COAL COMBUSTION RESIDUALS SURFACE IMPOUNDMENT HISTORY OF CONSTRUCTION AND INITIAL HAZARD POTENTIAL ASSESSMENT, STRUCTURAL INTEGRITY ASSESSMENT, AND SAFETY FACTOR ASSESSMENT (REV. 1)

COLETO CREEK POWER STATION FANNIN, TEXAS

JANUARY 24, 2018 (ORIGINAL VERSION: OCTOBER 13, 2016)

Prepared for:

COLETO CREEK POWER, LP

Coleto Creek Power Station Fannin, Texas

Prepared by:

BULLOCK, BENNETT & ASSOCIATES, LLC

Engineering and Geoscience Registrations: Engineering F-8542, Geoscience 50127

> 165 N. Lampasas Street Bertram, Texas 78605 (512) 355-9198

> BBA Project No. 17266

Certification Statement 40 CFR § 257.73(c) - Structural Integrity Criteria for Existing CCR Surface Impoundments, History of Construction

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the History of Construction, dated January 24, 2018, meets the requirements of $40 \, CFR \, \S \, 257.73(c)$.

1/24/2018

Daniel B. Bullock, P.E. (TX 82596)

Janel B. Sullah

Certification Statement 40 CFR § 257.73(a) - Structural Integrity Criteria for Existing CCR Surface Impoundments, Potential Hazard Classification Assessment

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Potential Hazard Classification Assessment, dated January 24, 2018, meets the requirements of 40 *CFR* § 257.73(a).

1/24/2018

Daniel B. Bullock, P.E. (TX 82596)

Jamel B. Sullah

Certification Statement $40\ CFR$ § 257.73(d) - Structural Integrity Criteria for Existing CCR Surface Impoundments, Initial Structural Stability Assessment

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Initial Structural Stability Assessment, dated January 24, 2018, meets the requirements of 40 *CFR* § 257.73(d).

1/24/2018

Daniel B. Bullock, P.E. (TX 82596)

Janiel B. Sullah

Certification Statement $40\,CFR$ § 257.73(e) - Structural Integrity Criteria for Existing CCR Surface Impoundments, Initial Safety Factor Assessment

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Initial Safety Factor Assessment, dated January 24, 2018, meets the requirements of $40 \, CFR \, \S \, 257.73$ (e).

1/24/2018

Daniel B. Bullock, P.E. (TX 82596)

Famil B. Sullah

TABLE OF CONTENTS

		TABLES	
		TIGURES	
LIST	OF A	APPENDICES	ii
1.0	TATEST	A DATE OF THE STATE OF THE STAT	1
1.0		RODUCTION	
2.0	HIST	TORY OF CONSTRUCTION	
	2.1	Owner and Operator of CCR Unit	
	2.2	CCR Unit Location	2
	2.3	Primary Ash Pond Statement of Purpose	2
	2.4	Watershed Description	3
	2.5	Primary Ash Pond Foundation and Abutment Material Description	4
	2.6	Primary Ash Pond Construction Summary	4
	2.7	Primary Ash Pond Drawings	7
	2.8	Primary Ash Pond Instrumentation	7
	2.9	Primary Ash Pond Area-Capacity Curves	7
	2.10	Primary Ash Pond Spillway and Diversion Design Features	7
	2.11	Primary Ash Pond Surveillance, Maintenance, and Repair Provisions	8
	2.12	Primary Ash Pond Structural Stability History	8
3.0	INIT	IAL POTENTIAL HAZARD CLASS ASSESSMENT	9
	3.1	Dam Breach Analysis	10
	3.2	Loss of Life Evaluation	12
	3.3	Economic and/or Environmental Loss Evaluation	12
	3.4	Hazard Potential Classification	13
4.0	INIT	IAL STRUCTURAL STABILITY ASSESSMENT	14
5.0	INIT	IAL SAFETY FACTOR ASSESSMENTS	17
	5.1	Liquefaction Assessment	24
	5.2	Initial Safety Factor Assessment Summary	27
5.0	REF	ERENCES	28

LIST OF TABLES

Table 5-1	Soil Strength Parameters used in Geotechnical Stability Analysis
Table 5-2	Required Factors of Safety
Table 5-3	Slope Stability Analysis Summary

LIST OF FIGURES

Figure 1-1A	Site Location Map
Figure 1-1B	Site Location Map
Figure 2-1	U.S.G.S. Area Map
Figure 2-2	Coleto Creek Watershed
Figure 2-3	Thickness Map of In-Situ Cohesive Soils
Figure 2-4	Surface Impoundment Configuration
Figure 2-5A	Ash Pond Plan and Cross Sections
Figure 2-5B	Bathymetric Survey Plan View
Figure 2-5C	Bathymetric Survey Sections
Figure 2-6	Capacity for Primary Ash Pond

LIST OF APPENDICES

Appendix A	Geotechnical Borelogs
Appendix B	Geotechnical Laboratory Data
Appendix C	Slide 7.0 Stability Analysis Models
Appendix D	Liquefaction Assessment Calculations
Appendix E	Guadalupe-Blanco River Authority Lake Area-Capacity Summaries

1.0 INTRODUCTION

Coleto Creek Power Station is located at 45 FM 2987 just outside the city of Fannin in Goliad County, Texas. The power station consists of one coal-fired boiler. Bottom ash and fly ash, or coal combustion residuals (CCR), generated in the boiler are either shipped off-site for beneficial re-use or managed in an on-site CCR surface impoundment (Coleto Creek Primary Ash Pond). Figures 1-1A and 1-1B provide site location maps showing the Primary Ash Pond configuration.

In April 2015, the Environmental Protection Agency (EPA) enacted rules codified in 40 *CFR* Part 257 to address potential risks associated with operating CCR surface impoundments at coal-fired power plants. This report has been prepared to specifically address the requirements identified in §257.73 *Structural Integrity Criteria for Existing CCR Surface Impoundments*¹. Section 2.0 of the report provides the History of Construction (§257.73(c)(1)(i – xii)). Section 3.0 contains the Initial Potential Hazard Classification Assessment (§257.73(a)(2)), Section 4.0 provides the Initial Structural Stability Assessment (§257.73(d)(1)), and Section 5.0 includes the Initial Safety Factor Assessment (§257.73(e)(1).

¹This revised History of Construction and Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment replaces the initial version of this report dated October 13, 2016.

2.0 HISTORY OF CONSTRUCTION

The following History of Construction has been prepared in accordance with the requirements defined in $\S257.73$ (c)(1)(i – xii).

2.1 Owner and Operator of CCR Unit

The Coleto Creek Power Station is owned and operated by Coleto Creek Power, LP. The address is as follows:

Coleto Creek Power Station 45 FM 2987 PO Box 8 Fannin, Texas 77960 Primary Ash Pond SWR No. 31911, Unit No. 001

2.2 CCR Unit Location

The Coleto Creek Power Station and associated CCR surface impoundment (Primary Ash Pond) is located just outside the city of Fannin in Goliad County, Texas on approximately 8,000 total acres. The Primary Ash Pond is approximately 190 acres in surface area with a reported storage capacity of 2,700 acre-feet (S&L, December 1978). The Primary Ash Pond is located adjacent to the facility's Evaporation Pond and Secondary Pond. Figure 2-1 (U.S.G.S. Area Map) shows the CCR surface impoundment on the most recent US Geological Survey (USGS) 7½ minute quadrangle topographic map.

2.3 Primary Ash Pond Statement of Purpose

The Coleto Creek Primary Ash Pond was constructed between 1976 and 1977 during the Power Station site development. The pond was designed and constructed to accommodate wastes from two coal-fired boilers (S&L, December 1978). However, only one boiler has been constructed and operated at the facility.

Bottom ash is collected from the boiler, combined with water, and transferred in slurry form for disposal in the facility's surface impoundment. Fly ash is collected from the boiler exhaust using a baghouse. The fly ash is transported pneumatically to two storage silos. From

there, the fly ash is loaded into enclosed dry haul hoppers for off-site beneficial reuse. Fly ash not meeting required beneficial reuse specifications is combined with water and pumped to the facility's Primary Ash Pond for disposal. CCR solids settle out of the conveyance water in the Primary Ash Pond and the treated water overflows stoplogs within an outlet (weir box) structure then flows through a 30" diameter pipe to the smaller Secondary Pond as needed to control water levels. Water from the Secondary Pond can be recirculated to the ash sluice system or discharged in accordance with the facility's TPDES permit. The Secondary Pond has never received more than deminimis quantities of CCR; therefore, it is not subject to the CCR Rule.

Other plant wastes may also reportedly be sluiced into the Coleto Creek Primary Ash Pond including aqueous lab waste, boiler chemical cleaning rinseate, air preheater cleaning rinseate, air preheater cleaning residue, basin solids, de-ionizer regenerate wastewater, heat exchanger cleaning rinseate, waste de-ionizer resin beads, waste molybdate contaminated cooling water, waste filter media, boiler blowdown, demineralizer effluent, storm water, low volume waste, and effluent water/wastewater from plant processes (S&L, 1981).

2.4 Watershed Description

Coleto Creek Power Station is located in the lower half of the Coleto Creek Watershed (Figure 2-2) which is maintained by the Guadalupe-Blanco River Authority (GBRA). Coleto Creek is approximately 27 miles long, beginning in DeWitt County and travels through Goliad and Victoria Counties before its confluence with the Guadalupe River (GBRA, 2013). Approximately 558 square miles drain into the Coleto Creek Watershed. Typical land uses in the watershed include farming, ranching, oil and gas production and more recently, in-situ uranium mining. The only urbanized area in the watershed is the small city of Yorktown located upstream of the Power Station in DeWitt County.

Coleto Creek Reservoir Dam was constructed in the late 1970s to create the approximate 3,100 surface acre Coleto Creek Reservoir which serves as a cooling pond for the Coleto Creek Power Station. The Power Station discharges approximately 360,000 gallons per minute of water to the reservoir (GBRA, 2013). Perdido Creek, Turkey Creek, and Sulphur Creek also feed into the reservoir. Although the reservoir is managed by the GBRA, it is reportedly wholly owned by Coleto Creek Power, LP up to an elevation of 104 feet MSL.

2.5 Primary Ash Pond Foundation and Abutment Material Description

The Coleto Creek Primary Ash Pond was designed and constructed under the guidance of Sargent & Lundy Engineers (S&L). As part of the design process, S&L advanced 63 soil borings and installed eight monitoring wells in the immediate vicinity of the pond. Based on the information collected, the pond is constructed within a surface deposit of cohesive soils consisting of mostly clayey sand and silty clay with varying amounts of caliche. The soils are classified as CH, CL, and SC soils using the Unified Soil Classification System. These soils range in thickness from 4 to 20 feet, and average 9 feet beneath the Primary Ash Pond and Secondary Pond (average thickness data for the Primary Ash Pond only is not provided in the report) (S&L, December 1978). Figure 2-3 provides the Thickness Contour Map for In-Situ Cohesive Soils in the vicinity of the Primary Ash Pond. The impoundment dikes are continuous and do not include a conventional spillway, thus there are no abutments with other structures.

2.6 Primary Ash Pond Construction Summary

As noted in Section 2.3, the Coleto Creek Primary Ash Pond was constructed between 1976 and 1977 during overall site development. Construction was performed by H. B. Zachary Construction with full-time on-site inspection by S&L. Field testing of site soils and construction materials was performed by Trinity Testing Laboratory, Inc. In general, the Primary Ash Pond dikes have a total interior circumference of approximately 10,975 feet and a height ranging from approximately 4 feet up to 39 feet. The maximum reported storage volume is 2,700 acre-feet in the Primary Ash Pond (S&L, December 1978).

As further described below, a topographic and bathymetric survey was conducted for the Primary Ash Pond in July 2016. Results of that survey were combined with assumptions regarding the original base elevation of the pond (limited as-built base elevation data is available) to generate area-capacity estimates for use in subsequent assessments presented in this report. The area-capacity estimates generated using 2016 data indicate that the top of dike capacity is approximately 3,700 acre-ft, or nearly 1,000 acre-ft more than originally reported by S&L. The originally reported 2,700 acre-ft corresponds to an approximate elevation of 135 feet in the 2016 assessment, which is also the operating level identified in the S&L report. For the purposes of this report, the larger capacity is used where appropriate.

In-situ cohesive soils were used as the Primary Ash Pond lining and the geotechnical characteristics of those soils are documented in the S&L construction summary report dated December, 1978. Laboratory geotechnical testing was performed on representative samples collected post-construction from the borings advanced in the in-situ liner soils. The median laboratory permeability was reported as 3.8x10⁻⁸ cm/sec. The average plasticity index, liquid limit, and fines content were listed as 23%, 42%, and 40%, respectively. S&L concluded that the soil liner as constructed overall either met or exceeded requirements for a 3-foot thick compacted clay liner of 1x10⁻⁷ cm/sec permeability in accordance with Texas Department of Water Resources technical guidelines for the design and construction of waste water ponds that were in place at the time of construction (S&L, December 1978).

Primary Ash Pond dikes were constructed using controlled and compacted cohesive fill excavated from borrow areas around the Plant site (S&L, December 1978). As noted previously, site soils generally consist of clayey sand and silty clay, with various amounts of caliche. The dikes were constructed with side slopes ranging from 2.5 and/or 3.0 horizontal to 1.0 vertical. This side slope was specified in accordance with the Bureau of Reclamation Design of Small Dams, 1974, for small homogenous dams constructed with cohesive fill on a stable foundation. Side slopes were reportedly seeded.

Dike fill was specified to be placed and compacted to a minimum of 95% of the maximum dry density as determined by ASTM D698. Four hundred and twenty field density tests conducted specifically on Primary Ash Pond dike materials during construction reported densities ranging from a minimum of 92 percent up to 110 percent, with an average of 98 percent.

The exterior dikes for the Primary Ash Pond were constructed approximately 4 to 39 feet above the existing grade. The crest of the dike is reportedly 15 feet wide and includes a gravel perimeter access road. Typical cross-sections depicting the Primary Ash Pond construction configuration are provided on Figure 2-5.

The Primary Ash Pond and Secondary Pond are separated by a dike that has side slopes of approximately 3.0 horizontal to 1.0 vertical and a height of approximately 40 feet above natural grade. This dike also has a crest that is approximately 15 feet wide and contains a gravel road (see Figure 2-5). An outlet structure intersects the divider dike to allow the overflow of water from the Primary Ash Pond to the Secondary Pond. The structure inlet is located in the Primary Ash Pond and consists of a 7-feet wide by 9.5-feet long concrete structure configured with

stoplogs supported by a 12-feet wide by 14.5 feet long foundation. The inlet structure is accessed by a walkway extending from the shared Primary Ash Pond and Secondary Pond dike into the Primary Ash Pond. The concrete inlet structure is intersected by a 30-inch diameter corrugated metal pipe (CMP) with 7-feet by 7-feet steel seepage collars at 28 feet on center. The CMP has an inlet elevation of El. 106 and an outlet elevation of El. 105 (CDM, March 2011).

Bottom ash and boiler slag are sluiced along the south embankment into the Primary Ash Pond via one 12-inch-diameter high density polyethylene (HDPE) pipe and one 12-inch-diameter carbon steel pipe (CSP). The ash slurry is sluiced onto a screen processor to separate fine and coarse material. Demineralizer effluent is sluiced into the Primary Ash Pond along the southeast embankment through an 8-inch-diameter HDPE pipe.

A boiler area sump in the plant collects other liquid waste and sluices it through a 20-inch diameter Class 200 polyvinyl chloride (PVC) pipe along the Primary Ash Pond west embankment adjacent to the groin with the evaporation pond. A valve in the pipeline also allows the boiler area sump water to be discharged directly into the evaporation pond. Flow to the Primary Ash Pond from the boiler area sump is regulated depending on water levels and weather conditions. The pipeline can also be used as a clean water decanting pipe.

In 2012, Coleto Creek Power, LP contracted AECOM Technical Services, Inc. (AECOM) to prepare a hydraulic and geotechnical stability analysis of the Primary Ash Pond (AECOM, March 2012). Under that study, AECOM conducted field and laboratory testing to evaluate the current geotechnical stability of the Primary Ash Pond dike system. According to the report, AECOM found that "the ash pond has adequate factor of safety under the steady-state, normal operating, maximum operating, rapid drawdown, and seismic conditions modeled."

2.7 Primary Ash Pond Drawings

Figures 2-4 and 2-5A, -B, and -C provide dimensional drawings of the Primary Ash Pond as required in §257.73(c)(1)(vii).

2.8 Primary Ash Pond Instrumentation

The Coleto Creek Primary Ash Pond water levels are observed on a daily basis during site inspections using the pond staff gauge located on the inlet structure. The staff gauge has a maximum reading of +140 feet which approximately corresponds to the top of the dike embankment. Based on an on-site topographic survey conducted by Naismith Marine Services of Corpus Christi, Texas (Naismith) in July 2016, the elevation 140 reading on the staff gauge corresponds to approximate elevation 140.4 feet NAVD88. Furthermore, the plant datum (referred to as MSL) was surveyed and determined by Naismith to be equal to NAVD88. Water levels are normally maintained at an elevation of El. 136 feet (NAVD88) or lower. There is no other instrumentation used to monitor the Primary Ash Pond.

2.9 Primary Ash Pond Area-Capacity Curves

Figure 2-6 provides the area-capacity curves for the Primary Ash Pond.

2.10 Primary Ash Pond Spillway and Diversion Design Features

The Primary Ash Pond was not constructed with a conventional spillway. Water from the Primary Ash Pond is primarily lost through evaporation. Excess water that needs to be removed to maintain proper freeboard distances can either be discharged through the Secondary Pond and subsequently through Outfall 003 in accordance with the plant's TPDES permit or recirculated back to the plant for re-use.

Pond water levels are maintained to accommodate safe plant operations and are primarily dependent on plant water and ash loading rates as no storm water runoff from the surrounding area (other than run-off from the dike crest) enters the pond. Water levels are monitored daily and the amount discharged to the outfall or recirculated to the plant can be adjusted to accommodate for expected rain events or drought conditions. The Primary Ash Pond is currently

operated with more than four feet of freeboard to allow removal of bottom ash and fly ash for offsite beneficial reuse.

2.11 Primary Ash Pond Surveillance, Maintenance, and Repair Provisions

Formal and informal inspections of the pond are conducted by qualified facility personnel for the purpose of ensuring proper and safe operation in accordance with the provisions defined in §257.83(a). Weekly inspections include observation of the static pond water level, vegetation control, and structural integrity evaluations of dike embankments and any noted issues are addressed as necessary. In addition to the weekly observational inspections performed by site personnel, formal inspections of the pond conditions are conducted by an independent consulting firm annually in accordance with §257.83(b).

2.12 Primary Ash Pond Structural Stability History

There is no record or knowledge of structural instability of the Primary Ash Pond. The pond dikes have been maintained to minimize the potential for structural failure.

3.0 INITIAL POTENTIAL HAZARD CLASS ASSESSMENT

According to 40 *CFR* §257.73(a)(2), the owner and operator of a CCR surface impoundment must assign a hazard potential classification to each operating unit. For the purposes of the rule, hazard potential classification means "the possible adverse incremental consequences that result from the release of water or stored contents due to failure of the diked CCR surface impoundment or mis-operation of the diked CCR surface impoundment or its appurtenances." The impoundment must be classified as high hazard, significant hazard, or low hazard. Each hazard potential classification is defined as follows (§257.53):

- 1) High hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation will probably cause loss of human life.
- 2) Low hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the surface impoundment owner's property.
- 3) Significant hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

In 2010 the United States Environmental Protection Agency (USEPA) contracted CDM to perform a site assessment of the Primary Ash Pond at the Coleto Creek Power Station. As part of the assessment, CDM assigned the pond with a Low Hazard classification (CDM, 2011).

Subsequent to the CDM report findings, Coleto Creek Power, LP contracted AECOM to perform geotechnical studies to further evaluate the structural stability of the CCR surface impoundments. AECOM implemented a subsurface investigation and performed a geotechnical stability evaluation, a liquefaction assessment, and hydraulic analysis. AECOM also performed an independent hazard assessment of the Primary Ash Pond and Secondary Pond. The results of that assessment supported the initial CDM classification of Low Hazard.

3.1 Dam Breach Analysis

The Coleto Creek Primary Ash Pond is the only CCR-regulated surface impoundment at the Coleto Creek Power Station and is therefore subject to the Hazard Classification Assessment under the CCR rules. Because the Primary Ash Pond is hydraulically connected to, and is separated by a dike system from, the Secondary Pond, it is necessary to include the Secondary Pond when evaluating potential failure scenarios as noted below. Although the Secondary Pond is not a CCR-regulated unit, it is subject to operational and safety standards established by the Texas Commission on Environmental Quality (TCEQ) in its Dam Safety rules (30 TAC Part 1 Chapter 299).

Bullock, Bennett & Associates (BBA) performed a simplified dam breach analysis of the Primary Ash Pond and Secondary Pond to support the loss of life, and environmental and economic impact analyses. The Primary Ash Pond and Secondary Pond combined, as indicated by the most recent survey conducted in July 2016, have a maximum storage capacity of approximately 4,000 acre-ft and a maximum levee height for the Secondary Pond of approximately 39 feet above adjacent lake level of 101 feet MSL. Construction was completed in 1978 and the effective fluid storage capacity in the Primary Ash Pond has diminished with the placement of CCR over time. According to topography and bathymetric survey data collected in July 2016, the fluid capacity in the Primary Ash Pond has been reduced to approximately 1,720 acre-ft at the maximum dike crest height.

The Primary Ash Pond and Secondary Pond are located next to the Coleto Creek Reservoir which was constructed to serve as a cooling pond for the Power Station. The reservoir is divided into a "hot" side and a "cool" side. The ponds are located immediately adjacent to the hot side of the lake. The hot side of the lake is created from Sulphur Creek behind Dike No. 1 (Dike No. 1 Lake) which is connected to Turkey Creek behind Dike No. 2 (Dike No. 2 Lake) by a secondary flume. Water from these lakes then flows into Main Lake which is the cool side. Decant water from the Secondary Pond can be combined with other plant water then routed through TCEQ-approved Outfall 003 to the hot side of the lake. Cool water is pumped into the Power Station from the Main Lake.

GBRA provided area-capacity tables for the Coleto Creek Reservoir and Dike Lake Nos. 1 and 2. These tables are presented as Attachments 3-1, 3-2, and 3-3 in Appendix E. Dike No. 1

Lake consists of approximately 164 acres at the normal operating elevation of 101 feet MSL. Dike No. 2 Lake is approximately 429 acres at the normal operating elevation of 101 feet MSL. The two Dike Lakes are separated from Coleto Creek Reservoir by splitter dikes with an approximate elevation of 102 feet MSL (GBRA, 2016). Coleto Creek Reservoir covers an area of approximately 2,652 acres at a normal operating elevation of 98 feet MSL (GBRA, 2016). Coleto Creek Power, LP reportedly controls the lake up to an elevation of 104 feet MSL. An area map showing the relative locations of the Primary Ash Pond, Secondary Pond, Dike Lakes, and Coleto Creek Reservoir is presented in the attachments as Figure 1-1.

For the purposes of this evaluation, a conservatively worst-case dam breach scenario was developed assuming that the breach was due to overtopping of the surface impoundment levees and that the breach occurs in the shared Primary Ash Pond and Secondary Pond dike and subsequently in the Secondary Pond dike adjacent to Coleto Creek Reservoir, releasing the entire water contents of both ponds. This scenario allows for the greatest quantity of pond decant water to be released.

An evaluation of potential water and residual solids flow paths was performed to support the loss of life, environmental, and economic evaluations. Surface elevation cross-sections assembled from Google EarthTM profiles of the areas adjacent to the pond dikes were reviewed to estimate the potential flow path of the released water and solids. As shown in Figure 1-1A, the wet side of the ponds are bound by the Evaporation Pond followed by Dike No. 1 lake on the north-northwest, Dike No. 1 lake on the northeast corner, and the primary plant discharge flume on the east. The surface elevation of the terrain that bounds the east side of the discharge flume appears to extend to approximately elevation 132 feet. The flume channel, therefore, appears to be located within a larger basin bounded to the west by the Primary Ash Pond and Secondary Pond dikes (approximate elevation 140 feet) and to the east by land mass (approximate elevation 132 feet). The distance between the dike on the west side of the basin and land mass high points on the east side appears to be approximately 300 feet. The flume channel and basin would route flow from an east-side breach of the dike to the hot side of the lake. Released water and solids, therefore, would initially flow to the hot side of the lake regardless of the location of the breach. From there, water levels would increase one foot (the amount of available freeboard behind Dike No. 1 and Dike No. 2 lakes) then flow into the Main lake. Eventually all water would be released into the Main lake.

Using the tables provided by GBRA, a one-foot increase in the Main Lake elevation requires an additional approximately 2,720 acre-feet of water. The estimated maximum volume of discharge from the Primary Ash Pond and Secondary Pond is approximately 1,720 acre-feet of water, resulting in a water surface elevation change on the reservoir of approximately eight inches. An eight-inch change in water surface elevation is considered to be nominal and would not result in the loss of major infrastructure elements or disrupt lifeline facilities.

3.2 Loss of Life Evaluation

The Primary Ash Pond and Secondary Pond are located apart from the active industrial areas of the Power Station. Two fly-ash silos are located adjacent to the western border of the Primary Ash Pond and loading of trucks for off-site transport and beneficial reuse of the fly ash regularly occurs at this location. These silos and truck loading operations are adjacent to the southwest half of the Primary Ash Pond which is filled with dry and compact CCRs, and any catastrophic failure of the impoundment in this area is highly unlikely. If a failure were to occur, it would probably be located on the "wet" side of the pond, including the northern or eastern dikes for both the Primary Ash Pond and Secondary Pond (see Figure 1-1). There are no regular or active plant operations that occur downstream of those areas where personnel would be expected to be present in the event of a catastrophic failure of the dike. There are no residences or other off-site manned operations immediately downstream of the ponds. As noted in Section 3.1 the Dike 1, Dike 2, and Main Lakes would absorb the released water and raise reservoir levels a nominal amount (less than a foot). Loss of life in the event of a catastrophic failure of the surface impoundment dike system, therefore, is considered to be improbable.

3.3 Economic and/or Environmental Loss Evaluation

Additional consideration was given to the impacts of the water quality from a large volume discharge from Primary Ash Pond and Secondary Pond into the Coleto Creek Reservoir. Using the volume ratio of pond water (approximately 1,720 acre-feet) that could potentially be discharged into the Coleto Creek Reservoir to the existing volume of water in the reservoir (approx. 31,280 acre-feet at elevation 98 feet msl), the impacts to the water quality are minimal (31,280 acre-feet/1,720 acre-feet = ~18 dilution factor of analytes in the Primary Ash Pond water). Discharge of Secondary Pond water is currently allowed to the Coleto Creek Reservoir under Permit No. WQ002159000 (TCEQ, 2010).

Currently, the coal combustion by-products are sluiced into the Primary Ash Pond. The assumed ratio of solids-to-water is approximated at 20%-to-80%. The solids settle out of solution and the water decants to the surface. As the solids settle out of solution, they consolidate. Additionally, based on field observations the ash "sets up" similar to cement, becoming very hard and massive. The expected flow of any unconsolidated solids from the Primary Ash Pond is believed to be minimal.

Additionally, approximately 90% of the approximate 90,000 cubic yards of ash produced annually is currently being sold and recycled rather than disposed in the Primary Ash Pond (Coleto Creek Power, 2015). However, for the sake of conservatism, it is assumed that a volume of ash equivalent to six months of production (assuming no recycling) is disposed in the Primary Ash Pond and may not be consolidated, and may flow should a breach occur. Under these assumptions, there is potential for approximately 45,000 cubic yards (approximately 28 acre-feet) of ash flow. The ash volume would be in solution with the decant water, displacing an equal volume of the decant water. This ash would be expected to be contained within the hot side of the lake. Impacts would therefore be primarily limited to the owner's property.

3.4 Hazard Potential Classification

Based on a review of previous studies, analytical data, ash production/recycling volumes, available impoundment capacities, available lake capacities, observed current conditions at the site, assumptions, and other factors, the Coleto Creek Primary Ash Pond is classified as a Low Hazard Potential impoundment.

4.0 INITIAL STRUCTURAL STABILITY ASSESSMENT

According to §257.73(d), the owner or operator of the CCR surface impoundment "must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein."

Stable foundations and abutments. As noted in Section 2.5, the Primary Ash Pond was constructed on a foundation of in-place cohesive soils whose geotechnical characteristics either met or exceeded Texas Department of Water Resources technical guidelines for the design and construction of waste water ponds that were in force at the time of construction (S&L, December 1978). The dikes are continuous, with no constructed abutments. A review of the geotechnical data collected at the time of construction confirms that the foundation for the pond should continue to be stable over its operational life.

Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown. The Primary Ash Pond dikes were constructed with 2.5 to 3 horizontal to 1 vertical side slope. Outer slopes were seeded for slope protection but interior dike surfaces were not. Vegetation does naturally occur on these surfaces thus assisting in the control of erosion. The interior dike sections in areas impounding water are armored with rock riprap. The dikes are regularly inspected in accordance with \$257.83(a) and (b) and repaired as necessary to maintain their integrity. An engineering site inspection was performed in December 2016 in accordance with the requirements defined in \$257.83(b) which included an evaluation of the surface impoundment dikes. No additional slope protection was deemed to be necessary at that time. (BBA, 2018).

Dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit. The dike system was engineered by S&L and constructed in approximately 1978. As discussed in Section 2.6 – Ash Pond Construction Summary, dike fill material was placed in controlled, mechanically compacted lifts, averaging approximately 98% maximum dry density as determined by ASTM D698. Full time field inspection was performed during construction, with approximately 420 field density tests performed on the dikes.

Vegetated slopes of dikes and surrounding areas not to exceed a height of six inches above the slope of the dike, except for slopes which have an alternate form or forms of slope protection. The slopes of the dikes and surrounding areas are vegetated as required. The slopes are reportedly moved as necessary to comply with height of grass requirements.

A single spillway or a combination of spillways configured as specified in paragraph (d)(1)(v)(A) of the section of the rule. As is common with surface impoundments of this type, the Primary Ash Pond was not constructed with a spillway. The results of the hydraulic analysis completed in support of the Inflow Design Flood Control System evaluation (BBA, January 2018) showed that the Primary Ash Pond, as configured without a spillway and when operated at a maximum storage operating elevation of 136.1 feet NAVD88, has sufficient capacity to manage the design flood. The design flood is designated by rule for a Low Hazard Potential surface impoundment (see Section 3.0) to equal the 100-year rainfall event. It is therefore not necessary for the surface impoundment to have a spillway.

Hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure. The weir system and pipe penetrations were visually inspected by a professional engineer in December of 2016 (BBA, 2018). There were no observations of conditions that would negatively impact operation of the structures. The inspection was limited to visual observations during a site visit, and did not include, for instance, use of a remote video camera in the outlet structure pipe for inspection of internal conditions.

For CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body. The dike that separates the Primary Ash Pond from the Secondary Pond was evaluated for stability in the event of rapid drawdown of the Secondary Pond, as further discussed in Section 5.0 Initial Safety Factor Assessments. As noted in the Initial Safety Factor Assessment, the modeled slope stability results indicate this divider dike exceeds the required safety factors under the max surcharge pool/rapid drawdown scenario.

No structural stability deficiencies were identified in this initial Structural Stability Assessment that would require corrective measures.

5.0 INITIAL SAFETY FACTOR ASSESSMENTS

§257.63(e) requires that owners of existing and newly constructed CCR surface impoundments conduct initial and periodic safety factor assessments. The purpose of the safety factor assessment is to document that the as-constructed CCR surface impoundment configuration either meets or exceeds regulatory safety factor criteria under long-term, maximum storage pool loading conditions, and maximum surcharge pool loading conditions. In addition, the liquefaction and seismic factor of safety must be estimated.

The rule requires that the safety factor evaluation be performed across the critical cross section of the impoundment dikes. For the purposes of this initial assessment, previous data collected as part of historical site assessments as noted in Section 4.0 were evaluated to determine whether it represented the critical cross section of the pond dikes that would be most susceptible to failure. The critical cross sections for the Primary Ash Pond, as shown in Figure 2-5A, are in the areas of the pond that still contain water, are generally representative of the tallest sections of dikes and contain representative side slopes, and are where the highest potential impacts would be expected were a dike breach to occur.

Geotechnical sampling and analysis of as-constructed dike materials has been conducted during three different events. The first was performed by S&L during and after construction of the pond in 1978. Subsequent studies were performed in 1981 by Underground Resource Management, Inc. (URM) (URM, July 29, 1981) and in 2012 by AECOM Technical Services, Inc. (AECOM, March 2012).

BBA reviewed the previous site geotechnical investigation data gathered by S&L, URM and AECOM used in previously conducted stability analyses of the dikes and the data appears sufficient to provide a reliable estimation of current conditions, therefore no further geotechnical testing was required for the current analysis. Coleto Creek Power provided all previous investigation data to BBA for use in evaluation and preparation of an updated structural stability analysis. The most recent stability analysis, conducted by AECOM in 2012, summarizes previous evaluations by others. A brief summary of previous geotechnical investigations is provided below.

S&L completed approximately 80 soil borings to document the subsurface soils in and around the Primary Ash Pond. All of the borings were reportedly completed prior to construction of the ponds, in support of the pond design. Following commissioning of Unit 1 and filling of the ponds to normal operating levels, seepage was observed west and adjacent to the Recirculating Pump House. URM was contracted to investigate the seeps and their potential impact to dike stability. URM completed a geotechnical investigation of the pond dikes near the seep location, and assessment of both the dike embankment stability and groundwater quality indicated no detrimental effects due to the seep at that time and that, based on site geotechnical investigations, laboratory data analysis, and slope stability modeling of the dike, short and long-term stability of the embankments in the study area were considered satisfactory (URM, July 29, 1981).

AECOM, upon reviewing previous geotechnical investigations from S&L and URM, completed a supplemental geotechnical investigation program to evaluate stability of the dike system in 2012. While their review of previous data found the data to be acceptable for use in evaluation of dike stability of the ponds, they also identified critical areas of interest within the dike system for further evaluation, and implemented a geotechnical investigation of these critical areas (cross sections A and B as shown in Figure 2-5A of the attachments). BBA agrees that these locations are the critical areas to evaluate for stability, given cross section A is near a location of historically observed seepage at the outside toe of the Primary Ash Pond dike and cross section B is located along the splitter dike that separates the Primary Ash Pond and Secondary Pond. It should be noted that due to recent reduction in water surface operational levels at the Primary Ash Pond, the historically observed seepage in the area of cross section A has recently been observed to be dry.

AECOM field data gathering included construction of 8 geotechnical borings extending from depths ranging from 29.5 to 121.5 feet below ground surface (bgs). Five borings were completed from the top of the dikes and three borings were located along the exterior toe of dike. Laboratory testing included water content, dry unit weight, calibrated penetrometer, grain-size distribution, triaxial shear testing and direct shear testing. AECOM contracted with Subsurface Exploration Services, LLC of Green Bay, Wisconsin to complete the field work, and AECOM field staff observed the exploration work, assisted with collection of soil samples, and completed field boring logs. Laboratory testing was conducted by AECOM geotechnical laboratory technicians. AECOM geotechnical laboratories are reportedly certified by multiple state and

federal agencies to complete geotechnical testing in accordance with American Society for Testing and Materials (ASTM), United States Army Corp of Engineers (USACE), and State Department of Transportation approved methods and standards (AECOM, 2012).

BBA reviewed the data available from the S&L, URM, and the supplemental data gathered by AECOM including geotechnical data, cross sections, and methodology used by AECOM for modeling slope stability. The data and methods are suitable for evaluation of slope stability of the critical cross section locations. The geotechnical investigation data from the AECOM study, including soil bore logs and geotechnical laboratory data is included in Appendices A and B, respectively, of this report.

BBA contracted Naismith to complete an existing conditions topographic survey of these critical cross section areas, as well as topography of the entire perimeter dike system and bathymetry of the pond interiors. Using the 2016 existing conditions survey data, and geotechnical data obtained from the previous studies (including similar lithology as indicated in the AECOM study for the critical cross sections), BBA graphically reconstructed the cross section locations A and B for completion of further analysis. Upon review of all data and methodologies used by AECOM in analysis of the critical cross section locations of the dike systems, BBA completed a similar analysis. BBA compared the 2016 as-built topographic survey cross sections at cross section locations A and B to the design sections. Based on this review it appeared the as-built sections generally were slightly overbuilt when compared to the design sections, and contained slightly gentler slopes. Based on comparison of design versus as-built sections at each location it was determined that the design sections were likely worse case than the as-built sections in regards to analysis for slope stability, therefore only the design sections were evaluated.

Based on review of the AECOM bore logs and geotechnical laboratory test data, BBA generally agrees with the lithology and soil engineering strength properties used in the AECOM stability analysis. However, BBA's evaluation of field data and laboratory indices testing did result in minor changes in assumed soil properties – the reduction of the effective shear strength of caliche from 36 degrees to 34 degrees for cross section B and the increase in unit weight from 120 pounds per cubic foot (pcf) to 130 pcf. BBA evaluated stability with both sets of data and observed that these changes do not alter the overall safety factor for these sections, however, the revised data set appear more appropriate based on review of field and indices test data and are

therefore reported. Review of the data indicates that generally the AECOM engineering strength properties used in their analysis were conservative and representative of the field and laboratory data gathered.

Similar to the AECOM stability evaluation, BBA evaluated the dikes using two sets of time-dependent strength parameters, effective stress and total stress. Effective stress analysis was used to model drained, long-term, steady-state loading conditions where excess pore pressures have had time to dissipate. This would be the normal steady state operating conditions (maximum storage pool) of the pond. Total stress analysis was used to model undrained, short-term loading conditions such as maximum surcharge pool, rapid drawdown, and seismic events, where excess pore water pressure could develop in fine grained silts clays and not have had time to dissipate. The rapid drawdown case is representative of the conditions that would occur immediately after a significant flood event, or if the Secondary Pond was rapidly drained.

The seismic conditions analyze the effect an earthquake would have on the stability of the dike. BBA selected a maximum probable earthquake for the Coleto Creek Power Station based on the 2014 United States Geological Survey National Seismic Hazard Maps found at (http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf). The maximum probable earthquake has a peak ground acceleration of 0.03 g with a 2 percent Probability of Exceedance in 50 years.

Table 5-1 summarizes the effective and total stress soil strength parameters used for each soil layer in the analysis:

TABLE 5-1
Soil Strength Parameters used in Geotechnical Stability Analysis
(color shading as shown in cross sections)

Cross Section A-A'

Soil Description	Unit Weight	Effective Stress Strength Parameters		Total Stress Strength Parameters	
•	(pcf)	c' (psf)	Ø,	c (psf)	Ø
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Natural Silty Clay or Clayey Sand (CL, SC, CL-Caliche)	130	150	27	4,000	0
Natural Sands (SM, SP, SC)	130	0	36	0	36

Cross Section B-B'

Soil Description	Unit Weight (pcf)	Effective Stress Strength Parameters		Total Stress Strength Parameters	
	(pc1)	c' (psf)	ø,	c (psf)	Ø
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Caliche (SC)	135	250	34	250	0
Medium Dense to Dense Sands (SP)	132	0	36	0	36
Dense to Extremely Dense Sands (SP, SC, SM, SP-SM)	133	0	38	0	38
Very Stiff to Hard Silty Clay (CL, CL-ML, CH)	128	0	29	3,250	0

Based on field observations, the ash located within the Primary Ash Pond tends to set up, much like cement, into a hard, blocky mass of material. However, as was assumed in the AECOM evaluation, for conservative modeling purposes the interior material was considered to be water, with no structural strength that would add a stabilizing force.

Four model conditions were evaluated at each cross section location, as deemed applicable, including: maximum storage pool (the highest normal operating level) and maximum surcharge pool (level reached during inundation from design storm) conditions, rapid drawdown, and the seismic condition. The normal operating water level, based on the Hydrologic and Hydraulic Capacity Requirements evaluation completed by BBA (BBA, January 2018) is 136.1 (NAVD88).

The water level projected in event of a design storm (the 100 year, 24-hour storm) is 138.0 (NAVD88). The lowest top of dike elevation observed in the 2016 survey was 139.7 (NAVD88).

Cross section A, located in the observed historical seep location near the southeast corner of the Primary Ash Pond, was assumed to have a water table elevation at the ground surface along the exterior toe of slope, as observed in the field and as documented in the AECOM stability analysis as well as the BBA inspection conducted in December 2016. Cross section B, located along the separator dike between the Primary Ash Pond and Secondary Pond, was modeled with the maximum storage and maximum surcharge pool elevations. Cross section B was also evaluated for the rapid draw down (RDD) condition. It is conservatively assumed the phreatic surface at cross section A exits the exterior dike surface at approximately 1/3 the height of the dike (although the only field observations of wet soil occurred at the toe of slope, where the seep locations are located). The phreatic surface for cross section B is at the same elevation as the assumed pond water levels.

Dikes should be designed with appropriate safety factors. Required safety factors per §257.73(e)(1)(i) through (e)(1)(iv) for critical embankment sections are as follows:

Table 5-2Required Factors of Safety

Condition	Required Factor of Safety
Long-Term, Maximum Storage Pool Loading Static Factor of Safety	1.50
Maximum Surcharge Pool Loading Static Factor of Safety	1.40
Seismic Factor of Safety	1.00
Liquefaction Factor of Safety	1.20

BBA used the 2D limit equilibrium computer program SLIDE 7.0 by Rocscience to complete the slope stability analysis for the critical cross sections. A combination of the Simplified Bishop and the Morgenstern-Price method of slices, for both circular and block-type failures, was used to analyze the stability of the slopes. Eighteen stability cases were evaluated for the critical cross sections as summarized in Table 5-3, and the lowest factor of safety generated for each case is reported:

Table 5-3 Slope Stability Analysis Summary

Cross	Conditions	Effective Stress Analysis Safety Factor		Total Stress Analysis Safety Factor	
Section		Block	Circular	Block	Circular
A-A'	Max Storage Pool/Static	1.8 (1)	1.9 (2)	4.9 (3)	5.5 (4)
A-A'	Max Surcharge Pool/Static	1.7 (5)	1.8 (6)	4.9 (7)	5.5 (8)
A-A'	Max Storage Pool /Seismic	NA	NA	4.3 (9)	4.8 (10)
B-B'	Max Storage Pool /Static	2.8 (11)	2.8 (12)	3.7 (13)	5.1 (14)
B-B'	Max Surcharge Pool, Rapid Drawdown	NA	NA	2.0 (15)	2.1 (16)
В-В'	Max Storage Pool/Seismic	NA	NA	3.0 (17)	4.1 (18)

Note: (#) = Case Number (referenced on model output data in Appendix C).

Cross sections, bore logs, laboratory data, and SLIDE 7.0 stability model output data are included in Figure 2-5A and Appendices A, B, & C, respectively of this report.

As shown in Table 5-3, eighteen stability cases were modeled and all cases meet or exceed required factors of safety.

5.1 Liquefaction Assessment

BBA utilized the liquefaction assessment process outlined in the U.S. EPA guidance document titled RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities, EPA/600/R-95/051, April 1995, published by the Office of Research and Development and other relevant source documents to perform this liquefaction factor of safety evaluation. As identified in those documents, the liquefaction assessment process begins by screening the subject site for its liquefaction potential using the following criteria.

- Geologic age and origin. If a soil layer is a fluvial, lacustrine or aeolian deposit of Holocene age, a greater potential for liquefaction exists than for till, residual deposits, or older deposits.
- Fines content and plasticity index. Liquefaction potential in a soil layer increases with decreasing fines content and plasticity of the soil. Cohesionless soils having less than 15 percent (by weight) of particles smaller than 0.005 mm, a liquid limit less than 35

percent, and an in situ water content greater than 0.9 times the liquid limit may be susceptible to liquefaction.

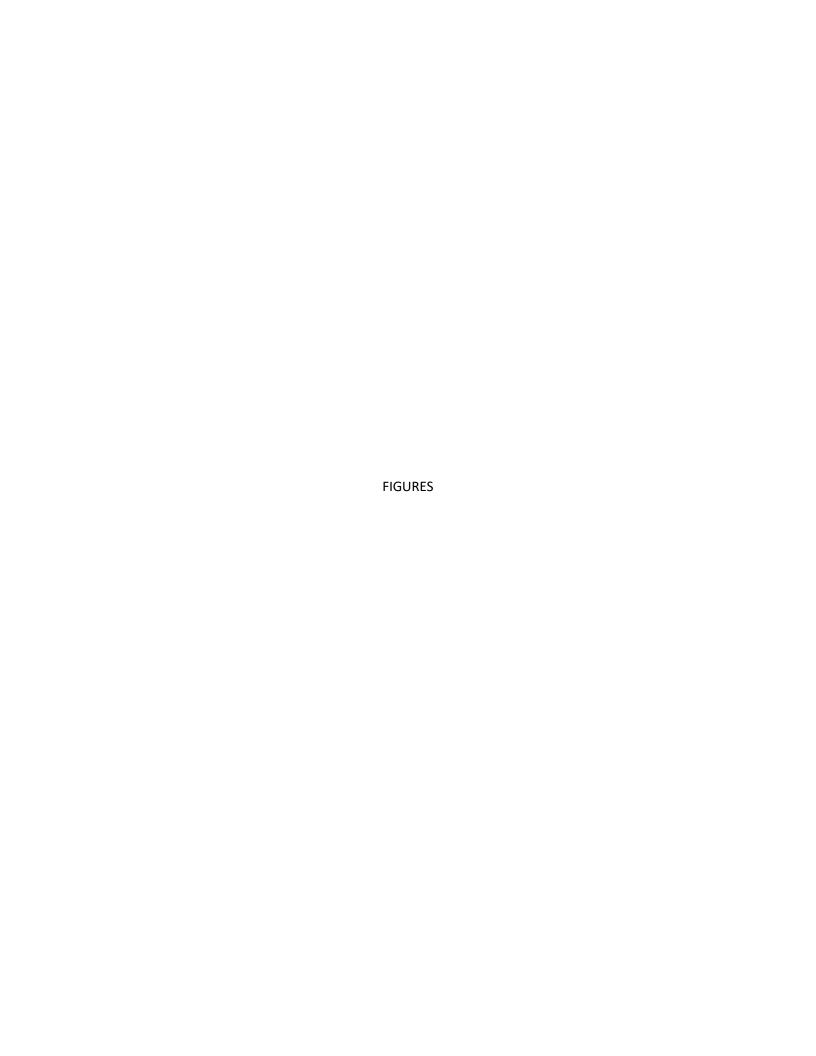
- Saturation. Although low water content soils have been reported to liquefy, at least 80 to 85 percent saturation is generally deemed to be a necessary condition for soil liquefaction.
- Depth below ground surface. If a soil layer is within 50 feet of the ground surface, it is more likely to liquefy than deeper layers.
- Soil Penetration Resistance. Soil layers with a normalized SPT blowcount $[(N_1)_{60}]$ less than 22 have been known to liquefy. Other sources suggest an SPT value of $[(N_1)_{60}]$ less than 30 as the threshold to use for suspecting liquefaction potential.

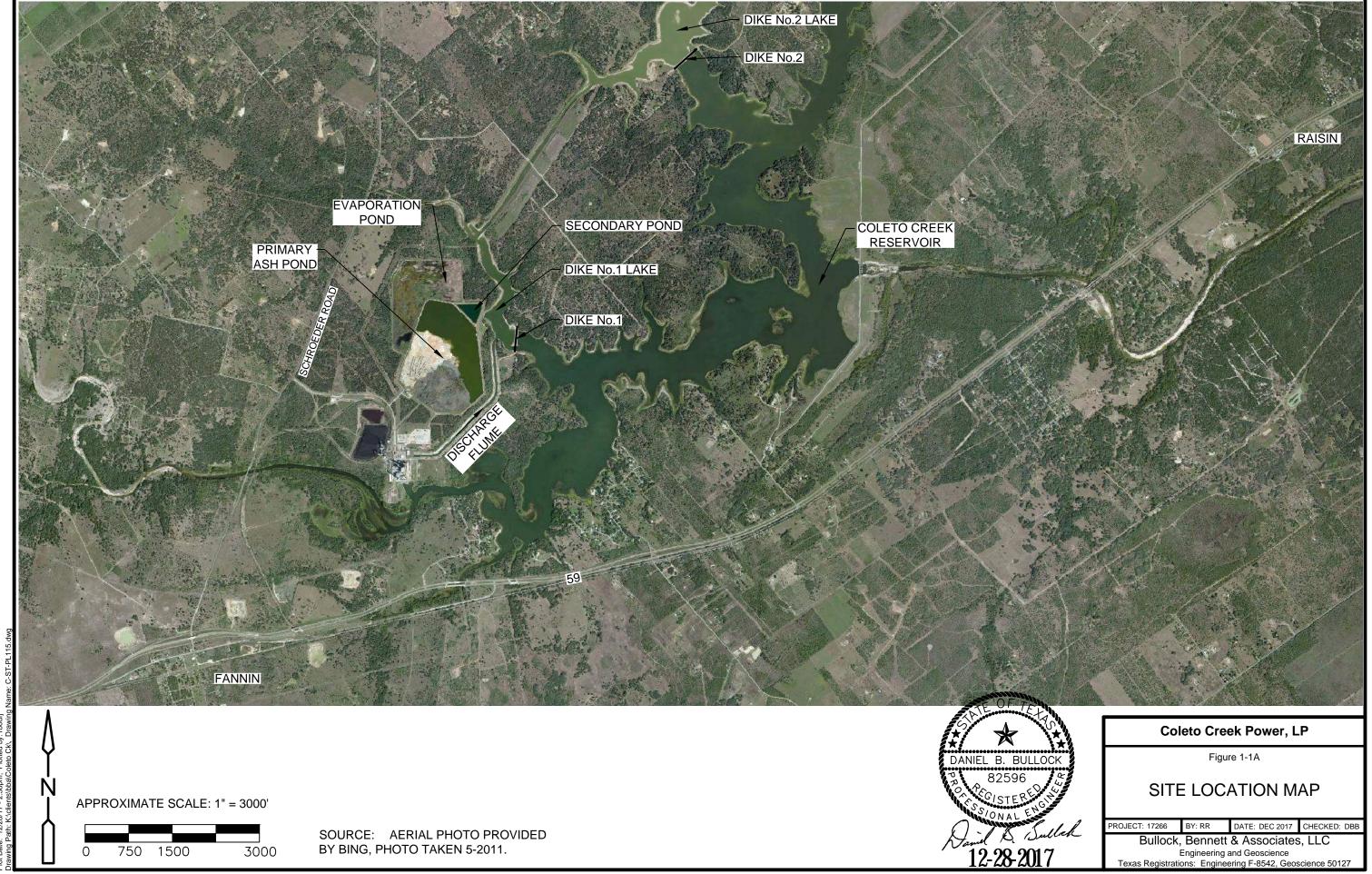
If three or more of the above criteria indicate that liquefaction is not likely, the potential for liquefaction is considered to be negligible. Otherwise, further evaluation of the liquefaction potential at a facility is required. The soils at the Coleto Creek Power facility generally meet at least three of the specified screening criteria and their liquefaction potential is unlikely. However, there are exceptions such as certain layers that are described in the soil borings logs as SP, or sandy soils, which would by definition have a low fines content. In addition, some liquid limits are below 35 percent. Therefore, further evaluation of the soil data has been completed, and factors of safety against liquefaction calculated for each critical layer, as further described below.

A review of existing data regarding site conditions, soil stratigraphy, soil properties, and potential critical layers as well as the methods used to develop that data indicate that the findings presented in the AECOM report (AECOM, 2012) are sufficient for use in this assessment. As noted in previous sections of this report, AECOM drilled eight borings through critical areas of the site to depths ranging from approximately 30 to 120 feet bgs. Standard penetrometer (SPT) blows per foot, plastic limit, water content, and liquid limit data were collected at two to five foot intervals. In addition, samples were collected and sent to an off-site laboratory for analyses of general geotechnical properties. Copies of the boring logs and laboratory data used in this assessment are provided in Appendices A and B.

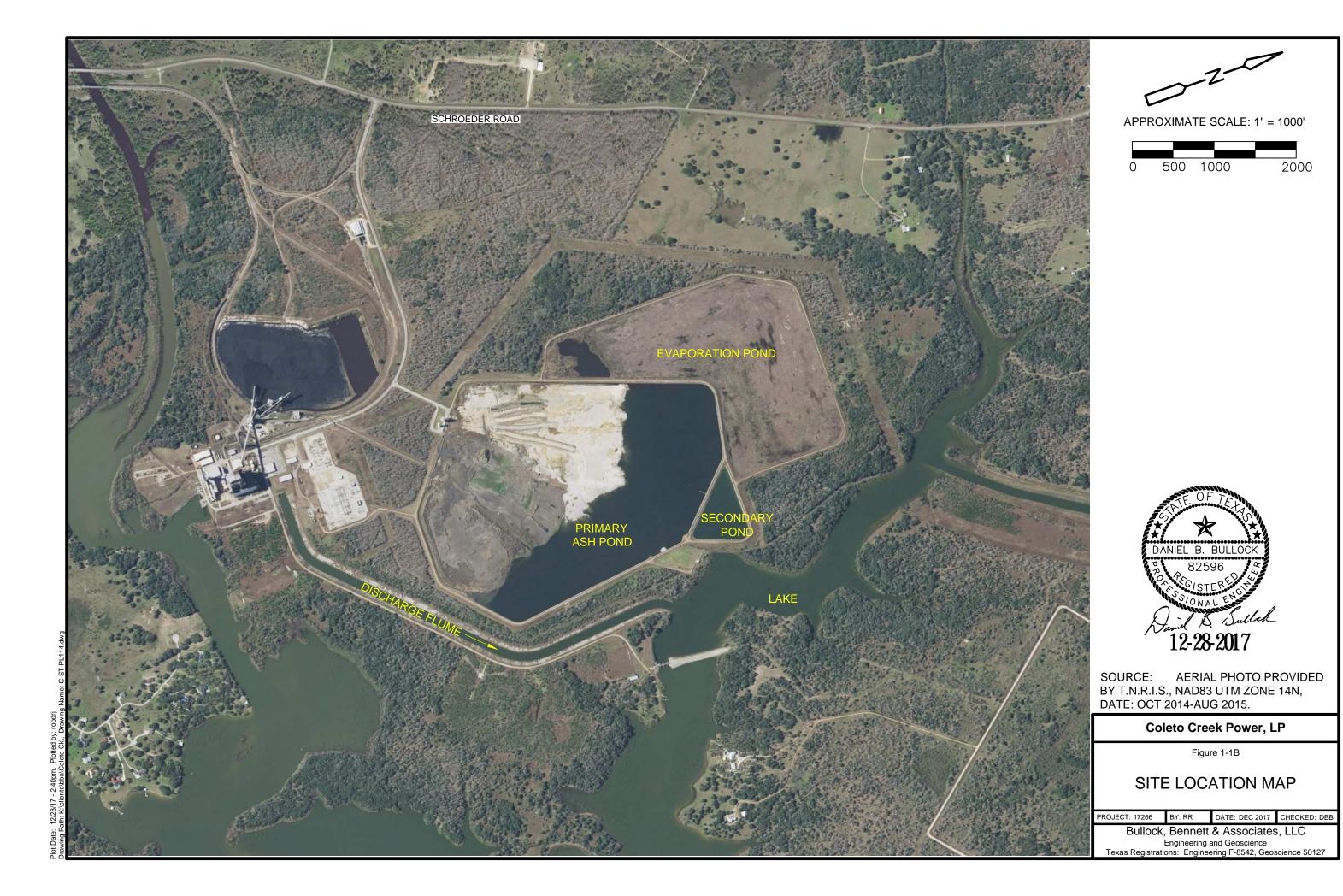
When available, site specific information such as SPT blow count and percent fines content (soils passing the #200 sieve) was used in the evaluation of liquefaction potential. For strata with no site specific data, conservative estimates were used based on industry accepted references and engineering judgement. For example, earthquake potential maps and tables presented in the

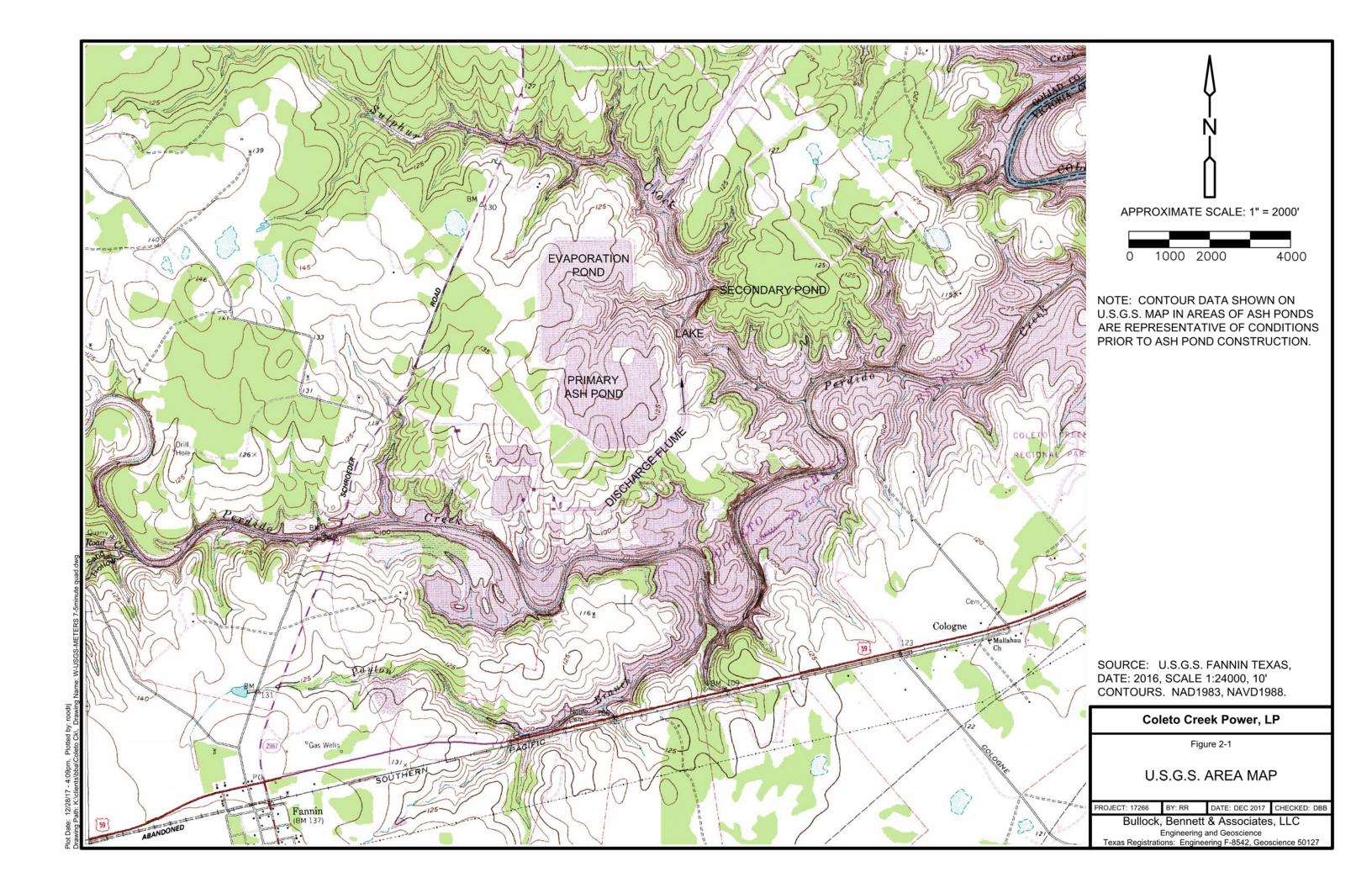
USEPA guidance document were used to estimate the worst-case earthquake magnitude and associated maximum ground acceleration. USGS references for low to mid-ranges of fines content for the reported soil types were used when no laboratory data existed.

