0	26	14	12				9.4			
BH-201	8.0							15.1			
BH-201	13.0							16.3			
BH-201	18.0							20.8			
BH-201	23.0	36	14	22				19.9			
BH-201	28.0							18.2			
BH-201	33.0							15.0			
BH-201	38.0				0.85	40		14.9			
BH-201	43.0							21.4			
BH-201	48.0							23.5			
BH-201 BH-201 BH-201 BH-201 BH-201 BH-202 BH-202 BH-202 BH-202 BH-202 BH-202 BH-202 BH-202 BH-202 BH-202 BH-202 BH-203 BH-203 BH-203 BH-203	0.0							20.8			
BH-202	2.0	55	19	36				17.1			
BH-202	4.0							20.5			
BH-202	6.0							26.7			
BH-202	8.0							15.3			
BH-202	13.0							14.9			
BH-202	18.0	29	13	16				17.1			
BH-202	23.0							17.6			
BH-202	28.0				0.85	49		18.1			
BH-202	33.0							17.0			
BH-202	38.0							20.8			
BH-202	43.0							23.0			
BH-202	48.0							26.2			
BH-203	0.0							12.6			
BH-203	2.0							14.6			
BH-203	4.0							16.1			
BH-203	6.0	50	19	31				21.5			
BH-203	8.0							22.3			
BH-203	13.0							18.0			
BH-203	18.0							14.6			
BH-203	23.0							17.3			
BH-203	25.0							19.9			
BH-203	28.0				2	17		23.6			
BH-203	30.0							27.7			
BH-203	33.0							29.1			
BH-203	38.0							29.4			
BH-204	0.0							13.9			
BH-204	2.0							21.1			
BH-204	4.0							15.0			
BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-204 BH-204 BH-204 BH-204	6.0							16.6			
BH-204	8.0							13.5			



500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

#### **SUMMARY OF LABORATORY RESULTS**

PAGE 2 OF 4

CLIENT Luminant

PROJECT NAME Pond Slope Stability

PROJECT NUMBER 123-94128 PRO	JECT LOCATION Martin Lake
------------------------------	---------------------------

PROJECT NUMBE	K 123-9412	20			PRO	JECT LOCA	IION Marti	птаке			
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
BH-204	28.0				4.75	58		19.1			
BH-204	33.0							13.8			
BH-204	38.0							21.0			
BH-204	43.0	51	20	31				26.6			
BH-204	48.0							23.8			
BH-205	0.0							17.5			
BH-205	2.0							15.6			
BH-205	4.0							15.5			
BH-205	6.0							20.7			
BH-205	8.0							17.4			
BH-205	13.0	47	15	32				23.0			
BH-205	18.0							22.9			
BH-205	23.0	28	17	11				16.3			
BH-205	28.0				4.75	69		16.4			
BH-205	33.0				-			14.7			
BH-205	38.0							25.4			
BH-205	43.0							26.7			
BH-205	48.0							25.0			
BH-205	53.0				9.5	11		25.9			
BH-206	0.0							17.1			
BH-206	2.0	44	15	29				15.6			
BH-206	4.0							14.0			
BH-206	6.0							16.2			
BH-206	8.0							21.7			
BH-206	13.0							18.1			
BH-206	18.0							12.2			
BH-206	23.0							15.9			
BH-206	28.0	59	17	42				20.3			
BH-206	33.0							19.8			
BH-206	38.0							18.2			
BH-206	43.0							22.1			
BH-206	48.0							23.3			
BH-206	53.0							23.0			
BH-206	58.0							22.1			
BH-207	0.0							15.6			
BH-207	2.0							15.3			
BH-207	4.0							14.9			
BH-207	6.0							18.2			
BH-207	13.0							18.9			
BH-207	18.0							13.0			
BH-207	23.0							16.9			
BH-205 BH-205 BH-205 BH-205 BH-205 BH-205 BH-205 BH-205 BH-205 BH-205 BH-205 BH-205 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-206 BH-207 BH-207 BH-207 BH-207 BH-207 BH-207 BH-207	28.0	31	16	15				16.7			
BH-207	33.0							17.4			



500 Century Plaza Drive, Suite 190 Golder Associates Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

#### **SUMMARY OF LABORATORY RESULTS**

PAGE 3 OF 4

CLIENT Luminant

PROJECT NAME Pond Slope Stability

PROJECT NUMBER 123-94128 PROJECT LOCATI	ON Martin Lake
-----------------------------------------	----------------

PROJECT NUMBI	LIX 123-3412	1			PRO	JECT LOCA	Marti	птаке	T .		
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
BH-207	38.0							19.0			
BH-207	43.0							21.8			
BH-207	48.0							22.2			
BH-207	53.0							25.2			
BH-207	58.0							29.8			
BH-208	0.0							20.2			
BH-208	2.0							16.2			
BH-208	4.0							12.9			
BH-208	6.0							11.5			
BH-208	8.0	28	15	13				15.2			
BH-208	13.0							15.9			
BH-208	18.0							20.2			
BH-208	23.0							18.0			
BH-208	28.0							21.3			
BH-208	33.0							18.1			
BH-208	38.0							19.1			
BH-208	43.0							23.7			
BH-208	48.0				4.75	11		24.5			
BH-208	53.0							27.1			
BH-208	58.0							26.1			
BH-209	0.0							9.0			
BH-209	2.0							11.8			
BH-209	4.0	62	21	41				11.8			
BH-209	6.0	_						12.1			
BH-209	8.0							19.2			
BH-209	13.0							12.3			
BH-209	18.0							21.0			
BH-209	28.0	41	15	26				23.3			
BH-209	33.0							20.0			
BH-209	35.0							21.2			
BH-209	38.0							17.9			
BH-209	43.0							24.0			
BH-209	48.0							21.2			
BH-210	0.0							8.2			
BH-210	2.0							10.7			
BH-210	4.0							13.4			
BH-210	6.0							14.4			
BH-210	8.0							15.7			
BH-210	13.0							21.3			
BH-210	18.0	36	14	22				22.9			
BH-210	23.0	- 50	17					25.0			
BH-210	28.0							18.5			
BH-210	33.0							19.3			



500 Century Plaza Drive, Suite 190 Golder Associates Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

### **SUMMARY OF LABORATORY RESULTS**

PAGE 4 OF 4

CLIENT Luminant

PROJECT NAME Pond Slope Stability

PROJECT NUMBER 123-94128	PROJECT LOCATION _Martin La	ake
--------------------------	-----------------------------	-----

	Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
	BH-210	38.0							17.2			
	BH-210	43.0							25.6			
	BH-210	48.0				9.5	33		33.4			
	BH-210	53.0							29.3			
	BH-210	58.0							29.3			
	BH-210	63.0							26.6			
	BH-210	68.0							31.1			
	BH-211	0.0							8.7			
3	BH-211	2.0							13.3			
Ř E.G	BH-211	4.0							15.0			
NI A	BH-211	6.0							14.5			
MAR	BH-211	8.0							13.2			
3-94128 LUMINANT POND SLOPE STABILITYMARTIN LAKE194128MARTINLAKE.GPJ	BH-211	13.0							17.6			
	BH-211	18.0	50	17	33				15.0			
	BH-211	23.0				-			11.6			
	BH-211	28.0				9.5	52		11.6			
ξ	BH-211	33.0							22.5			
TABIL	BH-211	38.0							21.1			
PE S	BH-211	43.0							24.3			
SLO	BH-211	48.0							24.3			
OND	BH-211	53.0				ŀ			24.9			
NT F	BH-211	58.0							22.9			
Ž MIN	BH-211	63.0							29.5			
28 LL	BH-211	68.0							26.6			
3-941		•	•		•		•	•	•	•	'	

LAB SUMMARY - GINT STD US LAB. GDT - 11/29/12 16:20 - P._2012 PROJECT FOLDERS\123-

500 Century Plaza Drive, Suite 190 Golder Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

#### **ATTERBERG LIMITS' RESULTS**



## Golder

**BH-204** 

**BH-205** 

•

28

28

4.75

4.75

0.078

0.018

0.0

0.0

41.7

30.5

39.8

69.5

18.5

500 Century Plaza Drive, Suite 190 Houston, Texas 77073 **Golder** Telephone: (281) 821-6868 Fax: (281) 821-6870

#### **GRAIN SIZE DISTRIBUTION**



## Golder

500 Century Plaza Drive, Suite 190 Houston, Texas 77073 **Golder** Telephone: (281) 821-6868 Fax: (281) 821-6870

#### **GRAIN SIZE DISTRIBUTION**





Specimen Descriptio	Reddish Yellow Clay (visua	l classification)		
LL	PI	LI	USCS	

Depth (ft)	4.0	Confining Pressure (psf)	617
Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	6732
Initial Specimen Weight (g)	1263.7	Axial Strain at Peak Stress (%)	14.3
Moist Unit Weight (pcf)	131.9		
Initial Water Content (%)	15	] ,	
Initial Dry Unit Weight (pcf)	114.6		

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-201 TO-3
Comments	





Performed by	PN
Date	12-Nov-12
Check	HR
Review	SBK



Specimen Description	Reddish Yellow Clay (visual	classification)		
LL	PI	LI	USCS	

Depth (ft)	18.0	Confining Pressure (psf)	2371
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	3035
Initial Specimen Weight (g)	1232.8	Axial Strain at Peak Stress (%)	14.8
Moist Unit Weight (pcf)	132.4		
Initial Water Content (%)	19		ı
Initial Dry Unit Weight (pcf)	111.7		

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-202 TO-7
Comments	





Performed by	PN
Date	13-Nov-12
Check	HR
Review	SBK



Specimen Description	Reddish Gray Clay (visual	classification)		
LL	PI	LI	USCS	

Depth (ft)	6.0	Confining Pressure (psf)	858
Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	3877
Initial Specimen Weight (g)	1199.6	Axial Strain at Peak Stress (%)	14.8
Moist Unit Weight (pcf)	124.7		
Initial Water Content (%)	21	] ,	<del></del> ,
Initial Dry Unit Weight (pcf)	102.7		\

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-203 TO-4
Comments	





Performed by	PN
Date	13-Nov-12
Check	HR
Review	SBK



Specimen Des	cription Reddish Gray Clay (vi	sual classification)	
LL	PI	LI	USCS

_				
	Depth (ft)	23.0	Confining Pressure (psf)	3008
	Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
	Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	5139
	Initial Specimen Weight (g)	1192.8	Axial Strain at Peak Stress (%)	11.3
	Moist Unit Weight (pcf)	126.6		
ı	Initial Water Content (%)	26		

100.9

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-204 TO-8
Comments	

Initial Dry Unit Weight (pcf)



Golder	
Associates	

Performed by	PN
Date	13-Nov-12
Check	HR
Review	SBK



Specimen Description Reddish Yellow Clay (visual classification)					
LL	PI	LI		USCS	

Depth (ft)	13.0	Confining Pressure (psf)	1760
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	6270
Initial Specimen Weight (g)	1252.5	Axial Strain at Peak Stress (%)	14.8
Moist Unit Weight (pcf)	131.9		
Initial Water Content (%)	27		ı
Initial Dry Unit Weight (pcf)	104.1		

Project Title	Luminant - Martin Lake Slope Stability		
Project Number	123-94128		
Sample Type	Shelby Tube		
Sample ID	BH-205 TO-6		
Comments			





Performed by	PN
Date	13-Nov-12
Check	HR
Review	SBK



Specime	Specimen Description Grayish Brown Fat Clay						
LL	59	PI	42	LI	0.1	USCS	СН

Depth (ft)	28.0	Confining Pressure (psf)	3627
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	6110
Initial Specimen Weight (g)	1219.7	Axial Strain at Peak Stress (%)	14.8
Moist Unit Weight (pcf)	127.5		
Initial Water Content (%)	20		

Initial Water Content (%) 20
Initial Dry Unit Weight (pcf) 106.6

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-206 TO-9
Comments	



Performed by	PN
Date	15-Nov-12
Check	HR
Review	JF



Specimen Description Grayish Brown Lean Clay							
LL	31	PI	15	LI	0.0	USCS	CL

Depth (ft)	28.0	Confining Pressure (psf)	3620
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	11735
Initial Specimen Weight (g)	1251.9	Axial Strain at Peak Stress (%)	10.1
Moist Unit Weight (pcf)	127.7		
Initial Water Content (%)	16		d

109.9

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-207 TO-9
Comments	

Initial Dry Unit Weight (pcf)





Performed by	PN
Date	15-Nov-12
Check	HR
Review	JF



Specimen Description Reddish Yellow Lean Clay							
LL	28	PI	13	LI	0.0	USCS	CL

Depth (ft)	8.0	Confining Pressure (psf)	1046
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	7118
Initial Specimen Weight (g)	1287.7	Axial Strain at Peak Stress (%)	13.8
Moist Unit Weight (pcf)	138.1		
Initial Water Content (%)	14		

120.7

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-208 TO-5
Comments	

Initial Dry Unit Weight (pcf)





Performed by	PN
Date	16-Nov-12
Check	HR
Review	JF



Specime	n Description	Grayish Brown	Lean Clay				
LL	41	PI	26	LI	0.3	USCS	CL

Depth (ft)	28.0	Confining Pressure (psf)	3624
Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	6566
Initial Specimen Weight (g)	1202.8	Axial Strain at Peak Stress (%)	7.1
Moist Unit Weight (pcf)	128.0		
Initial Water Content (%)	22		

104.7

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-209 TO-9
Comments	

Initial Dry Unit Weight (pcf)





Performed by	PN
Date	16-Nov-12
Check	HR
Review	JF



Specime	en Description	Reddish Gray	Lean Clay				
LL	36	PI	22	LI	0.5	USCS	CL

Depth (ft)	18.0	Confining Pressure (psf)	2375
Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	5691
Initial Specimen Weight (g)	1192.0	Axial Strain at Peak Stress (%)	12.8
Moist Unit Weight (pcf)	126.7		
Initial Water Content (%)	24		<del></del> ı
Initial Dry Unit Weight (pcf)	102.2		

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-210 TO-7
Comments	





Performed by	PN
Date	16-Nov-12
Check	HR
Review	JF

### **PROJECT INFORMATION**

PROJECT: Luminant EagLAst Diaposal LOGATION: Roak County, Texas PROJECT NO: 0.2072 - 08 CLIENT: Movember 2008

### TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO:
ETTL ENGINEERS AND CONSULTANTS, INC.
1717 East Erwin
Tyler, TX 75702

### **TEST DESCRIPTION**

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE Puschis Pr Sample

DESCRIPTION: Tan, Brown & Red Sandy Lean City

Sampled on Site. B-13: 2' to 10' date

ASSUMED SPECIFIC GRAYTY: 27 - 40 Saine

LL PL: PL: Percent-200:

REMARKS: Both Ends & Diameter Trimmed - 4: 4 Sieve

PLATE: 8.2 PLATE: 8.3

PLATE: B.1

Number of Specimens = 3

### **SPECIMEN DATA**

		SPECIME				
· · · · · · · · · · · · · · · · · · ·	initial	final		ameter	Hei	ight
Moist soil & Tare :	570 40 G	621.30 g	top	2 o4 in	Ht 1	
Dry soil and Tare :	458.70 Q	544.40 g	mid	2.04 in	Ht 2	in
Tare:	129.86 g	119.40 g	bot	2 04 in	Ht 3	4.44 in
Moisture content :	<b>13.451</b> %	<b>15.500.</b> %	Avg	2.05 in	Ht4	4.44 in
Weight:	466 1 Q	manusching 70	7.179	E-MARKET	Ava Ht	in
Change in Ht due to s		-0.0	02 in	Initial specim		cc
Change in Ht due to d		-0.0	in in	At test specir	nen vol :	СС
Change in pipet vol d		on:	0 cc	Initial dry der		pcf
Saturation Parameter	CONSTRUCTION OF	4.00	-	At test dry de	-	pcf
Strain Rate (in/min)		Failure Strain 9	6 = <b>2</b>			psi) = 101
σ ₁ ' Failure (psi		σ ₁ Failure (psi		100		ated v = 0.3
σ₃' Failure (psi	5.41	σ₃ Failure (psi	) = 10.0	Back Press	sure (psi) =	50.0
۵	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	tal Pore Pressure		-	sure (psi) =	DOMESTIC STREET
	-					
		SPECIME	N NO. 2			
	initial	final	Dia	meter	Hei	ght
Moist soil & Tare :	849,80 g	698.40 g	top	201 in	Ht 1	4.44 in
Ory soil and Tare :	489 20 g	580.20 g	mid	2.01 in	Ht 2	4 44 in
Tare:	121.21 g	199.10 g	bot	2.0* in	Ht 3	4.44 in
Moisture content :	10.551 %	<b>34.00</b> %	Ava	2.005 in	Ht4	74.44 in

,			AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUM
Change in pipet vol due to consoli	idation: 3.9 cc	Initial dry density:	pcf
Saturation Parameter "B"=	0.97	At test dry density:	pcf
Strain Rate (in/min) = 00000	Failure Strain % =	3.9 Effective Cell Pressure (p	osi) =
$\sigma_1$ ' Failure (psi) = 37.62	σ ₁ Failure (psi) =		ted ν = 0.35
$\sigma_3$ ' Failure (psi) = $\sim$ 12 02	σ ₃ Failure (psi) =	Back Pressure (psi) =	50.0
ΔU = 100 BM	Total Pore Pressure = > 3	Cell Pressure (psi) =	70.0

-0.006 in

-0.034 in

Avg Ht

Initial specimen vol:

At test specimen vol:

in

CC

CC

Weight:

Change in Ht due to saturation :

Change in Ht due to consolidation:

### SPECIMEN NO. 3

initial	final		Diameter		Height		
894.50 g	056.50	g	top	2.0e in	Ht 1	4.54	in
5;10.10 g	579.20	g	mid	2.06 in	Ht 2	14.54	in
126.50 « g	139,30	g	bot	2.06/min	Ht 3	4.54	in
<b>16.56</b> %	37 62	%	Avg	in 🖽	Ht4	4.54	in
518.0 g					Avg Ht	18.5	in
Change in Ht due to saturation :					en vol :	-27	cc
nsolidation:		-0.052	in	At test specim	nen vol :	Sec. 1	cc
e to consolid	ation :	5.6	СС	Initial dry den	sity :		pcf
"B"=	0.97			At test dry der	nsity:	T all	pcf
6000.0	Failure Str	ain % =	8.	Effective Cell	Pressure (	psi) =	12-0
$\sigma_1$ ' Failure (psl) = 100 17 $\sigma_1$ Failure					Estima	ated $v =$	0.35
54 77	σ ₃ Failure	e (psi) =	15 0	Back Press	ure (psi) =	50 0	
1.03	Total Pore Pre	essure =	35,	Cell Press	ure (psi) =	90.0	
	### 50 g ### 50 g ### 50 g ### 50 g ### 50 g ### 50 g ### 50 g ### 50 consolid ### 8 " =	g $g$ $g$ $g$ $g$ $g$ $g$ $g$ $g$ $g$	turation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsolidation: onsol	turation: one of the consolidation: one of the consolidation: one of the consolidation: one of the consolidation: one of the consolidation: one of the consolidation: one of the consolidation: one of the consolidation: one of the consolidation: one of the consolidation: one of the consolidation: one of the consolidation: one of the consolidation in the consolidation: one of the consolidation in the consolidation: one of the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the consolidation in the c	turation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one solidation: one	turation:  one of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of	turation: orange of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of th

# TRIAXIAL SHEAR TEST REPORT

70

80

90

100

110

120

 $\phi' =$ **EFFECTIVE STRESS PARAMETERS** c' = 12.8 deg 6.0 psi SPECIMEN NO. 2 3 4 1 60.00 INITIAL Moisture Content - % 15.8 16.6 15.9 Dry Density - pcf 113.0 115.0 112.5 50.00 2.04 2.06 S Diameter - inches 2.01 Height - Inches 4.44 4.44 4.54 DEVIATOR STRESS 40.00 AT TEST Final Moisture - % 18.1 18.1 17.6 30.00 Dry Density - pcf 114.0 116.9 115.1 Calculated Diameter (in.) 2.02 2.00 2.04 20.00 Height - Inches 4.40 4.40 4.49 40.0 Effect. Cell Pressure - psi 10.0 20.0 10.00 Fallure Stress - psi 15.00 25.60 45.40

Total Pore Pressure - psi

Strain Rate - inches/min.

Failure Strain - %

σ₁' Failure - psi

σ₃' Fallure - psi

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Tan, Brown & Red Sandy Lean Clay

Sampled on Site, B-13 3' to 10' deep

0.00

0.0

60

50

10

0

0

10

20

30

40

50

60

PRINCIPAL STRESS - PSI

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve Percent -200: REMARKS: Both Ends & Diameter Trimmed

10.0

AXIAL STRAIN - %

**TEST DESCRIPTION** 

+ # 4 Sieve

20.0

PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08

54.6

2.7

20.41

5.41

0.00050

CLIENT:

Movember 2008

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.1

35.2

8.5

0.00050

100.17

54.77

58.0

3.9

37.62

12.02

**PROJECT INFORMATION** 

0.00050





	OTAL	SIRE	SSP	ARAME	IERS
	60.00 -		<u> </u>		
छ	50.00 -		 		
ESS - P	40.00 -	/-			
OR STR	30.00 -				
)EVIAT(	20.00	1/		1	
	10.00 -				
	0.00	·		i_	
	0.	0	10	.0	20.0
		A	(IAL ST	RAIN - %	

$\phi = 19.6$	deg	c =	1.8	psi
SPECIMEN NO.	1	2	3	4
	INIT	TIAL		
Moisture Content - %	15.8	16.6	15.9	
Dry Density - pcf	113.0	115.0	112.5	
Diameter - inches	2.04	2.01	2.06	
Height - Inches	4.44	4.44	4.54	
	AT T	EST		
Flnal Moisture - %	18.1	18.1	17.6	
Dry Density - pcf	114.0	116.9	115.1	
Calculated Diameter (In.)	2.02	2.00	2.04	
Height - Inches	4.40	4.40	4.49	
Effect. Cell Pressure - psi	10.0	20.0	40.0	
Failure Stress - psl	15.00	25.60	45.40	
Total Pore Pressure - psi	54.6	58.0	35.2	
Strain Rate - Inches/mln.	0.00050	0.00050	0.00050	
Failure Strain - %	2.7	3.9	8.5	
σ ₁ Fallure - psi	25.00	45.60	85.40	
$\sigma_3$ Fallure - psi	10.00	20.00	40.00	

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Tan, Brown & Red Sandy Lean Clay

**TEST DESCRIPTION** 

Sampled on Site, B-13 3' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 +

REMARKS: Both Ends & Diameter Trimmed

+ 40 Sieve Percent -200:

+#4 Sieve

### PROJECT INFORMATION

PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08

CLIENT: Movember 2008

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.3

### **PROJECT INFORMATION**

PROJECT: Luminor Fast Ash Disposal
LOCATION: Rusk County Texas
PROJECT NO: 15 2872 - 68
QUENT:

### TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO: ETTL ENGINEERS AND CONSULTANTS, INC. 1717 East Erwin Tyler, TX 75702

### **TEST DESCRIPTION**

PLATE: B.1

PLATE B.2

PLATE: B.J.

Number of Specimens = 3

### SPECIMEN DATA

SPECIMEN NO. 1

		01 E	JIMEN NO. 1				
	initial	final	D	iameter	He	eight	
Moist soil & Tare :	479.50	g 650,20	g top	2 (Jul in	Ht 1	Secretarian Secretaria	in
Dry soil and Tare:	429,60	g 848.70	g mid	2.05 in	Ht 2	4.25	in
Tare:	129.70	g 128.00	g bot	2.08 in	Ht 3	4.25	in
Moisture content :	10.57	%	% Avg	in	Ht4	4.25/4	in
Weight:	496.8	9			Avg Ht	4.75	in
Change in Ht due to sa	aturation:	<u> </u>	-0.014 in	Initial speci		100	cc
Change in Ht due to co	onsolidation	n:	0.005 in	At test spec	cimen vol :	(2H 3)	cc
Change in pipet vol du	e to consol	idation :	0.8 cc	Initial dry de	ensity:	505.20	pcf
Saturation Parameter	"B"=	0.96		At test dry	density:	1 2 5 1	pcf
Strain Rate (in/min) :		Failure Stra		4 Effective C			E IQV
σ ₁ ' Failure (psi)		σ₁ Failure				ated $v =$	27
σ ₃ ' Failure (psi)	6.24	σ₃ Failure			essure (psl) =	50.0	
ΔU	= 158	Total Pore Pres	ssure = 51	8 Cell Pre	essure (psi) =	60.0	
			18.5000				
			IMEN NO. 2		· · · · · · · · · · · · · · · · · · ·		
	initial	final		ameter	He	ight	- 1
Moist soil & Tare :	505.50			<u>2.08</u> in	Ht 1	4.40	in
Dry soil and Tare :	451.40		g mid	205 × in	Ht 2	4.40	in
Tare :	114.00 Q	102.60	bot	2.09 in	Ht 3	4.40	in
Moisture content :	10 (15 9	% <u>(1888)</u> %	6 Avg	in in	Ht4	4.40	in
Weight:	511.6				Avg Ht	9 1	in
Change in Ht due to sa			0.01 in	Initial specir	men vol :	D 14 14 2	cc
Change in Ht due to co			0.048 in	At test spec	imen vol :	10,886	cc
Change in pipet vol due			7.0 cc	Initial dry de	ensity:	(فعساد)	pcf
Saturation Parameter	"B"=	0.98		At test dry d			pcf
Strain Rate (in/min) =	0.0005	Failure Stra	in % =3	4 Effective Ce	ell Pressure (	psi) =	25.6
σ ₁ ' Failure (psi) :	48.53	σ ₁ Failure	(psi) =	5	Estima	ated $v = 1$	0.35
σ ₃ ' Failure (psi) :	13.88	σ ₃ Failure	(psi) =	Back Pres	ssure (psi) =	50.0	**********
ΔÚ:	Annual Control	Total Pore Pres	and the second second	-	ssure (psi) =	15533561	
			waxaaaaa		- (poi)	88888	
		SPECI	MEN NO. 3				
	initial	final	Dia	meter	Hei	ght	
Moist soil & Tare :	414.70 g	721.60 g	top	- 2.11 in	Ht 1	į	n
Dry soil and Tare :	-381.70 g		mid	2/1f in	Ht 2	4.62	n
Tare:	102.50 g	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	bot	2.41 in	Ht 3	. 4.62 · i	n
Moisture content :	<b>HIED %</b>		Avg	in	Ht4	4,62	
Weight:	579.6 g				Ava Ht		n
Change in Ht due to sat			0.021 in	Initial specin			c
Change in Ht due to cor			0.018 in	At test speci			c
Change in pipet vol due			5.4 cc	Initial dry de			ocf
Saturation Parameter "	20.000	0.99		At test dry de			cf
Strain Rate (in/min) =	and the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contra	Failure Strai	n % = 5 4 1	Effective Cel			10/15
σ ₁ ' Failure (psi) =	800 s	σ ₁ Failure (		i i	***	ted $v = 1$	0.35
σ ₃ ' Failure (psi) =	330	σ ₃ Failure (		Rack Dros	sure (psi) =		100
$\Delta U =$		Total Pore Press					
Δ0 =		TOTAL PUTE Press	oure - 3 104 1	Cell Pres	sure (psi) =		

# TRIAXIAL SHEAR TEST REPORT



EFFECTIVE STRESS PARAMETERS	φ'= 34.4	deg	c' =	0.8	psi
	SPECIMEN NO.	1	2	3	4
180.00		INIT	IAL		
160.00	Moisture Content - %	16.6	16.0	11.8	
	Dry Density - pcf	112.3	112.1	122.3	
<u>8</u> 140.00	Diameter - inches	2.08	2.08	2.11	
g 120.00 + + - + - + - + - + - + - + - +	Height - inches	4.25	4.40	4.62	
9 120.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00		AT TE	EST		
	Final Moisture - %	19.4	18.1	13.5	
60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00	Dry Density - pcf	112.6	115.3	124.9	
60.00	Calculated Diameter (in.)	2.08	2.07	2.10	
	Height - inches	4.24	4.37	4.58	
40.00	Effect. Celi Pressure - psi	10.0	20.0	40.0	
20.00	Failure Stress - psi	28.02	34.65	70.28	
0.00	Total Pore Pressure - psi	51.8	56.1	64.6	
0.0 10.0 20.0	Strain Rate - inches/min.	0.00050	0.00050	0.00050	
	Failure Strain - %	2.4	3.4	4.6	
AXIAL STRAIN - %	σ ₁ ' Failure - psi	36.26	48.53	95.68	
	σ ₃ ' Failure - psi	8.24	13.88	25.40	
TEST DESCRIPTION		PROJECT	INFORM	MATION	

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Native Sample

DESCRIPTION: Gray, Tan & Redd. Br Sandy Clay w/ some Gravei

Sampled on Site, B-2 8' to 20' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve
LL: PL: PI; Percent -200:

REMARKS: Both Ends & Diameter Trimmed + # 4 Sieve

PROJECT INFORMATION

PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas

PROJECT NO: G 2972 - 08 CLIENT:

Movember 2008

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.1



### TRIAXIAL SHEAR TEST REPORT



TOTAL STRESS PARAMETERS  SPECI  180.00  160.00  140.00  120.00  100.00  Section 200.00  100.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00  Section 200.00
180.00  160.00  140.00  120.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00
0.0 10.0 20.0 Failure Str AXIAL STRAIN - $\%$ $\sigma_1$ Failure

SPECIMEN NO.	1	2	3	4					
	INIT	IAL							
Moisture Content - %	16.6	16.0	11.8						
Dry Density - pcf	112.3	112.1	122.3						
Diameter - inches	2.08	2.08	2.11						
Height - Inches	4.25	4.40	4.62						
AT TEST									
Final Moisture - %	19.4	18.1	13.5						
Dry Density - pcf	112.6	115.3	124.9						
Calculated Diameter (in.)	2.08	2.07	2.10						
Height - inches	4.24	4.37	4.58						
Effect. Cell Pressure - psi	10.0	20.0	40.0						
Fallure Stress - psi	28.02	34.65	70.28						
Total Pore Pressure - psi	51.8	56.1	64.6						
Strain Rate - Inches/min.	0.00050	0.00050	0.00050						
Failure Strain - %	2.4	3.4	4.6						
$\sigma_1$ Failure - psi	38.02	54.65	110.28						
$\sigma_{\scriptscriptstyle 3}$ Failure - psi	10.00	20.00	40.00						
1									

c =

### **TEST DESCRIPTION**

### **PROJECT INFORMATION**

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Native Sample

DESCRIPTION: Gray, Tan & Redd. Br Sandy Clay w/ some Gravel

Sampled on Site, B-2 8' to 20' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve LL: PL: Pi:

REMARKS: Both Ends & Diameter Trimmed

Percent -200:

+ # 4 Sieve

PROJECT: Luminant East Ash Disposal

LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08

25.2 deg

CLIENT:

Movember 2008

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.3

3.1 psi

### **PROJECT INFORMATION**

PROJECT: Luminal East Ash Disposal LENDATION: Rusk County, Yexas PROJECT NO: 3 2972 - 68 CLIENT: Absember 2008

### TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO: ETTL ENGINEERS AND CONSULTANTS, INC. 1717 East Erwin Tyler, TX 75702

### **TEST DESCRIPTION**

TYPE OF TEST 4 NO OL WIN PP

SAMPLE TYPE Power of Sample

DESCRIPTION - Fan & Rad Banoy Lean City of Roma
Sampled on Side, 8-1-2 to 10 deep

ASSUMED SPECIFIC GRAVITY, 2,7 -- 49 Same

LE PL Pt Percent 200

RESMRKS Both Ends & Diameter Trimmed - 4 a 4 Sieve

PLATE: B.1

PLATE: B.2

PLATE: B.3

Number of Specimens = 3

### **SPECIMEN DATA**

SPECIMEN NO. 1

		SPECIMEN	NO. 1			
	initial	final	Di	ameter	He	eight
Moist soil & Tare :	5.14.30 g	625.10 g	top	207 in	Ht 1	423 In
Dry soil and Tare :	452.00 g	648.00 g	mid	2.07 in	Ht 2	4.23 in
Tare:	127.40 g	120.90 g	bot	2.07 in	Ht 3	4.23 in
Moisture content :	<b>15.13</b> %	15.31 %	Avg	2 07 in	Ht4	4.23 in
Weight:	490.2 g				Avg Ht	#23% in
Change in Ht due to sa	aturation :	0.02	in	Initial specim		295,319 CC
Change in Ht due to co	onsolidation :	-0.00	6 in	At test specin	nen vol :	cc
Change in pipet vol du	e to consolidati	on: 3.2	, cc	Initial dry den	sity:	pcf
Saturation Parameter	"B"= 0.9	7		At test dry de	nsity:	\$15 10 pcf
Strain Rate (in/min)	0.9005	Failure Strain %	- 表示地	4 Effective Cell		
σ ₁ ' Failure (psi)	= 29.29	σ₁ Failure (psi)	= 32.9		Estim	ated v = 0.35
σ ₃ ' Failure (psi)	= £35	σ ₃ Failure (psi)	= 10.0	Back Press	sure (psi) =	50.0
ΔÜ	= To	tal Pore Pressure	= 53,	Cell Press	sure (psi) =	60.0
	-				., ,	***************************************
		SPECIMEN	NO. 2			
	initial	final	Dia	meter		ight
Moist soil & Tare :	548.00 g	59€.00 g	top	in	Ht 1	<u>426</u> in
Dry soil and Tare :	492.70 g	<u>519.10</u> g	mid	201 in	Ht 2	425 in
Tare :	136,60 g	124.60 g	bot	201 in	Ht 3	4:25 in
Moisture content :	15.53	%	Avg	in	Ht4	4.25 in
Weight:	462.2 g				Avg Ht	in_
Change in Ht due to sa		-0.009		Initial specime		oc cc
Change in Ht due to co		-0:031	in	At test specim		ATO UN CC
Change in pipet vol due	e to consolidation	on: 4.2	cc	Initial dry dens	sity:	pcf
Saturation Parameter				At test dry der		in pcf
Strain Rate (in/min) =	2022	Failure Strain % =	3.6	Effective Cell		
σ ₁ ' Failure (psi) :	40.52	σ ₁ Failure (psi) :	45.7	3	Estima	ated $v = 0.35$
σ ₃ ' Failure (psi) :	14.53	σ ₃ Failure (psi) =	2000	Back Pressi	ure (psi) =	50.0
ΔÚ:	THE RESERVE AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	al Pore Pressure			** *	
					· · () / · · · /	00000000000000000000000000000000000000
		SPECIMEN	NO. 3			
	initial	final	Dia	meter	Hei	ght
Moist soil & Tare:	#31.00 g	628.40 g	top	2.10 in	Ht 1	4.28 in
Dry soil and Tare:	385.90 g	558.50 g	mid	2.10 in	Ht 2	4.26 in
Tare:	105.00 g	139.40 g	bot	2-10 in	Ht 3	4.25 @ in
Moisture content :	<b>117.13</b> %	<b>*************************************</b>	Avg	in	Ht4	4.28 in
Weight:	510.5 g				Avg Ht	4 of lin
Change in Ht due to sat	turation :	-0.017	in	Initial specime		cc
Change in Ht due to cor	nsolidation :	-0.039	in	At test specime	en vol :	cc
Change in pipet vol due	to consolidation	n: 4.6	cc	Initial dry dens	ity:	pcf
Saturation Parameter "	B" = 0.97			At test dry den		pcf
Strain Rate (in/min) =	0.0005	Failure Strain % =	3.0	Effective Cell I	Pressure (p	
σ ₁ ' Failure (psi) =	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	σ ₁ Failure (psi) =			•••	ted v = 0.35
σ₃' Failure (psi) =	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	σ ₃ Failure (psi) =	10 10 11 10 11	Back Pressu		2000000 3000000
$\Delta U =$	19070 X 12070 X 1	al Pore Pressure =		2		
Δ0 =	100	ari ore rressure -	333355	Oci 116330	" o (bai) − 🖔	

### TRIAXIAL SHEAR TEST REPORT



EFFECTIVE STRESS PARAMETERS	φ'= 21.0	0 deg	c' =	4.5	psi	
	SPECIMEN NO.	1	2	3	4	
120.00		INI	TIAL		-	
	Moisture Content - %	16.2	15.5	16.1	[	
100.00	Dry Density - pcf	113.6	113.1	113.3	1	
8	Dlameter - Inches	2.07	2.01	2.10	1	
• hara-#ara-hara-hara-hara-hara-hara-hara-	Height - Inches	4.23	4.25	4.28	<u>í</u>	
80.00 80.00 WHEN THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY		AT T	EST			
60.00	Final Molsture - %	18.3	18.2	15.8	i	
	Dry Density - pcf	115.2	115.3	115.5	į	
40.00	Calculated Diameter (in.)	2.08	1.99	2.08		
1 4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Height - inches	4.24	4.21	4.22		
20.00	Effect. Cell Pressure - psi	10.0	20.0	40.0	1	
20.00	Failure Stress - psi	22.94	25.99	61.42	į	
0.00	Total Pore Pressure - psi	53.7	55.5	47.3	Į.	
0.00 10.0 20.0	Strain Rate - Inches/min.	0.00050	0.00050	0.00050	ı	
	Failure Strain - %	1.4	3.0	3.0		
AXIAL STRAIN - %	σ ₁ ' Failure - psl	29.29	40.52	104.13		
	σ ₃ ' Failure - psl	6.35	14.53	42.71		
TEST DESCRIPTION	· " "	PROJEC	T INFORM	MATION		

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Tan & Red Sandy Lean Clay w/ Roots

Sampled on Site, B-1 3' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL: Pi: Percent -200:

REMARKS: Both Ends & Diameter Trimmed

+ # 4 Sieve

PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas

PROJECT NO: G 2972 - 08

CLIENT:

Movember 2008

ETTL ENGINEERS & CONSULTANTS

PLATE: B.1



### TRIAXIAL SHEAR TEST REPORT



TOTAL STRESS PARAMETERS	φ =	24.2	deg	c =	1.4	psi			
	SPECIME	N NO.	1	2	3	4			
120.00			INIT	ΓIAL					
	Moisture Con	tent - %	16.2	15.5	16.1				
100.00	Dry Density -	pcf	113.6	113.1	113.3	İ			
8	Diameter - inc	hes	2.07	2.01	2.10				
φ 80.00	Height - inche	s	4.23	4.25	4.28	ļ <u>.</u>			
00.00 ST RESS 40.00			AT T	EST					
60.00	Final Moisture	· - %	18.3	18.2	15.8				
α 00.00	Dry Density -	pcf	115.2	115.3	115.5				
₹ 40.00	Calculated Diameter (in.)		2.08	1.99	2.08				
\$ 40.00	Height - Inche	s	4.24	4.21	4.22				
	Effect. Celi Pr	essure - psl	10.0	20.0	40.0				
20.00	Failure Stress	- psl	22.94	25.99	61.42				
	Total Pore Pre	essure - psi	53.7	55.5	47.3	İ			
	Strain Rate - I	nches/mln.	0.00050	0.00050	0.00050				
1	Failure Strain	- %	1.4	3.0	3.0				
AXIAL STRAIN - %	σ₁ Failure - psi		32.94	45.99	101.42				
	σ ₃ Fallure - ps	<u>i                                     </u>	10.00	20.00	40.00				
TEST DESCRIPTION		<b>PROJEC</b>	T INFORI	MATION					

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Tan & Red Sandy Lean Clay w/ Roots

Sampled on Site, B-1 3' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL: PI: Percent -200:

REMARKS: Both Ends & Diameter Trimmed

PROJECT: Luminant East Ash Disposal

LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08

CLIENT:

+ # 4 Sieve

Movember 2008

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.3

**PERMANENT DISPOSAL POND - 5** 

PROJECT: Luminant Martin Lake, PDP 1-3

CLIENT: TXU CONTRACTOR: not given JOB No.: G 2810 - 08

REPORT No.:

**RESULTS** 

Grain Diameter

DATE SAMPLED: February 2008

SAMPLED BY: ETTL Drill Crew % Retain +2.0 mm 47.69 LOCATION: MLSES % Retain +0.05 mm 99.26 SAMPLE No.: % Passing 0.05 to 2.0 mm 51.57

**DESCRIPTION:** Gray & Dark Gray Bottom Ash % Passing 0.002 to 0.05 mm 0.72 **TECHNICIAN:** M. Thompson % Passing 0.02

> 0.002 mm DATE: 04/15/08

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
			Mc Hydrom	40	54.66	76.31	0.425	23.69
WEIGHT OF SAMPLE (AIR DRY)	100.00	Tare Wt	29.89	60	71.63	85.20	0.250	14.80
WEIGHT OF SAMPLE (OVEN DRY)	99.90	Wet Wt.	68.94	100	84.45	91.91	0.150	8.09
PERCENT RETAINED ON # 10	47.69	Dry Wt	68.90	140	90.93	95.30	0.105	4.70
SPECIFIC GRAVITY	2.563	мс	0.1025%	200	93.54	96.67	0.075	3.33

TEMP (C)	HIDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
21.5	5.7	11.0	5.3	15.5	0.0141	1.02	0.5	0.0787	2.82
21.5	5.7	8.0	2.3	16	0.0141	1.02	1	0.0566	1.21
21.5	5.7	6.8	1.1	16.1	0.0141	1.02	2	0.0401	0.57
21.5	5.7	6.2	0.5	16.3	0.0141	1.02	5	0.0255	0.25
21.5	5.7	6.0	0.3	16.3	0.0141	1.02	15	0.0147	0.15
21.5	5.7	5.8	0.1	16.3	0.0141	1.02	30	0.0104	0.04
21.5	5.7	5.8	0.1	16.3	0.0141	1.02	60	0.0074	0.04
21.5	5.7	5.8	0.1	16.3	0.0141	1.02	250	0.0036	0.04
22.0	5.6	5.6	0.0	16.3	0.0140	1.02	1440	0.0015	0.02

SPECIFIC GRAVIT	ΓY	BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	100	10	188.06	686.13	22.5	99.90	747.18	21.5	2.563

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	2"	0.00	100.00
	1-1/2"	89.00	98.47
Air Dry Start Wt.:	1"	215.04	96.31
5836.8	3/4"	288.14	95.06
Dry Start Wt.:	3/8"	709.78	87.83
5830.82	No 4	1510.97	74.09
	No 10	2780.46	52.31



PROJECT: Luminant Martin Lake, PDP 1-3

 CLIENT:
 TXU

 CONTRACTOR:
 not given

 JOB No.:
 G 2810 - 08

REPORT No.:

**DATE SAMPLED:** February 2008 Grain Diameter

 SAMPLED BY:
 ETTL Drill Crew
 % Retain
 +2.0 mm
 0.08

 LOCATION:
 B-9, 1'-3'
 % Retain
 +0.05 mm
 41.35

 SAMPLE No.:
 % Passing
 0.05 to 2.0 mm
 41.27

 DESCRIPTION:
 Gray Ash (Cementing)
 % Passing
 0.002 to 0.05 mm
 56.63

 DESCRIPTION:
 Gray Ash (Cementing )
 % Passing
 0.002 to 0.05 mm
 56.63

 TECHNICIAN:
 H. Walka
 % Passing
 > 0.002 mm
 2.02

 DATE:
 03/14/08

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
			Mc Hydrom	40	0.92	1.00	0.425	99.00
WEIGHT OF SAMPLE (AIR DRY)	100.00	Tare Wt	29.50	60	1.92	2.00	0.250	98.00
WEIGHT OF SAMPLE (OVEN DRY)	99.73	Wet Wt.	62.41	100	3.90	3.99	0.150	96.01
PERCENT RETAINED ON # 10	0.08	Dry Wt	62.32	140	7.07	7.16	0.105	92.84
SPECIFIC GRAVITY	2.761	MC	0.2742%	200	10.67	10.77	0.075	89.23

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Dlam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
23.0	5.2	65.0	59.8	6.6	0.0138	0.98	0.5	0.0502	58.67
23.0	5.2	63.0	57.8	7	0.0138	0.98	1	0.0365	56.71
23.0	5.2	53.0	47.8	8.6	0.0138	0.98	2	0.0286	46.89
23.0	5.2	32.0	26.8	12	0.0138	0.98	5	0.0214	26.27
22.5	5.4	10.0	4.6	15.6	0.0140	0.98	15	0.0142	4.51
22.5	5.4	8.5	3.1	15.8	0.0140	0.98	30	0.0101	3.04
22.5	5.4	8.0	2.6	16	0.0140	0.98	60	0.0072	2.55
22.0	5.6	8.0	2.4	16	0.0140	0.98	250	0.0035	2.39
22.0	5.6	7.5	1.9	16.1	0.0140	0.98	1440	0.0015	1.90
	1								

SPECIFIC GRAVIT	Y	BOTTLE #	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	50	7	179.97	678.12	22.5	49.86	709.93	22.5	2.761

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
334.9	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	0.00	100.00
333.98	No 4	0.00	100.00
	No 10	0.26	99.92



PROJECT: Luminant Martin Lake, PDP 1-3

**CLIENT:** TXU CONTRACTOR: not given JOB No.: G 2810 - 08

REPORT No.: **RESULTS** 

DATE SAMPLED: February 2008 Grain Diameter

SAMPLED BY: ETTL Drill Crew % Retain +2.0 mm 59.89 LOCATION: B-7, 13'-15' % Retain +0.05 mm 92.28 0.05 to 2.0 mm SAMPLE No.: % Passing 32.39 **DESCRIPTION:** Gray Ash % Passing 0.002 to 0.05 mm

4.63 TECHNICIAN: H. Walka % Passing > 0.002 mm 3.09

DATE: 03/14/08

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
			Mc Hydrom	40	25.25	80.22	0.425	19.78
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt	30.03	60	29.25	83.44	0.250	16.56
WEIGHT OF SAMPLE (OVEN DRY)	49.81	Wet Wt.	45.86	100	32.74	86.25	0.150	13.75
PERCENT RETAINED ON # 10	59.89	Dry Wt	45.80	140	35.11	88.16	0.105	11.84
SPECIFIC GRAVITY	2.655	мс	0.3805%	200	36.67	89.42	0.075	10.58

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
22.0	5.6	17.5	11.9	14.5	0.0140	1.00	0.5	0.0752	9.61
22.0	5.6	15.5	9.9	14.8	0.0140	1.00	1	0.0537	8.00
22.0	5.6	14.0	8.4	15	0.0140	1.00	2	0.0383	6.79
22.0	5.6	13.5	7.9	15.2	0.0140	1.00	5	0.0244	6.39
22.0	5.6	13.0	7.4	15.2	0.0140	1.00	15	0.0141	5.99
21.5	5.7	12.5	6.8	15.3	0.0141	1.00	30	0.0101	5.46
21.5	5.7	12.0	6.3	15.3	0.0141	1.00	60	0.0071	5.05
22.0	5.6	10.5	4.9	15.6	0.0140	1.00	250	0.0035	3.97
22.0	5.6	9.0	3.4	15.8	0.0140	1.00	1440	0.0015	2.77

SPECIFIC GRAVITY		BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	25	4	179.25	677.26	22.5	24.91	692.79	22.5	2.655

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
243.3	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	13.45	94.47
242.38	No 4	77.42	68.18
	No 10	145.71	40.11



PROJECT: Luminant Martin Lake, PDP 1-3

 CLIENT:
 TXU

 CONTRACTOR:
 not given

 JOB No.:
 G 2810 - 08

REPORT No.: RESULTS

**DATE SAMPLED:** February 2008 Grain Diameter

 SAMPLED BY:
 ETTL Drill Crew
 % Retain
 +2.0 mm
 10.97

 LOCATION:
 B-6, 18'-20'
 % Retain
 +0.05 mm
 18.74

 SAMPLE No.:
 % Passing
 0.05 to 2.0 mm
 7.77

 DESCRIPTION:
 Tan Ash
 % Passing
 0.05 to 2.0 mm
 77.79

 TECHNICIAN:
 H. Walka
 % Passing
 > 0.002 to 0.05 mm
 77.39

 DATE:
 03/14/08
 % Passing
 > 0.002 mm
 3.87

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
			Mc Hydrom	40	0.26	11.44	0.425	88.56
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt	29.86	60	0.42	11.72	0.250	88.28
WEIGHT OF SAMPLE (OVEN DRY)	49.81	Wet Wt.	51.33	100	0.78	12.36	0.150	87.64
PERCENT RETAINED ON # 10	10.97	Dry Wt	51.25	140	1.61	13.85	0.105	86.15
SPECIFIC GRAVITY	2.732	MC	0.3740%	200	2.62	15.65	0.075	84.35

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
22.0	5.6	52.0	46.4	8.8	0.0140	0.99	0.5	0.0586	82.16
22.0	5.6	51.0	45.4	8.9	0.0140	0.99	1	0.0417	80.39
22.0	5.6	48.5	42.9	9.4	0.0140	0.99	2	0.0303	75.97
22.0	5.6	47.0	41.4	9.6	0.0140	0.99	5	0.0194	73.31
22.0	5.6	35.0	29.4	11.5	0.0140	0.99	15	0.0122	52.08
22.0	5.6	13.0	7.4	15.2	0.0140	0.99	30	0.0099	13.15
22.0	5.6	9.5	3.9	15.8	0.0140	0.99	60	0.0072	6.96
22.0	5.6	8.5	2.9	16	0.0140	0.99	250	0.0035	5.19
22.0	5.6	7.5	1.9	16.1	0.0140	0.99	1440	0.0015	3.42

SPECIFIC GRAVITY		BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	50	3	179.93	678.11	22.5	49.81	709.70	22.5	2.732

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	28.83	89.03
262.8	3/4"	28.83	89.03
Dry Start Wt.:	3/8"	28.83	89.03
261.82	No 4	28.83	89.03
	No 10	28.83	89.03



PROJECT: Luminant Martin Lake, PDP 1-3

 CLIENT:
 TXU

 CONTRACTOR:
 not given

 JOB No.:
 G 2810 - 08

REPORT No.:

**DATE SAMPLED:** February 2008 Grain Diameter

 SAMPLED BY:
 ETTL Drill Crew
 % Retain
 +2.0 mm
 11.60

 LOCATION:
 B-3, 5'-7'
 % Retain
 +0.05 mm
 76.50

 SAMPLE No.:
 % Passing
 0.05 to 2.0 mm
 64.91

 DESCRIPTION:
 Black Ash
 % Passing
 0.002 to 0.05 mm
 21.88

 DESCRIPTION:
 Black Ash
 % Fassing
 0.03 to 2.0 min
 64.91

 DESCRIPTION:
 Black Ash
 % Passing
 0.002 to 0.05 mm
 21.88

 TECHNICIAN:
 H. Walka
 % Passing
 > 0.002 mm
 1.62

 DATE:
 03/06/08

			L	SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
		Mc Hyd	irom	40	7.81	25.54	0.425	74.46
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt 29.4	3	60	11.21	31.61	0.250	68.39
WEIGHT OF SAMPLE (OVEN DRY)	49.53	Wet Wt. 65.4	.1	100	17.82	43.41	0.150	56.59
PERCENT RETAINED ON # 10	11.60	Dry Wt 65.0	7	140	22.64	52.01	0.105	47.99
SPECIFIC GRAVITY	2.561	MC 0.954	0%	200	26.25	58.45	0.075	41.55

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Dlam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
20.0	6.2	24.5	18.3	13.3	0.0143	1.02	0.5	0.0738	33.31
20.0	6.2	20.0	13.8	14.2	0.0143	1.02	1	0.0539	25.11
20.0	6.2	16.5	10.3	14.7	0.0143	1.02	2	0.0388	18.74
20.0	6.2	14.5	8.3	15	0.0143	1.02	5	0.0248	15.10
20.0	6.2	12.0	5.8	15.5	0.0143	1.02	15	0.0145	10.55
19.5	6.4	11.0	4.6	15.6	0.0145	1.02	30	0.0104	8.44
19.5	6.4	10.0	3.6	15.8	0.0145	1.02	60	0.0074	6.62
20.0	6.2	8.0	1.8	16.1	0.0143	1.02	250	0.0036	3.27
19.5	6.4	7.0	0.6	16.3	0.0145	1.02	1440	0.0015	1.15
						1			

SPECIFIC GRAVITY		BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	100	7	179.97	678.12	22.5	99.06	738.67	21.0	2.561

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
335.3	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	3.42	98.98
332.13	No 4	17.17	94.88
	No 10	38.89	88.40



PROJECT: Luminant Martin Lake, PDP 1-3

CLIENT: TXU CONTRACTOR: not given JOB No.: G 2810 - 08

REPORT No.:

**RESULTS** 

0.76

16.00

15.24

83.90

0.09

93.04

+2.0 mm

+0.05 mm

0.05 to 2.0 mm

> 0.002 mm

0.075

0.002 to 0.05 mm

Grain Diameter

DATE SAMPLED: February 2008

SAMPLED BY: ETTL Drill Crew LOCATION: B-2, 23'-25'

SAMPLE No.:

**DESCRIPTION:** Light Gray & Black Ash

**TECHNICIAN:** H. Walka DATE: 03/06/08

		SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
	Mc Hydrom	40	0.89	2.56	0.425	97.44
Tare Wt	29.91	60	1.22	3.22	0.250	96.78
Wet Wt.	55.02	100	2.01	4.82	0.150	95.18
Dry Wt	54.60	140	2.67	6.15	0.105	93.85

6.96

% Retain

% Retain

% Passing

% Passing

% Passing

3.07

WEIGHT OF SAMPLE (AIR DRY) 50.00 WEIGHT OF SAMPLE (OVEN DRY) 49.16 PERCENT RETAINED ON # 10 0.76 SPECIFIC GRAVITY 2.675

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
20.0	6.2	48.5	42.3	9.4	0.0143	1.00	0.5	0.0620	85.37
20.0	6.2	47.5	41.3	9.6	0.0143	1.00	1	0.0443	83.35
20.0	6.2	46.5	40.3	9.7	0.0143	1.00	2	0.0315	81.33
20.0	6.2	44.5	38.3	10.1	0.0143	1.00	5	0.0203	77.30
20.0	6.2	35.0	28.8	11.7	0.0143	1.00	15	0.0126	58.12
20.0	6.2	19.0	12.8	14.3	0.0143	1.00	30	0.0099	25.83
20.0	6.2	6.5	0.3	16.3	0.0143	1.00	60	0.0075	0.59
20.0	6.2	6.3	0.1	16.3	0.0143	1.00	250	0.0037	0.19
19.5	6.4	6.4	0.0	16.3	0.0145	1.00	1440	0.0015	0.07

1.7011%

200

MC

SPECIFIC GRAVIT	ſΥ	BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	50	4	179.25	677.26	22.5	49.16	708.22	21.0	2.675

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
144.3	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	0.00	100.00
141.89	No 4	0.10	99.93
	No 10	1.10	99.24



PROJECT: Luminant Martin Lake, PDP 1-3

 CLIENT:
 TXU

 CONTRACTOR:
 not given

 JOB No.:
 G 2810 - 08

REPORT No.: RESULTS

**DATE SAMPLED:** February 2008 Grain Diameter

SAMPLED BY: ETTL Drill Crew % Retain +2.0 mm 14.96 LOCATION: B-1, 18'-20' % Retain +0.05 mm 64.42 SAMPLE No. : 0.05 to 2.0 mm % Passing 49.46 **DESCRIPTION:** Black, Tan & Gray Ash

 DESCRIPTION:
 Black, Tan & Gray Ash
 % Passing
 0.002 to 0.05 mm
 35.29

 TECHNICIAN:
 H. Walka
 % Passing
 > 0.002 mm
 0.29

 DATE:
 03/06/08
 03/06/08
 0.002 mm
 0.29

SIEVE WEIGHT %RETAIN GRAIN DIA %PASSING Mc Hydrom 40 5.76 24.90 0.425 75.10 WEIGHT OF SAMPLE (AIR DRY) 50.00 Tare Wt 29.29 60 8.38 29.42 0.250 70.58 WEIGHT OF SAMPLE (OVEN DRY) 49.29 Wet Wt. 59.40 36.20 100 12.31 0.150 63.80 PERCENT RETAINED ON # 10 14.96 Dry Wt 58.97 140 15.78 42.19 0.105 57.81 SPECIFIC GRAVITY 2.608 MC 1.4488% 200 18.60 47.05 0.075 52.95

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
20.0	6.2	31.5	25.3	12.2	0.0143	1.01	0.5	0.0707	44.08
20.0	6.2	27.0	20.8	13	0.0143	1.01	1	0.0516	36.24
20.0	6.2	24.5	18.3	13.3	0.0143	1.01	2	0.0369	31.88
20.0	6.2	23.5	17.3	13.5	0.0143	1.01	5	0.0235	30.14
20.0	6.2	18.5	12.3	14.3	0.0143	1.01	15	0.0140	21.43
20.0	6.2	10.0	3.8	15.8	0.0143	1.01	30	0.0104	6.61
20.0	6.2	7.0	0.8	16.3	0.0143	1.01	60	0.0075	1.38
20.0	6.2	6.5	0.3	16.3	0.0143	1.01	250	0.0037	0.51
19.5	6.4	6.5	0.1	16.3	0.0145	1.01	1440	0.0015	0.23
	<u> </u>								

SPECIFIC GRAVITY		BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr) 10	0	3	179.93	678.11	22.5	98.57	739.11	20.5	2.608

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
268.4	3/4"	15.10	94.37
Dry Start Wt.:	3/8"	15.10	94.37
264.57	No 4	25.58	90.47
	No 10	40.15	85.04



PROJECT: Luminant Martin Lake, PDP 1-3

**CLIENT:** TXU CONTRACTOR: not given JOB No.: G 2810 - 08

REPORT No.: **RESULTS** 

DATE SAMPLED: February 2008 Grain Diameter

SAMPLED BY: ETTL Drill Crew % Retain +2.0 mm 41.02 LOCATION: MLSES % Retain +0.05 mm 95.89 SAMPLE No.: 0.05 to 2.0 mm % Passing 54.87 DESCRIPTION: Tan & Gray Econimizet Ash % Passing 0.002 to 0.05 mm 3.55

**TECHNICIAN:** M. Thompson % Passing > 0.002 mm 0.55

DATE: 04/15/08

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
		M	1c Hydrom	40	13.34	56.76	0.425	43.24
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt	30.27	60	22.12	67.12	0.250	32.88
WEIGHT OF SAMPLE (OVEN DRY)	49.98	Wet Wt.	62.43	100	32.26	79.09	0.150	20.91
PERCENT RETAINED ON # 10	41.02	Dry Wt	62.42	140	38.01	85.87	0.105	14.13
SPECIFIC GRAVITY	2.670	MC	0.0311%	200	42.66	91.36	0.075	8.64

ΓEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
21.5	5.7	13.0	7.3	15.2	0.0141	1.00	0.5	0.0780	8.58
21.5	5.7	10.0	4.3	15.6	0.0141	1.00	1	0.0558	5.04
21.5	5.7	9.0	3.3	15.8	0.0141	1.00	2	0.0397	3.86
21.5	5.7	7.5	1.8	16.1	0.0141	1.00	5	0.0254	2.09
21.5	5.7	7.0	1.3	16.1	0.0141	1.00	15	0.0146	1.50
21.5	5.7	6.8	1.1	16.1	0.0141	1.00	30	0.0104	1.27
21.5	5.7	6.5	0.8	16.3	0.0141	1.00	60	0.0074	0.91
21.5	5.7	6.3	0.6	16.3	0.0141	1.00	250	0.0036	0.68
22.0	5.6	6.0	0.4	16.3	0.0140	1.00	1440	0.0015	0.51

SPECIFIC GRAVITY		BOTTLE#	BOTTLE # Bottle Wt Bott & Water WaterTemp		Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav	
Air dry Sample(gr)	100	7	179.97	678.12	22.5	99.97	740.78	21.5	2.670

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
2182.9	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	12.53	99.43
2182.22	No 4	200.01	90.83
	No 10	895.12	58.98



Project:

Luminant Martin Lake: PDP 1-3



1/2 Stress (KSF)		2.321
Strain at 1/2 Stress (%)		0.99
Type of Specimen:	Native	
Remarks:		

Project No.:	G 2810-08	
Boring No.:	B-7	
Depth, ft.:	5'-7'	
Material: Black Ash w	rith Gravel	
Initial Height	5.706	Inches
Initial Diameter	2.767	Inches
Moisture Content:	22.9%	%
Dry Density:	97.5	lbs/cu ft
Specific Gravity ( Assumed )	2.670	
Volume of Solids:	0.585	
Volume of Voids	<u>0.415</u>	
Void Ratio:	0.709	
Confining Pressure:	6.1	PSI
Pocket Penetr. Reading:	4.5	
Torvane (T)		
Rate of Strain: (%/ min)	1.0%	
Peak Strain:	2.1	%
Max Stress:	2.32	TSF
Date:	3/11/2008	

 RQD Value:
 100%

Angle of Fracture in Degrees: 65

Project: TXU PDP: Martin Lake, TX



 1/2 Stress (KSF)
 2.416

 Strain at 1/2 Stress (%)
 3.94

 Type of Specimen:
 Native

Remarks: undefined fracture

Project No.:	G 2810-08	
Boring No.:	B-4	
Depth, ft.:	13'-15'	-
Material: Red & Gray Lan	ninated Lean C	lay
Initial Height	3.613	Inches
Initial Diameter	2.667	Inches
Moisture Content:	22.3%	%
Dry Density:	99.4	lbs/cu ft
Specific Gravity ( Assumed )	2.670	
Volume of Solids:	0.596	
Volume of Voids	0.404	
Void Ratio:	0.677	
Confining Pressure:	13	PSI
Pocket Penetr. Reading:	3.5	
Torvane (T)		
Rate of Strain: (%/ min)	1.0%	
Peak Strain:	10.3	%
Max Stress:	2.42	TSF
Date:	5/12/2008	