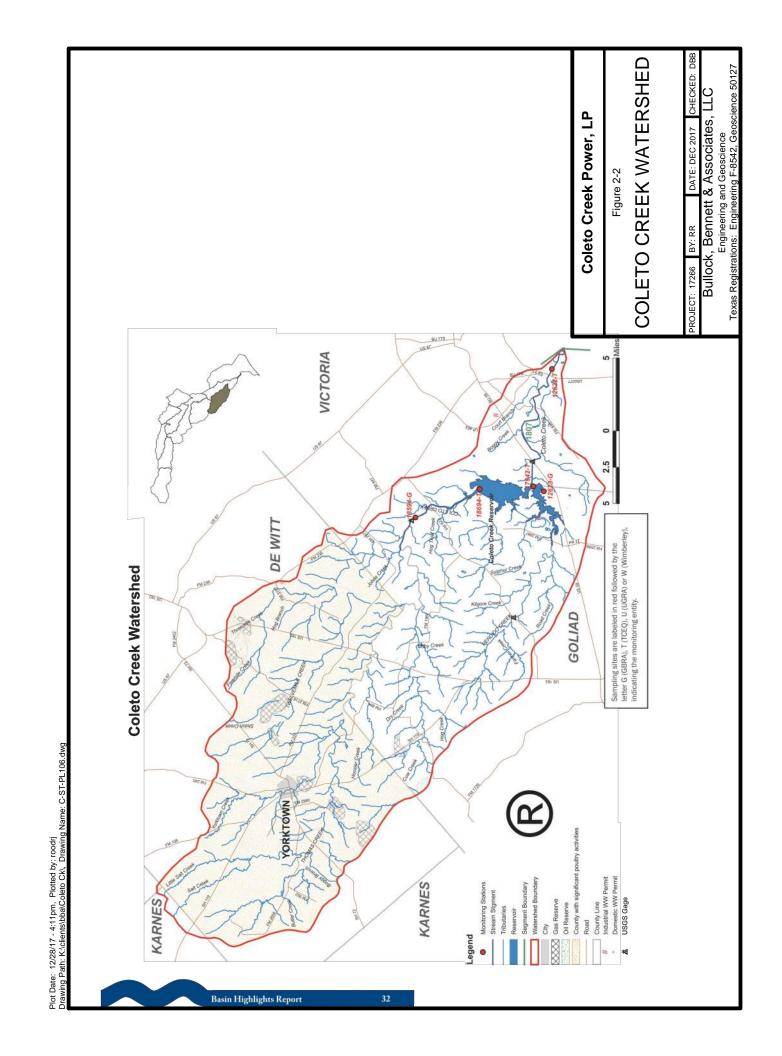

A complete discussion of the methodology used and the calculation spreadsheets for each strata identified in the eight boring logs are presented in Appendix D. The findings of the liquefaction assessment indicate that the factor of safety is well above the 1.2 required. This finding is expected given the generally high fines content of most soil strata, the low water content, and low ground acceleration that would be observed in the unlikely event that an earthquake was to occur in this area.


5.2 Initial Safety Factor Assessment Summary

In accordance with §257.73, Structural Integrity Criteria for Existing CCR Surface Impoundments, the critical cross sections of the Primary Ash Pond at the Coleto Creek facility have been evaluated for slope stability under appropriate loading conditions, including steady-state seepage, maximum surcharge pool, rapid drawdown, and seismic. In addition, a liquefaction assessment has been completed. Based on review of historic studies, geotechnical data that has been previously gathered, and on stability analysis evaluation, the Primary Ash Pond has an adequate factor of safety for all evaluated loading conditions.

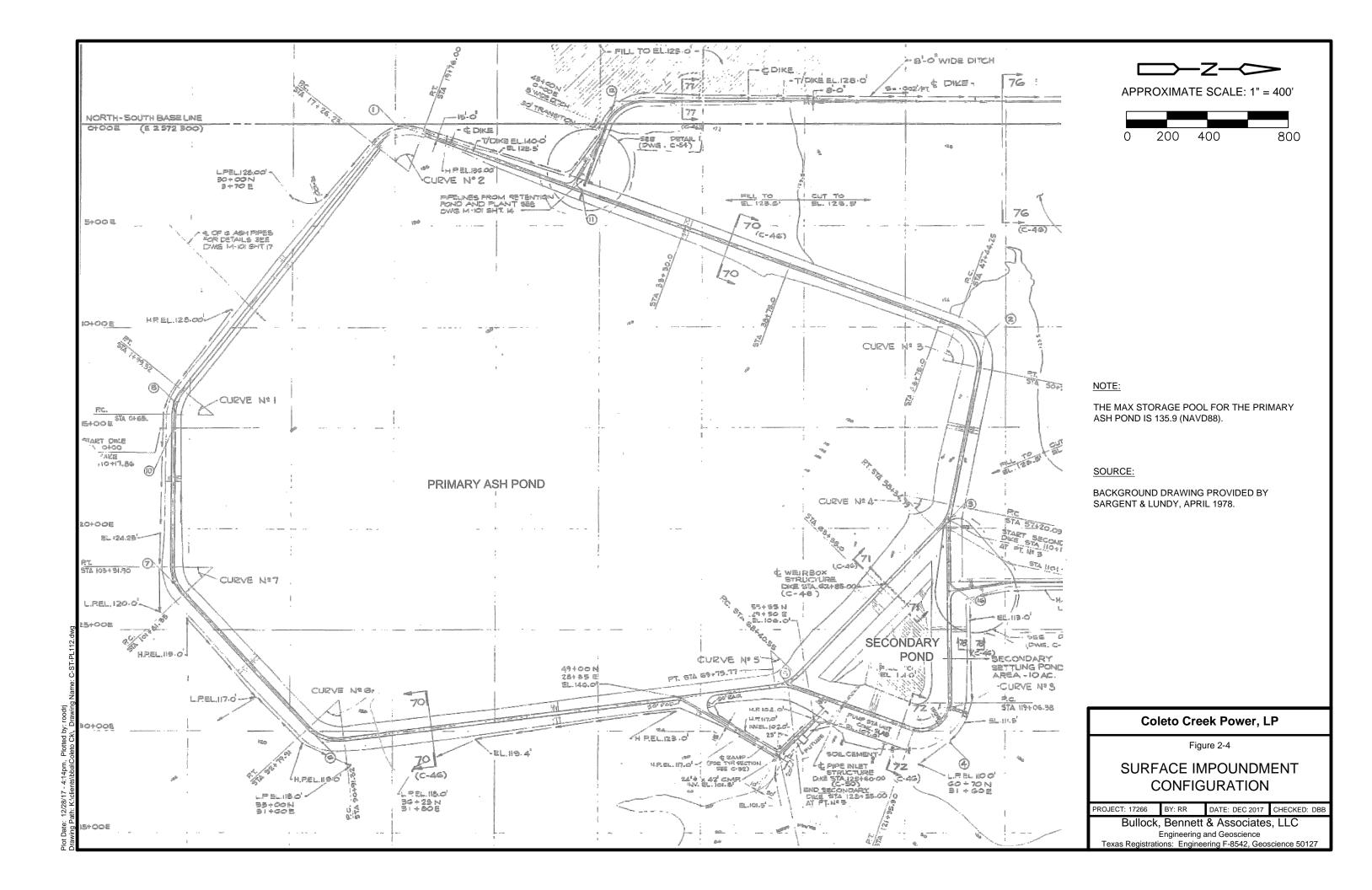

6.0 REFERENCES

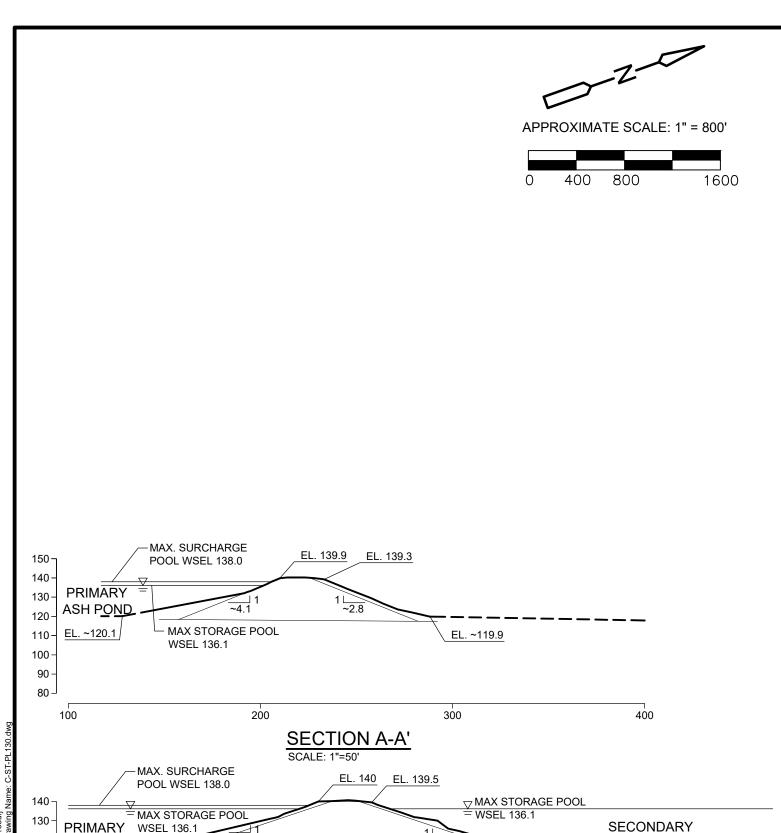

- AECOM. (March 2012). Geotechnical Stability and Hydraulic Analysis of the Coleto Creek Energy Facility Primary and Secondary Ash Ponds. Green Bay, Wisconsin: AECOM Technical Services, Inc.
- BBA. (2018, January 22). Letter to Mr. Robert Stevens from Mr. Dan Bullock. *Coleto-Creek Power September 2016 Primary Ash Pond and Secondary Pond Dike Inspection*. Bullock, Bennett & Associates, LLC.
- BBA. (January 2018). *Initial Inflow Design Flood Control System Report (Original Submittal Date September 2016)*. Bullock, Bennett & Associates.
- CDM. (March 2011). Assessment of Dam Safety of Coal Combustion Surface Impoundments Coleto LP, LLC Coleto Creek Power, LP.
- GBRA. (2013). *Coleto Creek Watershed River Secments, Descriptions and Concerns*. (G.-B. R. Authority, Ed.) Retrieved from Guadalupe-Blanco River Authority Web site: http://www.gbra.org/documents/publications/basinsummary/2013j.pdf
- S&L. (1981). Waste Disposal Plan. Central Southwest Services, Inc. Central Power & Light Company. Coleto Creek Power Station Units 1 and 2. Sargent & Lundy Engineers.
- S&L. (December 1978). Design and Construction Summary for Coal Pile and Wastewater Pond Facilities, Coleto Creek Power Station Unit 1, Report SL-3689. Sargent & Lundy Engineers.
- TCEQ. (January 2007). *Hydrologic and Hydraulic Guidelines for Dams in Texas*. Dam Safety Program, Texas Commission on Environmental Quality.
- URM. (1982). Evaluation and Recommendations Regarding Subsurface Drainage System at Coleto Creek Power Station for Central Power & Light Company. Underground Resource Management, Inc.
- URM. (July 29, 1981). *Investigation of Seepage from Primary and Secondary Settling Ponds at the Coleto Creek Power Station*. Underground Resource Managment, Inc.



ot Date: 12/28/17 - 2:38pm, Plotted by: roodrj

SOURCE: MAP PROVIDED BY SARGENT AND LUNDY ENGINEERS, CHICAGO, IL.


Coleto Creek Power, LP


Figure 2-3

THICKNESS MAP OF IN-SITU **COHESIVE SOILS**

PROJECT: 17266 BY: RR DATE: DEC 2017 CHECKED: DBB

Bullock, Bennett & Associates, LLC

POND

300

400

EL. ~115.4

200

SECTION B-B'

SCALE: 1"=50'

120-

110

100-

90 -

ASH POND

EL. ~110.0

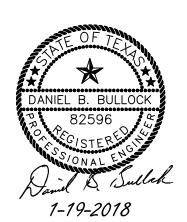
100

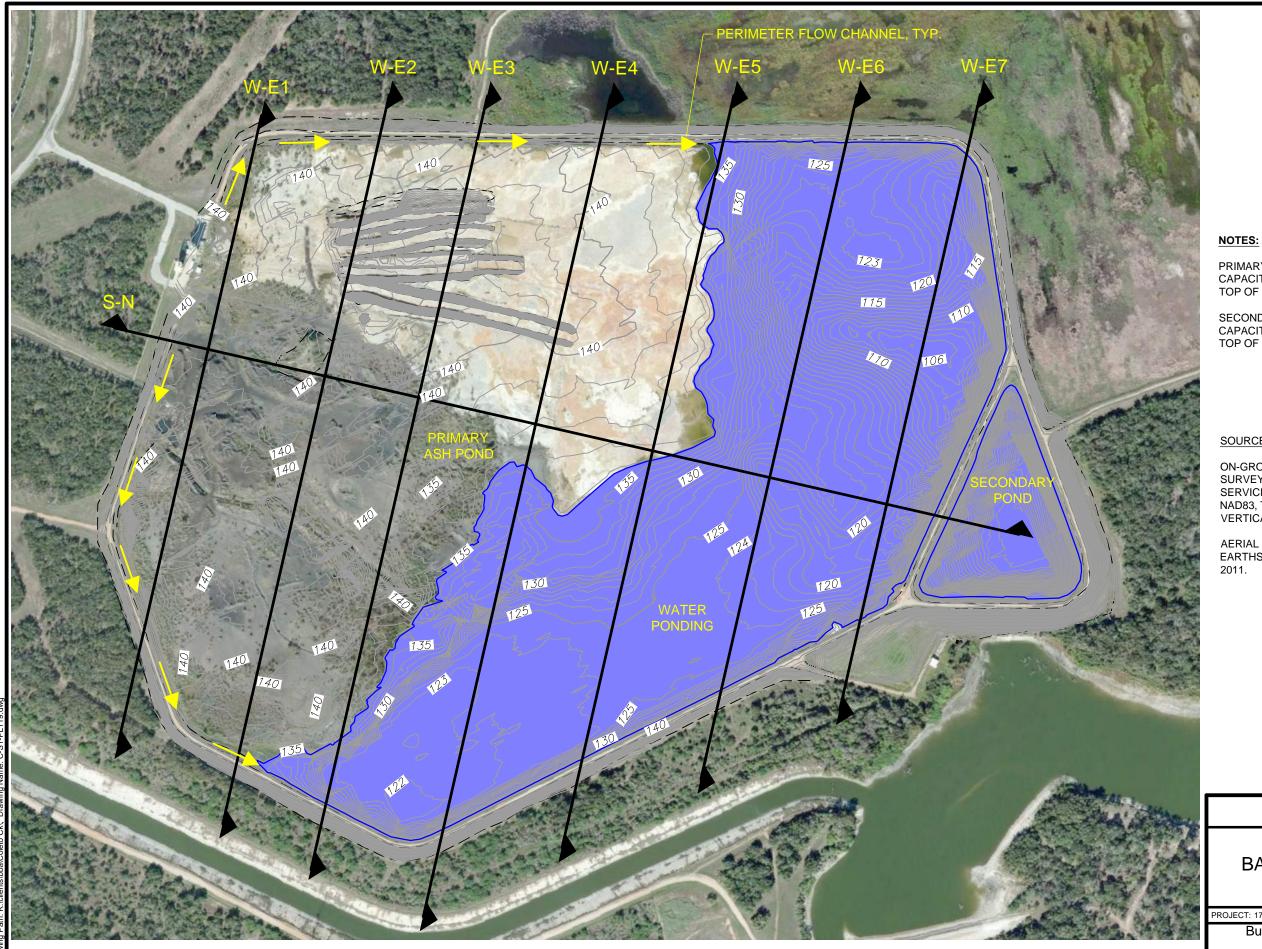
PARTIAL PLAN

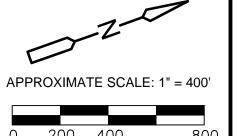
SOURCES:

ON-GROUND TOPOGRAPHIC AND BATHYMETRIC SURVEY PROVIDED BY NAISMITH MARINE SERVICES ON JULY 2016. HORIZONTAL DATUM: NAD83, TEXAS CENTRAL SOUTH ZONE, US FEET. VERTICAL DATUM: NAVD88.

AERIAL PHOTO PROVIDED BY IMAGEPATCH.COM EARTHSTAR GEOGRAPHICS, DATE: MAY-OCT 2011


Coleto Creek Power, LP


Figure 2-5A


ASH POND PLAN AND CROSS SECTIONS

PROJECT: 17266 BY: RR DATE: JAN 2018 CHECKED: DBB

Bullock, Bennett & Associates, LLC

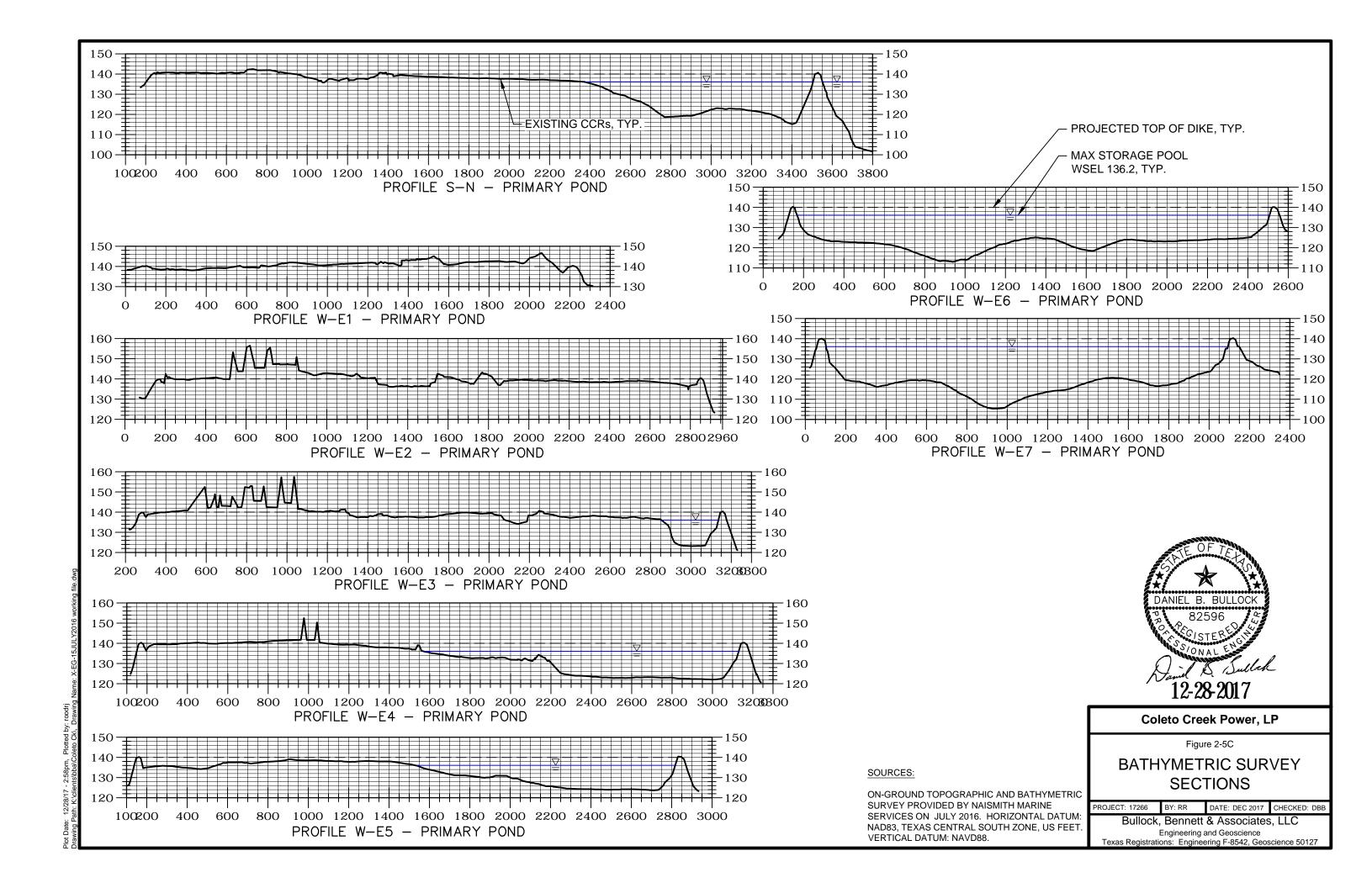
PRIMARY POND DECANT WATER VOLUME CAPACITY. APPROXIMATELY 1,520 AC-FT TO TOP OF DIKE.

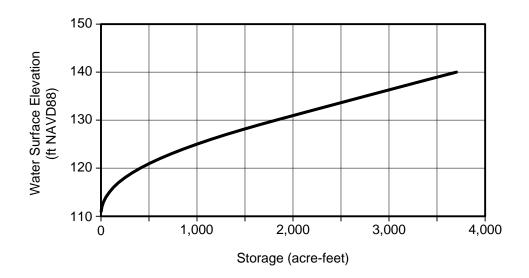
SECONDARY POND DECANT WATER VOLUME CAPACITY. APPROXIMATELY 200 AC-FT TO TOP OF DIKE.

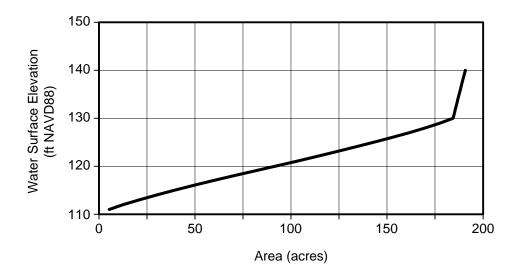
SOURCES:

ON-GROUND TOPOGRAPHIC AND BATHYMETRIC SURVEY PROVIDED BY NAISMITH MARINE SERVICES ON JULY 2016. HORIZONTAL DATUM: NAD83, TEXAS CENTRAL SOUTH ZONE, US FEET. VERTICAL DATUM: NAVD88.

AERIAL PHOTO PROVIDED BY IMAGEPATCH.COM EARTHSTAR GEOGRAPHICS, DATE: MAY-OCT


Coleto Creek Power, LP


Figure 2-5B


BATHYMETRIC SURVEY **PLAN VIEW**

DATE: DEC 2017 CHECKED: DBB

Bullock, Bennett & Associates, LLC

Coleto Creek Power, LP

Figure 2-6

CAPACITY FOR PRIMARY POND

PROJECT: 17266

Bullock, Bennett & Associates, LLC

DATE: DEC 2017

CHECKED: DBB

	_		-		PR-GDF SUEZ North America		LOG OF BORI	NG NUN	MBER B-1-1	
45	C(DΛ	N		ROJECT NAME		ARCHITECT/E	NGINEE	ER .	
					oleto Creek Energy Facility As	h Pond				
TE LOC			4		'amain Tayan	-			-O UNCONFINED CON TONS/FT. ² 1 2	MPRESSIVE STRENGTH
Golla	aa (ouر	nty	y, ı □	annin, Texas			1	1 2	3 4 5
DEPTH (FT) ELEVATION (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY	DESCRIPTION OF	MATERIAL	(0.1; 1)	UNIT DRY WT. LBS. / Ft.³	LIMIT % CONT ————— 10 20 3 STANDARI	TER LIQUID ENT % LIMIT %
	_	SS	S	<u>~</u>	SURFACE ELEVATION: +139.6 111 50.4 Gravish brown fine to coars	1 (00)	(Continued)	ם כ	10 20 3	0 40 50
52.0	26	55	Ш	Ħ	Grayish brown fine to coars coarse gravel - wet - very d		fine to			50
54.0										
	07	00	-					113.5		
56.0	27	SS	Н	\dashv	<u>\$3</u>			113.3		\$ 50
58.0										
60.0										
62.0	28	SS	Ш	Ц	7033 Voca				•	
64.0					[1] 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					
66.0	29	SS	+		65.1 White and gray clayey fine	to coarse sand (SC	C-caliche) -		/	★
68.0					wet - extremely dense					**50/0
70.0										
72.0	30	ss	\parallel					117.3	\ \	
74.0										
76.0	31	SS	Τ						•	**50/0
78.0					78.0	and (OD)!!!	alamat 41.1			
80.0					Light brown fine to coarse s layers of white and gray silf	y fine to coarse sar	nd			
	32	SS	П	Ц	(SM-Caliche) - moist to well Drillers noted hard drilling a	: - extremely dense and gravel while dril	ling form			**50/0
82.0					83.0 80.0 to 85.0 feet	_	_			
84.0					Gray and white silty fine to caliche - wet - extremely de	medium sand (SM) ense	with			
86.0	33	SS	T						•	**50/0
88.0									/	
90.0					Light gray silty clay (CL), so moist to wet - hard	ome sand, trace cal	liche -			+
	34	SS	Т					126.5	•	* *********************************
92.0									\	
94.0									\	
96.0	35	SS	I					107.6		**50/0
98.0			\vdash		97.0 Light gray clayey fine to co	arse sand (SC) - m	oist -			30,0
					extremely dense	, ,			/	
100.0		-		H					* Calibrate	l — —
The str	atifica	tion lir	nes r	epre	sent the approximate boundary lines between soil typ	es: in situ, the transition r	nay be gradual.	AECO	DM JOB NO. S	HEET NO. 2 OF 3

					LIENT		LOG OF E	BORING	G NUM	IBER B-1-1				
AΞ	C	D۸	1		PR-GDF SUEZ North ROJECT NAME	America	ARCHITE	CT/EN/	CINICE	:D				
			•		Coleto Creek Energy F	Facility Ash Pond	ARCHITE	C1/EIN	GINEE	.K				
SITE LO						uomey / torr ord				- UNCONFINED	COMPRES	SSIVE STR	ENGTH	
Goli	ad (Cou	nt	y, I	Fannin, Texas					TONS/FT. ²	3		5	
F										PLASTIC	WATER	LIC	QUID	
DEPTH (FT) ELEVATION (FT)		l	SAMPLE DISTANCE		DECO	DIDTION OF MATERIAL					ONTENT %	6 LIM	IIT %	
DEPTH (FT) ELEVATION	Ŏ.	SAMPLE TYPE	DIST	Κ	DESCI	RIPTION OF MATERIAL			UNIT DRY WT. LBS. / Ft.³	10 20	30		50	
DEP	SAMPLE NO.	IPLE	IPLE	RECOVERY					r DR	STANI		-	+	
\times	SAN	SAN	SAN	REC	SURFACE ELEVATION: +		(Continu	ıed)	LBS		TRATION E 30	BLOWS/FT. 40	50	
102.0	36	SS			Light gray claye extremely dens	ey fine to coarse sand (SC) - r	noist -						*:*50/0	.3'
					103.0								\	
104.0	1				Brown silty clay moist - hard	(CH) with irrgular gray silty c	ay lenses	-			\			1
106.0	37	SS	Τ	T					92.5		•	* Q *		ĺ
108.0											1			./
	1										<i>i</i>			
110.0	38	SS	Т	\prod				1	102.6			+ *	× ′	
112.0	100		Н	+							ï	1/	51	
114.0	1										1			
116.0	39	SS	Т	\top					94.8		1	ø + *		
	39	33	Ш	Щ							Ţ	38/		
118.0	1										<u> </u>	/		
120.0	40	ST	Н	+	121.0				98.0			A + O*	L	_
VL Dr VL 10					HW casing driv Boring advance rock bit and dri Boring advance rock bit and dri Boring abandor tremie method	ed from 6.0 feet to 50.0 feet w lling fluid ed from 50.0 feet to 100.0 feet	ith 4-inch with 3-incl using	h						
	The	stra	tific	ati	on lines represent the appr	oximate boundary lines betwe	en soil type					adual.		
L Dr	y bef	ore c	asi	ng	installation	BORING STARTED 11/5/11			M OFFI	Green Bay,	Wiscons		1	
″∟ 10	.0 to	12.0	fee	t W	S	BORING COMPLETED 11/6/11		ENTE	RED BY CAH	1	3	OF 3		
/L						RIG/FOREMAN D-25/BZ		APP'D	BY TM 1	Γ AECOM	JOB NO. 6022	5561		

CLIENT LOG OF BORING NUMBER **B-2-1 IPR-GDF SUEZ North America** PROJECT NAME ARCHITECT/ENGINEER Coleto Creek Energy Facility Ash Pond UNCONFINED COMPRESSIVE STRENGTH SITE LOCATION TONS/FT.2 Goliad County, Fannin, Texas 5 LIQUID LIMIT % PLASTIC WATER SAMPLE DISTANCE CONTENT % LIMIT % ELEVATION DEPTH (FT) \times **DESCRIPTION OF MATERIAL** - -SAMPLE TYPE Ķ SAMPLE NO. UNIT DRY V LBS. / Ft.³ 10 30 50 STANDARD STANDARD
PENETRATION BLOWS/FT.
20 40 50 ⊗ 10 SURFACE ELEVATION: +139.2 Fill: Gray and brown mottled clayey sand (SC), trace fine 121.6 1 SS \otimes gravel, trace caliche nodules and layers, occasional thin, 2.0 saturated silty sand lenses - moist to wet - very stiff to 2 SS 4.0 116.1 3 SS 6.0 4 SS 8.0 121.3 5 SS 10.0 118.6 6 ST 12.0 117.4 7 SS 14.0 8 SS 16.0 114 0 9 'S 18.0 110.9 10 ST 20.0 114.5 11 SS 22.0 12 SS 24.0 113.0 13 SS 26.0 14 28.0 15 SS 30.0 16 SS ⊗ 32.0 White and light gray clayey sand (SC-caliche) - wet -118.4 ₽0,4 17 ST loose to medium dense 34.0 18 SS \otimes 36.0 15 Note: Saturated loose zone from 36.0 feet to 36.9 feet 19 SS Ø 38.0 20 SS 40.0 21 SS Grayish brown fine to coarse sand (SP) - wet - medium 21A SS 42.0 dense to dense 22 SS Note: Clayey sand (SC-Caliche) layers encountered 44.0 from 42.9 feet to 43.3 feet and 44.0 feet to 45.0 feet 136.7 23 SS 0 46.0 STS.GDT 24 SS 48.0 25 SS 50.0 .GPJ 50.0 Calibrated Penetrometer ... continued 60225561. AECOM JOB NO. **60225561** SHEET NO. The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual

Continued Country Fannin, Texas Country Countr	Δ=	c	7 4	1		GDF	SUEZ North America	LOG OF BOR			1			
Collad County, Fannin, Texas	~ =		<i>)</i> \	4				ARCHITECT/E	ENGINE	R				
Continued Standard	SITE LO	CATIO	NC NC		Cole	to Cr	eek Energy Facility Ash Pond		1		NED CON	//PRESSIVI	E STRE	NGTH
S S S S S S S S S S				nty	, Fan	nin, T	Texas			TONS/FT.2				
S S S S S S S S S S	PTH (FT) EVATION (FT)	E NO.	E TYPE	E DISTANCE	TY.		DESCRIPTION OF MATERIAL		RY WT.	LIMIT %	CONTI	ENT %	LIMI — ∠	T %
52.0 26 sS	<u> </u>	WPL.	MPL	4MPL	3				NTD 3S./F				/S/FT.	
52.0 54.0 55.0 56.0 56.0 56.0 56.0 56.0 56.0 56	×	<u> </u>		δi	Ž SUF I ∷ i i i	RFACE						0 40		0
56.0 27 ss	52.0	26	SS	1	¥	53.0	Crayish brown sitty line sand (Givi) - wet - t	acrisc	110.4	1		\33 \		
56.0 27 SS	54.0					7	Light gray clayey fine sand (SC) - wet - der	nse				1		
60.0 62.0 63.0 64.0 66.0 68.0	56.0	27	SS						99.2	×	- -A	· · ·	9	
62.0 63]. 		
62.0 64.0 66.0 66.0 68.0 68.0 68.0 68.0 68.0 68	60.0	28	SS		Γ								: \$0	
Light gray fine sand (SP-SM), trace silt - wet - dense 66.0 68.0 Clight gray fine to coarse sand (SP) - wet - dense 70.0 30 SS 71.1 72.0 30A SS Light gray and white clayey sand (SC-caliche) - wet - medium dense 74.0 Light gray silty fine to medium sand (SM), trace to little clay, trace fine gravel - moist to wet - extremely dense 76.0 31 SS 78.0 78.0 Tan clayey silt (CL-ML-Weathered Sandstone) - moist to wet - hard 82.0 83.0 84.0 86.0 33 SS Light gray and brown mottled silty clay (CH), trace sand - moist - hard 91.6 92.0 94.0 96.0 96.0 36 SS Light gray clayey fine sand (SC) - moist - extremely dense 110.9	62.0	- -									Ĭ		43	
68.0 70.0 10.0	64.0					63.0	Light gray fine sand (SP-SM), trace silt - w	et - dense			1	; 		
Light gray fine to coarse sand (SP) - wet - dense 70.0 30 SS	66.0	29	SS								•	\	10	
70.0 30 SS 1 1 71.1 72.0 300 SS 1 1 73.0	68.0					68.0	Light gray fine to coarse sand (SD) wat	dense						
72.0 30A SS 1 Light gray and white clayey sand (SC-caliche) - wet - medium dense 74.0 Light gray silty fine to medium sand (SM), trace to little clay, trace fine gravel - moist to wet - extremely dense 78.0 78.0 Tan clayey silt (CL-ML-Weathered Sandstone) - moist to wet - hard 80.0 32 SS 1 Light gray and brown mottled silty clay (CH), trace sand - moist - hard 86.0 33 SS 1 Light gray and brown mottled silty clay (CH), trace sand - moist - hard 91.6 34 SS 1 Light gray clayey fine sand (SC) - moist - extremely dense	70.0	20	80		П		Light gray line to coarse sand (SP) - Wet -	ucuse						
Tan clayey silt (CL-ML-Weathered Sandstone) - moist to wet - hard Tan clayey silt (CL-ML-Weathered Sandstone) - moist to wet - hard 83.0 84.0 83.0 84.0 83.0 Light gray and brown mottled silty clay (CH), trace sand - moist - hard 91.6 86.0 33 SS	72.0						Light gray and white clayey sand (SC-calic medium dense	he) - wet -		7*	16	L\(\S\)	'39	
78.0 78.0 78.0 Tan clayey silt (CL-ML-Weathered Sandstone) - moist to wet - hard 82.0 84.0 Light gray and brown mottled silty clay (CH), trace sand - moist - hard 91.6 91.6 91.6 94.0 94.0 94.0 95.1 Light gray clayey fine sand (SC) - moist - extremely dense		0.1	00				Light gray silty fine to medium sand (SM),	trace to little mely dense			•		`.,	
Tan clayey silt (CL-ML-Weathered Sandstone) - moist to wet - hard 82.0 83.0 83.0 83.0 Light gray and brown mottled silty clay (CH), trace sand - moist - hard 91.6 88.0 92.0 94.0 117.3 Light gray clayey fine sand (SC) - moist - extremely dense		31	55	1-		79.0							Q) **50/0 \
82.0 84.0 Light gray and brown mottled silty clay (CH), trace sand - moist - hard 91.6 91.6 94.0 94.0 95.1 Light gray and brown mottled silty clay (CH), trace sand - moist - hard 91.6 117.3						. 1 0.0		one) - moist to				-	-	\
84.0 Light gray and brown mottled silty clay (CH), trace sand - moist - hard 91.6		32	SS										Φ*	
86.0 33 SS	84.0					83.0		I), trace sand -		,	\		+1	
88.0 90.0 92.0 94.0 96.0 35 ST	86.0	33	SS						91.6		> -	- ⊗	*	 △
92.0 94.0 96.0 35 ST Light gray clayey fine sand (SC) - moist - extremely dense											/	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
94.0 96.0 35 ST Light gray clayey fine sand (SC) - moist - extremely dense		34	SS						117.3	$ \phi'$		 ⊗	*	
96.0 35 ST Light gray clayey fine sand (SC) - moist - extremely dense 110.9													- ₹1	
98.0		35	ST	-		95.1		extremely				+	*	
100.0	98.0						dense		110.9	•				
	100.0	1				Z			L		- <i>7</i> -			
continued * Calibrated Penetrometer							contin	ued		* C	alibrate	d Penetro	omete	er

				1	LIENT PR-GDF SUEZ North America	LOG OF B	BORING NUI	MBER B	-2-1		
AΞ	C		И	F	ROJECT NAME	ARCHITE	CT/ENGINE	ER			
				- 1	Coleto Creek Energy Facility Ash Pond						
SITE LO			nf	v	Fannin, Texas			-O-UNCON	FI.	MPRESSIVE S	
Goil	au v	Jou	111	y,	Tallilli, Texas			1	- +	3 4	5
DEPTH (FT) ELEVATION (FT)	Ö	YPE	SAMPLE DISTANCE	>	DESCRIPTION OF MATERIAL		WT.	PLASTIC LIMIT %	CONT)	LIQUID LIMIT %
DEPTH (FT) ELEVATION	Z N	L T	LE D	VER			DRY T.	10		0 40	50
<u>. </u>	SAMPLE NO.	SAMPLE TYPE	SAMF	RECOVERY	SURFACE ELEVATION: +139.2	(Continu	(pa) UNIT DRY WT. LBS. / Ft.³	⊗ 10		TION BLOWS	
	36	SS		Ī	Light gray clayey fine sand (SC) - moist				1	1 1 5)*\(\&\) **\(50/0\)
102.0					102.0 dense Brown silty clay (CH) with gray silty clay	and silt lenses					30/0
104.0					trace thin sand lenses - moist - hard	, and one loneso,					`.
106.0	37	SS	T	Н			99.9			+)*
	31	33	\perp	Н			55.5				ا ا
108.0	+								/		
110.0										+	
112.0	38	SS	Ш	Ц			96.4		•)*
114.0											
116.0	39	SS	\prod	\prod			96.7		•	+)* ⊗
118.0									\ \ \		
119.5	40	SS		\prod	119.5 End of Boring				ated Pene	+()*
					Boring advanced from 6.0 feet to 50.0 f rock bit and drilling fluid Boring advanced from 50.0 feet to 118. rock bit and drilling fluid Boring abandoned with bentonite quick tremie method Split-spoons were driven with cathead a	0 feet with 3-inch	n				
	The	stra	tific	cati	on lines represent the approximate boundary lines l	between soil type	es: in situ	, the transit	ion may b	oe gradual	
VL D					BORING STARTED		AECOM OFF	ICE 1035	Kepler Dr	ive	
VL					installation 11/3/11 BORING COMPLETED 11/4/11		ENTERED B	Υ 5	n Bay, Wis SHEET NO.	OF OF	งาา
8.0 NL	0 to 1	0.0 f	eet	WS	RIG/FOREMAN		APP'D BY	.H		3 3	
					D-25/BZ		TM	IT		NO. 60225561	

Coleto Creek Energy Facility Ash Pond SITE LOCATION Goliad County, Fannin, Texas DESCRIPTION OF MATERIAL DIAM TO CONTENT Y. LIGHT DIAM TO CONTEN		CLIENT	LOG OF BORING NUMBER	B-2-2
Coleto Creek Energy Facility Ash Pond Coleto Creek Energy Facility Ash Pond	A=COM	IPR-GDF SUEZ North America	ADOLUTEOT/ELION/EET	
STRICE COUNTRY, Fannin, Texas Coliad County, Fannin, Texas DESCRIPTION OF MATERIAL DESCRIPTION OF MATERIAL DESCRIPTION OF MATERIAL 10 20 30 40 50 51 10	A_CO//I		ARCHITECT/ENGINEER	
DESCRIPTION OF MATERIAL Section DESCRIPTION OF MATERIAL	ITE LOCATION	Coleto Creek Ellergy Facility ASII Poliu		INCONFINED COMPRESSIVE STRENG
DESCRIPTION OF MATERIAL DESCRIPTION OF MATERI		Fannin, Texas	•	ONS/FT. ²
S S S S S S S S S S	EVATION (FT) E NO. E TYPE F DISTANCE		LIM	IIT % CONTENT % LIMIT % — — — — — — — — — — — — — — — — — —
Section Sect	AMPI AMPI	CUREACE ELEVATION: 1405.4		PENETRATION BLOWS/FT.
4.0 2A SS	1 88	Black and dark brown organic sandy c		• 0* 0*
Sc. Caliche), trace fine to coarse gravel - moist to wetdense to medium dense St. St. T. St. T. St. T. Light gray and brown mottled silt (ML), trace clay, trace sand - moist - medium dense St. St. T. St. T. Light gray and brown mottled silt (ML), trace clay, trace sand - moist - medium dense St. St. T. St. T. Light gray and brown mottled silt (ML), trace clay, trace sand - moist - medium dense St. St. T. Light gray silt (ML), trace to little sand, trace clay - moist - medium dense St. St. T. St. T. Light gray silt (ML), trace to little sand, trace clay - moist - medium dense St. St. T. St. T. Light gray silt (ML), trace to little sand, trace clay - moist - medium dense St. St. T. S	2 SS			
Note: Light brown fine to coarse sand (SP) layers encountered from 6.5 feet to 7.0 feet and 8.3 feet to 8.9 feet	3 55	(SC-Caliche), trace fine to coarse grav	vel - moist to wet -	⊗ ₁₅ •
10.0 6 SS 1 10.6 Light gray fine to coarse sand (SP) - wet - medium dense Light gray and brown mottled silt (ML), trace clay, trace sand - moist - medium dense Light gray silt (ML), trace clay, trace sand - moist - medium dense Light gray silt (ML), trace to little sand, trace clay - moist - medium dense Light gray silt (ML), trace to little sand, trace clay - moist - medium dense Light gray silt (ML), trace to little sand, trace clay - moist - medium dense Light gray silt (ML), trace to little sand, trace clay - moist - medium dense Light brown fine sand (SP) - wet - dense Light gray and light brown mottled clayey fine to coarse sand (SC), trace fine to coarse gravel - moist - dense to extremely dense Drillers noted hard drilling from 34.0 to 39.0 feet and gravel while drilling Light brown fine to coarse sand (SP) - wet - dense Light	4 88	Note: Light brown fine to coarse sand encountered from 6.5 feet to 7.0 feet a	(SP) layers and 8.3 feet to 8.9	
12.0 Eight gray fine to coarse sand (SP) - wet - medium dense 14.0 Light gray and brown mottled slift (ML), trace clay, trace sand - moist - medium dense 14.9 Light gray slift (ML), trace to little sand, trace clay - moist - medium dense 21 Region	10.0 1	10.6		15
Light gray and brown mottled slift (ML), trace clay, trace sand - moist - medium dense 14.9 Light gray silty (apy (CL), trace sand - moist - hard 14.9 Light gray silt (ML), trace to little sand, trace clay - moist - medium dense 15.0 Light gray silt (ML), trace to little sand, trace clay - moist - medium dense 16.0 17.0 Light gray silt (ML), trace to little sand, trace clay - moist - medium dense 18.0 Light brown fine sand (SP) - wet - dense 21.0 22.0 Light gray and light brown mottled clayey fine to coarse sand (SC), trace fine to coarse gravel - moist - dense to extremely dense Drillers noted hard drilling from 34.0 to 39.0 feet and gravel while drilling 18.0 Light gray and brown mottled silty clay (CL), trace sand - moist - hard 19.0 42.0 Light gray and brown mottled silty clay (CL), trace sand - moist - hard		12.0 Light gray fine to coarse sand (SP) - w		*18
Light gray silty clay (CL), trace sand - moist - hard Light gray silt (ML), trace to little sand, trace clay - moist - medium dense 20.0 8 SS	14.0	sand - moist - medium dense	, trace clay, trace	
Light gray silt (ML), trace to little sand, trace clay - moist - medium dense 22.0 22.0 Light brown fine sand (SP) - wet - dense 33.5 Light gray and light brown mottled clayey fine to coarse sand (SC), trace fine to coarse gravel - moist - dense to extremely dense Drillers noted hard drilling from 34.0 to 39.0 feet and gravel while drilling 42.0 Light brown fine to coarse sand (SP) - wet - dense 45.0 Light gray and light brown mottled clayey fine to coarse sand (SC), trace fine to coarse gravel - moist - dense to extremely dense Drillers noted hard drilling from 34.0 to 39.0 feet and gravel while drilling 42.0 Light brown fine to coarse sand (SP) - wet - dense 44.0 Light gray and brown mottled silty clay (CL), trace sand - moist - hard		Light gray silty clay (CL), trace sand -	moist - hard	**32
22.0 22.0 Light brown fine sand (SP) - wet - dense 21.0 22.0 Light brown fine sand (SP) - wet - dense 33.5 33.5 Light gray and light brown mottled clayey fine to coarse sand (SC), trace fine to coarse gravel - moist - dense to extremely dense Drillers noted hard drilling from 34.0 to 39.0 feet and gravel while drilling 32.0 33.5 Light gray and light brown mottled clayey fine to coarse sand (SC), trace fine to coarse gravel - moist - dense to extremely dense Drillers noted hard drilling from 34.0 to 39.0 feet and gravel while drilling 42.0 Light brown fine to coarse sand (SP) - wet - dense 43.0 Light gray and brown mottled silty clay (CL), trace sand - moist - hard 44.0 Light gray and brown mottled silty clay (CL), trace sand - moist - hard	18.0	Light gray silt (ML), trace to little sand,	, trace clay - moist -	
Light brown fine sand (SP) - wet - dense Light brown fine sand (SP) - wet - dense 33.5 Light gray and light brown mottled clayey fine to coarse sand (SC), trace fine to coarse gravel - moist - dense to extremely dense Drillers noted hard drilling from 34.0 to 39.0 feet and gravel while drilling Light brown fine to coarse gravel - moist - dense to extremely dense Drillers noted hard drilling from 34.0 to 39.0 feet and gravel while drilling Light brown fine to coarse sand (SP) - wet - dense 42.0 Light brown fine to coarse sand (SP) - wet - dense 47.0 Light gray and brown mottled silty clay (CL), trace sand - moist - hard	8 SS	<u> </u>		●8
26.0 9 SS			se	
28.0 30.0 10 SS	9 88			
33.5 34.0 33.5 Light gray and light brown mottled clayey fine to coarse sand (SC), trace fine to coarse gravel - moist - dense to extremely dense Drillers noted hard drilling from 34.0 to 39.0 feet and gravel while drilling 40.0 12 SS T				1 35
33.5 Light gray and light brown mottled clayey fine to coarse sand (SC), trace fine to coarse gravel - moist - dense to extremely dense Drillers noted hard drilling from 34.0 to 39.0 feet and gravel while drilling 42.0 Light brown fine to coarse sand (SP) - wet - dense 44.0 Light gray and brown mottled silty clay (CL), trace sand - moist - hard Light gray and brown mottled silty clay (CL), trace sand - moist - hard	30.0 _{10 SS}			
Light gray and light brown mottled clayey fine to coarse sand (SC), trace fine to coarse gravel - moist - dense to extremely dense Drillers noted hard drilling from 34.0 to 39.0 feet and gravel while drilling 42.0 Light brown fine to coarse sand (SP) - wet - dense 44.0 Light gray and light brown mottled silty clay (CL), trace sand - moist - hard 47.0 Light gray and brown mottled silty clay (CL), trace sand - moist - hard	32.0			/
extremely dense Drillers noted hard drilling from 34.0 to 39.0 feet and gravel while drilling 40.0		Light gray and light brown mottled clay	yey fine to coarse	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
42.0 42.0 Light brown fine to coarse sand (SP) - wet - dense 44.0 47.0 Light gray and brown mottled silty clay (CL), trace sand - moist - hard	36.0	extremely dense Drillers noted hard drilling from 34.0 to		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
42.0 42.0 Light brown fine to coarse sand (SP) - wet - dense 44.0 47.0 Light gray and brown mottled silty clay (CL), trace sand - moist - hard 100.6 100	12 88	graver write drilling		\$***
47.0 13 SS	12.0		wet - dense	
47.0 Light gray and brown mottled silty clay (CL), trace sand - moist - hard 100.6		Light brown line to coarse sailu (SF) -	Wot - donied	
moist - hard 100.6				42
				+
	50.0	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>		

				- 1	CLIENT				LOG OF B	ORING N	NUMI	BER B	-2-2					
AΞ		74	A			SUEZ North	America											
		<i>)</i> (1	- 1	ROJECT NA	^{ме} 'eek Energy F	acility Ash F	Pond	ARCHITEC	T/ENGI	NEEF	₹						
SITE LC											T	-O-UNCON	NFINED C	OMPRES	SSIVE S	TRENGTH	1	
Goli	iad (Cou	nt	у,	Fannin, T	Texas						TONS/F	2	3	4	5		
-T) ON (FT)		ш	-ANCE			DESCI	RIPTION OF MA	ATEDIAL				PLASTIC LIMIT %		VATER NTENT %		LIQUID LIMIT %		
DEPTH (FT) ELEVATION (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY		DESCR	RIPTION OF MA	ATERIAL		(pe UNIT DRY WT.	: / Ft.³	10	20 STANDA		40	50		
\times			SAN	REC	SURFACE	ELEVATION: +			(Continue		LBS	⊗ 10	PENETF 20	RATION E 30	LOWS/F 40	FT. 50		
52.0	14	SS			//// _{E2.0}	Light gray and I moist - hard	brown mottled s	silty clay (CL),	trace sand -	-			-1/					
54.0					54.6	Light brown fine	e to coarse sand	d (SP) - wet -	very dense			-	/			_		
56.0	15A	SS		_	34.0	Light brown and trace thin poorly	d light gray mott y-graded sand s	tled silty sand seams (SP) - i	y clay (CL), moist - hard	115	5.0		•		ŤÇ)* ×*	*56	[•] ⊗ **120
58.0 60.0	16	SS		_						117	7.8		×		-AC) *		⊗ _{***00/0}
62.0					62.0				1 (014)				\				//	**83/0.
64.0	17	SS	I	I		Light brown and - extremely der		slity fine san	a (SM) - wet				\ <u>\</u>			***50/	0 6'	
68.0					67.0	Light gray silty	clay (CH) trace	sand trace fi	ine to coarse	e						\ \ \ \ \	J.0	
70.0	18	SS	I	I	70.5	gravel - moist -		ouna, naoc n							+ _C)* × ×		
70.5 WL 3. WL 3. WL 3.		SS				Boring advance rock bit and dril Boring abandor tremie method	en to 8.0 feet ed from 6.0 feet ling fluid en from 8.0 feet ed from 16.0 feet ling fluid	to 16.0 feet w t to 10.0 feet t to 69.0 feet ite quick grou	with 3-inch with 3-inch t using			*Calibra	aleu re	ne i Offic	etel .		63.0	
	The	stra	tific	cati	on lines rep	present the appr	I								adual.			
WL 3.	5 feet	ws					BORING STARTED	11/1/11		AECOM (OFFIC	Greer	Kepler 1 Bay, V	Viscons		311		
WL 3.	5 feet	befo	ore	cas	sing installa	tion	BORING COMPLET			APP'D BY	CAH ′		AECOM J	2	DF 2			
								D-25/BZ			ТМТ			0022	999 I		┙	

				- 1 '	CLIENT					LOG OF E	BORII	NG NUM	BER B.	3-1			
AΞ	C	7	1				SUEZ North	America		450: "	OT/-	NOWE	D.				
	-		′	- 1	PROJECT N		∈ ek Energy F	Facility Δe	sh Pond	ARCHITE	CI/E	NGINEE	К				
SITE LO	CATI	ON		`	JOICTO (0.0	CK Lileigy i	acility A3	,,,,,,				UNCON	IFINED C	OMPRES	SSIVE ST	RENGTH
Goli	ad (Cou	nt	y,	Fannin,	, Te	exas						TONS/F	T. ²	3	4	5
F			ļ.,,										PLASTIC	v	VATER	. П	IQUID
DEPTH (FT) ELEVATION (FT)			DISTANCE				DEOO						LIMIT %		NTENT %	. LII	MIT %
DEPTH (FT) ELEVATION	Ŏ.	TYPE	DIST				DESCI	RIPTION OF	MATERIAL			Υ WΤ	10	20	30	40	50
DEP ELE	SAMPLE NO.	SAMPLE TYPE	SAMPLE	RECOVERY								UNIT DRY WT. LBS. / Ft.³	-	STANDA	.RD	-	-
\times	SAIV	SAN	SAN	REC	SURFAC	CE E	LEVATION: +	139.3				UNI_	⊗ 10	PENETR 20	ATION B 30	LOWS/F1 40	Γ. 50
	1	SS				I	Fill: Gray and I	brown mottle	ed clayey sand (thin silty sand s	SC), trace fi	ne	114.5	•	Ø		† _O ,	*
2.0	_	00	H	H		Ì	enses, trace ca		es and layers - n		-	114.0		[]19 []		+	
4.0	2	SS	Ц	H		5	stiff to hard					114.0	1	[∞] 17		Ţф,	
6.0	3	ss										115.3		· \ `\	26	†b',	*
0.0	4	SS	Ħ	Ħ								110.4	ı l			40,	*
8.0	+	55	\parallel	井									1.4	1 2	28		
10.0	5	SS	\prod	\prod								112.2	⊗ (* Q	*		
40.0	6	ss							seams encounte			124.6	•			\$ ************************************	*
12.0	+-	-	\dagger	${\dagger}$			feet to 10.9 fee to 15.5 feet	et, 12.5 feet to	to 12.7 feet, and	from 15.4 fe	eet			15	*		
14.0	7	SS	Ц	単		,	.0 10.0 1001					106.1	12		~ _		
16.0	8 8A	SS	Ц		15.							121.5	211		2	+	*
	9	ST	Ħ	П	17.				n sand (SC), trac nd seams - mois		v	113.7	T x	↓	*24	- D'	*
18.0			Ħ	F		$-$ \ $^{\epsilon}$	stiff to hard	,			/		1.7			\ +	
20.0	10	SS	Ц				Dark brown cla moist to wet - h		C), trace caliche	nodules -			X	-	1-	Jo,	*
00.0	11	ss		Ш								109.1	}	ı⊗		+	*
22.0	40	00	H	H	////22.	l	Light gray silty	sandy clay (CL), occasional	irregular silt	y	113.6		18		+ 0,	*
24.0	12	ļ	4	H			clayey caliche (wet - hard	(CL-caliche)	layers and lense	es - moist to	,			21			
26.0	13	SS	Ц	Ľ	26.		wet - Hara					117.9	•			 ‡, ,	*
	14	SS	I	I		I	Light gray claye	ey sand (SC)), occasional silt	y clay							
28.0	15.		$^{ m H}$	片	///28.		(CL-calicne) lay to wet - mediu		ses, trace fine g	ravei - moist		444.0	.0	,119			
30.0	15A	- 88	Ľ	Ė		1	Note: Saturate eet	ed zone enco	ountered from 28	3.0 feet to 28	3.5 /	111.3	•	* 9 6 20			
32.0	16	SS		П				fine to coars	se and (SM), trad	ce to little cla	ay,		•	&			
32.0			Н				race fine grave medium dense		che nodules - mo	oist to wet -	-		/	17~	-		
34.0							nealani acrisc	to very deric	30				/			-	
36.0	17	SS	\dagger	h		_							/				
36.5	 		Η	Ħ	[∴]∷]36.	. <u>5</u>	End of Boring						*Calibra	ited Per	netrome	eter	
							Boring advance HW casing driv		t with solid-stem	auger							
						E	Boring advance	ed from 6.0 fe	feet to 30.0 feet	with 4-inch							
							rock bit and drii Boring advance		feet to 35.0 fee	t with 3-inch							
						r	ock bit and dri	lling fluid									
							Boring abandoi Tremie method		ntonite quick gro	นเ นริเทิฐ							
						,	Split-spoons we	ere driven wi	ith cathead and	rope							
			L														
	The	stra	tifi	cat	ion lines i	repr	esent the appr	oximate bou	ındary lines betw	veen soil typ	es: i	n situ,	the transit	on may	y be gr	adual.	
WL D-	., L 1	ar-	_	in:	inetall-"			BORING STAF	RTED 44/0/44		AEC	OM OFFI		Kepler I		in Fic	44
WL				Ū	installati	on		BORING COM	11/8/11 IPLETED		ENT	ERED BY	s	Bay, V HEET NO		sin 543 DF	11
8.0) to 1	0.0 fe	eet	W	S			RIG/FOREMAN	11/8/11			D BY	l		1	1	
WL								KIG/FUKEMAI	D-25/BZ		APP	TM1	- A	ECOM JO	6022	5561	