Secant Modulus (KSF) @ 1/2 Peak Stress 61

RQD Value: 100%

Angle of Fracture in Degrees: N/A

Project: Luminant Martin Lake: PDP 1-3



 1/2 Stress (KSF)
 2.552

 Strain at 1/2 Stress (%)
 2.54

 Type of Specimen:
 Native

 Remarks:
 Native

Project No.: G 2810-08 Boring No.: B-4 13'-15' Depth, ft.: Material: Light Gray & Red Slity Clayey Sand w/ Ferric seams Initial Height 5.688 Inches 2.75 Initial Diameter Inches **Moisture Content:** 21.5% % 104.6 Dry Density: lbs/cu ft Specific Gravity (Assumed) 2.670 Volume of Solids: 0.628 Volume of Voids 0.372 0.593 Void Ratio: Confining Pressure: 13 **PSI** Pocket Penetr. Reading: 3.9 Torvane (T) 1.138 Rate of Strain: (%/ min) 1.0% Peak Strain: 8.6 % Max Stress: 2.55 **TSF** Date: 4/11/2008

Secant Modulus (KSF) @ 1/2 Peak Stress 100

RQD Value: 100%

Angle of Break in Degrees: 60

Project:

Luminant Martin Lake: PDP 1-3



1/2 Stress (KSF)	0.510	_
Strain at 1/2 Stress (%)	1.20	_
Type of Specimen:	Native	_

Remarks: Not able to find a well defined fracture

Project No.:		G 2810-0	8
Boring No.:		B-7	
Depth, ft.:		23'-25'	
Material: Bla	ack, Red, ⁻	Гап, & Gray	Clay w/ gravel
Initial Height		5.686	Inches
Initial Diameter		2.717	Inches
Moisture Content:		21.0%	%
Dry Density:		103.9	lbs/cu ft
Specific Gravity ( Assumed	l)	2.670	
Volume of Solids:		0.624	
Volume of Voids		0.376	
Void Ratio:		0.603	
Confining Pressure:		21.7	PSI
Pocket Penetr. Reading:			
Torvane (T)			
Rate of Strain: (%/ min)		1.0%	
Peak Strain:		12.8	%
Max Stress:		0.51	TSF
Date:		3/11/2008	

Secant Modulus (KS	43		
	RQD Value:	100%	
	Angle of Brea	53	

# CONSOLIDATION TEST REPORT ASTM D 2435



C _c =	0.381	C _r =	0.033	<b>e</b> ₀ = 2.0191	<b>Pc (tsf) =</b> 1.79	OCR = 10.2
LOAD	c _v	k				
tsf	in²/min	in/min	_ 0.020 ⊤			
Seating	NA	NA	0.015 – 0.010 –			
0.50	9.34E-03	9.85E-07	<u>2</u> 0.010 +			
1.00	5.36E-03	4.89E-07	0.005 ج			
2.00	5.03E-03	2.65E-07	0.000			
4.00	5.04E-03	1.73E-07	0.1	0 1.0	0 10.00	100.00
8.00	5.03E-03	1.18E-07			Applied Stress - tsf	100.00
16.00	5.03E-03	7.08E-08		•	Applied Stress - Isi	
			C _v Va	alues calculated by	/ Sivaram and Swame	e's Method

SAMPLE AND TEST DATA			ATA	PROJECT INFORMATION				
SAMPLE LO	CATION: B-6	3, 3-5'		PROJECT:	PROJECT: Luminant Martin Lake PDP 1-3			
DESCRIPTIO	ON: Ash, bla	ck and dark gray	/	LOCATION: Rusk, TX.				
				PROJECT NO.:	ETT08002-07			
LL: NA	PL: NA	PI: NA	-200:NA	CLIENT:	ETTL Engineers & Cons	ultants, Inc.		
ASSUMED S	PECIFIC GF	RAVITY:	2.70	CLIENT NO.: G2810-08				
MC Initial:	58.1%	MC Final:	47.2%	DATE:	4/24/2008			
Dia. (in.) :	2.50	Height (in.):	1.000	REMARKS: OCR calc	culated based on Pc and vertical o	overburden		
Initial Sat %:	70.2	Final Sat %:	100.0	CRECORY CENTECHNICAL BLATER		PLATE B-CN.1		
DRY DENSIT	Y (pcf):	55.8		GREGORY GEOTECHNICAL PLATE B-CI				

# CONSOLIDATION TEST REPORT ASTM D 2435



$C_c = 0.146$		$C_r = 0.012$		$e_0 = 0.5597$	<b>Pc (tsf) =</b> 1.93	OCR = 3.5			
LOAD	c _v	k							
tsf	in²/min	in/min	<b>_</b> 0.	).025					
Seating	NA	NA	in2/min	0.020					
0.50	1.67E-02	2.82E-06	n2			1 1 1 1 1 1 1 1 1 1			
1.00	1.51E-02	1.33E-06	, U.	0.015	<del>┝┈╒╇╶┼</del> ╋┼┼ <del>┩</del>	+ + + + + + + + + + + + + + + + + + + +			
2.00	1.55E-02	8.75E-07	رد	0.010					
4.00	1.54E-02	5.00E-07	0.		00 40.00	400.00			
8.00	1.51E-02	2.67E-07		0.10	00 10.00	100.00			
16.00	1.39E-02	1.50E-07	Applied Stress - tsf						
				c _ν values calculated by Sivaram and Swamee's Method					

SAMPLE AND TEST DATA				PROJECT INFORMATION			
SAMPLE LOCATION: B-4, 8-10'				PROJECT:	Luminant Martin Lake Pl	DP 1-3	
DESCRIPTION: Clayey Sand , reddish brown with gray				LOCATION:	Rusk, TX.		
				PROJECT NO.:	ETT08002-07		
LL: NA	PL: NA	PI: NA	-200: NA	CLIENT:	ETTL Engineers & Cons	ultants, Inc.	
ASSUMED SPECIFIC GRAVITY: 2.70			2.70	CLIENT NO.:	G2810-08		
MC Initial:	13.0%	MC Final:	19.6%	DATE:	4/24/2008		
Dia. (in.) :	2.50	Height (in.):	1.000	REMARKS: OCR calculated based on Pc and vertical overburden			
Initial Sat %:	70.2	Final Sat %:	100.0	GREGORY GEOTECHNICAL PLATE B-CN.		PLATE B-CN.2	
DRY DENSITY (pcf): 108.0			GREGOR' GEOTECHNICAL		PLATE B-UN.2		



PEAK STRENGTH PARAMETERS	$\phi = 39.8$	deg	c =	0.5	psi
POST PEAK STRENGTH PARAMETERS	φ = 37.5	deg	c=	0.0	psi
	SPECIMEN NO.	1	2	3	4
40.0	INITIAL				
	Moisture Content - %	52.1	29.3	21.2	
35.0	Dry Density - pcf	50.2	71.7	95.2	
30.0	Diameter - inches	2.50	2.50	2.50	
	Height - inches	1.13	1.13	1.13	
25.0	AT TEST				
15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15.0 - 15	Final Moisture - %	64.3	25.0	31.6	
ق ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع	Dry Density - pcf	55.8	79.1	117.3	
15.0 + 17	Height-End of Consol. (in.)	1.02	1.03	0.92	
	Height-End of Shear (in.)	0.97	0.99	0.89	
10.0	Normal Stress - psi	10.0	20.0	40.0	
5.0	Peak Failure Stress-psi	9.2	16.5	34.0	
	Post Peak Failure Stress-psi	7.9	14.9	30.8	
0.0	Strain Rate - inches/min.	0.00300	0.00300	0.00300	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	16.2	15.6	15.6	
Deformation (in)	Post Peak Failure Strain %	8.4	7.2	9.6	
Dry Density at test based on initial moisture and height at end of consolidation.					

TYPE OF TEST & NO: CD-DS-1
SAMPLE TYPE: Shelby Tube
DESCRIPTION: Ash, black and gray
SAMPLE LOCATION: B-6, 3-5 ft
ASSUMED SPECIFIC GRAVITY: 2.65
LL: 35 PL: 19 PI: 16

TEST DESCRIPTION

REMARKS: Multi-Specimen

Percent -200: 61

PROJECT: Luminant Martin Lake PDP 1-3 LOCATION: Rusk , TX

PROJECT NO: ETT08002-07 (G2810-08)
CLIENT: ETTL Engineers & Consultants, Inc

PROJECT INFORMATION

DATE:4/25/08

GREGORY GEOTECHNICAL

PLATE: B-DS.1



TE IN OTHER OTHER OWNER CO.	Ψ 71.7	ueg	٥	Z.Z	μοι
POST PEAK STRENGTH PARAMETERS	φ = 40.3	deg	c=	2.2	psi
	SPECIMEN NO.	1	2	3	4
40.0		INI	TIAL		
	Moisture Content - %	13.1	13.1	13.1	
35.0	Dry Density - pcf	71.8	71.7	71.7	
30.0	Diameter - inches	2.50	2.50	2.50	
	Height - inches	1.00	1.00	1.00	
8 25.0		AT T	EST		
20.0 15.0 15.0	Final Moisture - %	38.5	37.4	31.6	
	Dry Density - pcf	73.6	73.7	75.8	
15.0	Height-End of Consol. (in.)	0.98	0.97	0.95	
	Height-End of Shear (in.)	1.00	0.96	0.92	
10.0	Normal Stress - psi	10.0	20.0	40.0	
5.0	Peak Failure Stress-psi	11.4	19.3	37.7	
	Post Peak Failure Stress-psi	11.2	18.3	36.4	
0.0	Strain Rate - inches/min.	0.00300	0.00300	0.00300	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	15.6	15.6	13.2	
Deformation (in)	Post Peak Failure Strain %	13.8	12.0	15.0	
	Dry Density at test based on	initial moisture	and height at	end of consolic	dation.

TYPE OF TEST & NO: CD-DS-2 SAMPLE TYPE: Re-Compacted DESCRIPTION: Ash, black and dark gray SAMPLE LOCATION: MLSES (Bulk)

**TEST DESCRIPTION** 

SPECIFIC GRAVITY: 2.56

LL: NP PL: NP PI: NP REMARKS: Multi-Specimen

Percent -200: 3.33

# PROJECT INFORMATION

PROJECT: Luminant Martin Lake PDP 1-3 LOCATION: Rusk, TX

PROJECT NO: ETT08002-07 (G2810-08)

CLIENT: ETTL Engineers & Consultants, Inc.

DATE:5/6/08

**GREGORY GEOTECHNICAL** 

PLATE: B-DS.2



	Y 12.1	aog	)	0.1	POI
POST PEAK STRENGTH PARAMETERS	$\phi = 37.4$	deg	c =	0.3	psi
	SPECIMEN NO.	1	2	3	4
45.0		INI	TAL		
40.0	Moisture Content - %	0.1	0.1	0.1	
40.0	Dry Density - pcf	71.7	71.7	71.7	
35.0	Diameter - inches	2.50	2.50	2.50	
<b>30.0</b> + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Height - inches	1.00	1.00	1.00	
8		AT T	EST		
20.0 25.0 25.0 25.0 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	Final Moisture - %	50.3	37.4	31.6	
20.0	Dry Density - pcf	73.4	73.1	73.1	
hea .co	Height-End of Consol. (in.)	0.98	0.98	0.98	
<b>5</b> 15.0	Height-End of Shear (in.)	1.01	1.01	0.99	
10.0	Normal Stress - psi	10.0	20.0	40.0	
5.0	Peak Failure Stress-psi	15.4	22.8	42.2	
3.0 1 1 1 1 1 1 1 1	Post Peak Failure Stress-psi	8.5	14.8	31.2	
0.0	Strain Rate - inches/min.	0.00300	0.00300	0.00300	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	17.6	3.0	3.6	
Deformation (in)	Post Peak Failure Strain %	15.0	15.6	13.8	
	Dry Density at test based on	initial moisture	and height at	end of consolid	dation.

# **TEST DESCRIPTION**

Percent -200: 8.64

PROJECT INFORMATION PROJECT: Luminant Martin Lake PDP 1-3

TYPE OF TEST & NO: CD-DS-2 SAMPLE TYPE: Re-Compacted

LOCATION: Rusk, TX

DESCRIPTION: Economized Ash, tan and gray

PROJECT NO: ETT08002-07 (G2810-08) CLIENT: ETTL Engineers & Consultants, Inc.

SAMPLE LOCATION: MLSES (Bulk)

DATE:5/20/08

SPECIFIC GRAVITY: 2.67

LL: NP PL: NP PI: NP

**GREGORY GEOTECHNICAL** 

REMARKS: Multi-Specimen

PLATE: B-DS.3

# **PROJECT INFORMATION**

PROJECT: Martin Lake PDP 1 - 3 Supplemental

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

# TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO: ETTL ENGINEERS AND CONSULTANTS, INC. 1717 East Erwin Tyler, TX 75702

## **TEST DESCRIPTION**

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample DESCRIPTION: Tan w/ Red & Gray Clayey Sand

Sampled on Site, B-16 8' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL: Pl: Percent -200:

REMARKS: Diameter and Both Ends Trimmed + # 4 Sieve

PLATE: B.1

PLATE: B.2

PLATE: B.3

Number of Specimens = 3



EFFECTIVE STRESS PARAMETERS	φ'=	31.9	deg	c' =	1.3	psi	
	SPECIME	N NO.	1	2	3	4	
100.00			INIT	'IAL			
	Moisture Cont	ent - %	17.2	16.8	16.3		
	Dry Density - p	pcf	112.6	114.4	115.0		
DEVIATOR STRESS - PSI	Diameter - inc	hes	2.47	2.46	2.48		
	Height - inche	s	4.98	4.97	5.00		
			AT T	EST			
	Final Moisture	- %	18.4	16.5	16.0		
g seise	Dry Density - _I	pcf	113.1	115.3	116.9		
Ĭ Į	Calculated Dia	ameter (in.)	2.47	2.46	2.50		
	Height - inche	s	5.00	4.97	5.06		
	Effect. Cell Pr	essure - psi	10.0	20.0	40.0		
<u> </u>	Failure Stress	- psi	18.88	28.83	63.14		
	Total Pore Pre	essure - psi	54.3	58.2	64.1		
0.00	Strain Rate - i	nches/min.	0.00050	0.00050	0.00050		
0.0 10.0 20.0 Failure Strain AXIAL STRAIN - % $\sigma_1$ ' Failure - p		- %	1.8	3.0	5.2		
		si	24.54	40.64	89.01		
	σ ₃ ' Failure - p	si	5.66	11.81	25.87		
TEST DESCRIPTION			PROJEC	T INFOR	MATION	· ·	

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample
DESCRIPTION: Tan w/ Red & Gray Clayey Sand

Sampled on Site, B-16 8' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL: PI: Percent -200:

REMARKS: Diameter and Both Ends Trimmed

PROJECT: Martin Lake PDP 1-3 Supplemental

LOCATION:

+ # 4 Sieve

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

ETTL ENGINEERS & CONSULTANTS

PLATE: B.1











EFFECTIVE STRESS PARAMETERS	$R^2 = 1.00$	$\alpha$ (deg) = 27.9	a (psi) =	1.1
PROJECT: Martin Lake PDP 1 - 3 Supple	mental	TYPE OF TEST & NO: CU	with PP	
PROJECT NO: G 3219 - 09	ETTL ENGINEERS & CONSULTANTS PLATF			
DESCRIPTION: Tan w/ Red & Gray Clayey	/ Sand	ETTLENGINEERS & CO	SULTANTS	PLATE: B.2



TOTAL STRESS PARAMETERS	$\phi = 25.6$	deg	c =	0.5 բ
	SPECIMEN NO.	1	2	3
100.00		INIT	IAL.	
	Moisture Content - %	17.2	16.8	16.3
	Dry Density - pcf	112.6	114.4	115.0
<u>s</u>	Diameter - inches	2.47	2.46	2.48
	Height - inches	4.98	4.97	5.00
SS.		AT T	EST	
50.00	Final Moisture - %	18.4	16.5	16.0
5	Dry Density - pcf	113.1	115.3	116.9
ğ T	Calculated Diameter (in.)	2.47	2.46	2.50
DEVIATOR STRESS	Height - inches	5.00	4.97	5.06
ű V	Effect. Cell Pressure - psi	10.0	20.0	40.0
	Failure Stress - psi	18.88	28.83	63.14
0.00	Total Pore Pressure - psi	54.3	58.2	64.1
0.00	Strain Rate - inches/min.	0.00050	0.00050	0.00050
0.0 10.0 20.0	Failure Strain - %	1.8	3.0	5.2
AXIAL STRAIN - %	σ₁ Failure - psi	28.88	48.83	103.14
	σ ₃ Failure - psi	10.00	20.00	40.00
TEST DESCRIPTION		PROJEC	T INFOR	MATION

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample

DESCRIPTION: Tan w/ Red & Gray Clayey Sand

Sampled on Site, B-16 8' to 10' deep

PL:

LL:

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

PI:

REMARKS: Diameter and Both Ends Trimmed

Percent -200:

+ # 4 Sieve

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

**ETTL ENGINEERS & CONSULTANTS** 

PROJECT: Martin Lake PDP 1-3 Supplemental

PLATE: B.3

0.5 psi

4

## **PROJECT INFORMATION**

PROJECT: Martin Lake PDP 1 - 3 Supplemental

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

#### TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO:

ETTL ENGINEERS AND CONSULTANTS, INC.

1717 East Erwin Tyler, TX 75702

# **TEST DESCRIPTION**

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample DESCRIPTION: Tan & Red Sandy Lean Clay

Sampled on Site, B-17 3' to 7' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL: Pt: Percent -200:

REMARKS: Diameter and Both Ends Trimmed + # 4 Sieve

PLATE: B.1

PLATE: B.2

PLATE: B.3

Number of Specimens = 3



E	EFFE	ECTIVE	STR	ESS	PA	RA	ME	TEF	₹S	
		150.00								S
		100.00			-		_	Н		M
										P
	$\bar{\mathbf{v}}$							Ш		D
	DEVIATOR STRESS - PSI	100.00	++/			$\vdash$	+			브
	SES.						.	H		L
	ST				~			П		F
	OR						•			D
	ĬĀΤ	50.00	II		$\setminus$					C
	Ä	00.00	1//	4		Ш				Н
	_		#/			1-1				H
			₩/		-	++	+	H		F
			<b>/</b>	+	_	11	+	Н		T
		0.00	<del>   </del>		-					s
		(	0.0		10.0			20.0	)	F
			A)	KIAL	STR	AIN -	- %			σ
										ا

φ'= 31.4	φ' = 31.4 deg			psi
SPECIMEN NO.	1	2	3	4
	INIT	IAL		
Moisture Content - %	16.2	13.3	13.9	
Dry Density - pcf	113.5	121.6	115.5	
Diameter - inches	2.49	2.49	2.50	
Height - inches	5.08	5.00	5.16	
	AT T	EST		
Final Moisture - %	18.1	14.7	16.3	
Dry Density - pcf	114.1	123.3	117.2	
Calculated Diameter (in.)	2.50	2.50	2.52	
Height - inches	5.10	5.04	5.22	
Effect. Cell Pressure - psi	10.0	20.0	40.0	
Failure Stress - psi	28.40	36.54	74.24	
Total Pore Pressure - psi	53.7	61.5	63.2	
Strain Rate - inches/min.	0.00050	0.00050	0.00050	
Failure Strain - %	0.8	3.5	1.8	
σ ₁ ' Failure - psi	34.71	45.04	101.03	
σ ₃ ' Failure - psi	6.31	8.50	26.79	

# TEST DESCRIPTION

PROJECT INFORMATION
PROJECT: Martin Lake PDP 1 - 3 Supplemental

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample

DESCRIPTION: Tan & Red Sandy Lean Clay

Sampled on Site, B-17 3' to 7' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL:

PI:

Percent -200:

REMARKS: Diameter and Both Ends Trimmed +#4 Sieve

ETTL ENGINEERS & CONSULTANTS

September 2009

CLIENT: HDR

PROJECT NO: G 3219 - 09

LOCATION:

PLATE: B.1





TOTAL STRESS PARAMETERS	φ = 26.4	deg	c =	2.8	psi
	SPECIMEN NO.	1	2	3	4
150.00		INIT	TIAL		
	Moisture Content - %	16.2	13.3	13.9	j
	Dry Density - pcf	113.5	121.6	115.5	
<u>8</u>	Diameter - inches	2.49	2.49	2.50	
100.00	Height - inches	5.08	5.00	5.16	
PEVIATOR STRESS		AT T	EST		
	Final Moisture - %	18.1	14.7	16.3	
8	Dry Density - pcf	114.1	123.3	117.2	
50.00	Calculated Diameter (in.)	2.50	2.50	2.52	
₹ 55.55	Height - inches	5.10	5.04	5.22	
B ₩/	Effect. Cell Pressure - psi	10.0	20.0	40.0	
	Failure Stress - psi	28.40	36.54	74.24	
0.00	Total Pore Pressure - psi	53.7	61.5	63.2	
0.00	Strain Rate - inches/min.	0.00050	0.00050	0.00050	<u> </u>
0.0 10.0 20.0	Failure Strain - %	0.8	3.5	1.8	
AXIAL STRAIN - %	σ₁ Failure - psi	38.40	56.54	114.24	 
	σ ₃ Failure - psi	10.00	20.00	40.00	_
TEST DESCRIPTION		PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample DESCRIPTION: Tan & Red Sandy Lean Clay

Sampled on Site, B-17 3' to 7' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve LL: PL: PI: Percent -200:

REMARKS: Diameter and Both Ends Trimmed

PROJECT: Martin Lake PDP 1 - 3 Supplemental

LOCATION:

+#4 Sieve

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

**ETTL ENGINEERS & CONSULTANTS** 

PLATE: B.3

# **PROJECT INFORMATION**

PROJECT: Martin Lake PDP 1 - 3 Supplemental

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

# TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO:

ETTL ENGINEERS AND CONSULTANTS, INC.

1717 East Erwin Tyler, TX 75702

# **TEST DESCRIPTION**

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Lab Molded

DESCRIPTION: Tan & Reddish Tan Silty Sand

Sampled on Site, TP-31 0' to 5' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve 2%

LL: 20 PL: 17 Pt: 3 Percent -200: 27%

REMARKS: Both Ends Trimmed +#4 Sieve 1%

PLATE: B.1

PLATE: B.2

PLATE: B.3

Number of Specimens = 3



EFFECTIVE STRESS PARAMETERS	φ'=	34.7	deg	c' =	-0.4	psi	
	SPECIMEN N	10.	1	2	3	4	
150.00			INIT	IAL			
	Moisture Content	- %	17.3	17.2	17.4		
	Dry Density - pcf	İ	110.3	110.5	110.4		
₹	Diameter - inches	;	2.87	2.87	2.85		
100.00	Height - inches		5.57	5.59	5.61		
20.00 SS 100.00			AT T	EST			
	Final Moisture - %	6	17.2	16.7	16.5		
ğ HIII	Dry Density - pcf		110.6	111.6	112.0		
₹ 50.00	Calculated Diame	eter (in.)	2.87	2.88	2.87		
30.00	Height - inches	-	5.58	5.62	5.66		
-   <del>                                  </del>	Effect. Cell Press	ure - psi	10.0	20.0	40.0		
	Failure Stress - ps	si	15.65	28.63	43.17		
	Total Pore Pressu	ure - psi	54.3	56.7	74.3		
0.00	Strain Rate - inch	es/min.	0.00050	0.00050	0.00050		
0.0 10.0 20.0	Failure Strain - %	İ	2.4	3.5	4.6		
AXIAL STRAIN - % σ₁' Failure - p		į	21.35	41.97	58.90		
	σ ₃ ' Failure - psi	ŀ	5.70	13.34	15.73		
TEST DESCRIPTION			<b>PROJEC</b>	T INFOR	MATION		

LOCATION:

CLIENT: HDR

September 2009

PROJECT NO: G 3219 - 09

PROJECT: Martin Lake PDP 1 - 3 Supplemental

PLATE: B.1

**ETTL ENGINEERS & CONSULTANTS** 

TYPE OF TEST & NO: CU with PP

Sampled on Site, TP- 31 0' to 5' deep

ASSUMED SPECIFIC GRAVITY: 2.7

PL: 17

DESCRIPTION: Tan & Reddish Tan Silty Sand

+ 40 Sieve 2%

+#4 Sieve 1%

Percent -200: 27%

SAMPLE TYPE: Lab Molded











EFFECTIVE STRESS PARAMETERS	$R^2 = 0.98$	$\alpha$ (deg) = 29.7	a (psi) =	-0.3		
PROJECT: Martin Lake PDP 1-3 Supple	mental	TYPE OF TEST & NO: CU	with PP			
PROJECT NO: G 3219 - 09		ETTL ENGINEERS & CONSULTANTS PLATE: B.				
DESCRIPTION: Tan & Reddish Tan Silty S	ETTE ENGINEERS & CO	MOULIANIS	PLATE, D.Z			





TOTAL STRESS PARAMETERS	φ = 1	8.0 deg	c =	3.0	psi
	SPECIMEN NO.	1	2	3	4
150.00		INI ⁻	ΓIAL		
	Moisture Content - %	17.3	17.2	17.4	
	Dry Density - pcf	110.3	110.5	110.4	
8	Diameter - inches	2.87	2.87	2.85	
100.00	Height - inches	5.57	5.59	5.61	
		AT 1	EST		
¥	Final Moisture - %	17.2	16.7	16.5	
DEVIATOR STRESS	Dry Density - pcf	110.6	111.6	112.0	
50.00	Calculated Diameter (in	.) 2.87	2.88	2.87	
¥ 50.00	Height - inches	5.58	5.62	5.66	
ű ///	Effect. Cell Pressure - p	osi 10.0	20.0	40.0	
	Failure Stress - psi	15.65	28.63	43.17	
	Total Pore Pressure - p	si 54.3	56.7	74.3	
0.00	Strain Rate - inches/mir	n. 0.00050	0.00050	0.00050	
0.0 10.0 20.0	Failure Strain - %	2.4	3.5	4.6	
AXIAL STRAIN - %	σ₁ Failure - psi	25.65	48.63	83.17	
	$\sigma_3$ Failure - psi	10.00	20.00	40.00	
TEST DESCRIPTION		PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Lab Molded

DESCRIPTION: Tan & Reddish Tan Silty Sand

Sampled on Site, TP- 31 0' to 5' deep

ASSUMED SPECIFIC GRAVITY: 2.7 LL: 20 PL: 17 PI: 3

REMARKS: Both Ends Trimmed

+ 40 Sieve 2%

+ # 4 Sieve 1%

Percent -200: 27%

CLIENT: HDR September 2009

LOCATION:

**ETTL ENGINEERS & CONSULTANTS** 

PROJECT NO: G 3219 - 09

PROJECT: Martin Lake PDP 1 - 3 Supplemental

PLATE: B.3



EFFECTIVE STRESS PARAMETERS	φ'= 2	20.4 deg	C, =	0.0	psi		
	SPECIMEN NO.	1	2	3	4		
30		INI	ΓIAL				
	Moisture Content - %	26.1	24.6	21.3			
	Dry Density - pcf	94.3	95.8	101.6			
70	Diameter - inches	1.40	1.40	1.40			
<u>₹</u>	Height - inches	2.81	2.85	3.20			
		AT 1	EST				
<u> </u>	Final Moisture - %	26.1	24.6	21.3			
<u> </u>	Dry Density - pcf	94.3	97.0	101.6			
P 10	Calculated Diameter (i	in.) 1.40	1.40	1.40			
DEVIATOR STRESS	Height - inches	2.81	2.85	3.20			
	Effect. Cell Pressure -	psi 5.0	10.0	20.0			
	Failure Stress - psi	5.21	10.25	21.03			
	Total Pore Pressure -	psi 20.0	20.0	20.0			
0 1	Strain Rate - inches/m	in. 0.00050	0.00050	0.00050			
0 5 10 15 20	Failure Strain - %	15.6	14.2	15.9			
AXIAL STRAIN - %	σ₁' Failure - psi	10.11	19.85	40.73			
	σ ₃ ' Failure - psi	4.90	9.60	19.70			
TEST DESCRIPTION		PROJEC	T INFOR	MATION			

TYPE OF TEST & NO: CD Triaxial - CD-1

SAMPLE TYPE: SHELBY TUBE

DESCRIPTION:SANDY LEAN CLAY(CL), tan br w/ red br and gray

SAMPLE LOCATION: B-16, 3-5'
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 43 PL: 14 PI: 29 Percent -200: 56 REMARKS: Tested in a fully softened remolded state

PROJECT: Luminant Martin Lake PDP 1-3 Vertical Expansion

LOCATION: Tatum, TX PROJECT NO: ETT08002-11

CLIENT: ETTL Engineers & Consultants, Inc.

DATE: 9/15/09

GREGORY GEOTECHNICAL | PLATE: B-CD.1



# DIRECT SHEAR TEST REPORT y = 0.815x + 1.35 R² = 0.980 50.0 40.0 10.0 Peak Post Peak Post Peak Linear (Post Peak) Linear (Post Peak)

PEAK STRENGTH PARAMETERS	φ = 39.2	deg	c =	1.4	psi
POST PEAK STRENGTH PARAMETERS	φ = 34.6	deg	c =	0.0	psi
	SPECIMEN NO.	1	2	3	4
20.0		INI	TAL		
18.0	Moisture Content - %	41.3	42.3	48.4	
	Dry Density - pcf	78.9	72.5	72.9	
16.0	Diameter - inches	2.50	2.50	2.50	
<b>≘</b> 14.0	Height - inches	1.00	1.00	1.00	
<u>a</u> 12.0		AT T	EST		
	Final Moisture - %	46.6	59.5	31.6	
10.0	Dry Density - pcf	81.0	74.2	73.0	
8.0 See at	Height-End of Consol. (in.)	1.03	1.02	1.00	
6.0	Height-End of Shear (in.)	1.03	1.03	1.01	
	Normal Stress - psi	5.0	10.0	20.0	
4.0	Peak Failure Stress-psi	6.1	8.5	18.0	
2.0	Post Peak Failure Stress-psi	4.1	6.9	13.6	
0.0	Strain Rate - inches/min.	0.00030	0.00030	0.00030	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	1.6	1.9	3.1	
Deformation (in)	Post Peak Failure Strain %	4.3	12.7	11.8	

30

40

50

# **TEST DESCRIPTION**

10

20

Normal Stress - psi

# PROJECT INFORMATION

PROJECT: Luminant Martin Lake PDP 1-3 Vertical Expansion

TYPE OF TEST & NO: CD-DS-1
SAMPLE TYPE: Shelby Tube

0.0

y = 0.688x $R^2 = 0.990$ 

DESCRIPTION: SILT(MH), black (classification tests from 13-15 ft)

SAMPLE LOCATION: B-15, 18-20 ft ASSUMED SPECIFIC GRAVITY: 2.65

LL: NP PL: NP PI: NP REMARKS: Tested at natural MC

,

Percent -200: 95

DATE: 9/25/09

PROJECT NO: ETT08002-11 (G3219-09)
CLIENT: ETTL Engineers & Consultants, Inc.

LOCATION: Tatum, TX

Dry Density at test based on initial moisture and height at end of consolidation.

GREGORY GEOTECHNICAL | PLATE: B-DS. 1

# **DIRECT SHEAR TEST REPORT** y = 0.788x + 1.4 $R^2 = 0.99$ 50 40 Shear Stress - psi 30 Peak Post Peak Linear (Peak) ----- Linear (Post Peak) 20 10 0 10 20 40 50 y = 0.748x $R^2 = 0.987$ Normal Stress - psi

PEAK STRENGTH PARAMETERS	$\phi = 38.3$	deg	c =	1.4	psi		
POST PEAK STRENGTH PARAMETERS	φ = 36.8	deg	c =	0.0	psi		
	SPECIMEN NO.	1	2	3	4		
20.0		INIT	IAL				
18.0	Moisture Content - %	47.2	47.5	46.5			
	Dry Density - pcf	77.0	73.3	72.6			
16.0	Diameter - inches	2.50	2.50	2.50	•		
<b>≘</b> 14.0	Height - inches	1.00	1.00	1.00			
(s) 12.0		AT T	EST				
	Final Moisture - %	47.2	47.5	31.6			
	Dry Density - pcf	77.0	73.3	72.6			
8.0 Spear	Height-End of Consol. (in.)	1.00	1.00	1.00			
6.0	Height-End of Shear (in.)	0.98	0.98	0.99			
4.0	Normal Stress - psi	5.0	10.0	20.0			
4.0	Peak Failure Stress-psi	5.8	8.6	17.4			
2.0	Post Peak Failure Stress-psi	4.4	6.9	15.1			
0.0	Strain Rate - inches/min.	0.00030	0.00030	0.00030			
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	3.1	15.0	3.1			
Deformation (in)	Post Peak Failure Strain %	7.8					
	Dry Density at test based on		e and height a		idation.		

# **TEST DESCRIPTION**

# **PROJECT INFORMATION**

TYPE OF TEST & NO: CD-DS-2 SAMPLE TYPE: Shelby Tube

DESCRIPTION: SILT(MH), black (classification tests from 13-15 ft)

SAMPLE LOCATION: B-15, 18-20 ft ASSUMED SPECIFIC GRAVITY: 2.65

LL: NP PL: NP PI: NP Percent -200: 95 REMARKS: Tested in a fully softened remolded state PROJECT: Luminant Martin Lake PDP 1-3 Vertical Expansion

LOCATION: Tatum, TX

PROJECT NO: ETT08002-11 (G3219-09)
CLIENT: ETTL Engineers & Consultants, Inc

DATE: 9/23/09

**GREGORY GEOTECHNICAL** 

PLATE: B-DS. 2



# ETTL Engineers & Consultants Inc. GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

# **HYDRAULIC CONDUCTIVITY DETERMINATION** FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :	Martin Lake	FUF 1-3				P1; ASTM	D 5094		
Date: Project No. :	8/26/2009 G 3219-09	Da	rmometer Da	anel Number	•	FI, ASIMI	3004		
•		ГС			2 2	Set Mercury to	T	4.0	0
Boring No.:	<u>B - 14</u>		ap =	0.03141		Dinat Dn at	Equilibrium	1.8	cm3
Sample:	01 to E1		aa =	0.76712		0.000444104	Pipet Rp	6.7	cm3
Depth (ft):	3' to 5'		M1 =	0.03018		0.000414194		1.5	. cm3
Other Location:	orintian :	Dark Gray	M2 =	1.04095	3 1 =	0.203859738			
Material Des	cription .	Dark Gray	ASII						
				SAMPL	E DATA				
Wet Wt. sam	iple + ring or t	are:	502.16	g					
Tare or ring				g		Before	e Test	After	Test
Wet Wt: of S				g		Tare No.:	T 20	Tare No.:	T 22
Diameter :	2.85	in	7.24	cm2		Wet Wt.+tare:	522.84	Wet Wt.+tare	625.9
Length:	2.80	in	7.12	cm		Dry Wt.+tare:	393.34	Dry Wt.+tare:	480.79
Area:	6.38	in^2	41.16	cm2	<u> </u>	Tare Wt:	160.27	Tare Wt:	140.4
Volume :	17.88	in^3	292.92	cm3		Dry Wt.:	233.07	Dry Wt.:	340.32
Unit Wt.(wet):	106.97	pcf		g/cm^3		Water Wt.:	129.5	Weter Wt.:	145.10
Unit Wt.(dry):	68.77	_pcf	1.10	g/cm^3		% moist.:	55.6	% moist∴	42.7
Specific Gravity:		2.60	Max Dry De	ensity(pcf) =	68.7952	OMC =	55.5627065		
				% of max		+/- OMC =	0.00	•	
Calculated 9	% saturation:	81.52	Void r	atio (e) =	1.36	Porosity (n)=	0.58	•	
			•			• ' ' '		•	
				TEST R	ADINGS				
Z1(Mercury H	Height Differei	nce @ t1):	5.1	cm	Hydraulic (	Gradient =	9.04		
Date	elapsed t	Z	$\Delta Z\pi$	temp	α	k	k		
	(seconds)	(pipet @ t)	(cm )	(deg C)	(temp corr)	(cm/sec)	(ft./day)	Reset = *	
8/26/2009		4.5	2.1553335	25	0.889	2.66E-05	7.55E-02	ı	
8/26/2009		4.05	2.6053335	25	0.889	2.79E-05	7.91E-02		
8/26/2009		3.6	3.0553335	25	0.889	2.99E-05	8.48E-02		
8/26/2009	14	3.25	3.4053335	25	0.889	3.12E-05	8.84E-02		
				SUMI	MARY				
		ka =	2.89E-05	cm/sec	1/	Acceptance cr	itena =	25	%
		<u>ki</u> k1 =	2.66E-05	cm/sec	<u>Vm</u> 7.8	%	Vm =	ka-ki	v 100
		k1 = k2 =	2.79E-05		7.6 3.5	%	VIII -	ka-ki j	× 100
		k3 =	2.79E-05		3.5	%		Na	
		k4 =	3.12E-05		7.8	%			
		K-4 -	3. IZE-03	GII/SEC	7.0	70			
	Hydraulic co	nductivity	k =	2.89E-05	cm/sec	8.19E-02	ft/day		
	Void Ratio		e =	1.36					
	Porosity		n =	0.58					
	Bulk Density		γ =	1.71	g/cm3	107.0	pcf		
	Water Conte		W =	0.61	cm3/cm3	( at 20 deg C)			
	Intrinsic Perr	neability	kint =	2.96E-10	cm2	( at 20 deg C)		J	
	Liquid Limit	LL							
	Plastic Limit	PL				Respectfully Su	ubmitted		
	Plasticity Inc	lex Pl				0			
	- 200 Sieve			%			121/11		
	+ No 40 Siev	⁄e		%		Kalot,	Mh		
	+ No 4 Sieve	<b>:</b>		%		Robert M. Duk	e, P.E.		-

210 Beech Street Texarkana, AR 71854 870-772-0013 Phone 870-216-2413 Fax

1717 East Erwin Tyler, Texas 75702 903-595-4421 Phone 903-595-6113 Fax www.ettlinc.com

707 West Cotton Street Longview, Texas 75604-5505 903-758-0915 Phone 903-758-8245 Fax



# ETTL Engineers & Consultants Inc. GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

# HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :		PDP 1-3		al, Tatum, Tex					
Date:	8/26/2009			anel Number:		P2; ASTM	D 5084		
Project No. :	<u>G 3219-09</u>	Pe	rmometer D	ata			· · · · · · · · · · · · · · · · · · ·		
Boring No.:	B - 14		ap=	0.031416	cm2	Set Mercury to	Equilibrium	1.8	cm3
Sample:			aa =	0.767120	cm2		Pipet Rp	6.7	cm3
Depth (ft):	16' to 17'		M1 =	0.030180	C =	0.000414194	Annulus Ra	1.5	cm3
Other Location:			M2 =	1.040953	T =	0.203859738	<b>,</b>		•
Material Desc	ription :	Dark Gray	Ash						
				SAMPLE	E DATA				
	-1- 1		457.47						
Wet Wt. sam		rare:	457.47	,9		Defea	. T t	۸.44	T4
Tare or ring			0.0	.9			e Test		Test
Wet Wt: of Sa	•		457.47	9	-	Tare No.:	T 18	Tare No.:	T 16
Diameter :	2.85	_in	7.24	cm2		Wet Wt.+tare:	711.07	_Wet Wt.+tare	
Length :	2.80	_in	7.12	cm	_	Dry Wt.+tare:	478.92	_Dry Wt.+tare:	
Area:	6.38	_in^2	41.16	cm2		Tare Wt:	146.73	_Tare Wt:	151.98
Volume :	17.88	_in^3	292.92	cm3		Dry Wt.:	332.19	Dry Wt.:	260.4
Unit Wt.(wet):	97.45	_pcf	1.56	g/cm^3		Water Wt.:	232.15	Water Wt.:	157.59
Unit Wt.(dry):	57.36	_pcf	0.92	g/cm^3		% moist.:	69.9	_% moist.:	60.5
Specific Gravity:		2.50	Max Dry D	ensity(pcf) =	57.38916	OMC =	69.8847045		
				% of max =	100.0	+/- OMC =	0.00	-	
Calculated %	saturation:	87.92	Void i	ratio (e) =	1.72	Porosity (n)=	0.63	-	
			•			•		-	
				TEST RE					
Z1(Mercury H	leight Differei	nce @ t1):	5.1	cm	Hydraulic (	Gradient =	9.04		
Date	elapsed t	Z	$\Delta Z\pi$	temp	α	k	k		
	(seconds)	(pipet @ t)		(deg C)	(temp corr)	(cm/sec)	(ft./day)	_ Reset = *	
8/26/2009	80	4.2	2.4553335	25	0.889	3.20E-06	9.06E-03		
8/26/2009	90	4.05	2.6053335	25	0.889	3.10E-06	8.79E-03	_	
8/26/2009	100	3.9	2.7553335	25	0.889	3.04E-06	8.61E-03		
8/26/2009	110	3.75	2.9053335	25	0.889	3.00E-06	8.52E-03		
				SUMM	IARY				
		ka =	3.08E-06	cm/sec		Acceptance cr	iteria =	25	%
		<u>ķi</u>	0.00= 05		<u>Vm</u>	21			400
		k1 =	3.20E-06		3.6	%	Vm =		x 100
		k2 =	3.10E-06		0.5	%		ka	
		k3 =	3.04E-06		1.5	%			
		k4 =	3.00E-06	cm/sec	2.6	%			
	Hydraulic co	nductivity	k =	3.08E-06	cm/sec	8.74E-03	ft/day	]	
	Void Ratio		e =	1.72					
	Porosity		n =	0.63					
	<b>Bulk Density</b>		γ =	1.56	g/cm3	97.5	pcf		
	Water Conte	ent	W =	0.64	cm3/cm3	( at 20 deg C)			
	Intrinsic Perr	meability	kint =	3.16E-11	cm2	( at 20 deg C)	ı	j	
	Liquid Limit	LL							
	Plastic Limit	PL				Respectfully Su	ubmitted		
	Plasticity Inc	lex Pl				n			
	- 200 Sieve			%		///	m)		
	+ No 40 Siev	re .		%		Kaloti	ILL		
	+ No 4 Sieve	•		%		Robert M. Duk	e, P.E.		•
				i e					

210 Beech Street Texarkana, AR 71854 870-772-0013 Phone 870-216-2413 Fax

1717 East Erwin Tyler, Texas 75702 903-595-4421 Phone 903-595-6113 Fax www.ettlinc.com

707 West Cotton Street Longview, Texas 75604-5505 903-758-0915 Phone 903-758-8245 Fax



# ETTL Engineers & Consultants Inc. GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

# HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :		artin Lake Su	pplemental	, TP-31, Tatur	n, Texas				
Date:	9/9/2009			Panel Number	:	P1; ASTM	D 5084		
Project No.:	G 3219-09	Pe	rmometer D	ata					
Bonng No.:	TP- 31		ap =	0.031416	cm2	Set Mercury to	Equilibrium	1.8	cm3
Sample:	9228		aa =	0.767120	cm2		Pipet Rp	6.7	cm3
Depth (ft):	0' to 5'		M1 =	0.030180	) C=	0.000414162	2 Annulus Ra	1.5	cm3
Other Location:			M2 =	1.040953	3 T =	0.203870442	2		-
Material Des	cription :	Tan & Red	dish Tan Sil	ty Sand					
				SAMPL	E DATA				
\A/a+\A/+ aam			607.00	_					
Tare or ring	nple + ring or t	are:	627.20	9		Defe			. T
			0.0	.9			e Test		r Test
Wet Wt: of S	•		627.20	g	_	Tare No.:	T6	Tare No.:	T 1
Diameter :	2.89	_in	7.33	.cm2		Wet Wt.+tare:	841.20	Wet Wt.+tare	
Length:	2.88	_in	7.30	cm	_	Dry Wt.+tare:	749.54	Dry Wt.+tare:	
Area	6.55	_in^2	42.23	cm2		Tare Wt:	217.39	Tare Wt:	217.29
Volume :	18.82	_in^3	308.41	cm3		Dry Wt.:	532.15	Dry Wt.:	524.43
Unit Wt.(wet):	126.90	_pcf	2.03	g/cm^3		Water Wt.:	91.66	Water Wt.:	99.99
Unit Wt.(dry):	108.26	_pcf	1.73	g/cm^3		% moist.:	17.2	_% moist∴	19.1
Specific Gravity:		2.65	Max Dry D	ensity(pcf) =	108.3018	OMC =	17.2244668		
				% of max =		+/- OMC =	_	-	
Calculated 9	% saturation:	95.65	Void	ratio (e) =	0.53	Porosity (n)=	0.35	-	
				ìí		•		-	
			**	TEST RE					
Z1(Mercury F	Height Differer	nce @ t1):	5.1	cm	Hydraulic (	Gradient =	8.81		
Date	elapsed t	Z	$\Delta Z\pi$	temp	α	k	k		
	(seconds)	(pipet @ t)	(cm )	(deg C)	(temp corr)	(cm/sec)	(ft./day)	_ Reset = *	
7/31/2009		5.3	1.3550759	25	0.889	1.98E-07	5.63E-04		
7/31/2009		5.1	1.5550759	25	0.889	1.95E-07	5.53E-04		
7/31/2009		5	1.6550759	25	0.889	1.80E-07	5.12E-04		
7/31/2009	960	4.8	1.8550759	25	0.889	1.82E-07	5.17E-04		
				SUMM	IARY				
		ka =	1.89E-07	cm/sec		Acceptance cr	iteria =	25	%
		<u>ki</u>			<u>Vm</u>	·			
		k1 =	1.98E-07	cm/sec	5.0	%	Vm =	<u>  ka-ki  </u>	x 100
		k2 =	1.95E-07		3.2	%		ka	-
		k3 =	1.80E-07		4.5	%			
		k4 =	1.82E-07	cm/sec	3.6	%			
			•						
	Hydraulic cor	nductivity	k =	1.89E-07	cm/sec	5.36E-04	ft/day		
	Void Ratio		e =	0.53					
	Porosity		n =	0.35					
	Bulk Density		γ =	2.03	g/cm3	126.9	pcf		
	Water Conte		w =	0.30	cm3/cm3	( at 20 deg C)			
	Intrinsic Pem	neability	kint =	1.94E-12	cm2	( at 20 deg C)			
	Liquid Limit	LL [	20						
	Plastic Limit	PL	17			Respectfully S	ubmitted		
	Plasticity Ind		3				·· <del>·</del>		
	- 200 Sieve	ł	27	%		11/	Man.		
		_			•	Kilot			
	+ No 40 Siev	ا ا	2	%		/ VARVII	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th		
	+ No 4 Sieve	1	1	%		Robert M. Duk			•



# ETTL Engineers & Consultants Inc.

GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

Project:	Luminant Martin Lake Supplementa	al, Tatum, Texas	
Client:	HDR		
Contractor:		•	
Job No.	G 3219 - 09		
Sample No.:	9228	Date Sample	ed: 8/26/2009
Material Origin:	TP- 31		
Sampling Info. provided By:	Jacob LeNoir		
Location Sampled:	TP- 31		
Material Description:	Tan & Reddish Tan Silty Sand		
Sampled By:	Jacob LeNoir		
Technician:	T. Sliger	Date:	8/28/2009

Maximum Dry Density: (ASTM D 698)	115.9	(lb/ft ³ )
Optimum Moisture Content:	13.2	(%)

Optimum Moisture Content:		13.2	(%)	
Classification	111	20		

Clas	sification	LL	 20	-200 Sieve	27%
		PL	 17	+40 Sieve	2%
		PI	3	+4 Sieve	1%
Proct	tor Points				
	Dry Density		 4.07	 	<b>D1</b> 4

Procto	r Points
% Moisture	Dry Density (lb/ft ³ )
9.6%	111.1
11.9%	114.9
14.3%	115.1
16.3%	110.9
18.6%	105.7



Respectfully Submitted

Robert M. Duke, P.E.

210 Beech Street Texarkana, AR 71854 870-772-0013 Phone 870-216-2413 Fax 1717 East Erwin Tyler, Texas 75702 903-595-4421 Phone 903-595-6113 Fax www.ettlinc.com

707 West Cotton Street Longview, Texas 75604-5505 903-758-0915 Phone 903-758-8245 Fax

# APPENDIX C CPT-BASED LIQUEFACTION POTENTIAL ANALYSIS

# TABLE OF CONTENTS

B-02 results	
Summary data report	1
Liquefaction potential index data	2
B-07 results	
Summary data report	7
Liquefaction potential index data	8
B-12 results	
Summary data report	15
Liquefaction potential index data	16



## GeoLogismiki

Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

LIQUEFACTION ANALYSIS REPORT

Location: PDP-5 **Project title: Martin Lake** 

CPT file: B-02

#### Input parameters and analysis data

Robertson (2009) Analysis method: Fines correction method: Robertson (2009) Points to test: Based on Ic value

Earthquake magnitude M_w: Peak ground acceleration:

1.00 ft G.W.T. (in-situ): G.W.T. (earthq.): 0.00 ft Average results interval: 3 Ic cut-off value:

2.60 Based on SBT Unit weight calculation:

Use fill: Nο Fill height: Fill weight: Trans. detect. applied: No

N/A N/A  $K_{\sigma}$  applied: Yes

Clay like behavior applied: All soils Limit depth applied: No Limit depth: N/A

Method based MSF method:







Zone A₃: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A₂: Cyclic liquefaction and strength loss likely depending on loading and ground

Zone B: Liquefaction and post-earthquake strength loss unlikely, check cyclic softening Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity, brittleness/sensitivity, strain to peak undrained strength and ground geometry

Liquefact	ion Potent	ial Index	calculation	data ::							
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	F.	Wz	dz	LPI
0.07	2.00	0.00	9.99	0.06	0.00	0.13	2.00	0.00	9.98	0.06	0.00
0.20	2.00	0.00	9.97	0.07	0.00	0.26	2.00	0.00	9.96	0.06	0.00
0.33	1.88	0.00	9.95	0.07	0.00	0.39	2.00	0.00	9.94	0.06	0.00
0.46	2.00	0.00	9.93	0.07	0.00	0.52	2.00	0.00	9.92	0.06	0.00
0.59	2.00	0.00	9.91	0.07	0.00	0.66	2.00	0.00	9.90	0.07	0.00
0.72	2.00	0.00	9.89	0.06	0.00	0.79	2.00	0.00	9.88	0.07	0.00
0.85	2.00	0.00	9.87	0.06	0.00	0.92	2.00	0.00	9.86	0.07	0.00
0.98	2.00	0.00	9.85	0.06	0.00	1.05	2.00	0.00	9.84	0.07	0.00
1.12	2.00	0.00	9.83	0.07	0.00	1.18	2.00	0.00	9.82	0.06	0.00
1.25	2.00	0.00	9.81	0.07	0.00	1.31	2.00	0.00	9.80	0.06	0.00
1.38	2.00	0.00	9.79	0.07	0.00	1.44	2.00	0.00	9.78	0.06	0.00
1.51	2.00	0.00	9.77	0.07	0.00	1.57	2.00	0.00	9.76	0.06	0.00
1.64	2.00	0.00	9.75	0.07	0.00	1.71	2.00	0.00	9.74	0.07	0.00
1.77	2.00	0.00	9.73	0.06	0.00	1.84	2.00	0.00	9.72	0.07	0.00
1.90	2.00	0.00	9.71	0.06	0.00	1.97	2.00	0.00	9.70	0.07	0.00
2.03	2.00	0.00	9.69	0.06	0.00	2.10	2.00	0.00	9.68	0.07	0.00
2.16	2.00	0.00	9.67	0.06	0.00	2.23	2.00	0.00	9.66	0.07	0.00
2.30	2.00	0.00	9.65	0.07	0.00	2.36	2.00	0.00	9.64	0.06	0.00
2.43	2.00	0.00	9.63	0.07	0.00	2.49	2.00	0.00	9.62	0.06	0.00
2.56	2.00	0.00	9.61	0.07	0.00	2.62	2.00	0.00	9.60	0.06	0.00
2.69	2.00	0.00	9.59	0.07	0.00	2.76	2.00	0.00	9.58	0.07	0.00
2.82	2.00	0.00	9.57	0.06	0.00	2.89	2.00	0.00	9.56	0.07	0.00
2.95	2.00	0.00	9.55	0.06	0.00	3.02	2.00	0.00	9.54	0.07	0.00
3.08	2.00	0.00	9.53	0.06	0.00	3.15	2.00	0.00	9.52	0.07	0.00
3.21	2.00	0.00	9.51	0.06	0.00	3.28	2.00	0.00	9.50	0.07	0.00
3.35	2.00	0.00	9.49	0.07	0.00	3.41	2.00	0.00	9.48	0.06	0.00
3.48	2.00	0.00	9.47	0.07	0.00	3.54	2.00	0.00	9.46	0.06	0.00
3.61	2.00	0.00	9.45	0.07	0.00	3.67	2.00	0.00	9.44	0.06	0.00
3.74	2.00	0.00	9.43	0.07	0.00	3.80	2.00	0.00	9.42	0.06	0.00
3.87	2.00	0.00	9.41	0.07	0.00	3.94	2.00	0.00	9.40	0.07	0.00
4.00	2.00	0.00	9.39	0.06	0.00	4.07	2.00	0.00	9.38	0.07	0.00
4.13	2.00	0.00	9.37	0.06	0.00	4.20	2.00	0.00	9.36	0.07	0.00
4.26	2.00	0.00	9.35	0.06	0.00	4.33	2.00	0.00	9.34	0.07	0.00
4.40	2.00	0.00	9.33	0.07	0.00	4.46	2.00	0.00	9.32	0.06	0.00
4.53	2.00	0.00	9.31	0.07	0.00	4.59	2.00	0.00	9.30	0.06	0.00
4.66	2.00	0.00	9.29	0.07	0.00	4.72	2.00	0.00	9.28	0.06	0.00
4.79	2.00	0.00	9.27	0.07 0.07	0.00	4.85 4.99	2.00	0.00	9.26	0.06	0.00
4.92	2.00	0.00	9.25				2.00	0.00	9.24	0.07	
5.05	2.00	0.00	9.23	0.06	0.00	5.12	2.00	0.00	9.22	0.07	0.00
5.18	2.00	0.00	9.21	0.06	0.00	5.25	2.00	0.00	9.20	0.07	0.00
5.31	2.00	0.00	9.19	0.06	0.00	5.38	1.50	0.00	9.18	0.07	0.00
5.44	1.85	0.00	9.17	0.06	0.00	5.51	2.00	0.00	9.16	0.07	0.00
5.58	2.00	0.00	9.15	0.07	0.00	5.64	2.00	0.00	9.14	0.06	0.00
5.71	2.00	0.00	9.13	0.07	0.00	5.77	2.00	0.00	9.12	0.06	0.00
5.84	2.00	0.00	9.11	0.07	0.00	5.90	2.00	0.00	9.10	0.06	0.00
5.97	2.00	0.00	9.09	0.07	0.00	6.04	2.00	0.00	9.08	0.07	0.00
6.10	2.00	0.00	9.07	0.06	0.00	6.17	2.00	0.00	9.06	0.07	0.00

Liquefacti	ion Potent	ial Index	calculation	data :: (c	ontinuea)						
Depth (ft)	FS	FL	Wz	dz	LPI	Dept (ft)		F _L	Wz	d _z	LPI
6.36	2.00	0.00	9.03	0.06	0.00	6.4	3 2.00	0.00	9.02	0.07	0.00
6.49	2.00	0.00	9.01	0.06	0.00	6.5	6 2.00	0.00	9.00	0.07	0.00
6.63	2.00	0.00	8.99	0.07	0.00	6.6	9 2.00	0.00	8.98	0.06	0.00
6.76	2.00	0.00	8.97	0.07	0.00	6.8	2 2.00	0.00	8.96	0.06	0.00
6.89	2.00	0.00	8.95	0.07	0.00	6.9	5 2.00	0.00	8.94	0.06	0.00
7.02	2.00	0.00	8.93	0.07	0.00	7.0	8 2.00	0.00	8.92	0.06	0.00
7.15	2.00	0.00	8.91	0.07	0.00	7.2	2 2.00	0.00	8.90	0.07	0.00
7.28	2.00	0.00	8.89	0.06	0.00	7.3	5 2.00	0.00	8.88	0.07	0.00
7.41	2.00	0.00	8.87	0.06	0.00	7.4	8 2.00	0.00	8.86	0.07	0.00
7.54	2.00	0.00	8.85	0.06	0.00	7.6	1 2.00	0.00	8.84	0.07	0.00
7.68	2.00	0.00	8.83	0.07	0.00	7.7	4 2.00	0.00	8.82	0.06	0.00
7.81	2.00	0.00	8.81	0.07	0.00	7.8	7 2.00	0.00	8.80	0.06	0.00
7.94	2.00	0.00	8.79	0.07	0.00	8.0	0 2.00	0.00	8.78	0.06	0.00
8.07	2.00	0.00	8.77	0.07	0.00	8.1	3 2.00	0.00	8.76	0.06	0.00
8.20	2.00	0.00	8.75	0.07	0.00	8.2		0.00	8.74	0.07	0.00
8.33	2.00	0.00	8.73	0.06	0.00	8.4		0.00	8.72	0.07	0.00
8.46	2.00	0.00	8.71	0.06	0.00	8.5		0.00	8.70	0.07	0.00
8.59	2.00	0.00	8.69	0.06	0.00	8.6		0.00	8.68	0.07	0.00
8.72	2.00	0.00	8.67	0.06	0.00	8.7		0.00	8.66	0.07	0.00
8.86	2.00	0.00	8.65	0.07	0.00	8.9		0.00	8.64	0.06	0.00
8.99	2.00	0.00	8.63	0.07	0.00	9.0		0.00	8.62	0.06	0.00
9.12	2.00	0.00	8.61	0.07	0.00	9.1		0.00	8.60	0.06	0.00
9.25	2.00	0.00	8.59	0.07	0.00	9.3		0.00	8.58	0.07	0.00
9.38	2.00	0.00	8.57	0.06	0.00	9.4		0.00	8.56	0.07	0.00
9.51	2.00	0.00	8.55	0.06	0.00	9.5		0.00	8.54	0.07	0.00
9.64	2.00	0.00	8.53	0.06	0.00	9.7		0.00	8.52	0.07	0.00
9.77	2.00	0.00	8.51	0.06	0.00	9.8		0.00	8.50	0.07	0.00
9.91	2.00	0.00	8.49	0.07	0.00	9.9		0.00	8.48	0.06	0.00
10.04	2.00	0.00	8.47	0.07	0.00	10.		0.00	8.46	0.06	0.00
10.17	2.00	0.00	8.45	0.07	0.00	10.			8.44	0.06	0.00
10.30	2.00	0.00	8.43	0.07	0.00	10.		0.00	8.42	0.06	0.00
10.43	2.00	0.00	8.41	0.07	0.00	10.			8.40	0.00	0.00
10.56	2.00	0.00	8.39	0.07	0.00	10.		0.00		0.07	0.00
10.69	2.00	0.00	8.37	0.06	0.00	10.		0.00	8.38 8.36	0.07	0.00
10.82		0.00								0.07	
	2.00		8.35	0.06	0.00	10.		0.00	8.34		0.00
10.96	2.00	0.00	8.33	0.07	0.00	11.			8.32	0.06	0.00
11.09	2.00	0.00	8.31	0.07	0.00	11.		0.00	8.30	0.06	0.00
11.22	2.00	0.00	8.29	0.07	0.00	11.			8.28	0.06	0.00
11.35	2.00	0.00	8.27	0.07	0.00	11.		0.00	8.26	0.06	0.00
11.48	2.00	0.00	8.25	0.07	0.00	11.		0.00	8.24	0.07	0.00
11.61	2.00	0.00	8.23	0.06	0.00	11.		0.00	8.22	0.07	0.00
11.74	2.00	0.00	8.21	0.06	0.00	11.			8.20	0.07	0.00
11.87	2.00	0.00	8.19	0.06	0.00	11.		0.00	8.18	0.07	0.00
12.00	2.00	0.00	8.17	0.06	0.00	12.			8.16	0.07	0.00
12.14	2.00	0.00	8.15	0.07	0.00	12.		0.00	8.14	0.06	0.00
12.27	2.00	0.00	8.13	0.07	0.00	12.			8.12	0.06	0.00
12.40	1.89	0.00	8.11	0.07	0.00	12.	1.78	0.00	8.10	0.06	0.00