			_	1 7	CLIENT I PR-GDF SUE	7 North	America		LOG OF E	BORING NUM	IBER	B-3-2			
AΞ	C		И		PROJECT NAME	2 1401111	America		ARCHITE	CT/ENGINEE	:R				
				(Coleto Creek I	Energy F	acility Ash	Pond			LING	ONEINED	OMPRE	OIVE OTD	ENOTU
SITE LOC Goli a			nt	۷.	Fannin, Texas	;					TON 1	ONFINED (S/FT. ² 2	3		ENGTH 5
) 1 (FT)					,		RIPTION OF N	/ATERIAL			PLAST LIMIT	IC '	WATER ONTENT %	LIC	UID IT %
DEPTH (FT	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY						UNIT DRY WT	10	20 STAND. PENET		-	50
X	/S		8	Z I	SURFACE ELEV			y fine sand (SM	I) trace cla		10	20			50
2.0	2	SS					oist - medium		i, iidoo ola	,	•) 12 &		+	
4.0	2A 3	SS SS	H	Ħ	∭ fine g	Brown and gravel, trac	d gray mottled ce roots - desid	silty sandy clay ccated - hard	(CL), trace	117.0		***18 • &		+0*	
8.0	4	SS		Ī	6.0 Light to litt	gray and vole fine gray	white silty san vel - moist - ha	dy clay (CL-cali ard	che), trace	122.1	•) × 18 18		+ 0*	
10.0	5	SS			10.0					113.8	/	♦ ♦ 19		*	
12.0	6	SS			12.0 mois	t - dense	·	che), trace to lit	•		•			<u></u> >∞∠	17
14.0	7	SS	П	Т	wet -	dense to	medium dense	e	ric graver -		\				
16.0	'	33				n sitly fine		nd (SM), trace to	little fine			\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	23		
18.0 20.0	8	SS			Drille	rs noted g	ravel while dri	lling from 16.0 f	eet to 19.0			7			
22.0	°	33			feet a	and 23.0 fe	eet and 24.0 fe	eet						⊗ ₄₂	
24.0	9	SS	П	Т	24.0 Light	brown fine	e to coarse sa	nd (SP) - wet - e	extremely				•	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	>
26.0					dens	e			•						**50
28.0	. 10	SS		_	29.5							•′			\ ⊗ **5
29.5					Borir HW (Borir rock Borir tremi	casing driving advance bit and drilling abandor e method	ven to 10.0 fee ed from 10.0 fe Iling fluid ned with bento	with solid-stem t eet to 20.0 feet v onite quick grout cathead and ro	with 3-inch using		* Call	orated Pe	netromet	er	
	The	stra	tific	cati	on lines represer	nt the appr	oximate bound	dary lines betwe	en soil type	es: in situ,				dual.	
/L Dry	y bef	ore o	as	<u>ing</u>	installation		BORING STARTI	ED 11/2/11		AECOM OFFI		5 Kepler en Bay, \		n 5431	1
/L 14.	0 fee	t WS	3				BORING COMPL	ETED 11/2/11		ENTERED BY	,	SHEET N			
/L							RIG/FOREMAN	D-25/BZ		APP'D BY		AECOM J	OB NO. 60225	561	

AECO							
<i>.</i> —••	M		OJECT NAM	SUEZ North America	ARCHITECT/E	NOINEE	:D
	~~•	l		eek Energy Facility Ash Pond	ARCHITECT/E	INGINEE	:K
SITE LOCATION							-O-UNCONFINED COMPRESSIVE STRENG
Goliad Co	ounty	, Fa	annin, T	exas			TONS/FT. ² 1 2 3 4 5
DEPTH (FT) ELEVATION (FT) SAMPLE NO.	SAMPLE TYPE SAMPLE DISTANCE	RECOVERY S		DESCRIPTION OF MATERIAL		UNIT DRY WT. LBS. / Ft.³	PLASTIC WATER LIQUID LIMIT % CONTENT % LIMIT %
× ×	SAN	₩ s	URFACE	ELEVATION: +139.2		E S	
2.0	ss			Fill: Gray and brown mottled clayey sand (So gravel, trace thin irregular silty sand seams a trace silty clay caliche nodules and layers - m stiff to hard	nd lenses,	117.3	♥ № 17
6.0	ss					111.4	⊗
8.0	ST -					124.4 117.7	
12.0	SS					114.9	*
14.0	"ST L					122.0 118.2	*****
18.0	ss					110.1	• \$ ₂₀ • *
20.0	SS	$\downarrow \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	20.6			115.2 102.3	● ⊗ 29 O*
22.0 11A	SS SS		23.0	Light brown silty sandy clay (CL) with caliche wet - very stiff to hard	- moist to	110.2 107.9	23 → * • Ø3 → *
	SS			Light brown, dark brown, and gray mottled cla (SC), trace organics, trace fine gravel, trace to silty sand seams and lenses - moist - hard	ayey sand thin irregular	110.8	◆ ⊗ ***2‡ ◆ * * * * * * * * * * * * * * * * * *
	ss		28.0	Triaxial Test S-14	= 27 dos		
	ss			Dry Unit Weight = 121 pcf Ø' Light brown clayey sand (SC) - moist to wet - dense	= 27 deg medium	115.7	• & 23
	ss		33.0	Light brown silty fine to coarse sand (SM), tramoist to wet - medium dense	ace clay -		♥ √ 26
34.0	ee 1			Light brown silty sandy clay (CL) with caliche gravel - moist to wet - hard	, trace fine		**22 + **
17A S	SS -	L		Light brown fine to coarse sand (SP) - wet - n dense	nedium		\$ 28
38.0			38.0	Grayish brown fine to coarse sand (SP) - wet	- dense		
40.0 18 5 42.0	ss			Drillers noted sporadic, thin gravel layers whi from 35.0 to 50.0 feet	le drilling		35
44.0							
46.0 19 5	ss]	Ι					/ 35
48.0							
50.0	$-\downarrow \downarrow$		50.0				
				continued	d		* Calibrated Penetrometer
							OM JOB NO. 60225561 SHEET NO. 1

TE LOCATION Colleto Croek Energy Facility Ash Pond TO LOCATION COLLETO CROEK FIRST COLLETO COLLETO CROEK FIRST CROEK				CLIENT IPR-GDF	SUEZ Nort	h America	LOG OF BO	RING NUI	MBER E	3-4-1			
The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual. Continued Continued	AEC	DN	- 1	PROJECT NA	AME		ARCHITECT	/ENGINE	≣R				
Continued Cont	SITE LOCATI)NI		Coleto C	reek Energy	Facility Ash Pond			☐ UNC	ONFINE	O COMPRE	SSIVE ST	RENGTH
Solution			nty,	Fannin,	Texas				TONS	S/FT. ²			
Solution	-T) ON (FT)		ANCE		DES	CDIDTION OF MATERIA			LIMIT 9			% LI	IMIT %
Solution	DEPTH (FT) ELEVATION PLE NO.	ΤΥΡΙ	DIST		DES	CRIPTION OF MATERIA	L	 Σ ΜΙ		20	30		
20 ss		MPLE	MPLE					S. / FI	×			BLOWS/F	т
### Stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual. The stratification lines represent the approximate boundary lines between soil types: in situ, the translition may be gradual.	_		S E	2,57.51,0	Gravish howr		•	1) 5 🖺					
BORING STARTED 11/7/11 BORING COMPLETED 11/7/11	51.5				caliche - mois caliche - mois Boring advan HW casing d Boring advan rock bit and c Boring advan rock bit and c Boring aband tremie metho	st to wet - very dense ced to 6.0 feet with solid- riven to 5.5 feet ced from 6.0 feet to 30.0 frilling fluid ced from 30.0 feet to 50.0 frilling fluid oned with bentonite quick d	stem auger feet with 4-inch Difeet with 3-inch Grout using		*Calib	rated F	Penetrom	eter	
BORING STARTED 11/7/11 BORING COMPLETED 11/7/11	The	strat	ifica	tion lines re	epresent the ap	proximate boundary lines	between soil types	: in situ,	the trans	ition n	nay be g	radual.	
BORING COMPLETED ENTERED BY SHEET NO. OF CAH 2 2	/L					BORING STARTED	A		ICE 103	5 Keple	er Drive		:11
17.7 17 12.7 17.7	VL			y mistanatiOi		BORING COMPLETED	Е	NTERED B	Y		NO.	OF	••
D-25/BZ TMT 60225561	10.0 to VL	12.U T	eet			RIG/FOREMAN	A	PP'D BY		AECON			

A = C	~~	IPR-GDF	SUEZ North	America	LOG OF B	BORING NUW	IBER	3-4-2			
AEC	OM	PROJECT NA	ME		ARCHITEC	CT/ENGINEE	R				
ITE LOCAT	TION	Coleto Cr	eek Energy	Facility Ash Pond			○ LINC	ONFINED CO	MPRESSIN	/F STREN	NGTH
		ty, Fannin, 1	Гехаѕ				-O-TON:	S/FT. ²	3 4	5	.0111
(FT)							PLASTI LIMIT 9	6 CON	ATER TENT %	LIQUI LIMIT	
ELEVATION (FT)	SAMPLE TYPE	OVERY	DESC	RIPTION OF MATERIAL		UNIT DRY WT.	10	20 STANDAF	30 40	50	
NA NA	SAN	SURFACE	ELEVATION: +	119.6		LBS L	⊗ 10		ATION BLOV 30 40		
2.0	+			vn and brown silty fine to me e gravel, trace roots, trace cl		115.3 122.1	•	23	, , ,		
.0 2	2 SS	4.0	Durind Tananil	: Dark brown and black orga	nio cilty clay				⊗33	+	
. 0 3	s ss	6.0		ittle sand - desiccated - hard		125.8	7		ğ 28	φ*	
3. 0 4	SS			d light gray mottled silty clay el, trace irregular caliche noo			•	⊗ 22		† * *	_
).0		10.0	Note: Dark gra to 8.3 feet	ay silty sandy clay (CL) layer	from 8.0 fee	et					
2.0	s ss	13.0	Light brown sil	ty fine sand (SM), trace clay e iner was used within split-sp		124.6	♦ ⊗	12			
1.0			∖Sample 6	• •		_/	1				
5.0 ⁷	' SS		Light brown fin dense	e to coarse sand (SP) - wet	- medium		8	13/			
3.0								;/ / /\			
0.0 8 2.0	3 SS						•	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
4.0			Drillers noted h	nard drilling at 22.0 feet		400.0		1 \			
6.0	SS	27.0	Note: White s 25.1 feet	ilty clay (CL-caliche) layer fro	om 24.7 feet	to 106.9			29		
3.0	0 88 1	29.6	Light gray silty dense	fine sand (SM), trace clay -	wet - mediun	n	Ø				
).0 ₁	0 SS I	30.5		e to coarse sand (SP) - wet	- dense			** P		⊗ 43	
0.5			HW casing driv Boring advance rock bit and dr Boring abando tremie method	ed from 10.0 feet to 29.0 fee illing fluid ned with bentonite quick gro	t with 3-inch ut using		Can	raicu i cin	SHOTHER		
 Th	ne stratifi	cation lines re	present the app	roximate boundary lines between	veen soil type	es: in situ	the trans	sition may	be grad	ual	
				BORING STARTED	voori gon type	AECOM OFFI	CE 103	5 Kepler D	rive		
Dry be	efore cas	sing installation	1	11/2/11 BORING COMPLETED 11/2/11			Gre	en Bay, W SHEET NO.	. OF	54311	
14.0 fc	eet WS					ENTERED BY	ł		1	1	
				RIG/FOREMAN D-25/BZ		APP'D BY	г	AECOM JO	602255	61	

CLIENT LOG OF BORING NUMBER B-5-1 **IPR-GDF SUEZ North America** PROJECT NAME ARCHITECT/ENGINEER Coleto Creek Energy Facility Ash Pond -O UNCONFINED COMPRESSIVE STRENGTH SITE LOCATION TONS/FT.2 Goliad County, Fannin, Texas 5 **PLASTIC** WATER LIQUID **ELEVATION (FT)** SAMPLE DISTANCE CONTENT % LIMIT % LIMIT % DEPTH (FT) \times **DESCRIPTION OF MATERIAL** SAMPLE TYPE Ķ SAMPLE NO. UNIT DRY V LBS. / Ft.³ 10 30 50 STANDARD REC \otimes PENETRATION BLOWS/FT SURFACE ELEVATION: +139.6 20 Fill: Light gray and brown mottled clayey sand (SC), 128.2 1 SS trace fine gravel, occasional thin irregular silty sand 2.0 34 seams, trace silty clay caliche nodules and layers - moist 124.7 2 SS to wet - very stiff to hard 4.0 127 5 Ø 3 SS 6.0 111.9 4 SS 8.0 5 SS 10.0 118.7 6 SS 12.0 108.9 7A SS 14.0 8 SS 16.0 111.3 9 SS 18.0 20.0 32 11 Gray and brown silty clay (CL), trace organics, trace 116.1 11A SS 22.0 118.2 sand, trace thin saturated silty sand seams and lenses -12 ST moist to wet - very stiff to hard 24.0 White and gray silty clay (CL-caliche), little sand - moist 107.5 0* 13 SS to wet - stiff to hard 26.0 99.1 ф*****С* 14 ST 28.0 102.5 15 SS 30.0 103.6 16 SS \otimes 32.0 . ⊗ 33 Gray silty fine to coarse sand (SM), trace fine gravel, 17 SS trace clay - wet - dense 34.0 Gray fine to coarse sand (SP), trace fine gravel - wet -80/0.9' 36.0 18 SS extremely dense to very dense Note: Hard white silty clay (CL-caliche) in tip of Sample 38.0 40.0 19 SS 42.0 Gray silty fine sand (SM) - wet - dense to extremely 44.0 l[⊗]42 46.0 20 SS Drillers noted hard drilling and gravel and cobbles from STS.GDT 43.0 to 45.0 feet 48.0 50.0 .GPJ ... continued Calibrated Penetrometer 60225561. AECOM JOB NO. **60225561** SHEET NO. The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual

					LIENT		LOG OF BO	ORING	NUN	MBER B -	5-1			
AΞ	C	DN	1		PR-GDF SUEZ North	America	ARCHITEC	T/EN/	PINIEE	:D				
	•		•	1	Coleto Creek Energy F	acility Ash Pond	ARCHITEC	,1/EINC	JINEE	IK.				
SITE LO						,				-O-UNCON	FINED CO	MPRESS	VE STRE	NGTH
Golia	ad C	Cour	nty	/, F	Fannin, Texas					TONS/F	2	3 4	5	
Ē.			بب							PLASTIC	WA	TER	LIQU	JID
DEPTH (FT) ELEVATION (FT)		ш	SAMPLE DISTANCE		DESCE	RIPTION OF MATERIAL		١.		LIMIT %	CONT	ENT %	LIMIT ———	
DEPTH (FT) ELEVATION	Š.	SAMPLE TYPE	DIST	Σ.	DESCR	RIFTION OF WATERIAL		ed)	3	10	20 :	30 4		
PE EE	SAMPLE NO.	1PLE	1PLE	RECOVERY					LBS. / Ft. ³	+	STANDAR		-	
\overline{X}	SAN	SAN	SAI	REC	SURFACE ELEVATION: +1		(Continue	ed)	LBS	⊗ 10	PENETRA 20	TION BLC 30 4		
	21	SS		Ī	No recovery Sa	mple 21		_		*Calibra	ted Pene	tromete	r 🕸	50/
50.4					HW casing driv Boring advance rock bit and dril Boring advance rock bit and dril Boring abandor tremie method	ed from 6.0 feet to 32.0 feet wit ling fluid ed from 32.0 feet to 50.0 feet w	h 4-inch rith 3-inch using							
														_
	The	strat	ific	atio	on lines represent the appro	oximate boundary lines betwee	en soil type	s: in	situ,				lual.	_
VL Dr y	/ bef	ore c	asiı	ng	installation	BORING STARTED 11/7/11		AECON	/ OFF		Kepler Di Bay, Wi		54311	
VL						BORING COMPLETED 11/7/11	1	ENTER	RED BY	r s	HEET NO.	OF 2	2	
0.0	0 to 10.0 feet WS					RIG/FOREMAN		APP'D	BY		ECOM JOE			
						D-25/BZ			TM	ı		002255	וֹסו	

(1) GENERAL INFORMATION		(2) FACILI	ΓΥ /OWNER	INFORMATION	
Unique Well No. Well ID No.	County	Facility Nam	e		_
	Goliad		reek Energ		
	Gov't Lot (if applicable)	Facility ID		License/Permit/Moni	toring No.
Grid Location 1/4 of Sec.	; T N; R E	Street Address 45 FM 29	987		
13453086.8 ft. \boxtimes N. \square S., 2543146.7 ft. \boxtimes E. \square W.		City, Village Goliad Co		nin, Texas 77960	
Local Grid Origin (estimated:) or Well Location Lat ' " Long ' " or			Present Well Owner Original Owner Coleto Creek Energy Facility Same		
Lat Long State Plane ft. N		ss or Route of C			
	Jnique Well No.	City, State, Zip Code			
	eplacement Well		exas 7796		
(3) WELL/DRILLHOLE/BOREHOLE		(4) PUMP, I	<u> INER, SCRI</u>	EEN, CASING, & SEA	ALING MATERIAL
Water Well is a	Well Construction Report available, please attach.	Liner(s) Screen I	Piping Removed? Removed? Removed? Left in Place?	ed?	No X Not Applicable No X Not Applicable No X Not Applicable No
☑ Drillhole / Borehole Construction Type: ☑ Drilled □ Driven (Sandpoint) □ Dug ☐ Other (Specify) □ □ Driven (Sandpoint) □ Dug		Was Casing Cut Off Below Surface? Did Sealing Material Rise to Surface? Did Material Settle After 24 Hours? If Yes, Was Hole Retopped? Yes No Yes No Yes No			
Formation Type: Unconsolidated Formation Dedrock Total Well Depth (ft) 121.0 Casing Diameter (in.) 4.0		Required Method of Placing Sealing Material Conductor Pipe - Gravity Screened & Poured Other (Explain) (Bentonite Chips)			
(From ground surface) Casing Depth (ft.) Lower Drillhole Diameter (in.) 3.0		Sealing Materials Neat Cement Grout Sand-Cement (Concrete) Grout For monitoring wells and monitoring well boreholes only			
Was Well Annular Space Grouted? If Yes, To What Depth? Depth to Water (Feet) 14.0				1	
(5) Sealing Materia	Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
Quik-Gro		0 0	121.0	50 gallons	or man worgin
Quik-Ore		Surface	121.0	Jo galloris	
					
(6) Comments					
(7) Name of Person or Firm Doing Sealing Wo AECOM Technical Services, Inc.		nent			
Signature of Person Doing Work	Date Signed 11/6/11				
	Telephone Number 920-468-1978				
City, State, Zip Code Green Bay, Wisconsin 54311					

(1) GENERAL INFORMATION		(2) FACILI	ΓΥ /OWNER	INFORMATION	
Unique Well No. Well ID No.	County	Facility Nam	ie		
	Goliad		reek Energ		
	Gov't Lot (if applicable)	Facility ID	_	License/Permit/Moni	itoring No.
Grid Location 1/4 of Sec	; T N; R E W	Street Addre 45 FM 29	987		
13453065.2 ft. ⊠ N. □ S., 2543576.6 ft. ⊠ E. □ W.		City, Village Goliad C		nin, Texas 77960	
Lat (estimated:) or Well Location Lat or Long		Present Well	Owner eek Energy I	Original Ov Facility Same	vner
Lat " Long " or State Plane ft. N ft. E D Zone			ss or Route of C		
Reason For Abandonment Unique Well No.			Cip Code	_	
	eplacement Well		exas 7796		
(3) WELL/DRILLHOLE/BOREHOLE		(4) PUMP , I	LINER, SCRI	EEN, CASING, & SE	ALING MATERIAL
Water Well is a	Well Construction Report vailable, please attach.	Liner(s) Screen I	Piping Remove Removed? Removed? Left in Place?	ed?	No Not Applicable No Not Applicable No Not Applicable No
☑ Drillhole / Borehole Construction Type: ☑ Drilled □ Driven (Sandpoint) □ Dug ☐ Other (Specify) □ □ Driven (Sandpoint) □ Dug		Was Casing Cut Off Below Surface? Did Sealing Material Rise to Surface? Did Material Settle After 24 Hours? If Yes, Was Hole Retopped? Yes X No Yes No Yes No			
Formation Type: Unconsolidated Formation Bedrock Total Well Depth (ft) 119.5 Casing Diameter (in.) 4.0		Required Method of Placing Sealing Material Conductor Pipe - Gravity Screened & Poured Other (Explain) (Bentonite Chips)			
(From ground surface) Casing Depth (ft.) Lower Drillhole Diameter (in.) 3.0		Sealing Materials For monitoring wells and Neat Cement Grout monitoring well boreholes only Sand-Cement (Concrete) Grout			
Was Well Annular Space Grouted? If Yes, To What Depth?	Concrete Bentonite Chips Clay-Sand Slurry Granular Bentoni			Bentonite Chips Granular Bentonite Bentonite-Cement Grout	
Depth to Water (Feet)		Ch:	ipped Bentonite	i 🗆	Bentonite - Sand Slurry
(5) Sealing Material	Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
Quik-Gro	out	Surface	19.5	50 gallons	
(6) Comments					
(7) Name of Person or Firm Doing Sealing Wo AECOM Technical Services, Inc		nent			
Signature of Person Doing Work	Date Signed 11/4/11				
	Telephone Number 920-468-1978				
City, State, Zip Code Green Bay, Wisconsin 54311					

(1) GENERAL INFO	RMATION		(2) FACILI	ΓΥ /OWNER	INFORMATION		
Unique Well No.	Well ID No.	County Goliad		reek Energ	y Facility		
Common Well Name		Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	toring No.	
		; T N; R B W	Street Address of Well 45 FM 2987				
		43676.7 ft. E. W.		City, Village, or Town Goliad County, Fannin, Texas 77960			
•	•) or Well Location	Present Well	Present Well Owner Original Owner			
Lat " Long " or State Plane ft. N ft. E Tone				Coleto Creek Energy Facility Same Street Address or Route of Owner			
Reason For Abandonment Unique Well No.			City, State, Zip Code				
Geotech Bo		eplacement Well		exas 7796			
(3) WELL/DRILLHO			(4) PUMP , I	LINER, SCRI	EEN, CASING, & SEA	LING MATERIAL	
Original Construction Monitoring Well Water Well	If a	Well Construction Report available, please attach.	Liner(s) Screen	Piping Removed? Removed? Removed? Left in Place?	ed?	No Not Applicable No Not Applicable No Not Applicable No	
☑ Drillhole / Borehole Construction Type: ☑ Drilled □ Driven (Sandpoint) □ Dug ☐ Other (Specify) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □			Was Casing Cut Off Below Surface? Did Sealing Material Rise to Surface? Did Material Settle After 24 Hours? If Yes, Was Hole Retopped? Yes No Yes No Yes No				
Formation Type: Unconsolidated Formation Bedrock 70.5		Required Method of Placing Sealing Material Conductor Pipe - Gravity Screened & Poured Other (Explain) (Bentonite Chips)					
Total Well Depth (ft) 70.5 Casing Diameter (in.) 4.0 (From ground surface) Casing Depth (ft.) 10.0 Lower Drillhole Diameter (in.) 3.0		Sealing Materials For monitoring wells and Neat Cement Grout monitoring well boreholes only Sand-Cement (Concrete) Grout					
Was Well Annular Space Grouted? Yes No Unknown If Yes, To What Depth? N/A Feet 3.5		Cla	ncrete ny-Sand Slurry ntonite-Sand Slu	·	Bentonite Chips Granular Bentonite Bentonite-Cement Grout		
Depth to Water (Feet)		- I I lood	_	To (Ft.)	No. Yards, Sacks,	Bentonite - Sand Slurry Mix Ratio	
(5)	Sealing Materia	l Oseu	From (Ft.)	10 (Ft.)	Sealant, or Volume	or Mud Weight	
	Quik-Gro	out	Surface	70.5	30 gallons		
(6) Comments							
(7) Name of Person or Firm AECOM Technica			nent				
Signature of Person Doing		Date Signed 11/2/11					
Street or Route 1035 Kepler Drive		Telephone Number 920-468-1978					
City, State, Zip Code Green Bay, Wisco	nsin 54311						

(1) GENERAL INFO	DMATION	_		(2) FACILI	TV /OWNED	INFORMATION	
Unique Well No.	Well ID No.	County		Facility Nam		INFORMATION	
5 mg m 7 m 7 m			liad		reek Energ	y Facility	
Common Well Name	B-3-1	Gov't Lot	(if applicable)	Facility ID		License/Permit/Monit	toring No.
Grid Location 1.	/4 of Sec	; T N; R.	E	Street Address of Well 45 FM 2987			
13451245.3 ft. ⋈ N. ☐ S., 2543663.1 ft. ⋈ E. ☐ W. Local Grid Origin ☐ (estimated: ☐) or Well Location ☐ Lat " " " or			ounty, Fani	nin, Texas 77960			
		Present Well Coleto Cre	Owner eek Energy F	Facility Original Ow Same	rner		
State Planeft. Nft. E. S C N Zone			Street Address 45 FM 29	ss or Route of C 987)wner		
Reason For Abandonment		Inique Well No.		City, State, Zip Code			
Geotech Bo		eplacement Well			exas 7796		
(3) WELL/DRILLHO			<u> </u>	(4) PUMP , I	LINER, SCRI	EEN, CASING, & SEA	
Original Construction Monitoring Well Water Well	If a	Well Construction		Liner(s) Screen I	Piping Removed? Removed? Removed? Left in Place?	Yes Yes	No Not Applicable No Not Applicable No Not Applicable No Not Applicable
 ☑ Drillhole / Borehole Construction Type: ☑ Drilled ☑ Driven (Sandpoint) ☑ Dug ☑ Other (Specify) 		Was Casing Cut Off Below Surface? Did Sealing Material Rise to Surface? Did Material Settle After 24 Hours? If Yes, Was Hole Retopped? Yes No Yes No Yes No					
Formation Type: Unconsolidated Formation Bedrock Total Well Depth (ft) Casing Diameter (in.)4.0			Required Method of Placing Sealing Material Conductor Pipe - Gravity Screened & Poured Other (Explain) (Bentonite Chips)				
(From ground surface) Casing Depth (ft.) Lower Drillhole Diameter (in.) 3.0		Sealing Materials Neat Cement Grout Sand-Cement (Concrete) Grout For monitoring wells and monitoring well boreholes only					
Was Well Annular Space Grouted? Yes No Unknown If Yes, To What Depth? N/A Feet		Cor	ncrete ny-Sand Slurry ntonite-Sand Slu		Bentonite Chips Granular Bentonite Bentonite-Cement Grout		
Depth to Water (Feet)	N/A			L Chi	ipped Bentonite		Bentonite - Sand Slurry
(5)	Sealing Materia	Used		From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
Quik-Grout		Surface	36.5	20 gallons			
(6) Comments							
(7) Name of Person or Firm AECOM Technica			Date of Abandonn	nent			
Signature of Person Doing		Date Sig 11/8/1					
Street or Route		Telephone Number					
1035 Kepler Drive		920-468-1978	3				
City, State, Zip Code							
Green Bay, Wisconsin 54311							

(1) GENERAL INFOR			(2) FACILI	ΓΥ /OWNER	INFORMATION	
Unique Well No.	Well ID No.	County Goliad	Facility Nam Coleto C	e reek Energ	y Facility	
Common Well Name		Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	toring No.
Grid Location 1/4	of Sec.	; T N; R B W	Street Address of Well 45 FM 2987			
		43721.2 ft. ⊠ E. □ W.	City, Village Goliad C		nin, Texas 77960	
•	•) or Well Location	Present Well Owner Coleto Creek Energy Facility Original Owner Same			
Lat ' " Long ' " or State Plane ft. N ft. E D Zone			Street Address or Route of Owner 45 FM 2987			
Reason For Abandonment Unique Well No. Geotech Boring of Replacement Well			City, State, Zip Code Fannin, Texas 77960			
(3) WELL/DRILLHOL				_	EEN, CASING, & SEA	LING MATERIAL
Original Construction D Monitoring Well Water Well Drillhole / Borehole	11/2/ If a		Pump & Liner(s) Screen I Casing	Removed? Removed? Removed? Left in Place?	ed?	No X Not Applicable No X Not Applicable No X Not Applicable No Not Applicable
Construction Type: Drilled Driven (Sandpoint) Dug Other (Specify)		Was Casing Cut Off Below Surface? Did Sealing Material Rise to Surface? Did Material Settle After 24 Hours? If Yes, Was Hole Retopped? Yes No Yes No Yes No				
Formation Type: Unconsolidated Formation Bedrock Total Well Depth (ft) 29.5 Casing Diameter (in.) 4.0		Required Method of Placing Sealing Material Conductor Pipe - Gravity Screened & Poured Other (Explain) (Bentonite Chips)				
(From ground surface) Casing Depth (ft.) Lower Drillhole Diameter (in.) 3.0		Sealing Materials Neat Cement Grout Sand-Cement (Concrete) Grout For monitoring wells and monitoring well boreholes only				
Was Well Annular Space If Yes, To What	Depth?	Yes No Unknown	Cla	ncrete ny-Sand Slurry ntonite-Sand Slu	·	Bentonite Chips Granular Bentonite Bentonite-Cement Grout
Depth to Water (Feet)		-	☐ Ch	ipped Bentonite		Bentonite - Sand Slurry
(5)	Sealing Materia	! Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
	Quik-Gro	out	Surface	29.5	20 gallons	
(6) Comments						
(7) Name of Person or Firm			nent			
AECOM Technical Signature of Person Doing V		2. 11/2/11 Date Signed				
		11/2/11				
Street or Route 1035 Kepler Drive		Telephone Number 920-468-1978				
City, State, Zip Code Green Bay, Wiscon	sin 54311	·				

(1) GENERAL INFO	DMATION		(2) EACILI	TV /OWNED	INFORMATION	
Unique Well No.	Well ID No.	County	Facility Nam		INFORMATION	
		Goliad	Coleto Creek Energy Facility			
Common Well Name		Gov't Lot (if applicable)	Facility ID		License/Permit/Monit	oring No.
1/4 of 1 Grid Location	1/4 of 1/4 of Sec ; T N; R E Grid Location W		Street Addre			
1340613.7 ft. \boxtimes N. \square S., 2543740.9 ft. \boxtimes E. \square W. Local Grid Origin \square (estimated: \square) or Well Location \square			ounty, Fan	nin, Texas 77960		
Lat Long or well Location or		Present Well Owner Coleto Creek Energy Facility Original Owner Same				
State Plane ft. N ft. E Zone			Street Address or Route of Owner 45 FM 2987			
Reason For Abandonment Unique Well No.			City, State, Zip Code			
Geotech Bo		eplacement Well		exas 7796		
(3) WELL/DRILLHO			(4) PUMP, I	LINER, SCR	EEN, CASING, & SEA	
Original Construction Monitoring Well Water Well	If a	Well Construction Report vailable, please attach.	Liner(s) Screen I	c Piping Remove Removed? Removed? Left in Place?	Yes Yes	No Not Applicable No Not Applicable No Not Applicable No Not Applicable
Drillhole / Boreh Construction Type: Drilled Other (Specify)		Sandpoint) Dug	Did Sea Did Ma	sing Cut Off Be ling Material Ri terial Settle Afte , Was Hole Rete	ise to Surface?	Yes X No Yes No Yes X No Yes No
Formation Type: Unconsolidated F Total Well Depth (ft)	E1 E	Bedrock Casing Diameter (in.) 5.0	Co	d Method of Planductor Pipe - Coreened & Pourecontonite Chips)	Other (E	tor Pipe - Pumped Explain)
(From ground surface) Casing Depth (ft.) 4.0		Sealing Materials For monitoring wells and Neat Cement Grout monitoring well boreholes only				
Was Well Annular Space Grouted? Was Well Annular Space Grouted? If Yes, To What Depth? Depth to Water (Feet) N/A Feet		Cola Cla	nd-Cement (Con ncrete ny-Sand Slurry ntonite-Sand Slu ipped Bentonite	ırry	Bentonite Chips Granular Bentonite Bentonite-Cement Grout Bentonite - Sand Slurry	
(5)	Sealing Material	Used	From (Ft.)	To (Ft.)	No. Yards, Sacks, Sealant, or Volume	Mix Ratio or Mud Weight
	Quik-Gro	out	Surface	51.5	25 gallons	
				_		
(6) Comments						
(7) Name of Person or Fir AECOM Technica Signature of Person Doing	al Services, Inc		nent			
Street or Route 1035 Kepler Drive		Telephone Number 920-468-1978				
City, State, Zip Code Green Bay, Wisco	onsin 54311					

(1) GENERAL INFORMATION	(2) FACILITY /OWNER INFORMATION			
Unique Well No. Well ID No. County	Facility Name			
Goliad	Coleto Creek Energy Facility			
Common Well Name B-4-2 Gov't Lot (if applicable)	Facility ID License/Permit/Monitoring No.			
	Street Address of Well 45 FM 2987			
13450619.3 ft. ⋈ N. □ S., 2543806.7 ft. ⋈ E. □ W.	City, Village, or Town Goliad County, Fannin, Texas 77960			
Local Grid Origin (estimated:) or Well Location	Present Well Owner Original Owner			
Lat or or ft. N ft. E Zone	Coleto Creek Energy Facility Same Street Address or Route of Owner 45 FM 2987			
Reason For Abandonment Unique Well No.	City, State, Zip Code			
Geotech Boring of Replacement Well	Fannin, Texas 77960			
(3) WELL/DRILLHOLE/BOREHOLE INFORMATION	(4) PUMP, LINER, SCREEN, CASING, & SEALING MATERIAL			
Original Construction Date 11/2/11 Monitoring Well Water Well If a Well Construction Report is available, please attach.	Pump & Piping Removed? Liner(s) Removed? Screen Removed? Casing Left in Place? Yes No Not Applicable Yes No Not Applicable Yes No Not Applicable Yes No Not Applicable			
☑ Drillhole / Borehole Construction Type: ☑ Drilled	Was Casing Cut Off Below Surface? Did Sealing Material Rise to Surface? Did Material Settle After 24 Hours? If Yes, Was Hole Retopped? Yes No Yes No Yes No			
Formation Type: Unconsolidated Formation Bedrock Total Well Depth (ft) 31.0 Casing Diameter (in.) 4.0	Required Method of Placing Sealing Material Conductor Pipe - Gravity Screened & Poured Other (Explain) (Bentonite Chips)			
(From ground surface) Casing Depth (ft.) 5.0 Lower Drillhole Diameter (in.) 3.0	Sealing Materials For monitoring wells and monitoring well boreholes only Sand-Cement (Concrete) Grout			
Was Well Annular Space Grouted? Yes No Unknown If Yes, To What Depth? N/A Depth to Water (Feet) 14.0	Concrete Clay-Sand Slurry Bentonite-Cament Grout Bentonite-Cement Grout Chipped Bentonite Bentonite - Sand Slurry Bentonite - Sand Slurry Bentonite - Sand Slurry			
(5) Sealing Material Used	From (Ft.) To (Ft.) No. Yards, Sacks, Sealant, or Volume or Mud Weight			
Quik-Grout	Surface 31.0 20 gallons			
(6) Comments				
(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc. Date of Abandon 11/2/11	ment			
Signature of Person Doing Work Date Signed 11/2/11				
Street or Route Telephone Number 920-468-1978				
City, State, Zip Code Green Bay, Wisconsin 54311				

(1) GENERAL INFORMATION	(2) FACILITY /OWNER INFORMATION			
Unique Well No. Well ID No. County	Facility Name			
Goliad	Coleto Creek Energy Facility			
Common Well Name B-5-1 Gov't Lot (if applicable)	Facility ID License/Permit/Monitoring No.			
1/4 of 1/4 of Sec ; T N; R E	Street Address of Well 45 FM 2987			
13451003.7 ft. ⋈ N. □ S., 2543693.8 ft. ⋈ E. □ W	City, Village, or Town Goliad County, Fannin, Texas 77960			
Local Grid Origin (estimated:) or Well Location	Present Well Owner Original Owner			
Lat o Long o or	Coleto Creek Energy Facility Same Street Address or Route of Owner 45 FM 2987			
State Plane ft. N ft. E Zone Reason For Abandonment Unique Well No.	45 FIVI 2967 City, State, Zip Code			
Geotech Boring of Replacement Well	Fannin, Texas 77960			
(3) WELL/DRILLHOLE/BOREHOLE INFORMATION	(4) PUMP, LINER, SCREEN, CASING, & SEALING MATERIAL			
Original Construction Date 11/7/11 Monitoring Well Water Well If a Well Construction Report is available, please attach.	Pump & Piping Removed? Liner(s) Removed? Screen Removed? Casing Left in Place? Yes No Not Applicable Yes No Not Applicable Yes No Not Applicable Yes No Not Applicable Yes No Not Applicable			
☑ Drillhole / Borehole Construction Type: ☑ Drilled □ Driven (Sandpoint) □ Dug ☐ Other (Specify) □	Was Casing Cut Off Below Surface? Did Sealing Material Rise to Surface? Did Material Settle After 24 Hours? If Yes, Was Hole Retopped? Yes No Yes No Yes No			
Formation Type: Unconsolidated Formation Dedrock Total Well Depth (ft) 50.9 Casing Diameter (in.) 4.0	Required Method of Placing Sealing Material Conductor Pipe - Gravity Screened & Poured (Bentonite Chips) Conductor Pipe - Pumped Other (Explain)			
(From ground surface) Casing Depth (ft.) 5.0 Lower Drillhole Diameter (in.) 3.0	Sealing Materials For monitoring wells and Neat Cement Grout monitoring well boreholes only Sand-Cement (Concrete) Grout			
Was Well Annular Space Grouted? Yes No Unknow If Yes, To What Depth? N/A Depth to Water (Feet) N/A	Concrete Department China			
(5) Sealing Material Used	From (Ft.) To (Ft.) No. Yards, Sacks, Sealant, or Volume or Mud Weight			
Quik-Grout	Surface 50.9 25 gallons			
(6) Comments				
(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc. Date of Abando 11/7/11	onment			
Signature of Person Doing Work Date Signed 11/7/11				
Street or Route Telephone Number 1035 Kepler Drive 920-468-1978				
City, State, Zip Code Green Bay, Wisconsin 54311				

AECOM General Notes

Drilling and Sampling Symbols:

SS: Split Spoon - 1-3/8" I.D. 2" O.D. (Unless otherwise noted)	IS: Hollow Stem Auger
ST: Shelby Tube-2" O.D. (Unless otherwise noted)	VS : Wash Sample
PA : Power Auger F	T:Fish Tail
DB : Diamond Bit-NX, BX, AX	B: Rock Bit
AS : Auger Sample BS	S : Bulk Sample
JS : Jar Sample PI	M : Pressuremeter Test
VS : Vane Shear G	SS : Giddings Sampler
OS : Osterberg Sampler	

Standard "N" Penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2 inch O.D. split spoon sampler, except where otherwise noted.

Water Level Measurement Symbols:

WL: Water Level	WCI: Wet Cave In
WS: While Sampling	DCI : Dry Cave In
WD: While Drilling	BCR: Before Casing Removal
AB : After Boring	ACR: After Casing Removal

Water levels indicated on the boring logs are the levels measured in the boring at the time indicated. In pervious soils, the indicated elevations are considered reliable groundwater levels. In impervious soils, the accurate determination of groundwater elevations may not be possible, even after several days of observations; additional evidence of groundwater elevations must be sought.

Gradation Description and Terminology:

Coarse grained or granular soils have more than 50% of their dry weight retained on a #200 sieve; they are described as boulders, cobbles, gravel or sand. Fine grained soils have less than 50% of their dry weight retained on a #200 sieve; they are described as clay or clayey silt if they are cohesive and silt if they are non-cohesive. In addition to gradation, granular soils are defined on the basis of their relative in-place density and fine grained soils on the basis of their strength or consistency and their plasticity.

Major Component of Sample	Size Range	Description of Other Components Present in Sample	Percent Dry Weight
Boulders	Over 8 in. (200 mm)	Trace	1-9
Cobbles	8 inches to 3 inches (200 mm to 75 mm)	Little	10-19
Gravel	3 inches to #4 sieve (75 mm to 4.76 mm)	Some	20-34
Sand	#4 to #200 sieve (4.76 mm to 0.074 mm)	And	35-50
Silt	Passing #200 sieve (0.074 mm to 0.005 mm)		
Clay	Smaller than 0.005 mm		

Consistency of Cohesive Soils:

Relative Density of	Granular Solls:
---------------------	-----------------

Unconfined Compressive Strength, Qu, tsf	Consistency	N-Blows per foot	Relative Density
<0.25	Very Soft	0 - 3	Very Loose
0.25 - 0.49	Soft	4 - 9	Loose
0.50 - 0.99	Medium (firm)	10 - 29	Medium Dense
1.00 - 1.99	Stiff	30 - 49	Dense
2.00 - 3.99	Very Stiff	50 - 80	Very Dense
4.00 - 8.00	Hard	>80	Extremely Dense
>8.00	Very Hard		

AECOM Field and Laboratory Procedures

Field Sampling Procedures

Auger Sampling (AS)

In this procedure, soil samples are collected from cuttings off of the auger flights as they are removed from the ground. Such samples provide a general indication of subsurface conditions; however, they do not provide undisturbed samples, nor do they provide samples from discrete depths.

Split-Barrel Sampling (SS) - (ASTM Standard D-1586-99)

In the split-barrel sampling procedure, a 2-inch O.D. split barrel sampler is driven into the soil a distance of 18 inches by means of a 140-pound hammer falling 30 inches. The value of the Standard Penetration Resistance is obtained by counting the number of blows of the hammer over the final 12 inches of driving. This value provides a qualitative indication of the in-place relative density of cohesionless soils. The indication is qualitative only, however, since many factors can significantly affect the Standard Penetration Resistance Value, and direct correlation of results obtained by drill crews using different rigs, drilling procedures, and hammer-rod-spoon assemblies should not be made. A portion of the recovered sample is placed in a sample jar and returned to the laboratory for further analysis and testing.

Shelby Tube Sampling Procedure (ST) - ASTM Standard D-1587-94

In the Shelby tube sampling procedure, a thin-walled steel seamless tube with a sharp cutting edge is pushed hydraulically into the soil and a relatively undisturbed sample is obtained. This procedure is generally employed in cohesive soils. The tubes are identified, sealed and carefully handled in the field to avoid excessive disturbance and are returned to the laboratory for extrusion and further analysis and testing.

Giddings Sampler (GS)

This type of sampling device consists of 5-foot sections of thin-wall tubing which are capable of retrieving continuous columns of soil in 5-foot maximum increments. Because of a continuous slot in the sampling tubes, the sampler allows field determination of stratification boundaries and containerization of soil samples from any sampling depth within the 5-foot interval.

AECOM Field and Laboratory Procedures

Subsurface Exploration Procedures

Hand-Auger Drilling (HA)

In this procedure, a sampling device is driven into the soil by repeated blows of a sledge hammer or a drop hammer. When the sampler is driven to the desired sample depth, the soil sample is retrieved. The hole is then advanced by manually turning the hand auger until the next sampling depth increment is reached. The hand auger drilling between sampling intervals also helps to clean and enlarge the borehole in preparation for obtaining the next sample.

Power Auger Drilling (PA)

In this type of drilling procedure, continuous flight augers are used to advance the boreholes. They are turned and hydraulically advanced by a truck, trailer or track-mounted unit as site accessibility dictates. In auger drilling, casing and drilling mud are not required to maintain open boreholes.

Hollow Stem Auger Drilling (HS)

In this drilling procedure, continuous flight augers having open stems are used to advance the boreholes. The open stem allows the sampling tool to be used without removing the augers from the borehole. Hollow stem augers thus provide support to the sides of the borehole during the sampling operations.

Rotary Drilling (RB)

In employing rotary drilling methods, various cutting bits are used to advance the boreholes. In this process, surface casing and/or drilling fluids are used to maintain open boreholes.

Diamond Core Drilling (DB)

Diamond core drilling is used to sample cemented formations. In this procedure, a double tube (or triple tube) core barrel with a diamond bit cuts an annular space around a cylindrical prism of the material sampled. The sample is retrieved by a catcher just above the bit. Samples recovered by this procedure are placed in sturdy containers in sequential order.

AECOM Laboratory Procedures

Water Content (Wc)

The water content of a soil is the ratio of the weight of water in a given soil mass to the weight of the dry soil. Water content is generally expressed as a percentage.

Hand Penetrometer (Qp)

In the hand penetrometer test, the unconfined compressive strength of a soil is determined, to a maximum value of 4.5 tons per square foot (tsf) or 7.0 tsf depending on the testing device utilized, by measuring the resistance of the soil sample to penetration by a small, spring-calibrated cylinder. The hand penetrometer test has been carefully correlated with unconfined compressive strength tests, and thereby provides a useful and a relatively simple testing procedure in which soil strength can be quickly and easily estimated.

Unconfined Compression Tests (Qu)

In the unconfined compression strength test, an undisturbed prism of soil is loaded axially until failure or until 20% strain has been reached, whichever occurs first.

Dry Density (γd)

The dry density is a measure of the amount of solids in a unit volume of soil. Use of this value is often made when measuring the degree of compaction of a soil.

Classification of Samples

In conjunction with the sample testing program, all soil samples are examined in our laboratory and visually classified on the basis of their texture and plasticity in accordance with the AECOM Soil Classification System which is described on a separate sheet. The soil descriptions on the boring logs are derived from this system as well as the component gradation terminology, consistency of cohesive soils and relative density of granular soils as described on a separate sheet entitled "AECOM General Notes". The estimated group symbols included in parentheses following the soil descriptions on the boring logs are in general conformance with the Unified Soil Classification System (USCS) which serves as the basis of the AECOM Soil Classification System.

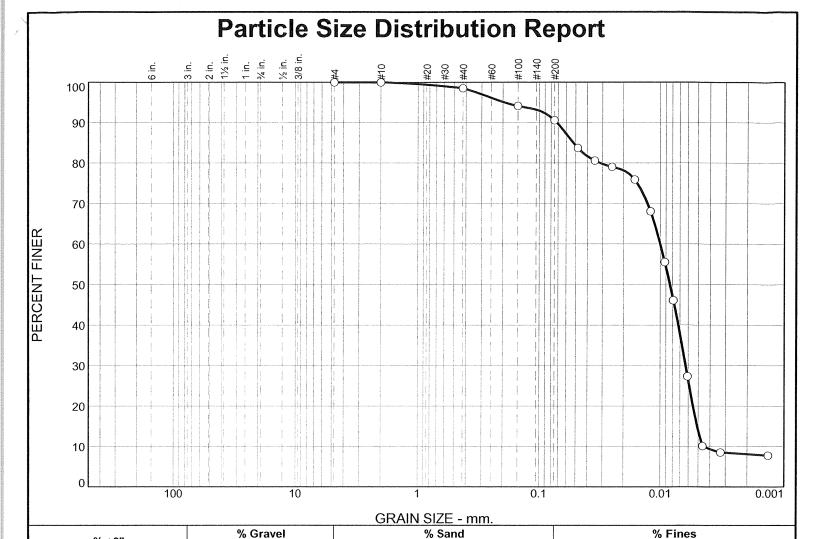
AECOM Standard Boring Log Procedures

In the process of obtaining and testing samples and preparing this report, standard procedures are followed regarding field logs, laboratory data sheets and samples.

Field logs are prepared during performance of the drilling and sampling operations and are intended to essentially portray field occurrences, sampling locations and procedures.

Samples obtained in the field are frequently subjected to additional testing and reclassification in the laboratory by experienced geotechnical engineers, and as such, differences between the field logs and the final logs may exist. The engineer preparing the report reviews the field logs, laboratory test data and classifications, and using judgment and experience in interpreting this data, may make further changes. It is common practice in the geotechnical engineering profession not to include field logs and laboratory data sheets in engineering reports, because they do not represent the engineer's final opinions as to appropriate descriptions for conditions encountered in the exploration and testing work. Results of laboratory tests are generally shown on the boring logs or are described in the text of the report, as appropriate.

Samples taken in the field, some of which are later subjected to laboratory tests, are retained in our laboratory for sixty days and are then discarded unless special disposition is requested by our client. Samples retained over a long period of time, even in sealed jars, are subject to moisture loss which changes the apparent strength of cohesive soil, generally increasing the strength from what was originally encountered in the field. Since they are then no longer representative of the moisture conditions initially encountered, observers of these samples should recognize this factor.



AECOM Soil Classification System (1)

		•	_	1	Γ			
0	Ma Divis	jor ions	Group Symbols	Typical Names		Laboratory Classification	on Criteria	
	el coarse fraction . 4 sieve size)	gravel no fines)	G₩	Well-graded, gravel, gravel-sand mixtures, little or no fines	3 (5)	$C_{U} = \frac{D_{ab}}{D_{10}}$ greater than 4; C	$_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{80}}$ between 1 & 3	
200 sieve size)		Clean gravel (Little or no fines)	GP	Poorly graded gravel, gravel—sand mixtures, little or no fines	curve. 200 slave dual symb	Not meeting all grada	tion requirements for GW	
No. 200 si	Gravel (More than half of is larger than No.	th fines e amount nes)	GM	Silty gravel, gravel—sand— silt mixtures	grain-size curve. ler than No. 200 sleve wes: requisting dual symbols (3)	Atterberg limits below "A" line or PI less than 4	Above "A" line with PI between 4 and 7 are bordertine	
ned soils	(More to is larg	Gravel with fines (Appreciable amount (continue)	GC	Clayey gravel, gravel-sand- clay mixtures	vel from g tion smalle d as follow SW, SP SW, SC SW, SC	Atterberg limits above "A" line or PI greater than 7	cases requiring use of dual symbols	
Coorse—grained soils aterial is <i>Larger</i> than	1/2/20	Clean sand (Little or no fines)	SW	Well—graded sand, gravely sand, little or no fines	Determine percentages of sand and gravel from grain-size curve. Depending on percentage of fines (fraction smaller than No. 200 sleve size), coarse—grained soils are classified as follows: Less than 5 percent CW, GP, SW, SP More than 5 percent CM, GC, SM, SC 5 to 12 percent Bordentine cases requesting dual symbol	C _u = Dec greater than 6; C _e	= (D30) ² D10 x Dad between 1 & 3	
Coarse-grained soils (More than half of material is <i>target</i> than No.	nd of coarse f No. 4 sieve	170072100	SP	Poorly graded sand, gravelly sand, little or no fines	cartages of so cartage of ined soils or reent ercent	Not meeting all grada	tion requirements for SW	
More than	Sand (More than half of coarse fraction is smaller than No. 4 sieve size)	Sand with fines (Appreciable amount of fines)	SM	Silty sand, sand—silt mixtures	etermine percentages of spanding on percentages ize), coarse—grained soi ize), coarse—grained soi More than 12 percent 5 to 12 percent	Atterberg limits below "A" line or Pl less than 4	Limits plotting in hatched zone with Pl between 4 and 7	
		Sand with (Appreciable of file	sc	Clayey sand, sand-clay mixtures	Determi Depend size), o Less More 5 to	Atterberg limits above "A" line or PI greater than 7	are borderline cases requiring use of dual symbols	
[82]			ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or clayey silt with slight plasticity	60 For cl	Plasticity assification of fine—grained	Chart (2)	
200 sieve size)	Silt and clay	(Liquid limit less than 50)	CL	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay, silty clay, lean clay	soils coarse 50 – Atterb in hat	soils and fine fraction of coarse—grained soils.		
oined soils smaller than No.	<u> </u>	(Liquid lin	OL	Organic silt and organic silty clay of low plasticity	40 requiri	on of A-line:		
-groined so	À	. than 50)	мн	Inorganic silt, micaceous or diatomaceous fine sandy or silty soils, elastic silt	sticity Index (P) Service (P)	73 (LL-20)	MH or OH	
Fine- of material	Silt and cla	(Liquid limit greater than 50)	СН	Inorganic clay of high plasticity, fat clay	20	CL or OL		
(More than half o		(5) (6)	он	Organic clay of medium to high plasticity, organic silt	*[Z	CL-ML ML or OL		
(More	Highly	organic solls	РТ	Peat and other highly organic soil	0 10) 20 30 40 50 Liquid Li	60 70 80 90 100 mit (LL)	

- 1. See AECOM General Notes for component gradation terminology, consistency of cohesive soils and relative density of granular soils.
- 2. Reference: Unified Soil Classification Systems
- 3. Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC, well-graded gravel-sand mixture with clay binder.