Liquefact	tion Potent	ial Index	calculation	data :: (c	ontinued)						
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	FL	Wz	dz	LPI
12.66	1.66	0.00	8.07	0.06	0.00	12.73	1.76	0.00	8.06	0.07	0.00
12.79	1.87	0.00	8.05	0.06	0.00	12.86	1.97	0.00	8.04	0.07	0.00
12.92	2.00	0.00	8.03	0.06	0.00	12.99	2.00	0.00	8.02	0.07	0.00
13.05	2.00	0.00	8.01	0.06	0.00	13.12	2.00	0.00	8.00	0.07	0.00
13.19	2.00	0.00	7.99	0.07	0.00	13.25	2.00	0.00	7.98	0.06	0.00
13.32	1.93	0.00	7.97	0.07	0.00	13.38	1.78	0.00	7.96	0.06	0.00
13.45	1.65	0.00	7.95	0.07	0.00	13.51	1.59	0.00	7.94	0.06	0.00
13.58	1.57	0.00	7.93	0.07	0.00	13.64	2.00	0.00	7.92	0.06	0.00
13.71	2.00	0.00	7.91	0.07	0.00	13.78	2.00	0.00	7.90	0.07	0.00
13.84	2.00	0.00	7.89	0.06	0.00	13.91	2.00	0.00	7.88	0.07	0.00
13.97	1.58	0.00	7.87	0.06	0.00	14.04	1.52	0.00	7.86	0.07	0.00
14.10	2.00	0.00	7.85	0.06	0.00	14.17	2.00	0.00	7.84	0.07	0.00
14.24	2.00	0.00	7.83	0.07	0.00	14.30	2.00	0.00	7.82	0.06	0.00
14.37	2.00	0.00	7.81	0.07	0.00	14.43	2.00	0.00	7.80	0.06	0.00
14.50	2.00	0.00	7.79	0.07	0.00	14.56	1.31	0.00	7.78	0.06	0.00
14.63	1.29	0.00	7.77	0.07	0.00	14.69	1.27	0.00	7.76	0.06	0.00
14.76	1.26	0.00	7.75	0.07	0.00	14.83	1.25	0.00	7.74	0.07	0.00
14.89	1.24	0.00	7.73	0.06	0.00	14.96	1.22	0.00	7.72	0.07	0.00
15.02	1.23	0.00	7.71	0.06	0.00	15.09	1.26	0.00	7.70	0.07	0.00
15.15	1.73	0.00	7.69	0.06	0.00	15.22	2.00	0.00	7.68	0.07	0.00
15.28	2.00	0.00	7.67	0.06	0.00	15.35	2.00	0.00	7.66	0.07	0.00
15.42	2.00	0.00	7.65	0.07	0.00	15.48	2.00	0.00	7.64	0.06	0.00
15.55	2.00	0.00	7.63	0.07	0.00	15.40	2.00	0.00	7.62	0.06	0.00
15.68	2.00	0.00	7.61	0.07	0.00	15.74	2.00	0.00	7.60	0.06	0.00
15.81	2.00	0.00	7.59	0.07	0.00	15.88	2.00	0.00	7.58	0.07	0.00
15.94	2.00	0.00	7.57	0.07	0.00	16.01	2.00	0.00	7.56	0.07	0.00
	2.00	0.00		0.06			2.00				
16.07 16.20	2.00	0.00	7.55 7.53	0.06	0.00	16.14 16.27	2.00	0.00	7.54 7.52	0.07 0.07	0.00
				0.06		16.27					
16.33	2.00	0.00	7.51		0.00	16.53	2.00	0.00	7.50	0.07	0.00
16.47	2.00	0.00	7.49	0.07	0.00		2.00	0.00	7.48	0.06	0.00
16.60	2.00	0.00	7.47	0.07	0.00	16.66	2.00	0.00	7.46	0.06	0.00
16.73	2.00	0.00	7.45	0.07	0.00	16.79	2.00	0.00	7.44	0.06	0.00
16.86	2.00	0.00	7.43	0.07	0.00	16.92	1.96	0.00	7.42	0.06	0.00
16.99	1.33	0.00	7.41	0.07	0.00	17.06	1.24	0.00	7.40	0.07	0.00
17.12	1.29	0.00	7.39	0.06	0.00	17.19	1.38	0.00	7.38	0.07	0.00
17.25	1.40	0.00	7.37	0.06	0.00	17.32	1.56	0.00	7.36	0.07	0.00
17.38	1.82	0.00	7.35	0.06	0.00	17.45	2.00	0.00	7.34	0.07	0.00
17.52	1.88	0.00	7.33	0.07	0.00	17.58	1.48	0.00	7.32	0.06	0.00
17.65	1.23	0.00	7.31	0.07	0.00	17.71	1.33	0.00	7.30	0.06	0.00
17.78	1.29	0.00	7.29	0.07	0.00	17.84	1.29	0.00	7.28	0.06	0.00
17.91	1.18	0.00	7.27	0.07	0.00	17.97	1.23	0.00	7.26	0.06	0.00
18.04	1.23	0.00	7.25	0.07	0.00	18.11	1.25	0.00	7.24	0.07	0.00
18.17	1.27	0.00	7.23	0.06	0.00	18.24	1.29	0.00	7.22	0.07	0.00
18.30	1.30	0.00	7.21	0.06	0.00	18.37	1.31	0.00	7.20	0.07	0.00
18.43	1.34	0.00	7.19	0.06	0.00	18.50	1.36	0.00	7.18	0.07	0.00
18.56	1.36	0.00	7.17	0.06	0.00	18.63	1.36	0.00	7.16	0.07	0.00
18.70	1.37	0.00	7.15	0.07	0.00	18.76	1.36	0.00	7.14	0.06	0.00
18.83	1.34	0.00	7.13	0.07	0.00	18.89	1.34	0.00	7.12	0.06	0.00

Liquefact	ion Potent	ial Index	calculation	data :: (c	ontinued)						
Depth (ft)	FS	F _L	Wz	dz	LPI	Depth (ft)	FS	F _L	Wz	dz	LPI
18.96	1.35	0.00	7.11	0.07	0.00	19.02	1.52	0.00	7.10	0.06	0.00
19.09	2.00	0.00	7.09	0.07	0.00	19.16	2.00	0.00	7.08	0.07	0.0
19.22	2.00	0.00	7.07	0.06	0.00	19.29	2.00	0.00	7.06	0.07	0.0
19.35	2.00	0.00	7.05	0.06	0.00	19.42	2.00	0.00	7.04	0.07	0.0
19.48	2.00	0.00	7.03	0.06	0.00	19.55	2.00	0.00	7.02	0.07	0.0
19.61	2.00	0.00	7.01	0.06	0.00	19.68	2.00	0.00	7.00	0.07	0.0
19.75	2.00	0.00	6.99	0.07	0.00	19.81	2.00	0.00	6.98	0.06	0.0
19.88	2.00	0.00	6.97	0.07	0.00	19.94	2.00	0.00	6.96	0.06	0.0
20.01	2.00	0.00	6.95	0.07	0.00	20.07	2.00	0.00	6.94	0.06	0.0
20.14	2.00	0.00	6.93	0.07	0.00	20.20	2.00	0.00	6.92	0.06	0.0
20.27	1.99	0.00	6.91	0.07	0.00	20.34	2.00	0.00	6.90	0.07	0.0
20.40	1.90	0.00	6.89	0.06	0.00	20.47	1.69	0.00	6.88	0.07	0.0
20.53	1.62	0.00	6.87	0.06	0.00	20.60	1.54	0.00	6.86	0.07	0.0
20.66	1.50	0.00	6.85	0.06	0.00	20.73	1.52	0.00	6.84	0.07	0.0
20.80	1.62	0.00	6.83	0.07	0.00	20.86	1.77	0.00	6.82	0.06	0.0
20.93	1.97	0.00	6.81	0.07	0.00	20.99	2.00	0.00	6.80	0.06	0.0
21.06	2.00	0.00	6.79	0.07	0.00	21.12	2.00	0.00	6.78	0.06	0.0
21.19	2.00	0.00	6.77	0.07	0.00	21.12	2.00	0.00	6.76	0.06	0.0
21.19	2.00	0.00	6.75	0.07	0.00	21.23	2.00	0.00	6.74	0.07	0.0
21.45		0.00	6.73	0.07			2.00	0.00	6.72	0.07	0.0
	2.00				0.00	21.52					
21.58	2.00	0.00	6.71	0.06	0.00	21.65	2.00	0.00	6.70	0.07	0.0
21.71	1.99	0.00	6.69	0.06	0.00	21.78	1.99	0.00	6.68	0.07	0.0
21.84	2.00	0.00	6.67	0.06	0.00	21.91	2.00	0.00	6.66	0.07	0.0
21.98	2.00	0.00	6.65	0.07	0.00	22.04	2.00	0.00	6.64	0.06	0.0
22.11	2.00	0.00	6.63	0.07	0.00	22.17	2.00	0.00	6.62	0.06	0.0
22.24	2.00	0.00	6.61	0.07	0.00	22.30	2.00	0.00	6.60	0.06	0.0
22.37	2.00	0.00	6.59	0.07	0.00	22.44	2.00	0.00	6.58	0.07	0.0
22.50	2.00	0.00	6.57	0.06	0.00	22.57	2.00	0.00	6.56	0.07	0.0
22.63	2.00	0.00	6.55	0.06	0.00	22.70	2.00	0.00	6.54	0.07	0.0
22.76	2.00	0.00	6.53	0.06	0.00	22.83	2.00	0.00	6.52	0.07	0.0
22.89	2.00	0.00	6.51	0.06	0.00	22.96	2.00	0.00	6.50	0.07	0.0
23.03	2.00	0.00	6.49	0.07	0.00	23.09	1.96	0.00	6.48	0.06	0.0
23.16	1.86	0.00	6.47	0.07	0.00	23.22	1.81	0.00	6.46	0.06	0.0
23.29	1.78	0.00	6.45	0.07	0.00	23.35	1.86	0.00	6.44	0.06	0.0
23.42	1.98	0.00	6.43	0.07	0.00	23.48	2.00	0.00	6.42	0.06	0.0
23.55	2.00	0.00	6.41	0.07	0.00	23.62	2.00	0.00	6.40	0.07	0.0
23.68	1.93	0.00	6.39	0.06	0.00	23.75	1.69	0.00	6.38	0.07	0.0
23.81	1.53	0.00	6.37	0.06	0.00	23.88	1.47	0.00	6.36	0.07	0.0
23.94	1.49	0.00	6.35	0.06	0.00	24.01	1.58	0.00	6.34	0.07	0.0
24.08	1.70	0.00	6.33	0.07	0.00	24.14	1.81	0.00	6.32	0.06	0.0
24.21	1.80	0.00	6.31	0.07	0.00	24.27	1.77	0.00	6.30	0.06	0.0
24.34	1.73	0.00	6.29	0.07	0.00	24.40	1.80	0.00	6.28	0.06	0.0
24.47	1.84	0.00	6.27	0.07	0.00	24.53	1.87	0.00	6.26	0.06	0.0
24.60	1.89	0.00	6.25	0.07	0.00	24.67	1.90	0.00	6.24	0.07	0.0
24.73	1.93	0.00	6.23	0.06	0.00	24.80	1.96	0.00	6.22	0.07	0.0
24.86	1.96	0.00	6.21	0.06	0.00	24.93	1.61	0.00	6.20	0.07	0.0
24.99	1.34	0.00	6.19	0.06	0.00	25.06	2.00	0.00	6.18	0.07	0.0
25.12	2.00	0.00	6.17	0.06	0.00						

:: Liquefact	: Liquefaction Potential Index calculation data :: (continued)													
Depth (ft)	FS	F _L	Wz	d _z	LPI	Depth (ft)	FS	F _L	Wz	dz	LPI			

Overall liquefaction potential: 0.00

LPI = 0.00 - Liquefaction risk very low LPI between 0.00 and 5.00 - Liquefaction risk low LPI between 5.00 and 15.00 - Liquefaction risk high LPI > 15.00 - Liquefaction risk very high

## **Abbreviations**

Calculated factor of safety for test point FS:

1 - FS FL:

Function value of the extend of soil liquefaction according to depth Wz:

Layer thickness (ft) dz:

LPI: Liquefaction potential index value for test point



## GeoLogismiki

Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

# LIQUEFACTION ANALYSIS REPORT

Location: PDP-5 **Project title: Martin Lake** 

CPT file: B-07

Peak ground acceleration:

#### Input parameters and analysis data

Robertson (2009) Analysis method: Fines correction method: Robertson (2009) Points to test: Based on Ic value Earthquake magnitude M_w:

0.09

G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:

1.00 ft 0.00 ft 3 2.60 Based on SBT Use fill: Nο Fill height: N/A Fill weight: N/A Trans. detect. applied: No  $K_{\sigma}$  applied: Yes

Clay like behavior applied: All soils Limit depth applied: No N/A

Limit depth: Method based MSF method:







Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A₂: Cyclic liquefaction and strength loss likely depending on loading and ground

Zone B. Liquefaction and post-earthquake strength loss unlikely, check cyclic softening Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity, brittleness/sensitivity, strain to peak undrained strength and ground geometry

Liqueract	ion Potent	iai Index	calculation	uata ::							
Depth (ft)	FS	Fi.	Wz	dz	LPI	Depth (ft)	FS	FL	Wz	dz	LPI
0.07	2.00	0.00	9.99	0.06	0.00	0.13	2.00	0.00	9.98	0.06	0.00
0.20	2.00	0.00	9.97	0.07	0.00	0.26	2.00	0.00	9.96	0.06	0.00
0.33	2.00	0.00	9.95	0.07	0.00	0.39	2.00	0.00	9.94	0.06	0.00
0.46	2.00	0.00	9.93	0.07	0.00	0.52	2.00	0.00	9.92	0.06	0.00
0.59	2.00	0.00	9.91	0.07	0.00	0.66	2.00	0.00	9.90	0.07	0.00
0.72	2.00	0.00	9.89	0.06	0.00	0.79	2.00	0.00	9.88	0.07	0.00
0.85	2.00	0.00	9.87	0.06	0.00	0.92	2.00	0.00	9.86	0.07	0.00
0.98	2.00	0.00	9.85	0.06	0.00	1.05	2.00	0.00	9.84	0.07	0.00
1.12	2.00	0.00	9.83	0.07	0.00	1.18	2.00	0.00	9.82	0.06	0.00
1.25	2.00	0.00	9.81	0.07	0.00	1.31	2.00	0.00	9.80	0.06	0.00
1.38	2.00	0.00	9.79	0.07	0.00	1.44	2.00	0.00	9.78	0.06	0.00
1.51	2.00	0.00	9.77	0.07	0.00	1.57	2.00	0.00	9.76	0.06	0.00
1.64	2.00	0.00	9.75	0.07	0.00	1.71	2.00	0.00	9.74	0.07	0.00
1.77	2.00	0.00	9.73	0.06	0.00	1.84	2.00	0.00		0.07	0.00
									9.72		
1.90	2.00	0.00	9.71	0.06	0.00	1.97	2.00	0.00	9.70	0.07	0.00
2.03	2.00	0.00	9.69	0.06	0.00	2.10	2.00	0.00	9.68	0.07	0.00
2.16	2.00	0.00	9.67	0.06	0.00	2.23	2.00	0.00	9.66	0.07	0.00
2.30	2.00	0.00	9.65	0.07	0.00	2.36	2.00	0.00	9.64	0.06	0.00
2.43	2.00	0.00	9.63	0.07	0.00	2.49	2.00	0.00	9.62	0.06	0.00
2.56	2.00	0.00	9.61	0.07	0.00	2.62	2.00	0.00	9.60	0.06	0.00
2.69	2.00	0.00	9.59	0.07	0.00	2.76	2.00	0.00	9.58	0.07	0.00
2.82	2.00	0.00	9.57	0.06	0.00	2.89	2.00	0.00	9.56	0.07	0.00
2.95	2.00	0.00	9.55	0.06	0.00	3.02	2.00	0.00	9.54	0.07	0.00
3.08	2.00	0.00	9.53	0.06	0.00	3.15	2.00	0.00	9.52	0.07	0.00
3.21	2.00	0.00	9.51	0.06	0.00	3.28	2.00	0.00	9.50	0.07	0.00
3.35	2.00	0.00	9.49	0.07	0.00	3.41	2.00	0.00	9.48	0.06	0.00
3.48	2.00	0.00	9.47	0.07	0.00	3.54	2.00	0.00	9.46	0.06	0.00
3.61	2.00	0.00	9.45	0.07	0.00	3.67	2.00	0.00	9.44	0.06	0.00
3.74	2.00	0.00	9.43	0.07	0.00	3.80	2.00	0.00	9.42	0.06	0.00
3.87	2.00	0.00	9.41	0.07	0.00	3.94	2.00	0.00	9.40	0.07	0.00
4.00	2.00	0.00	9.39	0.06	0.00	4.07	2.00	0.00	9.38	0.07	0.00
4.13	2.00	0.00	9.37	0.06	0.00	4.20	2.00	0.00	9.36	0.07	0.00
4.26	2.00	0.00	9.35	0.06	0.00	4.33	2.00	0.00	9.34	0.07	0.00
4.40	2.00	0.00	9.33	0.07	0.00	4.46	2.00	0.00	9.32	0.06	0.00
4.53	2.00	0.00	9.31	0.07	0.00	4.59	2.00	0.00	9.30	0.06	0.00
4.66	2.00	0.00	9.29	0.07	0.00	4.72	2.00	0.00	9.28	0.06	0.00
4.79	2.00	0.00	9.27	0.07	0.00	4.85	2.00	0.00	9.26	0.06	0.00
4.92	2.00	0.00	9.25	0.07	0.00	4.99	2.00	0.00	9.24	0.07	0.00
5.05	2.00	0.00	9.23	0.06	0.00	5.12	2.00	0.00	9.22	0.07	0.00
5.18	2.00	0.00	9.21	0.06	0.00	5.25	2.00	0.00	9.20	0.07	0.00
5.31	2.00	0.00	9.19	0.06	0.00	5.38	2.00	0.00	9.18	0.07	0.00
5.44	2.00	0.00	9.17	0.06	0.00	5.51	2.00	0.00	9.16	0.07	0.00
5.58	2.00	0.00	9.15	0.07	0.00	5.64	2.00	0.00	9.14	0.06	0.00
5.71	2.00	0.00	9.13	0.07	0.00	5.77	2.00	0.00	9.17	0.06	0.00
5.84	2.00	0.00	9.13	0.07	0.00	5.90	2.00	0.00	9.12	0.06	0.00
5.84											
	2.00	0.00	9.09	0.07	0.00	6.04	2.00	0.00	9.08	0.07	0.00
6.10	2.00	0.00	9.07	0.06	0.00	6.17	2.00	0.00	9.06	0.07	0.00

	on Fotent	iai index	calculation	data :: (c	ontinuea)						
Depth (ft)	FS	FL.	Wz	dz	LPI	Depth (ft)	FS	FL	Wz	dz	LPI
6.36	2.00	0.00	9.03	0.06	0.00	6.43	2.00	0.00	9.02	0.07	0.00
6.49	2.00	0.00	9.01	0.06	0.00	6.56	2.00	0.00	9.00	0.07	0.00
6.63	2.00	0.00	8.99	0.07	0.00	6.69	2.00	0.00	8.98	0.06	0.00
6.76	2.00	0.00	8.97	0.07	0.00	6.82	2.00	0.00	8.96	0.06	0.00
6.89	2.00	0.00	8.95	0.07	0.00	6.95	2.00	0.00	8.94	0.06	0.00
7.02	2.00	0.00	8.93	0.07	0.00	7.08	2.00	0.00	8.92	0.06	0.00
7.15	2.00	0.00	8.91	0.07	0.00	7.22	2.00	0.00	8.90	0.07	0.00
7.28	2.00	0.00	8.89	0.06	0.00	7.35	2.00	0.00	8.88	0.07	0.00
7.41	2.00	0.00	8.87	0.06	0.00	7.48	2.00	0.00	8.86	0.07	0.00
7.54	2.00	0.00	8.85	0.06	0.00	7.61	2.00	0.00	8.84	0.07	0.00
7.68	2.00	0.00	8.83	0.07	0.00	7.74	2.00	0.00	8.82	0.06	0.00
7.81	2.00	0.00	8.81	0.07	0.00	7.87	2.00	0.00	8.80	0.06	0.00
7.94	2.00	0.00	8.79	0.07	0.00	8.00	2.00	0.00	8.78	0.06	0.00
8.07	2.00	0.00	8.77	0.07	0.00	8.13	2.00	0.00	8.76	0.06	0.00
8.20	2.00	0.00	8.75	0.07	0.00	8.27	2.00	0.00	8.74	0.07	0.00
8.33	2.00	0.00	8.73	0.06	0.00	8.40	2.00	0.00	8.72	0.07	0.00
8.46	2.00	0.00	8.71	0.06	0.00	8.53	2.00	0.00	8.70	0.07	0.00
8.59	2.00	0.00	8.69	0.06	0.00	8.66	2.00	0.00	8.68	0.07	0.00
8.72	2.00	0.00	8.67	0.06	0.00	8.79	2.00	0.00	8.66	0.07	0.00
8.86	2.00	0.00	8.65	0.07	0.00	8.92	2.00	0.00	8.64	0.06	0.00
8.99	2.00	0.00	8.63	0.07	0.00	9.05	2.00	0.00	8.62	0.06	0.00
9.12	2.00	0.00	8.61	0.07	0.00	9.18	2.00	0.00	8.60	0.06	0.00
9.25	2.00	0.00	8.59	0.07	0.00	9.32	2.00	0.00	8.58	0.07	0.00
9.38	2.00	0.00	8.57	0.06	0.00	9.45	2.00	0.00	8.56	0.07	0.00
9.51	2.00	0.00	8.55	0.06	0.00	9.58	2.00	0.00	8.54	0.07	0.00
9.64	2.00	0.00	8.53	0.06	0.00	9.71	2.00	0.00	8.52	0.07	0.00
9.77	2.00	0.00	8.51	0.06	0.00	9.84	2.00	0.00	8.50	0.07	0.00
9.91	1.91	0.00	8.49	0.07	0.00	9.97	1.81	0.00	8.48	0.06	0.00
10.04	1.70	0.00	8.47	0.07	0.00	10.10	1.61	0.00	8.46	0.06	0.00
10.17	1.60	0.00	8.45	0.07	0.00	10.23	1.61	0.00	8.44	0.06	0.00
10.30	1.66	0.00	8.43	0.07	0.00	10.25	1.67	0.00	8.42	0.06	0.00
10.43	1.67	0.00	8.41	0.07	0.00	10.50	1.67	0.00	8.40	0.00	0.00
10.45	1.65	0.00	8.39	0.07	0.00	10.63	1.63	0.00	8.38	0.07	0.00
10.69		0.00			0.00			0.00		0.07	
10.82	1.62	0.00	8.37 8.35	0.06	0.00	10.76 10.89	1.60 1.59	0.00	8.36 8.34	0.07	0.00
10.82	1.60 1.55	0.00	8.33	0.06	0.00	10.89	1.59	0.00	8.34	0.07	0.00
11.09		0.00									
	1.55	0.00	8.31	0.07 0.07	0.00	11.15	1.55	0.00	8.30 8.28	0.06	0.00
11.22	1.50		8.29		0.00	11.28	1.46	0.00	8.28	0.06	0.00
11.35	1.47	0.00	8.27	0.07	0.00	11.41	1.51	0.00	8.26	0.06	0.00
11.48	1.57	0.00	8.25	0.07	0.00	11.55	1.60	0.00	8.24	0.07	0.00
11.61	1.63	0.00	8.23	0.06	0.00	11.68	1.62	0.00	8.22	0.07	0.00
11.74	1.64	0.00	8.21	0.06	0.00	11.81	1.64	0.00	8.20	0.07	0.00
11.87	1.62	0.00	8.19	0.06	0.00	11.94	1.57	0.00	8.18	0.07	0.00
12.00	1.55	0.00	8.17	0.06	0.00	12.07	1.53	0.00	8.16	0.07	0.00
12.14	1.54	0.00	8.15	0.07	0.00	12.20	1.53	0.00	8.14	0.06	0.00
12.27	1.51	0.00	8.13	0.07	0.00	12.33	1.49	0.00	8.12	0.06	0.00
12.40	1.48	0.00	8.11	0.07	0.00	12.46	1.47	0.00	8.10	0.06	0.00

Depth (ft) 12.66	FS	F _L									
			Wz	dz	LPI	Depth (ft)	FS	F.	Wz	dz	LPI
12.70	1.52	0.00	8.07	0.06	0.00	12.73	1.55	0.00	8.06	0.07	0.00
12.79	1.61	0.00	8.05	0.06	0.00	12.86	1.65	0.00	8.04	0.07	0.00
12.92	1.68	0.00	8.03	0.06	0.00	12.99	1.69	0.00	8.02	0.07	0.00
13.05	1.65	0.00	8.01	0.06	0.00	13.12	1.60	0.00	8.00	0.07	0.00
13.19	1.55	0.00	7.99	0.07	0.00	13.25	1.54	0.00	7.98	0.06	0.00
13.32	1.55	0.00	7.97	0.07	0.00	13.38	1.61	0.00	7.96	0.06	0.00
13.45	1.68	0.00	7.95	0.07	0.00	13.51	1.72	0.00	7.94	0.06	0.00
13.58	1.73	0.00	7.93	0.07	0.00	13.64	1.74	0.00	7.92	0.06	0.00
13.71	1.75	0.00	7.91	0.07	0.00	13.78	1.78	0.00	7.90	0.07	0.00
13.84	1.76	0.00	7.89	0.06	0.00	13.91	1.76	0.00	7.88	0.07	0.00
13.97	1.76	0.00	7.87	0.06	0.00	14.04	1.77	0.00	7.86	0.07	0.00
14.10	1.78	0.00	7.85	0.06	0.00	14.17	1.78	0.00	7.84	0.07	0.00
14.24	1.81	0.00	7.83	0.07	0.00	14.30	1.83	0.00	7.82	0.06	0.00
14.37	1.82	0.00	7.81	0.07	0.00	14.43	1.77	0.00	7.80	0.06	0.00
14.50	1.74	0.00	7.79	0.07	0.00	14.56	1.75	0.00	7.78	0.06	0.00
14.63	1.78	0.00	7.77	0.07	0.00	14.69	1.81	0.00	7.76	0.06	0.00
14.76	1.81	0.00	7.75	0.07	0.00	14.83	1.83	0.00	7.74	0.07	0.00
14.89	1.90	0.00	7.73	0.06	0.00	14.96	2.00	0.00	7.72	0.07	0.00
15.02	2.00	0.00	7.71	0.06	0.00	15.09	2.00	0.00	7.70	0.07	0.00
15.15	2.00	0.00	7.69	0.06	0.00	15.22	2.00	0.00	7.68	0.07	0.00
15.28	2.00	0.00	7.67	0.06	0.00	15.35	2.00	0.00	7.66	0.07	0.00
15.42	2.00	0.00	7.65	0.07	0.00	15.48	2.00	0.00	7.64	0.06	0.00
15.55	2.00	0.00	7.63	0.07	0.00	15.61	2.00	0.00	7.62	0.06	0.00
15.68	2.00	0.00	7.61	0.07	0.00	15.74	2.00	0.00	7.60	0.06	0.00
15.81	2.00	0.00	7.59	0.07	0.00	15.88	2.00	0.00	7.58	0.07	0.00
15.94	2.00	0.00	7.57	0.06	0.00	16.01	2.00	0.00	7.56	0.07	0.00
16.07	2.00	0.00	7.55	0.06	0.00	16.14	2.00	0.00	7.54	0.07	0.00
16.20	2.00	0.00	7.53	0.06	0.00	16.27	2.00	0.00	7.52	0.07	0.00
16.33	2.00	0.00	7.51	0.06	0.00	16.40	2.00	0.00	7.50	0.07	0.00
16.47	2.00	0.00	7.49	0.07	0.00	16.53	2.00	0.00	7.48	0.06	0.00
16.60	2.00	0.00	7.47	0.07	0.00	16.66	2.00	0.00	7.46	0.06	0.00
16.73	2.00	0.00	7.45	0.07	0.00	16.79	2.00	0.00	7.44	0.06	0.00
16.86	2.00	0.00	7.43	0.07	0.00	16.92	2.00	0.00	7.42	0.06	0.00
16.99	2.00	0.00	7.41	0.07	0.00	17.06	2.00	0.00	7.40	0.00	0.00
17.12	2.00	0.00	7.41	0.07	0.00	17.06	2.00	0.00	7.40	0.07	0.00
17.12	2.00	0.00	7.39 7.37	0.06	0.00	17.19	2.00	0.00	7.36	0.07	0.00
		0.00									
17.38 17.52	2.00	0.00	7.35 7.33	0.06 0.07	0.00	17.45 17.58	2.00 2.00	0.00	7.34 7.32	0.07 0.06	0.00
17.65	2.00	0.00	7.31	0.07	0.00	17.71	2.00	0.00	7.30	0.06	0.00
17.78	2.00	0.00	7.29	0.07	0.00	17.84	2.00	0.00	7.28	0.06	0.00
17.91	2.00	0.00	7.27	0.07	0.00	17.97	2.00	0.00	7.26	0.06	0.00
18.04	2.00	0.00	7.25	0.07	0.00	18.11	2.00	0.00	7.24	0.07	0.00
18.17	2.00	0.00	7.23	0.06	0.00	18.24	2.00	0.00	7.22	0.07	0.00
18.30	2.00	0.00	7.21	0.06	0.00	18.37	2.00	0.00	7.20	0.07	0.00
18.43	2.00	0.00	7.19	0.06	0.00	18.50	2.00	0.00	7.18	0.07	0.00
18.56	2.00	0.00	7.17	0.06	0.00	18.63	2.00	0.00	7.16	0.07	0.00
18.70 18.83	2.00	0.00	7.15 7.13	0.07 0.07	0.00	18.76 18.89	2.00 2.00	0.00	7.14 7.12	0.06 0.06	0.00