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#40	98.5		
#100	94.1		
#200	90.6		

Coarse

0.0

Fine

0.0

Coarse

0.0

Medium

1.5

Fine

7.9

Material Description LIGHT GRAY SILTY CLAY, TRACE SAND						
PL= 14	Atterberg Limits LL= 22	PI= 8				
D ₉₀ = 0.0716 D ₅₀ = 0.0084 D ₁₀ = 0.0045	Coefficients D ₈₅ = 0.0523 D ₃₀ = 0.0063 C _u = 2.21	D ₆₀ = 0.0100 D ₁₅ = 0.0051 C _c = 0.88				
USCS= CL	Classification AASHT	O= A-4(5)				
	Remarks					

Silt

76.7

Clay

13.9

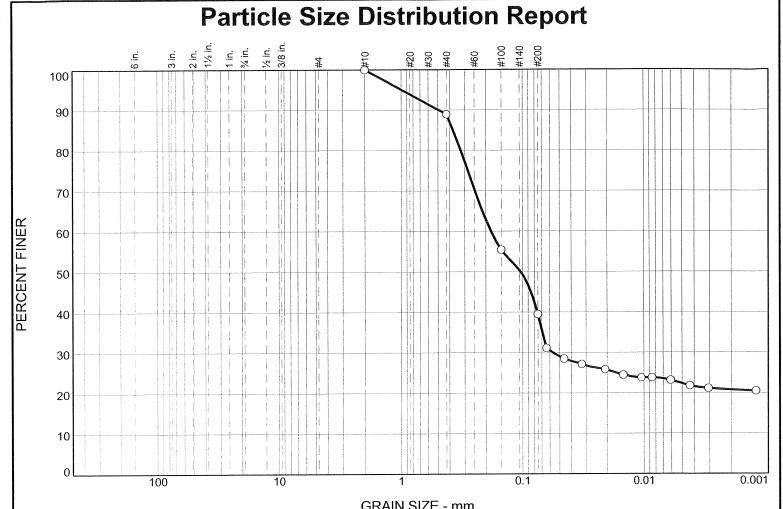
(no specification provided)

Source of Sample: B-1-1 **Sample Number:** B-1-1 S-5

% +3"

0.0

Depth: 8'-10'


Client: IPR-GDF SUEZ **Project:** COLETO CREEK

Project No: 60225561

Figure

Date: 12/09/11

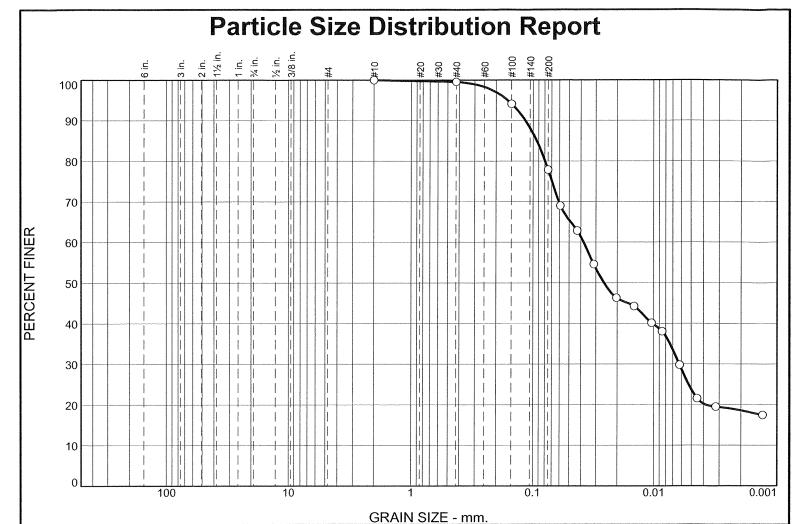
AECOM

GRAIN SIZE - IIIII.							
	% Gravel		% Sand			% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	11.0	49.5	17.1	22.4

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	89.0		
#100	55.5		
#200	39.5		
	•		
L			

<u>Material Description</u> CLAYEY FINE TO MEDIUM SAND, BROWNISH GRAY							
PL= 14	Atterberg Limits LL= 38	PI= 24					
D ₉₀ = 0.4902 D ₅₀ = 0.1036 D ₁₀ =	Coefficients D ₈₅ = 0.3732 D ₃₀ = 0.0564 C _u =	D ₆₀ = 0.1816 D ₁₅ = C _c =					
USCS= SC	Classification AASHT	O= A-6(4)					
	<u>Remarks</u>						

Source of Sample: B-1-1 Sample Number: B-1-1 S-11


Depth: 20'-22'

Date: 12/9/11

Client: IPR-GDF SUEZ **Project:** COLETO CREEK

Project No: 60225561

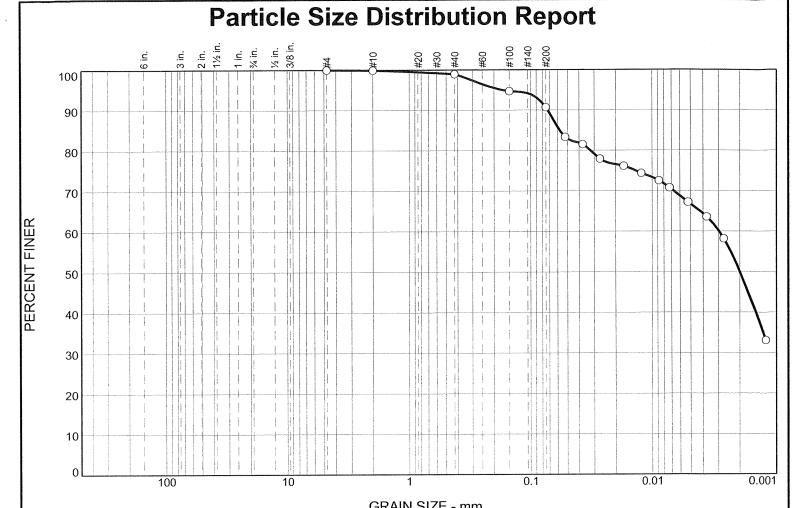
% +3"		% Gravel		% Sand			% Fines		
	% +3	· · ·	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0		0.0	0.0	0.0	0.4	21.7	54.2	23.7
	SIEVE	PERCENT	SPEC.*	PASS	6?		Materia	I Description	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	99.6		
#100	94.1		
#200	77.9		

	Material Description						
SILTY CLAY, S	OME SAND, LIGHT	ΓGRAY					
PL= 17	Atterberg Limits LL= 42	PI= 25					
	Cffi-it-						
$D_{00} = 0.1156$	Coefficients D ₈₅ = 0.0934	$D_{60} = 0.0380$					
D ₉₀ = 0.1156 D ₅₀ = 0.0258 D ₁₀ =	$D_{30}^{30} = 0.0062$	D15=					
D ₁₀ =	C _u =	C _C =					
	Classification						
USCS= CL	AASHT	O= A-7-6(18)					
	<u>Remarks</u>						

Source of Sample: B-1-1 **Sample Number:** B-1-1 S-34

Depth: 90'-90.4'


Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561

Figure

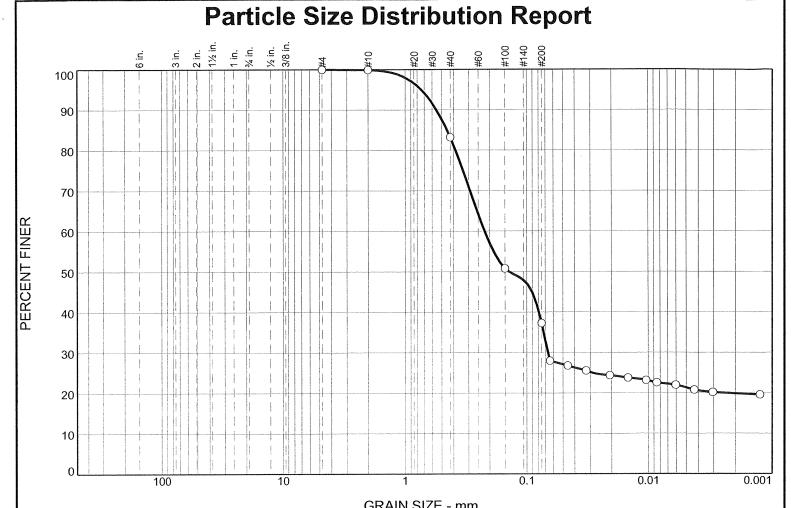
Date: 12/15/11

			G	KAIN SIZE -	111111.		
0/ - 00	% Gr	avel	% Sand			% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.1	1.0	8.2	23.9	66.8

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#40	98.9		
#100	94.7		
#200	90.7		

	Mada sial Dan asiadia						
<u>Material Description</u> SILTY CLAY, TRACE SAND, BROWN							
PL= 28	Atterberg Limits	PI= 51					
D ₉₀ = 0.0724 D ₅₀ = 0.0020 D ₁₀ =	Coefficients D ₈₅ = 0.0576 D ₃₀ = C _u =	D ₆₀ = 0.0030 D ₁₅ = C _c =					
USCS= CH	Classification AASHT	TO= A-7-6(53)					
	<u>Remarks</u>						

Source of Sample: B-1-1 Sample Number: B-1-1 S-40


Depth: 120'-121'

Date: 12/9/11

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561

GRAIN SIZE - IIIII.							
% +3"	% G	avel % Sand			% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.1	16.7	45.9	15.9	21.4

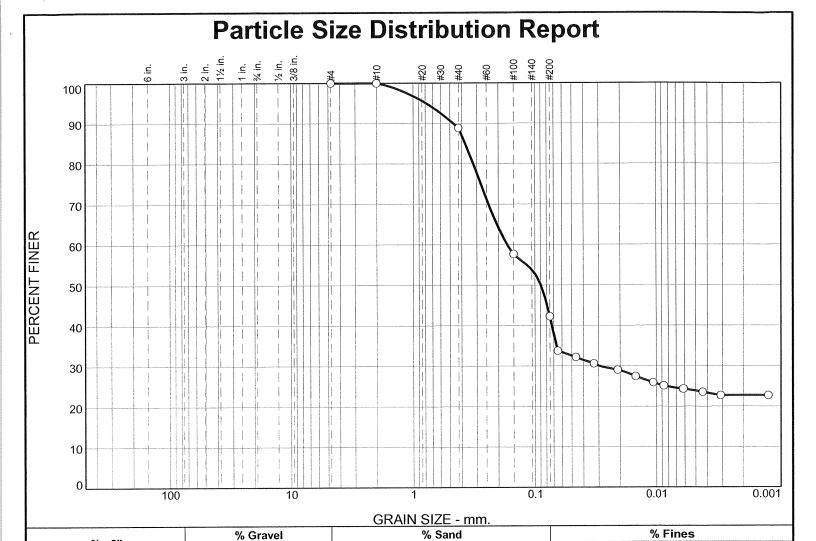
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#40	83.2		
#100	50.8		
#200	37.3		

	Material Description						
CLAYEY FINE	CLAYEY FINE TO MEDIUM SAND, GRAYISH BROWN						
	A44 . It I ! ! (!						
PL= 14	Atterberg Limits LL= 38	PI= 24					
	Coefficients						
$D_{00} = 0.5520$	<u>Coefficients</u> D ₈₅ = 0.4512	D ₆₀ = 0.2202					
D ₉₀ = 0.5520 D ₅₀ = 0.1389	$D_{30}^{30} = 0.0666$	D15=					
$D_{10}=$	C _u =	C _C =					
11 000 ac	Classification	-0 + ((0)					
USCS= SC	AASHI	O = A-6(3)					
<u>Remarks</u>							

Source of Sample: B-2-1 **Sample Number:** B-2-1 S-6

Depth: 10'-12'

Client: IPR-GDF SUEZ


Project: COLETO CREEK

Project No: 60225561

Figure

Date: 12/9/11

Medium

11.1

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	100.0		
#40	88.9		
#100	57.7		
#200	42.3		
L			

Coarse

0.0

Fine

0.0

Coarse

0.0

<u>Material Description</u> CLAYEY FINE TO MEDIUM SAND, GRAYISH BROWN							
PL= 13	Atterberg Limits	PI= 28					
D ₉₀ = 0.4679 D ₅₀ = 0.0893 D ₁₀ =	Coefficients D ₈₅ = 0.3722 D ₃₀ = 0.0293 C _u =	D ₆₀ = 0.1697 D ₁₅ = C _c =					
USCS= SC	USCS= SC Classification AASHTO= A-7-6(6)						
	<u>Remarks</u>						

Fine

46.6

Silt

18.4

Clay

23.9

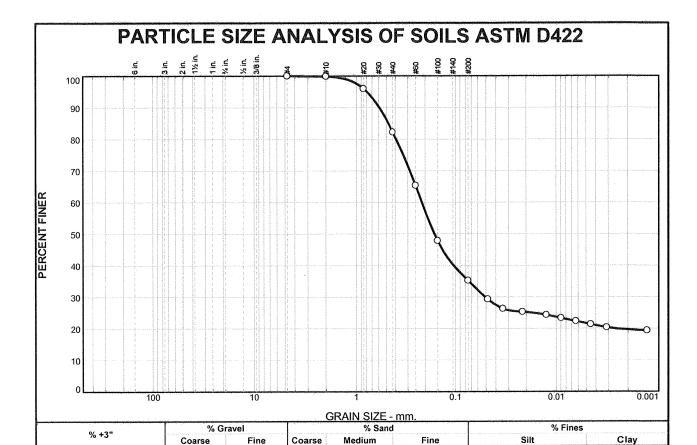
(no specification provided)

Source of Sample: B-2-1 **Sample Number:** B-2-1 S-10

% +3"

0.0

Depth: 18'-20'


Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561

Figure

Date: 12/9/11

17.7

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.9		
#20	96.0		
#40	82.2		
#60	65.3		1
#100	47.8		
#200	35.2		
			1

0.0

0.0

0.1

Material Description Clayey F-M Sand Little Silt - Brownish Gray						
PL= 18	Atterberg Limits LL= 42	PI= 24				
D ₉₀ = 0.5889 D ₅₀ = 0.1616 D ₁₀ =	Coefficients D85= 0.4733 D30= 0.0509 Cu=	D ₆₀ = 0.2159 D ₁₅ = C _c =				
USCS= SC	Classification					
<u>Remarks</u>						

13.6

47.0

(no specification provided)

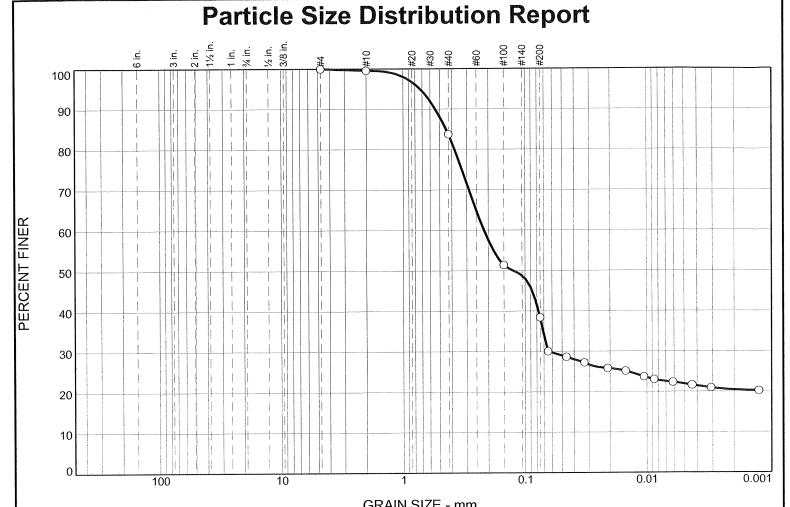
Source of Sample: Boring 2-1 **Sample Number:** S-14

0.0

Depth: 26.0-28.0

Date: 12/7/2011

21.6


Client: IPR-GDP Suez

Project: Coleto Creek Facility

Project No: 60225561

Tested By: BCM

Checked By: WPQ

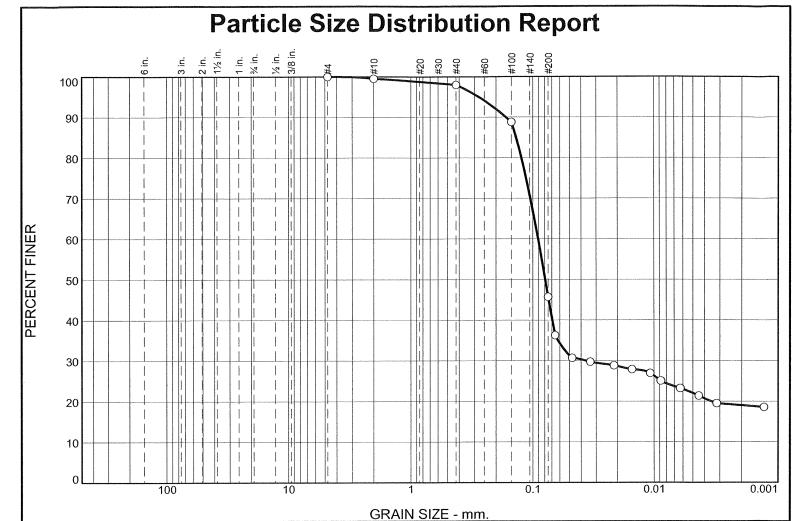
GRAIN SIZE - IIIII.							
0/ 04	% Gr	ravel	% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.4	15.8	45.4	16.4	22.0

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.6		
#40	83.8		
#100	51.4		
#200	38.4		

	Material Description						
CLAYEY FINE	TO MEDIUM SAND	O, GRAY					
PL= 14	Atterberg Limits LL= 29	PI= 15					
D ₉₀ = 0.5414 D ₅₀ = 0.1251 D ₁₀ =	Coefficients D85= 0.4433 D30= 0.0637 Cu=	D ₆₀ = 0.2165 D ₁₅ = C _c =					
USCS= SC	Classification AASHT	O= A-6(2)					
<u>Remarks</u>							

Source of Sample: B-2-1 **Sample Number:** B-2-1 S-17

Depth: 32'-34'


Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561

Date: 12/9/11

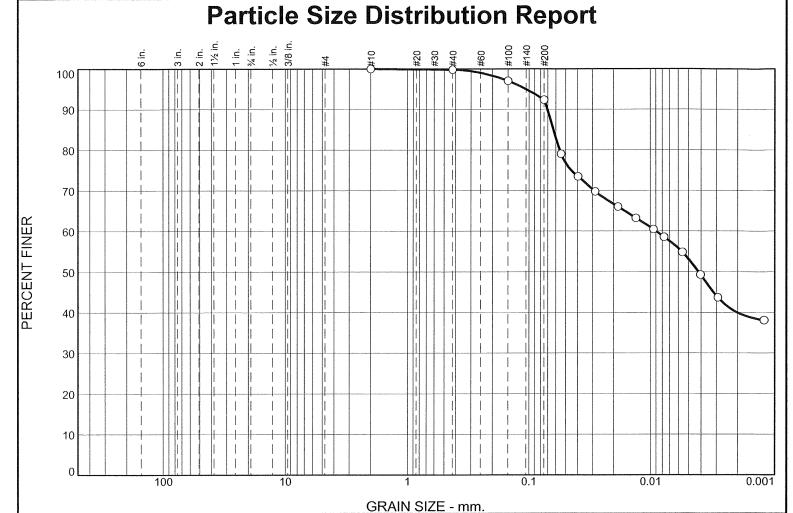
⁽no specification provided)

0/ .00	% Gr	% Gravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.5	1.5	52.3	23.7	22.0

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.5		
#40	98.0		
#100	88.8		
#200	45.7		
1			
-			

	Material Descripti on SAND, LIGHT GRA	
PL= 17	Atterberg Limits	PI= 11
D ₉₀ = 0.1663 D ₅₀ = 0.0793 D ₁₀ =	Coefficients D85= 0.1371 D30= 0.0362 Cu=	D ₆₀ = 0.0906 D ₁₅ = C _c =
USCS= SC	Classification AASH1	ΓO= A-6(2)
	Remarks	

Source of Sample: B-2-1 **Sample Number:** B-2-1 S-27


Depth: 55.0'-56.6'

Date: 12/15/11

Client: IPR-GDF SUEZ
Project: COLETO CREEK

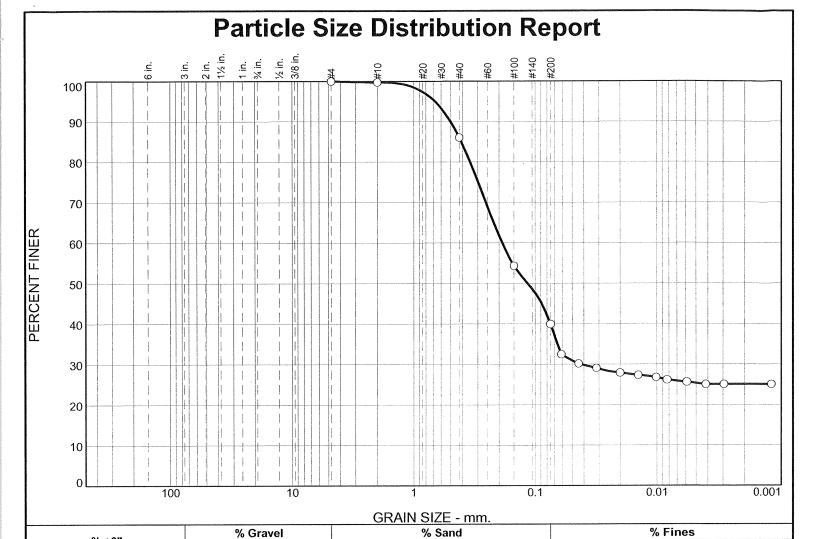
Project No: 60225561

% +3" Coarse Fine Coarse Medium Fine Silt	
	Clay
0.0 0.0 0.0 0.0 0.2 7.4 39.2	53.2

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	99.8		
#100	97.0		
#200	92.4		

	Material Description TRACE SAND, LIGH	on IT GRAYISH BROWN
PL= 25	Atterberg Limits	PI= 34
D ₉₀ = 0.0705 D ₅₀ = 0.0042 D ₁₀ =	Coefficients D ₈₅ = 0.0630 D ₃₀ = C _u =	D ₆₀ = 0.0090 D ₁₅ = C _c =
USCS= CH	Classification AASHT	O= A-7-6(35)
	<u>Remarks</u>	

Source of Sample: B-2-1 **Sample Number:** B-2-1 S-33


Depth: 85.0'-86.5'

Date: 12/15/11

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
. #4	100.0		
#10	99.7		
#40	86.1		
#100	54.4		
#200	40.0		
		L	L

Coarse

0.0

Fine

0.0

Coarse

0.3

Medium

13.6

Material Descriptic TO MEDIUM SANI	
Atterberg Limits	PI= 29
Coefficients D85= 0.4085 D30= 0.0416 Cu=	D ₆₀ = 0.1882 D ₁₅ = C _c =
Classification AASHT	O= A-7-6(6)
<u>Remarks</u>	
	Atterberg Limits LL= 44 Coefficients D85= 0.4085 D30= 0.0416 Cu= Classification AASHT

Fine

46.1

Silt

14.6

Clay

25.4

(no specification provided)

Source of Sample: B-3-1 **Sample Number:** B-3-1 S-9

% +3"

0.0

Depth: 16.0'-17.8'

Date: 12/9/11

AECOM

Client: IPR-GDF SUEZ **Project:** COLETO CREEK

Project No: 60225561

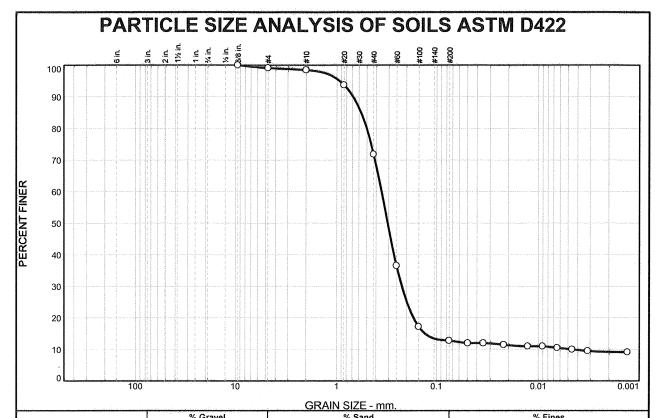
GRAIN SIZE - mm.							
0/ +211	% Gı	avel		% Sand	t	% Fine	es
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.4	20.1	44.7	15.4	19.4

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	99.6		
#40	79.5		
#100	46.5		
#200	34.8		

	Material Description TO MEDIUM SANE	
CLATETTINE	TO MEDIOM SAND	, DAKK DROWN
PL= 13	Atterberg Limits LL= 35	PI= 22
D ₉₀ = 0.6299 D ₅₀ = 0.1856 D ₁₀ =	Coefficients D ₈₅ = 0.5094 D ₃₀ = 0.0701 C _u =	D ₆₀ = 0.2547 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-2-6(2)
	Remarks	

* (no specification provided)

Source of Sample: B-3-1 **Sample Number:** B-3-1 S-10


Depth: 18'-20'

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561

Date: 12/9/11

AECOM

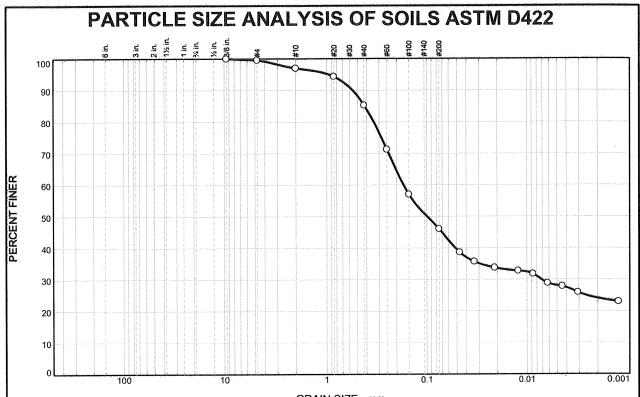
% +3		% Grave	31	1	% Sand		% rine	S
 % +3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0		0.0	0.9	0.6	26.7	59.0	2.7	10.1
SIEVE SIZE	PERCENT FINER	SPEC.* PERCENT	PAS		F-M San		al Description e Silt - Brownish Gray	
.375	100.0					•	·	

SIEVE	PERCENT	SPEC.	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	99.1		
#10	98.5		
#20	93.7		
#40	71.8		
#60	36.5		
#100	17.2		
#200	12.8		
	-		
	l		

	Atterberg Limits	
PL= 16	LL= 27	PI= 11
	Coefficients	
$D_{90} = 0.6879$	D ₈₅ = 0.5721 D ₃₀ = 0.2214	D ₆₀ = 0.3538 D ₁₅ = 0.1304 C _c = 29.98
D ₅₀ = 0.3070 D ₁₀ = 0.0046	$C_u^{30} = 76.58$	$C_{c}^{15} = 29.98$
	Classification	_
USCS= SC	AASHTO	O= A-2-6(0)
	Remarks	

Source of Sample: Boring 4-1 **Sample Number:** S-7

Depth: 12.0-14.0


Date: 12/7/11

Client: IPR-GDP Suez
Project: Coleto Creek Facility

Project No: 60225561

Tested By: BCM Checked By: WPQ

			(GRAIN SIZE -	mm.			
% +3"	% Gr	avel	% Sand			% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.4	2.6	11.8	39.2	17.9	28.1	

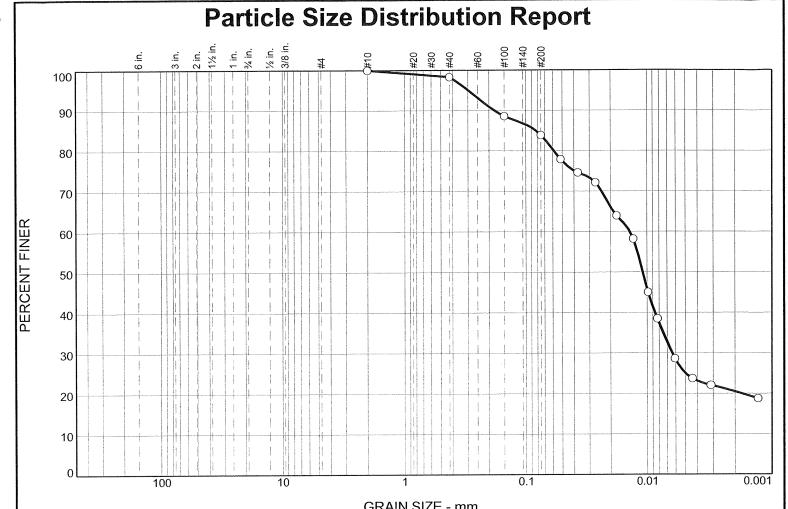
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	99.6		
#10	97.0		
#20	94.3		
#40	85.2		
#60	71.3		-
#100	57.0		
#200	46.0		

Clayey F-M Sand	Material Description Clayey F-M Sand Little Silt - Brownish Gray									
PL= 16	Atterberg Limits LL= 40	PI= 24								
D ₉₀ = 0.5576 D ₅₀ = 0.0994 D ₁₀ =	Coefficients D ₈₅ = 0.4206 D ₃₀ = 0.0071 C _U =	D ₆₀ = 0.1695 D ₁₅ = C _c =								
USCS= SC	Classification AASHT	O= A-6(7)								
	<u>Remarks</u>									

Source of Sample: Boring 4-1 **Sample Number:** S-13

Depth: 24.0-26.0

Date: 12/7/11



Client: IPR-GDP Suez
Project: Coleto Creek Facility

Project No: 60225561

Tested By: BCM

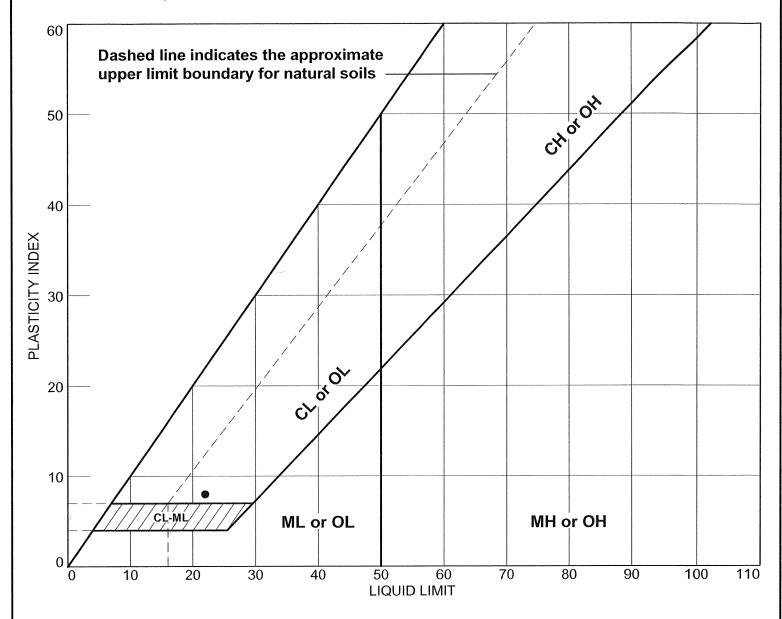
Checked By: WPQ

			G	MAIN SIZE -	111111.		
a	% Gr	avel		% Sand		% Fines	
% +3"	% +3" Coarse		Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	1.7	14.4	58.8	25.1

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	98.3		
#100	88.6		
#200	83.9		
,			

	Material Description SILTY CLAY, LITTLE FINE TO MEDIUM SAND, WHITE AND GRAY									
PL= 18	Atterberg Limits LL= 30	PI= 12								
D ₉₀ = 0.1803 D ₅₀ = 0.0108 D ₁₀ =	Coefficients D ₈₅ = 0.0826 D ₃₀ = 0.0064 C _u =	D ₆₀ = 0.0138 D ₁₅ = C _c =								
USCS= CL	Classification AASHT	O= A-6(9)								
	<u>Remarks</u>									
		·								

Source of Sample: B-5-1 **Sample Number:** B-5-1 S-14

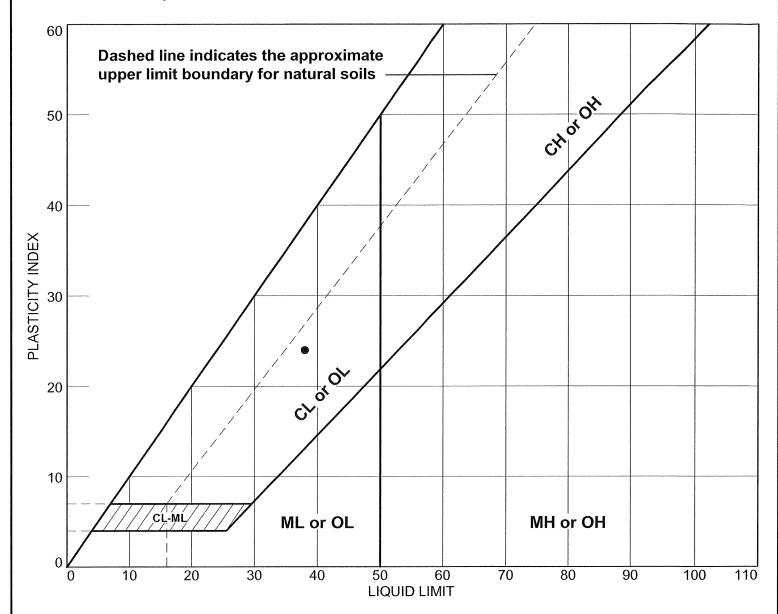

Depth: 26'-27'

Date: 12/9/11

AECOM

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No: 60225561



	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-1-1	B-1-1 S-5	8'-10'		14	22	8	CL			

AECOM

Client: IPR-GDF SUEZ
Project: COLETO CREEK

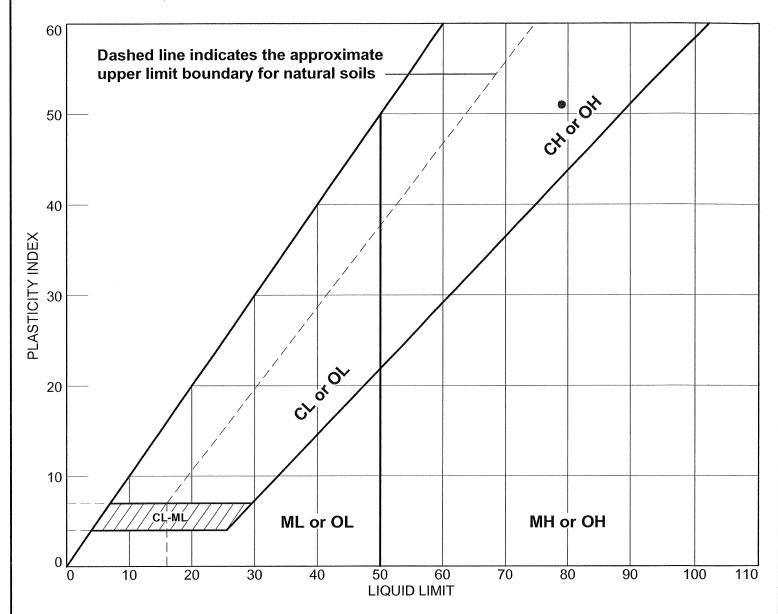
Project No.: 60225561

	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-1-1	B-1-1 S-11	20'-22'		14	38	24	SC			

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561

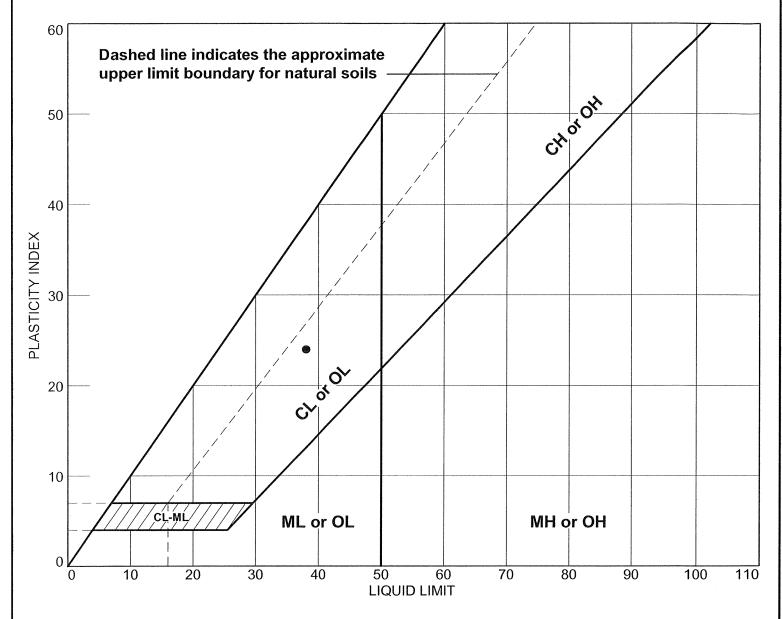
LIQUID AND PLASTIC LIMITS TEST REPORT Dashed line indicates the approximate upper limit boundary for natural soils (H) PLASTICITY INDEX ML or OL MH or OH


	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs			
•	B-1-1	B-1-1 S-34	90'-90.4'		17	42	25	CL			

LIQUID LIMIT

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561

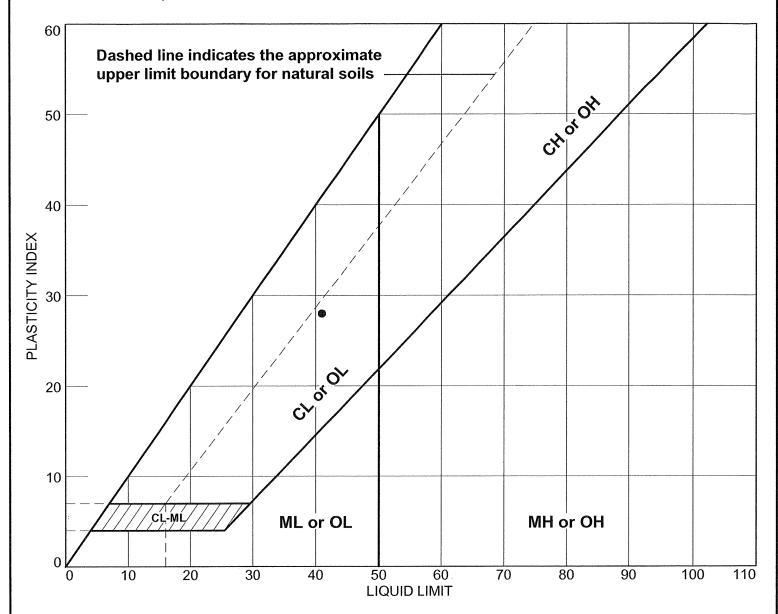


	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs			
•	B-1-1	B-1-1 S-40	120'-121'		28	79	51	СН			

AECOM

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561

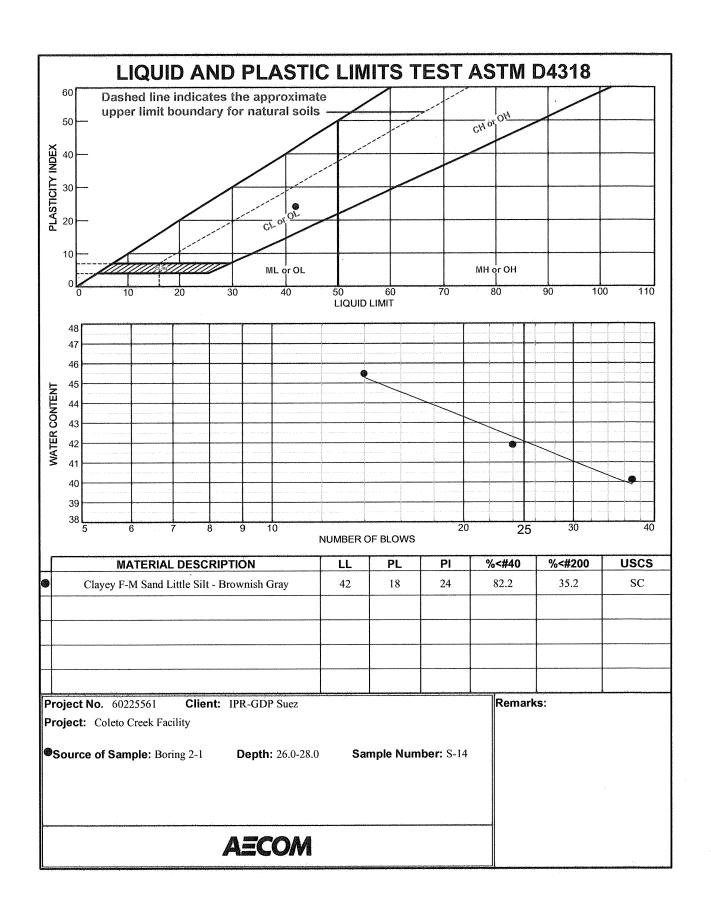


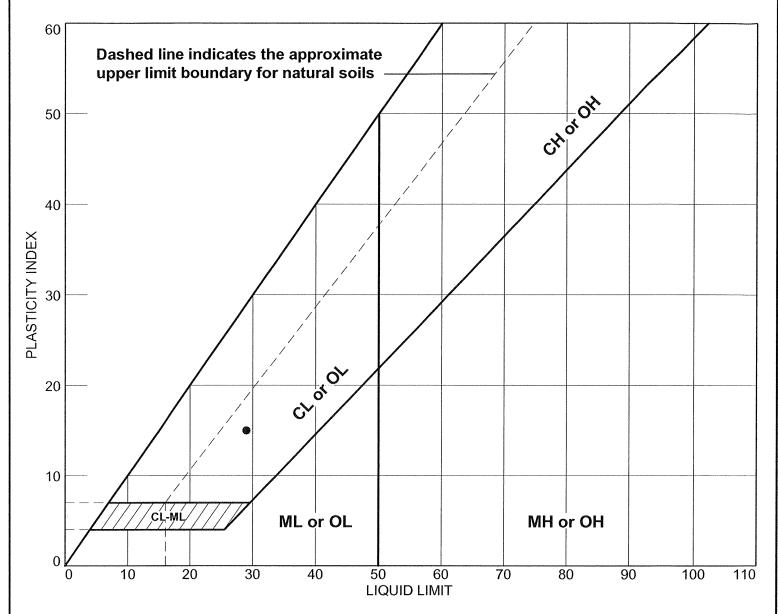
	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-2-1	B-2-1 S-6	10'-12'		14	38	24	SC			

AECOM

Client: IPR-GDF SUEZ
Project: COLETO CREEK

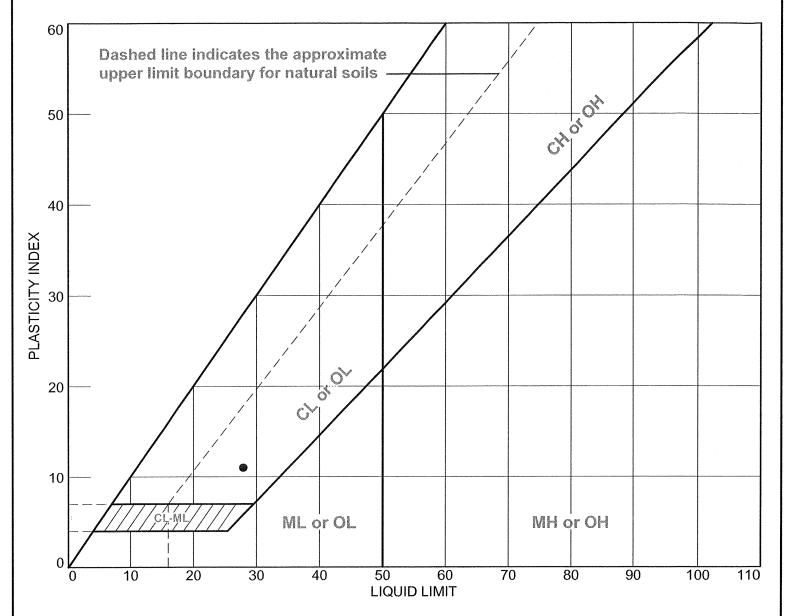
Project No.: 60225561




	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-2-1	B-2-1 S-10	18'-20'		13	41	28	SC			

Client: IPR-GDF SUEZ
Project: COLETO CREEK

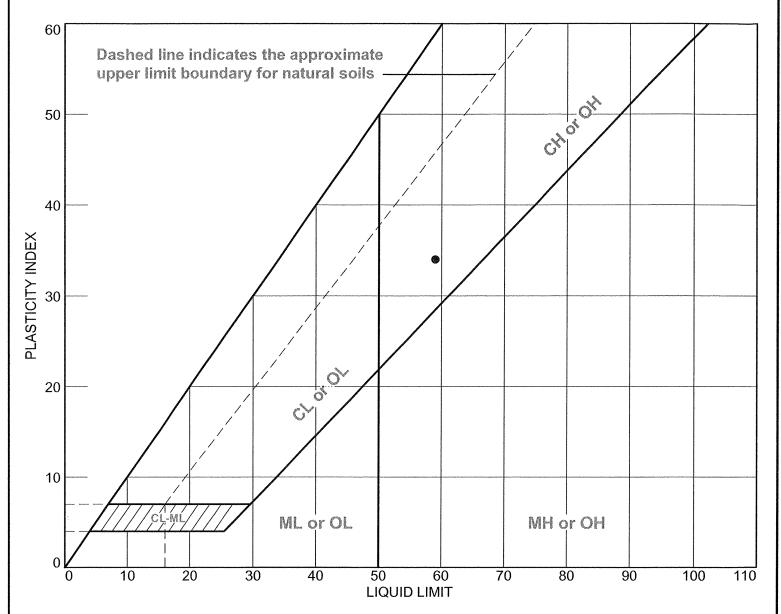
Project No.: 60225561



	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs				
•	B-2-1	B-2-1 S-17	32'-34'		14	29	15	SC				

Client: IPR-GDF SUEZ
Project: COLETO CREEK

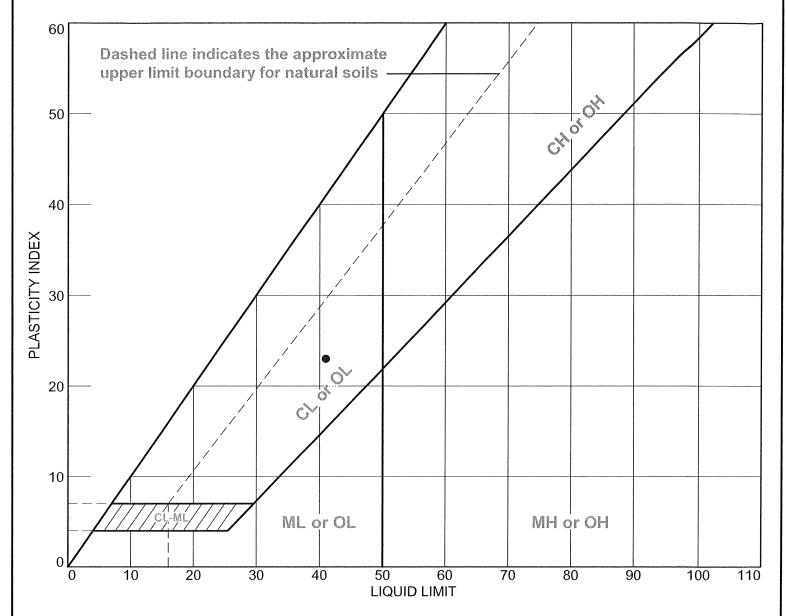
Project No.: 60225561



	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS				
•	B-2-1	B-2-1 S-27	55.0'-56.6'		17	28	11	SC				

Client: IPR-GDF SUEZ
Project: COLETO CREEK

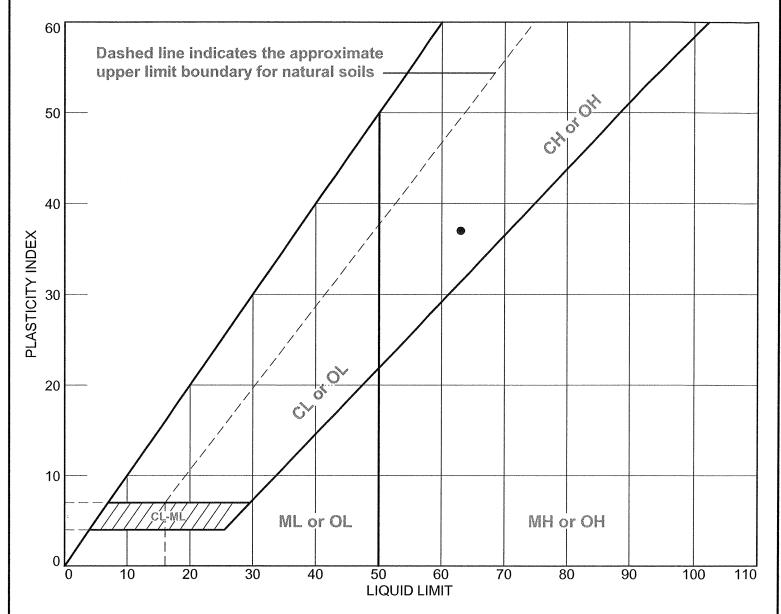
Project No.: 60225561



	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-2-1	B-2-1 S-33	85.0'-86.5'		25	59	34	СН			

Client: IPR-GDF SUEZ
Project: COLETO CREEK

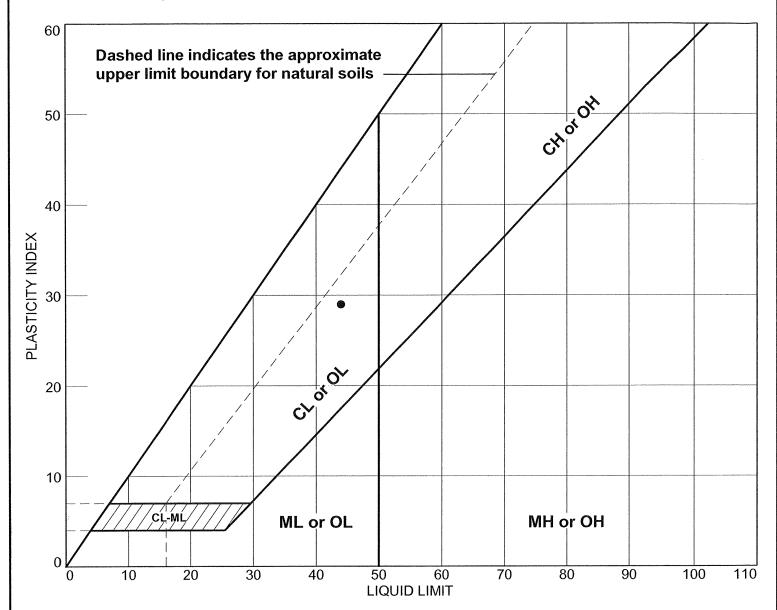
Project No.: 60225561



	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs				
•	B-2-2	B-2-2 S-16	59.0'-60.5'		18	41	23	CL				

Client: IPR-GDF SUEZ
Project: COLETO CREEK

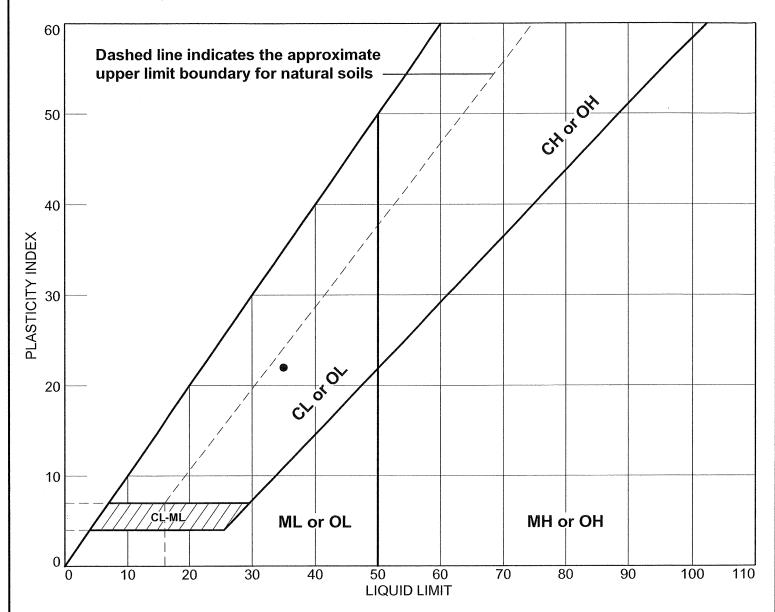
Project No.: 60225561



	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-2-2	B-2-2 S-18	69.0'-70.5'		26	63	37	СН			

Client: IPR-GDF SUEZ **Project:** COLETO CREEK

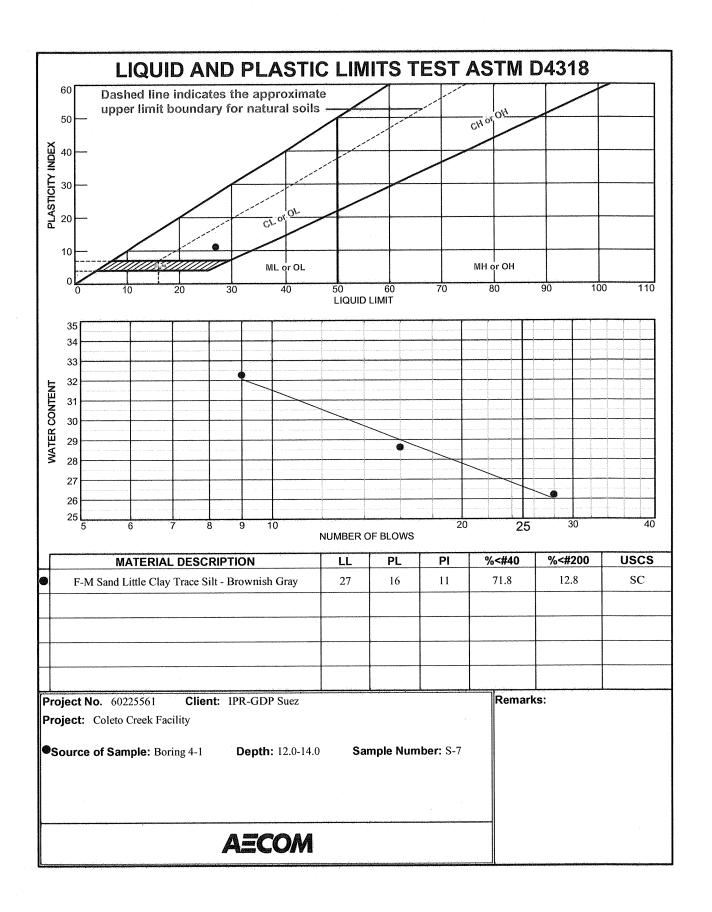
Project No.: 60225561

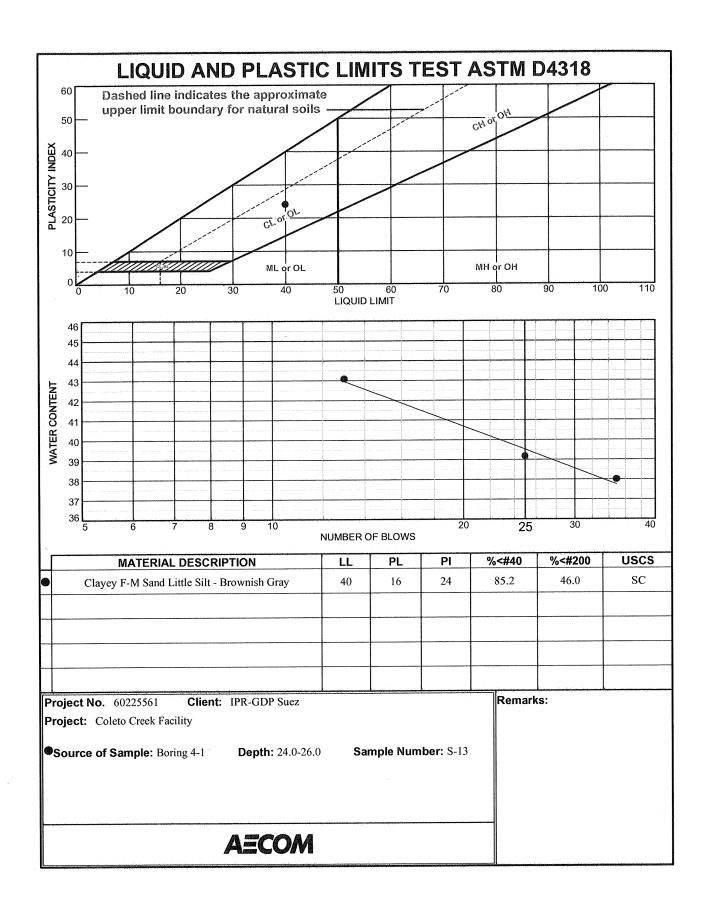


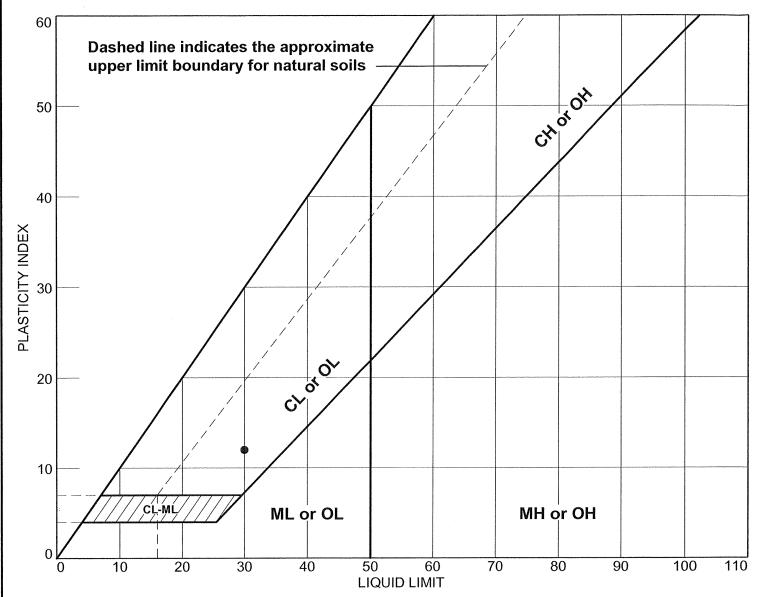
	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS			
•	B-3-1	B-3-1 S-9	16.0'-17.8'	·	15	44	29	SC			

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561




	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	B-3-1	B-3-1 S-10	18'-20'		13	35	22	SC					



Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561

	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	B-5-1	B-5-1 S-14	26'-27'		18	30	12	CL					

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Project No.: 60225561

SPECIFIC GRAVITY OF SOIL SOLIDS ASTM D-854

Vernon Hills, IL 60061 Phone: (847) 279-2500 Fax: (847) 279-2550 Laboratory Services Group 750 Corporate Woods Parkway Test Date: 12/6/2011 AECOM Project No.: 60225561 **Coleto Creek Facility Project Name: IPR-GDP Suez** Boring/Source: Boring/Source: 4-1 1-1 16,17,18 Sample No.: Sample No.: 12.0-14.0 Depth (ft.): 30.0-36.7 Depth (ft.): Description: F-M Sand Little Clay Trace Silt Description: Caliche - White - Brownish Gray SC Test 2 Test 1 SG-10 SG-3 Flask No. Flask No. 742.38 742.20 Wt. Flask + Soil + Water (W2) Wt. Flask + Soil + Water (W2) 677.46 Wt. Flask + Water (W3) 668.44 Wt. Flask + Water (W3) 21.5 21.5 Temperature (C) Temperature (C) 0.99789 Density of Water @ test Tem. 0.99789 Density of Water @ test Tem. Tare No. ED-4 ED-4 Tare No. Wt. Tare 576.51 Wt. Tare 578.17 Wt. Tare + Soil 695.11 Wt. Tare + Soil 681.20 118.60 Wt. Soil (W2-W3) 103.03 Wt. Soil (W2-W3) 0.99968 (k) Temp. Correction 0.99968 (k) Temp. Correction Specific Gravity (Gs) 2.690 Specific Gravity (Gs) 2.655 Boring/Source: 2-1 Boring/Source: 14 13 Sample No.: Sample No.: 26.0-28..0 24.0-26.0 Depth (ft.): Depth (ft.): Clayey F-M Sand Little Silt Clayey F-M Sand Little Silt Description: Description: - Brownish Gray SC - Brownish Gray SC

	Test 3
Flask No.	SG-1
Wt. Flask + Soil + Water (W2)	726.62
Wt. Flask + Water (W3)	675.32
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-6
Wt. Tare	602.23
Wt. Tare + Soil	684.30
Wt. Soil (W2-W3)	82.07
(k) Temp. Correction	0.99680
Specific Gravity (Gs)	2.659

	Test 4
Flask No.	SG-2
Wt. Flask + Soil + Water (W2)	738.44
Wt. Flask + Water (W3)	668.48
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-10
Wt. Tare	619.18
Wt. Tare + Soil	730.96
Wt. Soil (W2-W3)	111.78
(k) Temp. Correction	0.99968
Specific Gravity (Gs)	2.672

Technician	BCM	Calculated	BCM	Checked_	WPQ
Date	12/2/11	Date	12/2/11	Date _	12/6/11

ORGANIC CONTENT TEST ASTM D-2974 Method C

Laboratory Services Group

750 Corporate Woods Parkway, Vernon Hills, Illinois 60061

Phone: (847) 279-2500 Fax:(847) 279-2550

AECOM Project No.: 60225561

Project Name: Coleto Creek Facility - IPR-GDP Suez

Date Tested: 12/6/2011

Sample Information

 Boring / Source:
 B-4-1

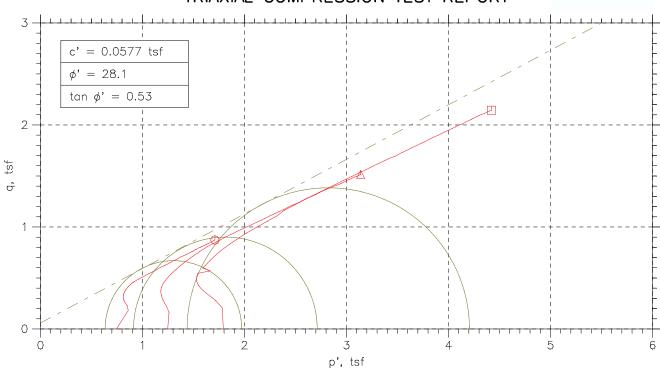
 Sample No.:
 13

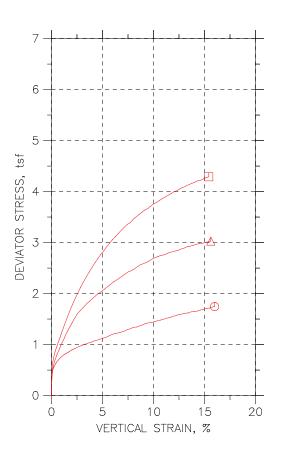
 Depth (ft.):
 24.0-26.0

Organic Content Test Data

Tare No.:	N
Tare Wt. (gm): T	17.71
Wet Wt. + Tare (gm): A+T	48.27
Dry Wt. + Tare (gm): B+T	44.70

Moisture Content (%):

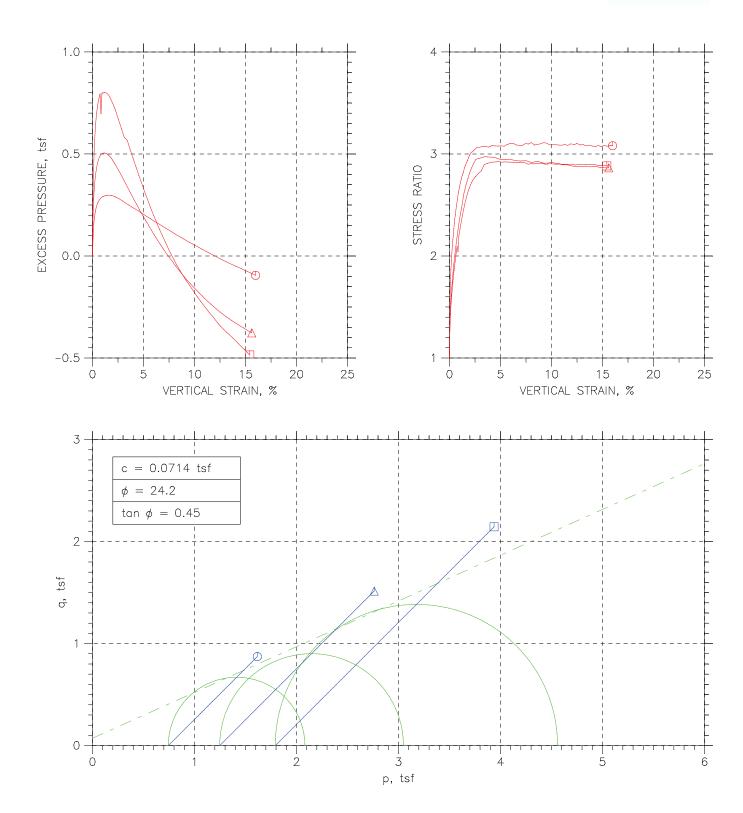

Wt. of Ash + Tare (gm): D+T 44.65 Percent Ash: (D-T/B-T)x100 = E 99.81


Organic Content (%): 0.19

^{**} Note: Test performed by heating the sample to 440 degrees centigrade for a period of three hours.