Depth (ft)	FS	Fι									
			Wz	dz	LPI	Depth (ft)	FS	F.	Wz	dz	LPI
	2.00	0.00	7.11	0.07	0.00	19.02	2.00	0.00	7.10	0.06	0.00
19.09	2.00	0.00	7.09	0.07	0.00	19.16	2.00	0.00	7.08	0.07	0.00
19.22	2.00	0.00	7.07	0.06	0.00	19.29	2.00	0.00	7.06	0.07	0.00
19.35	2.00	0.00	7.05	0.06	0.00	19.42	2.00	0.00	7.04	0.07	0.00
19.48	2.00	0.00	7.03	0.06	0.00	19.55	2.00	0.00	7.02	0.07	0.00
19.61	2.00	0.00	7.01	0.06	0.00	19.68	2.00	0.00	7.00	0.07	0.00
19.75	2.00	0.00	6.99	0.07	0.00	19.81	2.00	0.00	6.98	0.06	0.00
19.88	2.00	0.00	6.97	0.07	0.00	19.94	2.00	0.00	6.96	0.06	0.00
20.01	2.00	0.00	6.95	0.07	0.00	20.07	2.00	0.00	6.94	0.06	0.00
20.14	2.00	0.00	6.93	0.07	0.00	20.20	2.00	0.00	6.92	0.06	0.00
20.27	2.00	0.00	6.91	0.07	0.00	20.34	2.00	0.00	6.90	0.07	0.00
20.40	2.00	0.00	6.89	0.06	0.00	20.47	2.00	0.00	6.88	0.07	0.00
20.53	2.00	0.00	6.87	0.06	0.00	20.60	2.00	0.00	6.86	0.07	0.00
20.66	2.00	0.00	6.85	0.06	0.00	20.73	2.00	0.00	6.84	0.07	0.00
20.80	2.00	0.00	6.83	0.07	0.00	20.86	2.00	0.00	6.82	0.06	0.00
20.93	2.00	0.00	6.81	0.07	0.00	20.99	2.00	0.00	6.80	0.06	0.00
21.06	2.00	0.00	6.79	0.07	0.00	21.12	2.00	0.00	6.78	0.06	0.00
21.19	2.00	0.00	6.77	0.07	0.00	21.25	2.00	0.00	6.76	0.06	0.00
21.32	2.00	0.00	6.75	0.07	0.00	21.39	2.00	0.00	6.74	0.07	0.00
21.45	2.00	0.00	6.73	0.06	0.00	21.52	2.00	0.00	6.72	0.07	0.00
21.58	2.00	0.00	6.71	0.06	0.00	21.65	2.00	0.00	6.70	0.07	0.00
21.71	2.00	0.00	6.69	0.06	0.00	21.78	2.00	0.00	6.68	0.07	0.00
21.84	2.00	0.00	6.67	0.06	0.00	21.91	2.00	0.00	6.66	0.07	0.00
21.98	2.00	0.00	6.65	0.07	0.00	22.04	2.00	0.00	6.64	0.06	0.00
22.11	2.00	0.00	6.63	0.07	0.00	22.17	2.00	0.00	6.62	0.06	0.00
22.24	2.00	0.00	6.61	0.07	0.00	22.30	2.00	0.00	6.60	0.06	0.00
22.37	2.00	0.00	6.59	0.07	0.00	22.44	2.00	0.00	6.58	0.07	0.00
22.50	2.00	0.00	6.57	0.06	0.00	22.57	2.00	0.00	6.56	0.07	0.00
22.63	2.00	0.00	6.55	0.06	0.00	22.70	2.00	0.00	6.54	0.07	0.00
22.76	2.00	0.00	6.53	0.06	0.00	22.83	2.00	0.00	6.52	0.07	0.00
22.89	2.00	0.00	6.51	0.06	0.00	22.96	2.00	0.00	6.50	0.07	0.00
23.03	2.00	0.00	6.49	0.07	0.00	23.09	2.00	0.00	6.48	0.07	0.00
23.16	2.00	0.00	6.47	0.07	0.00	23.22	2.00	0.00	6.46	0.06	0.00
23.10	2.00	0.00	6.45	0.07	0.00	23.35	2.00	0.00	6.44	0.06	0.00
23.42	2.00	0.00	6.43	0.07	0.00	23.48	2.00	0.00	6.42	0.06	0.00
23.55	2.00	0.00	6.41	0.07	0.00	23.62	2.00	0.00	6.40	0.07	0.00
23.68	2.00	0.00	6.39	0.06	0.00	23.75	2.00	0.00	6.38	0.07	0.00
23.81	2.00	0.00	6.37	0.06	0.00	23.88	2.00	0.00	6.36	0.07	0.00
23.94	2.00	0.00	6.35	0.06	0.00	24.01	2.00	0.00	6.34	0.07	0.00
24.08	2.00	0.00	6.33	0.07	0.00	24.14	2.00	0.00	6.32	0.06	0.00
24.21	2.00	0.00	6.31	0.07	0.00	24.27	2.00	0.00	6.30	0.06	0.00
24.34	2.00	0.00	6.29	0.07	0.00	24.40	2.00	0.00	6.28	0.06	0.00
24.47	2.00	0.00	6.27	0.07	0.00	24.53	2.00	0.00	6.26	0.06	0.00
24.60	2.00	0.00	6.25	0.07	0.00	24.67	2.00	0.00	6.24	0.07	0.00
24.73	2.00	0.00	6.23	0.06	0.00	24.80	2.00	0.00	6.22	0.07	0.00
24.86	2.00	0.00	6.21	0.06	0.00	24.93	2.00	0.00	6.20	0.07	0.00
24.99 25.12	2.00 2.00	0.00	6.19 6.17	0.06	0.00	25.06 25.19	2.00 2.00	0.00	6.18 6.16	0.07 0.07	0.00

		iai iiiaox	caiculation	uata :: (C	ontinued)						
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	FL	Wz	dz	LPI
25.26	2.00	0.00	6.15	0.07	0.00	25.32	2.00	0.00	6.14	0.06	0.00
25.39	2.00	0.00	6.13	0.07	0.00	25.45	2.00	0.00	6.12	0.06	0.00
25.52	2.00	0.00	6.11	0.07	0.00	25.58	2.00	0.00	6.10	0.06	0.00
25.65	2.00	0.00	6.09	0.07	0.00	25.72	2.00	0.00	6.08	0.07	0.00
25.78	2.00	0.00	6.07	0.06	0.00	25.85	2.00	0.00	6.06	0.07	0.00
25.91	2.00	0.00	6.05	0.06	0.00	25.98	2.00	0.00	6.04	0.07	0.00
26.04	2.00	0.00	6.03	0.06	0.00	26.11	2.00	0.00	6.02	0.07	0.00
26.17	2.00	0.00	6.01	0.06	0.00	26.24	2.00	0.00	6.00	0.07	0.00
26.31	2.00	0.00	5.99	0.07	0.00	26.37	2.00	0.00	5.98	0.06	0.00
26.44	2.00	0.00	5.97	0.07	0.00	26.50	2.00	0.00	5.96	0.06	0.00
26.57	2.00	0.00	5.95	0.07	0.00	26.63	2.00	0.00	5.94	0.06	0.00
26.70	2.00	0.00	5.93	0.07	0.00	26.76	2.00	0.00	5.92	0.06	0.00
26.83	2.00	0.00	5.91	0.07	0.00	26.90	2.00	0.00	5.90	0.07	0.00
26.96	2.00	0.00	5.89	0.06	0.00	27.03	2.00	0.00	5.88	0.07	0.00
27.09	2.00	0.00	5.87	0.06	0.00	27.16	2.00	0.00	5.86	0.07	0.00
27.22	2.00	0.00	5.85	0.06	0.00	27.29	2.00	0.00	5.84	0.07	0.00
27.36	2.00	0.00	5.83	0.07	0.00	27.42	2.00	0.00	5.82	0.06	0.00
27.49	2.00	0.00	5.81	0.07	0.00	27.55	2.00	0.00	5.80	0.06	0.00
27.62	2.00	0.00	5.79	0.07	0.00	27.68	2.00	0.00	5.78	0.06	0.00
27.75	2.00	0.00	5.77	0.07	0.00	27.81	2.00	0.00	5.76	0.06	0.00
27.88	2.00	0.00	5.75	0.07	0.00	27.95	2.00	0.00	5.74	0.07	0.00
28.01	2.00	0.00	5.73	0.06	0.00	28.08	2.00	0.00	5.72	0.07	0.00
28.14	2.00	0.00	5.71	0.06	0.00	28.21	2.00	0.00	5.70	0.07	0.00
28.27	2.00	0.00	5.69	0.06	0.00	28.34	2.00	0.00	5.68	0.07	0.00
28.40	2.00	0.00	5.67	0.06	0.00	28.47	2.00	0.00	5.66	0.07	0.00
28.54	2.00	0.00	5.65	0.07	0.00	28.60	2.00	0.00	5.64	0.06	0.00
28.67	2.00	0.00	5.63	0.07	0.00	28.73	2.00	0.00	5.62	0.06	0.00
28.80	2.00	0.00	5.61	0.07	0.00	28.86	2.00	0.00	5.60	0.06	0.00
28.93	2.00	0.00	5.59	0.07	0.00	29.00	2.00	0.00	5.58	0.07	0.00
29.06	2.00			0.07		29.13	2.00	0.00		0.07	0.00
		0.00	5.57		0.00				5.56		
29.19	2.00	0.00	5.55	0.06	0.00	29.26	2.00	0.00	5.54	0.07	0.00
29.32	2.00	0.00	5.53		0.00	29.39	2.00	0.00	5.52	0.07	0.00
29.45 29.59	2.00 2.00	0.00	5.51	0.06 0.07	0.00	29.52	2.00	0.00	5.50 5.48	0.07 0.06	0.00
			5.49			29.65	2.00				0.00
29.72 29.85	2.00	0.00	5.47	0.07 0.07	0.00	29.78	2.00	0.00	5.46	0.06	0.00
29.85		0.00	5.45			29.91	2.00		5.44		0.00
	2.00	0.00	5.43 5.41	0.07 0.07	0.00	30.04	2.00	0.00	5.42 5.40	0.06	0.00
30.11	2.00		5.41		0.00	30.18	2.00	0.00	5.40	0.07	0.00
30.24	2.00	0.00	5.39	0.06	0.00	30.31	2.00	0.00	5.38	0.07	0.00
30.37	2.00	0.00	5.37	0.06	0.00	30.44	2.00	0.00	5.36	0.07	0.00
30.50	2.00	0.00	5.35	0.06	0.00	30.57	2.00	0.00	5.34	0.07	0.00
30.64	2.00	0.00	5.33	0.07	0.00	30.70	2.00	0.00	5.32	0.06	0.00
30.77	2.00	0.00	5.31	0.07	0.00	30.83	2.00	0.00	5.30	0.06	0.00
30.90	2.00	0.00	5.29	0.07	0.00	30.96	2.00	0.00	5.28	0.06	0.00
31.03	2.00	0.00	5.27	0.07	0.00	31.09	2.00	0.00	5.26	0.06	0.00
31.16	2.00	0.00	5.25	0.07	0.00	31.23	2.00	0.00	5.24	0.07	0.00
31.29	2.00	0.00	5.23	0.06	0.00	31.36	2.00	0.00	5.22	0.07	0.00

ь п											
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	FL.	Wz	dz	LPI
31.55	2.00	0.00	5.19	0.06	0.00	31.62	2.00	0.00	5.18	0.07	0.00
31.68	2.00	0.00	5.17	0.06	0.00	31.75	2.00	0.00	5.16	0.07	0.00
31.82	2.00	0.00	5.15	0.07	0.00	31.88	2.00	0.00	5.14	0.06	0.00
31.95	2.00	0.00	5.13	0.07	0.00	32.01	2.00	0.00	5.12	0.06	0.00
32.08	2.00	0.00	5.11	0.07	0.00	32.14	2.00	0.00	5.10	0.06	0.00
32.21	2.00	0.00	5.09	0.07	0.00	32.28	2.00	0.00	5.08	0.07	0.00
32.34	2.00	0.00	5.07	0.06	0.00	32.41	2.00	0.00	5.06	0.07	0.00
32.47	2.00	0.00	5.05	0.06	0.00	32.54	2.00	0.00	5.04	0.07	0.00
32.60	2.00	0.00	5.03	0.06	0.00	32.67	2.00	0.00	5.02	0.07	0.00
32.73	2.00	0.00	5.01	0.06	0.00	32.80	2.00	0.00	5.00	0.07	0.00
32.87	2.00	0.00	4.99	0.07	0.00	32.93	2.00	0.00	4.98	0.06	0.00
33.00	2.00	0.00	4.97	0.07	0.00	33.06	2.00	0.00	4.96	0.06	0.00
33.13	2.00	0.00	4.95	0.07	0.00	33.19	2.00	0.00	4.94	0.06	0.00
33.26	2.00	0.00	4.93	0.07	0.00	33.32	2.00	0.00	4.92	0.06	0.00
33.39	2.00	0.00	4.91	0.07	0.00	33.46	2.00	0.00	4.90	0.07	0.00
33.52	2.00	0.00	4.89	0.06	0.00	33.59	2.00	0.00	4.88	0.07	0.00
33.65	2.00	0.00	4.87	0.06	0.00	33.72	2.00	0.00	4.86	0.07	0.00
33.78	2.00	0.00	4.85	0.06	0.00	33.85	2.00	0.00	4.84	0.07	0.00
33.92	2.00	0.00	4.83	0.07	0.00	33.98	2.00	0.00	4.82	0.06	0.00
34.05	2.00	0.00	4.81	0.07	0.00	34.11	2.00	0.00	4.80	0.06	0.00
34.18	2.00	0.00	4.79	0.07	0.00	34.24	2.00	0.00	4.78	0.06	0.00
34.31	2.00	0.00	4.77	0.07	0.00	34.37	2.00	0.00	4.76	0.06	0.00
34.44	2.00	0.00	4.75	0.07	0.00	34.51	2.00	0.00	4.74	0.07	0.00
34.57	2.00	0.00	4.73	0.06	0.00	34.64	2.00	0.00	4.72	0.07	0.00
34.70	2.00	0.00	4.71	0.06	0.00	34.77	2.00	0.00	4.70	0.07	0.00
34.83	2.00	0.00	4.69	0.06	0.00	34.90	2.00	0.00	4.68	0.07	0.00
34.96	2.00	0.00	4.67	0.06	0.00	35.03	2.00	0.00	4.66	0.07	0.00
35.10	2.00	0.00	4.65	0.07	0.00	35.16	2.00	0.00	4.64	0.06	0.00
35.23	2.00	0.00	4.63	0.07	0.00	35.29	2.00	0.00	4.62	0.06	0.00
35.36	2.00	0.00	4.61	0.07	0.00	35.42	2.00	0.00	4.60	0.06	0.00
35.49	2.00	0.00	4.59	0.07	0.00	35.56	2.00	0.00	4.58	0.07	0.00
35.62	2.00	0.00	4.57	0.07	0.00	35.69	2.00	0.00	4.56	0.07	0.00
35.75	2.00	0.00	4.55	0.06	0.00	35.82	2.00	0.00	4.54	0.07	0.00
35.88	2.00	0.00	4.53	0.06	0.00	35.95	2.00	0.00	4.52	0.07	0.00
36.01 36.15	2.00	0.00	4.51 4.49	0.06 0.07	0.00	36.08	2.00	0.00	4.50	0.07	0.00
					0.00	36.21	2.00	0.00	4.48	0.06	
36.28	2.00	0.00	4.47	0.07 0.07	0.00	36.34	2.00	0.00	4.46	0.06	0.00
36.41	2.00		4.45		0.00	36.47	2.00	0.00	4.44	0.06	0.00
36.54	2.00	0.00	4.43	0.07	0.00	36.60 26.74	2.00	0.00	4.42	0.06	0.00
36.67	2.00	0.00	4.41	0.07	0.00	36.74	2.00	0.00	4.40	0.07	0.00
36.80	2.00	0.00	4.39	0.06	0.00	36.87	2.00	0.00	4.38	0.07	0.00
36.93	2.00	0.00	4.37	0.06	0.00	37.00	2.00	0.00	4.36	0.07	0.00
37.06	2.00	0.00	4.35	0.06	0.00	37.13	2.00	0.00	4.34	0.07	0.00
37.20	2.00	0.00	4.33	0.07	0.00	37.26	2.00	0.00	4.32	0.06	0.00
37.33	2.00	0.00	4.31	0.07	0.00	37.39	2.00	0.00	4.30	0.06	0.00
37.46	2.00	0.00	4.29	0.07	0.00	37.52	2.00	0.00	4.28	0.06	0.00
37.59 37.72	2.00	0.00	4.27 4.25	0.07 0.07	0.00	37.65 37.79	2.00 2.00	0.00	4.26 4.24	0.06 0.07	0.00

:: Liquefact	ion Potent	ial Index	calculation	data :: (c	ontinued)						
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	FL	Wz	dz	LPI
37.85	2.00	0.00	4.23	0.06	0.00	37.92	2.00	0.00	4.22	0.07	0.00
37.98	2.00	0.00	4.21	0.06	0.00	38.05	2.00	0.00	4.20	0.07	0.00
38.11	2.00	0.00	4.19	0.06	0.00	38.18	2.00	0.00	4.18	0.07	0.00
38.24	2.00	0.00	4.17	0.06	0.00	38.31	2.00	0.00	4.16	0.07	0.00
38.38	2.00	0.00	4.15	0.07	0.00	38.44	2.00	0.00	4.14	0.06	0.00
38.51	2.00	0.00	4.13	0.07	0.00	38.57	2.00	0.00	4.12	0.06	0.00
38.64	2.00	0.00	4.11	0.07	0.00	38.70	2.00	0.00	4.10	0.06	0.00
38.77	2.00	0.00	4.09	0.07	0.00	38.84	2.00	0.00	4.08	0.07	0.00
38.90	2.00	0.00	4.07	0.06	0.00	38.97	2.00	0.00	4.06	0.07	0.00
39.03	2.00	0.00	4.05	0.06	0.00	39.10	2.00	0.00	4.04	0.07	0.00
39.16	2.00	0.00	4.03	0.06	0.00	39.23	2.00	0.00	4.02	0.07	0.00
39.29	2.00	0.00	4.01	0.06	0.00	39.36	2.00	0.00	4.00	0.07	0.00
39.43	2.00	0.00	3.99	0.07	0.00	39.49	2.00	0.00	3.98	0.06	0.00
39.56	2.00	0.00	3.97	0.07	0.00	39.62	2.00	0.00	3.96	0.06	0.00
39.69	2.00	0.00	3.95	0.07	0.00	39.75	2.00	0.00	3.94	0.06	0.00
39.82	2.00	0.00	3.93	0.07	0.00	39.88	2.00	0.00	3.92	0.06	0.00
39.95	2.00	0.00	3.91	0.07	0.00	40.02	2.00	0.00	3.90	0.07	0.00
40.08	1.57	0.00	3.89	0.06	0.00	40.15	2.00	0.00	3.88	0.07	0.00
40.21	2.00	0.00	3.87	0.06	0.00						

Overall liquefaction potential: 0.00

LPI = 0.00 - Liquefaction risk very low

LPI between 0.00 and 5.00 - Liquefaction risk low

LPI between 5.00 and 15.00 - Liquefaction risk high

LPI > 15.00 - Liquefaction risk very high

## **Abbreviations**

FS: Calculated factor of safety for test point

F_L: 1 - FS

Wz: Function value of the extend of soil liquefaction according to depth

d_z: Layer thickness (ft)

LPI: Liquefaction potential index value for test point



## GeoLogismiki

Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

## LIQUEFACTION ANALYSIS REPORT

Location: PDP-5 Project title: Martin Lake

CPT file: B-12

Peak ground acceleration:

#### Input parameters and analysis data

Robertson (2009) Analysis method: Fines correction method: Robertson (2009) Points to test: Earthquake magnitude M_w:

Based on Ic value

G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:

1.00 ft 0.00 ft 3 2.60 Based on SBT Use fill: Nο Fill height: N/A Fill weight: N/A Trans. detect. applied: No

Clay like behavior applied: Limit depth applied: No Limit depth:

All soils N/A

Method based  $K_{\sigma}$  applied: Yes MSF method:







Zone A₃: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A₂: Cyclic liquefaction and strength loss likely depending on loading and ground

Zone B: Liquefaction and post-earthquake strength loss unlikely, check cyclic softening Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity, brittleness/sensitivity, strain to peak undrained strength and ground geometry

Liquefact	ion Potent	ial Index	calculation	data ::							
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	F _L	Wz	dz	LPI
0.07	2.00	0.00	9.99	0.06	0.00	0.13	2.00	0.00	9.98	0.06	0.00
0.20	1.80	0.00	9.97	0.07	0.00	0.26	2.00	0.00	9.96	0.06	0.00
0.33	2.00	0.00	9.95	0.07	0.00	0.39	2.00	0.00	9.94	0.06	0.00
0.46	2.00	0.00	9.93	0.07	0.00	0.52	2.00	0.00	9.92	0.06	0.00
0.59	2.00	0.00	9.91	0.07	0.00	0.66	2.00	0.00	9.90	0.07	0.00
0.72	2.00	0.00	9.89	0.06	0.00	0.79	2.00	0.00	9.88	0.07	0.00
0.85	2.00	0.00	9.87	0.06	0.00	0.92	2.00	0.00	9.86	0.07	0.00
0.98	2.00	0.00	9.85	0.06	0.00	1.05	2.00	0.00	9.84	0.07	0.00
1.12	2.00	0.00	9.83	0.07	0.00	1.18	2.00	0.00	9.82	0.06	0.00
1.25	2.00	0.00	9.81	0.07	0.00	1.31	2.00	0.00	9.80	0.06	0.00
1.38	2.00	0.00	9.79	0.07	0.00	1.44	2.00	0.00	9.78	0.06	0.00
1.51	2.00	0.00	9.77	0.07	0.00	1.57	2.00	0.00	9.76	0.06	0.00
1.64	2.00	0.00	9.75	0.07	0.00	1.71	2.00	0.00	9.74	0.07	0.00
1.77	2.00	0.00	9.73	0.06	0.00	1.84	2.00	0.00	9.72	0.07	0.00
1.90	2.00	0.00	9.71	0.06	0.00	1.97	2.00	0.00	9.70	0.07	0.00
2.03	2.00	0.00	9.69	0.06	0.00	2.10	2.00	0.00	9.68	0.07	0.00
2.16	2.00	0.00	9.67	0.06	0.00	2.23	2.00	0.00	9.66	0.07	0.00
2.30	2.00	0.00	9.65	0.07	0.00	2.36	2.00	0.00	9.64	0.06	0.00
2.43	2.00	0.00	9.63	0.07	0.00	2.49	2.00	0.00	9.62	0.06	0.00
2.56	2.00	0.00	9.61	0.07	0.00	2.62	2.00	0.00	9.60	0.06	0.00
2.69	2.00	0.00	9.59	0.07	0.00	2.76	2.00	0.00	9.58	0.07	0.00
2.82	2.00	0.00	9.57	0.06	0.00	2.89	2.00	0.00	9.56	0.07	0.00
2.95	2.00	0.00	9.55	0.06	0.00	3.02	2.00	0.00	9.54	0.07	0.00
3.08	2.00	0.00	9.53	0.06	0.00	3.15	2.00	0.00	9.52	0.07	0.00
3.21	2.00	0.00	9.51	0.06	0.00	3.28	2.00	0.00	9.50	0.07	0.00
3.35	2.00	0.00	9.49	0.07	0.00	3.41	2.00	0.00	9.48	0.06	0.00
3.48	2.00	0.00	9.47	0.07	0.00	3.54	2.00	0.00	9.46	0.06	0.00
3.61	2.00	0.00	9.45	0.07	0.00	3.67	2.00	0.00	9.44	0.06	0.00
3.74	2.00	0.00	9.43	0.07	0.00	3.80	2.00	0.00	9.42	0.06	0.00
3.87	2.00	0.00	9.41	0.07	0.00	3.94	2.00	0.00	9.40	0.07	0.00
4.00	2.00	0.00	9.39	0.06	0.00	4.07	2.00	0.00	9.38	0.07	0.00
4.13	2.00	0.00	9.37	0.06	0.00	4.20	2.00	0.00	9.36	0.07	0.00
4.26	2.00	0.00	9.35	0.06	0.00	4.33	2.00	0.00	9.34	0.07	0.00
4.40	2.00	0.00	9.33	0.07	0.00	4.46	2.00	0.00	9.32	0.06	0.00
4.53	2.00	0.00	9.31	0.07	0.00	4.59	2.00	0.00	9.30	0.06	0.00
4.66	2.00	0.00	9.29	0.07	0.00	4.72	2.00	0.00	9.28	0.06	0.00
4.79	2.00	0.00	9.27	0.07	0.00	4.85	2.00	0.00	9.26	0.06	0.00
4.92	2.00	0.00	9.25	0.07	0.00	4.99	2.00	0.00	9.24	0.07	0.00
5.05	2.00	0.00	9.23	0.06	0.00	5.12	2.00	0.00	9.22	0.07	0.00
5.18	2.00	0.00	9.21	0.06	0.00	5.12	2.00	0.00	9.20	0.07	0.00
5.31	2.00	0.00	9.19	0.06	0.00	5.38	2.00	0.00	9.18	0.07	0.00
5.44	2.00	0.00	9.17	0.06	0.00	5.51	2.00	0.00	9.16	0.07	0.00
5.58	2.00	0.00	9.17	0.07	0.00	5.64	2.00	0.00	9.14	0.07	0.00
5.71	2.00	0.00	9.13	0.07	0.00	5.77	2.00	0.00	9.14	0.06	0.00
5.84	2.00	0.00	9.13	0.07	0.00	5.90	2.00	0.00	9.12	0.06	0.00
		0.00		0.07							
5.97	2.00		9.09		0.00	6.04	2.00	0.00	9.08	0.07	0.00
6.10 6.23	2.00 2.00	0.00	9.07 9.05	0.06	0.00	6.17 6.30	2.00 2.00	0.00	9.06 9.04	0.07 0.07	0.00

Depth (ft)	FC										
	FS	F _L	Wz	dz	LPI	Depth (ft)	FS	F.	Wz	d _z	LPI
6.36	2.00	0.00	9.03	0.06	0.00	6.43	2.00	0.00	9.02	0.07	0.00
6.49	2.00	0.00	9.01	0.06	0.00	6.56	2.00	0.00	9.00	0.07	0.00
6.63	2.00	0.00	8.99	0.07	0.00	6.69	2.00	0.00	8.98	0.06	0.00
6.76	2.00	0.00	8.97	0.07	0.00	6.82	2.00	0.00	8.96	0.06	0.00
6.89	2.00	0.00	8.95	0.07	0.00	6.95	2.00	0.00	8.94	0.06	0.00
7.02	2.00	0.00	8.93	0.07	0.00	7.08	2.00	0.00	8.92	0.06	0.00
7.15	2.00	0.00	8.91	0.07	0.00	7.22	2.00	0.00	8.90	0.07	0.00
7.28	2.00	0.00	8.89	0.06	0.00	7.35	2.00	0.00	8.88	0.07	0.00
7.41	2.00	0.00	8.87	0.06	0.00	7.48	2.00	0.00	8.86	0.07	0.00
7.54	2.00	0.00	8.85	0.06	0.00	7.61	2.00	0.00	8.84	0.07	0.00
7.68	2.00	0.00	8.83	0.07	0.00	7.74	2.00	0.00	8.82	0.06	0.00
7.81	2.00	0.00	8.81	0.07	0.00	7.87	2.00	0.00	8.80	0.06	0.00
7.94	2.00	0.00	8.79	0.07	0.00	8.00	2.00	0.00	8.78	0.06	0.00
8.07	2.00	0.00	8.77	0.07	0.00	8.13	2.00	0.00	8.76	0.06	0.00
8.20	2.00	0.00	8.75	0.07	0.00	8.27	2.00	0.00	8.74	0.07	0.00
8.33	2.00	0.00	8.73	0.06	0.00	8.40	2.00	0.00	8.72	0.07	0.00
8.46	2.00	0.00	8.71	0.06	0.00	8.53	2.00	0.00	8.70	0.07	0.00
8.59	2.00	0.00	8.69	0.06	0.00	8.66	2.00	0.00	8.68	0.07	0.00
8.72	2.00	0.00	8.67	0.06	0.00	8.79	2.00	0.00	8.66	0.07	0.00
8.86	2.00	0.00	8.65	0.07	0.00	8.92	2.00	0.00	8.64	0.06	0.00
8.99	2.00	0.00	8.63	0.07	0.00	9.05	2.00	0.00	8.62	0.06	0.00
9.12	2.00	0.00	8.61	0.07	0.00	9.18	2.00	0.00	8.60	0.06	0.00
9.25	2.00	0.00	8.59	0.07	0.00	9.32	2.00	0.00	8.58	0.07	0.00
9.38	2.00	0.00	8.57	0.06	0.00	9.45	2.00	0.00	8.56	0.07	0.00
9.51	2.00	0.00	8.55	0.06	0.00	9.58	2.00	0.00	8.54	0.07	0.00
9.64	2.00	0.00	8.53	0.06	0.00	9.71	2.00	0.00	8.52	0.07	0.00
9.77	2.00	0.00	8.51	0.06	0.00	9.84	2.00	0.00	8.50	0.07	0.00
9.91	2.00	0.00	8.49	0.00	0.00	9.97	2.00	0.00	8.48	0.06	0.00
10.04	2.00	0.00	8.47	0.07	0.00	10.10	2.00	0.00	8.46	0.06	0.00
10.17	2.00	0.00	8.45	0.07	0.00	10.23	2.00	0.00	8.44	0.06	0.00
10.30	2.00	0.00	8.43	0.07	0.00	10.25	2.00	0.00	8.42	0.06	0.00
10.43	2.00	0.00	8.41	0.07	0.00	10.50	2.00	0.00	8.40	0.00	0.00
10.45	2.00	0.00	8.39	0.07	0.00	10.63	2.00	0.00	8.38	0.07	0.00
10.69	2.00	0.00	8.37	0.06	0.00	10.76	2.00	0.00	8.36	0.07	0.00
10.82 10.96	2.00	0.00	8.35 8.33	0.06 0.07	0.00	10.89 11.02	2.00	0.00	8.34 8.32	0.07 0.06	0.00
11.09		0.00									
11.09	2.00	0.00	8.31 8.29	0.07 0.07	0.00	11.15 11.28	2.00 2.00	0.00	8.30 8.28	0.06 0.06	0.00
											0.00
11.35	2.00	0.00	8.27	0.07	0.00	11.41	2.00	0.00	8.26	0.06	0.00
11.48	2.00	0.00	8.25	0.07	0.00	11.55	2.00	0.00	8.24	0.07	0.00
11.61	2.00	0.00	8.23	0.06	0.00	11.68	2.00	0.00	8.22	0.07	0.00
11.74	2.00	0.00	8.21	0.06	0.00	11.81	2.00	0.00	8.20	0.07	0.00
11.87	2.00	0.00	8.19	0.06	0.00	11.94	2.00	0.00	8.18	0.07	0.00
12.00	2.00	0.00	8.17	0.06	0.00	12.07	2.00	0.00	8.16	0.07	0.00
12.14	2.00	0.00	8.15	0.07	0.00	12.20	2.00	0.00	8.14	0.06	0.00
12.27	2.00	0.00	8.13	0.07	0.00	12.33	2.00	0.00	8.12	0.06	0.00
12.40 12.53	2.00	0.00	8.11 8.09	0.07 0.07	0.00	12.46 12.60	2.00 2.00	0.00	8.10 8.08	0.06 0.07	0.00