TRIAXIAL COMPRESSION TEST REPORT

Sy	mbol	O	Δ		
Tes	st No.	10.4 PSI	17.4 PSI	24.3 PSI	
	Diameter, in	2.8362	2.8441	2.8457	
	Height, in	5.9134	6.0831	6.0173	
Initial	Water Content, %	21.81	14.93	13.70	
<u>=</u>	Dry Density, pcf	105.5	115.9	120.2	
	Saturation, %	100.17	90.88	94.34	
	Void Ratio	0.58172	0.4389	0.38805	
ar	Water Content, %	21.39	15.80	14.06	
Shec	Dry Density, pcf	106.1	117.3	121.3	
	Saturation, %	100.00	100.00	100.00	
Before	Void Ratio	0.57165	0.42209	0.37567	
m	Back Press., tsf	5.0449	5.0454	5.0404	
Mir	nor Prin. Stress, tsf	0.74395	1.2474	1.7924	
Мо	x. Dev. Stress, tsf	1.7444	3.0288	4.2889	
Tin	ne to Failure, min	1612.1	1613.1	1614.3	
Str	ain Rate, %/min	0.02	0.02	0.03	
В-	Value	.98	.97	.95	
Ме	asured Specific Gravity	2.67	2.67	2.67	
Lic	uid Limit	42	42	42	
Plo	astic Limit	24	24	24	
Plo	sticity Index	18	18	18	
I _					


Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC

Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Failure Sketch

TRIAXIAL COMPRESSION TEST REPORT

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561					
Boring No.: B-2-1 S-14	Tested By: BCM	Checked By: WPQ					
Sample No.: S-14	Test Date: 12/5/11	Depth: 26.0'-28.0'					
Test No.: B-2-1 S-14	Sample Type: 3" ST	Elevation:					
Description: CLAYEY F-M SAND LITTLE SIL	T- BROWNISH GRAY SC						
Remarks: FAILURE CRITERIA = MAXIMUM	Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767						

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14 Sample No.: S-14 Test No.: 10.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/5/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Specimen Height: 5.91 in Specimen Area: 6.32 in^2 Specimen Volume: 37.36 in^3 Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

Liquid Limit: 42 Plastic Limit: 24 Measured Specific Gravity: 2.67

quid	Limit: 42		PΊ	astic Limit:	24		Measured	Specific Gr
	Time min	Vertical Strain %	Corrected Area in^2	Deviator Load lb	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
123456789011234456789011234456789012234567890122344567890422425678903333333333344444444444444444444444444	Time	Strain	Corrected Area	Deviator Load	Deviator Stress	Pressure	Horizontal Stress	Vertical Stress
51 52 53 55 55 57 58 59 61 62 63 64 66	840 870 900 930 960 990 1020 1050 1110 11140 1170 1200 1230 1260 1290	8.3306 8.6296 8.9329 9.2333 9.5336 9.8282 10.121 10.419 10.718 11.017 11.317 11.613 11.91 12.205 12.5	6.892 6.9146 6.9376 6.9605 6.9837 7.0063 7.0293 7.0527 7.0763 7.1 7.1241 7.148 7.1721 7.1962 7.2204 7.2448	128.57 131.08 133.59 136.57 138.42 139.35 141.59 143.72 145.68 147.72 150.23 151.9 155.16 156.37 159.71	1.3432 1.3649 1.3864 1.4126 1.4271 1.432 1.4502 1.4673 1.4822 1.498 1.5183 1.5301 1.5576 1.5926 1.5926	5.1453 5.1372 5.1284 5.1196 5.1109 5.1033 5.0951 5.0869 5.0787 5.0763 5.0548 5.0472 5.0402 5.0314 5.0238	5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888	7.132 7.1537 7.1752 7.2014 7.2159 7.2208 7.2561 7.271 7.2868 7.3071 7.3189 7.3464 7.3533 7.3814 7.3862
67 68 69 70 71 72 73 74 75 76	1320 1350 1380 1410 1440 1470 1500 1530 1560 1590	13.092 13.395 13.697 13.996 14.293 14.589 14.881 15.174 15.473 15.773 15.995	7.2696 7.295 7.3205 7.346 7.3715 7.397 7.4224 7.448 7.4744 7.501 7.5208	163.06 164.18 166.87 168.08 169.66 172.36 173.75 176.63 178.03 181 182.21	1.615 1.6204 1.6412 1.6474 1.6577 1.6875 1.7075 1.7149 1.7374	5.0168 5.0098 5.0022 4.9958 4.9894 4.9829 4.9759 4.9689 4.9625 4.9549 4.9502	5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888	7.4038 7.4092 7.43 7.4362 7.4459 7.4665 7.4743 7.4963 7.5037 7.5262 7.5332

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14 Sample No.: S-14 Test No.: 10.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM
Test Date: 12/5/11
Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 5.91 in Specimen Area: 6.32 in^2 Specimen Volume: 37.36 in^3

_iquid L	Limit: 42		P	lastic Limit	: 24		Measured	Specific G	ravity: 2.67	
	Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
12345678901123456789012345678901234567890123456789012345678901234567890123456777777777777777777777777777777777777	0.00 0.05 0.09 0.14 0.19 0.24 0.38 0.43 0.58 0.68 0.78 0.97 1.07 1.27 1.37 1.47 1.57 1.77 1.87 2.07 2.17 2.27 2.37 2.67 3.56 6.58 5.65 6.24 5.66 6.55 6.24 6.58 7.44 7.74 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03	5.7888 6.152 6.2492 6.2934 6.3207 6.3458 6.3684 6.4186 6.4362 6.44865 6.5078 6.5473 6.5644 6.5953 6.6049 6.6304 6.6536 6.6630 6.6630 6.6630 6.67478 6.7478 6.7478 6.7478 6.7478 6.7942 6.8308 6.8308 6.8308 6.8739 6.935 6.7009 6.7186 6.7478 6.7942 6.8308 6.8308 7.0076 7.0165 7.0165 7.0176 7.	5.7888 5.7888	0.064842 0.10482 0.1256 0.16123 0.18576 0.20387 0.21848 0.23016 0.24009 0.24827 0.25528 0.26171 0.26638 0.27456 0.28024 0.28975 0.29208 0.29384 0.29384 0.29384 0.29559 0.29617 0.29792 0.29792 0.29792 0.29792 0.29792 0.29792 0.29792 0.29793 0.29667 0.2955 0.29328 0.29676 0.2955 0.29328 0.29676 0.2955 0.29208 0.29676 0.2955 0.29271 0.19277 0.18401 0.1735 0.16473 0.15597 0.18401 0.1735 0.16473 0.15597 0.18401 0.1735 0.16473 0.15597 0.18401 0.1735 0.16473 0.15597 0.18401 0.1735 0.16473 0.15597 0.18401 0.1735 0.16473 0.15597 0.18401 0.1735 0.16473 0.15597 0.18401 0.1735 0.16473 0.15597 0.18401 0.1735 0.16473 0.15597 0.18401 0.1735 0.16473 0.15597 0.18401 0.01982 0.01982 0.01982 0.01982 0.01982 0.004204 0.033882 0.025703 0.018109 0.0092386 0.004204 0.033882 0.025703 0.018109 0.0093367 -0.02804 -0.03505 -0.042644 -0.04907 -0.055496 -0.06192 -0.068932 -0.075942 -0.088967 -0.088967 -0.089967	0.000 0.179 0.273 0.319 0.349 0.366 0.377 0.385 0.394 0.394 0.394 0.396 0.394 0.391 0.382 0.377 0.371 0.363 0.358 0.354 0.349 0.344 0.320 0.315 0.324 0.320 0.315 0.308 0.291 0.275 0.243 0.230 0.216 0.205 0.180 0.168 0.157 0.118 0.192 0.180 0.168 0.157 0.1180 0.168 0.157 0.1180 0.168 0.157 0.1180 0.168 0.157 0.1180 0.1090 0.091 0.082 0.0135 0.127 0.1180 0.1090 0.091 0.082 0.0135 0.127 0.1180 0.1090 0.091 0.082 0.0135 0.029 0.017 0.012 0.068 0.060 0.053 0.041 0.035 0.029 0.017 0.012 0.0068 0.060 0.053 0.041 0.035 0.029 0.017 0.012 0.0068 0.0013 -0.017 0.012 0.0068 -0.033 -0.041 -0.044 -0.048 -0.055 -0.054	0.74395 1.0423 1.0788 1.0874 1.0901 1.1054 1.1114 1.117 1.1254 1.1496 1.1671 1.182 1.1991 1.2275 1.2417 1.2548 1.2639 1.278 1.3876 1.3014 1.3554 1.3639 1.378 1.3421 1.3554 1.3639 1.378 1.4243 1.4554 1.3638 1.5459 1.5459 1.5459 1.5459 1.5459 1.5459 1.5459 1.5459 1.5459 1.5468 1.6668 1.6952 1.771 1.7702 1.798 1.8157 1.8428 1.9366 2.0468 2.0468 2.0468 2.0468 2.0468 2.1176 2.1439 2.1691 2.1439 2.1691 2.2142 2.2442 2.2442 2.2442 2.2456 2.3874 2.3894 2.4278 2.4278 2.4278 2.4278 2.4278 2.4278 2.4278 2.4278 2.45635 2.4383 2.5274 2.54713 2.55713 2.5583	0.74395 0.6791 0.61835 0.58272 0.55818 0.54007 0.52547 0.51379 0.49568 0.49568 0.48867 0.48224 0.47757 0.46939 0.46296 0.45771 0.45471 0.45471 0.44602 0.44602 0.44602 0.44602 0.44602 0.44602 0.44653 0.45186 0.45186 0.45186 0.45186 0.45171 0.50385 0.5132 0.52196 0.53189 0.52196 0.53189 0.54124 0.55117 0.55993 0.57045 0.57921 0.58797 0.59732 0.663412 0.663412 0.663412 0.663412 0.663412 0.663412 0.663412 0.663412 0.663412 0.663412 0.663412 0.663412 0.71006 0.71006 0.71824 0.72584 0.72584 0.73402 0.74161 0.66797 0.68553 0.69371 0.701089 0.71006 0.71824 0.72584 0.72584 0.73402 0.74161 0.74162 0.775738 0.76498 0.77199 0.78659 0.79302 0.79944 0.81288 0.81989 0.82331 0.833858	1.000 1.535 1.745 1.866 1.953 2.031 2.163 2.217 2.325 2.486 2.553 2.670 2.716 2.759 2.823 2.865 2.989 3.007 3.080 3.072 3.088 3.072 3.088 3.077 3.080 3.072 3.088 3.092 3.104 3.085 3.092 3.095 3.104 3.085 3.095 3.104 3.085 3.095 3.091 3.095 3.091 3.089 3.092 3.089 3.090 3.092 3.089 3.090 3.092 3.089 3.091 3.089 3.092 3.089 3.090 3.089 3.090 3.080	0.74395 0.846072 0.84872 0.84672 0.84672 0.84570 0.81545 0.81545 0.81044 0.81055 0.81235 0.81235 0.812362 0.822482 0.82842 0.82847 0.83966 0.8459 0.85582 0.86681 0.87902 0.89553 0.90305 0.90305 0.904479 0.96501 0.96501 0.96501 1.0049 1.0049 1.0049 1.0478 1.104 1.12387 1.1703 1.1886 1.2018 1.2018 1.2201 1.3335 1.3341 1.3536 1.3755 1.3341 1.3536 1.3755 1.3341 1.3536 1.3755 1.3341 1.3536 1.3755 1.3341 1.3536 1.3755 1.3341 1.3536 1.3755 1.3341 1.2621 1.2802 1.3035 1.315 1.315 1.485 1.4991 1.5204 1.5204 1.5537 1.5637 1.5792 1.6647 1.66447 1.6556 1.6736 1.6736 1.6736 1.6736 1.6736 1.6736 1.6736 1.6736 1.6736 1.6736 1.6736 1.7108	0 0.18161 0.23021 0.25232 0.26595 0.27855 0.28898 0.29882 0.30659 0.31488 0.32369 0.33637 0.33601 0.34883 0.35952 0.37072 0.37927 0.3878 0.39579 0.40323 0.40804 0.41599 0.42079 0.42713 0.44588 0.45236 0.45634 0.45271 0.46492 0.47849 0.49036 0.50268 0.51239 0.521 0.5346 0.54253 0.55243 0.56278 0.57204 0.58576 0.59986 0.60939 0.61386 0.62274 0.63205 0.6467 0.65539 0.663205 0.6467 0.65539 0.61386 0.62274 0.63205 0.6467 0.65539 0.663205 0.6467 0.65539 0.663205 0.76402 0.775916

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14 Sample No.: S-14 Test No.: 17.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/5/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Specimen Height: 6.08 in Specimen Area: 6.35 in^2 Specimen Volume: 38.65 in^3 Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

Liquid Limit: 42 Plastic Limit: 24 Measured Specific Gravity: 2.67

iquid Lim	it: 42		PΊ	astic Limit:	24		Measured	Specific Gr
	Time min	Vertical Strain %	Corrected Area in^2	Deviator Load lb	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
1234567890112345678901223456789012334567890123445678901234567890100000000000000000000000000000000000	0 5.0038 10.004 20.004 25 30 30 30 35 40 45 50 55.001 60.001 70.001 80.001 1100 1120 1330 1400 150 160 270 220 220 2240 270 300 3360 390 420 450 480 510 540 570 6600 630 6600 690 720 750 780 810 840 870 990 1020 1050 1080 1110 1140 1170 1200 1230 1260 1290 1350 1360 1290 1350 1360 1410 1470 1230 1260 1290 1350 1360 1410 1470 1250 1350 1560 1613.1	0.0388 0.085062 0.13132 0.17908 0.22683 0.27459 0.32234 0.37159 0.42083 0.46859 0.5641 0.65961 0.75512 0.85361 0.95061 1.0491 1.14401 1.3356 1.6251 1.7206 1.6261 1.7206 1.6261 1.7206 1.6261 1.7206 1.6261 1.7206 1.6261 1.7206 1.6261 1.7206 1.8162 1.9102 2.1012 2	6.3555 6.35554 6.35554 6.3644 6.3674 6.3767 6.37798 6.37798 6.37989 6.3952 6.4017 6.4203 6.44203 6.44203 6.44515 6.44515 6.44515 6.44515 6.44515 6.44515 6.45702 6.4767 6.4893 6.4957 6.5211 6.5806 6.68005 6.68005 6.68005 6.7228 6.7228 6.7434 6.7641 6.9364 6.9368	29.35 39.31 45.38 50.036 53.985 57.344 60.35 62.884 65.477 67.654 76.204 80.27 84.573 88.698 92.706 96.124 99.719 104.26 108.32 111.57 115.28 121.41 124.71 127.83 131.01 134.2 146.23 152.23 164.61 169.72 175.22 185.23 189.48 199.32 204.39 209.28 213.41 217.65 222.13 226.9 231.56 234.57 268.63 273.58 273.58 273.58 273.58 273.69 273.58 273.69 273.58 273.69 273.58 273.69 273.58 273.58 273.69 273.69 27	0 0.3325 0.44513 0.51363 0.56606 0.61044 0.68176 0.71004 0.73895 0.76319 0.79007 0.8136 0.90583 0.99568 1.0396 1.11661 1.1658 1.2101 1.2451 1.3863 1.417 1.4875 1.5193 1.6757 1.3863 1.4197 2.0023 2.0419 2.0827 2.1823 2.2277 2.2645 2.3425 2.3425 2.3425 2.3425 2.3426 2.4824 2.5241 2.5241 2.5241 2.5241 2.5241 2.5241 2.5643 2.7846 2.7846 2.77587 2.7846 2.79588 3.0059 3.0059 3.0059 3.0059 3.0059 3.0059 3.0059 3.0059 3.0059	5.0454 5.1985 5.28369 5.33744 5.4298 5.4676 5.4676 5.5269 5.55408 5.55408 5.55408 5.55408 5.55408 5.55408 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553164 5.553165 5.553164 5.553164 6.6821 6.6831 6.	6.2928 6.2928	6.2928 6.6253 6.7379 6.8064 6.8589 6.90317 7.0028 7.00317 7.0829 7.1064 7.1507 7.12431 7.2885 7.3324 7.3639 7.4586 7.5029 7.5378 7.66791 7.74643 7.6791 7.74643 7.8121 7.9078 8.0938 8.1449 8.1983 8.2475 8.33417 8.33417 7.9078 8.0938 8.1449 8.1983 8.2951 8.3719 8.7190 8

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14 Sample No.: S-14 Test No.: 17.4 PSI Location: IPR-GDF SUEZ Tested By: BCM
Test Date: 12/5/11
Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 6.08 in Specimen Area: 6.35 in^2 Specimen Volume: 38.65 in^3

_iquid	Limit: 42		P.	lastic Limit	: 24		Measured	l Specific G	ravity: 2.67	
	Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
1234567891011234456789101123445667889011233456789011234456789011234456789011233456789011234456666686977123345677777777777777777777777777777777777	0.00 0.04 0.09 0.13 0.23 0.27 0.37 0.42 0.56 0.66 0.75 0.95 1.05 1.14 1.24 1.34 1.62 1.72 1.82 1.91 2.10 2.20 2.29 2.58 2.88 3.46 3.75 4.03 4.62 4.91 5.57 9.86 6.95 7.24 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.5	6.2928 6.6253 6.7379 6.8064 6.8069 6.9032 6.9409 6.9746 7.0028 7.0317 7.056 7.0829 7.1064 7.1507 7.1957 7.2431 7.2885 7.3324 7.3697 7.4088 7.5029 7.5379 7.578 7.6103 7.6438 7.6791 7.7125 7.7464 7.7803 7.8121 7.9078 7.9685 8.03 8.0938 8.1449 8.1983 8.2475 8.3347 8.3815 8.2475 8.3347 8.3815 8.2475 8.3938 8.1449 8.1983 8.2475 8.9038 8.1449 8.1983 8.2475 8.9038 8.1449 8.1983 8.2475 8.3347 8.3815 8.2951 8.3347 8.3815 8.2951 8.3347 8.3815 8.2951 8.3347 8.3815 8.2951 8.39329 8.9689 8.9689 8.9692 9.0141 9.0515 9.077 9.0918 9.1294 9.1444 9.1718 9.2154 9.2154 9.2154 9.2154 9.2154 9.2154 9.2154 9.2154 9.2154 9.2236 9.2413 9.2154 9.2788 9.3216	6.2928 6.2928	0 0.15311 0.23521 0.28847 0.32896 0.36003 0.38444 0.40496 0.42216 0.43658 0.44823 0.45877 0.46765 0.48152 0.49206 0.50426 0.50426 0.50426 0.50426 0.50426 0.50426 0.49539 0.49539 0.49539 0.49539 0.49539 0.49539 0.45212 0.46765 0.48596 0.48041 0.47431 0.46709 0.45988 0.33507 0.30733 0.27559 0.25352 0.22578 0.19971 0.17474 0.15034 0.12482 0.10152 0.078774 0.056029 0.034394 0.12482 0.10152 0.078774 0.056029 0.034394 0.012759 -0.0072117 -0.06628 -0.047153 -0.064905 -0.083212 -0.10888 -0.15089 -0.16476 -0.1348 -0.15089 -0.16476 -0.1348 -0.15089 -0.16476 -0.026628 -0	0.000 0.460 0.528 0.562 0.581 0.593 0.594 0.595 0.591 0.581 0.575 0.561 0.540 0.485 0.469 0.485 0.469 0.452 0.316 0.304 0.292 0.259 0.233 0.304 0.292 0.259 0.186 0.166 0.147 0.130 0.113 0.098 0.084 0.092 0.057 0.046 0.035 0.015 0.005 -0.032 -0.032 -0.032 -0.036 -0.015 -0.056 -0.066 -0.071 -0.056 -0.066 -0.071 -0.076 -0.088 -0.092 -0.099 -0.105 -0.088 -0.092 -0.096 -0.092 -0.105 -0.108 -0.113 -0.115 -0.118 -0.120 -0.123 -0.125	1.2474 1.4268 1.4268 1.4726 1.4845 1.4978 1.5142 1.5353 1.52498 1.55287 1.57834 1.6238 1.65825 1.69951 1.7828 1.8195 1.9576 1.9971 2.0411 2.0411 2.0789 2.1179 2.12828 2.3229 2.4441 2.2828 2.3229 2.4441 2.2828 2.3229 2.4441 3.3048 3.3732 2.6218 3.3737 3.8364 3.39325 3.6811 3.7277 3.8364 3.39325 3.6811 3.7277 3.8364 4.1547 4	1.2474 1.0943 1.0122 0.95893 0.91844 0.88737 0.86296 0.84244 0.82524 0.81082 0.7975 0.76588 0.7524 0.74536 0.74536 0.74536 0.74536 0.74536 0.74536 0.75202 0.7559 0.76699 0.7731 0.78031 0.78031 0.78071 0.78071 0.78071 1.1226 1.1459 1.1686 1.1914 1.213 1.2346 1.2546 1.123 1.3306 1.3461 1.3822 1.4282 1.4282 1.4282 1.4282 1.4282 1.4281 1.4565 1.4704 1.3123 1.3306 1.3464 1.3822 1.4282 1.4282 1.4282 1.4421 1.4565 1.4704 1.5336 1.5536 1.5536 1.5536 1.5536 1.5536 1.5536 1.5536 1.5536 1.5536 1.5536 1.5536 1.5536	1.000 1.304 1.440 1.536 1.616 1.688 1.751 1.809 1.911 1.905 2.043 2.120 2.120 2.120 2.120 2.761 2.860 2.761 2.879 2.8619 2.656 2.7730 2.761 2.891 2.964 2.969 2.969 2.969 2.969 2.949 2.944 2.933 2.923 2.921 2.910	1.2474 1.2605 1.2348 1.2158 1.2158 1.2158 1.1926 1.1803 1.1803 1.1803 1.1803 1.18866 1.1949 1.2068 1.2244 1.2432 1.263 1.281 1.3012 1.3283 1.3526 1.3746 1.3985 1.4202 1.4425 1.4663 1.4902 1.5143 1.539 1.5633 1.6366 1.6941 1.7532 1.8128 1.8661 1.9713 2.0228 2.1644 2.2137 2.1644 2.2137 2.1644 2.2137 2.3009 2.3426 2.117 2.1644 2.6704 2.7022 2.7363 2.7639 2.3842 2.4273 2.4679 2.3842 2.4988 2.5744 2.6128 2.6404 2.7022 2.7363 2.7639 2.3842 2.4988 2.5744 2.6128 2.6404 2.77915 2.99713 2.9913 3.029 3.0473 2.9975 2.99714 2.99143 3.0149 3.029 3.0473 3.0149 3.029 3.0473 3.0149 3.029 3.0473 3.0149 3.029 3.0473 3.0149 3.029 3.0473 3.0149 3.029 3.0473 3.0149 3.029 3.0473 3.0149	0 0.16625 0.22257 0.25682 0.28303 0.30522 0.36947 0.3816 0.39504 0.4068 0.42897 0.45143 0.47515 0.49784 0.51982 0.53846 0.55806 0.5829 0.60504 0.62255 0.64262 0.65874 0.70984 0.77681 0.70984 0.72681 0.70984 0.72681 0.7091 1.021 1.021 1.021 1.041 1.1138 1.1323 1.1512 1.1927 1.2133 1.2248 1.2412 1.262 1.2822 1.2921 1.3043 1.3517 1.3632 1.3743 1.3794 1.3921 1.4095 1.4183 1.4258 1.4374 1.4654 1.4744 1.4654 1.4744 1.4654 1.4744 1.4654 1.4744 1.4908 1.493 1.5015 1.5079 1.5144

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14 Sample No.: S-14 Test No.: 24.3 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/5/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 6.02 in Specimen Area: 6.36 in^2 Specimen Volume: 38.27 in^3

Liquid Limit: 42 Plastic Limit: 24 Measured Specific Gravity: 2.67

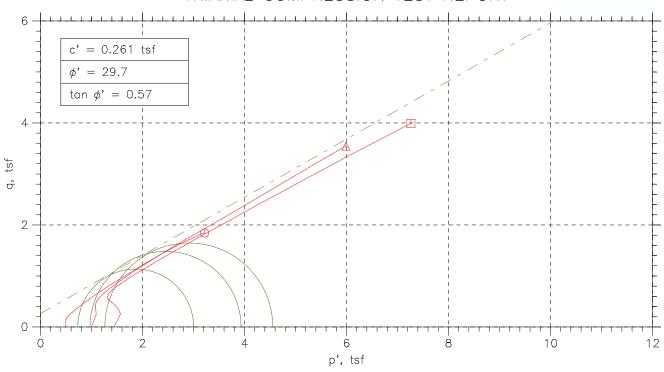
iquid Limi	it: 42		PI	astic Limit:	24		Measured	Specific Gr
	Time min	Vertical Strain %	Corrected Area in^2	Deviator Load lb	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
123456789011234567890122345678901233456789012345678901234567890123456789012345678901234567890123456777777777777777777777777777777777777	0 5.0037 10.004 15.004 20.004 25.004 25.004 25.004 25.004 25.004 25.001 100 1100 1100 1200 1300 140 150 160 170 180 190 2200 2210 2200 2210 2200 2210 2200 240 270 300 330 330 330 330 330 330 360 390 420 450 450 660 670 670 670 670 670 670 670 670 67	0.032682 0.078153 0.12504 0.17194 0.22025 0.26714 0.31261 0.3595 0.40924 0.4575 0.50444 0.55133 0.64512 0.74458 0.83695 0.92789 1.0217 1.1169 1.2107 1.3059 1.4039 1.4949 1.5943 1.6924 1.7862 1.8814 1.976 2.1727 2.5577 2.8433 3.1219 3.406 3.6945 3.9815 4.557 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 4.8398 5.1257 5.9894 6.5705 6.8604 7.1432 7.426 7.79943 8.2828 8.5741 8.8669 9.448 9.7336 10.022 10.585 10.877 11.167 11.473 12.027 12.308 12.2308	6.361 6.36215 6.36215 6.36215 6.36216 6.3741 6.3741 6.37416 6.3833 6.38623 6.389233 6.490137 6.44137 6.44257 6.44319 6.44506 6.44506 6.44506 6.44506 6.44506 6.44506 6.44506 6.44506 6.44506 6.44506 6.44506 6.44506 6.44506 6.44506 6.44506 6.45013 6.5078 6.5078 6.5078 6.5040 6.5078 6.5078 6.5078 6.5040 6.7023 6.7039 6.70458 7.0036 6.9344 6.9345 7.3394 7.3394 7.3493 7.4483 7.4520 7.3496 7.4483 7.4520 7	0 36.347 49.512 56.855 61.995 66.401 70.072 73.376 76.366 79.355 81.97.083 101.44 106.63 111.51 116.95 130.28 134.85 139.57 144.8 153.15 165.74 169.99 181.22 231.46 202.56 192.47 222.12 231.46 248.71 256.9 264.37 272.37 280.03 287.37 301.01 307.77 314.07 320.31 324.19 336.93 337.95 382.93 387.37 392.36 392.36 393.37 393.37 393.37 394.39 395.37 395.37 396.36 401.76 404.59 401.76 402.16 403.97 403.97 403.97 404.59 404.59 404.59 404.59 404.59 405.99 406.53 406.53 447.97	0 0.4134 0.56007 0.64283 0.70062 0.75005 0.79115 0.82808 0.86141 0.89468 0.95113 0.97903 1.0365 1.0909 1.1387 1.2494 1.2993 1.3526 1.4041 1.4542 1.5037 1.5548 1.6544 1.7012 1.7478 1.7926 1.8355 1.8807 1.9996 2.1166 2.2215 2.3234 2.4217 2.5159 2.6055 2.6873 2.7675 2.8394 3.1197 3.1837 3.3584 3.3715 3.3858 3.3859 3.3858 3.3858 3.3858 3.3858 3.3858 3.3858 3.3858 3.3858 3.3859 3.3858 3.3858 3.3858 3.3858 3.3859 3.3858 3.3858 3.3858 3.3859 3.3858 3.3859 3.3858 3.38	5.0404 5.2561 5.3969 5.4904 5.5581 5.6109 5.6527 5.7402 5.7781 5.7781 5.8392 5.8392 5.8392 5.8392 5.8392 5.8392 5.8392 5.8392 5.8392 5.8392 5.8393 5.8294 5.8393 5.8294 5.8393 5.66214 5.7777 5.7523 5.66214 5.6076 5.7523 5.7681 5.8392 5.8392 5.8392 5.8392 5.8392 5.8394 5.8398 5.8381 5.8294 5.8398 5.8294 5.7777 5.7523 5.66214 5.6076 5.55529 5.4343 5.3316 5.2759 5.4343 5.3316 5.2759 5.4761 5.2759 5.4761 5.2759 5.4761 5.2759 5.4781 6.0492 4.9905 4.9905 4.9912 4.9905 4.9912 4.9905 4.66526 4.66526 4.66526 4.66526 4.66526 4.66526 4.66526 4.66526 4.65552	6.8328 6.	6.8328 7.2441 7.3929 7.4756 7.5334 7.5828 7.66399 7.66942 7.7275 7.7566 7.78318 7.8693 7.9237 8.0822 8.1321 8.18549 8.287 8.3365 8.4392 8.3365 8.4392 8.5304 8.6254 8.62545 9.1562 9.2545 9.3488 9.1562 9.2545 9.3488 10.132 9.6003 9.672 9.7494 9.8222 10.331 10.382 10.472 10.548 10.763

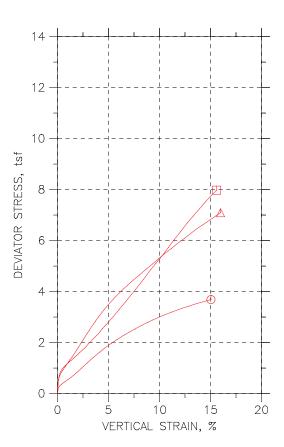
Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14 Sample No.: S-14 Test No.: 24.3 PSI

Location: IPR-GDF SUEZ

Tested By: BCM
Test Date: 12/5/11
Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 26.0'-28.0' Elevation: ----




Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 6.02 in Specimen Area: 6.36 in^2 Specimen Volume: 38.27 in^3

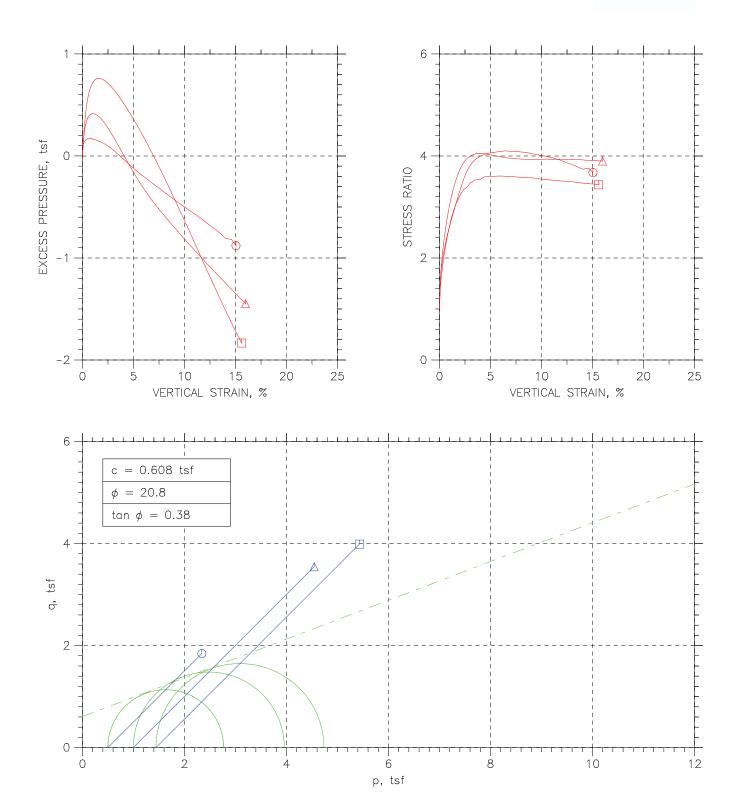
Liquid Limit: 4	2	ı	Plastic Limit	: 24		Measured	d Specific G	ravity: 2.67	
Verti Str	ain Stre	al Horizontal	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
2 3 4 5 6 7 8 9 0 0 0 0 111 12 13 14 15 16 17 18 19 20 1 12 22 33 34 5 36 6 37 8 39 4 1 4 2 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 4 5 5 6 6 6 6 6 6	.00 6.83 .03 7.24 .08 7.39 .13 7.47 .17 7.53 .22 7.58 .27 7.62 .27 7.66 .36 7.69 .41 7.72 .46 7.75 .50 7.78 .55 7.86 .74 7.92 .84 7.97 .84 7.97 .84 7.97 .85 8.02 .02 8.08 .12 8.13 .21 8.18 .31 8.23 .40 8.2 .49 8.33 .40 8.3 .59 8.38 .69 8.48 .79 8.48 .81 .69 8.59 .884 8.55 .98 8.59 .884 8.50 .98 8.62 .17 8.71 .56 8.83 .79 8.48 .17 .56 .27 8.71 .56 .27 8.71 .56 .27 8.71 .56 .27 8.71 .56 .27 8.71 .56 .27 8.71 .56 .284 9.60 .14 9.15 .69 .9.25 .50 .84 9.60 .14 10.1 .71 .99 9.89 .28 9.95 .57 10.0 .84 10.1 .73 10.5 .30 10.5 .30 10.6 .41 10.1 .43 1073 10.5 .30 10.5 .30 10.6 .41 10.1 .43 1073 10.5 .30 10.5 .30 10.6 .46 10.9 .47 10.9 .48 10.9 .49 11.1 .49 11.1 .49 11.1	41 6.8328	0 0.21566 0.35649 0.45002 0.51768 0.5705 0.61231 0.64697 0.67558 0.69978 0.72014 0.73774 0.7526 0.7768 0.79881 0.80156 0.79936 0.79931 0.7831 0.7931 0.7831 0.7931 0.77871 0.73664 0.775264 0.71188 0.66787 0.75264 0.71188 0.66787 0.73664 0.71188 0.66787 0.16504 0.71188 0.66787 0.16504 0.13939 0.351262 0.23546 0.1997 0.16504 0.13093 0.098476 0.14016 0.141536 0.445076 -0.445082 -0.47422 -0.48523	0.000 0.524 0.637 0.700 0.739 0.761 0.774 0.781 0.782 0.782 0.789 0.769 0.776 0.612 0.668 0.639 0.616 0.593 0.509 0.549 0.528 0.507 0.485 0.447 0.428 0.411 0.395 0.379 0.334 0.294 0.212 0.1010 0.095 0.079 0.065 0.079 0.065 0.079 0.065 0.079 0.065 0.079 0.079 0.065 0.079 0.065 0.079 0.079 0.065 0.079 0.065 0.079 0.079 0.065 0.079 0.079 0.065 0.079 0.079 0.065 0.079 0.079 0.079 0.079 0.088 0.091 0.074 0.074 0.074 0.074 0.074 0.078 0.088 0.091 0.097 0.099 0.105 0.099 0.105 0.099	1.7924 1.9881 1.9882 1.9853 1.9753 1.9753 1.9753 1.9735 1.9735 1.99782 1.99783 2.00588 2.00588 2.02341 2.1893 2.2343 2.3489 2.55598 2.55598 2.6773 2.7338 2.7338 2.7489 2.56198 2.76193 2.9612 2.9612 3.12853 3.4363 4.20528 4.20528 4.20528 2.7338 4.20528 5.5598 4.20528 5.5598 5.6193 4.4313 4.65117 4.8452 5.5697 5.661395 5.7816 6.1393 5.7816 6.23616 6.33914 6.4374 6.55029 6.55419 6.55419 6.55419 6.55419	1.7924 1.5767 1.4359 1.3424 1.2747 1.2219 1.1801 1.1454 1.1168 1.0926 1.0723 1.0547 1.0398 1.0156 0.99744 0.99359 0.99359 0.99359 0.99369 0.99364 0.99469 0.999084 1.0046 1.0134 1.0227 1.0326 1.0436 1.0558 1.0668 1.0805 1.1245 1.1241 1.2252 1.2703 1.3138 1.3567 1.3985 1.4388 1.5569 1.5927 1.6615 1.6939 1.7242 1.7544 1.7836 1.8116 1.8386 1.8863 1.887 1.9112 1.9316 1.9316 1.9539 1.7242 1.7544 1.7836 1.8116 1.8386 1.887 1.9112 1.9316 1.9319 1.9937 2.0136 2.02515 2.0702 2.0856 2.1049 2.1384 2.1533 2.1676 2.1802 2.1944 2.2078 2.22372 2.2375 2.2512 2.2666 2.2776	1.000 1.261 1.390 1.479 1.550 1.614 1.670 1.723 1.771 1.819 1.862 1.902 1.942 2.021 2.040 2.204 2.258 2.3165 2.414 2.462 2.508 2.548 2.647 2.6698 2.721 2.741 2.741 2.741 2.741 2.741 2.7916 2.915 2.920	1.7824 1.7824 1.7824 1.7829 1.6638 1.625 1.5969 1.575757 1.5595 1.542 1.5338 1.542 1.5338 1.542 1.5338 1.6647 1.6183 1.6672 1.6951 1.7218 1.77218 1.7782 1.8166 1.8499 1.8832 1.9175 2.0209 2.1243 2.2274 2.3222 2.3869 2.4811 2.5717 2.6595 2.7421 2.8218 3.0516 3.1219 3.1872 3.1872 3.1873 3.1219 3.1872 3.2533 3.3765 3.3749 3.4328 4.7313 3.9644 3.9991 4.0351 4.1057 4.1	0 0.20567 0.28004 0.32142 0.35031 0.37502 0.39557 0.41404 0.4307 0.44734 0.4619 0.47557 0.54543 0.56936 0.59796 0.62472 0.64966 0.67632 0.70204 0.7271 0.75187 0.7774 0.80319 0.82721 0.85058 0.87389 0.89628 0.91776 0.94034 0.99978 1.0583 1.1108 1.1617 1.2108 1.3437 1.3837 1.4196 1.4583 1.4947 1.5292 1.5598 1.6226 1.6507 1.6784 1.6935 1.7492 1.7746 1.7962 1.7962 1.7746 1.7963 1.7962 1.7746 1.7963 1.7963 1.79649 1.9376 1.9376 2.0083 2.0259 2.0415 2.0083 2.0259 2.0415 2.0083 2.0259 2.0415 2.0083 2.0259 2.0415 2.00918 2.11258 2.11376 2.11444

TRIAXIAL COMPRESSION TEST REPORT

Syı	mbol	O	Δ		
Tes	st No.	7 PSI	13.9 PSI	20.8 PSI	
	Diameter, in	2.8457	2.8382	2.837	
	Height, in	5.9839	5.9646	5.7075	
<u> </u>	Water Content, %	13.01	13.76	17.65	
Initial	Dry Density, pcf	117.3	118.	109.8	
	Saturation, %	83.50	90.24	92.02	
	Void Ratio	0.41352	0.40495	0.50912	
_	Water Content, %	15.40	14.54	18.60	
Shear	Dry Density, pcf	117.7	119.6	111.	
	Saturation, %	100.00	100.00	100.00	
Before	Void Ratio	0.40877	0.3861	0.49381	
m	Back Press., tsf	5.046	5.0443	5.0958	
Mir	nor Prin. Stress, tsf	0.49798	0.99651	1.4418	
Ма	x. Dev. Stress, tsf	3.6849	7.0909	7.9769	
Tin	ne to Failure, min	770.98	772.22	773.86	
Str	ain Rate, %/min	0.02	0.02	0.02	
B-	Value	.97	.95	.99	
Ме	asured Specific Gravity	2.65	2.65	2.65	
Liq	uid Limit	27	27	27	
Plo	astic Limit	11	11	11	
Plo	sticity Index	16	16	16	
Fa	ilure Sketch	CONTRACTOR OF THE PARTY OF THE		-	

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: B-4-1 S-7
Sample Type: 3" ST

AECOM



Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC

Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

TRIAXIAL COMPRESSION TEST REPORT

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561			
Boring No.: B-4-1 S-7	Tested By: BCM	Checked By: WPQ			
Sample No.: S-7	Test Date: 12/1/11	Depth: 12.0'-14.0'			
Test No.: B-4-1 S-7	Sample Type: 3" ST	Elevation:			
Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC					
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767					

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7 Test No.: 7 PSI

Location: IPR-GDF SUEZ

Tested By: BCM
Test Date: 12/1/11
Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.98 in Specimen Area: 6.36 in^2 Specimen Volume: 38.06 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

Liquid Limit: 27		рΊ	astic Limit:	11		Measured	Specific Gra	vity: 2.65
Time min	Vertical Strain %	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf	
1 0 2 5 3 10 4 15 5 20 6 25 7 30.001 8 35.001 9 40.001 10 45.001 11 50.001 12 55.001 13 60.001 14 70.001 15 80.001 16 90.002 17 100 18 110 19 120 20 130 21 140 22 150 23 160 24 170 25 180 26 190 27 200 28 210 29 220 30 230 31 240 32 270 33 360 36 390 37 420 38 450 39 480 40 510 41 540 42 570 43 660 44 630 45 660 46 690 47 720 48 750 49 770.98	0.086461 0.18589 0.28388 0.38187 0.4782 0.57785 0.6744 0.77094 0.86893 1.0649 1.1629 1.3589 1.5549 1.7494 1.9454 2.1333 2.5261 2.7178 2.9109 3.1054 3.2999 3.4959 3.6904 3.8879 4.0838 4.2798 4.4744 4.663 7.512 7.597 8.1879 8.7758 9.3565 9.943 10.532 11.116 11.698 12.285 12.874 13.463 14.047 14.632 15.049	6.36 6.365 6.3719 6.3781 6.3844 6.3997 6.4032 6.4094 6.41221 6.4285 6.4285 6.4349 6.44605 6.4605 6.4733 6.4862 6.4911 6.5119 6.5248 6.5377 6.5507 6.5507 6.56308 6.6037 6.6123 6.6444 6.6579 6.67123 6.7544 6.7123 6.7544 6.7971 6.8829 6.9272 6	0 19.795 24.744 28.64 31.851 34.563 37.116 40.064 42.433 44.961 47.488 50.015 52.436 57.701 63.545 69.652 75.812 82.287 89.026 95.87 102.5 109.3 115.93 122.56 129.2 135.46 141.83 148.15 154.31 160.52 166.1 182.69 198.8 214.2 228.12 242.18 255.97 269.13 281.45 293.66 305.19 316.25 317.84 317.84 317.88	0 0.2239 0.2796 0.3233 0.3792 0.38911 0.41775 0.4505 0.47667 0.50456 0.5324 0.56017 0.58671 0.64431 0.70819 0.77472 0.84155 0.91162 0.98433 1.2716 1.1289 1.2013 1.2716 1.3417 1.4115 1.4769 1.5432 1.6087 1.6721 1.7359 1.7926 2.1191 2.2692 2.4014 2.5333 2.6779 4.2.8881 2.9939 3.0911 3.1822 3.2677 3.3526 3.5757 3.6369 3.6849	5.046 5.1593 5.1856 5.2008 5.209 5.2137 5.216 5.2166 5.2148 5.2125 5.2078 5.2014 5.1932 5.1851 5.1652 5.1535 5.1407 5.1278 5.1126 5.0963 5.0793 5.061 4.9905 4.973 4.9555 4.9052 4.8568 4.8118 4.7674 4.723 4.6786 4.6354 4.5921 4.5506 4.5098 4.47 4.428 4.3812 4.3368 4.2901 4.2381 4.2264 4.1663	5.544 5.544	5.544 5.7679 5.8236 5.8673 5.9032 5.9331 5.9945 6.0207 6.0486 6.1042 6.1307 6.1883 6.2522 6.3187 6.3855 6.4556 6.5283 6.4556 6.5283 6.4556 7.0209 7.0872 7.0209 7.0872 7.2161 7.2799 7.3366 7.6631 7.8132 7.9454 8.3234 8.4321 8.5379 8.6351 8.7262 8.8117 8.8966 8.9722 9.0496 9.1197 9.1809	

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7 Test No.: 7 PSI Location: IPR-GDF SUEZ

Tested By: BCM
Test Date: 12/1/11
Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 5.98 in Specimen Area: 6.36 in^2 Specimen Volume: 38.06 in^3

Liquid Limit: 27 Plastic Limit: 11 Measured Specific Gravity: 2.65

iquiu L	.11111111111111111111111111111111111111		'	lastic Limit.	, 11		Measure	a specific di	avity. 2.03	
	Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 12 22 23 44 24 25 26 27 28 29 33 33 44 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47	0.00 0.09 0.19 0.28 0.38 0.48 0.58 0.67 0.77 0.87 1.06 1.36 1.35 1.75 1.95 2.14 2.33 2.75 2.91 3.30 3.59 3.89 4.08 4.28 4.47 4.67 5.25 5.84 6.47 7.60 8.19 8.79	5.544 5.7679 5.8236 5.8673 5.9931 5.9931 5.9945 6.0248 6.0248 6.1307 6.1387 6.3855 6.3855 6.3855 6.6729 6.7453 6.6729 6.7453 6.8857 7.0209 7.0872 7.1527 7.2161 7.2799 7.3366 7.6631 7.5036 7.6631 7.5036 7.6631 7.8132 7.9454 8.0773 8.2045 8.3234 8.7262 9.0496 9.1809 9.2289	5.544 5.5544 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545 5.5545	0 0.11333 0.13962 0.1548 0.16298 0.16298 0.16766 0.16999 0.17058 0.16649 0.16415 0.16181 0.15539 0.14721 0.13903 0.1291 0.11917 0.10749 0.094635 0.081783 0.066595 0.050238 0.03297 0.015772 -0.0017525 -0.019862 -0.037971 -0.055496 -0.073021 -0.09546 -0.14078 -0.18927 -0.23425 -0.27865 -0.32304 -0.36744 -0.41067 -0.4539 -0.49537 -0.53626 -0.57599 -0.61805 -0.66478 -0.70591 -0.8079 -0.81958 -0.87975	0.000 0.506 0.499 0.479 0.454 0.431 0.407 0.379 0.355 0.313 0.293 0.276 0.241 0.208 0.179 0.135 0.131 0.109 0.089 0.075 0.040 0.025 0.011 -0.001 -0.013 -0.024 -0.033 -0.024 -0.033 -0.024 -0.033 -0.024 -0.033 -0.016 -0.128 -0.138 -0.148 -0.138 -0.148 -0.157 -0.165 -0.173 -0.165 -0.173 -0.189 -0.207 -0.226 -0.225 -0.239	0.49798 0.60855 0.63796 0.66942 0.71943 0.74574 0.7779 0.80466 0.83372 0.86389 0.894 0.92288 0.98693 1.059 1.1337 1.2104 1.3748 1.4612 1.5451 1.6327 1.7194 1.8064 1.8937 1.9766 2.061 2.1446 2.2256 2.3069 2.3811 2.5983 2.8063 3.0014 3.178 3.3543 3.5259 3.6884 3.9873 4.12544 4.2562 4.3837 4.5154 4.6354 4.78916 4.9544 5.0627	0.49798 0.38465 0.35836 0.34317 0.3353 0.33032 0.32799 0.32749 0.32915 0.33149 0.33383 0.33616 0.34259 0.35077 0.35895 0.36888 0.37881 0.39049 0.40334 0.4162 0.43138 0.44774 0.46468 0.48221 0.4973 0.51784 0.53595 0.5571 0.58852 0.63876 0.68725 0.73223 0.77663 0.82102 0.86542 0.90865 0.99335 1.0342 1.07463 1.116 1.1628 1.2072 1.2539 1.3176 1.3777	1.000 1.582 1.780 1.942 2.072 2.178 2.274 2.376 2.453 2.533 2.606 2.678 2.745 2.881 3.019 3.158 3.281 3.407 3.521 3.623 3.718 3.927 3.955 3.980 4.002 4.021 4.040 4.046 4.068 4.083 4.092 4.021 4.040 4.046 4.068 4.083 4.092 4.021 4.040 4.046 4.068 4.083 4.092 4.021 4.040 4.046 4.068 4.074 4.059 4.092 4.086 4.074 4.092 4.092 4.086 4.074 4.092 4.086 3.788 3.989 3.9883 3.8840 3.796 3.7780 3.675	0.49798 0.4966 0.49816 0.50483 0.5146 0.52488 0.53686 0.55265 0.56632 0.58144 0.59769 0.61391 0.62952 0.66476 0.70486 0.7463 0.78965 0.83462 0.88265 0.93229 0.98063 1.032 1.0836 1.1355 1.1879 1.2382 1.2894 1.3403 1.3895 1.4488 1.6186 1.7468 1.8668 1.9773 2.0877 2.1957 2.2983 2.3959 2.4903 2.5798 2.6651 2.7499 2.8391 2.9213 3.0067 3.0937 3.136 3.2202	0 0.11195 0.1398 0.16165 0.1796 0.1796 0.19455 0.20888 0.22528 0.2662 0.28009 0.29336 0.32217 0.35409 0.38736 0.42077 0.45581 0.49216 0.52895 0.56444 0.63582 0.67085 0.70573 0.73846 0.7716 0.80433 0.836095 0.86795 1.1346 1.2007 1.2667 1.3302 1.3897 1.4441 1.497 1.5456 1.5911 1.6338 1.6763 1.7141 1.7879 1.8184 1.8425

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7 Test No.: 13.9 PSI

Location: IPR-GDF SUEZ

Tested By: BCM
Test Date: 12/1/11
Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.96 in Specimen Area: 6.33 in^2 Specimen Volume: 37.74 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

Liquid Limit: 27 Plastic Limit: 11 Measured Specific Gravity: 2.65

	Time min	Vertical Strain %	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 33 33 33 33 33 33 33 33 33 33 33 33 33	0 5.0001 10 15 20 20 30.001 35.001 40.001 55.001 55.001 60.001 70.001 80.002 90.002 100 110 120 130 140 150 160 170 180 220 230 240 270 330 360 390 420 450 450 660 660 690 720 772.22	0.088226 0.18929 0.29035 0.39301 0.49407 0.59834 0.7026 0.80687 0.91274 1.0154 1.1213 1.4257 1.649 1.8576 2.06885 2.8954 3.1056 3.3157 3.5242 3.736 3.9456 4.1563 4.3648 4.5717 4.7787 4.7887 5.6016 6.224 6.8335 7.4495 8.0687 8.6911 9.3087 9.927 10.552 11.176 11.797 12.416 13.033 14.283 14.902 15.525 15.991	6.3266 6.3322 6.33851 6.3516 6.358 6.3647 6.3714 6.3781 6.3849 6.3984 6.4088 6.4488 6.4327 6.4464 6.4601 6.4738 6.55153 6.55294 6.55153 6.55722 6.58601 6.6154 6.6297 6.6481 6.6585 6.7007 6.8359 6.9288 6.9764 7.073 7.1226 7.1728 7.22748 7.3275 7.3808 7.4345 7.4893 7.5309	0 42.594 57.838 67.028 74.03 79.864 85.335 90.44 95.837 101.02 106.41 111.81 117.43 128 139.67 151.49 163.556 187.81 200.21 212.32 224.42 236.46 248.35 259.8 270.88 270.88 281.75 292.4 302.54 312.53 322.3 349.8 375.84 399.69 422.95 445.56 468.98 492.1 516.31 540.67 563.06 587.2 609.6 633.59 657.66 679.18 701.93 724.47 741.68	0 0.48432 0.65698 0.76059 0.83918 0.9044 0.96534 1.022 1.0819 1.1391 1.1987 1.2582 1.8225 2.4363 2.4747 2.6018 2.7267 2.8461 2.9611 3.0732 3.1824 3.2856 3.3868 3.4851 3.7579 4.011 4.2378 4.4548 4.6616 4.8733 5.079 5.2925 5.5038 5.6918 5.6926 6.4622 6.6254 6.7979 6.9648 7.0909	5.0443 5.1902 5.2828 5.3416 5.4104 5.4304 5.4526 5.4565 5.4587 5.4565 5.4587 5.4584 5.4271 5.406 5.3805 5.3822 5.2895 5.2534 5.1219 5.1813 5.1441 5.0693 5.0321 4.9949 4.9583 4.9222 4.8873 4.6926 4.6066 4.5289 4.5289 4.5289 4.5289 4.5289 4.5289 4.5289 4.5289 4.5289 4.5289 4.5289 4.5289 4.5289 4.5289 4.5289 4.5289 5.52534 5.5289 5.52534 5.5289 5.52534 5.5289	6.0408 6.0408	6.0408 6.5251 6.6978 6.8014 6.88 6.9452 7.0061 7.0628 7.1227 7.1799 7.2395 7.299 7.3608 7.4766 7.6041 7.7328 7.8633 8.1251 8.258 8.3871 8.5155 8.86426 8.7675 8.8869 9.0014 9.2232 9.3264 9.4276 9.5259 9.7987 10.052 10.279 10.479 10.479 10.702 10.702 10.702 10.702 10.702 10.702 11.733 11.733 11.733 11.935 12.117 12.312 12.839 13.006 13.132

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7 Test No.: 13.9 PSI

Location: IPR-GDF SUEZ

Tested By: BCM
Test Date: 12/1/11
Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.96 in Specimen Area: 6.33 in^2 Specimen Volume: 37.74 in^3

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

Liquid Limit: 2	7	Р	lastic Limit	: 11		Measured	l Specific G	ravity: 2.65	
Verti Str	ain Stre	al Horizontal	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 22 223 224 225 227 228 229 331 332 334 335 336 337 339 40 41 42 44 44 44 44 44 44 44 44 44 44 44 44	000 6.04	51 6.0408 78 6.0408 6.0408 6.0408 88 6.0408 61 6.0408 62 6.0408 69 6.0408 69 6.0408 60 6.0408 60 6.0408 60 6.0408 61 6.0408 62 6.0408 63 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60 6.0408 60<	0.1459 0.23854 0.29734 0.33673 0.36613 0.3861 0.39886 0.40829 0.41217 0.41439 0.41217 0.41439 0.41384 0.41107 0.306169 0.33617 0.30844 0.27793 0.2452 0.20914 0.17474 0.13702 0.099854 0.062686 0.024963 -0.012204 -0.15699 -0.25796 -0.35171 -0.43769 -0.559025 -0.66403 -0.73559 -0.8066 -0.8765 -0.94362 -1.0124 -1.0784 -1.1439 -1.2737 -1.3375 -1.4013 -1.4484	0.000 0.301 0.363 0.391 0.401 0.405 0.400 0.390 0.377 0.362 0.346 0.329 0.311 0.279 0.245 0.214 0.184 0.158 0.133 0.111 0.089 0.071 0.053 0.037 0.022 0.008 -0.046 -0.026 -0.036 -0.045 -0.046 -0.026 -0.036 -0.045 -0.045 -0.053 -0.103 -0.116 -0.127 -0.136 -0.145 -0.152 -0.152 -0.159 -0.166 -0.172 -0.177 -0.187 -0.192 -0.197 -0.201 -0.204	0.99651 1.3349 1.4149 1.4598 1.5348 1.5757 1.6197 1.6701 1.7809 1.9055 2.0318 2.1771 2.3268 2.4828 2.6406 2.8029 2.9685 3.1337 3.26403 3.6233 3.78 3.9329 4.0819 4.2283 4.3681 4.5053 4.6386 5.0124 5.3592 5.9685 5.9685 8.1511 8.4111 7.0956 7.3768 7.3768 7.9032 8.1511 8.4112 8.66124 8.8956 9.1319 9.3626 9.5358	0.99651 0.85061 0.75797 0.69917 0.65978 0.63038 0.61041 0.59765 0.58822 0.58267 0.588212 0.58267 0.585434 0.663482 0.66344 0.68807 0.71858 0.75131 0.78737 0.82177 0.85949 0.89666 0.93383 0.97155 1.0087 1.0459 1.0859 1.0855 1.1186 1.1535 1.2545 1.3482 1.4342 1.511 1.8731	1.000 1.569 1.867 2.088 2.272 2.435 2.581 2.710 2.839 3.059 3.159 3.547 3.665 3.760 3.838 3.901 4.027 4.041 4.048 4.048 4.048 4.048 4.047 4.043 4.035 4.021 3.996 3.975 3.935 3.935 3.935 3.935 3.935 3.938 3.935 3.938	0.99651 1.0928 1.0865 1.0794 1.0826 1.0931 1.1087 1.1297 1.1539 1.1815 1.2118 1.2455 1.3139 1.4808 1.5716 1.6643 1.7607 1.8599 1.9605 2.0569 2.4521 2.5453 2.6371 2.7253 2.8119 2.8961 3.1334 3.3537 3.5531 3.7375 4.0972 4.2716 4.4494 4.6249 4.786 4.9561 5.113 5.2758 5.4353 5.5829 5.7329 5.8802 5.9904	0 0.24216 0.32849 0.3803 0.41959 0.4522 0.48267 0.51101 0.56956 0.59937 0.62909 0.66002 0.7179 0.78166 0.84599 0.91125 0.97625 1.0422 1.1086 1.1731 1.2374 1.3009 1.3633 1.4231 1.4806 1.5366 1.5912 1.6428 1.6934 1.7426 1.8789 2.2274 2.3308 2.7519 2.2274 2.3308 2.7519 2.2274 2.3308 2.2274 2.3308 2.2274 2.3308 2.2274 2.3308 2.2275 2.6463 2.7519 2.8459 2.9472 3.0381 3.1357 3.3989 3.4824 3.5454

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7 Test No.: 20.8 PSI

Liquid Limit: 27

Location: IPR-GDF SUEZ Tested By: BCM
Test Date: 12/1/11
Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.71 in Specimen Area: 6.32 in^2 Specimen Volume: 36.08 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

Plastic Limit: 11 Measured Specific Gravity: 2.65

-1								
	Time min	Vertical Strain %	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	5.0038 10.004 15.004 20.004 25.004 30 35 40 45.002 50.003 55.003 60.003 70.003 80.004 100 110 120 130 140 150 160 170 180 190 220 230 240 270 300 336 336 360 390 420 450 450 450 450 450 450 450 450 450 45	0.074905 0.17378 0.27265 0.37303 0.4749 0.57677 0.67415 0.77752 0.87939 0.97976 1.0801 1.1835 1.3842 1.5895 1.7887 1.9925 2.1962 2.3955 2.5992 2.8059 3.0097 3.2119 3.4142 3.6119 3.8127 4.0164 4.2187 4.4164 4.2187 4.4164 4.6187 4.8209 5.4291 6.0389 6.6411 7.2433 7.8605 8.4641 7.2433 7.8605 8.4641 7.2433 7.8605 8.4641 7.2433 7.8605 8.4641 7.2433 7.8605 8.4643 9.0605 9.6658 10.283 10.887 11.48 12.084 12.084 12.084 12.089 13.303 13.902 14.505	6.3214 6.3214 6.3324 6.3324 6.3324 6.3328 6.345 6.3515 6.3538 6.3774 6.3839 6.3971 6.4101 6.4235 6.4365 6.4909 6.4633 6.4765 6.55311 6.54489 6.55482 6.5719 6.5859 6.5998 6.6134 6.5727 6.6843 6.7276 6.6843 6.7276 6.815 6.8607 6.9059 7.0936 7.1412 7.1902 7.2409 7.2913 7.3421 7.3938	45.054 62.257 72.957 80.614 86.279 90.422 93.779 97.975 100.65 104.84 111.51 117.22 123.99 130.13 137.42 144.6 151.58 158.24 165.9 175.55 182.73 191.81 199.36 206.81 214.52 224.32 234.24 242.73 250.97 278.4 307.61 336.99 367.41 398.56 431.13 529.79 564.88 599.97 671.35 704.95 671.35 704.95 771.63	0 0.51278 0.70787 0.82871 0.91477 0.97804 1.0609 1.1073 1.1363 1.1837 1.215 1.255 1.3167 1.3898 1.4556 1.9393 2.0145 2.1101 2.1887 2.2657 2.3452 2.4473 2.5501 2.637 2.7207 2.9988 3.2921 3.5831 3.8816 4.1827 4.4949 4.8112 5.118 5.4138 5.7335 6.0491 6.3581 6.6755 6.9608 7.2373 7.514	5.0958 5.2246 5.3665 5.4806 5.5686 5.636 5.6898 5.7316 5.7648 5.7909 5.8104 5.8262 5.8387 5.8539 5.8583 5.855 5.8463 5.79762 5.7523 5.7728 5.7018 5.6735 5.6735 5.6442 5.6148 5.5849 5.5534 5.5534 5.5534 5.5534 5.5534 5.4876 5.3849 5.2746 5.1589 4.9187 4.7937 4.6665 4.4035 4.4035 4.2698 4.1361 4.0008 3.8687 3.7378 3.6073 3.4807	6.5376 6.5376	6.5376 7.0504 7.2455 7.3663 7.4524 7.5156 7.5616 7.5985 7.6449 7.6739 7.7213 7.7526 7.8543 7.9274 7.9932 8.0716 8.1484 8.2227 8.2931 8.4769 8.5521 8.6477 8.7263 8.8033 8.8828 8.9849 9.0877 9.1746 9.2583 9.2781 10.419 11.033 11
48 49	750 773.86	15.119 15.606	7.4473 7.4903	805.72 829.85	7.7897 7.9769	3.3563 3.2617	6.5376 6.5376	14.327 14.514