Liqueiacu	ion Potent	ial Index	calculation	data :: (c	ontinued)						
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	F _L	Wz	dz	LPI
12.66	2.00	0.00	8.07	0.06	0.00	12.73	2.00	0.00	8.06	0.07	0.00
12.79	2.00	0.00	8.05	0.06	0.00	12.86	2.00	0.00	8.04	0.07	0.00
12.92	2.00	0.00	8.03	0.06	0.00	12.99	2.00	0.00	8.02	0.07	0.00
13.05	2.00	0.00	8.01	0.06	0.00	13.12	2.00	0.00	8.00	0.07	0.00
13.19	2.00	0.00	7.99	0.07	0.00	13.25	2.00	0.00	7.98	0.06	0.00
13.32	2.00	0.00	7.97	0.07	0.00	13.38	2.00	0.00	7.96	0.06	0.00
13.45	2.00	0.00	7.95	0.07	0.00	13.51	2.00	0.00	7.94	0.06	0.00
13.58	2.00	0.00	7.93	0.07	0.00	13.64	2.00	0.00	7.92	0.06	0.00
13.71	2.00	0.00	7.91	0.07	0.00	13.78	2.00	0.00	7.90	0.07	0.00
13.84	2.00	0.00	7.89	0.06	0.00	13.91	2.00	0.00	7.88	0.07	0.00
13.97	2.00	0.00	7.87	0.06	0.00	14.04	2.00	0.00	7.86	0.07	0.00
14.10	2.00	0.00	7.85	0.06	0.00	14.17	2.00	0.00	7.84	0.07	0.00
14.24	2.00	0.00	7.83	0.07	0.00	14.30	2.00	0.00	7.82	0.06	0.00
14.37	2.00	0.00	7.81	0.07	0.00	14.43	2.00	0.00	7.80	0.06	0.00
14.50	2.00	0.00	7.79	0.07	0.00	14.56	2.00	0.00	7.78	0.06	0.00
14.63	2.00	0.00	7.77	0.07	0.00	14.69	2.00	0.00	7.76	0.06	0.00
14.76	2.00	0.00	7.75	0.07	0.00	14.83	2.00	0.00	7.74	0.07	0.00
14.89	2.00	0.00	7.73	0.06	0.00	14.96	2.00	0.00	7.72	0.07	0.00
15.02	2.00	0.00	7.71	0.06	0.00	15.09	2.00	0.00	7.70	0.07	0.00
15.15	2.00	0.00	7.69	0.06	0.00	15.22	2.00	0.00	7.68	0.07	0.00
15.28	2.00	0.00	7.67	0.06	0.00	15.35	2.00	0.00	7.66	0.07	0.00
15.42	2.00	0.00	7.65	0.07	0.00	15.48	2.00	0.00	7.64	0.06	0.00
15.55	2.00	0.00	7.63	0.07	0.00	15.61	2.00	0.00	7.62	0.06	0.00
15.68	2.00	0.00	7.61	0.07	0.00	15.74	2.00	0.00	7.60	0.06	0.00
15.81	2.00	0.00	7.59	0.07	0.00	15.88	2.00	0.00	7.58	0.07	0.00
15.94	2.00	0.00	7.57	0.06	0.00	16.01	2.00	0.00	7.56	0.07	0.00
16.07	2.00	0.00	7.55	0.06	0.00	16.14	2.00	0.00	7.54	0.07	0.00
16.20	2.00	0.00	7.53	0.06	0.00	16.27	2.00	0.00	7.52	0.07	0.00
16.33	2.00	0.00	7.51	0.06	0.00	16.40	2.00	0.00	7.50	0.07	0.00
16.47	2.00	0.00	7.49	0.07	0.00	16.53	2.00	0.00	7.48	0.06	0.00
16.60	2.00	0.00	7.47	0.07	0.00	16.66	2.00	0.00	7.46	0.06	0.00
16.73	2.00	0.00	7.45	0.07	0.00	16.79	2.00	0.00	7. <del>4</del> 0 7.44	0.06	0.00
16.86	2.00	0.00	7.43	0.07	0.00	16.92	2.00	0.00	7.44	0.06	0.00
16.99	2.00	0.00	7.43	0.07	0.00	17.06	2.00	0.00	7.40	0.00	0.00
17.12 17.25	2.00	0.00	7.39 7.37	0.06	0.00	17.19 17.32	2.00	0.00	7.38 7.36	0.07 0.07	0.00
		0.00									
17.38 17.52	2.00 2.00	0.00	7.35 7.33	0.06 0.07	0.00	17.45 17.58	2.00 2.00	0.00	7.34 7.32	0.07 0.06	0.00
17.65	2.00	0.00	7.33	0.07	0.00	17.58	2.00	0.00	7.32	0.06	0.00
17.78		0.00	7.31	0.07	0.00	17.71					0.00
	2.00						2.00	0.00	7.28	0.06	
17.91	2.00	0.00	7.27	0.07	0.00	17.97	2.00	0.00	7.26	0.06	0.00
18.04	2.00	0.00	7.25	0.07	0.00	18.11	2.00	0.00	7.24	0.07	0.00
18.17	2.00	0.00	7.23	0.06	0.00	18.24	2.00	0.00	7.22	0.07	0.00
18.30	2.00	0.00	7.21	0.06	0.00	18.37	2.00	0.00	7.20	0.07	0.00
18.43	2.00	0.00	7.19	0.06	0.00	18.50	2.00	0.00	7.18	0.07	0.00
18.56	2.00	0.00	7.17	0.06	0.00	18.63	2.00	0.00	7.16	0.07	0.00
18.70	2.00	0.00	7.15	0.07	0.00	18.76	2.00	0.00	7.14	0.06	0.00

Liquefact	ion Potent	ial Index	calculation	data :: (c	ontinued)						
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	FL	Wz	dz	LPI
18.96	2.00	0.00	7.11	0.07	0.00	19.02	2.00	0.00	7.10	0.06	0.00
19.09	2.00	0.00	7.09	0.07	0.00	19.16	2.00	0.00	7.08	0.07	0.00
19.22	2.00	0.00	7.07	0.06	0.00	19.29	2.00	0.00	7.06	0.07	0.00
19.35	2.00	0.00	7.05	0.06	0.00	19.42	2.00	0.00	7.04	0.07	0.00
19.48	2.00	0.00	7.03	0.06	0.00	19.55	2.00	0.00	7.02	0.07	0.00
19.61	2.00	0.00	7.01	0.06	0.00	19.68	2.00	0.00	7.00	0.07	0.00
19.75	2.00	0.00	6.99	0.07	0.00	19.81	2.00	0.00	6.98	0.06	0.00
19.88	2.00	0.00	6.97	0.07	0.00	19.94	2.00	0.00	6.96	0.06	0.00
20.01	2.00	0.00	6.95	0.07	0.00	20.07	2.00	0.00	6.94	0.06	0.00
20.14	2.00	0.00	6.93	0.07	0.00	20.20	2.00	0.00	6.92	0.06	0.00
20.27	2.00	0.00	6.91	0.07	0.00	20.34	2.00	0.00	6.90	0.07	0.00
20.40	2.00	0.00	6.89	0.06	0.00	20.47	2.00	0.00	6.88	0.07	0.00
20.53	2.00	0.00	6.87	0.06	0.00	20.60	2.00	0.00	6.86	0.07	0.00
20.66	2.00	0.00	6.85	0.06	0.00	20.73	2.00	0.00	6.84	0.07	0.00
20.80	2.00	0.00	6.83	0.07	0.00	20.86	2.00	0.00	6.82	0.06	0.00
20.93	2.00	0.00	6.81	0.07	0.00	20.99	2.00	0.00	6.80	0.06	0.00
21.06	2.00	0.00	6.79	0.07	0.00	21.12	2.00	0.00	6.78	0.06	0.00
21.19	2.00	0.00	6.77	0.07	0.00	21.25	2.00	0.00	6.76	0.06	0.00
21.32	2.00	0.00	6.75	0.07	0.00	21.39	2.00	0.00	6.74	0.07	0.00
21.45	2.00	0.00	6.73	0.06	0.00	21.52	2.00	0.00	6.72	0.07	0.00
21.58	2.00	0.00	6.71	0.06	0.00	21.65	2.00	0.00	6.70	0.07	0.00
21.71	2.00	0.00	6.69	0.06	0.00	21.78	2.00	0.00	6.68	0.07	0.00
21.84	2.00	0.00	6.67	0.06	0.00	21.91	2.00	0.00	6.66	0.07	0.00
21.98	2.00	0.00	6.65	0.07	0.00	22.04	2.00	0.00	6.64	0.06	0.00
22.11	2.00	0.00	6.63	0.07	0.00	22.17	2.00	0.00	6.62	0.06	0.00
22.24	2.00	0.00	6.61	0.07	0.00	22.30	2.00	0.00	6.60	0.06	0.00
22.37	2.00	0.00	6.59	0.07	0.00	22.44	2.00	0.00	6.58	0.07	0.00
22.50	2.00	0.00	6.57	0.06	0.00	22.57	2.00	0.00	6.56	0.07	0.00
22.63	2.00	0.00	6.55	0.06	0.00	22.70	2.00	0.00	6.54	0.07	0.00
22.76	2.00	0.00	6.53	0.06	0.00	22.83	2.00	0.00	6.52	0.07	0.00
22.89	2.00	0.00	6.51	0.06	0.00	22.96	2.00	0.00	6.50	0.07	0.00
23.03	2.00	0.00	6.49	0.07	0.00	23.09	2.00	0.00	6.48	0.06	0.00
23.16	2.00	0.00	6.47	0.07	0.00	23.22	2.00	0.00	6.46	0.06	0.00
23.29	2.00	0.00	6.45	0.07	0.00	23.35	2.00	0.00	6.44	0.06	0.00
23.42	2.00	0.00	6.43	0.07	0.00	23.48	2.00	0.00	6.42	0.06	0.00
23.55	2.00	0.00	6.41	0.07	0.00	23.62	2.00	0.00	6.40	0.07	0.00
23.68	2.00	0.00	6.39	0.06	0.00	23.75	2.00	0.00	6.38	0.07	0.00
23.81	2.00	0.00	6.37	0.06	0.00	23.88	2.00	0.00	6.36	0.07	0.00
23.94	2.00	0.00	6.35	0.06	0.00	24.01	2.00	0.00	6.34	0.07	0.00
24.08	2.00	0.00	6.33	0.00	0.00	24.01	2.00	0.00	6.32	0.07	0.00
24.21	2.00	0.00	6.31	0.07	0.00	24.14	2.00	0.00	6.30	0.06	0.00
24.21	2.00	0.00	6.29	0.07	0.00	24.27	2.00	0.00	6.28	0.06	0.00
24.47	2.00	0.00	6.27	0.07 0.07	0.00	24.53 24.67	2.00	0.00	6.26	0.06 0.07	0.00
24.60	2.00		6.25		0.00		2.00	0.00	6.24		0.00
24.73	2.00	0.00	6.23	0.06	0.00	24.80	2.00	0.00	6.22	0.07	0.00
24.86	2.00	0.00	6.21	0.06	0.00	24.93	2.00	0.00	6.20	0.07	0.00
24.99 25.12	2.00	0.00	6.19	0.06	0.00	25.06	2.00	0.00	6.18	0.07	0.00

Liquefacti	ion Potent	ial Index	calculation	data :: (C	ontinuea)						
Depth (ft)	FS	F _L	Wz	dz	LPI	Depth (ft)	FS	F.	Wz	dz	LPI
25.26	2.00	0.00	6.15	0.07	0.00	25.32	2.00	0.00	6.14	0.06	0.00
25.39	2.00	0.00	6.13	0.07	0.00	25.45	2.00	0.00	6.12	0.06	0.00
25.52	2.00	0.00	6.11	0.07	0.00	25.58	2.00	0.00	6.10	0.06	0.00
25.65	2.00	0.00	6.09	0.07	0.00	25.72	2.00	0.00	6.08	0.07	0.00
25.78	2.00	0.00	6.07	0.06	0.00	25.85	2.00	0.00	6.06	0.07	0.00
25.91	2.00	0.00	6.05	0.06	0.00	25.98	2.00	0.00	6.04	0.07	0.00
26.04	2.00	0.00	6.03	0.06	0.00	26.11	2.00	0.00	6.02	0.07	0.00
26.17	2.00	0.00	6.01	0.06	0.00	26.24	2.00	0.00	6.00	0.07	0.00
26.31	2.00	0.00	5.99	0.07	0.00	26.37	2.00	0.00	5.98	0.06	0.00
26.44	2.00	0.00	5.97	0.07	0.00	26.50	2.00	0.00	5.96	0.06	0.00
26.57	2.00	0.00	5.95	0.07	0.00	26.63	2.00	0.00	5.94	0.06	0.00
26.70	2.00	0.00	5.93	0.07	0.00	26.76	2.00	0.00	5.92	0.06	0.00
26.83	2.00	0.00	5.91	0.07	0.00	26.90	2.00	0.00	5.90	0.07	0.00
26.96	2.00	0.00	5.89	0.06	0.00	27.03	2.00	0.00	5.88	0.07	0.00
27.09	2.00	0.00	5.87	0.06	0.00	27.16	2.00	0.00	5.86	0.07	0.00
27.22	2.00	0.00	5.85	0.06	0.00	27.29	2.00	0.00	5.84	0.07	0.00
27.36	2.00	0.00	5.83	0.07	0.00	27.42	2.00	0.00	5.82	0.06	0.00
27.49	2.00	0.00	5.81	0.07	0.00	27.55	2.00	0.00	5.80	0.06	0.00
27.62	2.00	0.00	5.79	0.07	0.00	27.68	2.00	0.00	5.78	0.06	0.00
27.75	2.00	0.00	5.77	0.07	0.00	27.81	2.00	0.00	5.76	0.06	0.00
27.88	2.00	0.00	5.75	0.07	0.00	27.95	2.00	0.00	5.74	0.07	0.00
28.01	2.00	0.00	5.73	0.06	0.00	28.08	2.00	0.00	5.72	0.07	0.00
28.14	2.00	0.00	5.71	0.06	0.00	28.21	2.00	0.00	5.70	0.07	0.00
28.27	2.00	0.00	5.69	0.06	0.00	28.34	2.00	0.00	5.68	0.07	0.00
28.40	2.00	0.00	5.67	0.06	0.00	28.47	2.00	0.00	5.66	0.07	0.00
28.54	2.00	0.00	5.65	0.07	0.00	28.60	2.00	0.00	5.64	0.06	0.00
28.67	2.00	0.00	5.63	0.07	0.00	28.73	2.00	0.00	5.62	0.06	0.00
28.80	2.00	0.00	5.61	0.07	0.00	28.86	2.00	0.00	5.60	0.06	0.00
28.93	2.00	0.00	5.59	0.07	0.00	29.00	2.00	0.00	5.58	0.07	0.00
29.06	2.00	0.00	5.57	0.06	0.00	29.13	2.00	0.00	5.56	0.07	0.00
29.19	2.00	0.00	5.55	0.06	0.00	29.26	2.00	0.00	5.54	0.07	0.00
29.32	2.00	0.00	5.53	0.06	0.00	29.20	2.00	0.00	5.52	0.07	0.00
29.45	2.00	0.00	5.51	0.06	0.00	29.52	2.00	0.00	5.50	0.07	0.00
29.59	2.00	0.00	5.49	0.07	0.00	29.65	2.00	0.00	5.48	0.07	0.00
29.72	2.00	0.00	5.47	0.07	0.00	29.78	2.00	0.00	5.46	0.06	0.00
29.85	2.00	0.00	5.45	0.07	0.00	29.91	2.00	0.00	5.44	0.06	0.00
29.98	2.00	0.00	5.43	0.07	0.00	30.04	2.00	0.00	5.42	0.06	0.00
30.11	2.00	0.00	5.41	0.07	0.00	30.18	2.00	0.00	5.40	0.07	0.00
30.24	2.00	0.00	5.39	0.06	0.00	30.31	2.00	0.00	5.38	0.07	0.00
30.37	2.00	0.00	5.37	0.06	0.00	30.44	2.00	0.00	5.36	0.07	0.00
30.50	2.00	0.00	5.35	0.06	0.00	30.57	2.00	0.00	5.34	0.07	0.00
30.64	2.00	0.00	5.33	0.07	0.00	30.70	2.00	0.00	5.32	0.06	0.00
30.77	2.00	0.00	5.31	0.07	0.00	30.83	2.00	0.00	5.30	0.06	0.00
30.90	2.00	0.00	5.29	0.07	0.00	30.96	2.00	0.00	5.28	0.06	0.00
31.03	2.00	0.00	5.27	0.07	0.00	31.09	2.00	0.00	5.26	0.06	0.00
31.16	2.00	0.00	5.25	0.07	0.00	31.23	2.00	0.00	5.24	0.07	0.00
31.29	2.00	0.00	5.23	0.06	0.00	31.36	2.00	0.00	5.22	0.07	0.00

Liquefacti	ion Potent	ial Index	calculation	aata :: (c	ontinuea)						
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	FL	Wz	d _z	LPI
31.55	2.00	0.00	5.19	0.06	0.00	31.62	2.00	0.00	5.18	0.07	0.00
31.68	2.00	0.00	5.17	0.06	0.00	31.75	2.00	0.00	5.16	0.07	0.00
31.82	2.00	0.00	5.15	0.07	0.00	31.88	2.00	0.00	5.14	0.06	0.00
31.95	2.00	0.00	5.13	0.07	0.00	32.01	2.00	0.00	5.12	0.06	0.00
32.08	2.00	0.00	5.11	0.07	0.00	32.14	2.00	0.00	5.10	0.06	0.00
32.21	2.00	0.00	5.09	0.07	0.00	32.28	2.00	0.00	5.08	0.07	0.00
32.34	2.00	0.00	5.07	0.06	0.00	32.41	2.00	0.00	5.06	0.07	0.00
32.47	2.00	0.00	5.05	0.06	0.00	32.54	2.00	0.00	5.04	0.07	0.00
32.60	2.00	0.00	5.03	0.06	0.00	32.67	2.00	0.00	5.02	0.07	0.00
32.73	2.00	0.00	5.01	0.06	0.00	32.80	2.00	0.00	5.00	0.07	0.00
32.87	2.00	0.00	4.99	0.07	0.00	32.93	2.00	0.00	4.98	0.06	0.00
33.00	2.00	0.00	4.97	0.07	0.00	33.06	2.00	0.00	4.96	0.06	0.00
33.13	2.00	0.00	4.95	0.07	0.00	33.19	2.00	0.00	4.94	0.06	0.00
33.26	2.00	0.00	4.93	0.07	0.00	33.32	2.00	0.00	4.92	0.06	0.00
33.39	2.00	0.00	4.91	0.07	0.00	33.46	2.00	0.00	4.90	0.07	0.00
33.52	2.00	0.00	4.89	0.06	0.00	33.59	2.00	0.00	4.88	0.07	0.00
33.65	2.00	0.00	4.87	0.06	0.00	33.72	2.00	0.00	4.86	0.07	0.00
33.78	2.00	0.00	4.85	0.06	0.00	33.85	2.00	0.00	4.84	0.07	0.00
33.92	2.00	0.00	4.83	0.07	0.00	33.98	2.00	0.00	4.82	0.06	0.00
34.05	2.00	0.00	4.81	0.07	0.00	34.11	2.00	0.00	4.80	0.06	0.00
34.18	2.00	0.00	4.79	0.07	0.00	34.24	2.00	0.00	4.78	0.06	0.00
34.31	2.00	0.00	4.77	0.07	0.00	34.37	2.00	0.00	4.76	0.06	0.00
34.44	2.00	0.00	4.75	0.07	0.00	34.51	2.00	0.00	4.74	0.07	0.00
34.57	2.00	0.00	4.73	0.06	0.00	34.64	2.00	0.00	4.72	0.07	0.00
34.70	2.00	0.00	4.71	0.06	0.00	34.77	2.00	0.00	4.70	0.07	0.00
34.83	2.00	0.00	4.69	0.06	0.00	34.90	2.00	0.00	4.68	0.07	0.00
34.96	2.00	0.00	4.67	0.06	0.00	35.03	2.00	0.00	4.66	0.07	0.00
35.10	2.00	0.00	4.65	0.00	0.00	35.16	2.00	0.00	4.64	0.06	0.00
35.23	2.00	0.00	4.63	0.07	0.00	35.29	2.00	0.00	4.62	0.06	0.00
35.36	2.00	0.00	4.61	0.07	0.00	35.42	2.00	0.00	4.60	0.06	0.00
35.49	2.00	0.00	4.59	0.07	0.00	35.56	2.00	0.00	4.58	0.07	0.00
35.62		0.00			0.00	35.69					0.00
	2.00		4.57	0.06			2.00	0.00	4.56	0.07	
35.75	2.00	0.00	4.55	0.06	0.00	35.82	2.00	0.00	4.54	0.07	0.00
35.88	2.00	0.00	4.53	0.06	0.00	35.95	2.00	0.00	4.52	0.07	0.00
36.01	2.00	0.00	4.51	0.06	0.00	36.08	2.00	0.00	4.50	0.07	0.00
36.15	2.00	0.00	4.49	0.07	0.00	36.21	2.00	0.00	4.48	0.06	0.00
36.28	2.00	0.00	4.47	0.07	0.00	36.34	2.00	0.00	4.46	0.06	0.00
36.41	2.00	0.00	4.45	0.07	0.00	36.47	2.00	0.00	4.44	0.06	0.00
36.54	2.00	0.00	4.43	0.07	0.00	36.60	2.00	0.00	4.42	0.06	0.00
36.67	2.00	0.00	4.41	0.07	0.00	36.74	2.00	0.00	4.40	0.07	0.00
36.80	2.00	0.00	4.39	0.06	0.00	36.87	2.00	0.00	4.38	0.07	0.00
36.93	2.00	0.00	4.37	0.06	0.00	37.00	2.00	0.00	4.36	0.07	0.00
37.06	2.00	0.00	4.35	0.06	0.00	37.13	2.00	0.00	4.34	0.07	0.00
37.20	2.00	0.00	4.33	0.07	0.00	37.26	2.00	0.00	4.32	0.06	0.00
37.33	2.00	0.00	4.31	0.07	0.00	37.39	2.00	0.00	4.30	0.06	0.00
37.46	2.00	0.00	4.29	0.07	0.00	37.52	2.00	0.00	4.28	0.06	0.00
37.59	2.00	0.00	4.27	0.07	0.00	37.65	2.00	0.00	4.26	0.06	0.00

Depth (ft)         FS         FL         Wz         dz         LPI         Depth (ft)         FS         FL           37.85         2.00         0.00         4.23         0.06         0.00         37.92         2.00         0.00           37.98         2.00         0.00         4.21         0.06         0.00         38.05         2.00         0.00           38.11         2.00         0.00         4.19         0.06         0.00         38.18         2.00         0.00	W _z	d _z	LPI
37.98     2.00     0.00     4.21     0.06     0.00     38.05     2.00     0.00       38.11     2.00     0.00     4.19     0.06     0.00     38.18     2.00     0.00			
38.11 2.00 0.00 4.19 0.06 0.00 38.18 2.00 0.00		0.07	0.00
	4.20	0.07	0.00
	4.18	0.07	0.00
38.24 2.00 0.00 4.17 0.06 0.00 38.31 2.00 0.00	4.16	0.07	0.00
38.38 2.00 0.00 4.15 0.07 0.00 38.44 2.00 0.00	4.14	0.06	0.00
38.51 2.00 0.00 4.13 0.07 0.00 38.57 2.00 0.00	4.12	0.06	0.00
38.64 2.00 0.00 4.11 0.07 0.00 38.70 2.00 0.00	4.10	0.06	0.00
38.77 2.00 0.00 4.09 0.07 0.00 38.84 2.00 0.00	4.08	0.07	0.00
38.90 2.00 0.00 4.07 0.06 0.00 38.97 2.00 0.00	4.06	0.07	0.00
39.03 2.00 0.00 4.05 0.06 0.00 39.10 2.00 0.00	4.04	0.07	0.00
39.16 2.00 0.00 4.03 0.06 0.00 39.23 2.00 0.00	4.02	0.07	0.00
39.29 2.00 0.00 4.01 0.06 0.00 39.36 2.00 0.00	4.00	0.07	0.00
39.43 2.00 0.00 3.99 0.07 0.00 39.49 2.00 0.00 39.49	3.98	0.07	0.00
39.56 2.00 0.00 3.97 0.07 0.00 39.62 2.00 0.00 39.62			0.00
	3.96	0.06	
39.69 2.00 0.00 3.95 0.07 0.00 39.75 2.00 0.00	3.94	0.06	0.00
39.82 2.00 0.00 3.93 0.07 0.00 39.88 2.00 0.00	3.92	0.06	0.00
39.95 2.00 0.00 3.91 0.07 0.00 40.02 2.00 0.00	3.90	0.07	0.00
40.08 2.00 0.00 3.89 0.06 0.00 40.15 2.00 0.00	3.88	0.07	0.00
40.21 2.00 0.00 3.87 0.06 0.00 40.28 2.00 0.00	3.86	0.07	0.00
40.34 2.00 0.00 3.85 0.06 0.00 40.41 2.00 0.00	3.84	0.07	0.00
40.48 2.00 0.00 3.83 0.07 0.00 40.54 2.00 0.00	3.82	0.06	0.00
40.61 2.00 0.00 3.81 0.07 0.00 40.67 2.00 0.00	3.80	0.06	0.00
40.74 2.00 0.00 3.79 0.07 0.00 40.80 2.00 0.00	3.78	0.06	0.00
40.87 2.00 0.00 3.77 0.07 0.00 40.93 2.00 0.00	3.76	0.06	0.00
41.00 2.00 0.00 3.75 0.07 0.00 41.07 2.00 0.00	3.74	0.07	0.00
41.13 2.00 0.00 3.73 0.06 0.00 41.20 2.00 0.00	3.72	0.07	0.00
41.26 2.00 0.00 3.71 0.06 0.00 41.33 2.00 0.00	3.70	0.07	0.00
41.39 2.00 0.00 3.69 0.06 0.00 41.46 2.00 0.00	3.68	0.07	0.00
41.52 2.00 0.00 3.67 0.06 0.00 41.59 2.00 0.00	3.66	0.07	0.00
41.66 2.00 0.00 3.65 0.07 0.00 41.72 2.00 0.00	3.64	0.06	0.00
41.79 2.00 0.00 3.63 0.07 0.00 41.85 2.00 0.00	3.62	0.06	0.00
41.92 2.00 0.00 3.61 0.07 0.00 41.98 2.00 0.00	3.60	0.06	0.00
42.05 2.00 0.00 3.59 0.07 0.00 42.12 2.00 0.00	3.58	0.07	0.00
42.18 2.00 0.00 3.57 0.06 0.00 42.25 2.00 0.00	3.56	0.07	0.00
42.31 2.00 0.00 3.55 0.06 0.00 42.38 2.00 0.00	3.54	0.07	0.00
42.44 2.00 0.00 3.53 0.06 0.00 42.51 2.00 0.00	3.52	0.07	0.00
42.57 2.00 0.00 3.51 0.06 0.00 42.64 2.00 0.00	3.50	0.07	0.00
			0.00
	3.48	0.06	
42.84 2.00 0.00 3.47 0.07 0.00 42.90 2.00 0.00	3.46	0.06	0.00
42.97 2.00 0.00 3.45 0.07 0.00 43.03 2.00 0.00	3.44	0.06	0.00
43.10 2.00 0.00 3.43 0.07 0.00 43.16 2.00 0.00	3.42	0.06	0.00
43.23 2.00 0.00 3.41 0.07 0.00 43.30 2.00 0.00	3.40	0.07	0.00
43.36 2.00 0.00 3.39 0.06 0.00 43.43 2.00 0.00	3.38	0.07	0.00
43.49 2.00 0.00 3.37 0.06 0.00 43.56 2.00 0.00	3.36	0.07	0.00
43.62 2.00 0.00 3.35 0.06 0.00 43.69 2.00 0.00	3.34	0.07	0.00
43.76 2.00 0.00 3.33 0.07 0.00 43.82 2.00 0.00	3.32	0.06	0.00
43.89 2.00 0.00 3.31 0.07 0.00 43.95 2.00 0.00	3.30	0.06	0.00
44.02     2.00     0.00     3.29     0.07     0.00     44.08     2.00     0.00	3.28	0.06	0.00

Liquefact	ion Potent	ial Index	calculation	data :: (c	ontinued)						
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	F _L	Wz	dz	LPI
44.15	2.00	0.00	3.27	0.07	0.00	44.21	2.00	0.00	3.26	0.06	0.00
44.28	2.00	0.00	3.25	0.07	0.00	44.35	2.00	0.00	3.24	0.07	0.00
44.41	2.00	0.00	3.23	0.06	0.00	44.48	2.00	0.00	3.22	0.07	0.00
44.54	2.00	0.00	3.21	0.06	0.00	44.61	2.00	0.00	3.20	0.07	0.00
44.67	2.00	0.00	3.19	0.06	0.00	44.74	2.00	0.00	3.18	0.07	0.00
44.80	2.00	0.00	3.17	0.06	0.00	44.87	2.00	0.00	3.16	0.07	0.00
44.94	2.00	0.00	3.15	0.07	0.00	45.00	2.00	0.00	3.14	0.06	0.00
45.07	2.00	0.00	3.13	0.07	0.00	45.13	2.00	0.00	3.12	0.06	0.00
45.20	2.00	0.00	3.11	0.07	0.00	45.26	2.00	0.00	3.10	0.06	0.00
45.33	2.00	0.00	3.09	0.07	0.00	45.40	2.00	0.00	3.08	0.07	0.00
45.46	2.00	0.00	3.07	0.06	0.00	45.53	2.00	0.00	3.06	0.07	0.00
45.59	2.00	0.00	3.05	0.06	0.00	45.66	2.00	0.00	3.04	0.07	0.00
45.72	2.00	0.00	3.03	0.06	0.00	45.79	2.00	0.00	3.02	0.07	0.00
45.85	2.00	0.00	3.01	0.06	0.00	45.92	2.00	0.00	3.00	0.07	0.00
45.99	2.00	0.00	2.99	0.07	0.00	46.05	2.00	0.00	2.98	0.06	0.00
46.12	2.00	0.00	2.97	0.07	0.00	46.18	2.00	0.00	2.96	0.06	0.00
46.25	2.00	0.00	2.95	0.07	0.00	46.31	2.00	0.00	2.94	0.06	0.00
46.38	2.00	0.00	2.93	0.07	0.00	46.45	2.00	0.00	2.92	0.07	0.00
46.51	2.00	0.00	2.91	0.06	0.00	46.58	2.00	0.00	2.90	0.07	0.00
46.64	2.00	0.00	2.89	0.06	0.00	46.71	2.00	0.00	2.88	0.07	0.00
46.77	2.00	0.00	2.87	0.06	0.00	46.84	2.00	0.00	2.86	0.07	0.00
46.90	2.00	0.00	2.85	0.06	0.00	46.97	2.00	0.00	2.84	0.07	0.00
47.04	2.00	0.00	2.83	0.07	0.00	47.10	2.00	0.00	2.82	0.06	0.00
47.17	2.00	0.00	2.81	0.07	0.00	47.23	2.00	0.00	2.80	0.06	0.00
47.30	2.00	0.00	2.79	0.07	0.00	47.36	2.00	0.00	2.78	0.06	0.00
47.43	2.00	0.00	2.77	0.07	0.00	47.49	2.00	0.00	2.76	0.06	0.00
47.56	2.00	0.00	2.75	0.07	0.00	47.63	2.00	0.00	2.74	0.07	0.00
47.69	2.00	0.00	2.73	0.06	0.00	47.03	2.00	0.00	2.72	0.07	0.00
47.82	2.00	0.00	2.73	0.06	0.00	47.70	2.00	0.00	2.72	0.07	0.00
47.95	2.00	0.00		0.06			2.00		2.68		
			2.69		0.00	48.02		0.00		0.07	0.00
48.09	2.00	0.00	2.67	0.07	0.00	48.15	2.00	0.00	2.66	0.06	0.00
48.22	2.00	0.00	2.65	0.07	0.00	48.28	2.00	0.00	2.64	0.06	0.00
48.35	2.00		2.63	0.07	0.00	48.41	2.00	0.00	2.62	0.06	0.00
48.48	2.00	0.00	2.61	0.07	0.00	48.54	2.00	0.00	2.60	0.06	0.00
48.61	2.00	0.00	2.59	0.07	0.00	48.68	2.00	0.00	2.58	0.07	0.00
48.74	2.00	0.00	2.57	0.06	0.00	48.81	2.00	0.00	2.56	0.07	0.00
48.87	2.00	0.00	2.55	0.06	0.00	48.94	2.00	0.00	2.54	0.07	0.00
49.00	2.00	0.00	2.53	0.06	0.00	49.07	2.00	0.00	2.52	0.07	0.00
49.13	2.00	0.00	2.51	0.06	0.00	49.20	2.00	0.00	2.50	0.07	0.00
49.27	2.00	0.00	2.49	0.07	0.00	49.33	2.00	0.00	2.48	0.06	0.00
49.40	2.00	0.00	2.47	0.07	0.00	49.46	2.00	0.00	2.46	0.06	0.00
49.53	2.00	0.00	2.45	0.07	0.00	49.59	2.00	0.00	2.44	0.06	0.00
49.66	2.00	0.00	2.43	0.07	0.00	49.73	2.00	0.00	2.42	0.07	0.00
49.79	2.00	0.00	2.41	0.06	0.00	49.86	2.00	0.00	2.40	0.07	0.00
49.92	2.00	0.00	2.39	0.06	0.00	49.99	2.00	0.00	2.38	0.07	0.00
50.05	2.00	0.00	2.37	0.06	0.00	50.12	2.00	0.00	2.36	0.07	0.00
50.18	2.00	0.00	2.35	0.06	0.00	50.25	2.00	0.00	2.34	0.07	0.00
50.32	2.00	0.00	2.33	0.07	0.00	50.38	2.00	0.00	2.32	0.06	0.00