Project: COLETO CREEK FACILITY

14.514

Location: IPR-GDF SUEZ Boring No.: B-4-1 S-7 Sample No.: S-7 Test No.: 20.8 PSI

Tested By: BCM
Test Date: 12/1/11
Sample Type: 3" ST

-1.8341

Project No.: 60225561 Checked By: WPQ Depth: 12.0'-14.0' Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Specimen Height: 5.71 in Specimen Area: 6.32 in^2 Specimen Volume: 36.08 in^3 Membrane Correction: 0.00 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.65

3.435

7.2643

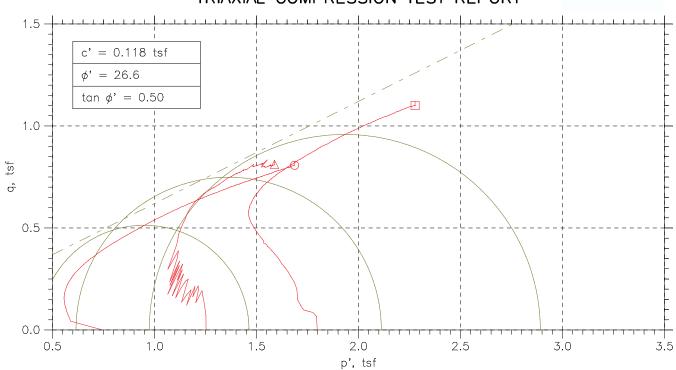
3.9884

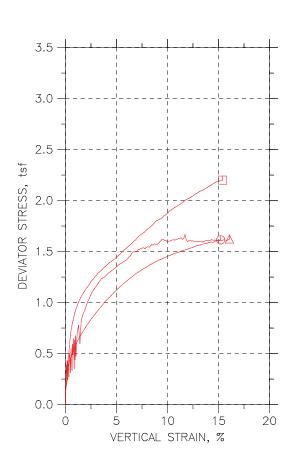
Liquid Limit: 27 Plastic Limit: 11 Effective Effective
Vertical Horizontal Stress
Stress Stress Ratio
+cf tsf Total Excess Total Pore A
Pressure Parameter Vertical Horizontal Vertical Effective Stress Stress tsf tsf
 1.4418
 1.4418
 1.000
 1.4418

 1.8258
 1.313
 1.391
 1.5694

 1.879
 1.1711
 1.604
 1.5251

 1.8857
 1.057
 1.784
 1.4714


 1.8838
 0.96898
 1.944
 1.4264


 1.8266
 1.948
 1.949
 1.3206
 6.5376 7.0504 7.2455 6.5376 6.5376 0.000 0.251 0.382 1.5694 1.5251 0.25639 0.07 0.12879 6.5376 0.27063 0.35394 0.27 7.3663 6.5376 0.38475 0.464 0.41435 7.4524 7.5156 1.944 2.085 6.5376 0.47279 0.517 0.45738 6.5376 0.54018 1.8796 0.9016 1.3906 0.48902 7.5616 7.5985 7.6449 1.3598 0.58 6.5376 0.59398 0.580 1.8718 0.8478 2.208 0.51198 1.8669 1.8801 2.316 2.433 6.5376 0.599 0.80595 1.3364 0.67 0.63582 0.53047 0.7728 0.78 6.5376 0.66897 0.604 1.3264 0.55363 10 11 0.74672 0.72715 2.522 2.628 7.6739 6.5376 0.69506 0.612 1.883 1.3149 0.56816 0.98 6.5376 0.71462 0.604 1.9108 0.59183 1.9264 1.9539 2.0004 2.0691 2.708 2.796 2.926 7.7526 7.7926 6.5376 6.5376 6.5376 0.73038 0.74288 0.71139 1.3189 1.3264 1.08 0.601 0.60749 13 0.592 0.69889 0.62751 1.18 1.38 7.8543 0.7581 0.576 0.68368 1.342 0.65834 7.9274 7.9932 8.0716 0.76244 15 1.59 0.549 0.67933 1.3742 6.5376 3.046 0.69489 1.4104 1.4583 1.5092 1.5616 1.79 1.99 6.5376 6.5376 0.75918 0.75049 0.522 2.1382 2.2253 0.68259 0.69129 3.132 3.219 0.72781 0.76699 16 17 2.3146 2.4041 2.4951 2.5979 2.20 0.70379 0.719 18 8.14846.5376 0.73799 0.458 3.289 0.80542 6.5376 19 8.2227 8.2931 8.3741 0.72277 0.429 3.344 0.84255 2.60 6.5376 6.5376 0.400 0.370 0.73965 0.76139 0.87774 0.91827 20 0.70212 0.68039 1.6174 1.6797 3.373 2ĭ 3.412 0.7853 0.80976 0.83584 0.8641 0.96965 1.0072 2.7246 2.8242 2.9459 3.0528 1.7549 3.01 3.21 6.5376 6.5376 0.339 0.314 0.65647 3.469 8.4769 8.5521 0.63202 3.488 1.817 0.60593 0.57768 0.287 0.264 3.524 3.533 1.8909 1.9584 2.0263 2.0954 2.1763 3.41 3.61 8.6477 8.7263 6.5376 6.5376 24 25 1.055 1.0943 8.8033 0.54833 0.51898 0.48909 0.45758 0.242 0.89345 0.92279 0.95268 3.1592 3.268 3.3999 3.5343 26 27 28 29 6.5376 6.5376 3.536 3.541 3.569 3.81 1.1329 4.02 8.8828 8.9849 1.1726 6.5376 0.200 1.2236 1.2751 0.9842 1.0168 3.591 4.42 9.0877 6.5376 0.179 2.2593 9.1746 9.2583 0.42497 0.39182 0.161 0.144 3.593 3.591 2.3353 2.4103 2.6521 3.6538 3.7707 1.3185 30 6.5376 4.62 1.05 1.1527 31 4.82 6.5376 1.3604 0.096 5.43 6.04 0.28911 0.17879 0.063039 3.602 3.607 9.5364 6.5376 4.1515 1.4994 1.263 1.3787 1.4967 1.6189 9.8297 6.5376 0.054 4.5551 2.909 1.6461 10.121 10.419 6.5376 0.018 4.9621 3.599 3.1704 1.7917 6.64 7.24 7.86 -0.054887 -0.014 3.4375 3.594 1.9408 6.5376 5.3783 -0.17716 3.584 3.577 -0.042 5.8017 3.7103 2.0914 36 10.72 6.5376 8.46 9.06 1.7439 11.033 -0.067 6.5376 -0.30215 6.2388 3.9914 2.2475 6.6822 7.1206 1.8711 2.0026 4.2767 4.5616 11.349 6.5376 -0.42932 -0.089 3.571 2.4056 -0.56083 2.559 39 9.67 11.656 6.5376 -0.1103.556 7.5479 8.0013 40 10.28 11.951 6.5376 -0.69234 -0.128 2.1341 3.537 4.841 2.7069 10.89 12.271 6.5376 -0.82603 -0.144 2.2678 3.528 5.1345 2.8667 6.5376 3.0245 11.48 12.587 -0.95971-0.1598.4506 2.4015 3.519 5.426 43 12.08 12.896 6.5376 -1.095 -0.172 8.8949 2.5368 3.506 5.7159 3.1791 9.3444 9.7607 13.213 6.5376 -1.2271-0.184 2.6689 3.501 6.0066 3.3378 13.30 13.498 6.5376 -1.3581 -0.1952.7998 3.486 6.2803 3.4804 13.90 13.775 6.5376 -1.4885 -0.206 10.168 2.9303 3.470 6.5489 3.6186 14.50 15.12 14.052 14.327 -0.215 -0.223 6.8139 7.0762 10.571 10.971 6.5376 -1.6151 3.0569 3.458 6.5376 3.449 3.8948 -1.7395 3.1813

-0.230

11.253

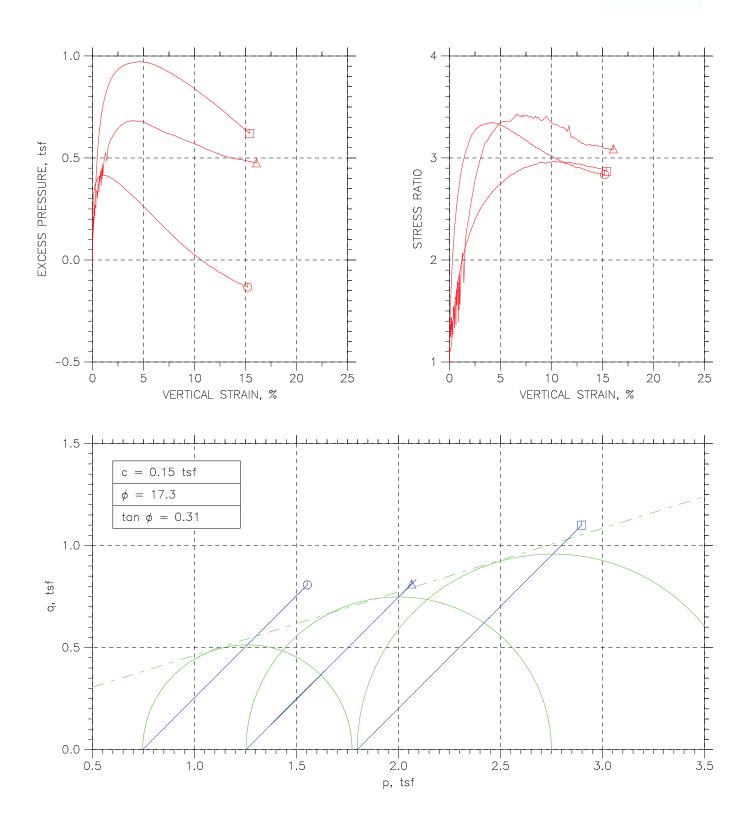
TRIAXIAL COMPRESSION TEST REPORT

Sy	mbol	0	Δ		
Te	st No.	10.4 PSI	17.4 PSI	24.3 PSI	
	Diameter, in	2.722	2.8299	2.6157	
	Height, in	6.0571	5.4106	5.9323	
Initial	Water Content, %	5.02	7.46	5.91	
<u></u>	Dry Density, pcf	121.2	121.3	120.9	
	Saturation, %	36.18	53.82	42.11	
	Void Ratio	0.36923	0.3684	0.37292	
ar	Water Content, %	13.55	13.79	12.58	
Shec	Dry Density, pcf	122.	121.5	124.4	
	Saturation, %	100.00	100.00	100.00	
Sefore	Void Ratio	0.36021	0.36668	0.33456	
m	Back Press., tsf	5.0425	5.0399	5.042	
Mii	nor Prin. Stress, tsf	0.74626	1.2529	1.798	
Мс	ıx. Dev. Stress, tsf	1.6147	1.6669	2.202	
Tir	ne to Failure, min	3930	2700	3930	
Str	rain Rate, %/min	0.006	0.006	0.006	
В-	Value	.95	.95	.97	
Ме	asured Specific Gravity	2.66	2.66	2.66	
Lic	quid Limit	40	40	40	
PIC	astic Limit	24	24	24	
Plo	asticity Index	16	16	16	

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: B-4-1 S-13
Sample Type: 3" ST

AECOM

The state of the s


Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC

Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Failure Sketch

TRIAXIAL COMPRESSION TEST REPORT

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561				
Boring No.: B-4-1 S-13	Tested By: BCM	Checked By: WPQ				
Sample No.: S-13	Test Date: 12/2/11	Depth: 24.0'-26.0'				
Test No.: B-4-1 S-13	Sample Type: 3" ST	Elevation:				
Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC						
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767						

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/2/11 Sample Type: 3" ST Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 10.4 PSI

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.06 in Specimen Area: 5.82 in^2 Specimen Volume: 35.25 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

Time Strain Area Load Stress Pressure Stress Stress 1sf	
2 5.0041 0.017083 5.8204 6.8968 0.085314 5.2419 5.7888 5.8741 3 10 0.037013 5.8216 11.372 0.14064 5.2811 5.7888 5.9294 4 15 0.056944 5.8228 14.478 0.17902 5.308 5.7888 5.9678 5 20 0.075451 5.8238 16.9 0.20893 5.3273 5.7888 5.9977 6 25 0.093957 5.8249 18.795 0.23232 5.3425 5.7888 6.0211	
4 1.0 0.039441 3.88248 1.4.4.6.8 0.793 3.3925 3.7888 3.3977 4.3075 3.0 0.13937 5.8249 18.795 0.23322 5.3425 5.7888 6.0211 7.307 0.13289 5.8249 18.795 0.23322 5.3425 5.7888 6.0211 7.308 1.309 0.13289 5.8249 18.795 0.23322 5.3425 5.7888 6.0211 7.308 1.309 0.13289 5.822 21.9012 0.7060 5.3533 5.7888 6.0919 19.001 0.13289 5.822 21.9012 0.7060 5.3533 5.7888 6.0919 19.001 0.13289 5.822 21.9012 0.7060 5.3633 5.7888 6.0919 19.001 0.13289 5.8249 24.428 0.30172 5.3828 5.7888 6.0905 11.5 5.001 0.12060 5.3806 52.481 0.31466 5.3892 5.7888 6.0905 11.5 5.001 0.2006 5.3806 52.481 0.31466 5.3892 5.7888 6.0905 11.5 5.001 0.2006 5.8318 22.44.28 0.30172 5.3828 5.7888 6.0905 11.5 5.001 0.2006 5.8318 22.44.28 0.30172 5.3828 5.7888 6.0905 11.5 5.001 0.2006 5.8318 22.44.28 0.30172 5.3828 5.7888 6.1018 11.5 5.001 0.2006 5.8318 22.44.28 0.30172 5.3828 5.7888 6.1018 11.5 5.001 0.2006 5.8318 22.44.28 0.30172 5.3828 5.7888 6.155 11.5 80.001 0.3075 5.8374 30.904 5.8318 22.272 0.35119 5.0007 5.7888 6.15 11.8 11.0 0.42281 5.8441 31.904 0.001 0.3075 5.8374 30.904 5.001 0.38118 5.4073 5.7888 6.15 11.8 11.0 0.42281 5.8441 31.904 0.04228 5.8441 31.904	

80 81 82 83 84 85 86	1740 1770 1800 1830 1860 1890 1920	6.7236 6.8418 6.9585 7.0767 7.1948 7.3144 7.4326 7.5493	6.2389 6.2468 6.2547 6.2626 6.2706 6.2787 6.2867 6.2946	109.93 110.98 111.82 112.56 113.45 114.24 114.98 115.82	1.2686 1.2791 1.2872 1.2941 1.3027 1.3101 1.3168 1.3248	5.2185 5.2127 5.2057 5.1998 5.1951 5.1887 5.184 5.1776	5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888	7.0574 7.0679 7.076 7.0829 7.0915 7.0989 7.1056 7.1136
88 89 90 91 92 93	1980 2010 2040 2070 2100 2130 2160	7.6646 7.7814 7.8953 8.0077 8.1216 8.2369 8.3522	6.3025 6.3105 6.3183 6.326 6.3339 6.3418 6.3498	116.61 117.24 118.03 118.72 119.56 120.35 121.09	1.3322 1.3377 1.3451 1.3512 1.3591 1.3664 1.373	5.1723 5.1665 5.1612 5.1548 5.1501 5.1443 5.139	5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888	7.121 7.1265 7.1339 7.14 7.1479 7.1552 7.1618
95 96 97 98 99 100 101	2190 2220 2250 2280 2310 2340 2370 2400	8.4647 8.58 8.6939 8.8092 8.9259 9.0441 9.1608 9.279	6.3576 6.3656 6.3735 6.3816 6.3898 6.3981 6.4063 6.4147	121.77 122.56 123.14 124.14 124.77 125.3 126.04 126.67	1.3791 1.3863 1.3911 1.4006 1.4059 1.41 1.4165 1.4218	5.1326 5.1279 5.1238 5.1185 5.1127 5.1074 5.1022 5.0981	5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888	7.1679 7.1751 7.1799 7.1894 7.1947 7.1988 7.2053 7.2106
103 104 105 106 107 108 109	2430 2460 2490 2520 2550 2580 2610 2640	9.3957 9.5139 9.632 9.7516 9.8698 9.9837 10.102 10.219	6.4229 6.4313 6.4397 6.4482 6.4567 6.4649 6.4734 6.4818	127.25 127.83 128.41 129.25 129.88 130.35 131.04 131.46	1.4264 1.4311 1.4357 1.4432 1.4483 1.4518 1.4575 1.4603	5.0922 5.0881 5.0829 5.0782 5.0785 5.0688 5.0648 5.0601	5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888	7.2152 7.2199 7.2245 7.2371 7.2406 7.2463 7.2491
111 112 113 114 115 116 117 118	2670 2700 2730 2760 2790 2820 2850 2880	10.332 10.448 10.562 10.677 10.792 10.909 11.024 11.14	6.49 6.4984 6.5066 6.515 6.5235 6.532 6.5405 6.549	132.09 132.72 133.46 134.2 134.46 134.88 135.41 135.99	1.4654 1.4705 1.4768 1.4831 1.4867 1.4906 1.4951	5.056 5.0525 5.046 5.0414 5.0373 5.0338 5.0297 5.0268	5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888	7.2542 7.2593 7.2656 7.2719 7.2728 7.2755 7.2794 7.2839
119 120 121 122 123 124 125	2910 2940 2970 3000 3030 3060 3090	11.256 11.373 11.491 11.609 11.73 11.847 11.965	6.5576 6.5662 6.575 6.5838 6.5928 6.6015 6.6104	136.67 137.2 137.88 138.25 138.83 139.57 139.94	1.5006 1.5044 1.5099 1.5119 1.5162 1.5222 1.5242	5.0209 5.0162 5.0127 5.0098 5.0063 5.0016 4.9981	5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888	7.2894 7.2932 7.2987 7.3007 7.305 7.311 7.313
126 127 128 129 130 131 132	3120 3150 3180 3210 3240 3270 3300 3330	12.083 12.2 12.317 12.432 12.55 12.666 12.78 12.893	6.6193 6.6281 6.6369 6.6456 6.6546 6.6634 6.6721 6.6808	140.51 141.15 141.62 141.94 142.67 143.52 144.09 144.57	1.5284 1.5333 1.5364 1.5378 1.5437 1.5507 1.555	4.9934 4.9911 4.9841 4.9829 4.98 4.9759 4.9759 4.9689	5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888	7.3172 7.3221 7.3252 7.3256 7.3325 7.3395 7.3438 7.3468
134 135 136 137 138 139 140 141	3360 3390 3420 3450 3480 3510 3540 3570	13.009 13.124 13.238 13.355 13.471 13.588 13.706 13.823	6.6897 6.6986 6.7074 6.7164 6.7255 6.7345 6.7438 6.7529	144.99 145.36 145.83 146.2 146.89 147.46 147.78 148.1	1.5605 1.5624 1.5654 1.5673 1.5725 1.5766 1.5778 1.579	4.966 4.9624 4.9595 4.9554 4.9519 4.9496 4.9455 4.942	5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888	7.3493 7.3512 7.3542 7.3561 7.3613 7.3654 7.3666 7.3678
142 143 144 145 146 147 148	3600 3630 3660 3690 3720 3750 3780	13.938 14.058 14.175 14.291 14.411 14.529 14.645	6.7619 6.7714 6.7806 6.7898 6.7993 6.8087 6.8179	148.68 149.41 149.89 150.25 150.25 150.52 151.31	1.5831 1.5887 1.5916 1.5933 1.5911 1.5917	4.9385 4.9355 4.9338 4.9303 4.9279 4.9256 4.9227	5.7888 5.7888 5.7888 5.7888 5.7888 5.7888 5.7888	7.3719 7.3775 7.3804 7.3821 7.3799 7.3805 7.3867
149 150 151 152 153	3810 3840 3870 3900 3930	14.76 14.875 14.99 15.104 15.218	6.8271 6.8364 6.8456 6.8548 6.864	152.36 152.73 153.04 153.57 153.94	1.6068 1.6085 1.6097 1.613 1.6147	4.9192 4.9168 4.9133 4.911 4.9092	5.7888 5.7888 5.7888 5.7888 5.7888	7.3956 7.3973 7.3985 7.4018 7.4035

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 10.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM
Test Date: 12/2/11
Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 6.06 in Specimen Area: 5.82 in^2 Specimen Volume: 35.25 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Specimen volume: 35.	23 111/3	PI	ston weight	. 0.00 10		correcti	on Type: Un	1101111	
Liquid Limit: 40		PΊ	astic Limit	: 24			Specific G	ravity: 2.66	
Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
1 0.00 2 0.02 3 0.04 4 0.06 5 0.08 6 0.09 7 0.11 8 0.13 9 0.15 10 0.17 11 0.19 12 0.21 13 0.23 14 0.27 15 0.31 16 0.35 17 0.39 18 0.42 19 0.46 20 0.50 21 0.54 22 0.58 23 0.62 24 0.66 25 0.69 26 0.77 28 0.81 29 0.85 30 0.89 31 1.04 32 1.16 33 1.27 34 1.39 35 1.50 36 1.62 37 1.73 38 1.85 39 31 30 2.44 40 2.08 41 2.20 42 2.32 43 44 44 2.55 46 2.79 47 2.91 48 3.02 49 3.14 50 3.25 51 3.37 55 3.89 57 4.05 58 4.17 59 4.29 60 4.29 61 4.52 62 4.64 63 4.75 64 6.37 75 6.14 76 6.37	5.7888 5.8741 5.9294 5.9278 5.9278 6.0211 6.0419 6.0594 6.07635 6.10357 6.1215 6.1215 6.1215 6.123297 6.22188 6.23297 6.24188 6.23297 6.2585 6.3289 6.3289 6.3289 6.33289 6.33289 6.33289 6.34049 6.52599 6.52599 6.561437 6.52549 6.52549 6.52549 6.52549 6.661431 6.7476 6.7736 6.7476 6	5.7888 5.7888	0.19936 0.23853 0.26543 0.28472 0.29992 0.31278 0.32331 0.33208 0.34026 0.34669 0.35254 0.3578 0.36716 0.37476 0.3806 0.38586 0.39113 0.39463 0.39814 0.40106 0.40282 0.40516 0.40691 0.40866 0.41159 0.41276 0.41393 0.4151 0.41393 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.41393 0.4151 0.4151 0.4151 0.41393 0.4151 0.4151 0.4151 0.41393 0.4151 0.4151 0.4151 0.41393 0.4151 0.4151 0.4151 0.41393 0.4151 0.4151 0.4151 0.41393 0.4151 0.4151 0.4151 0.41393 0.4151 0.4151 0.4151 0.4151 0.4151 0.41393 0.4151 0.4159	0.000 2.337 1.696 1.483 1.363 1.291 1.236 1.195 1.128 1.102 1.078 1.055 1.017 0.983 0.955 0.929 0.910 0.889 0.871 0.884 0.809 0.775 0.764 0.775 0.764 0.775 0.764 0.754 0.698 0.672 0.646 0.602 0.582 0.563 0.544 0.790 0.493	0.74626 0.63221 0.64837 0.65986 0.67047 0.67866 0.67047 0.70165 0.70172 0.71423 0.72769 0.72769 0.7403 0.75268 0.76421 0.77566 0.78517 0.79576 0.885303 0.81488 0.8246 0.83308 0.84214 0.85197 0.86596 0.87363 0.88138 0.89206 0.94925 0.97349 0.99447 1.0172 1.0393 1.0604 1.0172	0.74626 0.5469 0.50773 0.48083 0.46154 0.44634 0.443348 0.42295 0.41418 0.406 0.39957 0.39372 0.38846 0.37911 0.37151 0.36566 0.36566 0.36514 0.35514 0.35514 0.35163 0.34812 0.3452 0.3452 0.34534 0.3317 0.3335 0.33358 0.33233 0.33117 0.33231 0.3357 0.33584 0.334812 0.35221 0.35572 0.3666 0.36917 0.37443 0.37427 0.3452 0.3666 0.36917 0.37443 0.37969 0.36566 0.36917 0.37443 0.37969 0.36566 0.36917 0.37443 0.37969 0.36566 0.36917 0.37443 0.37969 0.36566 0.36917 0.37443 0.37969 0.34522 0.34527 0.34520 0.3604 0.36566 0.36917 0.37443 0.37969 0.4068 0.41594 0.42646 0.47616 0.44751 0.45803 0.44289 0.43699 0.44283 0.44751 0.45803 0.46446 0.477616 0.44781 0.50539 0.51182 0.51884 0.522877 0.53637 0.54178 0.55533	1.000 1.156 1.277 1.375 1.520 1.584 1.640 1.743 1.787 1.830 1.873 1.953 2.026 2.151 2.263 2.313 2.401 2.442 2.525 2.6620 2.684 2.797 2.866 2.982 2.982 3.073 3.132 2.402 2.5259 2.684 2.797 2.866 2.989 3.073 3.1318 3.324 3.334 3.342 3.334 3.342 3.334 3.342 3.334 3.342 3.334	0.74626 0.58956 0.57805 0.57805 0.57805 0.57635 0.56601 0.5625 0.56602 0.555826 0.55792 0.55686 0.5569 0.5572 0.56209 0.56494 0.56803 0.57615 0.57369 0.57658 0.58004 0.58402 0.58709 0.59075 0.59439 0.59075 0.60032 0.60357 0.60682 0.62864 0.64021 0.65291 0.66398 0.67653 0.68872 0.70136 0.71377 0.72615 0.73967 0.75163 0.76443 0.77842 0.79031 0.80299 0.815967 0.77842 0.79031 0.80299 0.815967 0.77842 0.79031 0.80299 0.815967 0.77842 0.79031 0.80299 0.815967 0.77842 0.79031 0.80299 0.815967 0.77842 0.79031 0.80299 0.815967 0.75163 0.76443 0.77842 0.79031 0.80299 0.815967 0.75163 0.76443 0.77842 0.79031 0.80299 0.815967 0.75163 0.76443 0.77842 0.79031 0.80299 0.815967 0.75163 0.76443 0.77842 0.79031 0.80299 0.815967 0.75163 0.76443 0.77842 0.79031 0.80299 0.815967 0.75163 0.76443 0.77842 0.79031 0.80299 0.815967 0.75163	0 0.042657 0.070321 0.089512 0.10447 0.11616 0.12655 0.13533 0.15333 0.15386 0.157333 0.163642 0.19059 0.19928 0.20763 0.21501 0.22206 0.22846 0.23484 0.24599 0.25139 0.25687 0.26565 0.27006 0.27448 0.24599 0.25139 0.26587 0.26587 0.26587 0.26587 0.27986 0.27986 0.27986 0.27986 0.33048 0.33048 0.34069 0.35054 0.38591 0.40403 0.38591 0.40403 0.41276 0.42114 0.42856 0.43627 0.45165 0.47938 0.49291 0.50652 0.51841 0.52495 0.51841 0.52495 0.53622 0.53642 0.54574 0.55827 0.55877 0.56649 0.577133 0.58227 0.56669 0.577133 0.58227 0.58227 0.58246 0.558745 0.59703 0.59703 0.60304 0.60666 0.611671 0.62114
78 6.49	7.0381	5.7888	0.18767	0.150	1.8079	0.55859	3.236	1.1832	0.62463

79 801 82 838 845 868 878 899 91 92 934 95 96 97 999 1001 1003 1004 1007 1007 1008 1007 1111 1112 1121 1131 1145 1151 1167 1177 1188 1190 1191 1191 1191 1191 1191 1191
6.60 6.72 6.84 6.96 7.08 7.19 7.343 7.55 7.66 7.78 8.12 8.24 8.346 8.58 8.69 9.16 9.240 9.16 9.240 9.10 10.22 10.33 10.56 10.68 10.79 11.02 11.14 11.27 11.49 11.61 11.73 11.87 12.88 12.89 13.71 13.71 13.84 14.64 14.77 14.89 15.10 15.22
7.0469 7.0574 7.0574 7.0579 7.076 7.0829 7.0915 7.1056 7.1136 7.121 7.1265 7.1215 7.1479 7.1551 7.1618 7.1679 7.1751 7.1799 7.1894 7.1946 7.2152 7.2199 7.2245 7.2199 7.2245 7.2245 7.2371 7.2463 7.2463 7.2463 7.2463 7.2593 7.2755 7.2794 7.2839 7.2839 7.2755 7.2794 7.2839 7.2839 7.2839 7.2839 7.2839 7.3252 7.3325 7.33
5.7888 5.7888
0.18124 0.17598 0.17598 0.17598 0.17593 0.16312 0.15727 0.15259 0.14616 0.14148 0.13505 0.12979 0.12379 0.112379 0.10757 0.101757 0.101757 0.101757 0.10757 0.10757 0.096466 0.090035 0.085358 0.081265 0.076003 0.076057 0.064895 0.059634 0.0595341 0.049695 0.045602 0.049695 0.045602 0.04034 0.035963 0.030986 0.022216 0.017578 0.0032216 0.017589 0.0011693 0.003986 0.026309 0.022216 0.015785 0.0052618 0.0015785 0.00526309 0.022216 0.015785 0.0052618 0.0015785 0.0059634
0.144 0.139 0.133 0.127 0.122 0.117 0.112 0.107 0.102 0.097 0.093 0.088 0.083 0.079 0.074 0.070 0.065 0.062 0.058 0.050 0.046 0.042 0.039 0.035 0.032 0.028 0.025 0.021 0.018 0.015 0.015 0.015 0.015 0.015 0.017 0.002 -0.001 -0.004 -0.009 -0.011 -0.014 -0.017 -0.020 -0.022 -0.024 -0.022 -0.024 -0.022 -0.024 -0.038 -0.039 -0.041 -0.043 -0.043 -0.043 -0.043 -0.045 -0.049 -0.051 -0.053 -0.058 -0.059 -0.066 -0.067 -0.068 -0.077 -0.068 -0.077 -0.068 -0.077 -0.068 -0.077 -0.078 -0.080 -0.082 -0.083
1.8231 1.8389 1.8389 1.8553 1.8704 1.8831 1.8964 1.9102 1.9216 1.936 1.9487 1.96 1.9852 1.9978 2.0103 2.0228 2.0353 2.0472 2.0561 2.0709 2.082 2.0914 2.1031 2.1123 2.1317 2.1416 2.1536 2.1717 2.1815 2.1892 2.2266 2.2305 2.2356 2.2418 2.1982 2.2497 2.2571 2.286 2.2909 2.2356 2.2418 2.2497 2.2577 2.286 2.2909 2.2356 2.2418 2.3434 2.3437 2.3525 2.3636 2.3778 2.3838 2.3311 2.3437 2.3525 2.3636 2.3778 2.2909 2.2986 2.2909 2.2987 2.3149 2.3238 2.33149 2.33525 2.3636 2.3778 2.2866 2.2909 2.2987 2.2866 2.2909 2.2987 2.24466 2.24519 2.4466 2.4519 2.4466 2.4519 2.4464 2.4549 2.4466 2.4519 2.4549 2.4464 2.4549
0.56502 0.57028 0.57613 0.58315 0.58899 0.59367 0.6001 0.60478 0.61121 0.61647 0.6223 0.62758 0.63401 0.63869 0.64498 0.65623 0.66609 0.665623 0.66609 0.66563 0.67026 0.70592 0.71066 0.70592 0.71528 0.71995 0.72404 0.72872 0.73281 0.73632 0.74275 0.74743 0.751528 0.77257 0.77404 0.77257 0.775912 0.76205 0.76205 0.775912 0.76205 0.775912 0.76205 0.775912 0.76205 0.775912 0.76205 0.775912 0.76205 0.775912 0.76205 0.775912 0.76205 0.775912 0.76205 0.775912 0.76205 0.775912 0.76205 0.775912 0.78251 0.78791 0.78251 0.78791 0.80473 0.80589 0.80882 0.81291 0.81642 0.81993 0.82285 0.82636 0.82937 0.87956
3.227 3.227 3.227 3.227 3.197 3.197 3.198 3.177 3.168 3.161 3.153 3.128 3.128 3.128 3.128 3.102 3.098 3.099 3.069 3.069 3.063 3.079 3.063 3.079 3.063 3.013 3.004 2.984 2.984 2.984 2.984 2.995 2.984 2.996 2.996 2.996 2.996 2.998 2.988 2.988 2.986 2.886 2.886 2.886 2.886 2.884
1.1941 1.2046 1.2046 1.2047 1.2048 1.2157 1.2268 1.236 1.2551 1.2632 1.2736 1.2826 1.2936 1.3096 1.3182 1.33638 1.3458 1.3458 1.3458 1.3458 1.3458 1.3458 1.3458 1.3458 1.3458 1.3458 1.354 1.3605 1.3791 1.3864 1.4098 1.4098 1.4458 1.4458 1.4528 1.4528 1.4528 1.4588 1.4588 1.4588 1.4588 1.4588 1.4588 1.4588 1.5596 1.5643 1.5528 1.55463 1.5528 1.55463 1.5528 1.55463 1.5528 1.5596 1.6657 1.6657 1.6657 1.6657 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66564 1.6658 1.66584 1.66584 1.6869
0.62933 0.634361 0.64703 0.65135 0.655135 0.655842 0.665842 0.665841 0.667253 0.67561 0.68954 0.69314 0.69531 0.70297 0.70502 0.70826 0.71321 0.71553 0.712416 0.72588 0.72416 0.72588 0.72416 0.72588 0.72416 0.72588 0.72416 0.72588 0.72416 0.72588 0.72416 0.72588 0.72416 0.72588 0.72416 0.72588 0.72416 0.72588 0.72410 0.74531 0.74531 0.74531 0.74531 0.74531 0.74531 0.74531 0.74531 0.74531 0.75020 0.75495 0.75808 0.76663 0.76663 0.76818 0.77536 0.77536 0.77536 0.77536 0.77536 0.77536 0.77536 0.77536 0.775595 0.75805 0.76811 0.76209 0.76421 0.768588 0.77902 0.78828 0.78889 0.798555 0.795565 0.795565 0.79584 0.80426 0.80426 0.80426 0.80426 0.80426

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 17.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/2/11 Sample Type: 3 " ST

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.41 in Specimen Area: 6.29 in^2 Specimen Volume: 34.03 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

Liquid Limit: 40		РΊ	astic Limit:	24		Measured	Specific Gravity: 2.66
Time min	Vertical Strain %	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
		6.2948 6.29948 6.29948 6.29962 6.29962 6.29988 6.30016 6.30024 6.30024 6.30024 6.30024 6.30024 6.30024 6.30024 6.30024 6.30025 6.30024 6.30025 6.30026 6.30025 6.30026 6.30025 6.30026 6.30025 6.30026 6.30025 6.30026 6.30025 6.30026 6.30025 6.30026 6.30025 6.30026 6.30026 6.30026 6.30026 6.30026 6.30026 6.30026 6.30026 6.30026 6.30026 6.30026 6.30026 6.30026 6.40026 6.40026 6.40026 6.50026 6.50026 6.50026 6.50026 6.50026 6.60026 6.60026 6.60026 6.60026 6.60026 6.60026 6.60026 6.70026		Stress tsf 0 0.14151 0.22544 0.29068 0.34035 0.38533 0.26563 0.38439 0.42606 0.24362 0.39251 0.34426 0.27204 0.49882 0.31412 0.547851 0.33612 0.547851 0.57467 0.33612 0.57467 0.35158 0.6312 0.47851 0.67301 0.67301 0.67301 0.67301 0.67301 0.67301 0.10101 1.0711 1.07977 1.1167 1.1363 1.1567 1.1739 1.2136 1.2323 1.2396 1.2439 1.2579 1.2696 1.2835 1.3147 1.1934 1.2136 1.2323 1.2396 1.2439 1.2579 1.2696 1.2835 1.3684 1.3783 1.3585 1.3684 1.3783 1.3585 1.3684 1.3783 1.3585 1.3684 1.3783 1.3585 1.3684 1.3783 1.3585 1.3684 1.3783 1.3585 1.3684 1.3783 1.3585 1.3684 1.3783 1.3585 1.3684 1.3783 1.3585 1.3684 1.3783 1.3585 1.3684 1.3783 1.3859 1.4019 1.4019 1.4019 1.4028 1.4019	Tessure 1		
76 1590 77 1620 78 1650 79 1680	6.884 7.0132 7.1407 7.2682	6.7548 6.7642 6.7735 6.7828	140.9 141.24 143.21 142.94	1.5018 1.5034 1.5223 1.5173	5.6696 5.6669 5.6647 5.6624	6.2928 6.2928 6.2928	7.7946 7.7962 7.8151 7.8101

80 81 82 83 84 85 86 87 88 89 90	1710 1740 1770 1800 1830 1860 1890 1920 1950 1980 2010	7.3991 7.5299 7.6641 7.7984 7.9292 8.0618 8.1927 8.3235 8.4527 8.5836 8.7128 8.842	6.7924 6.802 6.8119 6.8218 6.8315 6.8414 6.8511 6.8609 6.8706 6.8804 6.8901 6.8999	144.57 144.91 145.45 144.97 146.13 147.01 146.81 148.1 149.8 149.39 150.75	1.5324 1.5339 1.5374 1.5301 1.5402 1.5472 1.5428 1.5542 1.5698 1.5633 1.5753	5.6597 5.6585 5.6563 5.6547 5.6524 5.6497 5.6463 5.6441 5.6408 5.6358 5.6319	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.8252 7.8267 7.8302 7.8229 7.8329 7.844 7.8356 7.847 7.8626 7.8561 7.8681 7.863
92 93 94 95 96 97 98 99 100 101 102 103	2070 2100 2130 2160 2190 2220 2250 2280 2310 2340 2370 2400	8.9695 9.0987 9.2295 9.3604 9.4913 9.6238 9.7547 9.8872 10.02 10.151 10.285 10.417	6.9096 6.9194 6.9294 6.9394 6.9494 6.9596 6.9697 6.9799 6.9902 7.0004 7.0109 7.0213	150.82 151.63 153.33 154.76 156.66 156.32 155.71 155.5 155.3 155.71 156.18 157.2	1.5716 1.5778 1.5932 1.6057 1.6231 1.6172 1.6085 1.6041 1.5996 1.6015 1.604 1.612	5.6291 5.6263 5.6241 5.6213 5.6191 5.6169 5.6152 5.6119 5.6097 5.6069 5.6041 5.6008	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.8644 7.8706 7.886 7.8985 7.9159 7.913 7.8969 7.8924 7.8943 7.8968 7.9048
104 105 106 107 108 109 110 111 112 113 114 115	2430 2460 2490 2520 2550 2580 2610 2640 2700 2730 2730	10.548 10.681 10.81 10.939 11.07 11.199 11.328 11.459 11.59 11.718 11.852 11.883	7.0315 7.042 7.0522 7.0624 7.0728 7.0831 7.0934 7.1039 7.1144 7.1247 7.1355 7.1461	157.75 157.75 158.22 158.97 159.78 160.26 161.14 159.85 160.6 164.95 159.92	1.6153 1.6129 1.6154 1.6207 1.6266 1.6291 1.6356 1.6202 1.6253 1.6669 1.6137 1.5976	5.598 5.5963 5.5925 5.5886 5.5825 5.5797 5.578 5.5752 5.5753 5.5703 5.5669	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.9081 7.9057 7.9082 7.9135 7.9194 7.9219 7.9284 7.913 7.9181 7.9597 7.9065 7.8904
116 117 118 119 120 121 122 123 124 125 126 127	2790 2820 2850 2850 2910 2940 2970 3000 3030 3060 3090 3120	12.112 12.243 12.375 12.506 12.639 12.771 12.904 13.035 13.169 13.298 13.298	7.1566 7.1673 7.1781 7.1889 7.1998 7.2107 7.2217 7.2326 7.2438 7.2545 7.2654 7.2765	159.78 159.92 159.85 160.26 160.06 160.4 160.19 160.33 160.74 160.87 160.87	1.6075 1.6065 1.6034 1.6051 1.6006 1.6016 1.5971 1.5961 1.5976 1.5966 1.5942	5.5647 5.5619 5.5603 5.5541 5.5525 5.5497 5.5475 5.5475 5.5448 5.5442 5.543	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.9003 7.8993 7.8962 7.8979 7.8934 7.8899 7.8889 7.8894 7.8894 7.887 7.887
128 129 130 131 132 133 134 135 136 137 138 139	3150 3180 3210 3240 3270 3300 3330 3360 3390 3420 3450 3480	13.689 13.818 13.947 14.078 14.208 14.338 14.468 14.598 14.731 14.864 14.994 15.127	7.2874 7.2983 7.3093 7.3204 7.3314 7.3426 7.3537 7.365 7.3765 7.3765 7.3879 7.3899 7.4109	162.43 162.98 162.84 163.39 165.02 164.4 165.02 165.15 165.56 165.42	1.6049 1.6078 1.6041 1.6097 1.6181 1.6097 1.6132 1.612 1.6128 1.611 1.6072	5.5397 5.538 5.5369 5.5353 5.5342 5.5319 5.5314 5.5303 5.5292 5.5275 5.5258	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.8977 7.9006 7.8969 7.8998 7.9027 7.9109 7.9025 7.9048 7.9048 7.9056 7.9038 7.9
140 141 142 143 144 145 146 147	3510 3540 3570 3600 3630 3660 3690 3695.9	15.261 15.394 15.525 15.655 15.788 15.916 16.048 16.073	7.4226 7.4342 7.4457 7.4573 7.469 7.4804 7.4922 7.4944	165.9 166.31 167.12 166.99 167.19 167.6 168.55 168.96	1.6092 1.6107 1.6161 1.6122 1.6117 1.6132 1.6198 1.6232	5.5242 5.5219 5.5219 5.5197 5.5181 5.5169 5.5153 5.5158	6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928 6.2928	7.902 7.9035 7.9089 7.905 7.905 7.906 7.9126 7.916

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 17.4 PSI

Location: IPR-GDF SUEZ Tested By: BCM
Test Date: 12/2/11
Sample Type: 3 " ST

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 5.41 in Specimen Area: 6.29 in^2 Specimen Volume: 34.03 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Liquid Limit: 40 Measured Specific Gravity: 2.66 Plastic Limit: 24

Liquid	Limit: 40		PΊ	astic Limit	: 24		Measured	Specific G	ravity: 2.66	
	Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
1 2 3 4 5 6 6 7 8 9 10 111 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 33 31 32 43 33 44 44 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47	Strain 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.19 0.21 0.23 0.30 0.34 0.38 0.42 0.46 0.51 0.55 0.59 0.64 0.68 0.72 0.77 0.81 0.86 0.90 0.94 0.98 1.03 1.15 1.28 1.42 1.54 1.67 1.81 1.94 2.07 2.20 2.33 2.46 2.59 2.72 2.85	Vertical Stress	Horizontal Stress	Pore Pressure tsf 0 0.071079 0.11883 0.1566 0.18658 0.21268 0.18325 0.23045 0.25488 0.22767 0.2677 0.21657 0.26988 0.26655 0.25599 0.33707 0.33929 0.33152 0.30597 0.38427 0.36872 0.36872 0.36872 0.36317 0.44646 0.39649 0.46646 0.41537 0.494646 0.41537 0.494646 0.41537 0.494640 0.41537 0.494640 0.41537 0.494640 0.41537 0.4947 0.575641 0.57529 0.58973 0.60306 0.61472 0.62472 0.6336 0.64193 0.64859 0.65581		Vertical Stress	Horizontal Stress		ptsf 1.2529 1.2525 1.2468 1.2416 1.2365 1.2328 1.2024 1.2146 1.215 1.1882 1.1988 1.1581 1.1792 1.1585 1.1358 1.112 1.1358 1.112 1.1384 1.1198 1.0675 1.122 1.0759 1.1229 1.0759 1.1229 1.0759 1.1127 1.10658 1.1112 1.11384 1.1198 1.10658 1.1126 1.11368 1.11566 1.118 1.11566 1.118 1.11566 1.1188 1.11566 1.1188 1.11566 1.1188 1.11566 1.1188 1.11566 1.1188 1.11566 1.1188	q tsf 0.070757 0.11272 0.14534 0.17017 0.19267 0.13282 0.217 0.16301 0.21303 0.12181 0.19626 0.17213 0.13602 0.24947 0.24006 0.27378 0.23926 0.16806 0.29543 0.24396 0.32258 0.24396 0.32258 0.24396 0.32258 0.24396 0.32258 0.24396 0.32558 0.3365 0.3365 0.3365 0.3365 0.3365 0.23783 0.35436 0.40963 0.40963 0.40963 0.40963 0.40963 0.40963 0.40963 0.40963 0.40963 0.50503 0.51955 0.53554 0.548895 0.55833 0.56814 0.57833 0.56814
47 48 49 50 51 52 53 54 55 56 57 58 60 61 62 63 64 65 67 71 72 73 74 75	3.11 3.24 3.37 3.50 3.63 3.76 3.89 4.02 4.15 4.28 4.41 4.54 4.67 4.80 4.93 5.19 5.32 5.45 5.71 6.24 6.37 6.49 6.62 6.75 6.88 7.01 7.14	7.4667 7.4862 7.5064 7.5251 7.5324 7.5367 7.5507 7.5624 7.5763 7.588 7.6914 7.6612 7.6513 7.6612 7.6711 7.6787 7.6849 7.7016 7.7106 7.724 7.794 7.7894 7.7888 7.7946 7.7962 7.8151	6.2928 6.2928	0.67025 0.67414 0.67622 0.67914 0.68025 0.68136 0.68191 0.68136 0.6808 0.67969 0.68025 0.68025 0.67969 0.67747 0.67469 0.67136 0.66803 0.66525 0.66525 0.65248 0.64304 0.63971 0.63436 0.6371 0.6336 0.62971 0.62694 0.62472	0.571 0.565 0.558 0.551 0.549 0.548 0.542 0.537 0.526 0.522 0.517 0.515 0.509 0.509 0.509 0.497 0.491 0.485 0.485 0.480 0.475 0.466 0.460 0.454 0.441 0.432 0.424 0.419 0.417 0.410	1.7565 1.7722 1.7896 1.806 1.8122 1.8154 1.8288 1.8405 1.855 1.8673 1.8743 1.8944 1.9087 1.9217 1.9366 1.9499 1.9631 1.9735 1.9831 1.9735 2.0182 2.0182 2.0182 2.0182 2.1504	0.58261 0.57873 0.57595 0.57373 0.57262 0.57151 0.57095 0.57095 0.57151 0.57206 0.57317 0.57262 0.57317 0.57262 0.57317 0.57539 0.57815 0.58483 0.58761 0.58483 0.58761 0.59094 0.59372 0.59372 0.59372 0.6038 0.60316 0.60594 0.60594 0.60594 0.60594 0.61926 0.61315 0.61938 0.61926 0.62315 0.62593 0.62593	3.015 3.062 3.107 3.148 3.165 3.176 3.224 3.246 3.271 3.308 3.330 3.340 3.353 3.357 3.359 3.359 3.3561 3.360 3.361 3.373 3.389 3.389 3.416 3.416 3.416 3.416 3.416 3.416 3.416	1.1696 1.1754 1.1829 1.1924 1.1934 1.1999 1.2057 1.2133 1.2197 1.224 1.233 1.2335 1.2409 1.2485 1.2574 1.2657 1.274 1.2806 1.287 1.3014 1.3093 1.3187 1.3296 1.3394 1.3538 1.3673 1.3673 1.3741 1.3776 1.3776 1.3893	0.58697 0.59672 0.60681 0.61613 0.61978 0.62193 0.62893 0.63479 0.64176 0.65734 0.65734 0.66089 0.66777 0.67315 0.67923 0.6842 0.68915 0.69297 0.69297 0.69606 0.70097 0.70439 0.7155 0.7237 0.7237 0.72962 0.74061 0.7483 0.74799 0.75092 0.75169 0.76113

79 80 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 97 98 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 120 121 1223 124 125 126 127 128 129 130 131 134 135 137 138 139 140 141 145 146 147
7.27 7.40 7.53 7.66 7.80 7.93 8.19 8.32 8.45 8.57 9.10 9.36 9.49 9.65 9.89 10.02 10.15 10.68 10.94 11.59 11.72 11.88 12.11 12.24 12.38 12.77 12.90 13.49 13.40 13.40 13.40 13.69 13.82 13.93 14.47 14.60 13.69 14.91 14.86 14.91 14.86 14.91 14.86 14.91 15.32 16.05 16.05
7.8101 7.8252 7.8252 7.8252 7.8302 7.8329 7.8329 7.8329 7.8324 7.8356 7.847 7.8626 7.8561 7.8681 7.8684 7.8766 7.8985 7.9159 7.9013 7.8969 7.8948 7.9081 7.9081 7.9081 7.9082 7.9135 7.9194 7.9219 7.9284 7.9284 7.8969 7.9069
6.2928 6.2928
0.6225 0.61972 0.61861 0.61639 0.61472 0.6125 0.60972 0.60639 0.60417 0.60084 0.59862 0.59584 0.59195 0.58918 0.5864 0.58418 0.57918 0.57696 0.57529 0.57196 0.56696 0.56419 0.56696 0.56419 0.56696 0.55641 0.55253 0.54864 0.54253 0.53309 0.53331 0.52698 0.52476 0.53309 0.53531 0.53309 0.53531 0.53421 0.51255 0.50977 0.50755 0.50888 0.52476 0.52199 0.52032 0.5181 0.51255 0.50977 0.50755 0.50888 0.52476 0.52199 0.52032 0.5181 0.51421 0.51255 0.50977 0.50755 0.50888 0.52476 0.52199 0.52032 0.5181 0.51421 0.49422 0.49311 0.49633 0.49977 0.49811 0.4977 0.49811 0.4973 0.49533 0.49422 0.49144 0.49033 0.49977 0.49811 0.47534 0.47534 0.47534 0.4759
0.410 0.404 0.403 0.403 0.403 0.401 0.402 0.398 0.398 0.399 0.383 0.375 0.375 0.375 0.357 0.357 0.357 0.358 0.357 0.358 0.359 0.359 0.359 0.348 0.346 0.345 0.346 0.345 0.346 0.347 0.359 0.310 0.320 0.320 0.320 0.321 0.320 0.321 0.316 0.317 0.316 0.317 0.316 0.317 0.329 0.320 0.320 0.321 0.316 0.317 0.316 0.317 0.316 0.317 0.316 0.329 0.329 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.310 0.310 0.310 0.310 0.310 0.310 0.300 0.298 0.2997 0.296 0.293 0.293
2.1476 2.1676 2.1681 2.1683 2.1803 2.1803 2.1903 2.2218 2.2218 2.22175 2.2323 2.2311 2.2352 2.2443 2.2619 2.2772 2.2968 2.2827 2.2827 2.2827 2.2827 2.2827 2.2831 2.3313 2.3313 2.33149 2.33429 2.33364 2.33364 2.33453 2.3446 2.3453 2.3414 2.3453 2.3414 2.3453 2.3414 2.3453 2.3414 2.3453 2.3414 2.3453 2.3414 2.3453 2.3453 2.3419 2.3414 2.3453 2.3414 2.3453 2.3417 2.3579 2.3626 2.3765 2.3779 2.3626 2.3779 2.3626 2.3779 2.3626 2.3779 2.3765 2.3779 2.3626 2.3779 2.3745 2.3779 2.3745 2.3779 2.3746 2.3779 2.3746 2.3779 2.3746 2.3779 2.3746 2.3779 2.3804 2.3879 2.3779 2.3804 2.3879 2.3779 2.3804 2.3879 2.3779 2.3804 2.3879 2.3779 2.3804 2.3889 2.3973 2.4002
0.63037 0.63315 0.63315 0.633426 0.63648 0.63648 0.646314 0.64637 0.64869 0.65203 0.65203 0.65425 0.65702 0.66091 0.66369 0.66369 0.67368 0.67757 0.68809 0.67757 0.68809 0.67368 0.67757 0.68868 0.69201 0.70034 0.70034 0.70034 0.71033 0.71311 0.71478 0.71777 0.7255 0.72588 0.73255 0.73888 0.73255 0.73477 0.73888 0.73255 0.73477 0.73888 0.73255 0.73477 0.73888 0.73255 0.74698 0.74698 0.74698 0.75587 0.75587 0.75587 0.75587 0.75587 0.75587 0.75587 0.75587 0.75587 0.75587 0.75587 0.75753 0.76697 0.77586 0.77752 0.77586 0.77752 0.77586
3.407 3.420 3.418 3.398 3.405 3.405 3.408 3.396 3.396 3.396 3.397 3.396 3.399 3.376 3.383 3.391 3.391 3.393 3.375 3.316 3.325 3.317 3.325 3.325 3.316 3.316
1.389 1.3994 1.4012 1.4032 1.4032 1.4167 1.4167 1.4167 1.4258 1.4369 1.4359 1.4447 1.4465 1.4455 1.4455 1.4653 1.4743 1.4852 1.4845 1.4845 1.4829 1.4866 1.4907 1.5029 1.5029 1.5024 1.5029 1.5309 1.5249 1.5309 1.55249 1.55309 1.55341 1.55341 1.55341 1.55373 1.53373 1.5341 1.55458 1.55458 1.55685 1.5685 1.5685 1.5685 1.5685 1.57706 1.5733 1.5751 1.57792 1.5806 1.57733 1.57792 1.5806 1.5824 1.5886
0.75864 0.76621 0.76621 0.76623 0.76868 0.76506 0.77006 0.77306 0.77142 0.7771 0.7849 0.78165 0.78578 0.78578 0.788511 0.78578 0.78891 0.80285 0.81154 0.8086 0.80427 0.80804 0.80602 0.80763 0.80643 0.80769 0.81329 0.81453 0.81782 0.81453 0.81782 0.81086 0.83346 0.80683 0.79878 0.80325 0.8017 0.80254 0.80325 0.80325 0.8043 0.80683 0.79878 0.80325 0.8043 0.80683 0.79878 0.80325 0.80683 0.79878 0.80325 0.80683 0.79878 0.80325 0.80683 0.79882 0.79881 0.80683 0.79882 0.79883 0.80683

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 24.3 PSI

Location: IPR-GDF SUEZ Tested By: BCM Test Date: 12/2/11 Sample Type: 3" ST

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.93 in Specimen Area: 5.37 in^2 Specimen Volume: 31.88 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.66 Plastic Limit: 24

				ston weight:				on Type: Unit
Liquid Limit:	40		PΊ	astic Limit:	24		Measured	Specific Gra
	Time min	Vertical Strain %	Corrected Area in^2	Deviator Load lb	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
8 9 10 11 12 13 14 15 60 70 12 13 14 15 16 17 18 19 22 12 22 22 22 23 33 23 34 5 6 7 8 9 0 12 22 34 5 7 8 9 0 12 22 34 5 7 8 9 0 12 22 34 5 7 8 9 0 12 22 34 5 7 8 9 0 12 22 34 5 7 8 9 0 12 22 34 5 7 8 9 0 12 22 34 5 7 8 9 0 12 22 34 5 7 8 9 0 12 22 34 5 7 8 9 0 12 22 34 5 7 8 9 0 12 22 34 5 7 8 9 0 12 22 34 5 7 8 9 0 12 22	0 5 10 10 10 10 10 10 10 10 10 10 10 10 10	0 0.017296 0.036033 0.054771 0.073508 0.054771 0.073508 0.092245 0.11242 0.13116 0.15134 0.17152 0.20899 0.22773 0.26521 0.30124 0.34015 0.37907 0.41799 0.45546 0.45542 0.53473 0.57365 0.61401 0.65292 0.69184 0.7322 0.77111 0.81147 0.85039 0.8893 0.92966 1.0493 1.1689 1.2871 1.4053 1.5235 1.6417 1.7599 1.8781 1.9977 2.1159 2.2326 2.3494 2.4704 2.5872 2.7068 2.9418 3.0599 3.1781 3.4102 3.5284 3.4521 3.4524 4.4681 4.5849 4.7045 2.8236 2.9418 3.0599 3.1781 3.2934 3.4102 3.5284 3.6453 3.6529 3.1781 3.2934 3.4102 3.5284 3.6451 3.7633 3.883 3.9997 4.1174 6.2349 4.7045 2.5261 5.6456 5.1746 6.3491 6.3491 6.3491	5.3738 5.3747 5.3767 5.3767 5.3778 5.3778 5.3778 5.3899 5.38819 5.38861 5.38861 5.38861 5.38861 5.3921 5.39943 5.40027 5.50027 5.50027 5.50027 5.50027 5.50027 5.50027 5.50027 5.50027 5.50027 5.70027	0 9.12588 13.427 13.847 14.3847 14.843 15.945 17.046 18.515 19.338 329.738 329.738 35.088 321.189 22.553 29.738 35.127 42.746 45.788 48.439 57.274 61.837 63.306 63.935 67.082 68.131 73.639 77.939 77.7939 79.775 81.618 84.653 86.174 87.538 890.265 91.838 93.097 81.611 83.184 84.653 86.174 87.538 890.265 91.838 93.097 94.121 101.86 102.96 104.95 106.89 107.818 114.95 115.81	0.13279 0.16859 0.1798 0.18538 0.19165 0.21335 0.22804 0.2476653 0.28331 0.30149 0.39739 0.46877 0.57055 0.61092 0.64637 0.71295 0.73853 0.76267 0.78401 0.80464 0.82245 0.84166 0.84466 0.87443 0.8908 0.90436 0.90436 0.90436 1.0526 1.0755 1.181 1.129 1.1315 1.1481 1.1638 1.181 1.2001 1.2151 1.2273 1.3732 1.3857 1.3732 1.3857 1.3947 1.4011 1.4287 1.4388 1.44787 1.4487 1.4488 1.44787 1.44888 1.44787 1.44888 1.44787 1.44888 1.44787 1.44803 1.4924 1.55159 1.55571 1.55576	5.042 5.1464 5.167 5.1822 5.19583 5.2214 5.2344 5.22638 5.22638 5.22638 5.2638 5.3404 5.3404 5.3404 5.3566 5.5664 5.5925 5.66175 5.66594 5.7697 5.86974 5.77667 5.8746 5.8746 5.8746 5.8746 5.8928 5.99219 5.9933 5.9933 5.99341 5.9952 5.9974 5.9980 6.0012 6.00131 6.0126 6.0115 6.0126 6.0115 6.0028 6.00126 6.0028 6.00127 5.9991 5.9991	44444444444444444444444444444444444444	6.84 6.9728 7.0086 7.0198 7.0254 7.0317 7.0386 7.0533 7.068 7.0685 7.1233 7.1415 7.2374 7.3625 7.4106 7.4509 7.4864 7.55218 7.5785 7.6625 7.6625 7.6817 7.6827 7.6827 7.6817 7.7444 7.7829 7.8151 7.9718 8.0021 8.0401 8.0551 8.0401 8.0551 8.0401 8.0553 8.1259 8.1259 8.1353 8.1473 8.1259 8.1259 8.1259 8.1259 8.1259 8.2272 8.2277 8.2247 8.2247 8.2257 8.2367 8.2368 8.3653 8.3759 8.33759 8.33759 8.33759

AECOM

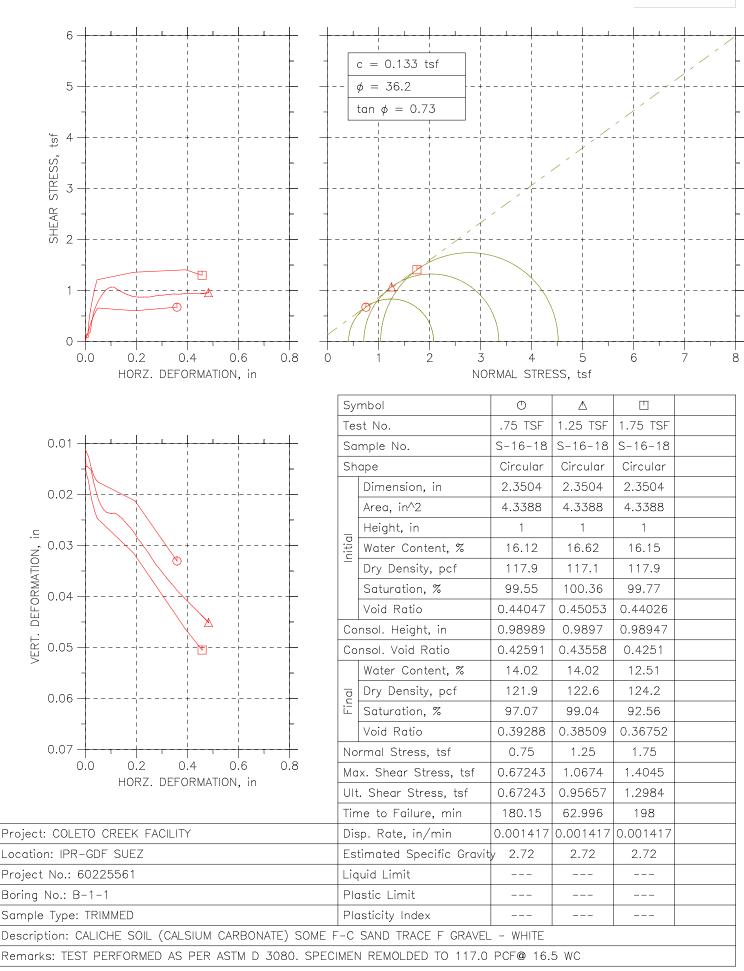
80	1710	6.7036	5.7599	128.13	1.6017	5.9849	6.84	8.4417
81	1740	6.8204	5.7671	128.92	1.6095	5.9816	6.84	8.4495
82 83	1770 1800	6.9386 7.0582	5.7745 5.7819	130.02 131.33	1.6212 1.6354	5.9784 5.9746	6.84 6.84	8.4612 8.4754
84	1830	7.1793	5.7894	132.43	1.647	5.9713	6.84	8.487
85 86	1860 1890	7.2946 7.4099	5.7966 5.8039	133.48 134.58	$1.658 \\ 1.6696$	5.9686 5.9659	6.84 6.84	8.498 8.5096
87	1920	7.5252	5.8111	135.27	1.676	5.9621	6.84	8.516
88	1950	7.6405	5.8184	136.05	1.6836	5.9593	6.84	8.5236
89 90	1980 2010	7.7558 7.8726	5.8256 5.833	136.84 138.05	1.6912 1.704	5.9566 5.9528	6.84 6.84	8.5312 8.544
91	2040	7.9893	5.8404	139.25	1.7167	5.949	6.84	8.5567
92	2070	8.1075	5.8479	140.14	1.7255	5.9458	6.84	8.5655
93 94	2100 2130	8.2228 8.3396	5.8553 5.8627	140.98 141.87	1.7336 1.7424	5.942 5.9387	6.84 6.84	8.5736 8.5824
95	2160	8.4577	5.8703	143.03	1.7543	5.9338	6.84	8.5943
96 97	2190 2220	8.5745 8.6956	5.8778 5.8856	144.08 145.44	1.7649 1.7792	5.93 5.9267	6.84 6.84	8.6049 8.6192
98	2250	8.8123	5.8931	146.81	1.7936	5.9229	6.84	8.6336
99	2280	8.9305	5.9008	147.7	1.8022	5.9191	6.84	8.6422
100 101	2310 2340	9.0516 9.1683	5.9086 5.9162	$148.17 \\ 149.11$	1.8055 1.8147	5.9153 5.911	6.84 6.84	8.6455 8.6547
102	2370	9.2865	5.9239	149.79	1.8206	5.9066	6.84	8.6606
103	2400	9.4033	5.9316	150.42	1.8259	5.9028	6.84	8.6659
104 105	2430 2460	9.5214 9.6382	5.9393 5.947	151.42 152.78	1.8356 1.8498	5.899 5.8958	6.84 6.84	8.6756 8.6898
106	2490	9.7549	5.9547	153.62	1.8575	5.892	6.84	8.6975
107 108	2520 2550	9.8731 9.9884	5.9625 5.9701	154.36 155.56	1.8639 1.8761	5.8871 5.8827	6.84 6.84	8.7039 8.7161
108	2580	10.107	5.978	156.77	1.8882	5.8778	6.84	8.7282
110	2610	10.222	5.9857	158.08	1.9015	5.8729	6.84	8.7415
111 112	2640 2670	10.343 10.46	5.9937 6.0015	158.71 159.76	1.9065 1.9166	5.8686 5.8653	6.84 6.84	8.7465 8.7566
113	2700	10.578	6.0095	160.28	1.9204	5.8604	6.84	8.7604
114	2730	10.695	6.0173	161.49	1.9323	5.8556	6.84	8.7723
115 116	2760 2790	10.813 10.931	6.0253 6.0333	162.17 163.01	1.9379 1.9453	5.8512 5.8469	6.84 6.84	8.7779 8.7853
117	2820	11.049	6.0413	163.9	1.9534	5.8425	6.84	8.7934
118 119	2850 2880	11.167 11.284	6.0494 6.0573	164.74 165.58	1.9608 1.9682	5.8392 5.8349	6.84 6.84	8.8008 8.8082
120	2910	11.404	6.0655	166.37	1.9749	5.8289	6.84	8.8149
121	2940	11.519	6.0734	167.47	1.9854	5.8235	6.84	8.8254
122 123	2970 3000	11.637 11.754	6.0815 6.0896	168.57 169.46	1.9957 2.0036	5.8197 5.8159	6.84 6.84	8.8357 8.8436
124	3030	11.872	6.0977	170.2	2.0096	5.8115	6.84	8.8496
125 126	3060	11.992 12.107	6.106 6.114	171.14 171.88	2.018 2.024	5.8072 5.8018	6.84 6.84	8.858 8.864
127	3090 3120	12.107	6.1222	172.56	2.0294	5.7963	6.84	8.8694
128	3150	12.344	6.1305	173.66	2.0395	5.792	6.84	8.8795
129 130	3180 3210	12.46 12.577	6.1387 6.1469	174.13 175.23	2.0424 2.0525	5.7865 5.7827	6.84 6.84	8.8824 8.8925
131	3240	12.694	6.1551	176.28	2.0621	5.7778	6.84	8.9021
132	3270	12.813	6.1636	177.17	2.0697	5.7729	6.84	8.9097
133 134	3300 3330	12.932 13.05	6.1719 6.1803	177.8 178.69	2.0742 2.0818	5.7681 5.7632	6.84 6.84	8.9142 8.9218
135	3360	13.172 13.288	6.189 6.1973	179.59	2.0892	5.7583 5.7528	6.84	8.9292
136 137	3390 3420	13.288 13.412	6.1973 6.2061	180.27 180.84	2.0944 2.098	5.7528 5.7474	6.84 6.84	8.9344 8.938
138	3450	13.527	6.2144	181.89	2.1074	5.7414	6.84	8.9474
139	3480	13.644	6.2228	182.68	2.1137	5.7371	6.84	8.9537
140 141	3510 3540	13.763 13.88	6.2315 6.2399	183.52 184.36	2.1204 2.1272	5.7316 5.7273	6.84 6.84	8.9604 8.9672
142	3570	13.998	6.2485	185.56	2.1382	5.723	6.84	8.9782
143 144	3600 3630	14.118 14.237	6.2572 6.2659	186.14 186.93	2.1419 2.1479	5.7175 5.7121	6.84 6.84	8.9819 8.9879
145	3660	14.348	6.274	188.03	2.1578	5.7072	6.84	8.9978
146	3690	14.465	6.2826	188.82	2.1639	5.7018	6.84	9.0039
147 148	3720 3750	14.581 14.702	6.2911 6.3	189.76 190.55	2.1718 2.1777	5.6963 5.6925	6.84 6.84	9.0118 9.0177
149	3780	14.814	6.3083	191.39	2.1844	5.6871	6.84	9.0244
150 151	3810 3840	14.934 15.046	6.3172 6.3255	192.12 192.49	2.1897 2.191	5.6817 5.6768	6.84 6.84	9.0297 9.031
151	3840 3870	15.164	6.3344	192.49	2.191	5.6719	6.84	9.0351
153	3900	15.281	6.3431	193.75	2.1992	5.667	6.84	9.0392
154 155	3930 3934.9	15.402 15.419	6.3522 6.3535	194.27 194.17	2.202 2.2004	5.6637 5.6626	6.84 6.84	9.042 9.0404
±33	3334.3	T. T. T. T. J.	0.5555	17:11	2.2007	3.0020	0.07	3.0404

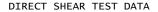
Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-13 Sample No.: S-13 Test No.: 24.3 PSI

Project No.: 60225561 Checked By: WPQ Depth: 24.0'-26.0' Elevation: ----Location: IPR-GDF SUEZ Tested By: BCM
Test Date: 12/2/11
Sample Type: 3" ST

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 lb/in Correction Type: Uniform Specimen Height: 5.93 in Specimen Area: 5.37 in^2 Specimen Volume: 31.88 in^3 Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb


Measured Specific Gravity: 2.66 Liquid Limit: 40 Plastic Limit: 24


Liquid Limit: 40		PÌ	astic Limit	: 24		Measured	Specific G	ravity: 2.66	
Vertical Strain %	Total Vertical Stress tsf	Total Horizontal Stress tsf	Excess Pore Pressure tsf	A Parameter	Effective Vertical Stress tsf	Effective Horizontal Stress tsf	Stress Ratio	Effective p tsf	q tsf
Strain % 1	Vertical Stress tsf 6.84 6.9728 7.0086 7.00198 7.0254 7.0317 7.0386 7.053 7.065 7.1233 7.1415 7.2374 7.3087 7.3625 7.4160 7.4509 7.4864 7.5218 7.553 7.5753 7.5753 7.6027 7.624 7.6446 7.6625 7.6446 7.6625 7.7444 7.7308 7.7444 7.7308	Stress tsf 6.84 6.84 6.884 6.884 6.884 6.884 6.884 6.884 6.884 6.884 6.884 6.884 6.884 6.884 6.884 6.884 6.884 6.884 6.884 6.884	Pore Pressure tsf 0 0.070104 0.10434 0.12499 0.14021 0.15379 0.16629 0.17933 0.19238 0.20651 0.22118 0.23477 0.24781 0.29835 0.34671 0.39019 0.42823 0.46355 0.49562 0.52442 0.5505 0.5755 0.59724 0.61735 0.63691 0.65595 0.67115 0.68636 0.70104 0.71462 0.72766 0.72766	0.000 0.528 0.619 0.695 0.756 0.802 0.837 0.841 0.844 0.834 0.830 0.829 0.822 0.751 0.740 0.747 0.751 0.759 0.767 0.769 0.772 0.779 0.783 0.787 0.792 0.797 0.797 0.808 0.802 0.802 0.805	Vertical stress tsf 1.798 1.8607 1.8622 1.8322 1.8359 1.8336 1.8391 1.8463 1.8463 1.8517 1.997 1.99403 1.9453 1.9453 1.9453 1.9453 1.9453 1.9453 1.9457 1.9654 1.9657 1.9655 1.9665 1.96657 1.96747 1.9747	Horizontal Stress	Ratio 1.000 1.077 1.100 1.107 1.112 1.117 1.122 1.132 1.142 1.156 1.169 1.181 1.194 1.265 1.323 1.371 1.417 1.458 1.496 1.535 1.572 1.604 1.635 1.720 1.604 1.693 1.720 1.747 1.764 1.797 1.822 1.825 1.910	1.798 1.7943 1.7779 1.7629 1.7505 1.74 1.731 1.7253 1.7101 1.7049 1.7049 1.7049 1.6083 1.6856 1.669 1.655 1.6399 1.6555 1.6399 1.5516 1.5726 1.5726 1.5726 1.5726 1.5726 1.5738 1.5738 1.5738 1.5738 1.5738 1.5738 1.5738	0 0.066397 0.084297 0.0899 0.092692 0.095834 0.099325 0.10667 0.11402 0.12382 0.13326 0.14165 0.15074 0.1987 0.23436 0.26123 0.26123 0.28528 0.30546 0.32318 0.34088 0.36926 0.38133 0.39201 0.40232 0.41123 0.42083 0.42484 0.45218
33 31 34 31 34 35 37 36 31 37 36 39 1.88 40 2.00 41 2.12 42 42 42 42 42 43 43 2.35 44 2.47 45 2.59 46 2.71 47 2.82 48 2.94 49 3.06 50 3.18 51 53 54 55 55 3.76 56 3.88 57 4.00 58 57 4.23 60 4.35 61 4.47 62 4.58 63 64 65 65 61 4.47 62 63 64 67 65 67 68 67 68 67 69 5.17 68 67 67 70 71 75 66 73 71 75 66 73 77 78 66 6.35 77 78	7.8151 7.8452 7.8696 7.8926 7.9155 7.9349 7.9529 7.9715 7.988 8.0038 8.021 8.0401 8.0551 8.0673 8.0856 8.0991 8.1105 8.1259 8.1353 8.1473 8.1566 8.1692 8.1811 8.1916	6.84 6.884 6	0.78853 0.81244 0.83255 0.85048 0.86624 0.87983 0.89124 0.90211 0.91135 0.9195 0.92548 0.932 0.93852 0.94558 0.94232 0.94558 0.94558 0.96134 0.96515 0.96623 0.96732 0.96895 0.96895 0.97112 0.9721 0.9721 0.9721 0.9721 0.9721 0.9721 0.9721 0.96895 0.96732 0.96895 0.96895 0.96895 0.96895 0.97112 0.9721 0.9721 0.9721 0.9721 0.96678 0.96732 0.96678 0.96678 0.96678 0.96699 0.96699 0.96699 0.96699 0.96026 0.955917 0.9557 0.9557 0.9557 0.9557 0.9557	0.809 0.808 0.809 0.808 0.809 0.804 0.801 0.797 0.794 0.790 0.784 0.777 0.775 0.759 0.754 0.759 0.754 0.759 0.754 0.772 0.768 0.759 0.754 0.770 0.768 0.775 0.770 0.606 0.699 0.699 0.696 0.693 0.696 0.696 0.697 0.698 0.	1.9745 1.9845 1.9907 1.995 2.00072 2.0131 2.0196 2.0274 2.0347 2.0423 2.0535 2.0661 2.0745 2.1739 2.1153 2.121 2.1153 2.121 2.1153 2.121 2.1221 2.123 2.1439 2.1521 2.1631 2.1739 2.1833 2.1934 2.2022 2.2448 2.2027 2.22657 2.2463 2.2561 2.2657 2.2763 2.2902 2.3001 2.3115 2.3247 2.3463 2.4162 2.4476	1.0094 0.98553 0.96543 0.94749 0.93173 0.91815 0.90674 0.89587 0.88663 0.8725 0.86589 0.85239 0.84804 0.84478 0.84207 0.83989 0.83663 0.83174 0.83065 0.82739 0.82685 0.82576 0.82739 0.82685 0.82576 0.82739 0.82685 0.82576 0.82739 0.82685 0.82576 0.82739 0.82685 0.82576 0.82739 0.82685 0.82576 0.82739 0.82685 0.82576 0.82779 0.83065 0.82739 0.82685 0.82576 0.82779 0.83685 0.82576 0.82779 0.83685 0.82576 0.82779 0.83685 0.82576 0.82779 0.83685 0.82576 0.82779 0.83685 0.82576 0.82779 0.83685 0.82576 0.82779 0.83685 0.82576 0.82779 0.83685 0.82576 0.82779 0.83685 0.82576 0.82779 0.83685 0.82576	1.966 2.020 2.066 2.111 2.154 2.193 2.227 2.263 2.295 2.325 2.354 2.384 2.461 2.485 2.504 2.527 2.542 2.563 2.576 2.641 2.625 2.641 2.686 2.694 2.708 2.718 2.727 2.740 2.748 2.769 2.740 2.748 2.769 2.781 2.793 2.831 2.831 2.831 2.831 2.831 2.831	1.5342 1.5288 1.5288 1.5281 1.497 1.4881 1.4881 1.4695 1.4636 1.4632 1.4636 1.463 1.463 1.463 1.467 1.4693 1.4752 1.4776 1.485 1.4875 1.4903 1.4752 1.5034 1.5075 1.512 1.5034 1.5075 1.512 1.5075 1.512 1.5248 1.5259 1.5358 1.5463 1.5559 1.5559 1.5559 1.5654 1.5764 1.5785 1.5859 1.6859 1.68	0.48755 0.50258 0.50258 0.51479 0.52628 0.53775 0.54746 0.556576 0.57402 0.59049 0.60004 0.60754 0.62279 0.62279 0.62279 0.6254 0.63524 0.64765 0.65365 0.65365 0.65365 0.654297 0.647654 0.67578 0.68137 0.68659 0.69736 0.70053 0.70053 0.71942 0.7239 0.73034 0.74016 0.74622 0.755195 0.755195 0.76264 0.76795 0.77858 0.77858 0.77858 0.77858

79 80 812 83 84 85 87 89 91 92 93 94 96 100 100 100 100 100 100 100 100 100 110 111 113 114 115 116 117 118 119 120 121 123 124 125 127 128 130 131 132 134 145 147 148 149 151 152 153 155
6.59 6.70 6.82 6.70 6.82 6.70 6.82 6.70 7.18 7.29 7.41 7.53 7.64 7.76 7.89 8.11 8.22 8.34 8.57 8.81 9.17 9.40 9.75 9.40 9.75 9.87 10.11 10.58 11.64 11.75 11.87 11
8.428 8.4417 8.4495 8.4417 8.4495 8.4612 8.4754 8.487 8.5996 8.516 8.5236 8.5516 8.5567 8.5655 8.5736 8.5824 8.6547 8.6649 8.6322 8.6322 8.6455 8.66547 8.6659 8.6659 8.6756 8.6898 8.6975 8.77161 8.7282 8.7415 8.7745 8.7745 8.7745 8.7745 8.7745 8.7745 8.7745 8.7745 8.7745 8.7745 8.7745 8.7745 8.7745 8.7745 8.7745 8.7853 8.7934 8.8925 8.8149 8.8149 8.8254 8.8357 8.8436 8.8436 8.8894 8.8925 8.8921 8.9914 8.9
$\begin{matrix} 666666666666666666666666666666666666$
0.94613 0.94287 0.93961 0.93634 0.93254 0.92928 0.92656 0.92385 0.92004 0.91732 0.91461 0.9108 0.907 0.90374 0.89993 0.89667 0.88798 0.88798 0.88798 0.88798 0.88798 0.88791 0.87711 0.87331 0.86896 0.86461 0.86896 0.86461 0.86896 0.86461 0.8637 0.85374 0.84994 0.84505 0.85374 0.84994 0.84505 0.85374 0.84994 0.78731 0.78537 0.78537 0.78537 0.78537 0.78537 0.78537 0.78537 0.77766 0.77386 0.776516 0.77386 0.776516 0.77386 0.776516 0.77386 0.776516 0.775973 0.75429 0.74971 0.73582 0.73093 0.72114 0.71625 0.71082 0.769341 0.71625 0.71082 0.769369 0.78490 0.774071 0.73582 0.73093 0.72114 0.71625 0.71082 0.6505 0.66505 0.66505 0.66505 0.66505 0.66505 0.66505 0.66505 0.66505 0.66505 0.66505 0.66505 0.66505 0.66505 0.66506
0.596 0.589 0.589 0.584 0.570 0.564 0.570 0.564 0.553 0.545 0.541 0.5328 0.524 0.519 0.515 0.503 0.497 0.487 0.487 0.448 0.475 0.475 0.462 0.458 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.421 0.418 0.410 0.399 0.372 0.386 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.386 0.387 0.399 0.299 0.299 0.287 0.288 0.388 0.388 0.388 0.399 0.399 0.299 0.288 0.288 0.388 0.388 0.388 0.399 0.288 0.388 0.388 0.388 0.399 0.299 0.288 0.288 0.288 0.288 0.288 0.388 0.388 0.398 0
2.4398 2.4668 2.4679 2.4828 2.5009 2.5157 2.5294 2.5539 2.5643 2.57643 2.5911 2.6077 2.6197 2.6317 2.6437 2.723 2.77437 2.7730 2.77302 2.77437 2.7766 2.794 2.8055 2.8169 2.8794 2.8055 2.8169 2.7945 2.7946 2.8055 2.8169 2.8169 2.8288 2.8503 2.8686 2.8779 2.9385 2.9615 2.9794 2.9166 2.9288 2.9296 2.9266 2.9385 2.9466 3.1709 3.11586 3.1709 3.1242 3.1361 3.0278 3.0381 3.0508 3.1242 3.1354 3.3252 3.33783 3.348 3.3542 3.3787 3.3787
0.85185 0.85511 0.85531 0.86543 0.866543 0.86543 0.87793 0.88065 0.88377 0.88065 0.88377 0.889098 0.89424 0.89804 0.9013 0.90619 0.91326 0.91706 0.92087 0.92467 0.92987 0.92467 0.92987 0.92467 0.92987 0.94423 0.944097 0.94423 0.94804 0.95728 0.96217 0.96706 0.97141 0.97467 0.97956 0.98445 0.98445 0.98445 0.998445 0.998445 0.99749 1.0008 1.0051 1.0111 1.0165 1.0203 1.0241 1.0285 1.0328 1.0328 1.0437 1.0437 1.0437 1.0437 1.0437 1.0535 1.0573 1.0622 1.06719 1.0768 1.0926 1.0926 1.0926 1.0926 1.1029 1.1084 1.1177 1.1225 1.1279 1.1382 1.1437 1.1475 1.1529 1.1583 1.1632 1.1681 1.1774
2.864 2.873 2.875 2.882 2.890 2.896 2.996 2.909 2.912 2.915 2.927 2.930 2.933 2.936 2.939 2.948 2.957 2.953 2.959 2.958 2.959 2.958 2.959 2.958 2.959 2.958 2.959 2.958 2.959 2.958 2.959 2.958 2.958 2.958 2.958 2.958 2.958 2.958 2.958 2.958 2.958
1.6458 1.6531 1.6631 1.6632 1.6922 1.7089 1.7159 1.7225 1.7225 1.7392 1.7493 1.757 1.7648 1.7757 1.7648 1.7725 1.8029 1.8139 1.8274 1.8364 1.8437 1.8588 1.8691 1.8768 1.88501 1.8768 1.88501 1.8768 1.88501 1.8768 1.88501 1.8768 1.88501 1.8768 1.88501 1.8768 1.88501 1.8768 1.88501 1.8768 1.88501 1.8768 1.88501 1.8768 1.88501 1.8768 1.88501 1.8768 1.9853 1.9063 1.9178 1.9247 1.933 1.9178 1.9247 1.933 1.9178 1.9247 1.933 1.9178 1.9247 1.9506 1.9578 1.9658 1.9742 1.9811 1.9892 1.9892 1.0992 2.0182 2.0259 2.0333 2.0418 2.0503 2.0584 2.06746 2.0746 2.0835 2.0932 2.1109 2.1177 2.1263 2.1343 2.1416 2.1598 2.1686 2.1763 2.1768 2.1768 2.1768 2.1768 2.1768 2.1768 2.1768 2.1776 2.2276 2.2776
0.79398 0.80084 0.80084 0.80084 0.80084 0.81772 0.8235 0.82899 0.8348 0.83798 0.8418 0.84561 0.85199 0.85834 0.86273 0.86681 0.87113 0.88244 0.89661 0.90108 0.90108 0.90276 0.90735 0.911296 0.91781 0.92488 0.92488 0.92488 0.92876 0.93806 0.95326 0.95326 0.95326 0.95831 0.96019 0.96615 0.96895 0.97669 0.98039 0.98409 0.98743 0.99268 1.0018 1.0048 1.0049 1.012 1.0147 1.0198 1.0263 1.031 1.0371 1.0409 1.0446 1.0472 1.0568 1.0602 1.06301 1.0709 1.074 1.0789 1.0888 1.0922 1.0948 1.0925 1.0955 1.0975 1.09955 1.0975 1.09961 1.1002

DIRECT SHEAR TEST REPORT

Project No.: 60225561 Location: IPR-GDF SUEZ

Project: COLETO CREEK FACILITY Boring No.: B-1-1 Sample No.: S-16-18 Test No.: .75 TSF Tested By: BCM
Test Date: 12/17/11
Sample Type: TRIMMED Checked By: WPQ Depth: ---Elevation: ---

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1

	Elapsed Time min	Vertical Stress tsf	Vertical Displacement in	Horizontal Stress tsf	Horizontal Displacement in	Cumulative Displacement in
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 20.00 22.00 24.00 28.00 98.00	0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	0.01082 0.01127 0.01182 0.01225 0.01266 0.0135 0.01429 0.01498 0.01557 0.01607 0.01648 0.01683 0.01715 0.01735	0.06009 0.1469 0.143 0.2189 0.2873 0.3483 0.4009 0.4496 0.5329 0.5689 0.6005 0.6294 0.6558	0.001129 0.004796 0.008888 0.0127 0.01651 0.02031 0.02384 0.02751 0.03104 0.03456 0.03809 0.0419 0.04543 0.04938	0.001129 0.004796 0.008888 0.0127 0.01651 0.02031 0.02384 0.02751 0.03104 0.03456 0.03809 0.0419 0.04543 0.04938
17	180.15	0.75	0.03304	0.6724	0.3589	0.3589

Project: COLETO CREEK FACILITY Boring No.: B-1-1 Sample No.: S-16-18 Test No.: 1.25 TSF

Location: IPR-GDF SUEZ

Tested By: BCM
Test Date: 12/17/11
Sample Type: TRIMMED

Project No.: 60225561 Checked By: WPQ Depth: ---Elevation: ---

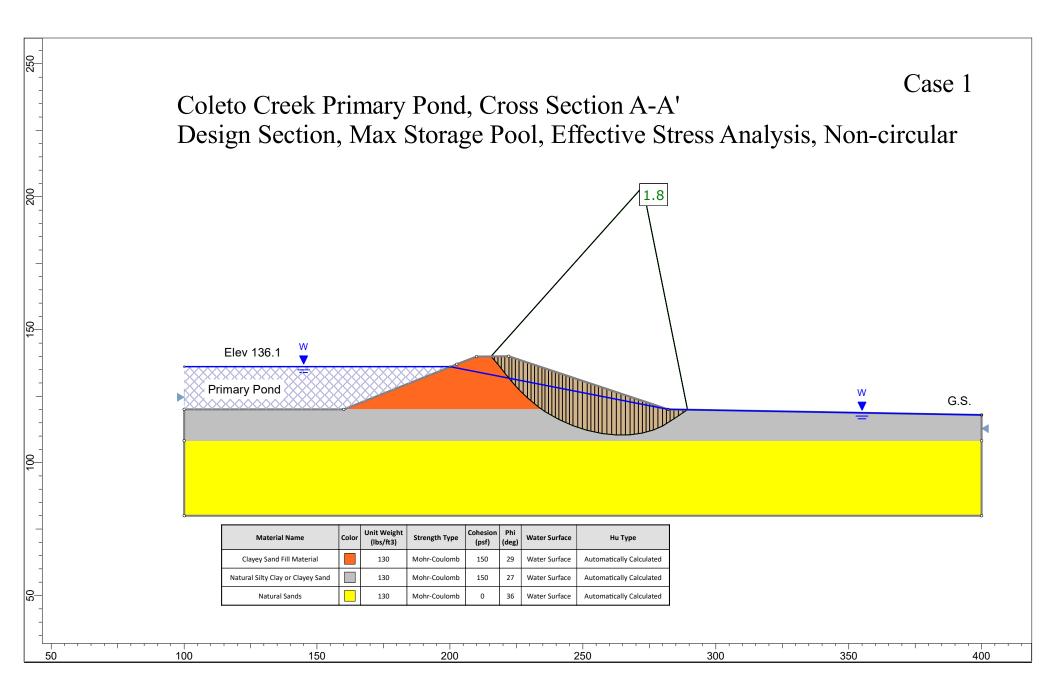
Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1

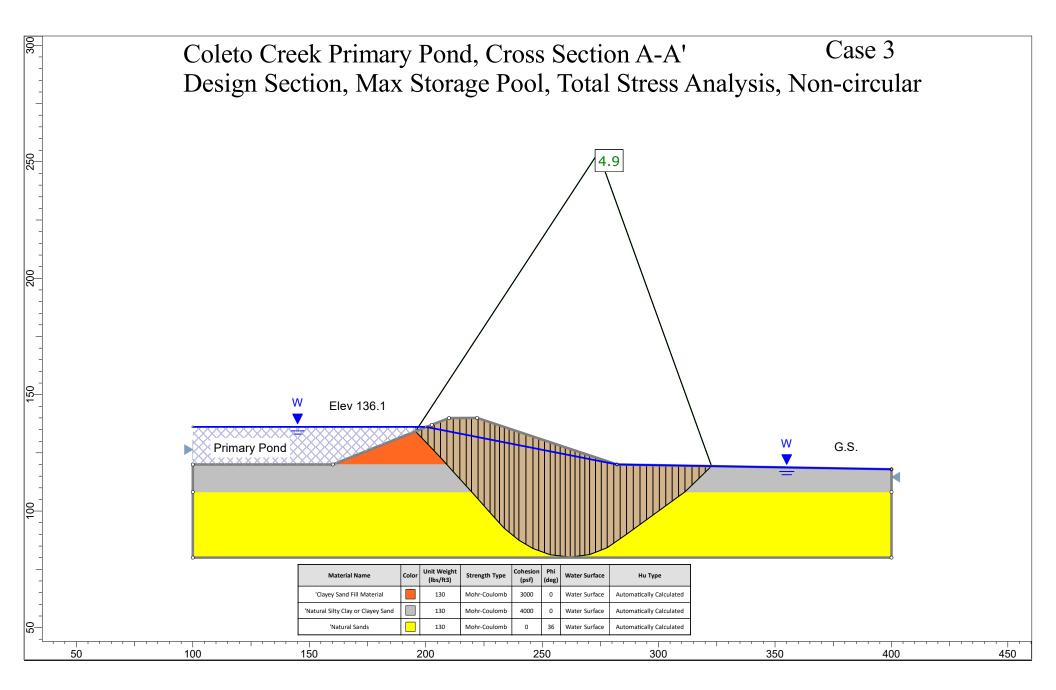
	Elapsed Time min	Vertical Stress tsf	Vertical Displacement in	Horizontal Stress tsf	Horizontal Displacement in	Cumulative Displacement in
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 27 28 29 31 32 33 33 44 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47	0.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 24.00 26.00 28.00 33.00 38.00 48.00 53.00 68.00 73.00 78.00 83.00 98.00 103.00 108.00 113.00 118.00 123.00 128.00 138.00 148.00 158.00 158.00 158.00 118.00 128.00	1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	0.01189 0.01458 0.01457 0.01467 0.01467 0.01488 0.01499 0.0153 0.01616 0.01777 0.01959 0.02117 0.02223 0.02348 0.02364 0.02364 0.02365 0.02424 0.02591 0.02646 0.02715 0.02646 0.02715 0.02646 0.02715 0.02686 0.02715 0.03082 0.03154 0.03388 0.03439 0.03459 0.03505 0.03568 0.03691 0.03691 0.03753 0.03893 0.03691 0.03753 0.03893 0.03691 0.03753 0.03893 0.039376 0.0393	0 0.07233 0.07971 0.1684 0.1843 0.313 0.413 0.5879 0.7097 0.8061 0.8912 0.9647 1.018 1.057 1.064 1.029 0.9962 0.9962 0.9962 0.9962 0.9962 0.9963 0.9196 0.8711 0.8718 0.8772 0.8679 0.8718 0.8772 0.8758 0.8772 0.8758 0.8772 0.8758 0.9091 0.9094 0.9091 0.9093 0.9091 0.9093 0.9091 0.9093 0.9091 0.9093 0.9093 0.9093 0.9094 0.9093 0.9094 0.9093 0.9094 0.90	0 0.002821 0.006913 0.0111 0.01481 0.02271 0.02261 0.02963 0.03315 0.04246 0.05206 0.06193 0.07209 0.08196 0.09198 0.1021 0.1126 0.123 0.1333 0.1436 0.1542 0.1648 0.1754 0.1648 0.2174 0.2277 0.2378 0.2673 0.2769 0.2872 0.2673 0.2769 0.2872 0.3074 0.3176 0.3377 0.3476 0.3377 0.3476 0.3377 0.3476 0.3377 0.3476 0.3377 0.3884 0.3799 0.4095 0.4095 0.4130 0.423 0.4413 0.4517	0 0.002821 0.006913 0.0111 0.01481 0.02963 0.02271 0.02661 0.02963 0.03315 0.04246 0.05206 0.06193 0.07209 0.08196 0.09198 0.1021 0.1126 0.123 0.1333 0.1436 0.1542 0.1648 0.1754 0.1859 0.1964 0.2068 0.2174 0.2277 0.2378 0.2673 0.2673 0.2673 0.2769 0.2872 0.3074 0.3176 0.3276 0.3377 0.3476 0.3377 0.3476 0.3377 0.3476 0.3578 0.3779 0.3884 0.3779 0.3884 0.3779 0.3884 0.3779 0.3884 0.3779 0.3884 0.3779 0.3884 0.3779 0.3884 0.3779 0.3884 0.3779 0.3884 0.3779 0.4095 0.420 0.4413 0.4517
54	248.00	1.25	0.04511	0.9566	0.4823	0.4823

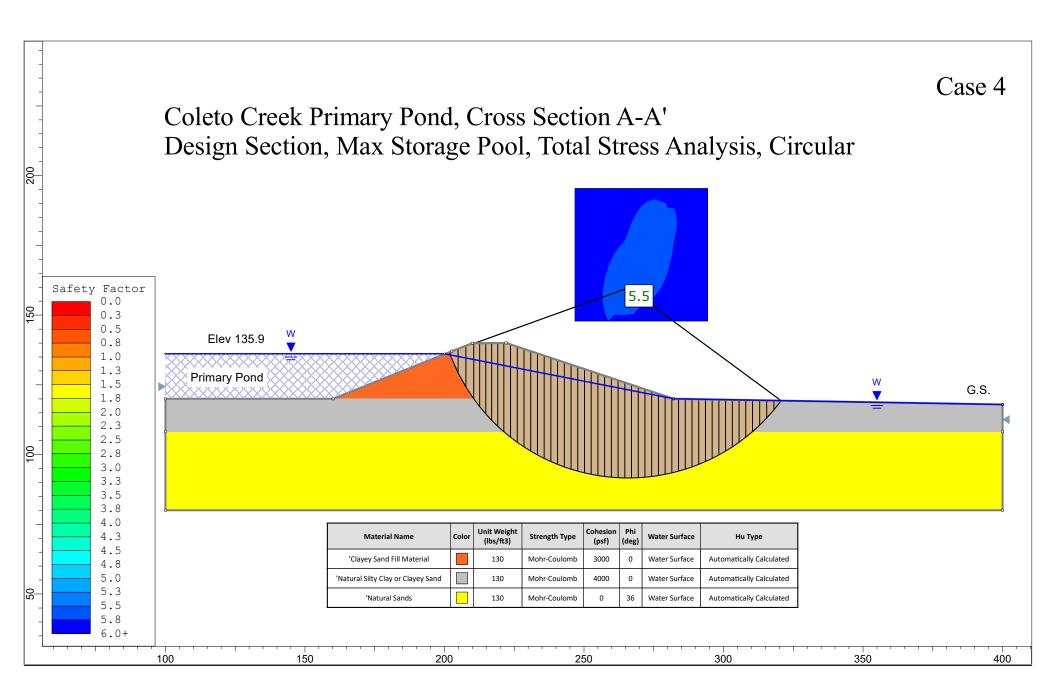
DIRECT SHEAR TEST DATA

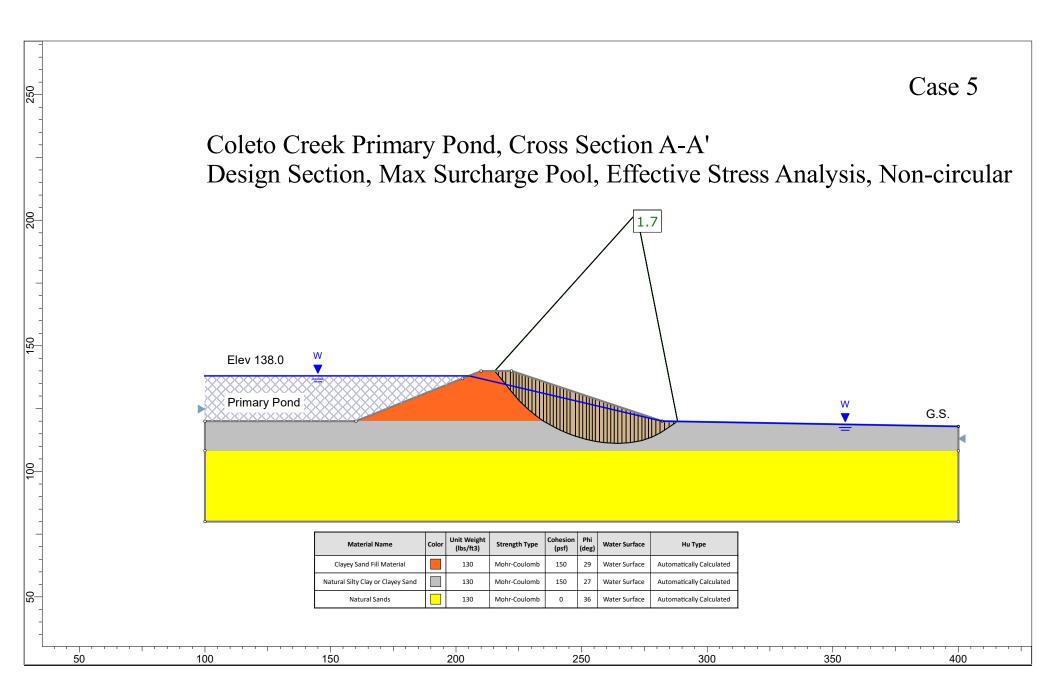
Location: IPR-GDF SUEZ

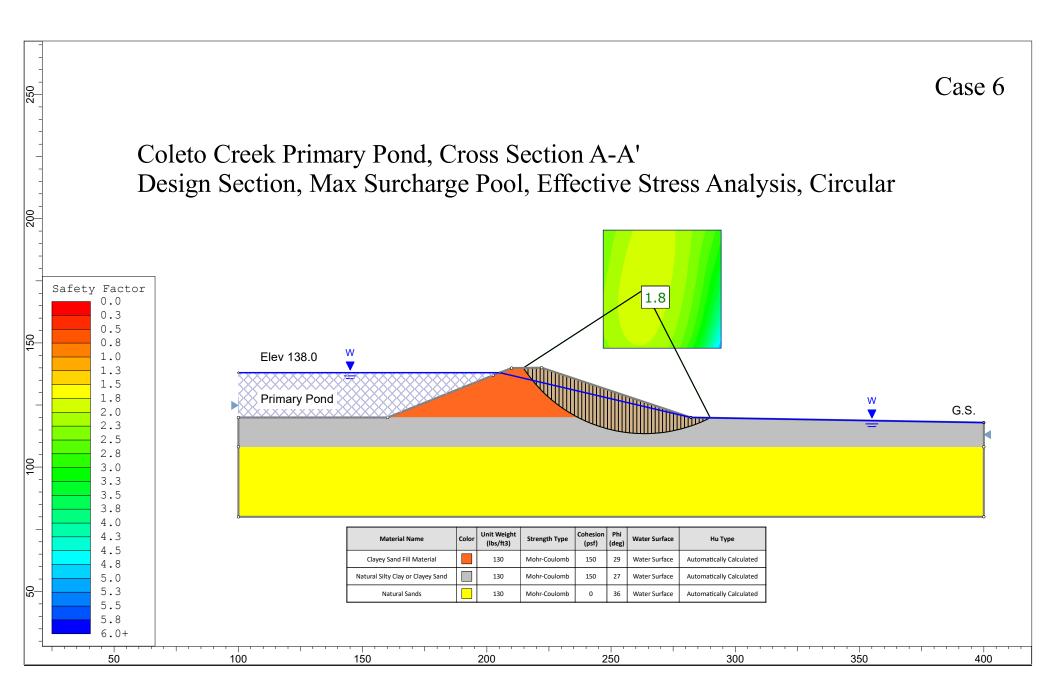

Project: COLETO CREEK FACILITY Boring No.: B-1-1 Sample No.: S-16-18 Test No.: 1.75 TSF Project No.: 60225561 Tested By: BCM
Test Date: 12/17/11
Sample Type: TRIMMED Checked By: WPQ Depth: ---Elevation: ---

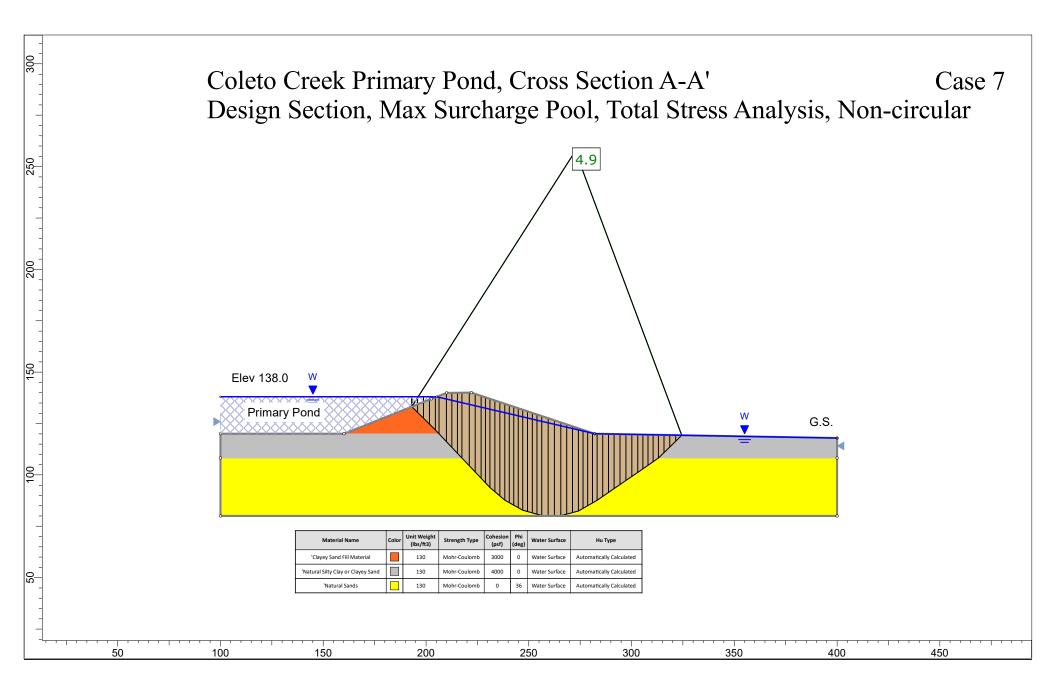
Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

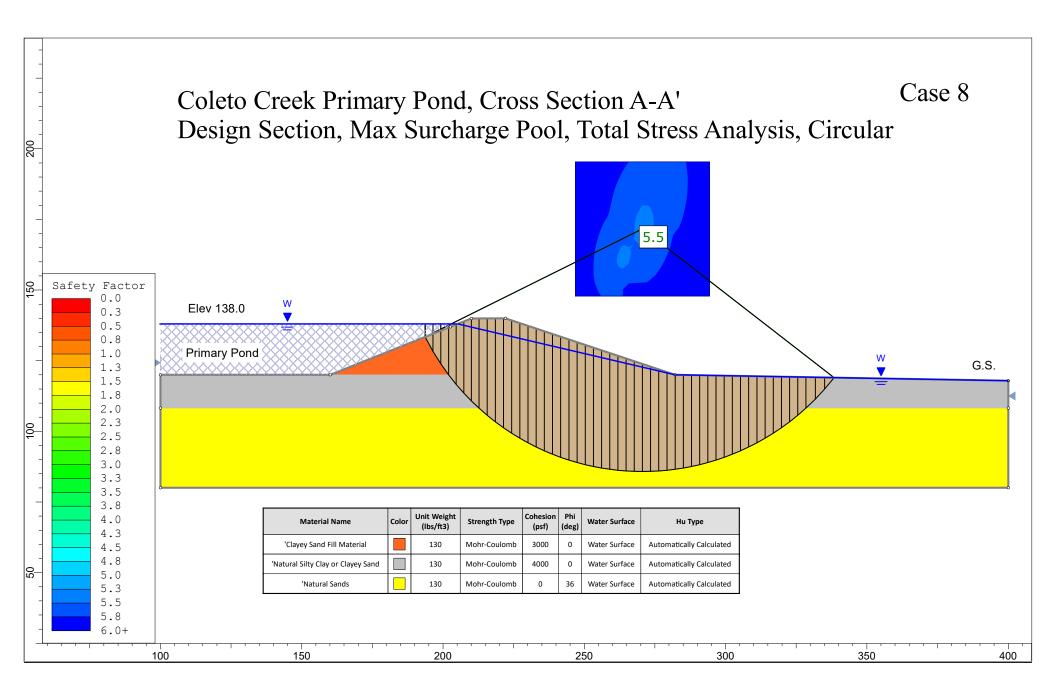

Step: 1 of 1

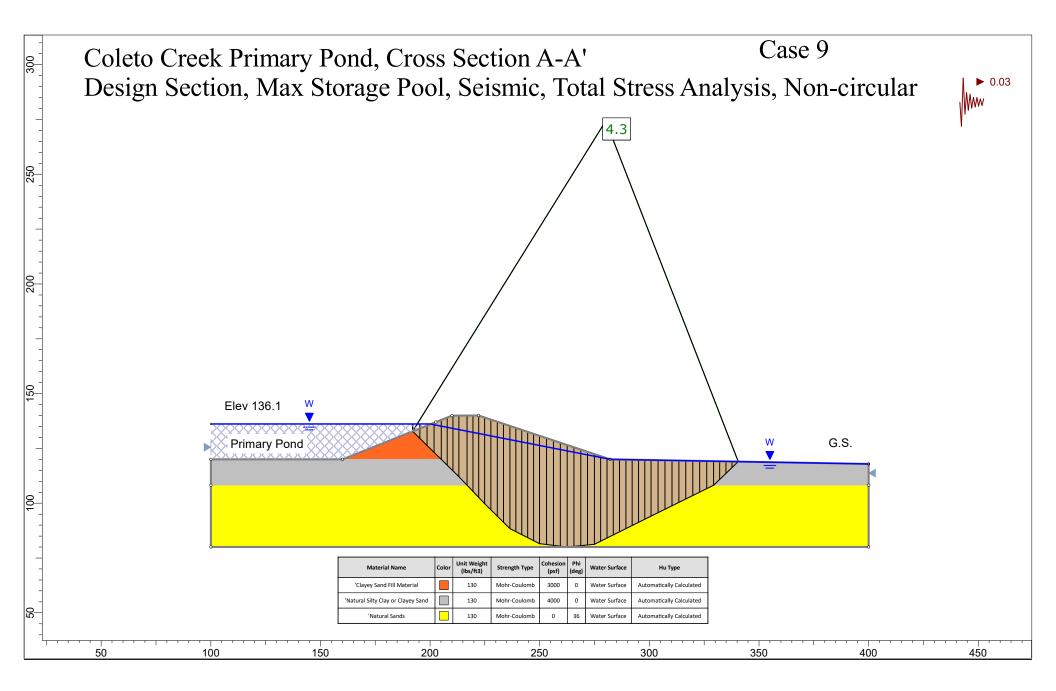

	Elapsed Time min	Vertical Stress tsf	Vertical Displacement in	Horizontal Stress tsf	Horizontal Displacement in	Cumulative Displacement in
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 28.00 98.00 198.00	1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	0.01256 0.01529 0.0162 0.01687 0.01767 0.01877 0.01979 0.0207 0.02152 0.02223 0.02289 0.02361 0.02409 0.02466 0.0315 0.04639	0 0.1083 0.107 0.1474 0.3553 0.497 0.615 0.7159 0.8062 0.904 0.9887 1.072 1.144 1.209 1.356	0 0.001552 0.00522 0.009311 0.0127 0.01622 0.01961 0.02328 0.02694 0.03061 0.03414 0.03809 0.0419 0.04585 0.1888 0.392	0.001552 0.00522 0.009311 0.0127 0.01622 0.01961 0.02328 0.02694 0.03061 0.03414 0.03809 0.0419 0.04585 0.1888 0.392
17	243.36	1.75	0.0505	1.298	0.4572	0.4572