Liqueiaca	ion i oteni	iai Iliuex (	calculation	uata (C	ontinueu)						
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	F _L	Wz	dz	LPI
50.45	2.00	0.00	2.31	0.07	0.00	50.51	2.00	0.00	2.30	0.06	0.00
50.58	2.00	0.00	2.29	0.07	0.00	50.64	2.00	0.00	2.28	0.06	0.00
50.71	2.00	0.00	2.27	0.07	0.00	50.77	2.00	0.00	2.26	0.06	0.00
50.84	2.00	0.00	2.25	0.07	0.00	50.91	2.00	0.00	2.24	0.07	0.00
50.97	2.00	0.00	2.23	0.06	0.00	51.04	2.00	0.00	2.22	0.07	0.00
51.10	2.00	0.00	2.21	0.06	0.00	51.17	2.00	0.00	2.20	0.07	0.00
51.23	2.00	0.00	2.19	0.06	0.00	51.30	2.00	0.00	2.18	0.07	0.00
51.37	2.00	0.00	2.17	0.07	0.00	51.43	2.00	0.00	2.16	0.06	0.00
51.50	2.00	0.00	2.15	0.07	0.00	51.56	2.00	0.00	2.14	0.06	0.00
51.63	2.00	0.00	2.13	0.07	0.00	51.69	2.00	0.00	2.12	0.06	0.00
51.76	2.00	0.00	2.11	0.07	0.00	51.82	2.00	0.00	2.10	0.06	0.00
51.89	2.00	0.00	2.09	0.07	0.00	51.96	2.00	0.00	2.08	0.07	0.00
52.02	2.00	0.00	2.07	0.06	0.00	52.09	2.00	0.00	2.06	0.07	0.00
52.15	2.00	0.00	2.05	0.06	0.00	52.22	2.00	0.00	2.04	0.07	0.00
52.28	2.00	0.00	2.03	0.06	0.00	52.35	2.00	0.00	2.02	0.07	0.00
52.41	2.00	0.00	2.01	0.06	0.00	52.48	2.00	0.00	2.00	0.07	0.00
52.55	2.00	0.00	1.99	0.07	0.00	52.61	2.00	0.00	1.98	0.06	0.00
52.68	2.00	0.00	1.97	0.07	0.00	52.74	2.00	0.00	1.96	0.06	0.00
52.81	2.00	0.00	1.95	0.07	0.00	52.87	2.00	0.00	1.94	0.06	0.00
52.94	2.00	0.00	1.93	0.07	0.00	53.01	2.00	0.00	1.92	0.07	0.00
53.07	2.00	0.00	1.91	0.06	0.00	53.14	2.00	0.00	1.90	0.07	0.00
53.20	2.00	0.00	1.89	0.06	0.00	53.27	2.00	0.00	1.88	0.07	0.00
53.33	2.00	0.00	1.87	0.06	0.00	53.40	2.00	0.00	1.86	0.07	0.00
53.46	2.00	0.00	1.85	0.06	0.00	53.53	2.00	0.00	1.84	0.07	0.00
53.60	2.00	0.00	1.83	0.07	0.00	53.66	2.00	0.00	1.82	0.06	0.00
53.73	2.00	0.00	1.81	0.07	0.00	53.79	2.00	0.00	1.80	0.06	0.00
53.86	2.00	0.00	1.79	0.07	0.00	53.92	2.00	0.00	1.78	0.06	0.00
53.99	2.00	0.00	1.77	0.07	0.00	54.05	2.00	0.00	1.76	0.06	0.00
54.12	2.00	0.00	1.75	0.07	0.00	54.19	2.00	0.00	1.74	0.07	0.00
54.25	2.00	0.00	1.73	0.06	0.00	54.32	2.00	0.00	1.72	0.07	0.00
54.38	2.00	0.00	1.71	0.06	0.00	54.45	2.00	0.00	1.70	0.07	0.00
54.51	2.00	0.00	1.69	0.06	0.00	54.58	2.00	0.00	1.68	0.07	0.00
54.65	2.00	0.00	1.67	0.07	0.00	54.71	2.00	0.00	1.66	0.06	0.00
54.78	2.00	0.00	1.65	0.07	0.00	54.84	2.00	0.00	1.64	0.06	0.00
54.91	2.00	0.00	1.63	0.07	0.00	54.97	2.00	0.00	1.62	0.06	0.00
55.04	2.00	0.00	1.61	0.07	0.00	55.10	2.00	0.00	1.60	0.06	0.00
55.17	2.00	0.00	1.59	0.07	0.00	55.24	2.00	0.00	1.58	0.07	0.00
55.30	2.00	0.00	1.57	0.06	0.00	55.37	2.00	0.00	1.56	0.07	0.00
55.43	2.00	0.00	1.55	0.06	0.00	55.50	2.00	0.00	1.54	0.07	0.00
55.56	2.00	0.00	1.53	0.06	0.00	55.63	2.00	0.00	1.52	0.07	0.00
55.69	2.00	0.00	1.51	0.06	0.00	55.76	2.00	0.00	1.50	0.07	0.00
55.83	2.00	0.00	1.49	0.07	0.00	55.89	2.00	0.00	1.48	0.06	0.00
55.96	2.00	0.00	1.47	0.07	0.00	56.02	2.00	0.00	1.46	0.06	0.00
56.09	2.00	0.00	1.45	0.07	0.00	56.15	2.00	0.00	1.44	0.06	0.00
56.22	2.00	0.00	1.43	0.07	0.00	56.29	2.00	0.00	1.42	0.07	0.00
56.35	2.00	0.00	1.41	0.06	0.00	56.42	2.00	0.00	1.40	0.07	0.00
56.48	2.00	0.00	1.39	0.06	0.00	56.55	2.00	0.00	1.38	0.07	0.00

Liquefacti	ion Potent	ial Index	calculation	data :: (c	ontinued)						
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	FL	Wz	dz	LPI
56.74	2.00	0.00	1.35	0.06	0.00	56.81	2.00	0.00	1.34	0.07	0.00
56.88	2.00	0.00	1.33	0.07	0.00	56.94	2.00	0.00	1.32	0.06	0.00
57.01	2.00	0.00	1.31	0.07	0.00	57.07	2.00	0.00	1.30	0.06	0.00
57.14	2.00	0.00	1.29	0.07	0.00	57.20	2.00	0.00	1.28	0.06	0.00
57.27	2.00	0.00	1.27	0.07	0.00	57.33	2.00	0.00	1.26	0.06	0.00
57.40	2.00	0.00	1.25	0.07	0.00	57.47	2.00	0.00	1.24	0.07	0.00
57.53	2.00	0.00	1.23	0.06	0.00	57.60	2.00	0.00	1.22	0.07	0.00
57.66	2.00	0.00	1.21	0.06	0.00	57.73	2.00	0.00	1.20	0.07	0.00
57.79	2.00	0.00	1.19	0.06	0.00	57.86	2.00	0.00	1.18	0.07	0.00
57.93	2.00	0.00	1.17	0.07	0.00	57.99	2.00	0.00	1.16	0.06	0.00
58.06	2.00	0.00	1.15	0.07	0.00	58.12	2.00	0.00	1.14	0.06	0.00
58.19	2.00	0.00	1.13	0.07	0.00	58.25	2.00	0.00	1.12	0.06	0.00
58.32	2.00	0.00	1.11	0.07	0.00	58.38	2.00	0.00	1.10	0.06	0.00
58.45	2.00	0.00	1.09	0.07	0.00	58.52	2.00	0.00	1.08	0.07	0.00
58.58	2.00	0.00	1.07	0.06	0.00	58.65	2.00	0.00	1.06	0.07	0.00
58.71	2.00	0.00	1.05	0.06	0.00	58.78	2.00	0.00	1.04	0.07	0.00
58.84	2.00	0.00	1.03	0.06	0.00	58.91	2.00	0.00	1.02	0.07	0.00
58.97	2.00	0.00	1.01	0.06	0.00	59.04	2.00	0.00	1.00	0.07	0.00
59.11	2.00	0.00	0.99	0.07	0.00	59.17	2.00	0.00	0.98	0.06	0.00
59.24	2.00	0.00	0.97	0.07	0.00	59.30	2.00	0.00	0.96	0.06	0.00
59.37	2.00	0.00	0.95	0.07	0.00	59.43	2.00	0.00	0.94	0.06	0.00
59.50	2.00	0.00	0.93	0.07	0.00	59.57	2.00	0.00	0.92	0.07	0.00
59.63	2.00	0.00	0.91	0.06	0.00	59.70	2.00	0.00	0.90	0.07	0.00
59.76	2.00	0.00	0.89	0.06	0.00	59.83	2.00	0.00	0.88	0.07	0.00
59.89	2.00	0.00	0.87	0.06	0.00	59.96	2.00	0.00	0.86	0.07	0.00
60.02	2.00	0.00	0.85	0.06	0.00	60.09	2.00	0.00	0.84	0.07	0.00
60.16	2.00	0.00	0.83	0.07	0.00	60.22	2.00	0.00	0.82	0.06	0.00
60.29	2.00	0.00	0.81	0.07	0.00	60.35	2.00	0.00	0.80	0.06	0.00
60.42	2.00	0.00	0.79	0.07	0.00	60.48	2.00	0.00	0.78	0.06	0.00
60.55	2.00	0.00	0.77	0.07	0.00	60.61	2.00	0.00	0.76	0.06	0.00
60.68	2.00	0.00	0.75	0.07	0.00	60.75	2.00	0.00	0.74	0.07	0.00
60.81	2.00	0.00	0.73	0.07	0.00	60.88	2.00	0.00	0.74	0.07	0.00
60.94	2.00	0.00	0.73	0.06	0.00	61.01	2.00	0.00	0.72	0.07	0.00
61.07	2.00	0.00	0.69	0.06	0.00	61.14	2.00	0.00	0.68	0.07	0.00
61.21	2.00	0.00	0.67	0.07	0.00	61.27	2.00	0.00	0.66	0.06	0.00
61.34	2.00	0.00	0.65	0.07	0.00	61.40	2.00	0.00	0.64	0.06	0.00
61.47	2.00	0.00	0.63	0.07	0.00	61.40	2.00	0.00	0.62	0.06	0.00
61.60	2.00	0.00	0.63	0.07	0.00	61.66	2.00	0.00	0.62	0.06	0.00
61.73	2.00	0.00	0.59	0.07	0.00		2.00	0.00	0.58	0.07	
61.86	2.00	0.00	0.59	0.07	0.00	61.80 61.93	2.00	0.00	0.56	0.07	0.00
61.99	2.00	0.00	0.55	0.06	0.00	62.06	2.00	0.00	0.54	0.07	0.00
62.12	2.00	0.00	0.53	0.06	0.00	62.19	2.00	0.00	0.52	0.07	0.00
62.25	2.00	0.00	0.51	0.06	0.00	62.32	2.00	0.00	0.50	0.07	0.00
62.39	2.00	0.00	0.49	0.07	0.00	62.45	2.00	0.00	0.48	0.06	0.00
62.52	2.00	0.00	0.47	0.07	0.00	62.58	2.00	0.00	0.46	0.06	0.00
62.65	2.00	0.00	0.45	0.07	0.00	62.71	2.00	0.00	0.44	0.06	0.00
62.78 62.91	2.00 2.00	0.00	0.43 0.41	0.07 0.06	0.00	62.85 62.98	2.00 2.00	0.00	0.42 0.40	0.07 0.07	0.00

:: Liquefaction Potential Index calculation data :: (continued)											
Depth (ft)	FS	FL	Wz	dz	LPI	Depth (ft)	FS	F _L	Wz	dz	LPI
63.04	2.00	0.00	0.39	0.06	0.00	63.11	2.00	0.00	0.38	0.07	0.00
63.17	2.00	0.00	0.37	0.06	0.00	63.24	2.00	0.00	0.36	0.07	0.00
63.30	2.00	0.00	0.35	0.06	0.00	63.37	2.00	0.00	0.34	0.07	0.00
63.44	2.00	0.00	0.33	0.07	0.00	63.50	2.00	0.00	0.32	0.06	0.00
63.57	2.00	0.00	0.31	0.07	0.00	63.63	2.00	0.00	0.30	0.06	0.00
63.70	2.00	0.00	0.29	0.07	0.00	63.76	2.00	0.00	0.28	0.06	0.00
63.83	2.00	0.00	0.27	0.07	0.00	63.89	2.00	0.00	0.26	0.06	0.00
63.96	2.00	0.00	0.25	0.07	0.00	64.03	2.00	0.00	0.24	0.07	0.00
64.09	2.00	0.00	0.23	0.06	0.00	64.16	2.00	0.00	0.22	0.07	0.00
64.22	2.00	0.00	0.21	0.06	0.00	64.29	2.00	0.00	0.20	0.07	0.00
64.35	2.00	0.00	0.19	0.06	0.00	64.42	2.00	0.00	0.18	0.07	0.00
64.49	2.00	0.00	0.17	0.07	0.00	64.55	2.00	0.00	0.16	0.06	0.00
64.62	2.00	0.00	0.15	0.07	0.00	64.68	2.00	0.00	0.14	0.06	0.00
64.75	2.00	0.00	0.13	0.07	0.00	64.81	2.00	0.00	0.12	0.06	0.00
64.88	2.00	0.00	0.11	0.07	0.00	64.94	2.00	0.00	0.10	0.06	0.00
65.01	2.00	0.00	0.09	0.07	0.00	65.08	2.00	0.00	0.08	0.07	0.00
65.14	2.00	0.00	0.07	0.06	0.00	65.21	2.00	0.00	0.06	0.07	0.00
65.27	2.00	0.00	0.05	0.06	0.00	65.34	2.00	0.00	0.04	0.07	0.00
65.40	2.00	0.00	0.03	0.06	0.00	65.47	2.00	0.00	0.02	0.07	0.00
65.53	2.00	0.00	0.01	0.06	0.00	65.60	2.00	0.00	0.00	0.07	0.00
65.67	2.00	0.00	0.00	0.00	0.00	65.73	2.00	0.00	0.00	0.00	0.00
65.80	2.00	0.00	0.00	0.00	0.00	65.86	2.00	0.00	0.00	0.00	0.00
65.93	2.00	0.00	0.00	0.00	0.00	65.99	2.00	0.00	0.00	0.00	0.00
66.06	2.00	0.00	0.00	0.00	0.00	66.13	2.00	0.00	0.00	0.00	0.00
66.19	2.00	0.00	0.00	0.00	0.00	66.26	2.00	0.00	0.00	0.00	0.00
66.32	2.00	0.00	0.00	0.00	0.00	66.39	2.00	0.00	0.00	0.00	0.00
66.45	2.00	0.00	0.00	0.00	0.00	66.52	2.00	0.00	0.00	0.00	0.00
66.58	2.00	0.00	0.00	0.00	0.00	66.65	2.00	0.00	0.00	0.00	0.00
66.72	2.00	0.00	0.00	0.00	0.00	66.78	2.00	0.00	0.00	0.00	0.00
66.85	2.00	0.00	0.00	0.00	0.00	66.91	2.00	0.00	0.00	0.00	0.00
66.98	2.00	0.00	0.00	0.00	0.00	67.04	2.00	0.00	0.00	0.00	0.00
67.11	2.00	0.00	0.00	0.00	0.00	67.17	2.00	0.00	0.00	0.00	0.00
67.24	2.00	0.00	0.00	0.00	0.00	67.31	2.00	0.00	0.00	0.00	0.00
67.37	2.00	0.00	0.00	0.00	0.00	67.44	2.00	0.00	0.00	0.00	0.00
67.50	2.00	0.00	0.00	0.00	0.00	67.57	2.00	0.00	0.00	0.00	0.00
67.63	2.00	0.00	0.00	0.00	0.00	67.70	2.00	0.00	0.00	0.00	0.00
67.77	2.00	0.00	0.00	0.00	0.00	67.83	2.00	0.00	0.00	0.00	0.00
67.90	2.00	0.00	0.00	0.00	0.00	67.96	2.00	0.00	0.00	0.00	0.00
68.03	2.00	0.00	0.00	0.00	0.00	68.09	2.00	0.00	0.00	0.00	0.00
68.16	2.00	0.00	0.00	0.00	0.00	68.22	2.00	0.00	0.00	0.00	0.00
68.29	2.00	0.00	0.00	0.00	0.00	68.36	2.00	0.00	0.00	0.00	0.00
68.42	2.00	0.00	0.00	0.00	0.00	68.49	2.00	0.00	0.00	0.00	0.00
68.55	2.00	0.00	0.00	0.00	0.00	68.62	2.00	0.00	0.00	0.00	0.00
68.68	2.00	0.00	0.00	0.00	0.00	68.75	2.00	0.00	0.00	0.00	0.00
68.81	2.00	0.00	0.00	0.00	0.00	68.88	2.00	0.00	0.00	0.00	0.00
68.95	2.00	0.00	0.00	0.00	0.00	69.01	2.00	0.00	0.00	0.00	0.00
69.08	2.00	0.00	0.00	0.00	0.00	69.14	2.00	0.00	0.00	0.00	0.00

:: Liquefaction Potential Index calculation data :: (continued)											
Depth (ft)	FS	F _L	Wz	dz	LPI	Depth (ft)	FS	F.	Wz	dz	LPI
69.34	2.00	0.00	0.00	0.00	0.00	69.41	2.00	0.00	0.00	0.00	0.00
69.47	2.00	0.00	0.00	0.00	0.00	69.54	2.00	0.00	0.00	0.00	0.00
69.60	2.00	0.00	0.00	0.00	0.00	69.67	2.00	0.00	0.00	0.00	0.00
69.73	2.00	0.00	0.00	0.00	0.00	69.80	2.00	0.00	0.00	0.00	0.00
69.86	2.00	0.00	0.00	0.00	0.00	69.93	2.00	0.00	0.00	0.00	0.0
70.00	2.00	0.00	0.00	0.00	0.00	70.06	2.00	0.00	0.00	0.00	0.0
70.13	2.00	0.00	0.00	0.00	0.00	70.19	2.00	0.00	0.00	0.00	0.0
70.26	2.00	0.00	0.00	0.00	0.00	70.32	2.00	0.00	0.00	0.00	0.0
70.39	2.00	0.00	0.00	0.00	0.00	70.45	2.00	0.00	0.00	0.00	0.0
70.52	2.00	0.00	0.00	0.00	0.00	70.59	2.00	0.00	0.00	0.00	0.0
70.65	2.00	0.00	0.00	0.00	0.00	70.72	2.00	0.00	0.00	0.00	0.0
70.78	2.00	0.00	0.00	0.00	0.00	70.85	2.00	0.00	0.00	0.00	0.0
70.91	2.00	0.00	0.00	0.00	0.00	70.98	2.00	0.00	0.00	0.00	0.0
71.05	2.00	0.00	0.00	0.00	0.00	71.11	2.00	0.00	0.00	0.00	0.0
71.18	2.00	0.00	0.00	0.00	0.00	71.24	2.00	0.00	0.00	0.00	0.0
71.31	2.00	0.00	0.00	0.00	0.00	71.37	2.00	0.00	0.00	0.00	0.0
71.44	2.00	0.00	0.00	0.00	0.00	71.50	2.00	0.00	0.00	0.00	0.0
71.57	2.00	0.00	0.00	0.00	0.00	71.64	2.00	0.00	0.00	0.00	0.0
71.70	2.00	0.00	0.00	0.00	0.00	71.77	2.00	0.00	0.00	0.00	0.0
71.83	2.00	0.00	0.00	0.00	0.00	71.90	2.00	0.00	0.00	0.00	0.0
71.96	2.00	0.00	0.00	0.00	0.00	72.03	2.00	0.00	0.00	0.00	0.0
72.09	2.00	0.00	0.00	0.00	0.00	72.16	2.00	0.00	0.00	0.00	0.0
72.23	2.00	0.00	0.00	0.00	0.00	72.29	2.00	0.00	0.00	0.00	0.0
72.36	2.00	0.00	0.00	0.00	0.00	72.42	2.00	0.00	0.00	0.00	0.0
72.49	2.00	0.00	0.00	0.00	0.00	72.55	2.00	0.00	0.00	0.00	0.0
72.62	2.00	0.00	0.00	0.00	0.00	72.69	2.00	0.00	0.00	0.00	0.0
72.75	2.00	0.00	0.00	0.00	0.00	72.82	2.00	0.00	0.00	0.00	0.0
72.88	2.00	0.00	0.00	0.00	0.00	72.95	2.00	0.00	0.00	0.00	0.0
73.01	2.00	0.00	0.00	0.00	0.00	73.08	2.00	0.00	0.00	0.00	0.0
73.14	2.00	0.00	0.00	0.00	0.00	73.21	2.00	0.00	0.00	0.00	0.0
73.28	2.00	0.00	0.00	0.00	0.00	73.34	2.00	0.00	0.00	0.00	0.0
73.41	2.00	0.00	0.00	0.00	0.00	73.47	2.00	0.00	0.00	0.00	0.0
73.54	2.00	0.00	0.00	0.00	0.00	73.60	2.00	0.00	0.00	0.00	0.0
73.67	2.00	0.00	0.00	0.00	0.00	73.73	2.00	0.00	0.00	0.00	0.0
73.80	2.00	0.00	0.00	0.00	0.00	73.87	2.00	0.00	0.00	0.00	0.0
73.93	2.00	0.00	0.00	0.00	0.00	74.00	2.00	0.00	0.00	0.00	0.0
74.06	2.00	0.00	0.00	0.00	0.00	74.13	2.00	0.00	0.00	0.00	0.0
74.19	2.00	0.00	0.00	0.00	0.00	74.26	2.00	0.00	0.00	0.00	0.0
74.32	2.00	0.00	0.00	0.00	0.00	74.39	2.00	0.00	0.00	0.00	0.0
74.46	2.00	0.00	0.00	0.00	0.00	74.52	2.00	0.00	0.00	0.00	0.0
74.59	2.00	0.00	0.00	0.00	0.00	74.65	2.00	0.00	0.00	0.00	0.0
74.72	2.00	0.00	0.00	0.00	0.00	74.78	2.00	0.00	0.00	0.00	0.0
74.85	2.00	0.00	0.00	0.00	0.00	74.92	2.00	0.00	0.00	0.00	0.0
74.98	2.00	0.00	0.00	0.00	0.00	75.05	2.00	0.00	0.00	0.00	0.0
75.11	2.00	0.00	0.00	0.00	0.00	75.18	2.00	0.00	0.00	0.00	0.0
75.11 75.24	2.00	0.00	0.00	0.00	0.00	75.18	2.00	0.00	0.00	0.00	0.0
75.2 <del>4</del> 75.37	2.00	0.00	0.00	0.00	0.00	75.31 75.44	2.00	0.00	0.00	0.00	0.0
75.51	2.00	0.00	0.00	0.00	0.00	/J. <del>11</del>	2.00	0.00	0.00	0.00	0.00

:: Liquefaction Potential Index calculation data :: (continued)												
Depth (ft)	FS	F _L	Wz	dz	LPI	Depth (ft)	FS	F _L	Wz	dz	LPI	

Overall liquefaction potential: 0.00

LPI = 0.00 - Liquefaction risk very low LPI between 0.00 and 5.00 - Liquefaction risk low LPI between 5.00 and 15.00 - Liquefaction risk high LPI > 15.00 - Liquefaction risk very high

### **Abbreviations**

Calculated factor of safety for test point FS:

1 - FS FL:

Function value of the extend of soil liquefaction according to depth Wz:

Layer thickness (ft) d_z:

LPI: Liquefaction potential index value for test point

## Procedure for the evaluation of soil liquefaction resistance, NCEER (1998)

Calculation of soil resistance against liquefaction is performed according to the Robertson & Wride (1998) procedure. The procedure used in the software, slightly differs from the one originally published in NCEER-97-0022 (Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils). The revised procedure is presented below in the form of a flowchart¹:



¹ "Estimating liquefaction-induced ground settlements from CPT for level ground", G. Zhang, P.K. Robertson, and R.W.I. Brachman

# Procedure for the evaluation of soil liquefaction resistance (all soils), Robertson (2010)

Calculation of soil resistance against liquefaction is performed according to the Robertson & Wride (1998) procedure. This procedure used in the software, slightly differs from the one originally published in NCEER-97-0022 (Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils). The revised procedure is presented below in the form of a flowchart¹:



¹ P.K. Robertson, 2009. "Performance based earthquake design using the CPT", Keynote Lecture, International Conference on Performance-based Design in Earthquake Geotechnical Engineering – from case history to practice, IS-Tokyo, June 2009

# Procedure for the evaluation of soil liquefaction resistance, Idriss & Boulanger (2008)



# Procedure for the evaluation of soil liquefaction resistance (sandy soils), Moss et al. (2006)



## Procedure for the evaluation of soil liquefaction resistance, Boulanger & Idriss(2014)



## Procedure for the evaluation of liquefaction-induced lateral spreading displacements



¹ Flow chart illustrating major steps in estimating liquefaction-induced lateral spreading displacements using the proposed approach



¹ "Estimating liquefaction-induced ground settlements from CPT for level ground", G. Zhang, P.K. Robertson, and R.W.I. Brachman

## Procedure for the estimation of seismic induced settlements in dry sands



Robertson, P.K. and Lisheng, S., 2010, "Estimation of seismic compression in dry soils using the CPT" FIFTH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN GEOTECHNICAL EARTHQUAKE ENGINEERING AND SOIL DYNAMICS, Symposium in honor of professor I. M. Idriss, San Diego, CA

# Liquefaction Potential Index (LPI) calculation procedure

Calculation of the Liquefaction Potential Index (LPI) is used to interpret the liquefaction assessment calculations in terms of severity over depth. The calculation procedure is based on the methology developed by Iwasaki (1982) and is adopted by AFPS.

To estimate the severity of liquefaction extent at a given site, LPI is calculated based on the following equation:

$$\mathbf{LPI} = \int\limits_{0}^{20} (10 - 0.5_{z}) \times F_{z} \times d_{z}$$

where:

 $F_L$  = 1 - F.S. when F.S. less than 1  $F_L$  = 0 when F.S. greater than 1 z depth of measurment in meters

Values of LPI range between zero (0) when no test point is characterized as liquefiable and 100 when all points are characterized as susceptible to liquefaction. Iwasaki proposed four (4) discrete categories based on the numeric value of LPI:

LPI = 0 : Liquefaction risk is very low
0 < LPI <= 5 : Liquefaction risk is low</li>
5 < LPI <= 15 : Liquefaction risk is high</li>
LPI > 15 : Liquefaction risk is very high



Graphical presentation of the LPI calculation procedure

#### References

- Lunne, T., Robertson, P.K., and Powell, J.J.M 1997. Cone penetration testing in geotechnical practice, E & FN Spon Routledge, 352 p, ISBN 0-7514-0393-8.
- Boulanger, R.W. and Idriss, I. M., 2007. Evaluation of Cyclic Softening in Silts and Clays. ASCE Journal of Geotechnical and Geoenvironmental Engineering June, Vol. 133, No. 6 pp 641-652
- Boulanger, R.W. and Idriss, I. M., 2014. CPT AND SPT BASED LIQUEFACTION TRIGGERING PROCEDURES. DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT DAVIS
- Robertson, P.K. and Cabal, K.L., 2007, Guide to Cone Penetration Testing for Geotechnical Engineering. Available at no cost at http://www.geologismiki.gr/
- Robertson, P.K. 1990. Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27 (1), 151-8.
- Robertson, P.K. and Wride, C.E., 1998. Cyclic Liquefaction and its Evaluation based on the CPT Canadian Geotechnical Journal, 1998, Vol. 35, August.
- Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J., Liao, S., Marcuson III, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R., and Stokoe, K.H., Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshop on Evaluation of Liquefaction Resistance of Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 127, October, pp 817-833
- Zhang, G., Robertson. P.K., Brachman, R., 2002, Estimating Liquefaction Induced Ground Settlements from the CPT, Canadian Geotechnical Journal, 39: pp 1168-1180
- Zhang, G., Robertson. P.K., Brachman, R., 2004, Estimating Liquefaction Induced Lateral Displacements using the SPT and CPT, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 130, No. 8, 861-871
- Pradel, D., 1998, Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 124, No. 4, 364-368
- Iwasaki, T., 1986, Soil liquefaction studies in Japan: state-of-the-art, Soil Dynamics and Earthquake Engineering, Vol. 5, No. 1, 2-70
- Papathanassiou G., 2008, LPI-based approach for calibrating the severity of liquefaction-induced failures and for assessing the probability of liquefaction surface evidence, Eng. Geol. 96:94–104
- P.K. Robertson, 2009, Interpretation of Cone Penetration Tests a unified approach., Canadian Geotechnical Journal, Vol. 46, No. 11, pp 1337-1355
- P.K. Robertson, 2009. "Performance based earthquake design using the CPT", Keynote Lecture, International Conference on Performance-based Design in Earthquake Geotechnical Engineering - from case history to practice, IS-Tokyo, June 2009
- Robertson, P.K. and Lisheng, S., 2010, "Estimation of seismic compression in dry soils using the CPT" FIFTH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN GEOTECHNICAL EARTHQUAKE ENGINEERING AND SOIL DYNAMICS, Symposium in honor of professor I. M. Idriss, SAN diego, CA
- R. E. S. Moss, R. B. Seed, R. E. Kayen, J. P. Stewart, A. Der Kiureghian, K. O. Cetin, CPT-Based Probabilistic and Deterministic Assessment of In Situ Seismic Soil Liquefaction Potential, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 8, August 1, 2006
- I. M. Idriss and R. W. Boulanger, 2008. Soil liquefaction during earthquakes, Earthquake Engineering Research Institute MNO-12

# APPENDIX D SLOPE STABILITY ANALYSIS RESULTS











































Established in 1960, Golder Associates is a global, employee-owned organization that helps clients find sustainable solutions to the challenges of finite resources, energy and water supply and management, waste management, urbanization, and climate change. We provide a wide range of independent consulting, design, and construction services in our specialist areas of earth, environment, and energy. By building strong relationships and meeting the needs of clients, our people have created one of the most trusted professional services organizations in the world.

Africa + 27 11 254 4800 Asia + 852 2562 3658 Australasia + 61 3 8862 3500 Europe + 356 21 42 30 20 North America + 1 800 275 3281 South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Inc. 500 Century Plaza Drive, Suite 190 Houston, TX 77073 USA

Tel: (281) 821-6868 Fax: (281) 821-6870