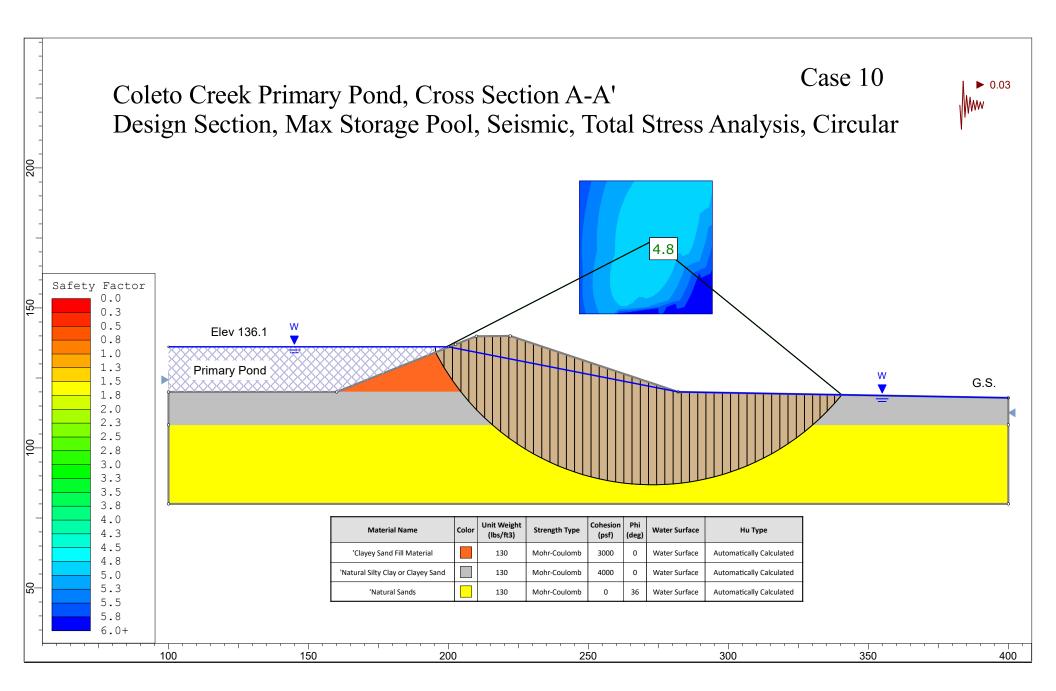


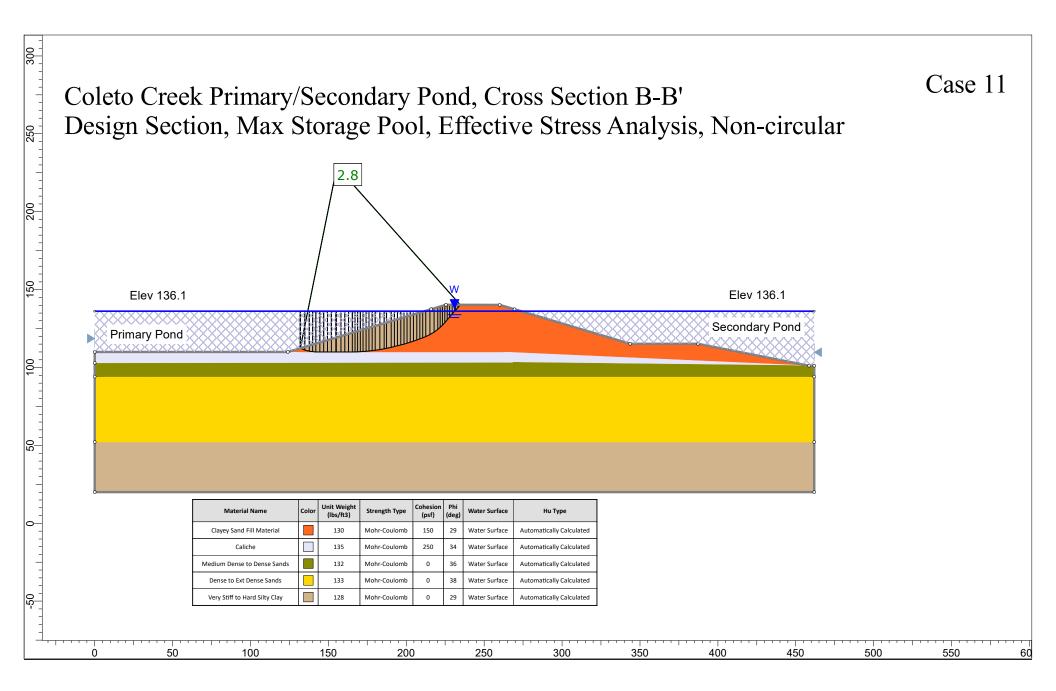


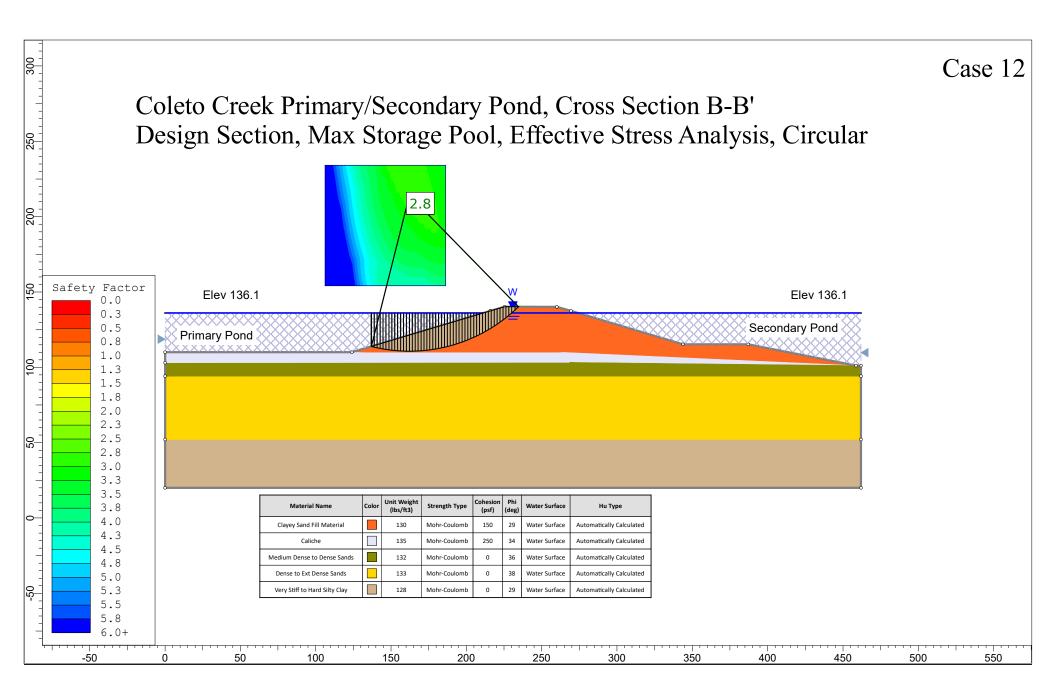


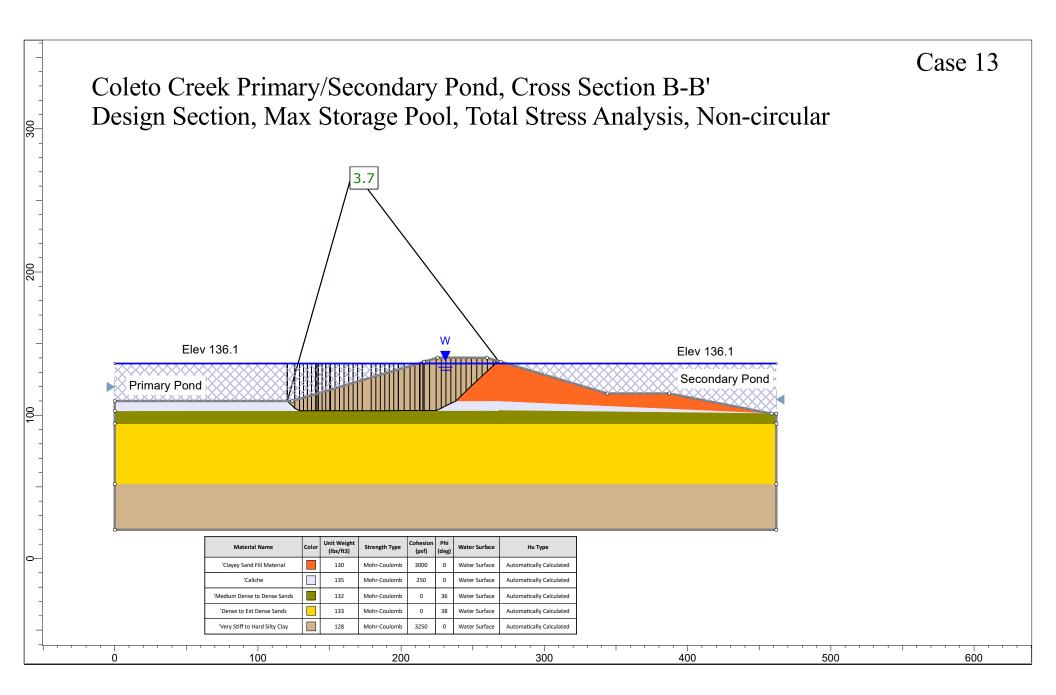


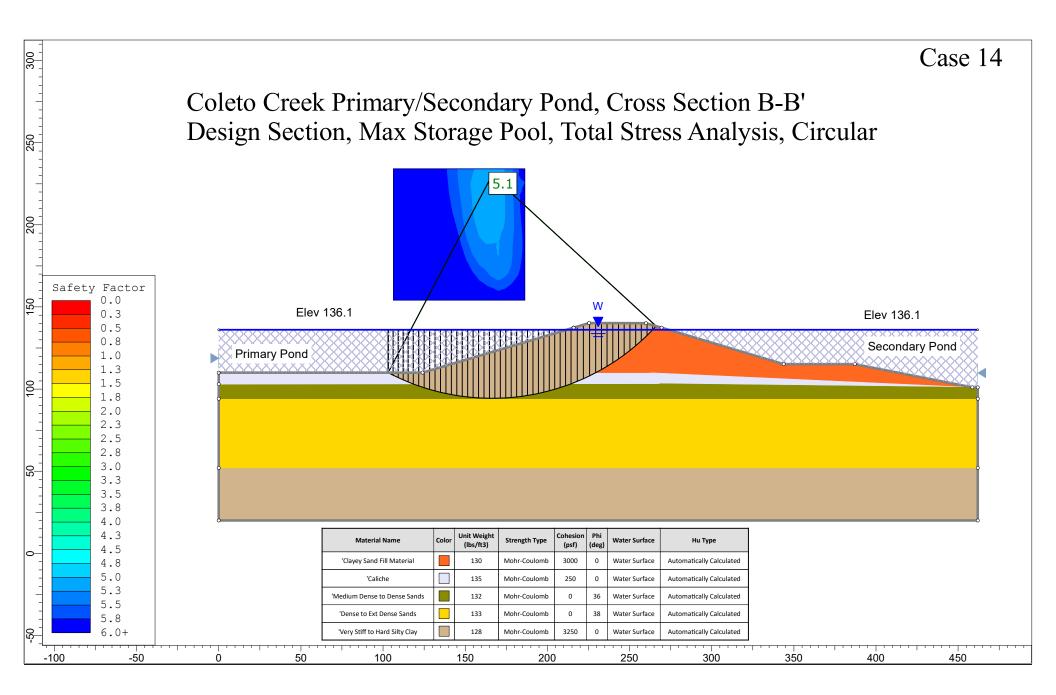


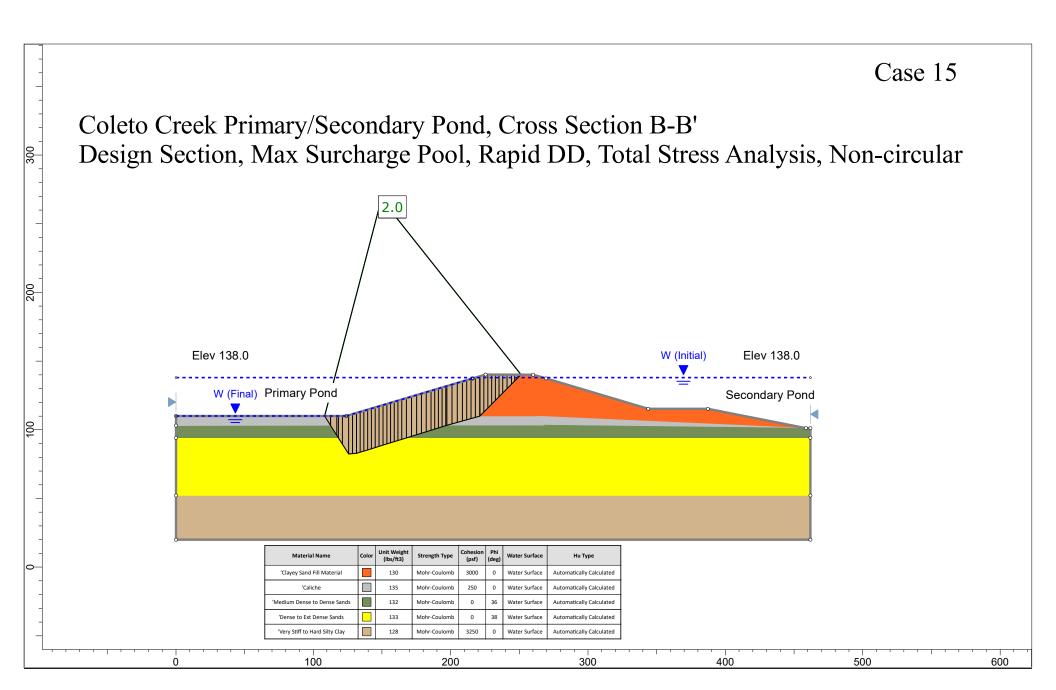




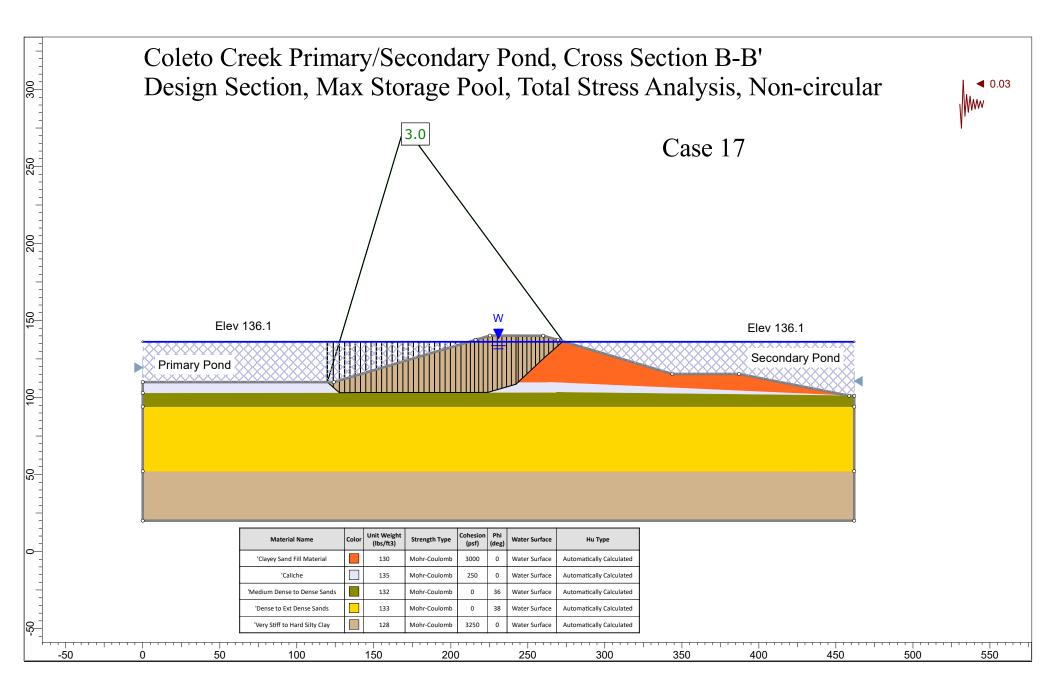


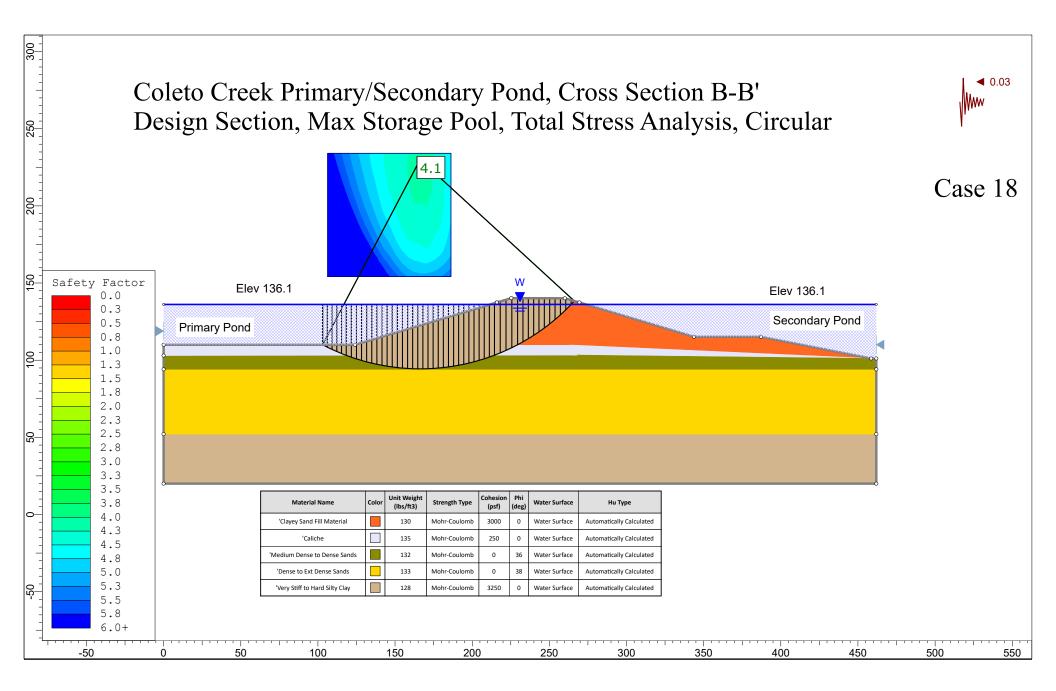












APPENDIX D

LIQUEFACTION FACTOR OF SAFETY

ASSESSMENT METHODOLOGY

Coleto Creek Power Station

Sources: Coduto, Donald P., Geotechnical Engineering Principles and Practices. Prentice-Hall.

Rauch, Alan F., May 1997. EPOLLS: An Empiracle Method for Predicting Surface

Displacements Due to Liquefaction-Induced Lateral Spreading in Earthquakes. Dissertation Submitted to Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for degree of Doctor of Philosophy in Civil Engineering.

United States Environmental Protection Agency (USEPA), April 1995. RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. Office of Research and Development. Washington, DC. EPA/600/R-95/051

Methodology: Standard Penetration Test (SPT)

Step 1: Compute the standardized value of number of blow counts per foot normalized for overburden stress at the depth of the test

$$(N_1)_{60} = NSPT \cdot C_N \cdot CE \cdot CB \cdot CS \cdot C_R$$

where:

 $(N_1)_{60}$ = Measured blowcount normalized for overburden stress at the depth of the test C_N = Correction factor to normalize the measured blowcount to an equivalent value under one atmosphere of effective overburden stress

$$C_N = \sqrt{\frac{Pa}{\sigma'_{vo}}} \le 2.0$$

where:

Pa = one atmosphere of pressure (101.325kPa) in the same units as σ'_{vo} = vertical effective stress at depth of N_{SPT}

C_E =Correction factor of the measured SPT blowcount for level of energy delivered by the SPT hammer, 1.0 for safety hammer type with rope and pulley hammer release

 C_B = Correction factor for borehole diameters outside the recommended range of 2.5 to 4.5 inch, 1.0 for borehole inside range

 C_S = Correction factor for SPT samplers used without a sample liner, 1.0 for standard sampler

C_R = Correction factor for loss of energy through reflection in short lengths of drill rod:

where:

For z < 3 m; $C_R = 0.75$

For 3 < z < 9 m; $C_R = (15+z)/24$

For z > 9 m; $C_R = 1.0$

where: $z = length of drill rod in meters (approximately equal to depth of <math>N_{SPT}$)

Step 2: Compute a clean-sand equivalent value of $(N_1)_{60}$

$$(N_1)_{60} - cs = (N_1)_{60} + \Delta(N_1)$$

where:

 $\Delta(N_1)_{60}$ = correction factor computed as follows:

For FC < 5%, $\Delta(N_1)_{60} = 0.0$

For 5 < FC < 35%, $\Delta(N_1)_{60} = 7*(FC - 5)/30$

For FC > 35%, $\Delta(N_1)_{60} = 7.0$

where:

FC = Fines content (percent finer than 0.075 mm)

Note: Where data was available, those FC were used. Otherwise, representative values from the USGS standard soil classification were used for the soil type observed during drilling.

Step 3: Compute the cyclic resistance ratio for a standardized magnitude 7.5 earthquake (CRR $_{M7.5}$)

$$100 \cdot CRR_{M7.5} = \frac{95}{34 - (N_1)_{60} - cs} + \frac{(N_1)_{60} - cs}{1.3} - \frac{1}{2}$$

Note: A value of $(N_1)_{60}$ -cs > 30 indicates an unliquefiable soil with an infinite CRR. Designated as UL in the calculation tables.

Step 4: Adjust the standardized cyclic resistance ratio for the worst-case magnitude of earthquake for the area

$$CRR = CRRM_{75} MSF \cdot K\sigma \cdot K\alpha$$

where:

MSF = magnitude scaling factor computed as follows:

For
$$M_w < 7.0$$
; MSF = $10^{3.00} * M_w^{-3.46}$

where:

 M_w = estimated worst-case magnitude eartquake, 6.1 taken from Figure 3.3 Seismic Source Zones in the Contiguous United States (USGS, 1982) and Table 3.1 Parameters for Seismic Source Zones (USGS, 2982) (USEPA, 1995)

Note: Two additional correction factors are potentially applicable for liquefiable soil deposits subject to significant overburden with a stress factor greater than 1 tsf (2000 psf) (K σ) or static shear stresses such as significant slopes (K α). K σ values were interpolated using Figure 5.7 Curves for Estimation of Correction Factor (Harder 1988, and Hynes 1988, as Quoted in Marcuson, et.al., 1990) (USEPA, 1998). No K α factor was applied due to the relatively flat ground surface in the area.

Step 5: Estimate the average cyclic shear stress (CSR)

$$CSR = 0.65 \cdot \frac{a_{max}}{g} \cdot \frac{\sigma_{vo}}{\sigma'_{vo}} \cdot rd$$

where:

 a_{max}/g = peak horizonal acceleration that would occur at the ground surface in the absence of excess pore pressures or liquefaction, 0.03 g taken from the 2014 United States Geological Survey National Seismic Hazard Maps found at

http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf).

 σ_{vo} = total vertical overburden stress

g = acceleration due to gravity, 9.81 m/s^2

 r_d = stress reduction factor calculated as follows for depths up to 30 m:

$$r_d = 1.0 + 1.6*10^{-6}(z^4 - 42z^3 + 105z^2 - 4200z)$$

Step 6: Calculate the Factor of Safety against liquefaction (FS_{lio})

$$FS_{liq} = \frac{CRR}{CSR}$$

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-1-1¹ Coleto Creek Power Plant

Borehole Diameter = 4", to 50' bgs

3", 50' to end of boring

Sample	Depth	Depth		Soil	σ'_{vo}																		
Number	(ft)	(m)	Note	N _{SPT} Type	(psf)	C_N	C_E	C_B	C_S	C_R	$(N_1)_{60}$	FC	$\Delta(N_1)_{60}$	$(N_1)_{60}$ -cs	CRR _{M7.5}	MSF	Κσ	CRR	a _{max} /g	σ_{vo}	r_{d}	CSR	FS_{liq}
1	2	0.61 Uns	saturated	40 SC	250	2.00	1.0	1.00	1.0	0.75	60.0	35	7.0	67.0	UL	1.92	NA	UL	0.03	250	1.00	UL	UL
2	4	1.22 Uns	saturated	13 SC	500	2.00	1.0	1.00	1.0	0.75	19.5	35	7.0	26.5	0.33	1.92	NA	0.62	0.03	500	0.99	0.019	32
3	6	1.83 Uns	saturated	14 SC	750	1.68	1.0	1.00	1.0	0.75	17.6	35	7.0	24.6	0.29	1.92	NA	0.55	0.03	750	0.99	0.019	28
4	8	2.44 Uns	saturated	15 SC	1000	1.45	1.0	1.00	1.0	0.75	16.4	90.6	7.0	23.4	0.26	1.92	NA	0.51	0.03	1000	0.98	0.019	26
7	14	4.27 Sa	aturated	10 SC	1635.4	1.14	1.0	1.00	1.0	0.80	9.1	35	7.0	16.1	0.17	1.92	NA	0.33	0.03	1760	0.97	0.020	16
8	16	4.88 Sa	aturated	13 SC	1770.8	1.09	1.0	1.00	1.0	0.83	11.8	35	7.0	18.8	0.20	1.92	NA	0.39	0.03	2020	0.96	0.021	18
9	18	5.49 Sa	aturated	9 SC	1906.2	1.05	1.0	1.00	1.0	0.85	8.1	35	7.0	15.1	0.16	1.92	NA	0.31	0.03	2280	0.96	0.022	14
10	20	6.10 Sa	aturated	15 SC	2041.6	1.02	1.0	1.00	1.0	0.88	13.4	39.5	7.0	20.4	0.22	1.92	0.93	0.40	0.03	2540	0.95	0.023	17
12	24	7.32 Sa	aturated	13 SC	2312.4	0.96	1.0	1.00	1.0	0.93	11.6	35	7.0	18.6	0.20	1.92	0.92	0.35	0.03	3060	0.94	0.024	15
13	26	7.92 Sa	aturated	21 SC	2447.8	0.93	1.0	1.00	1.0	0.96	18.7	35	7.0	25.7	0.31	1.92	0.92	0.54	0.03	3320	0.93	0.025	22
14	28		aturated	15 SC	2583.2	0.91	1.0	1.00	1.0	0.98	13.3	35	7.0	20.3	0.22	1.92	0.91	0.39	0.03	3580	0.92	0.025	16
15	30		aturated	28 SC	2718.6	0.88	1.0	1.00	1.0	1.0	24.7	35	7.0	31.7	UL	1.92	0.91	UL	0.03	3840	0.91	UL	UL
16	32		aturated	12 SC	2854	0.86	1.0	1.00	1.0	1.0	10.3	35	7.0	17.3	0.19	1.92	0.90	0.32	0.03	4100	0.90	0.025	13
18	34.7		aturated	6 SM	3036.79	0.83	1.0	1.00	1.0	1.0	5.0	15	2.3	7.3	0.09	1.92	0.90	0.15	0.03	4451	0.89	0.025	6
18A	36		aturated	15 SM	3124.8	0.82	1.0	1.00	1.0	1.0	12.3	15	2.3	14.7	0.16	1.92	0.90	0.27	0.03	4620	0.88	0.025	11
19	36.7		aturated	24 SP	3172.19	0.82	1.0	1.00	1.0	1.0	19.6	1	0.0	19.6	0.21	1.92	0.89	0.36	0.03	4711	0.88	0.025	14
19A	38		aturated	26 SP	3260.2	0.81	1.0	1.00	1.0	1.0	20.9	1	0.0	20.9	0.23	1.92	0.89	0.39	0.03	4880	0.87	0.025	15
20	40		aturated	39 SP	3395.6	0.79	1.0	1.00	1.0	1.0	30.8	1	0.0	30.8	UL	1.92	0.89	UL	0.03	5140	0.86	UL	UL
21	42		aturated	27 SP	3531	0.77	1.0	1.00	1.0	1.0	20.9	1	0.0	20.9	0.23	1.92	0.88	0.39	0.03	5400	0.84	0.025	15
22	44		aturated	35 SM	3666.4	0.76	1.0	1.00	1.0	1.0	26.6	15	2.3	28.9	0.40	1.92	0.88	0.68	0.03	5660	0.83	UL	UL
23 24	46 48		aturated	34 SP 66 SP	3801.8 3937.2	0.75	1.0 1.0	1.00 1.00	1.0 1.0	1.0 1.0	25.4 48.4	1	0.0	25.4 48.4	0.30	1.92 1.92	0.87 0.87	0.50	0.03	5920 6180	0.82 0.80	UL	UL
25	48 50		aturated aturated	56 SP	4072.6	0.73 0.72	1.0	1.00	1.0	1.0	48.4 40.4	1	0.0 0.0	48.4	UL UL	1.92	0.87	UL UL	0.03 0.03	6440	0.80	UL UL	UL UL
26	52		aturated	50 SP	4072.6	0.72	1.0	1.00	1.0	1.0	35.5	1	0.0	35.5	UL	1.92	0.86	UL	0.03	6700	0.79	UL	UL
27	57		aturated	50 SP	4546.5	0.71	1.0	1.00	1.0	1.0	34.1	1	0.0	34.1	UL	1.92	0.85	UL	0.03	7350	0.77	UL	UL
28	62		aturated	66 SP	4885	0.66	1.0	1.00	1.0	1.0	43.4	1	0.0	43.4	UL	1.92	0.83	UL	0.03	8000	0.68	UL	UL
29	67		aturated	50 SC	5223.5	0.64	1.0	1.00	1.0	1.0	31.8	35	7.0	38.8	UL	1.92	0.83	UL	0.03	8650	0.64	UL	UL
30	72		aturated	92 SC	5562	0.62	1.0	1.00	1.0	1.0	56.7	35	7.0	63.7	UL	1.92	0.81	UL	0.03	9300	0.59	UL	UL
31	75		aturated	50 SC	5765.1	0.61	1.0	1.00	1.0	1.0	30.3	35	7.0	37.3	UL	1.92	0.81	UL	0.03	9690	0.57	UL	UL
32	81		aturated	50 SP	6171.3	0.59	1.0	1.00	1.0	1.0	29.3	1	0.0	29.3	UL	1.92	0.79	UL	0.03	10470	0.52	UL	UL
33	86		aturated	50 SM	6509.8	0.57	1.0	1.00	1.0	1.0	28.5	15	2.3	30.8	UL	1.92	0.78	UL	0.03	11120	0.48	UL	UL
34	91	27.74 Sa	aturated	50 CL	6848.3	0.56	1.0	1.00	1.0	1.0	27.8	77.9	7.0	34.8	UL	1.92	0.77	UL	0.03	11770	0.46	UL	UL
35	96	29.26 Sa	aturated	50 CL	7186.8	0.54	1.0	1.00	1.0	1.0	27.1	90	7.0	34.1	UL	1.92	0.76	UL	0.03	12420	0.44	UL	UL
36	100		aturated	50 SC	7457.6	0.53	1.0	1.00	1.0	1.0	26.6	35	7.0	33.6	UL	1.92	0.75	UL	0.03	12940	0.43	UL	UL
37	107	32.61 Sa	aturated	93 CH	7931.5	0.52	1.0	1.00	1.0	1.0	48.0	90	7.0	55.0	UL	1.92	0.74	UL	0.03	13850	0.44	UL	UL
38	112	34.14 Sa	aturated	51 CH	9516	0.47	1.0	1.00	1.0	1.0	24.1	90	7.0	31.1	UL	1.92	0.68	UL	0.03	14500	0.47	UL	UL
39	117	35.66 Sa	aturated	38 CH	9854.5	0.46	1.0	1.00	1.0	1.0	17.6	90	7.0	24.6	0.29	1.92	0.67	0.37	0.03	15150	0.51	0.015	24

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-2-1¹ **Coleto Creek Power Plant**

Depth to Water = 32 ft Average Unsaturated Soil Unit Weight, y_d = 125 pcf Average Saturated Soil Unit Weight, y_s = 130 pcf Average Water Unit Weight, $y_w =$ 62.3 pcf Earthquake Magnitude, M_W = 6.1 Borehole Diameter =

4", to 50' bgs

3", 50' to end of boring

Sample	Depth	Depth		Soil	σ' _{vo}																		
Number	(ft)	(m)	Note	N _{SPT} Type	(psf)	C_N	C_{E}	C _B	C_S	C_R	(N ₁) ₆₀	FC	$\Delta(N_1)_{60}$	(N ₁) ₆₀ -cs	CRR _{M7.5}	MSF	Κσ	CRR	a _{max} /g	σ_{vo}	r_{d}	CSR	FS_{liq}
1	2	0.61	Unsaturated	17 SC	250	2.00	1.0	1.00	1.0	0.75	25.5	35	7.0	32.5	UL	1.92	NA	UL	0.03	250	1.00	UL	UL
2	4	1.22	Unsaturated	21 SC	500	2.00	1.0	1.00	1.0	0.75	31.5	35	7.0	38.5	UL	1.92	NA	UL	0.03	500	0.99	UL	UL
3	6	1.83	Unsaturated	15 SC	750	1.68	1.0	1.00	1.0	0.75	18.9	35	7.0	25.9	0.31	1.92	NA	0.60	0.03	750	0.99	0.019	31
4	8	2.44	Unsaturated	13 SC	1000	1.45	1.0	1.00	1.0	0.75	14.2	35	7.0	21.2	0.23	1.92	NA	0.45	0.03	1000	0.98	0.019	23
5	10	3.05	Unsaturated	15 SC	1250	1.30	1.0	1.00	1.0	0.75	14.6	37.3	7.0	21.6	0.24	1.92	NA	0.46	0.03	1250	0.98	0.019	24
7	14	4.27	Unsaturated	12 SC	1750	1.10	1.0	1.00	1.0	0.80	10.6	35	7.0	17.6	0.19	1.92	NA	0.36	0.03	1750	0.97	0.019	19
8	16	4.88	Unsaturated	21 SC	2000	1.03	1.0	1.00	1.0	0.83	17.9	35	7.0	24.9	0.29	1.92	NA	0.56	0.03	2000	0.96	0.019	30
9	18	5.49	Unsaturated	9 SC	2250	0.97	1.0	1.00	1.0	0.85	7.4	42.3	7.0	14.4	0.15	1.92	NA	0.30	0.03	2250	0.96	0.019	16
11	22	6.71	Unsaturated	14 SC	2750	0.88	1.0	1.00	1.0	0.90	11.1	35	7.0	18.1	0.19	1.92	0.91	0.34	0.03	2750	0.95	0.018	18
12	24	7.32	Unsaturated	17 SC	3000	0.84	1.0	1.00	1.0	0.93	13.3	35	7.0	20.3	0.22	1.92	0.90	0.38	0.03	3000	0.94	0.018	21
13	26	7.92	Unsaturated	18 SC	3250	0.81	1.0	1.00	1.0	0.96	13.9	35.2	7.0	20.9	0.23	1.92	0.89	0.39	0.03	3250	0.93	0.018	22
15	30	9.14	Unsaturated	16 SC	3750	0.75	1.0	1.00	1.0	1.0	12.0	35	7.0	19.0	0.20	1.92	0.88	0.34	0.03	3750	0.91	0.018	19
16	32		Saturated	22 SC	4000	0.73	1.0	1.00	1.0	1.0	16.0	38.4	7.0	23.0	0.26	1.92	0.87	0.43	0.03	4000	0.90	0.018	24
18	36	10.97	Saturated	15 SC	4270.8	0.70	1.0	1.00	1.0	1.0	10.6	35	7.0	17.6	0.19	1.92	0.86	0.31	0.03	4520	0.88	0.018	17
19	38	11.58	Saturated	8 SC	4406.2	0.69	1.0	1.00	1.0	1.0	5.5	35	7.0	12.5	0.14	1.92	0.85	0.22	0.03	4780	0.87	0.018	12
20	40	12.19	Saturated	16 SC	4541.6	0.68	1.0	1.00	1.0	1.0	10.9	35	7.0	17.9	0.19	1.92	0.85	0.31	0.03	5040	0.86	0.019	17
21A	42	12.80	Saturated	14 SP	4677	0.67	1.0	1.00	1.0	1.0	9.4	1	0.0	9.4	0.11	1.92	0.84	0.17	0.03	5300	0.84	0.019	9
22	44	13.41	Saturated	27 SP	4812.4	0.66	1.0	1.00	1.0	1.0	17.9	1	0.0	17.9	0.19	1.92	0.84	0.31	0.03	5560	0.83	0.019	17
23	46	14.02	Saturated	25 SP	4947.8	0.65	1.0	1.00	1.0	1.0	5.0	1	0.0	5.0	0.07	1.92	0.84	0.11	0.03	5820	0.82	0.019	6
24	48	14.63	Saturated	37 SP	5083.2	0.65	1.0	1.00	1.0	1.0	23.9	1	0.0	23.9	0.27	1.92	0.83	0.43	0.03	6080	0.80	0.019	23
25	50	15.24		35 SP	5218.6	0.64	1.0	1.00	1.0	1.0	22.3	1	0.0	22.3	0.25	1.92	0.83	0.39	0.03	6340	0.79	0.019	21
26	52	15.85	Saturated	33 SM	5354	0.63	1.0	1.00	1.0	1.0	20.7	35	7.0	27.7	0.36	1.92	0.82	0.57	0.03	6600	0.77	0.018	31
27	56	17.07	Saturated	39 SC	5624.8	0.61	1.0	1.00	1.0	1.0	23.9	45.7	7.0	30.9	UL	1.92	0.81	UL	0.03	7120	0.74	UL	UL
28	61	18.59	Saturated	43 SC	5963.3	0.60	1.0	1.00	1.0	1.0	25.6	35	7.0	32.6	UL	1.92	0.80	UL	0.03	7770	0.69	UL	UL
29	66	20.12		40 SP-SM	6301.8	0.58	1.0	1.00	1.0	1.0	23.2	10	1.2	24.3	0.28	1.92	0.79	0.43	0.03	8420	0.65	0.017	25
30	71	21.64	Saturated	39 SP	6640.3	0.56	1.0	1.00	1.0	1.0	22.0	1	0.0	22.0	0.24	1.92	0.78	0.36	0.03	9070	0.60	0.016	23
31	76	23.16	Saturated	50 SM	6978.8	0.55	1.0	1.00	1.0	1.0	27.5	35	7.0	34.5	UL	1.92	0.77	UL	0.03	9720	0.56	UL	UL
32	81	24.69	Saturated	60 CL-ML-S	7317.3	0.54	1.0	1.00	1.0	1.0	32.3	50	0.0	32.3	UL	1.92	0.76	UL 0.41	0.03	10370	0.52	UL	UL 21
33 34	86	26.21		34 CH 41 CH	7655.8	0.53	1.0	1.00	1.0	1.0	17.9 21.1	92.4	7.0	24.9 28.1	0.29 0.37	1.92	0.74 0.73	0.41 0.52	0.03	11020	0.48 0.46	0.014 0.013	31 40
	91	27.74	Saturated	50 SC	7994.3 8671.3	0.51 0.49	1.0	1.00 1.00	1.0	1.0	24.7	90	7.0			1.92 1.92	0.73		0.03 0.03	11670 12970			
36 37	101 107	30.78 32.61		50 SC 70 CH	9077.5	0.49	1.0	1.00	1.0 1.0	1.0 1.0	33.8	35 90	7.0 7.0	31.7 40.8	UL UL	1.92	0.71	UL UL	0.03	13750	0.43 0.44	UL UL	UL UL
				70 CH 68 CH			1.0				33.8						0.70			14270			
38 39	111 116	33.83 35.36	Saturated Saturated	58 CH	9348.3 9686.8	0.48 0.47	1.0 1.0	1.00 1.00	1.0 1.0	1.0 1.0	32.4 27.1	90 90	7.0 7.0	39.4 34.1	UL UL	1.92 1.92	0.69	UL UL	0.03 0.03	14270	0.46 0.50	UL UL	UL UL
40					9889.9											1.92	0.68			15310		UL	UL
40	119	36.27	Saturated	77 CH	9889.9	0.46	1.0	1.00	1.0	1.0	35.6	90	7.0	42.6	UL	1.92	0.67	UL	0.03	12310	0.54	UL	UL

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-2-2¹ Coleto Creek Power Plant

Borehole Diameter = 3", to end of boring

Sample	Depth	Depth			Soil	σ'_{vo}																		
Number	(ft)	(m)	Note	N_{SPT}	Type	(psf)	C_N	C_{E}	C _B	C_S	C_R	$(N_1)_{60}$	FC	$\Delta(N_1)_{60}$	(N ₁) ₆₀ -cs	CRR _{M7.5}	MSF	Κσ	CRR	a _{max} /g	σ_{vo}	r_d	CSR	FS_{liq}
1	1	0.30	Unsaturated	5	OL	125	2.00	1.0	1.00	1.0	0.75	7.5	50	7.0	14.5	0.16	1.92	NA	0.30	0.03	125	1.00	0.019	UL
2	3	0.91	Unsaturated	16	OL	375	2.00	1.0	1.00	1.0	0.75	24.0	50	7.0	31.0	0.55	1.92	NA	1.05	0.03	375	0.99	0.019	UL
3	5	1.52	Saturated	15	SC	510.4	2.04	1.0	1.00	1.0	0.75	22.9	35	7.0	29.9	0.46	1.92	NA	0.88	0.03	635	0.99	0.024	37
4	7	2.13	Saturated	16	SP	645.8	1.81	1.0	1.00	1.0	0.75	21.7	1	0.0	21.7	0.24	1.92	NA	0.46	0.03	895	0.99	0.027	17
5	9	2.74	Saturated	15	SP	781.2	1.65	1.0	1.00	1.0	0.75	18.5	1	0.0	18.5	0.20	1.92	NA	0.38	0.03	1155	0.98	0.028	13
6	10	3.05	Saturated	18	SP	848.9	1.58	1.0	1.00	1.0	0.75	21.3	1	0.0	21.3	0.23	1.92	NA	0.45	0.03	1285	0.98	0.029	16
6A	11	3.35	Saturated	15	SP	916.6	1.52	1.0	1.00	1.0	0.75	17.1	1	0.0	17.1	0.18	1.92	NA	0.35	0.03	1415	0.98	0.029	12
7	14	4.27	Saturated	26	ML	1119.7	1.37	1.0	1.00	1.0	0.80	28.6	50	7.0	35.6	UL	1.92	NA	UL	0.03	1805	0.97	UL	UL
7A	15	4.57	Saturated	32	CL	1187.4	1.34	1.0	1.00	1.0	0.75	32.0	50	7.0	39.0	UL	1.92	NA	UL	0.03	1935	0.97	UL	UL
8	20	6.10	Saturated	21	ML	1525.9	1.18	1.0	1.00	1.0	0.88	21.8	50	7.0	28.8	0.40	1.92	NA	0.76	0.03	2585	0.95	0.031	24
9	25	7.62	Saturated	35	SP	1864.4	1.07	1.0	1.00	1.0	0.94	35.1	1	0.0	35.1	UL	1.92	NA	UL	0.03	3235	0.93	UL	UL
10	31	9.45	Saturated	41	SP	2270.6	0.97	1.0	1.00	1.0	1.02	40.4	1	0.0	40.4	UL	1.92	0.92	UL	0.03	4015	0.91	UL	UL
11	35	10.67	Saturated	45	SC	2541.4	0.91	1.0	1.00	1.0	1.07	43.9	35	7.0	50.9	UL	1.92	0.92	UL	0.03	4535	0.89	UL	UL
12	39	11.89	Saturated	50	SC	2812.2	0.87	1.0	1.00	1.0	1.12	48.6	35	7.0	55.6	UL	1.92	0.91	UL	0.03	5055	0.86	UL	UL
13	45	13.72	Saturated	42	SP	3218.4	0.81	1.0	1.00	1.0	1.20	40.9	1	0.0	40.9	UL	1.92	0.89	UL	0.03	5835	0.82	UL	UL
14	50	15.24	Saturated	26	CL	3556.9	0.77	1.0	1.00	1.0	1.0	20.1	50	7.0	27.1	0.34	1.92	0.88	0.57	0.03	6485	0.79	0.028	21
15	54	16.46	Saturated	56	SP	3827.7	0.74	1.0	1.00	1.0	1.0	41.6	1	0.0	41.6	UL	1.92	0.87	UL	0.03	7005	0.75	UL	UL
15A	55	16.76	Saturated	120	SP	3895.4	0.74	1.0	1.00	1.0	1.0	88.4	1	0.0	88.4	UL	1.92	0.87	UL	0.03	7135	0.74	UL	UL
16	59	17.98	Saturated	83	CL	4166.2	0.71	1.0	1.00	1.0	1.0	59.2	50	7.0	66.2	UL	1.92	0.86	UL	0.03	7655	0.71	UL	UL
17	65	19.81	Saturated	50	SM	4572.4	0.68	1.0	1.00	1.0	1.0	34.0	35	7.0	41.0	UL	1.92	0.85	UL	0.03	8435	0.66	UL	UL
18	70	21.34	Saturated	56	CH	4910.9	0.66	1.0	1.00	1.0	1.0	36.8	90	7.0	43.8	UL	1.92	0.84	UL	0.03	9085	0.61	UL	UL

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-3-1¹ Coleto Creek Power Plant

Depth to Water = 28 ft (Only saturated strata was found between 28.0 and 28.5 ft bgs)

Average Unsaturated Soil Unit Weight, y_d = 125 pcf Average Saturated Soil Unit Weight, y_s = 130 pcf Average Water Unit Weight, y_w = 62.3 pcf Earthquake Magnitude, M_W = 6.1 Borehole Diameter = 4", to 30'

3", to end of boring

Sample	Depth	Depth			Soil	σ'_{vo}																		
Number	(ft)	(m)	Note	N_{SPT}	Туре	(psf)	C_N	C_{E}	C _B	C_S	C_R	(N ₁) ₆₀	FC	$\Delta(N_1)_{60}$	(N ₁) ₆₀ -cs	CRR _{M7.5}	MSF	Κσ	CRR	a _{max} /g	σ_{vo}	r_{d}	CSR	FS_{liq}
1	1	0.30	Unsaturated	19	SC	125	2.00	1.0	1.00	1.0	0.75	28.5	35	7.0	35.5	UL	1.92	NA	UL	0.03	125	1.00	UL	UL
2	3	0.91	Unsaturated	17	SC	375	2.00	1.0	1.00	1.0	0.75	25.5	35	7.0	32.5	UL	1.92	NA	UL	0.03	375	0.99	UL	UL
3	5	1.52	Unsaturated	26	SC	625	1.84	1.0	1.00	1.0	0.75	35.9	35	7.0	42.9	UL	1.92	NA	UL	0.03	625	0.99	UL	UL
4	7	2.13	Unsaturated	26	SC	875	1.56	1.0	1.00	1.0	0.75	30.3	35	7.0	37.3	UL	1.92	NA	UL	0.03	875	0.99	UL	UL
5	9	2.74	Unsaturated	9	SC	1125	1.37	1.0	1.00	1.0	0.75	9.3	35	7.0	16.3	0.17	1.92	NA	0.33	0.03	1125	0.98	0.019	17
6	11	3.35	Unsaturated	15	SC	1375	1.24	1.0	1.00	1.0	0.75	14.0	35	7.0	21.0	0.23	1.92	NA	0.44	0.03	1375	0.98	0.019	23
7	13	3.96	Unsaturated	12	SC	1625	1.14	1.0	1.00	1.0	0.79	10.8	35	7.0	17.8	0.19	1.92	NA	0.37	0.03	1625	0.97	0.019	19
8	15	4.57	Unsaturated	11	SC	1875	1.06	1.0	1.00	1.0	0.75	8.8	35	7.0	15.8	0.17	1.92	NA	0.32	0.03	1875	0.97	0.019	17
8A	16	4.88	Unsaturated	24	SC	2000	1.03	1.0	1.00	1.0	0.83	20.5	40	7.0	27.5	0.35	1.92	NA	0.68	0.03	2000	0.96	0.019	36
11	21	6.40	Unsaturated	18	SC	2625	0.90	1.0	1.00	1.0	0.89	14.4	34.8	7.0	21.4	0.23	1.92	0.91	0.41	0.03	2625	0.95	0.019	22
12	23	7.01	Unsaturated	21	CL	2875	0.86	1.0	1.00	1.0	0.92	16.6	50	7.0	23.6	0.27	1.92	0.90	0.46	0.03	2875	0.94	0.018	25
14	27	8.23	Unsaturated	19	SC	3375	0.79	1.0	1.00	1.0	1.0	15.0	35	7.0	22.0	0.24	1.92	0.89	0.42	0.03	3375	0.93	0.018	23
15	28.5	8.69	Saturated	16	SC	3533.85	0.77	1.0	1.00	1.0	1.0	12.4	35	7.0	19.4	0.21	1.92	0.88	0.35	0.03	3565	0.92	0.018	20
15A	29	8.84	Unsaturated	20	SM	3627.5	0.76	1.0	1.00	1.0	1.0	15.3	35	7.0	22.3	0.25	1.92	0.88	0.42	0.03	3627.5	0.92	0.018	23
16	31	9.45	Unsaturated	17	SM	3877.5	0.74	1.0	1.00	1.0	1.0	12.6	35	7.0	19.6	0.21	1.92	0.87	0.35	0.03	3877.5	0.91	0.018	20
17	36	10.97	Unsaturated	65	SM	4502.5	0.69	1.0	1.00	1.0	1.0	44.6	35	7.0	51.6	UL	1.92	0.85	UL	0.03	4502.5	0.88	UL	UL

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-3-2¹ Coleto Creek Power Plant

Borehole Diameter = 3", to end of boring

Sample	Depth	Depth			Soil	σ' _{vo}																		
Number	(ft)	(m)	Note	N_{SPT}	Type	(psf)	C_N	C_{E}	C _B	C_S	C_R	(N ₁) ₆₀	FC	$\Delta(N_1)_{60}$	(N ₁) ₆₀ -cs	CRR _{M7.5}	MSF	Κσ	CRR	a _{max} /g	σ_{vo}	r_d	CSR	FS_liq
1	1	0.30	Unsaturated	12	SM	125	2.00	1.0	1.00	1.0	0.75	18.0	35	7.0	25.0	0.29	1.92	NA	0.56	0.03	125	1.00	0.019	29
2	3	0.91	Unsaturated	14	CL	375	2.00	1.0	1.00	1.0	0.75	21.0	50	7.0	28.0	0.37	1.92	NA	0.71	0.03	375	0.99	0.019	36
2A	4	1.22	Unsaturated	18	CL	500	2.00	1.0	1.00	1.0	0.75	27.0	50	7.0	34.0	UL	1.92	NA	UL	0.03	500	0.99	UL	UL
3	5	1.52	Unsaturated	18	CL	625	1.84	1.0	1.00	1.0	0.75	24.8	50	7.0	31.8	UL	1.92	NA	UL	0.03	625	0.99	UL	UL
4	7	2.13	Unsaturated	18	CL	875	1.56	1.0	1.00	1.0	0.75	21.0	50	7.0	28.0	0.37	1.92	NA	0.71	0.03	875	0.99	0.019	37
5	9	2.74	Unsaturated	19	CL	1125	1.37	1.0	1.00	1.0	0.75	19.5	50	7.0	26.5	0.33	1.92	NA	0.63	0.03	1125	0.98	0.019	33
6	11	3.35	Unsaturated	47	SM	1375	1.24	1.0	1.00	1.0	0.76	44.3	35	7.0	51.3	UL	1.92	NA	UL	0.03	1375	0.98	UL	UL
7	15	4.57	Saturated	23	SP	1817.7	1.08	1.0	1.00	1.0	0.82	20.3	1	0.0	20.3	0.22	1.92	NA	0.42	0.03	1880	0.97	0.020	22
8	20	6.10	Saturated	42	SM	2156.2	0.99	1.0	1.00	1.0	0.75	31.2	35	7.0	38.2	UL	1.92	NA	UL	0.03	2530	0.95	UL	UL
9	24	7.32	Saturated	50	SP	2427	0.93	1.0	1.00	1.0	0.93	43.4	1	0.0	43.4	UL	1.92	0.92	UL	0.03	3050	0.94	UL	UL
10	29	8.84	Saturated	52	SP	2765.5	0.87	1.0	1.00	1.0	0.99	45.0	1	0.0	45.0	UL	1.92	0.91	UL	0.03	3700	0.92	UL	UL

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-4-1¹ Coleto Creek Power Plant

Borehole Diameter = 3", to end of boring

Sample	Depth	Depth		Soil	σ'_{vo}																		
Number	(ft)	(m) Note	N_{SPT}	Type	(psf)	C_N	C_{E}	C _B	C_S	C_R	(N ₁) ₆₀	FC	$\Delta(N_1)_{60}$	(N ₁) ₆₀ -cs	CRR _{M7.5}	MSF	Κσ	CRR	a _{max} /g	σ_{vo}	r_d	CSR	FS_{liq}
1	1	0.30 Unsaturated	17	' SC	125	2.00	1.0	1.00	1.0	0.75	25.5	12.8	1.8	27.3	0.35	1.92	NA	0.67	0.03	125	1.00	0.019	34
2	3	0.91 Unsaturated	12	. SC	375	2.00	1.0	1.00	1.0	0.75	18.0	12.8	1.8	19.8	0.21	1.92	NA	0.41	0.03	375	0.99	0.019	21
3	5	1.52 Unsaturated	12	. SC	625	1.84	1.0	1.00	1.0	0.75	16.6	12.8	1.8	18.4	0.20	1.92	NA	0.38	0.03	625	0.99	0.019	20
6	11	3.35 Unsaturated	14	SC	1375	1.24	1.0	1.00	1.0	0.76	13.2	12.8	1.8	15.0	0.16	1.92	NA	0.31	0.03	1375	0.98	0.019	16
8	14	4.27 Unsaturated	21	. SC	1750	1.10	1.0	1.00	1.0	0.80	18.5	12.8	1.8	20.3	0.22	1.92	NA	0.42	0.03	1750	0.97	0.019	22
9	17	5.18 Unsaturated	20	SC SC	2125	1.00	1.0	1.00	1.0	0.84	16.8	12.8	1.8	18.6	0.20	1.92	0.93	0.38	0.03	2125	0.96	0.019	20
10	19	5.79 Unsaturated	29	SC SC	2375	0.94	1.0	1.00	1.0	0.87	23.8	12.8	1.8	25.6	0.31	1.92	0.92	0.59	0.03	2375	0.96	0.019	31
11	20	6.10 Unsaturated	16	CL.	2500	0.92	1.0	1.00	1.0	0.88	13.0	50	7.0	20.0	0.22	1.92	0.92	0.41	0.03	2500	0.95	0.019	22
11A	21	6.40 Unsaturated	23	CL	2625	0.90	1.0	1.00	1.0	0.89	18.4	50	7.0	25.4	0.30	1.92	0.91	0.58	0.03	2625	0.95	0.019	31
12	22	6.71 Unsaturated	24	CL	2750	0.88	1.0	1.00	1.0	0.90	18.9	50	7.0	25.9	0.31	1.92	0.91	0.60	0.03	2750	0.95	0.018	33
12A	23	7.01 Unsaturated	22	. CL	2875	0.86	1.0	1.00	1.0	0.92	17.4	50	7.0	24.4	0.28	1.92	0.90	0.54	0.03	2875	0.94	0.018	29
14	27	8.23 Unsaturated	25	SC	3375	0.79	1.0	1.00	1.0	0.97	19.2	35	7.0	26.2	0.32	1.92	0.89	0.61	0.03	3375	0.93	0.018	34
15	29	8.84 Unsaturated	23	SC	3625	0.76	1.0	1.00	1.0	0.99	17.4	35	7.0	24.4	0.28	1.92	0.88	0.54	0.03	3625	0.92	0.018	30
16	31	9.45 Unsaturated	26	SM.	3875	0.74	1.0	1.00	1.0	1.0	19.2	35	7.0	26.2	0.32	1.92	0.87	0.61	0.03	3875	0.91	0.018	35
17	34	10.36 Unsaturated	22	. CL	4242	0.71	1.0	1.00	1.0	1.0	15.5	50	7.0	22.5	0.25	1.92	0.86	0.48	0.03	4242	0.89	0.017	28
17A	36	10.97 Saturated	28	S SP	4477.08	0.69	1.0	1.00	1.0	1.0	19.3	1	0.0	19.3	0.21	1.92	0.85	0.40	0.03	4502	0.88	0.017	23
18	41	12.50 Saturated	35	SP	4815.58	0.66	1.0	1.00	1.0	1.0	23.2	1	0.0	23.2	0.26	1.92	0.84	0.50	0.03	5152	0.85	0.018	28
19	46	14.02 Saturated	35	SP SP	5154.08	0.64	1.0	1.00	1.0	1.0	22.4	1	0.0	22.4	0.25	1.92	0.83	0.48	0.03	5802	0.82	0.018	27
20	51	15.54 Unsaturated	60) SP	6427	0.57	1.0	1.00	1.0	1.0	34.4	1	0.0	34.4	UL	1.92	0.79	UL	0.03	6427	0.78	UL	UL

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-4-2¹ Coleto Creek Power Plant

Borehole Diameter = 3", to end of boring

Sample	Depth	Depth			Soil	σ'_{vo}																		
Number	(ft)	(m)	Note	N_{SPT}	Type	(psf)	C_N	C_E	C _B	C_S	C_R	(N ₁) ₆₀	FC	$\Delta(N_1)_{60}$	(N ₁) ₆₀ -cs	CRR _{M7.5}	MSF	Κσ	CRR	a _{max} /g	σ_{vo}	r_d	CSR	FS_liq
1	1	0.30	Unsaturated	23	SM	125	2.00	1.0	1.00	1.0	0.75	34.5	35	7.0	41.5	UL	1.92	NA	UL	0.03	125	1.00	UL	UL
2	3	0.91	Unsaturated	33	SM	375	2.00	1.0	1.00	1.0	0.75	49.5	35	7.0	56.5	UL	1.92	NA	UL	0.03	375	0.99	UL	UL
3	5	1.52	Unsaturated	28	OL	625	1.84	1.0	1.00	1.0	0.75	38.6	50	7.0	45.6	UL	1.92	NA	UL	0.03	625	0.99	UL	UL
4	7	2.13	Unsaturated	22	SC	875	1.56	1.0	1.00	1.0	0.75	25.7	35	7.0	32.7	UL	1.92	NA	UL	0.03	875	0.99	UL	UL
6	11	3.35	Unsaturated	12	SM	1375	1.24	1.0	1.00	1.0	0.76	11.3	35	7.0	18.3	0.20	1.92	NA	0.38	0.03	1375	0.98	0.019	20
7	15	4.57	Saturated	13	SP	1817.7	1.08	1.0	1.00	1.0	0.82	11.5	1	0.0	11.5	0.13	1.92	NA	0.24	0.03	1880	0.97	0.020	12
8	20	6.10	Saturated	16	SP	2156.2	0.99	1.0	1.00	1.0	0.75	11.9	1	0.0	11.9	0.13	1.92	0.93	0.25	0.03	2530	0.95	0.022	11
9	25	7.62	Saturated	29	SP	2494.7	0.92	1.0	1.00	1.0	0.94	25.1	1	0.0	25.1	0.29	1.92	0.92	0.57	0.03	3180	0.93	0.023	24
10	29	8.84	Saturated	12	SM	2765.5	0.87	1.0	1.00	1.0	0.99	10.4	35	7.0	17.4	0.19	1.92	0.91	0.36	0.03	3700	0.92	0.024	15
10A	29.5	8.99	Saturated	43	SP	2799.35	0.87	1.0	1.00	1.0	1.00	37.4	1	0.0	37.4	UL	1.92	0.91	UL	0.03	3765	0.91	UL	UL

LIQUEFACTION FACTOR OF SAFETY ASSESSMENT TEST BORING B-5-1¹ Coleto Creek Power Plant

Borehole Diameter = 3", to end of boring

Sample	Depth	Depth		Soil	σ'_{vo}																		
Number	(ft)	(m) Note	N_{SPT}	Type	(psf)	C_N	C_{E}	C _B	C_S	C_R	(N ₁) ₆₀	FC	$\Delta(N_1)_{60}$	(N ₁) ₆₀ -cs	CRR _{M7.5}	MSF	Κσ	CRR	a _{max} /g	σ_{vo}	r_d	CSR	FS_{liq}
1	1	0.30 Unsaturated	34	SC	125	2.00	1.0	1.00	1.0	0.75	51.0	35	7.0	58.0	UL	1.92	NA	UL	0.03	125	1.00	UL	UL
2	3	0.91 Unsaturated	26	SC	375	2.00	1.0	1.00	1.0	0.75	39.0	35	7.0	46.0	UL	1.92	NA	UL	0.03	375	0.99	UL	UL
3	5	1.52 Unsaturated	23	SC	625	1.84	1.0	1.00	1.0	0.75	31.7	35	7.0	38.7	UL	1.92	NA	UL	0.03	625	0.99	UL	UL
4	7	2.13 Unsaturated	17	SC	875	1.56	1.0	1.00	1.0	0.75	19.8	35	7.0	26.8	0.33	1.92	NA	0.64	0.03	875	0.99	0.019	33
5	9	2.74 Unsaturated	11	SC	1125	1.37	1.0	1.00	1.0	0.75	11.3	35	7.0	18.3	0.20	1.92	NA	0.38	0.03	1125	0.98	0.019	20
6	11	3.35 Unsaturated	17	SC	1375	1.24	1.0	1.00	1.0	0.75	15.8	35	7.0	22.8	0.26	1.92	NA	0.49	0.03	1375	0.98	0.019	26
7	12	3.66 Unsaturated	12	SC	1500	1.19	1.0	1.00	1.0	0.75	10.7	35	7.0	17.7	0.19	1.92	NA	0.36	0.03	1500	0.97	0.019	19
7A	13	3.96 Unsaturated	18	SC	1625	1.14	1.0	1.00	1.0	0.75	15.4	35	7.0	22.4	0.25	1.92	NA	0.48	0.03	1625	0.97	0.019	25
8	15	4.57 Unsaturated	10	SC	1875	1.06	1.0	1.00	1.0	0.75	8.0	35	7.0	15.0	0.16	1.92	NA	0.31	0.03	1875	0.97	0.019	16
9	17	5.18 Unsaturated	15	SC	2125	1.00	1.0	1.00	1.0	0.75	11.2	35	7.0	18.2	0.20	1.92	0.93	0.37	0.03	2125	0.96	0.019	20
10	19	5.79 Unsaturated	32	SC	2375	0.94	1.0	1.00	1.0	0.75	22.7	35	7.0	29.7	0.44	1.92	0.92	0.85	0.03	2375	0.96	0.019	45
11	20	6.10 Unsaturated	20	SC	2500	0.92	1.0	1.00	1.0	0.75	13.8	35	7.0	20.8	0.23	1.92	0.92	0.44	0.03	2500	0.95	0.019	23
11A	21	6.40 Unsaturated	28	CL	2625	0.90	1.0	1.00	1.0	0.75	18.9	83.9	7.0	25.9	0.31	1.92	0.91	0.60	0.03	2625	0.95	0.019	32
16	31	9.45 Unsaturated	35	CL	3875	0.74	1.0	1.00	1.0	0.75	19.4	50	7.0	26.4	0.32	1.92	0.87	0.62	0.03	3875	0.91	0.018	35
17	33	10.06 Saturated	33	SM	4067.7	0.72	1.0	1.00	1.0	0.75	17.9	35	7.0	24.9	0.29	1.92	0.86	0.56	0.03	4130	0.90	0.018	31
18	36	10.97 Saturated	80	SP	4270.8	0.70	1.0	1.00	1.0	0.75	42.2	1	0.0	42.2	UL	1.92	0.86	UL	0.03	4520	0.88	UL	UL
19	41	12.50 Saturated	77	SP	4609.3	0.68	1.0	1.00	1.0	0.75	39.1	1	0.0	39.1	UL	1.92	0.85	UL	0.03	5170	0.85	UL	UL
20	46	14.02 Saturated	42	SM	4947.8	0.65	1.0	1.00	1.0	0.75	20.6	35	7.0	27.6	0.36	1.92	0.84	0.68	0.03	5820	0.82	0.019	36
21	50	15.24 Saturated	50	SM	5218.6	0.64	1.0	1.00	1.0	0.75	23.9	35	7.0	30.9	UL	1.92	0.83	UL	0.03	6340	0.79	UL	UL

ATTACHMENT 3-1

TABLE 1

COLETO CREEK RESERVOIR AREAS AND CAPACITIES INITIAL CONDITIONS*

Elev.	. 0	1	2	3	4	5	6	7	8	9
					AREA IN	N ACRES				
50									0	9
60	18	26	34	42	50	60	80	100	120	145
70	170	200	239	277	314	351	397	442	495	547
80	599	679	758	835	910	984	1087	1189	1299	1408
90	1504	1650	1796	1940	2084	2230	2369	2514	2652	2787
100	2918	3077	3255	3461	3698	3954	4207	4458	4706	4949
110	5190	5531	5910	6324	6763	7234	7734	8229	8725	9223
120	9723									
				,	CADACITY	TN ACDE	CCCT		£0;	
				(CAPACITY	IN ACRE-	-			
50						*			0	. 4
60	18	40	70	108	154	209	279	369	479	611
70	769	954	1174	1432	1727	2060	2434	2853	3322	3843
80	4416	5055	5774	6570	7442	8389	9425	10,563	11,807	13,160
90	14,617	16,194	17,917	19,786	21,798	23,955	26,254	28,695	31,277	33,996
100	36,849	39,846	43,012	46,370	49,949	53,744	57,855	62,187	66,769	71,597
110	76,667	82,027	87,747	93,863	100,406	107,409	114,807	122,878	131,354	140,328
120	149,800		ore 36 \$5000 000							

^{*}Areas and capacities of impoundments behind Dike Nos. 1 and 2 are not included in this tabulation.

ATTACHMENT 3-2

TABLE 2

COLETO CREEK PROJECT AREAS AND CAPACITIES SULPHUR CREEK BEHIND DIKE NO. 1 INCLUDING FLUME NO. 1

Elev.	0	1	. 2	3	4	5	6	7	8	9
				.*	AREA II	N ACRES				1
70 80 90 100 110 120	3 49 151 329 770	56 164 358	7 64 178 388	10 73 193 419	14 82 207 455	18 90 223 499	22 101 240 540	0 26 113 259 590	1 31 126 279 641	2 36 138 303 699
				CAPAC	CITY IN	ACRE-FI	EET			-
70 80 90 100 110	4. 199 1141 3429 8570	8 251 1299 3773	14 311 1470 4146	23 379 1656 4550	35 456 1856 4987	51 542 2071 5464	71 638 2303 5984	95 745 2553 6549	0 123 865 2822 7165	2 157 997 3113 7835

ATTACHMENT 3-3

TABLE 3

COLETO CREEK PROJECT AREAS AND CAPACITIES TURKEY CREEK BEHIND DIKE NO. 2 INCLUDING FLUME NO. 2

Elev	. 0	1	2	3	4	5	6	7	8	9
					AREA II	N ACRES				
70 80 90 100 110 120	38 167 391 791 1537	0 46 184 429 - 831	1 55 200 467 882	3 65 217 506 947	6 76 234 545 1032	88 250 583	623		24 130 322 705 1374	31 146 355 748 1458
				CAP	ACITY II	N ACRE-1	FEET			· .
70 80 90 100 110 120	124 1048 3654 9513 20,819	0 166 1224 4064 10,324	0 216 1416 4512 11,181	1624 4998	5524	6089	523 2352 6691	41 631 2634 7334 16,572	62 754 2942 8018 17,905	89 892 3281 8744 19,321